
THE AVERAGE-CASE COMPLEXITY OF DETERMINING THE
MAJORITY∗

LAURENT ALONSO† , EDWARD M. REINGOLD‡ , AND RENÉ SCHOTT§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 1–14, February 1997 001

Abstract. Given a set of n elements each of which is either red or blue, it is known that in
the worst case n − ν(n) pairwise equal/not equal color comparisons are necessary and sufficient to
determine the majority color, where ν(n) is the number of 1-bits in the binary representation of n.

We prove that 2n
3
−
√

8n
9π

+ O(logn) such comparisons are necessary and sufficient in the average
case.

Key words. algorithm analysis, decision trees, lower bounds, average case

AMS subject classifications. 68Q25, 68P10, 68Q20, 68R05, 05A10, 11A63

PII. S0097539794275914

1. Introduction. Given a set {x1, x2, . . . , xn}, each element of which is colored
either red or blue, we must determine an element of the majority color by making
equal/not equal color comparisons xu : xv; when n is even, we must report that there
is no majority if there are equal numbers of each color. How many such questions are
necessary and sufficient?

In the worst case, exactly n− ν(n) questions are necessary and sufficient, where,
following [4], ν(n) is the number of 1-bits in the binary representation of n. This
result was first proved by Saks and Werman [9], who expressed the problem in terms
of games and graphs and gave an intricate, technical argument based on generating
functions to prove the lower bound. In [2] we gave a short, elementary proof of this
result.

The present paper concerns the average case. We show in section 3 that any
algorithm that correctly determines the majority must on the average use at least

2n

3
−
√

8n

9π
+ Θ(1)(1)

color comparisons, assuming all 2n distinct colorings of the n elements are equally
probable. Furthermore, in section 4 we describe an algorithm that uses an average of

2n

3
−
√

8n

9π
+O(logn)(2)

color comparisons. Together these bounds imply that 2n
3 −

√
8n
9π + O(logn) such

comparisons are necessary and sufficient in the average case to determine the majority.
Some open problems are discussed in section 5.

∗ Received by the editors October 24, 1994; accepted for publication (in revised form) February 2,
1995. This research was supported in part by INRIA and the NSF through grants NSF INT 90-16958
and NFS INT 95-07248.

http://www.siam.org/journals/sicomp/26-1/27591.html
† CRIN, INRIA-Lorraine, Université de Nancy I, 54506 Vandoeuvre-lès-Nancy, France and ENS,

45 Rue d’Ulm, 75005 Paris, France (alonso@loria.crin.fr).
‡ Department of Computer Science, University of Illinois at Urbana–Champaign, 1304 W. Spring-

field Avenue, Urbana, IL 61801 (reingold@cs.uiuc.edu). The research of this author was supported
in part by NSF grants CCR-93-20577 and CCR-95-30297.
§ CRIN, INRIA-Lorraine, Université de Nancy I, 54506 Vandoeuvre-lès-Nancy, France

(rene.schott@ loria.fr).

1

2 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

2. The decision tree. The derivation of the average-case lower bound (1) is, as
is the derivation of the worst-case lower bound in [2], based on analyzing the under-
lying binary decision tree (see [8], for example) of any algorithm based on equal/not
equal comparisons. Each node of such a decision tree corresponds to a subset of the
2n possible colorings of the n elements—the largest subset for which the answers to
the questions posed are consistent with the coloring. The lower bound for the average
case follows from a detailed analysis of the structure of such a tree.

At any node of the decision tree, the state of information obtained about the
coloring can be described by a partition of {x1, x2, . . . , xn} into disjoint sets A1∪B1∪
A2 ∪ B2 ∪ · · · ∪ Am ∪ Bm, for some m, with the meaning that for all i, 1 ≤ i ≤ m,
all the elements in Ai are known to have one color and all the elements in Bi are
known to have the opposite color. There are clearly 2m colorings of the elements that
are consistent with this partition. At the root of the decision tree we have m = n,
Ai = {xi}, and Bi = ∅, 1 ≤ i ≤ n, and hence, 2n consistent colorings. A leaf of
the decision tree contains enough information for the algorithm to identify one of the
subsets Ai or Bi as being of the majority color.

If we assume that no redundant questions are asked, each internal node of the
decision tree reflects a color comparison xu : xv, xu ∈ Ai ∪ Bi and xv ∈ Aj ∪ Bj ,
i 6= j. The answer to the question causes the two pairs of sets Ai, Bi and Aj , Bj
to be replaced by a single pair of sets, either the pair Ai ∪ Aj , Bi ∪ Bj or the pair
Ai ∪ Bj , Aj ∪ Bi, depending on the answer to the question. Thus at each internal
node the number of colorings splits half and half between the two children of that
node, and therefore a node at depth d (the root having depth zero) corresponds to
2n−d colorings.

Observe that a color comparison xu : xv, xu ∈ Ai ∪Bi and xv ∈ Aj ∪Bj , i 6= j, is
irrelevant if either |Ai| = |Bi| or |Aj | = |Bj | because, in either case, the cardinalities
of the replacement pair of sets for the two pairs of sets Ai, Bi and Aj , Bj do not
depend on the outcome of the color comparison. Hence the state of information at a
node need not include pairs of sets Ai, Bi for which |Ai| = |Bi|, so we will assume
that |Ai| 6= |Bi|, 1 ≤ i ≤ m.

In considering the state of information at a node in the decision tree described
by the partition A1 ∪B1 ∪A2 ∪B2 ∪ · · · ∪Am ∪Bm, it is convenient to relabel these
2m sets so that

|Ai| > |Bi|,

for 1 ≤ i ≤ m, and

|Ai| − |Bi| ≥ |Ai+1| − |Bi+1|,

for 1 ≤ i < m. Thus by defining, for 1 ≤ i ≤ m,

∆i = |Ai| − |Bi|,

we can encode all relevant information about the state at a node of the decision tree
with the nonincreasing sequence of positive integers

∆1 ≥ ∆2 ≥ · · · ≥ ∆m > 0.

The state of the algorithm at the root of the tree is thus described by a sequence of
n ones. At an internal node (∆1,∆2, . . . ,∆m), a color comparison xu : xv, xu ∈ Ai∪Bi

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 3

(�1;�2; � � � ;�m)

delete �i and �j ;
insert �i +�j

delete �i and �j ;
if �i 6= �j insert �i��j

Fig. 1. The effect on the ∆-vector of a color comparison at an internal node of the decision
tree with the color comparison xu : xv, xu ∈ Ai ∪ Bi and xv ∈ Aj ∪ Bj . If ∆i = ∆j , the node is
ordinary; if ∆i 6= ∆j , the node is unusual.

and xv ∈ Aj∪Bj , results in the two values ∆i and ∆j being deleted from the sequence
and ∆i + ∆j or |∆i −∆j | > 0 then being inserted into place in the sequence, one in
the left subtree the other in the right subtree, respectively, depending on the result
of the color comparison—in this case the sequence shrinks in length by 1 in passing
to subtrees. However, zeroes are never in the sequence (since ∆i = 0 would mean
|Ai| = |Bi|), so if |∆i −∆j | = 0, the sequence for that subtree shrinks in length by 2.
(See Figure 1.) In other words, each internal node of the decision tree can have either
both of its children with a ∆-vector one shorter in length than its own ∆-vector or its
left child with a ∆-vector one shorter in length than its own and its right child with
a ∆-vector two shorter in length than its own; in the former case we call the node
unusual, and in the latter case we call it ordinary.

A leaf in the decision tree corresponds to an outcome of the algorithm, and hence
the associated ∆-vector contains enough information to determine the majority. There
are two cases: If the ∆-vector is empty (m = 0), there is no majority. Otherwise, we
must have

∆1 >
∑
i≥2

∆i,(3)

in which case any element from the set A1 is a member of the majority. Of course
each ∆i ≥ 1, so (3) implies that

∆1 ≥ m,(4)

for every leaf in which there is a majority element; we consider that (4) holds vacuously
when m = 0 and there is no majority. Thus (4) holds for every leaf in the tree.

3. The lower bound. Given an algorithm for the majority problem, consider
its corresponding decision tree T and let C(T) be the average number of color compar-
isons, assuming all 2n colorings are equally likely. From the discussion in the previous
section, we have

C(T) =
∑

leaves
l ∈ T

2n−depth(l)

2n
depth(l)

because there are 2n−depth(l) colorings in a leaf at depth depth(l), hence

C(T) =
∑

leaves
l ∈ T

depth(l)

2depth(l)
,

4 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

and

C(T) =
∑

internal
nodes v ∈ T

1

2depth(v)
(5)

by induction on the height of the tree.
We will evaluate the sum in (5) by relating it to the average length of the ∆-vector

when the algorithm ends (that is, at the leaves, weighted by the number of colorings
in a leaf),

L(T) =
∑

leaves
l ∈ T

length(l)

2depth(l)
,(6)

where length(l) is the length of the ∆-vector at leaf l. This, in turn, we will express
in terms of the classic ballot problem [3].

Observe that for any integer-valued function f of nodes, we have the identity∑
internal

nodes v ∈ T

[f(v)− f(left(v))− f(right(v))] = f(root)−
∑

leaves
l ∈ T

f(l);(7)

this follows by induction on the height of the tree (the sum on the left telescopes).
Applying (7) to the function

f(v) =
length(v)

2depth(v)
,

we find that f(root) = n, ∑
leaves
l ∈ T

f(l) = L(T),

and

f(v)− f(left(v))− f(right(v)) =

{
3/2

2depth(v) , v ordinary,

1
2depth(v) , v unusual.

So, (7) becomes ∑
ordinary internal

nodes v ∈ T

3/2

2depth(v)
+

∑
unusual internal

nodes v ∈ T

1

2depth(v)
= n− L(T).

Because every internal node is either ordinary or unusual, we can rewrite this last
equation as

3

2

∑
internal

nodes v ∈ T

1

2depth(v)
− 1

2

∑
unusual internal

nodes v ∈ T

1

2depth(v)
= n− L(T).

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 5

But by (5), this becomes

3

2
C(T)− 1

2

∑
unusual internal

nodes v ∈ T

1

2depth(v)
= n− L(T),

or

C(T) =
2n

3
− 2

3
L(T) +

1

3

∑
unusual internal

nodes v ∈ T

1

2depth(v)
(8)

≥ 2n

3
− 2

3
L(T)

≥ 2n

3
− 2

3
E(∆1),(9)

where E(∆1) is the expected value of ∆1, assuming all 2n colorings are equally likely,
because (4) tells us that L(T) ≤ E(∆1) and thus −L(T) ≥ −E(∆1).

E(∆1) = M(n), the expected margin of victory in the n-vote ballot problem [3],
for consider

M(n) =
1

2n

∑
colorings

C

(|majority in C| − |minority in C|)

=
1

2n

∑
leaves
l ∈ T

∑
colorings
C ∈ l

(|majority in C| − |minority in C|).

But for a leaf l with ∆-vector (∆1,∆2, . . . ,∆m),

|majority| − |minority| = ∆1 ±∆2 ± · · · ±∆m,

where the sign of ∆i is + if color(A1) = color(Ai) and − otherwise. A given leaf l
contains the colorings with all 2m−1 sign combinations, so when these are added all
terms cancel except the ∆1 term. Thus∑

colorings
C ∈ l

(|majority in C| − |minority in C|) = 2n−depth(l)∆1,

since there are 2n−depth(l) colorings associated with l, and so

M(n) =
1

2n

∑
leaves
l ∈ T

2n−depth(l)∆1

=
∑

leaves
l ∈ T

∆1

2depth(l)

= E(∆1),

6 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

as claimed. Inequality (9) now becomes

C(T) ≥ 2

3
n− 2

3
M(n).(10)

The value of M(n) was the subject of problem A-4 in the 1974 Putnam compe-
tition [7] (see also [1, pp. 22 and 87]). We have,

M(n) =
1

2n−1

∑
k≤n/2

(n− 2k)

(
n

k

)

=
1

2n−1

∑
k≤n/2

[
(n− k)

(
n

k

)
− k
(
n

k

)]

=
1

2n−1

∑
k≤n/2

[
n

(
n− 1

k

)
− n

(
n− 1

k − 1

)]

=
n

2n−1

∑
k≤n/2

[(
n− 1

k

)
−
(
n− 1

k − 1

)]

=
n

2n−1

(
n− 1⌊
n−1

2

⌋)
=

√
2n

π
+ Θ(1)(11)

by Stirling’s formula (see [4, equation (4.15)], for example). Therefore, (10) becomes

C(T) ≥ 2

3
n−

√
8n

9π
+ Θ(1),

as claimed.

4. An algorithm. Equation (8) holds for any tree and allows us to analyze the
expected behavior of any algorithm by computing L(T) and∑

unusual internal
nodes v ∈ T

1

2depth(v)

for that algorithm. The algorithm from [2] has no unusual internal nodes and each
leaf has a ∆-vector that is the binary representation of an integer between 0 and n,
so the expected length must be O(logn). That algorithm, therefore, has an expected
2n/3 − O(logn) color comparisons—in other words, although exactly optimal in the
worst case, is only within an additive O(

√
n) of being optimal in the average case.

We can do better, however.
For optimal average-case behavior, we seek to maximize

2

3
L(T)− 1

3

∑
unusual internal

nodes v ∈ T

1

2depth(v)
.

We will describe an algorithm (that is, a tree T (n)) for which this is
√

8n
9π −O(logn);

this algorithm is thus within an additive O(logn) of being optimal.

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 7

Consider the tree T (n) formed by starting with the ∆-vector (1, 1, . . . , 1) of n
ones at the root and proceeding as follows. Suppose the ∆-vector has the form

((2t+ 1)2δ1 , 2δ2 , . . . , 2δm),(12)

δ1 ≥ δ2 ≥ · · · ≥ δm and t ≥ 0; certainly, the initial ∆-vector (1, 1, . . . , 1) has this
form. If ∆1 > ∆2 + · · ·+ ∆m, it is a leaf. Otherwise, if ∆1 ≤ ∆2 + · · ·+ ∆m, that is,
(2t + 1)2δ1 ≤ 2δ2 + · · · + 2δm , the δi’s cannot all be distinct, so let i be the smallest
integer such that for which δi = δi+1; in other words, let i be the smallest integer
such that ∆i/∆i+1 is odd. If ∑

j≤i
∆j >

∑
j>i

∆j ,(13)

we make a color comparison between an element from A1 and one from A2; otherwise,
if ∑

j≤i
∆j ≤

∑
j>i

∆j ,

we make a color comparison between an element from Ai and one from Ai+1. The
resulting ∆-vector has the same form as (12) and it follows by induction on the depth
in T (n) that each ∆-vector thus obtained satisfies the invariant relationship

sum of the non-ones ≤ 2 + number of ones.(14)

Inequality (14) is a critical property of T (n), as we shall see. Figure 2 shows the tree
T (8).

The only possible ∆-vectors in the leaves of T (n) are

(), (2), (i, 1, 1, . . . , 1︸ ︷︷ ︸
j

), j = i− 1 or j = i− 2.(15)

For suppose, by way of contradiction, that a leaf l has ∆2 ≥ 2. By (14),

∆1 + ∆2 ≤ sum of the non-ones ≤ 2 + number of ones,

or

∆1 ≤ (2−∆2) + number of ones.

But 2−∆2 ≤ 0, so

∆1 ≤ number of ones.

Hence the algorithm cannot correctly conclude at leaf l that A1 is of the majority
color, a contradiction.

Because each leaf has one of the forms in (15), the length of the ∆-vector in a
leaf satisfies

length(leaf) = ∆1 +O(1).(16)

8 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

(1
,1
,1
,1
,1
,1
,1
,1
)

(2
,1
,1
,1
,1
,1
,1
)

(2
,2
,1
,1
,1
,1
)

(4
,1
,1
,1
,1
)

(5
,1
,1
,1
)

(3
,1
,1
,1
)

(4
,1
,1
)

(2
,1
,1
)

(3
,1
)
(1
,1
)

(2
)
(
)

(1
,1
,1
,1
)

(2
,1
,1
)

(3
,1
)
(1
,1
)

(2
)
(
)

(1
,1
)

(2
)
(
)

(2
,1
,1
,1
,1
)

(2
,2
,1
,1
)

(4
,1
,1
)
(1
,1
)

(2
)
(
)

(2
,1
,1
)

(3
,1
)
(1
,1
)

(2
)
(
)

(1
,1
,1
,1
,1
,1
)

(2
,1
,1
,1
,1
)

(2
,2
,1
,1
)

(4
,1
,1
)
(1
,1
)

(2
)
(
)

(2
,1
,1
)

(3
,1
)
(1
,1
)

(2
)
(
)

(1
,1
,1
,1
)

(2
,1
,1
)

(3
,1
)
(1
,1
)

(2
)
(
)

(1
,1
)

(2
)
(
)

Fig. 2. The tree T (8). Unusual nodes are enclosed in ovals.

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 9

So,

L(T (n)) = E(length(leaf))

= E(∆1) +O(1)

= M(n) +O(1)

=

√
2n

π
+ Θ(1)

by (11).
It remains to compute ∑

unusual internal
nodes v ∈ T (n)

1

2depth(v)
.

Since
∑
j≥1 ∆j ≤ n, (12) tells us that the only possible values for ∆2 are 2i, 0 ≤ i ≤

blgnc, so

∑
unusual internal
nodes v ∈ T (n)

1

2depth(v)
=

blgnc∑
i=0

∑
unusual internal
nodes v ∈ T (n)
with ∆2 = 2i

1

2depth(v)
.

From inequality (20) in Corollary 4.5 below, we see that the inner sum here is O(1).
This implies that the outer sum is O(logn) and hence that

C(T (n)) =
2n

3
−
√

8n

9π
+O(logn),

whence we can conclude that C(T (n)) is within an additive O(logn) of being optimal
in the average case. To reach the needed corollary we must study the arrangement of
unusual internal nodes in T (n).

Proposition 4.1. Let v with ∆-vector (d1, d2, . . .) be an ancestor of v̂ with

∆-vector (d̂1, d̂2, . . .) in T (n). Then

sum(v̂) ≤ sum(v)− 2(d1 − d̂1),(17)

where sum(x) is the sum of all values in the ∆-vector of a node x.
Proof. The proof is by induction on depth(v̂)−depth(v) because sum(x)−2∆1(x),

an integer-valued function of a node x, is nonincreasing as we go from parent to child
in T (n).

Proposition 4.2. For any k, the highest unusual node in T (n) with ∆2 ≤ k has
∆1/∆2 even.

Proof. It suffices to prove that any ancestor of such a node has a ∆-vector
(d1, d2, . . .) in which d1 is either a power of two or is a multiple of 2∆2. This is
proved by induction on the depth of a node.

Proposition 4.3. If v ∈ T (n) is a unusual node with ∆2 = k, then (a) there is
no unusual node with ∆2 > k in the subtree rooted at v, and (b) there is no unusual
node with ∆2 = k in the subtree rooted at left(v).

10 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

Proof. Suppose there is such a node v. Let x be the highest ancestor of v that
is unusual and has ∆2 ≤ k (of course, we could have x = v), and let (d1, d2, . . .) be
the ∆-vector of x. Because x is the highest unusual node with ∆2 ≤ k, we must have
d1/d2 even—if it were odd, it would contradict Proposition 4.2—and hence if i is the
smallest integer such that di/di+1 is odd, then i ≥ 2, and by (13),∑

j≤i
dj >

∑
j>i

dj .

Furthermore, because d2/d3, . . . , di−1/di are all even, d2 > d3 > · · · > di; since these
are all powers of two, we have

d2 ≥ 1 +
∑

3≤j≤i
dj

and hence

d1 + 2d2 ≥ 1 +
∑
j≤i

dj .

The inequalities above combine to tell us that∑
j≥1

dj =
∑
j≤i

dj +
∑
j>i

dj

< 2
∑
j≤i

dj

≤ 2d1 + 4d2 − 2.

Thus

sum(x) < 2d1 + 4d2 − 2.(18)

For part (a), let y be an unusual descendant of v with ∆2 > k and let (d̂1, d̂2, . . .)

be the ∆-vector of y, d̂2 > k ≥ d2; we have d̂1 > d̂2 since y is unusual and, since ∆2

must be a power of two, we have d̂2 ≥ 2d2. (See Figure 3(a).) Because y is also a
descendant of x, we have by Proposition 4.1 that

sum(y) ≤ sum(x)− 2(d1 − d̂1).

Therefore, by (18),

sum(y) < 2d1 + 4d2 − 2− 2(d1 − d̂1)

= 2d̂1 + 4d2 − 2

≤ 2d̂1 + 2d̂2 − 2.

But

number of ones in y ≤ sum(y)− d̂1 − d̂2,

since d̂1 > d̂2 ≥ 2d2 ≥ 2, and so

number of ones in y < d̂1 + d̂2 − 2,

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 11

x (d1; d2; : : :)

v (�d1; �d2; : : :)

y (d̂1; d̂2; : : :)

x (d1; d2; : : :)

v (�d1; �d2; : : :)

(�d1 + �d2; �d3; : : :)

y (d̂1; d̂2; : : :)

(a) d̂1 > d̂2 � 2d2 (b) d̂1 > d̂2 = �d2 � d2

Fig. 3. The structure of the tree T (n) in the two parts of Proposition 4.3. Unusual nodes are
enclosed in ovals.

contradicting (14).
For part (b), let y be an unusual descendant of left(v) with ∆2 = k. Let

(d̄1, d̄2, . . .) be the ∆-vector of v and let (d̂1, d̂2, . . .) be the ∆-vector of y; we have

d̂1 > d̂2 since y is unusual and d̂2 = d̄2 ≥ d2 by hypothesis. (See Figure 3(b).) Because
y is a descendant of left(v), we have by Proposition 4.1 that

sum(y) ≤ sum(left(v))− 2(d̄1 + d̄2 − d̂1)

≤ sum(v)− 2(d̄1 + d2 − d̂1)

because sum(v) = sum(left(v)) and d̄2 ≥ d2. However, v is a descendant of x, so we
have

sum(v) ≤ sum(x)− 2(d1 − d̄1)

and hence

sum(y) ≤ sum(x)− 2(d1 − d̄1)− 2(d̄1 + d2 − d̂1)

= sum(x)− 2(d1 + d2 − d̂1).

Therefore, by (18),

sum(y) < 2d1 + 4d2 − 2− 2(d1 + d2 − d̂1)

= 2d̂1 + 2d2 − 2

≤ 2d̂1 + 2d̂2 − 2,

12 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

and we then reach the same contradiction to (14).

Proposition 4.4. For any node x ∈ T (n) and for any constant k,

∑
unusual internal nodes
v with ∆2 = k in the
subtree rooted at x

1

2depth(v)
≤ 1

2depth(x)−1
(19)

Proof. The proof is by induction on the height of the subtree rooted at x. If the x
is a leaf, the result is immediate. Suppose the proposition holds for subtrees of height
at most h ≥ 0 and consider a subtree of height h+1 rooted at x. There are two cases.
When the node x is an unusual node with ∆2 = k, by Proposition 4.3 we know that
any unusual node in the left subtree of x has ∆2 < k and any unusual node in the
right subtree of x has ∆2 ≤ k. Hence

∑
unusual internal nodes
v with ∆2 = k in the
subtree rooted at x

1

2depth(v)
=

1

2depth(x)
+

∑
unusual internal nodes
v with ∆2 = k in the

subtree rooted at left(x)

1

2depth(v)

+
∑

unusual internal nodes
v with ∆2 = k in the

subtree rooted at right(x)

1

2depth(v)

≤ 1

2depth(x)
+ 0 +

1

2depth(right(x))−1

=
1

2depth(x)
+

1

2depth(x)

=
1

2depth(x)−1
,

as desired. Otherwise, direct application of the induction hypothesis to the two sub-
trees gives

∑
unusual internal nodes
v with ∆2 = k in the
subtree rooted at x

1

2depth(v)
=

∑
unusual internal nodes
v with ∆2 = k in the

subtree rooted at left(x)

1

2depth(v)

+
∑

unusual internal nodes
v with ∆2 = k in the

subtree rooted at right(x)

1

2depth(v)

≤ 1

2depth(left(x))−1
+

1

2depth(right(x))−1

=
1

2depth(x)
+

1

2depth(x)

=
1

2depth(x)−1
.

AVERAGE-CASE COMPLEXITY OF DETERMINING THE MAJORITY 13

Corollary 4.5. For any constant k,

∑
unusual internal
nodes v ∈ T (n)

with ∆2 = k

1

2depth(v)
≤ 2.(20)

Proof. Apply Proposition 4.4 to the root of the tree, which has depth zero.

Corollary 4.5 can be interpreted probabilistically: The sum (20), which resem-
bles Kraft’s inequality, is the expected number of unusual internal nodes with ∆2 = k
encountered as we follow a random path down the tree from the root to a leaf. Propo-
sition 4.4 says that if we encounter such a node, then half the time—whenever we go
left—there will be no further such nodes as we continue, so the expected number of
such nodes is at most 1 + 1/2 + 1/4 + · · · = 2.

5. Open problems. We conjecture that for our tree T (n),

∑
unusual internal

nodes v ∈ T

1

2depth(v)
= Θ(logn)

and that the algorithm departs by an additive logarithmic term from optimality as n
increases. Moreover, the worst-case behavior of this algorithm is worse than the best
possible n− ν(n): for n = 12, it can take 11 color comparisons. Two open questions
are thus suggested:

• What are the exact average-case and worst-case analyses of our algorithm?
• Is there an algorithm that is optimal in both the average and worst cases?

Consider the tree formed by starting with the ∆-vector (1, 1, . . . , 1) at the root
and proceeding as follows. Suppose the ∆-vector has the form (12). Let i be the
smallest integer such that ∆i/∆i+1 is odd; if

∆1 + ∆2 >
∑
j≥3

∆j ,

make a color comparison between an element from A1 and one from A2; otherwise,
make a color comparison between an element of Ai and one of Ai+1. We conjecture
that this algorithm is optimal in the worst case and departs by at most an additive
logarithmic term from optimality in the average case, but we are unable to analyze
either case. Explicit computation of the trees verifies the optimality of this algorithm
for n ≤ 52 in the worst case. In the average case, a similar computation verifies that
this algorithm is optimal for n ≤ 20 but not for n = 50.

The majority problem is closely related to problems in system diagnosis [6], [10].
It is also similar to coin-weighing problems [5] and knight/knave problems [11]. These
relationships deserve exploration.

Acknowledgments. We are indebted to Donald L. Burkholder for suggesting
the method we originally used to calculate M(n) in section 3. We are grateful to an
anonymous referee who pointed out references [1] and [7] and who suggested several
stylistic improvements.

14 LAURENT ALONSO, EDWARD M. REINGOLD, AND RENÉ SCHOTT

REFERENCES

[1] G. L. Alexanderson, L. F. Klosinski, and L. C. Larson, The William Lowell Putnam
Mathematical Competition, Problems and Solutions: 1965–1984, Mathematical Association
of America, Washington, DC, 1985.

[2] L. Alonso, E. M. Reingold, and R. Schott, Determining the majority, Inform. Process.
Lett., 47 (1993), pp. 253–255.

[3] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., John
Wiley, New York, 1968.

[4] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed.,
Birkhäuser, Boston, 1990.

[5] R. K. Guy and R. J. Nowakowski, Coin-weighing problems, Amer. Math. Monthly, 102
(1995), pp. 164–167.

[6] S. L. Hakimi and E. F. Schmeichel, An adaptive algorithm for system level diagnosis, J.
Algorithms, 5 (1984), pp. 526–530.

[7] A. P. Hillman, The William Lowell Putnam mathematical competition, Amer. Math. Monthly,
82 (1975), pp. 905–912.

[8] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Prac-
tice, Prentice–Hall, Englewood Cliffs, NJ, 1977.

[9] M. E. Saks and M. Werman, On computing majority by comparisons, Combinatorica, 11
(1991), pp. 383–387.

[10] E. Schmeichel, S. L. Hakimi, M. Otsuka, and G. Sullivan, A parallel fault identification
algorithm, J. Algorithms, 11 (1990), pp. 231–241.

[11] R. Smullyan, What Is the Name of This Book?: The Riddle of Dracula and Other Logical
Puzzles, Prentice–Hall, Englewood Cliffs, NJ, 1978.

AMPLIFICATION BY READ-ONCE FORMULAS∗

MOSHE DUBINER† AND URI ZWICK‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 15–38, February 1997 002

Abstract. Moore and Shannon have shown that relays with arbitrarily high reliability can be
built from relays with arbitrarily poor reliability. Valiant used similar methods to construct monotone
read-once formulas of size O(nα+2) (where α = log√5−1 2 ' 3.27) that amplify (ψ− 1

n
, ψ+ 1

n
) (where

ψ = (
√

5− 1)/2 ' 0.62) to (2−n, 1− 2−n) and deduced as a consequence the existence of monotone
formulas of the same size that compute the majority of n bits. Boppana has shown that any monotone
read-once formula that amplifies (p − 1

n
, p + 1

n
) to (1

4
, 3

4
) (where 0 < p < 1 is constant) has size

Ω(nα) and that any monotone, not necessarily read-once, contact network (and in particular any
monotone formula) that amplifies (1

4
, 3

4
) to (2−n, 1− 2−n) has size Ω(n2).

We extend Boppana’s results in two ways. We first show that his two lower bounds hold for
general read-once formulas, not necessarily monotone, that may even include exclusive-or gates. We
are then able to join his two lower bounds together and show that any read-once, not necessarily
monotone, formula that amplifies (p − 1

n
, p + 1

n
) to (2−n, 1 − 2−n) has size Ω(nα+2). This result

does not follow from Boppana’s arguments, and it shows that the amount of amplification achieved
by Valiant is the maximal achievable using read-once formulas.

In a companion paper we construct monotone read-once contact networks of size O(n2.99) that
amplify (1

2
− 1
n
, 1

2
+ 1
n

) to (1
4
, 3

4
). This shows that Boppana’s lower bound for the first amplification

stage does not apply to contact networks, even if they are required to be both monotone and read-
once.

Key words. circuit complexity, Boolean formula, amplification

AMS subject classifications. Primary, 94C10; Secondary, 06E30, 68Q05

PII. S009753979223633X

1. Introduction. In a classical paper, Moore and Shannon [14] use what is now
called the amplification method to show that relays with arbitrarily high reliability
can be built from (so-called crummy) relays with arbitrarily poor reliability.

The amplification method was next used by several researchers to show that
particular Boolean functions have small Boolean circuits and formulas. Bennett and
Gill [3], extending a result of Adleman [1], used it to show that every language in
the complexity class BPP has polynomial-size circuits. Ajtai and Ben-Or [2] used
the amplification method to show that probabilistic constant-depth circuits can be
simulated by deterministic constant-depth circuits with only a polynomial increase in
size.

The main focus of attention in this paper is the elegant application of the am-
plification method by Valiant [19] to the construction of monotone formulas of size
O(nα+2) (where α = log√5−1 2 ' 3.27) for the majority function and its extension

by Boppana [4] to the construction of O(kα+1n logn)-size monotone formulas for the
kth threshold function of n variables.

∗ Received by the editors August 19, 1992; accepted for publication (in revised form) March 31,
1995. A preliminary version of this paper appeared in Proc. 33rd Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 258–
267 [5].

http://www.siam.org/journals/sicomp/26-2/23633.html
† School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel

Aviv University, Tel Aviv 69978, Israel.
‡ School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel (zwick@math.tau.ac.il). The research of this author was
supported in part by the Basic Research Foundation administrated by the Israel Academy of Sciences
and Humanities.

15

16 MOSHE DUBINER AND URI ZWICK

To show the existence of O(nα+2)-size monotone formulas for the majority func-
tion, Valiant first constructs monotone read-once formulas that amplify (ψ− 1

n , ψ+ 1
n)

(where ψ = (
√

5 − 1)/2) to (2−n, 1 − 2−n). Formal definitions of all of these terms
will appear in the next section. The existence of monotone formulas of the same size
for majority follows from a simple probabilistic argument.

Boppana [4] considered the question of whether Valiant had obtained an opti-
mal amount of amplification in his construction and came very close to answering it
positively. He observed that Valiant had actually constructed O(nα)-size monotone
read-once formulas that amplify (ψ − 1

n , ψ + 1
n) to (1

4 ,
3
4) and O(n2)-size monotone

read-once formulas that amplify (1
4 ,

3
4) to (2−n, 1−2−n). The O(nα+2)-size monotone

read-once formulas that amplify (ψ − 1
n , ψ + 1

n) to (2−n, 1− 2−n) are easily obtained
by combining these two subconstructions. Boppana was able to show that each one
of these subconstructions achieved an optimal amount of amplification. However, it
does not seem to follow from Boppana’s arguments that the combined construction is
also optimal.

We are able to join together the two lower bounds of Boppana and show that any
monotone read-once formula that amplifies (p − 1

n , p + 1
n) to (2−n, 1 − 2−n) (where

0 < p < 1 is fixed) does indeed have to be of size Ω(nα+2). This gives a complete
positive answer to the question of whether Valiant’s construction obtains an optimal
amount of amplification.

We are also able to strengthen Boppana’s results in another respect. We show
that the combined Ω(nα+2) lower bound applies even if the read-once formulas are
allowed to use negations and exclusive-or (XOR) gates (as well as the monotone AND
and OR gates). We deal with negations directly. XOR gates are dealt with by showing
that for every formula with XOR gates there exists a probabilistic formula without
XOR gates of the same size that achieves the same amount of amplification.

Boppana had used two different (we are tempted to say incompatible) methods
to get his two lower bounds for the two amplification stages. To obtain the combined
lower bound, we have to slightly strengthen his first lower bound and exhibit an
alternative proof for his second. In particular, we obtain a slightly stronger version
of what we call Boppana’s inequality (see section 2) and present an analytical proof
of it. (Boppana resorted to numerical experimentation in the proof of his inequality.)
We also generalize Boppana’s bound on the derivatives of univariate amplification
functions to bounds on the partial derivatives of multivariate amplification functions.

As mentioned, Boppana’s second lower bound applies to general monotone contact
networks. Using a result of Lupanov [13], it can be shown that it does not apply to
nonmonotone contact networks. Thus in the contact-networks model, negations do
help amplify. More details can be found in [5] and [6]. We also note that negations
and XOR gates seem to help in the construction of formulas for the majority function.
In [15] and [16], nonmonotone formulas of size O(n4.57) without XOR gates and of
size O(n3.13) with XOR gates were constructed.

In a companion paper [6] (see also [5]), we show that there exist monotone undi-
rected contact networks of size O(n2.99) that amplify (1

2 −
1
n ,

1
2 + 1

n) to (1
4 ,

3
4). Certain

conjectures in percolation theory imply that the size of the amplifying networks can
be further reduced to O(n8/3+o(1)) and perhaps even further. This extends the results
of Moore and Shannon [14] and those of Valiant [19] and shows that Boppana’s first
lower bound does not apply to the contact networks, even if they are required to be
both monotone and read-once. It also implies the existence of undirected monotone
contact networks of size O(n4.99) (or O(n4.67), relying on the percolation conjectures)

AMPLIFICATION BY READ-ONCE FORMULAS 17

that compute the majority of n bits. Smaller directed monotone networks for majority
have recently been constructed by Radhakrishnan and Subrahmanyam [18].

Other works relevant to the subjects considered in this paper are [8], [9], [10], and
[17].

The rest of the paper is organized as follows. Section 2 is mainly composed of
definitions. In section 3 we present the strengthened version of Boppana’s inequality.
In section 4, we obtain the bounds on the derivatives of multivariate and univariate
amplification functions. These bounds are used in section 5 to strengthen Boppana’s
bound for the first amplification stage. In section 6, we put forth a new approach to
proving amplification lower bounds. This approach is based on a simple functional
inequality. Using this approach, we present an alternative proof to Boppana’s lower
bound for the second amplification stage. In section 7, we show how to combine
the methods of the two preceding sections and obtain our unified lower bound. In
section 8, we show that read-once formulas that include XOR gates can be simulated
(as far as amplification is concerned) by probabilistic read-once formulas without
XOR gates with no increase in size. All the results of sections 5, 6, and 7 are valid
for probabilistic, not only deterministic, formulas. Thus all of these results, proved so
far only for formulas without XOR gates, remain valid even if XOR gates are used.
We conclude in section 9 with some open problems.

Although the basic ideas used in this work are fairly simple, many proofs, espe-
cially those of inequalities, are extremely technical. To maintain the readability of
the paper, the more technical and lengthy proofs have been put in the appendices.

A preliminary version of this paper (and of [6]) appeared in [5].

2. Preliminaries. Following Moore and Shannon [14] and Boppana [4], we in-
troduce the following two definitions

Definition 2.1 (amplification functions). Given a Boolean function f : {0, 1}n →
{0, 1}, we define its multivariate amplification function f : [0, 1]n → [0, 1] as follows:
f(p1, p2, . . . , pn) = Pr[f(x1,x2, . . . ,xn) = 1], where x1,x2, . . . ,xn are independent
random variables and xi assumes the value 1 with probability pi and the value 0
with probability 1 − pi. We define the univariate amplification function of f to be
f(p) = f(p, p, . . . , p). Since the (multivariate) amplification function is an extension
of the original Boolean function, we use the same notation for both.

Definition 2.2 (amplification from/to). A Boolean function f : {0, 1}n → {0, 1}
amplifies (p, q) to (p′, q′) if f(p) = p′ and f(q) = q′. It amplifies (p, q) to at least
(p′, q′) if f(p) ≤ p′ and f(q) ≥ q′.

The main objects considered in this paper are formulas.

Definition 2.3 (formulas). A formula of n variables is defined recursively as
follows: (i) for 1 ≤ i ≤ n, the variables xi and their negations xi are formulas; (ii)
if f and g are formulas, then so are (¬f), (f ∧ g), (f ∨ g), and (f ⊕ g). A formula
in which no XOR gates are used is called unate or de Morgan. A unate formula in
which no negations are used is called monotone. Formulas define Boolean functions
in the obvious way. The size of a formula f , denoted by size(f), is the number of
occurrences of variables in it.

Definition 2.4 (probabilistic formulas). A probabilistic (monotone, unate) for-
mula is simply a discrete probability distribution over deterministic (monotone, unate)
formulas. The size of a probabilistic formula F is defined to be the maximum size
of a formula f whose probability according to the distribution induced by F is posi-
tive. The amplification function F (p1, . . . , pn) of a probabilistic formula F is simply

18 MOSHE DUBINER AND URI ZWICK

F (p1, . . . , pn) = Ef∈F f(p1, . . . , pn), where E denotes expectation relative to the dis-
tribution induced by F .

It is easy to see that monotone and unate formulas correspond to monotone and
nonmonotone series-parallel contact networks. For more details the reader is referred
to Boppana [4].

Most of the formulas encountered in this work will be read-once.

Definition 2.5 (read-once). A formula is said to be read-once if every variable
appears in it at most once.

We investigate the minimal size of formulas required to achieve given amplification
goals.

Definition 2.6 (amplification complexity). If 0 < p0, q0, p1, q1 < 1, we denote
by N(p1, q1 | p0, q0) the minimum size of a unate read-once formula that amplifies
(p0, q0) to (p1, q1). We denote by N⊕(p1, q1 | p0, q0) the corresponding measure for
general read-once formulas.

In what follows, we refer to the following two inequalities.

Theorem 2.7 (Hölder’s inequality). If α, β > 1 and 1
α + 1

β = 1, then for any two
real vectors x and y, we have

〈|x|, |y|〉 =

n∑
i=1

|xiyi| ≤
(

n∑
i=1

|xi|α
)1/α

·
(

n∑
i=1

|yi|β
)1/β

= ‖x‖α · ‖y‖β .

Theorem 2.8 (Boppana’s inequality). Let H(x) = −x log2 x− (1−x) log2(1−x)
be the usual binary entropy function and let β = log(

√
5+1)/2 2 ' 1.44. Then for every

0 < x, y ≤ 1, we have (
H(x)

x

)β
+

(
H(y)

y

)β
≤
(
H(xy)

xy

)β
.

In what follows we say that a function F satisfies Boppana’s inequality iff F (x) =
F (1 − x) ≥ 0 for every 0 ≤ x ≤ 1 and F (substituting for H) satisfies the inequality
in the above theorem.

3. Strengthening Boppana’s inequality. Boppana’s inequality, stated in the
previous section, forms the basis of his lower bound for the first amplification stage.
To get some of our extended lower bounds, we need a slightly stronger version of
his inequality. This version is obtained by replacing the entropy function H(x) by a
function G(x) with the tightest possible asymptotic behavior near x = 0 and x = 1.

To prove his inequality, Boppana had to make many numerical checks involving
functions of two variables. (In one point of the argument, for example, he has to

estimate the third derivatives of the function H̃(x, y) = (H(xy)/xy)β − (H(x)/x)β −
(H(y)/y)β and show that the Hessian matrix of H̃ is positive definite on the entire
region [0.55, 0.65] × [0.55, 0.65].) We are able to exhibit a much simpler proof to
our strengthened inequality. We show that it follows from some relatively simple
one-variable inequalities.

Our new function G(x) is defined as follows:

G(x) =

x
(
ln γ

x

)1/β
if 0 ≤ x ≤ 1

2 ,

(1− x)
(

ln γ
1−x

)1/β

if 1
2 ≤ x ≤ 1,

AMPLIFICATION BY READ-ONCE FORMULAS 19

where

ln γ =
2− ψ − ln 4

β
' −0.003005.

We claim that G(x) satisfies Boppana’s inequality.

Lemma 3.1. For every 0 < x, y ≤ 1, we have (G(x)
x)β + (G(y)

y)β ≤ (G(xy)
xy)β .

Proof. See Appendix A.
The somewhat peculiar constant γ in the definition of G(x) was chosen so that

Ĝ(ψ) = Ĝ(1 − ψ) where Ĝ(x) = x · ddx (G(x)
x)β . As shown in the next lemma, this is

a necessary condition that must be satisfied by any (symmetric) function that wishes
to satisfy Boppana’s inequality.

Lemma 3.2. If G(x) is a symmetric function that satisfies Boppana’s inequality

and if G(x) is differentiable at x = ψ, then Ĝ(ψ) = Ĝ(1 − ψ), where Ĝ(x) = x ·
d
dx (G(x)

x)β.
Proof. Since ψ2 = 1 − ψ, ψβ = 1

2 , and G(ψ2) = G(1 − ψ) = G(ψ), we get

that 2(G(ψ)
ψ)β = (G(ψ2)

ψ2)β . It follows that Boppana’s inequality is always satisfied

with equality at the point (ψ,ψ). As a consequence, the point (ψ,ψ) must be a local

minimum of the function G̃(x, y) = G̃(xy) − G̃(x) − G̃(y), where G̃(x) = (G(x)
x)β . It

is easy to verify that

∂G̃(x, y)

∂x
=

1

x

[
xyG̃′(xy)− xG̃′(x)

]
=

1

x

[
Ĝ(xy)− Ĝ(x)

]
.

Since this partial derivative must vanish at (ψ,ψ), we get that Ĝ(1 − ψ) = Ĝ(ψ2) =

Ĝ(ψ).
Graphs of the function G(x) are discussed in the appendices. It can be seen

from these graphs that G(x) has a small cusp at x = 1
2 . This will not cause us any

trouble. A variant of the function G(x) in which this cusp is replaced by a straight
line connecting the two local maxima also satisfies Boppana’s inequality. This variant
is used by us in [7].

It is easy to see that for small values of x, we have G(x) ≈ x(ln 1
x)1/β while H(x) ≈

x ln 1
x and thus G(x) � H(x). This allows us to get the improved amplification

bounds.

4. Bounds on derivatives of amplification functions. The basic theorem
from which all the results of this section follow is the following.

Theorem 4.1. If f is a unate read-once formula (or a read-once series-parallel
contact network) that depends on n variables and if I(x) satisfies Boppana’s inequality,
then (

n∑
i=1

∣∣∣∣I(xi)·
∂f

∂xi

∣∣∣∣β
)1/β

≤ I(f).

Proof. The proof is by induction on the structure of f . If f = xi or f = xi, then
the inequality is easily verified since | ∂f∂xi | = 1 and I(xi) = I(1−xi) = I(f). If f = ¬g,
then the inequality follows easily from the induction hypothesis since f = 1 − g and
therefore | ∂f∂xi | = |

∂g
∂xi
| and I(f) = I(1− f) = I(g).

If f = f1 ∧ f2 and if f1(x1, . . . , xn) and f2(y1, . . . , ym) are the amplification func-
tions of f1 and f2, then the amplification function of f is f(x1, . . . , xn, y1, . . . , ym) =

20 MOSHE DUBINER AND URI ZWICK

f1(x1, . . . , xn)f2(y1, . . . , ym). As a consequence, ∂f
∂xi

= ∂f1
∂xi
·f2 and ∂f

∂yj
= f1 · ∂f2∂yj

. For

convenience, we let xn+1 = y1, . . . , xn+m = ym.
Using the induction hypothesis and then Boppana’s inequality, we therefore get

n+m∑
i=1

∣∣∣∣I(xi)·
∂f

∂xi

∣∣∣∣β ≤ fβ2 · n∑
i=1

∣∣∣∣I(xi)·
∂f1
∂xi

∣∣∣∣β + fβ1 ·
n+m∑
i=n+1

∣∣∣∣I(xi)·
∂f2
∂xi

∣∣∣∣β

≤ (f2 ·I(f1))β + (f1 ·I(f2))β = (f1f2)β ·
[(

I(f1)

f1

)β
+

(
I(f2)

f2

)β]

≤ (f1f2)β ·
(
I(f1f2)

f1f2

)β
= (I(f))β .

This completes the proof since any unate gate can be obtained by combining an ∧-gate
with negations.

If in addition to satisfying Boppana’s inequality, the function I(x) also satisfies
the inequality (

I
(

1−x
2

)
x

)β
+

(
I
(

1−y
2

)
y

)β
≤
(
I
(

1−xy
2

)
xy

)β
for every 0 < x, y ≤ 1, then we can show directly that the inequality in the above
lemma holds for read-once formulas that may include XOR gates. Both the entropy
function H(x) and the function G(x) introduced in section 3 satisfy this inequality.
We omit the details since the same amplification bounds will follow from the more
general arguments of section 8.

We denote by ∇f(x) the gradient ∇f = (∂f∂x1
, . . . , ∂f∂xn) of f evaluated at the point

(x, . . . , x). As an immediate corollary to the previous lemma, we get the following.
Corollary 4.2. If f is a unate read-once formula, then

‖∇f(x)‖β ≤
I(f(x))

I(x)
,

and if pc is the critical probability for which f(pc) = pc, then

‖∇f(pc)‖β ≤ 1.

As a second corollary to Theorem 4.1, we get the following result obtained by
Boppana [4] for monotone read-once formulas.

Corollary 4.3. If f is a unate read-once formula that depends on n variables,
then

|f ′(x)| ≤ n1/α · I(f(x))

I(x)
.

Proof. A simple application of Hölder’s inequality yields

|f ′(x)| ≤
n∑
i=1

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ ≤
(

n∑
i=1

1

)1/α

·
(

n∑
i=1

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣β
)1/β

= n1/α · ‖∇f(x)‖β ≤ n1/α · I(f(x))

I(x)
.

AMPLIFICATION BY READ-ONCE FORMULAS 21

It was pointed out by one of the referees that the inequality
∑n
i=1 |xi| ≤ n1/α ·

(
∑n

i=1 |xi|β)1/β used in the proof above follows immediately from Jensen’s inequality,
which is more elementary than Hölder’s inequality. This is interesting since it shows
that our proof, in contrast to Boppana’s proof, does not use the full power of Hölder’s
inequality.

Again, if I(x) satisfies the additional inequality mentioned above, as G and H do,
then Corollary 4.3 holds for general, not necessarily unate, read-once formulas. We
claim that the inequality in Corollary 4.3 with G(x) plugged into it is, up to constant
factors, the strongest valid inequality of its kind. We do not elaborate on it here.

5. Local amplification bounds. Boppana [4] used Corollary 4.3 with the en-
tropy function H(x) plugged into it together with the mean-value theorem to get
a lower bound on the size of the formulas required to amplify (p0, q0) to (p1, q1).
A stronger lower bound is obtained by replacing the entropy function by the new
function G(x) and by integrating the upper bound obtained for |f ′(x)|.

Let

M(x, y) =

∣∣∣∣∫ y

x

du

G(u)

∣∣∣∣α .
Theorem 5.1. Any read-once formula that amplifies (p0, q0) to (p1, q1) has size

at least

N(p1, q1 | p0, q0) ≥ M(p1, q1)

M(p0, q0)
.

Proof. Let f be a read-once formula that depends on n variables and amplifies
(p0, q0) to (p1, q1). Using Corollary 4.3 and a simple change of variables, we get that∣∣∣∣∫ q1

p1

dx

G(x)

∣∣∣∣ ≤ ∣∣∣∣∫ q0

p0

f ′(x)dx

G(f(x))

∣∣∣∣ ≤ ∣∣∣∣∫ q0

p0

n1/αdx

G(x)

∣∣∣∣ = n1/α

∣∣∣∣∫ q0

p0

dx

G(x)

∣∣∣∣ .
Since ∫

dx

x
(
ln γ

x

)1/β = −α
(

ln
γ

x

)1/α

,

it is easily verified that

M(x, y) =

∣∣∣∣∫ y

x

du

G(u)

∣∣∣∣α = C ·

m(x, y) if x ≤ y ≤ 1

2 ,

(m(x, 1
2)1/α +m(1− y, 1

2)1/α)α if x ≤ 1
2 ≤ y,

m(1− y, 1− x) if 1
2 ≤ x ≤ y,

M(y, x) if y < x,

where C = αα and

m(x, y) =

[(
ln
γ

x

)1/α

−
(

ln
γ

y

)1/α
]α

.

Clearly, M(x, y) = M(y, x) = M(1− x, 1− y).
In section 7, the function M(x, y) will be compared with some other functions. It

will be convenient to scaleM(x, y) before these comparisons and assume that C = 106.
Of course, this will not affect the validity of Theorem 5.1.

22 MOSHE DUBINER AND URI ZWICK

As an immediate corollary of Theorem 5.1, we get the following.
Corollary 5.2. Any unate read-once formula that amplifies (p − 1

n , p + 1
n) to

at least (1
4 ,

3
4) (where 0 < p < 1 is fixed) is of size Ω(nα) and any unate read-once

formula that amplifies (p− 1
n , p+ 1

n) to at least (2−n, 1
2) or to at least (1

2 , 1− 2−n) is
of size Ω(nα+1).

Proof. The proof follows easily since M(p− 1
n , p+ 1

n) = Θ(n−α) and M(2−n, 1
2),

M(1
2 , 1− 2−n) = Θ(n).
It can be checked that both of these bounds are optimal. Valiant [19] obtained

monotone formulas of size O(nα) that amplify (p − 1
n , p + 1

n) to (1
4 ,

3
4). Boppana [4]

obtained monotone formulas of size O(nα+1) that amplify (p− 1
n , p+ 1

n) to (2−n, 1
2)

or to (1
2 , 1− 2−n). The fact that the second lower bound obtained using the function

G(x) is tight shows that the asymptotic behavior of G(x) near x = 0 and x = 1 cannot
be improved.

Since M(2−n, 1−2−n) is still Θ(n), the methods used so far imply only an Ω(nα+1)
lower bound on amplification from (p − 1

n , p + 1
n) to (2−n, 1 − 2−n). This will be

improved in section 7 to a tight Ω(nα+2) lower bound.
We note that the use of the function G(x) in place of H(x) is essential in obtaining

the Ω(nα+1) lower bounds of Corollary 5.2. Had we used H(x), we would have
obtained only Ω(nα logn) lower bounds.

6. Global amplification bounds. The main result of this section is the fol-
lowing simple yet powerful theorem. Let (0, 1) denote the open unit interval and let

(0, 1)
2

denote the open unit square in the plane.

Theorem 6.1. If L(x, y) is defined on (0, 1)
2

and satisfies the following two
conditions,

L(x1x2, y1y2)≤L(x1, y1) + L(x2, y2) ∀ 0 < x1, x2, y1, y2 < 1,
L(x, y) =L(1− x, 1− y) ∀ 0 < x, y < 1,

then for every 0 < p0, q0, p1, q1 < 1, we have

N(p1, q1 | p0, q0) ≥ L(p1, q1)

L(p0, q0)
.

Proof We prove by induction on the structure of f that if f amplifies (p0, q0)
to (p1, q1), then size(f) ≥ L(p1, q1)/L(p0, q0). The basis of the induction is easily
established.

If f = ¬g, then g amplifies (p0, q0) to (1− p1, 1− q1). Since size(f) = size(g) and
L(1 − p1, 1 − q1) = L(p1, q1), the required inequality follows immediately from the
induction hypothesis.

If f = f1∧f2 and if f1 and f2 amplify (p0, q0) to (x1, y1) and (x2, y2), respectively,
then p1 = x1x2 and q1 = y1y2. By the induction hypothesis and the first condition
of L, we have

size(f) = size(f1) + size(f2)

≥ L(x1, y1) + L(x2, y2)

L(x0, y0)
≥ L(x1x2, y1y2)

L(p0, q0)
=
L(p1, q1)

L(p0, q0)
.

Note that in both Theorems 5.1 and 6.1, the lower bounds obtained were of
a similar form. Both involved a quotient of some two-variable potential function
evaluated at the pre- and post-amplification probabilities.

AMPLIFICATION BY READ-ONCE FORMULAS 23

The approach of Theorem 6.1 seems to be more general than the approach of the
previous section. Numerical tests seem to suggest that the function M(x, y) of section
5 satisfies the conditionM(x1x2, y1y2) ≤M(x1, y1)+M(x2, y2) of Theorem 6.1. If this
were indeed the case, then Theorem 5.1 would follow immediately from Theorem 6.1.

With some additional work, the numerical tests that we performed can proba-
bly be turned into a proof that is similar in spirit to the original proof that Bop-
pana had given for his inequality—that the function M(x, y) satisfies the inequality
M(x1x2, y1y2) ≤ M(x1, y1) +M(x2, y2). This would be tedious, however, since four,
and not just two, variables are involved this time. We did not carry out this extra
work since the direct proof given to Theorem 5.1 seems to be more informative.

We now use Theorem 6.1 to obtain an alternative proof to the lower bounds for
the second amplification stage obtained by Moore and Shannon [14] and Boppana
[4]. The new proof works only for read-once formulas and not for general read-once
networks. However, it does work for general, not necessarily monotone, read-once
formulas.

Perhaps the simplest function satisfying the conditions of Theorem 6.1 is the
following function:

L′(x, y) =

{
ln 1

x ·ln
1

1−y if x ≤ y,

ln 1
1−x ·ln

1
y if x ≥ y.

Lemma 6.2. The function L′(x, y) satisfies the conditions of Theorem 6.1.
Proof. The condition L′(x, y) = L′(1 − x, 1 − y) is easily verified. Let `′(x, y) =

ln 1
x ·ln

1
1−y . Note that `′(1 − x, 1 − y) = `′(y, x). When x ≤ y, we have 1

x ≥
1
y and

1
1−y ≥

1
1−x and therefore

`′(x, y) = ln 1
x ·ln

1
1−y ≥ ln 1

1−x ·ln
1
y = `′(y, x).

When x ≥ y, the opposite inequality holds. Thus L′(x, y) = max{`′(x, y), `′(y, x)}.
We now have

`′(x1x2, y1y2) = ln 1
x1x2
·ln 1

1−y1y2

=
(

ln 1
x1

+ ln 1
x2

)
·ln 1

1−y1y2 ≤ ln 1
x1
·ln 1

1−y1 + ln 1
x2

ln 1
1−y2

= `′(x1, y1) + `′(x2, y2) ≤ L′(x1, y1) + L′(x2, y2)

and

`′(y1y2, x1x2) ≤ `′(y1, x1) + `′(y2, x2) ≤ L′(x1, y1) + L′(x2, y2).

Consequently,

L′(x1x2, y1y2) = max{`′(x1x2, y1y2), `′(y1y2, x1x2)} ≤ L′(x1, y1) + L′(x2, y2),

as required.
As an immediate corollary, we extend the lower bound of Moore and Shannon

[14] to include nonmonotone read-once formulas.
Corollary 6.3. Every unate read-once formula that amplifies (1

4 ,
3
4) to at least

(2−n1 , 1− 2−n2) is of size Ω(n1n2).
Boppana [4] obtained a stronger version of this inequality when n1 and n2 are

not within an exponent of each other. To extend his result, we use Theorem 6.1 in

24 MOSHE DUBINER AND URI ZWICK

conjunction with the more complicated function

L(x, y) =

`(x, y) if x ≤ y ≤ 1− x,

`(1− y, 1− x) if x, 1− x ≤ y,
`(1− x, 1− y) if 1− x ≤ y ≤ x,

`(y, x) if y ≤ x, 1− x,

where

`(x, y) = ln
1

x
·ln

ln 1
x

ln 1
y

.

Lemma 6.4. The function L(x, y) satisfies the conditions of Theorem 6.1.
Proof. The proof is tedious and it is presented in Appendix B.
Using L(x, y), we extend Boppana’s second lower bound to nonmonotone read-

once formulas.
Corollary 6.5. Every unate read-once formula that amplifies (1

4 ,
3
4) to at least

(2−n1 , 1− 2−n2) is of size Ω(n1n2 + n1 logn1 + n2 logn2).
The results of this section are stated for unate read-once formulas. The validity of

all the results for general read-once formulas will follow from the results of section 8.

7. A unified lower bound for amplification. Corollary 5.2 gives in particular
an Ω(nα+1) lower bound on the size of unate read-once formulas that amplify (p −
1
n , p+ 1

n) to at least (2−n, 1−2−n) (for a fixed 0 < p < 1). In this section, we combine
the proof techniques of sections 5 and 6 and improve this to a tight Ω(nα+2) lower
bound. We begin with the following generalization of Theorem 6.1.

Theorem 7.1. If K(x, y) is defined on (0, 1)2 and satisfies the conditions

K(x1x2, y1y2) ≤ max{K(x1, y1) +K(x2, y2), M(x1x2, y1y2)},
K(x, y) ≥ M(x, y),
K(x, y) = K(1− x, 1− y)

for every 0 < x1, x2, y1, y2 < 1 and 0 < x, y < 1, and if it is already known for every
0 < p0, p1, q0, q1 < 1 that

N(p1, q1 | p0, q0) ≥ M(p1, q1)

M(p0, q0)
,

then we also have for every 0 < p0, p1, q0, q1 < 1 that

N(p1, q1 | p0, q0) ≥ K(p1, q1)

K(p0, q0)
.

Proof. The proof is a trivial modification of the proof of Theorem 6.1.
To get our unified lower bound, we apply Theorem 7.1 to a function K(x, y)

obtained by stitching together M(x, y) of section 5 (with C = 106), which did well for
the first amplification stage, and L(x, y) of section 6, which did well for the second
amplification stage. The function K(x, y) will equal M(x, y) when x and y are very
close to one another and it will equal L(x, y) when they are far apart.

The function K(x, y) is defined as follows:

K(x, y) =

{
M(x, y) if (x, y) ∈ A,

max{M(x, y), L(x, y)} if (x, y) 6∈ A,

AMPLIFICATION BY READ-ONCE FORMULAS 25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. The region A (composed of A′ and A′′) and the regions in which L(x, y) ≥M(x, y).

where

A = A′ ∪ A′′, A′ = R′2, A′′ = R′′2
and

R′d =

{
(x, y) :

1

d
≤
∣∣∣∣∣ ln 1

x

ln 1
y

∣∣∣∣∣ ≤ d
}
, R′′d =

{
(x, y) :

1

d
≤
∣∣∣∣∣ ln 1

1−x
ln 1

1−y

∣∣∣∣∣ ≤ d
}
.

Figure 1 gives a schematic description of the region A (composed of A′ and A′′)
and the two regions (shown shaded) in which L(x, y) ≥M(x, y). These two extremely
thin regions stretch along the diagonal and the boundary of the unit square. It can
be checked (see the proof of Claim 7.4(a) in Appendix C) that when x ≤ y and when
both x and y are very small, then L(x, y)/M(x, y) ≈ lnu/C[1 − (1/u)1/α]α, where

u = ln 1
x/ ln 1

y . Thus L(x, y) ≥ M(x, y) roughly when u ≤ 1.01 or when u ≥ e10
6

,

i.e., when y1.01 ≤ x ≤ y or when ye
106 ≥ x. The definition of A was conveniently

chosen to lie between these two regions. Note that although it is impossible to see
it in Figure 1, the upper boundary of the inner region in which L(x, y) ≥ M(x, y) is
also tangent to the y-axis.

It is immediate that K(x, y) satisfies the last two conditions of Theorem 7.1. To
show that it also satisfies the first, we define the following additional regions:

B′ = R′4, B′′ = R′′4 , B = B′ ∪ B′′,
C′ = R′6, C′′ = R′′6 , C = C′ ∪ C′′.

26 MOSHE DUBINER AND URI ZWICK

Clearly, A ⊆ B ⊆ C. Note that if (x1x2, y1y2) ∈ A, thenK(x1x2, y1y2) = M(x1x2, y1y2).
The fact that the function K(x, y) satisfies the first condition of Theorem 7.1 will
therefore follow from the following lemma.

Lemma 7.2.

L(x1x2, y1y2) ≤
{
K(x1, y1) +K(x2, y2) if (x1x2, y1y2) 6∈ C,

M(x1x2, y1y2) if (x1x2, y1y2) ∈ C \ A.

As an immediate corollary of Theorem 7.1 and Lemma 7.2, we get the following.
Corollary 7.3. (a) Any unate read-once formula that amplifies (p− 1

n1
, p+ 1

n1
)

(where 0 < p < 1 is fixed) to at least (2−n2 , 1−2−n3) is of size Ω(nα1 (n2n3+n2 logn2+
n3 logn3)). (b) Any unate read-once formula that amplifies (p − 1

n , p + 1
n) (where

0 < p < 1 is fixed) to at least (2−n, 1− 2−n) is of size Ω(nα+2).
To prove Lemma 7.2 we need the following technical claims whose proofs may be

found in Appendix C.
Claim 7.4. (a) M(x, y) ≥ L(x, y) for (x, y) ∈ C \ A. (b) M(x, y) ≥ `(x, y) for

(x, y) ∈ A′′ \ A′.
Claim 7.5. (a) (A′)t ⊆ A′. (b) (A′′)t ⊆ A′′ for every 0 ≤ t ≤ 1.
Claim 7.6. (a) A′C′ ⊆ C′. (b) (A′′ ∩ {x+ y ≥ 1})(B′′ ∩ {x+ y ≥ 1}) ⊆ C′′.
In Claims 7.5 and 7.6, we use the definitions

Rt = {(xt, yt) : (x, y) ∈ R},
RS = {(x1x2, y1y2) : (x1, y1) ∈ R, (x2, y2) ∈ S}.

Claim 7.7. (a) If (x1, y1) ∈ A′ and (x2, y2) ∈ {x ≤ y} \ C′, then

d

dt
`(x1

tx2, y1
ty2)

∣∣∣
t=0
≤ 0.

(b) If (x1, y1) ∈ A′′ and (x2, y2) ∈ {x+ y ≥ 1, x ≤ y} \ B′′, then

d

dt
`(1− y1ty2, 1− x1

tx2)
∣∣∣
t=0
≤

 (2 ln 1
y1

)1/4 always,

0 if
ln 1
x1

ln 1
y1

≤ 1.15.

Claim 7.8. If ln 1
x/ln

1
y ≥ 1.15 and x+ y ≥ 1, then M(x, y) ≥ (2 ln 1

y)1/4.

The choice C = 106 was made to insure the validity of Claims 7.4 and 7.8. In the
proofs of these claims, found in Appendix C, the main emphasis is on showing that
there exists a value of C for which these claims are valid. The proof that the choice
C = 106 is sufficient is a simple drudgery and will not be presented in full.

Relying on the preceding claims, we now prove Lemma 7.2.
Proof of Lemma 7.2. If (x1x2, y1y2) ∈ C \ A, then the claim follows from 7.4(a).

We therefore assume that (x1x2, y1y2) 6∈ C, in which case we have to show that
L(x1x2, y1y2) ≤ K(x1, y1) +K(x2, y2).

Since all the functions and regions involved in the statement of the lemma are
invariant under reflection by the line y = x (which corresponds to switching the x and
the y coordinates), we may assume without loss of generality that x1x2 ≤ y1y2. We
may further assume without loss of generality that x1 ≤ y1. It is enough to prove the
inequality for the case where x2 ≤ y2. To see this, we note that if x ≤ x′ ≤ y′ ≤ y,
then L(x′, y′) ≤ L(x, y). Assume that we had proven the inequality for every x1 ≤ y1
and x2 ≤ y2. We now show how to deal with the case where x1 ≤ y1 and x2 ≥ y2.

AMPLIFICATION BY READ-ONCE FORMULAS 27

Since x1y2 ≤ x1x2 ≤ y1y2 ≤ y1x2 and since (x1x2, y1y2) 6∈ C implies (x1y2, y1x2) 6∈ C,
we have

L(x1x2, y1y2) ≤ L(x1y2, y1x2)

≤ K(x1, y1) +K(y2, x2)

= K(x1, y1) +K(x2, y2)

as required. Therefore, we will assume henceforth that x2 ≤ y2.

We now split the proof into two cases depending on whether (x1x2, y1y2) is below
or above the line x+ y = 1.

Case 1. x1x2 + y1y2 ≤ 1.

Note that C ∩ {x+ y ≤ 1} = C′. We therefore know that (x1x2, y1y2) 6∈ C′.
If (x, y) 6∈ A′, then `(x, y) ≤ K(x, y). If (x, y) 6∈ A, this follows from the definition

of K(x, y) and the fact that `(x, y) ≤ L(x, y) (see Lemma B.1 in Appendix B), and if
(x, y) ∈ A′′ \ A′ this follows from Claim 7.4(b).

If (x1, y1), (x2, y2) 6∈ A′, then using the inequality `(x1x2, y1y2) ≤ `(x1, y1) +
`(x2, y2), which is always valid (see Lemma B.1 in Appendix B) and the fact that in
this case we have L(x1x2, y1y2) = `(x1x2, y1y2), we get

L(x1x2, y1y2) = `(x1x2, y1y2)

≤ `(x1, y1) + `(x2, y2)

≤ K(x1, y1) +K(x2, y2)

as required.

We therefore assume without loss of generality that (x1, y1) ∈ A′. Consider
the continuous movement from (x2, y2) to (x1x2, y1y2) described parametrically by
(x1

tx2, y1
ty2), where t ranges from 0 to 1. If for some 0 ≤ t ≤ 1 we have (x1

tx2, y1
ty2) ∈

C′, then since (x1
1−t, y1

1−t) ∈ A′ (this follows from Claim 7.5(a)) we get using
Claim 7.6(a) that (x1x2, y1y2) = (x1

1−t · x1
tx2, y1

1−t · y1ty2) ∈ C′, which is a contra-
diction.

The remaining possibility is therefore that (x1
tx2, y1

ty2) 6∈ C′ for every 0 ≤ t ≤ 1.
In particular (x2, y2) 6∈ C′ and `(x2, y2) ≤ K(x2, y2). We now rely on Claim 7.7(a),
which states that in this case d

dt`(x1
tx2, y1

ty2) ≤ 0 for every 0 ≤ t ≤ 1 (since
d
dt`(x1

tx2, y1
ty2)|t=t0 = d

dt`(x1
t · x1

t0x2, y1
t · y1t0y2)|t=0), and get that

L(x1x2, y1y2) = `(x1x2, y1y2)

≤ `(x2, y2) ≤ K(x2, y2),

which is more than required.

We are left with the case where (x1x2, y1y2) is above the line x+ y = 1.

Case 2. x1x2 + y1y2 ≥ 1.

Note that in this case we also have x1 +y1 ≥ 1, x2 +y2 ≥ 1, and x1
tx2 +y1

ty2 ≥ 1
for every 0 ≤ t ≤ 1. We also know that L(x1x2, y1y2) = `(1− y1y2, 1− x1x2).

We now repeat some of the reasonings used in the previous case. However, certain
complications arise since we can rely only on Claim 7.7(b), which is weaker than its
counterpart Claim 7.7(a).

If (x, y) 6∈ A (which is equivalent in this case to (x, y) 6∈ A′′), then by the definition
of K(x, y), we get that L(x, y) ≤ K(x, y).

28 MOSHE DUBINER AND URI ZWICK

If (x1, y1), (x2, y2) 6∈ A, then using the fact that L(x, y) satisfies the condition
L(x1x2, y1y2) ≤ L(x1, y1) + L(x2, y2) (which is the first condition of Theorem 6.1),
we get that

L(x1x2, y1y2) ≤ L(x1, y1) + L(x2, y2)

= K(x1, y1) +K(x2, y2)

as required.
We may therefore assume without loss of generality that (x1, y1) ∈ A′′. Consider

again the continuous movement from (x2, y2) to (x1x2, y1y2) described parametrically
by (x1

tx2, y1
ty2), where t ranges from 0 to 1. Note that in this case the whole curve

is above the line x+ y = 1.
If for some 0 ≤ t ≤ 1 we have (x1

tx2, y1
ty2) ∈ B′′, then since (x1

1−t, y1
1−t) ∈ A′′

(this follows from Claim 7.5(b)), we get using Claim 7.6(b) that (x1x2, y1y2) ∈ C′′,
which is a contradiction.

The remaining possibility is therefore that (x1
tx2, y1

ty2) 6∈ B′′ for every 0 ≤ t ≤ 1.
In particular, (x2, y2) 6∈ B′′. If ln 1

x1
/ ln 1

y1
≤ 1.15, then using the lower part of

Claim 7.7(b) and essentially the same argument as before, we are done.
Assume therefore that ln 1

x1
/ ln 1

y1
≥ 1.15. From the upper part of Claim 7.7(b),

we get that

d

dt
L(x1

tx2, y1
ty2) ≤ (2 ln 1

y1
)1/4 for every 0 ≤ t ≤ 1,

which integrates to

L(x1x2, y1y2)− L(x2, y2) ≤ (2 ln 1
y1

)1/4 .

Using Claim 7.8 and the facts that L(x2, y2) ≤ K(x2, y2) (since (x2, y2) 6∈ A) and
M(x1, y1) = K(x1, y1) (since (x1, y1) ∈ A), we get that

L(x1x2, y1y2) ≤ (2 ln 1
y1

)1/4 + L(x2, y2)

≤M(x1, y1) +K(x2, y2)

= K(x1, y1) +K(x2, y2)

as required. This completes the proof.

8. Exclusive-or gates as convex combinations of unate gates. The main
result of this section is the following theorem.

Theorem 8.1. If f is a read-once formula that amplifies (p, q) to (p′, q′), then
there exists a probabilistic unate read-once formula F with size(F) ≤ size(f) that also
amplifies (p, q) to (p′, q′).

Proof. The proof is by induction on the structure of f . If f is a variable, then the
result is clear. If f = ¬f1 or f = f1 ∧ f2, then the result follows immediately from
the induction hypothesis. The interesting case is, of course, if f = f1 ⊕ f2. Assume
that f1 and f2 amplify (p, q) to (x1, y1) and (x2, y2), respectively. Let F1 and F2

be two probabilistic unate formulas with size(F1) ≤ size(f1) and size(F2) ≤ size(f2)
that also amplify (p, q) to (x1, y1) and (x2, y2), respectively. The existence of F1 and
F2 follows from the induction hypothesis. The next lemma proves the existence of a
unate connective ◦ such that the point (x1, y1)⊕ (x2, y2) lies in the convex hull of the
points (0, 0), (x1, y1) ◦ (x2, y2) and (1, 1). It follows that there exist three constants

AMPLIFICATION BY READ-ONCE FORMULAS 29

0 ≤ α, β, γ ≤ 1 with α+β+γ = 1 such that (x1, y1)⊕(x2, y2) = α ·(0, 0)+β ·(x1, y1)◦
(x2, y2) + γ · (1, 1). Thus the unate probabilistic formula

F =

{
0 with prob. α,
F1 ◦ F2 with prob. β,
1 with prob. γ

achieves the same amplification as f . Clearly, size(F) ≤ size(F1) + size(F2) ≤
size(f1) + size(f2) = size(f). This completes the proof of the theorem.

A unate connective here is one of the twelve connectives (xa ∧ yb)c, xa, and yb,
where xa = x⊕ a, that may be obtained using one AND gate and some negations.

Lemma 8.2. For every 0 ≤ x1, x2, y1, y2 ≤ 1, there exists a unate connective ◦
such that (x1, y1)⊕ (x2, y2) is in the convex hull of the points (0, 0), (x1, y1) ◦ (x2, y2)
and (1, 1).

Proof. We may assume without loss of generality that x1 ⊕ x2 ≤ y1 ⊕ y2 since if
this is not the case, we can switch the roles of the x’s and y’s. By this assumption,
the point (x1 ⊕ x2, y1 ⊕ y2) is above the line y = x. It is therefore contained in the
convex hull of the points (0, 0), (x1, y1) ◦ (x2, y2), and (1, 1) iff

y1 ◦ y2
x1 ◦ x2

≥ y1 ⊕ y2
x1 ⊕ x2

and
1− y1 ◦ y2
1− x1 ◦ x2

≤ 1− y1 ⊕ y2
1− x1 ⊕ x2

.

We consider four different cases.
Case 1. x1 ≤ y1 and x2 ≤ y2.
We take ◦ to be the OR operator, i.e., a ◦ b = a∨ b. A simple manipulation shows

that the first inequality is equivalent to the inequality

x1y1(y2 − x2) + x2y2(y1 − x1) ≥ 0,

which is easily seen to hold since x1 ≤ y1 and x2 ≤ y2. A similar manipulation shows
that the second inequality is equivalent in this case to the inequality

y1y2(1− x1 ∨ x2) ≥ x1x2(1− y1 ∨ y2),

which is also easily seen to hold since x1x2 ≤ y1y2 and x1 ∨ x2 ≤ y1 ∨ y2.
Case 2. x1 ≤ y1 and x2 ≥ y2.
We consider the points (y1, x1) and (y2, x2). It is easy to check that y1 ≤ x1,

y2 ≤ x2, and y1⊕y2 ≤ x1⊕x2. By Case 1, we get that the point (y1⊕y2, x1⊕x2) lies in
the convex hull of the points (0, 0), (y1∨y2, x1∨x2), and (1, 1). It follows immediately
that the point (x1, x2)⊕ (y1, y2) = (1, 1)− (x1, x2)⊕ (y1, y2) lies in the convex hull of
the points (0, 0), (x1 ∧ x2, y1 ∧ y2), and (1, 1). We can thus take a ◦ b = a ∧ b.

Case 3. x1 ≥ y1 and x2 ≤ y2.
By switching the roles of (x1, y1) and (x2, y2), we are back in Case 2. We can

thus take a ◦ b = a ∧ b.
Case 4. x1 ≥ y1 and x2 ≥ y2.
The points (x1, y1) and (x2, y2) satisfy the conditions of Case 1. We can thus

take a ◦ b = a ∨ b.
This completes the proof of the lemma.
It is easy to check that the lower bounds of the previous sections apply to prob-

abilistic and not only to deterministic read-once formulas. All of the lower bounds
claimed for unate read-once formulas are therefore valid for general read-once formu-
las. We also have the following connection between probabilistic and nonprobabilistic
formulas.

30 MOSHE DUBINER AND URI ZWICK

Theorem 8.3. If F is a probabilistic formula that amplifies (p, q) to (p′, q′), then
there exists a deterministic formula f that amplifies (p, q) to (p′′, q′′), where p′′ ≤ 2p′

and 1− q′′ ≤ 2(1− q′). Furthermore, if F is read-once, unate, or monotone, then so
is f .

Proof. Recall that p′ = F (p) = Ef∈F f(p), where the expectation is according
to the distribution that F induces on the deterministic formulas that it assumes.
Since for every nonnegative random variable X we have Pr[X > 2E(X)] < 1

2 , we
get that Pr[f(p) > 2p′] < 1

2 , where again f is chosen according to the distribution
induced by F . Applying a similar argument to q′ = F (q), we get that Pr[(1− f(q)) >
2(1− q′)] < 1

2 . As a consequence,

Pr[f(p) > 2p′ ∨ (1− f(q)) > 2(1− q′)] < 1,

and therefore a deterministic formula chosen according to the distribution of F will
satisfy the required conditions with a positive probability.

Corollary 8.4. N⊕(p1, q1|p0, q0) ≥ min p′
1
≤2p1

1−q′
1
≤2(1−q1)

N(p′1, q
′
1 | p0, q0).

9. Open problems. At least two major open problems are left in connection
with the subjects discussed in this paper:

1. Do the lower bounds on amplifying formulas given in this paper apply to
general, not necessarily read-once, formulas? Do they hold for general monotone
formulas? Do they hold, say, for read-twice formulas?

2. Are the optimal monotone formulas for majority obtained by the use of the
amplification method? Is it possible to obtain an Ω(nα+2) lower bound on the mono-
tone formula complexity of the majority function? The currently best lower bound on
the monotone or unate formula size of the majority function is an Ω(n2) lower bound
obtained by Khrapchenko [11], [12].

One less important problem is the following:
3. Is there a simple and less technical proof of the unified amplification lower

bound? Is there a simple and natural function that satisfies the conditions of Theo-
rem 6.1 and by the use of which a direct simple proof of the unified lower bound may
be obtained?

Appendix A. Proving the strengthened Boppana’s inequality. Graphs
of the function G(x) are given in Fig. 2.

Proof of Lemma 3.1. Define

G̃(x) =

(
G(x)

x

)β
=

{
ln γ

x if 0 ≤ x ≤ 1
2 ,(

1
x − 1

)β
ln γ

1−x if 1
2 ≤ x ≤ 1.

We have to show that for every 0 < x, y ≤ 1 we have

G̃(x, y) = G̃(xy)− G̃(x)− G̃(y) ≥ 0.

If 0 < y ≤ 1
2 , then 0 < xy ≤ 1

2 and

G̃(x, y) = ln
γ

xy
− G̃(x)− ln

γ

y

= ln
1

x
− G̃(x) =

{
ln 1

γ if 0 ≤ x ≤ 1
2 ,

ln 1
x −

(
1
x − 1

)β
ln γ

1−x if 1
2 ≤ x ≤ 1.

AMPLIFICATION BY READ-ONCE FORMULAS 31

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.496 0.498 0.502 0.504

0.386502

0.386504

0.386506

0.386508

Fig. 2. The function G(x).

0.5 0.6 0.7 0.8 0.9

0.002

0.004

0.006

0.008

0.01

Fig. 3. The three one-variable functions whose nonnegativity imply the strengthened Boppana’s
inequality.

Since ln 1
γ ' 0.003 > 0, the inequality easily holds in the quadrant 0 < x, y ≤ 1

2 . A

graph of the function ln 1
x − G̃(x) = ln 1

x − (1
x − 1)β ln γ

1−x for 1
2 ≤ x ≤ 1, is given by

the bold line in Fig. 3. We see that the function is nonnegative for every 1
2 ≤ x ≤ 1,

and this could be easily proved rigorously. (The local minimum is attained at x = ψ
and its value is about 0.0015.) This takes care of the rectangle 0 < y ≤ 1

2 and by
symmetry also of the rectangle 0 < x ≤ 1

2 .

We are left with the quadrant 1
2 ≤ x, y ≤ 1. Note that G̃(x, 1) = G̃(1, y) = 0,

so the inequality is verified for all the points on the boundary of the quadrant. The
function G̃(x, y) is nondifferentiable on the hyperbola xy = 1

2 but is differentible
anywhere else inside the quadrant. A graph of the function

G̃

(
x,

1

2x

)
= G̃

(
1

2

)
− G̃(x)− G̃

(
1

2x

)
= ln 2γ −

(
1

x
− 1

)β
ln

γ

1− x − (2x− 1)β ln
γ

1− 1
2x

32 MOSHE DUBINER AND URI ZWICK

0.2 0.4 0.6 0.8 1

-1.02

-0.98

-0.96

Fig. 4. The function Ĝ(x). No value (other than −1) is attained at three different x values.

for 1
2 ≤ x ≤ 1 is given by the dotted line in Fig. 3. Again, it can be verified rigorously

that it is nonnegative for every 1
2 ≤ x ≤ 1.

We now look for extremal points of the function G̃(x, y) inside the quadrant
1
2 ≤ x, y ≤ 1 that do not lie on the hyperbola xy = 1

2 . In these points, we must have

∂G̃(x, y)

∂x
=

1

x

[
xyG̃′(xy)− xG̃′(x)

]
= 0,

∂G̃(x, y)

∂y
=

1

y

[
xyG̃′(xy)− yG̃′(y)

]
= 0.

Define

Ĝ(x) = xG̃′(x) =

{
−1 if 0 < x < 1

2 ,

−
(
β
x ln γ

1−x − 1
) (

1
x − 1

)β−1
if 1

2 < x ≤ 1.

If (x, y) is such an extremal point of G̃(x, y), then we must have

Ĝ(x) = Ĝ(y) = Ĝ(xy).

A graph of the function Ĝ(x) is given in Fig. 4. It can be rigorously verified that the

function Ĝ(x) is unimodal for 1
2 ≤ x ≤ 1, so −1 is the only value attained by this

function more than twice in the range 0 < x ≤ 1. The value −1 is attained at every
0 < x ≤ 1

2 , at x = ψ = (
√

5− 1)/2, and at x = ψ′ ' 0.926812.

Since ψψ′ ' 0.572801 > 1
2 , we do not have Ĝ(ψψ′) = −1. If Ĝ(x) = Ĝ(y) = Ĝ(xy)

for 1
2 < x, y < 1, then we must have x = y. All of the extremal points must therefore

lie on the diagonal of the unit square. A graph of the function

G̃(x, x) =

{
ln γ

x2 − 2
(

1
x − 1

)β
ln γ

1−x if 1
2 ≤ x ≤

√
2

2 ,(
1
x2 − 1

)β
ln γ

1−x2 − 2
(

1
x − 1

)β
ln γ

1−x if
√

2
2 ≤ x ≤ 1

AMPLIFICATION BY READ-ONCE FORMULAS 33

is given by the solid line in Fig. 3. It can be checked that x = y = ψ is indeed a local
minimum and its value is 0. There is also a (global) maximum at x = y ' 0.881135.
We conclude that the required inequality is therefore satisfied on the diagonal x = y
and consequently in the whole of the unit square.

Appendix B. Proving the required properties of L(x, y). Before proving
Lemma 6.4, we establish some properties of the function `(x, y). In what follows, we
will always assume that x, y, x1, y1, x2, and y2 are in the interval (0, 1), although we
will not always write it explicitly.

Lemma B.1.

1. `(x, y)≥ `(1− y, 1− x) ∀ x ≤ y ≤ 1− x,
2. `(x1x2, y1y2)≤ `(x1, y1) + `(x2, y2) ∀ x1 ≤ y1, x2 ≤ y2,
3. `(1− y1y2, 1− x1x2)≤ `(1− y1, 1− x1) + `(1− y2, 1− x2) ∀ x1 ≤ y1, x2 ≤ y2.

Relying on Lemma B.1, we can now prove Lemma 6.4.
Proof of Lemma 6.4. The function L automatically satisfies the conditions L(x, y)

= L(y, x) = L(1 − x, 1 − y). Therefore, we only have to prove condition 1 of Theo-
rem 6.1. The symmetric properties of L allow us to assume that x1x2 ≤ y1y2. (Oth-
erwise, just change the roles of the x’s and the y’s.) We may also assume without loss
of generality that x1 ≤ y1. (If x1 > y1 and x2 > y2, then x1x2 > y1y2.)

As a consequence of first condition of Lemma B.1, we get that L(x, y) =
max{`(x, y), `(1− y, 1− x)} for x ≤ y. If x2 ≤ y2, then

L(x1x2, y1y2) = max{`(x1x2, y1y2), `(1− y1y2, 1− x1x2)}
≤ max{`(x1, y1) + `(x2, y2), `(1− y1, 1− x1) + `(1− y2, 1− x2)}
≤ max{`(x1, y1), `(1− y1, 1− x1)}+ max{`(x2, y2) + `(1− y2, 1− x2)}
= L(x1, y1) + L(x2, y2).

In the passage from the first line to the second above, we used conditions 2 and 3 of
Lemma B.1.

To finish the proof, note that if x ≤ x′ ≤ y′ ≤ y then L(x′, y′) ≤ L(x, y). This is
easily seen since both `(x, y) and `(1− y, 1− x) are decreasing in x and inceasing in
y. If x2 > y2, we have

L(x1x2, y1y2) ≤ L(x1y2, y1y2)

≤ L(x1, y1) + L(y2, y2) = L(x1, y1) + 0

≤ L(x1, y1) + L(x2, y2).

This completes the proof.
We now turn to the proof of Lemma B.1.
Proof of Lemma B.1. 1. We have to show that `(x, y) − `(1 − y, 1 − x) ≥ 0 for

0 < x ≤ y ≤ 1− x. If y = x or y = 1− x, then we have equality. Therefore, the claim
will follow if we can show that `(x, y)− `(1−y, 1−x) is decreasing in x. We therefore
have to show that

∂

∂x
[`(x, y)− `(1− y, 1− x)] = − 1

x

(
ln

ln 1
x

ln 1
y

+ 1

)
+

1

1− x ·
ln 1

1−y

ln 1
1−x
≤ 0.

This claim is easily verified for y = x (since x ≤ 1
2 and therefore − 1

x + 1
1−x ≤ 0). It

would therefore be enough to show that the above derivative is decreasing in y. We

34 MOSHE DUBINER AND URI ZWICK

therefore have to show that

∂2

∂y∂x
[`(x, y)− `(1− y, 1− x)] = − 1

xy
· 1

ln 1
y

+
1

(1− x)(1− y)
· 1

ln 1
1−x
≤ 0

or, equivalently, that

1− x
x

ln
1

1− x ≥
y

1− y ln
1

y
.

This is easily verified since the function y
1−y ln 1

y is increasing in y (this follows from

a further differentiation using the inequality ln 1
y ≥ 1− y) and y ≤ 1− x.

2. A simple manipulation shows that

`(x1x2, y1y2)− `(x1, y1)− `(x2, y2)

= − ln
1

x1
·

(1 +
ln 1

x2

ln 1
x1

)
ln

1 +
ln 1
y2

ln 1
y1

1 +
ln 1
x2

ln 1
x1

−
ln 1

x2

ln 1
x1

·ln

ln 1
y2

ln 1
y1

ln 1
x2

ln 1
x1

 .
We let

u =
ln 1

x2

ln 1
x1

, v =
ln 1

y2

ln 1
y1

.

To prove claim 2, we have to show that

f(u, v) = (1 + u) ln
1 + v

1 + u
− u ln

v

u
≥ 0

for every u, v > 0. This follows since the required inequality holds (with equality)
if u = v, and it can be easily verified that f(u, v) is increasing in u if u ≥ v and
decreasing in u if u ≤ v.

3. We have to show that `(1−y1y2, 1−x1x2)−`(1−y1, 1−x1)−`(1−y2, 1−x2) ≤ 0
for 0 < x1 ≤ y1 < 1 and 0 < x2 ≤ y2 < 1. We will prove this inequality in two stages:

`(1− y1y2, 1− x1x2)− `(1− y1, 1− x1) ≤ `(1− y1y2, 1− y1x2)

and

`(1− y1y2, 1− y1x2) ≤ `(1− y2, 1− x2).

To obtain the first inequality, we show that `(1− y1y2, 1− x1x2)− `(1− y1, 1− x1) is
increasing in x1. We have to show that

x1
∂

∂x1
[`(1−y1y2, 1−x1x2)−`(1−y1, 1−x1)] = − x1x2

1− x1x2
·
ln 1

1−y1y2
ln 1

1−x1x2

+
x1

1− x1
·
ln 1

1−y1
ln 1

1−x1

≥ 0.

This inequality holds since

ln
1

1− y1y2
≤ ln

1

1− y1
,

1− x1x2

x1x2
ln

1

1− x1x2
≥ 1− x1

x1
ln

1

1− x1
.

AMPLIFICATION BY READ-ONCE FORMULAS 35

The second condition follows again from the fact that the function 1−x
x ln 1

1−x is
decreasing in x.

To obtain the second inequality, we show that `(1− y1y2, 1− y1x2) is increasing
in y1. We have to show that

y1
∂

∂y1
`(1− y1y2, 1− y1x2) =

y1y2
1− y1y2

(
ln

ln 1
1−y1y2

ln 1
1−y1x2

+ 1

)
− y1x2

1− y1x2
·
ln 1

1−y1y2
ln 1

1−y1x2

≥ 0.

This can be done using similar methods.

Appendix C. Proving Claims 7.4–7.8. To simplify the proofs of the claims
involving M(x, y), we first show how to bound this function using a slightly sim-
pler expression. To this end, we define the function m̃(x, y) by replacing the two
appearances of the constant γ in the definition of m(x, y) by the constant 1:

m̃(x, y) =

[(
ln

1

x

)1/α

−
(

ln
1

y

)1/α
]α

.

On next lemma shows that C · m̃(x, y) can serve as a lower bound for M(x, y).
Lemma C.1. M(x, y) ≥ C · m̃(x, y) for every 0 < x ≤ y < 1.
Proof. Consider the function g(x) = x(ln 1

x)1/β . It is easy to verify that g(x) ≥
G(x) for every 0 ≤ x ≤ 1. As a consequence, we get that

M(x, y) =
C

αα

∣∣∣∣∫ y

x

du

G(u)

∣∣∣∣α ≥ C

αα

∣∣∣∣∫ y

x

du

g(u)

∣∣∣∣α = C · m̃(x, y).

When y is bounded away from 1, the bound just given is tight up to a constant
factor.

We now proceed with the proof of Claims 7.4–7.8.
Proof of Claim 7.4(a). Since all the functions and regions involved are symmetric

with respect to the lines y = x and x+ y = 1, it is enough to prove the claim for the
region (C \A)∩{x ≤ y ≤ 1−x} = (C′ \A′)∩{x ≤ y ≤ 1−x}. In this region, we have

M(x, y) ≥ C · m̃(x, y) = C · ln 1
x ·
[
1−

(
ln 1
y

ln 1
x

)1/α
]α
, L(x, y) = `(x, y) = ln 1

x · ln
ln 1
x

ln 1
y

.

Let u = ln 1
x/ ln 1

y and note that in (C′ \ A′) ∩ {x ≤ y ≤ 1 − x} we have 2 ≤ u ≤ 6.
We therefore have

M(x, y)

L(x, y)
≥ C ·

[
1−

(
1
u

)1/α]α
lnu

≥ C ·

[
1−

(
1
2

)1/α]α
ln 6

� 1.

Proof of Claim 7.4(b). Again, because of the symmetries involved, it is enough
to prove the claim for (x, y) ∈ A′′ \A′ ∩ {x, 1− x ≤ y} = {

√
x ≤ y ≤ x(2− x)}. Note

that in this region 1− ψ ≤ x < 1, where ψ = (
√

5− 1)/2 ' 0.62. We now have

M(x, y) = M(1− y, 1− x) ≥ C · m̃(1− y, 1− x) = C

[(
ln 1

1−y

)1/α

−
(

ln 1
1−x

)1/α
]α
.

Since both functions are increasing in y, we have

min(x,y)∈A′′\A′
M(x, y)

`(x, y)
≥ min

1−ψ≤x<1

C · m̃(1−
√
x, 1− x)

`(x, x(2− x))
.

36 MOSHE DUBINER AND URI ZWICK

It can be checked that the minimum on the right is obtained at x ≈ 0.930677 and its
value is about 2450.5� 1. We will not give the (tedious) proof of this fact here. We
will show instead that limx→1 m̃(1−

√
x, 1−x)/`(x, x(2−x)) = +∞. This shows that

the minimum appearing in the statement of the claim does exist and that its value
is strictly positive. This would be enough to show that there exists a constant C for
which the claim is valid. To that end, we note that as x→ 1, we have((

ln 1
1−
√
x

)1/α

−
(

ln 1
1−x

)1/α
)α
≈ 1

(ln 1
1−x)

α/β ,

ln 1
x · ln

ln 1
x

ln 1
x(2−x)

≈ (1− x) ln 1
1−x ,

where the sign ≈ here means that the quotient of the two sides tends to a positive
constant as x→ 1. Therefore,

m̃(x,
√
x)

`(x, x(2− x))
≈ 1

(1− x)
(

ln 1
1−x

)1+α/β
→ +∞

as x→ 1, as promised.
Proof of Claim 7.5(a). The proof is immediate from the definition of A′.
Proof of Claim 7.5(b). It is enough to prove the claim for the upper boundary

of A′′, which is (x, x(2 − x)) for 0 ≤ x ≤ 1. To show that (xt, xt(2 − x)t) ∈ A′′, we
have to show that xt(2− x)t ≤ xt(2− xt) or, equivalently, that xt + (2− x)t ≤ 2 for
every 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. To see this, note that equality holds for t = 0 and
t = 1 and that xt + (2− x)t is convex as a function of t since its second derivative is
(lnx)2xt + (ln(2− x))2(2− x)t ≥ 0.

Proof of Claim 7.6(a). The proof is immediate since A′C′ ⊆ C′C′ = C′.
Proof of Claim 7.6(b). The upper boundary of (A′′∩{x+y ≥ 1})(B′′∩{x+y ≥ 1})

is all products of points on the upper boundary ofA′′∩{x+y ≥ 1} and B′′∩{x+y ≥ 1}.
We therefore have to show that (x1, 1 − (1 − x1)2)(x2, 1 − (1 − x2)4) ∈ C′′, i.e.,
[1−(1−x1)2][1−(1−x2)4] ≤ 1−(1−x1x2)6, whenever x1 ≥ (1−x1)2 and x2 ≥ (1−x2)4.
This is easily verified. In fact, the claim remains true even if the exponent 6 is reduced
to about 5.34.

Proof of Claim 7.7(a). It is easily checked that

d

dt
`(x1

tx2, y1
ty2)

∣∣∣
t=0

= ln
1

x1

(
ln

ln 1
x2

ln 1
y2

+ 1

)
− ln

1

y1
·

ln 1
x2

ln 1
y2

and that this expression is nonpositive iff

u =
ln 1

x1

ln 1
y1

≤

(
ln 1
x2

ln 1
y2

)
ln

(
ln 1
x2

ln 1
y2

)
+ 1

=
v

ln v + 1
,

where v = ln 1
x2
/ln 1

y2
. Since (x1, y1) ∈ A′, we have u ≤ 2. Since (x2, y2) ∈ {x ≤

y}\C′, we have v ≥ 6, and it is easy to verify that this implies v/(ln v+1) ≥ 2.
Proof of Claim 7.7(b). Simple manipulations yield

d

dt
`(1− y1ty2, 1− x1

tx2)
∣∣∣
t=0

= − ln
1

y1
· (u− 1)

(
ln

lnu

ln v
+ 1

)
+ ln

1

x1
· (v − 1)

lnu

ln v
,

AMPLIFICATION BY READ-ONCE FORMULAS 37

where v = 1
1−x2

and u = 1
1−y2 . Also let w = (u − 1)(ln(lnu/ln v) + 1). By the

definition of B′′, we have u ≥ v4. Note that x2 ≥ 0 and y2 ≥ 1
2 (since (x2, y2) ∈

{x+ y ≥ 1, x ≤ y}) and therefore v ≥ 1 and u ≥ 2.
It can easily be checked that the conditions u ≥ 2, v4 and v ≥ 1 imply that

(u− 1)1/3/lnu > 1
2 ·
v−1
ln v . (Note that for v large enough this is obvious. The constant

1
2 was added to make the inequality valid for smaller values of v.) In particular,

(v − 1)
lnu

ln v
< 2(u− 1)1/3 ≤ 2

(ln 4 + 1)1/3
· w1/3 < 1.5w1/3

(since w ≥ (u− 1)(ln 4 + 1) and 2/(ln 4 + 1)1/3 ≈ 1.49666) and therefore

d`

dt

∣∣∣
t=0
≤ − ln

1

y1
· w + 1.5 ln

1

x1
· w1/3.

Note that w ≥ ln 4 + 1, so if

1.5 ln 1
x1

ln 1
y1

≤ (ln 4 + 1)2/3 ≤ w2/3,

then d`
dt |t=0. ≤ 0. This proves the lower part of the claim since (ln 4 + 1)2/3/1.5 ≈

1.19049 > 1.15.
To get the upper part of the claim, we note that the expression − ln 1

y1
· w +

1.5 ln 1
x1
·w1/3, considered as a function of w, is maximized when w = (ln 1

x1
/2 ln 1

y1
)3/2.

(This follows easily by differentiation.) Plugging this into the expression, we get that

d`

dt

∣∣∣
t=0
≤

(
ln 1

x1

)3/2

(
2 ln 1

y1

)1/2
.

Next, it is easily verified that if (x1, y1) ∈ A′′ ∩ {x, 1 − x ≤ y}, then ln 1
y1

>
1
2 (ln 1

x1
)2. (In fact, the minimum of ln 1

y1
/(ln 1

x1
)2 over this region is attained at the

point (x1, y1) = (1− ψ,ψ), and its value is about 0.519.) We thus easily obtain

d`

dt

∣∣∣
t=0
≤

(
ln 1

x1

)3/2

(
2 ln 1

y1

)1/2
≤
(

2 ln
1

y1

)1/4

as required.
Proof of Claim 7.8. Since M(x, y) is increasing in y, it is enough to prove

that M(x, x1/1.15) ≥ (2
1.15 ln 1

x)1/4 for every x such that x + x1/1.15 ≥ 1, i.e., x ≥
0.47579 We will content ourselves by noting that limx→1M(x, x1/1.15)/(ln 1

x)1/4 =
+∞, which shows that the claim is valid for a sufficiently large choice of C. This limit
can be obtained using essentially the same asymptotics as those used in the proof of
Claim 7.4(b). Using some more uninspiring work it can be verified that the minimum
of m̃(1 − x1/1.15, 1 − x)/(2

1.15 ln 1
x)1/4 is attained near x = 0.999877 and its value is

about 1.84× 10−6.
We note that the huge value of C was required only in the proof of Claim 7.8.

For Claim 7.4, a much more modest value would have been enough. Also, no attempt
to obtain the optimal value of C was made. We are sure that using a tighter yet even
more tedious analysis, a much smaller value of C can be shown to suffice.

38 MOSHE DUBINER AND URI ZWICK

Acknowledgments. The authors would like to thank Noga Alon for many help-
ful discussions. The authors would also like to thank the two anonymous referees for
their numerous comments.

REFERENCES

[1] L. Adleman, Two theorems on random polynomial time, in Proc. 19th Annual IEEE Sympo-
sium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1978, pp. 75–83.

[2] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth computations, in Proc.
16th Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 471–
474.

[3] C. Bennett and J. Gill, Relative to a random oracle A, PA 6= NPA 6= co-NPA with proba-
bility 1, SIAM J. Comput., 10 (1981), pp. 96–113.

[4] R. Boppana, Amplification of probabilistic Boolean formulas, in Advances in Computer Re-
search, Vol. 5: Randomness and Computation, JAI Press, Greenwich, CI, 1989, pp. 27–45.

[5] M. Dubiner and U. Zwick, Amplification and percolation, in Proc. 33rd Annual IEEE Sympo-
sium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 258–267.

[6] M. Dubiner and U. Zwick, Contact networks, amplification and percolation, in preparation.
[7] M. Dubiner and U. Zwick, How do read-once formulae shrink?, Combin. Probab. Comput.,

3 (1994), pp. 455–469.
[8] Q. Gu and A. Maruoka, Amplification of bounded depth monotone read-once Boolean formu-

las, SIAM J. Comput., 20 (1991), pp. 41–55.
[9] A. Gupta and S. Mahajan, Using amplification to compute majority with majority,

manuscript, 1992.
[10] J. Håstad, A. Razborov, and A. Yao, On the shrinkage exponent for read-once formulae,

Theoret. Comput. Sci., 141 (1995), pp. 269–282.
[11] V. M. Khrapchenko, Complexity of the realization of a linear function in the class of π-

circuits, Math. Notes Acad. Sci. USSR, 9 (1971), pp. 21–23.
[12] V. M. Khrapchenko, A method of determining lower bounds for the complexity of π-schemes,

Math. Notes Acad. Sci. USSR, 10 (1971), pp. 474–479.
[13] O. Lupanov, On computing symmetric functions of the propositional calculus by switching

networks, Problemy Kibernet., 15 (1965), pp. 85–100 (in Russian).
[14] E. Moore and C. Shannon, Reliable circuits using less reliable relays, J. Franklin Inst., 262

(1956), pp. 191–208 and 281–297.
[15] M. Paterson, N. Pippenger, and U. Zwick, Faster circuits and shorter formulae for multiple

addition, multiplication and symmetric Boolean functions, in Proc. 31st Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1990, pp. 642–650.

[16] M. Paterson, N. Pippenger, and U. Zwick, Optimal carry save networks, in Boolean Func-
tion Complexity, M. Paterson, ed., London Mathematical Society Lecture Note Series,
Vol. 169, Cambridge University Press, Cambridge, UK, 1992, pp. 174–201.

[17] M. Paterson and U. Zwick, Shrinkage of de Morgan formulae under restriction, Random
Structures Algorithms, 4 (1993), pp. 135–150.

[18] J. Radhakrishnan and K. Subrahmanyam, Directed monotone contact networks for threshold
functions, Inform. Process. Lett., 50 (1994), pp. 199–203.

[19] L. Valiant, Short monotone formulae for the majority function, J. Algorithms, 5 (1984),
pp. 363–366.

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA∗

MAURICE NIVAT† AND ANDREAS PODELSKI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 39–58, February 1997 003

Abstract. We propose a generalization of the notion “deterministic” to “l-r-deterministic” for
descending tree automata (also called root-to-frontier). The corresponding subclass of recognizable
tree languages is characterized by a structural property that we name “homogeneous.” Given a
descending tree automaton recognizing a homogeneous tree language, it can be left-to-right (l-r)
determinized and then minimized. The obtained minimal l-r-deterministic tree automaton is charac-
terized algebraically. We exhibit a formal correspondence between the two evaluation modes on trees
(ascending and descending) and the two on words (right-to-left and left-to-right). This is possible
by embedding trees into the free monoid of pointed trees. We obtain a unified view of the theories
of minimization of deterministic ascending and l-r-deterministic descending tree automata.

Key words. tree automata, minimization, Nerode congruence

AMS subject classifications. 68Q68, 20M35

PII. S0097539789164078

1. Introduction and synopsis. Automata on finite trees come up in various
areas of computer science (compiler generation [13, 16, 25], type theory [19, 30, 28],
constraint solving [3, 14, 15, 24, 31], rewriting [6], etc.) as a generic decision tool for
problems over finite trees. Historically, their first application was a decision problem
over strings, namely for monadic second-order logic formulas interpreted on the finite
tree as a finite subset of the free monoid [7, 33].

The theory of tree automata and recognizable sets of trees has been introduced as
a (seemingly) natural extension from the string case. The extension consists of going
from unary to n-ary algebras, in the algebraic view of trees, or from one to multiple
successors, in the logical view of the tree as a model. Recent works on structural
properties of sets of finite trees [34, 17, 18, 32, 27], however, have exhibited some
difficulties in carrying this extension further. The essence of the difference between
strings and trees has not been revealed yet.

One important difference comes from the well-known fact that one cannot de-
terminize every descending tree automaton.1 In the string case, the direction of
evaluation is usually assumed to be left-to-right, but this does not affect the family
of recognizable languages. For the extension from the word to the tree case, where a
word fga is considered a tree f(g(a)), it is the right-to-left evaluation which corre-
sponds to the ascending2 tree automaton. An automaton of this kind can always be
transformed into a deterministic one which recognizes the same tree language. A fi-
nite deterministic ascending tree automaton is an algebraic notion (the quotient of the

∗Received by the editors April 3, 1989; accepted for publication (in revised form) April 13, 1995.
This research was supported in part by the CNRS in the PROCOPE program in which the authors
participated in cooperation with L. Priese, University of Koblenz, Koblenz, Germany.

http://www.siam.org/journals/sicomp/26-1/16407.html
†LITP, Université Paris 7, 2 Place Jussieu, F-75251 Paris cedex 05, France (maurice.nivat@

litp.ibp.fr).
‡Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany (podelski@

mpi-sb.mpg.de).
1In our graphical representation of a tree, its root is on the top. Hence descending or top-down

correspond to the more precise, but somewhat lengthy, identifier root-to-frontier which is used in
[12].

2And ascending or bottom-up correspond to frontier-to-root.

39

40 MAURICE NIVAT AND ANDREAS PODELSKI

tree algebra by a congruence with finitely many classes), and we can apply algebraic
concepts in order to implement minimization.

Descending tree automata have, to our knowledge, not yet been investigated using
algebraic concepts and methods. They are important, however, since they correspond
naturally to tree grammars and rewriting systems. Certain type systems, for example,
employ a class of tree grammars which correspond to deterministic descending tree
automata [14, 36, 19]. Also, this lack of algebraic concepts [9, 26] is one of the reasons
why the extension of the decision problem of [7, 33] to the infinite tree is so involved
[10, 21] (obviously, the ascending evaluation is not possible here).

The minimization of the deterministic descending tree automata is done in [11]
with a nonalgebraic state-reduction method. The class of corresponding tree languages
is characterized as a proper subclass of the recognizable ones by the structural property
called path closed in [35] and tuple distributive in [19]. This class is investigated in a
logic framework in [34].

Given the lack of a suitable algebra framework for descending tree automata,
we propose a monoid framework. Namely, we consider tree automata as automata
on strings, i.e., elements of a suitable free monoid. Then ascending and descending
correspond exactly to right-to-left and left-to-right, respectively.

In section 2, we introduce this monoid. Its elements are called pointed trees. It is
freely generated by (infinitely many) basic pointed trees. For every set of trees L one

can construct a set L̂ of pointed trees. One principal idea in this paper is to apply
the formal framework of free monoids and the one-to-one correspondence between the
sets L and L̂ on descending tree automata.

Pointed trees are related to special trees in [20, 34] or to terms over the free Σ
algebra with exactly one occurrence of one variable. A free monoid structure, however,
has not been exhibited. Also, the construction of the set L̂ from L is new.

In section 3, the representation of the minimization of deterministic finite as-
cending tree automata is novel in that the Nerode equivalence is defined on the free
monoid of pointed trees. This allows us to extend the word case in the very direct
way to the tree case. In fact, the only extension necessary is the one from a finitely
to an infinitely generated free monoid.

By constructing the response function λ̂ from the transition function λ, we assign
essentially a word automaton to an ascending tree automaton, since the arguments
of λ̂ are a state and an element of the free monoid. The evaluation of that word
automaton is a right-to-left one.

We recall that the standard way of defining the Nerode equivalence consists of
using algebra congruences. There, the extension from the word to the tree case is
the one from unary to binary function symbols for the signature of the algebra. This
implies that the Nerode equivalence is viewed as a congruence on an (in the word case,
unary) algebra. In contrast, we view the Nerode equivalence as a semicongruence (or
right congruence) on the free monoid, in the word as well as the tree case.

It is a well-known result (attributed to Hall in [2]) that, in the algebra framework,
translations can be used for defining the greatest congruence ∼L saturating a given
subset L of the algebra. This has been exploited for tree automata in [12]. We have
pushed the result one step further by defining a relation ∼L̂ on translations themselves
and by exhibiting a free monoid structure on the set of translations in the free algebra

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 41

(which correspond to pointed trees). To summarize, section 3 uses the concept of
left-invariant monoid semicongruences in order to define the minimal deterministic
ascending tree automaton.

In section 4, we construct the response function λ̂ from the transition function
λ of a descending tree automaton. By this means, we assign it a word automaton
with left-to-right evaluation. Using the response function, the characterization of the
acceptance of a tree by a descending tree automaton becomes now concise and natural.

In section 5, we use the response function λ̂ to introduce a new version of deter-
minism for descending tree automata, defining it by the condition card(λ̂(. . .)) = 1.
Generally, in automata theory it does not matter whether one requires the transition
function λ or the response function λ̂ to be deterministic: the two conditions are equiv-
alent. Here, however, we obtain the notion of l-r determinism which is strictly more
general than the standard notion of determinism for descending tree automata. That
notion is based directly on the transition function, being defined by card(λ(. . .)) = 1.

The class of tree languages which are recognized by l-r-deterministic finite de-
scending tree automata strictly includes the class of tree languages which are recog-
nized by deterministic ones but is itself included in the class of all recognizable tree
languages. It can be characterized by a structural property that we will introduce.
We call it homogeneous.

A theory of minimization of descending tree automata can seemingly not be based
on the concept of algebra congruences. Given the presentation of minimization in
section 3, we will use the fact that l-r-deterministic descending tree automata can
also be embedded in the monoid framework. Namely, since they read the “words”
of the free monoid Σ(#) deterministically in left-to-right fashion, they induce a right-
invariant monoid semicongruence on Σ(#). It comes as no surprise now that we will
define the Nerode equivalence relation that yields the states of the minimal descending
tree automaton of a homogeneous tree language in the same way as is done for word
languages [9]: we just have to apply this method on the language L̂ of words of Σ(#)

that corresponds to a tree language.

In section 6, we show the existence of a minimal l-r-deterministic finite descending
tree automaton A(L) for every homogeneous recognizable tree language L. This
automaton is minimal in the algebraic sense (using automata morphisms) and thus
also in the number of states. It is reduced and unique up to isomorphism. Its states
are the equivalence classes of the new descending Nerode equivalence of L which we
introduce.

These results applied on path-closed tree languages yield (minimal) deterministic
descending tree automata. For an arbitrary tree language L, we still can define A(L),
which characterizes through its finiteness the recognizability of L.

For showing this last result, we just have to connect the two theories of minimal
ascending and descending tree automata of a tree language L (not necessarily homo-
geneous and not necessarily recognizable). If and only if L is recognizable, then the

language L̂ is a recognizable subset of the free monoid Σ(#) and so is its reverse (the

set of mirror images of its elements). Hence the minimal automaton recognizing L̂
with right-to-left evaluation is finite and so is the one with left-to-right evaluation.
The first one can be transformed into an ascending tree automaton which recog-
nizes L. The second one can be transformed into a descending tree automaton which
recognizes L if L is homogeneous. In both cases, one obtains hereby the minimal
automaton in that class. In general, the descending tree automaton obtained by the
transformation recognizes the smallest homogeneous tree language containing L.

42 MAURICE NIVAT AND ANDREAS PODELSKI

Fig. 1. The tree t1.

Fig. 2. The trees t2 and t3 = t1 + 21t2.

2. Tree monoids. For ease of notation, we only consider the case of binary
trees on an unranked alphabet Σ.3 This is the most standard case. One can give
encodings of n-ary into binary trees as in [5, 8]. Also, the results of this article are
straightforwardly extended to the general case. A (binary) tree domain is a set D
of finite strings over 1 and 2 (which form the free monoid generated by {1, 2}, hence
D ⊆ {1, 2}∗) such that for every element fg ∈ D also f ∈ D. A subset of a free
monoid with this closure property is called left factorial (cf. [1]).

A (finite, binary-ordered, labeled) tree on the alphabet Σ is the pair t =
(Supp(t), t̂) formed by its support, which is a finite tree domain, Supp(t) ⊂finite

{1, 2}∗, and its labeling function, which goes from its support into the alphabet,
t̂ : Supp(t)→ Σ.

We call Σ# the set of trees on Σ. The elements of Supp(t) are the nodes of the tree
t. Hence a node is identified with the string which corresponds to the path leading to
it, where 1 and 2 stand for a step to the right and to the left, respectively. The tree t1
given by Supp(t1) = {ε, 1, 11, 12, 2, 22} and t̂1 = {(ε, F), (1, C), (11, A), (12, B), (2, E),
(22, D)} is presented in Figure 1.

We call the border of t the set B(t) = {fi | f ∈ Supp(t), i ∈ {1, 2}, fi 6∈ Supp(t)}
of all nodes “just outside the tree.” Thus we might consider the border nodes as the
unlabeled leaves of the tree. The border of the tree depicted in Figure 1 is the set
B(t1) = {111, 112, 121, 122, 21, 221, 222}. The height of a tree t is the maximal length
of a string in B(t).

The empty tree, denoted Ω, is the tree whose support is empty, Supp(Ω) = ∅. Its
border is conveniently defined as B(Ω) = {ε}. A punctual tree is a tree of the form
t = ({ε}, t̂) consisting of exactly one node. If this node is labeled by a ∈ Σ (i.e.,
t̂(ε) = a), then t is simply denoted a. By this identification, Σ ⊂ Σ#. The border of
a punctual tree a is B(a) = {1, 2}.

Given two trees t, t′ ∈ Σ# and a border node f of the tree t, f ∈ B(t), the sum
of t and t′ at f is the result of attaching t′ to t at f [22]. Formally, it is the tree

3From now on, we assume the alphabet Σ given fixed. Hence we may simply use trees, automata,
etc., for trees on Σ, Σ-automata, etc.

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 43

s = t+ ft′, where

Supp(s) = Supp(t) ∪ {ff ′|f ′ ∈ Supp(t′)},

ŝ(g) =

{
t̂(g) if g ∈ Supp(t),

t̂′(f ′) if g = ff ′, f ′ ∈ Supp(t′).

For example, if t2 is the tree to the left in Figure 2, then t3 = t1 + 21t2 is the tree
to the right. Clearly, every tree t ∈ Σ# can be represented as the sum of punctual
trees a ∈ Σ ⊂ Σ#. This motivates the use of the symbol # for the set of trees,
in reminiscence of the star operator ∗ for the set of strings. Our formalism reflects
a geometric view of trees and their composition, as opposed to the standard one of
substitution of terms.

We consider a tree t together with a fixed node f from its border. We shall call
the pair (t, f) a pointed tree and f its pointed border node [23, 24]. The set of all
pointed trees is denoted by Σ(#).

If we attach to the tree t with pointed border node f the tree t′ with pointed
border node f ′, then the path of t leading to f is continued with the path of t′ which
leads to f ′. The resulting path leads to ff ′, which is in the border of t + ft′. It
thus seems natural to take as the result of this composition the tree t+ ft′ with the
pointed border node ff ′. We thus obtain the tree monoid

Σ(#) = {(t, f) | t ∈ Σ#, f ∈ B(t)},

where the composition of the pointed trees (t, f) and t′, f ′) is given by

(t, f)(t′, f ′) = (t+ ft′, ff ′).

Clearly, the composition is associative and has (Ω, ε) as its neutral element. This
operation can also be defined through the wreath product of two suitable monoids
[29].

The following set of basic pointed trees will be of particular interest in the fol-
lowing.

Γ = {(t, f) ∈ Σ(#) | f = 1 or f = 2}.

Every element of (t, f) ∈ Γ is either of the form (a+ 2t′, 1) or of the form (a+ 1t′, 2)
for some a ∈ Σ and t′ ∈ Σ#. In this notation, we use again that Σ ⊂ Σ#.

The set Γ consists of all pointed trees, different from the empty tree, which can no
longer be decomposed into pointed trees other than themselves and the empty tree.
This implies that Σ(#) is not finitely generated. The tree monoid Σ(#) is, however, a
free monoid. Every pointed tree has a unique representation as a product of elements
of Γ.

Given a set of trees L ⊆ Σ#, we define the set L̂ ⊆ Σ(#) of all its trees with a
pointed border node

L̂ = {(t, f) | t ∈ L, f ∈ B(t)}.

Clearly, this yields a one-to-one mapping from sets of trees to sets of pointed trees.

44 MAURICE NIVAT AND ANDREAS PODELSKI

3. Ascending tree automata. A [finite] (nondeterministic) ascending tree au-
tomaton A = (Q,λ, q0, Qfin) is given by its [finite] set of states Q, the initial state
q0 ∈ Q, the set of final states Qfin ⊆ Q, and its (nondeterministic) transition function

λ : Q×Q× Σ→ P(Q).

A computation of A on a tree t ∈ Σ# starts by associating all border nodes (the
“unlabeled leaves”) of t with the initial state. It proceeds by associating a node
f ∈ Supp(t) with a state q ∈ λ(q1, q2, a) if the node f is labeled with a ∈ Σ and
its left and right descendants f1 and f2 are already associated with states q1 to the
left and q2 to the right (here f1 and f2 might be border nodes). A difficulty for
the intuitive understanding of tree automata might be that this description of the
evaluation of a tree does not yield an explicit algorithm. In fact, one can imagine
different evaluation orders; of course, a state can be associated with a node only after
this has been done for its two direct descendants, and so on.

Formally, a computation on a tree t is a tree S which has the same nodes as t plus
its border nodes and is labeled, not over Σ but over Q; i.e., S ∈ Q# and Supp(S) =
Supp(t) ∪ B(t) and

(1)
∀f ∈ B(t) : Ŝ(f) = q0,

∀f ∈ Supp(t) : Ŝ(f) ∈ λ(Ŝ(f1), Ŝ(f2), t̂(f)),

A tree t is accepted by A if the result of the computation of A on t, the state that it
associates with the root of t, is a final state. A tree language L ⊆ Σ# is recognized
by A, L = L(A) if L is the set of all trees t which are accepted by A. It is called
recognizable if there exists a finite tree automaton that recognizes it.

We now consider the result of a computation of A on t which starts at some given
border node f ∈ B(t) with a given state q ∈ Q but at all other border nodes of t with

the initial state. Formally, we define the response function λ̂ : Σ(#) × Q → P(Q),

where λ̂(t, f, q) is the set of all states Ŝ(ε), where S is a computation of A on (t, f)
starting with q; that is Supp(S) = Supp(t) ∪ B(t) and

Ŝ(f) = q,

∀g ∈ B(t)− {f} : Ŝ(g) = q0,

∀g ∈ Supp(t) : Ŝ(g) ∈ λ(Ŝ(g1), Ŝ(g2), t̂(g)).

Using this function we get a simple characterization of the fact that L ⊆ Σ# is
recognized by A, namely via the correspondence L↔ L̂.

L = L(A) iff L̂ = {(t, f) | λ̂(t, f, q0) ∈ Qfin}.

We remark that λ̂(t, f, q0) = λ̂(t, f ′, q0) for all f , f ′ ∈ B(t). This invariance will not
hold for the response function of descending tree automata which we will define in
the next section.

If we set λ̂(t, f, q0) = λ̃(t), we obtain a function λ̃ : Σ# → Q which characterizes

the set of recognized trees as L(A) = λ̃−1(Qfin). Both λ̂ and λ̃ can also be defined
recursively.

We define the ascending tree automaton A to be deterministic if its response
function λ̂ is deterministic, i.e., a function into the set of states Q. (We view Q as

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 45

a subset of P(Q), identifying a singleton with its element.) This coincides with the
standard condition that λ be deterministic.

We recall that an equivalence relation ∼, here on the tree monoid Σ(#), is a left-
invariant semicongruence if (t1, f1) ∼ (t2, f2) implies (t, f)(t1, f1) ∼ (t, f)(t2, f2) for

all (t, f) ∈ Σ(#). Also, ∼ saturates the subset L̂ ⊆ Σ(#) of the tree monoid if L̂ is the

union of some of its equivalence classes, i.e., (t1, f1) ∼ (t2, f2) implies (t1, f1) ∈ L̂ iff

(t2, f2) ∈ L̂. Finally, a relation ∼1 is coarser than another one ∼2 if x ∼2 y implies
x ∼1 y; i.e., the relation ∼1 as a set is included in ∼2.

Definition 1. The Nerode equivalence of a tree language L ⊆ Σ#, denoted
∼L, is the coarsest left-invariant semicongruence on the tree monoid Σ(#) which sat-
urates L̂.

Another way to characterize ∼L is to define that (t1, f1) ∼L (t2, f2) iff

∀(t, f) ∈ Σ(#) : (t, f)(t1, f1) ∈ L̂ iff (t, f)(t2, f2) ∈ L̂.

We say that two pointed trees (t, f) and (t′, f ′) are border equivalent iff t = t′. We
observe that border equivalence is coarser than the Nerode equivalence of any tree
language, i.e., always (t, f) ∼L (t, f ′). This will not hold for the descending Nerode
equivalence that we will define in section 5.

Theorem 1. The tree language L ⊆ Σ# is recognizable iff its Nerode equivalence
∼L on the tree monoid has a finite index, which means that the set

Σ
(#)
/∼L = {[(t, f)]∼L | (t, f) ∈ Σ(#)}

is finite. This set is the set of states of the minimal deterministic finite ascending tree
automaton of L (which exists uniquely for every recognizable tree language).

Proof. Given that card(Σ
(#)
/∼L) is finite, we can define a deterministic finite ascend-

ing tree automaton AL = (QL, λL, qL0 , Q
L
fin) by QL = Σ

(#)
/∼L , qL0 = [(Ω, ε)]∼L , QLfin =

{[(t, f)]∼L | (t, f) ∈ L̂}, and λL([(t1, f1)]∼L , [(t2, f2)]∼L , a) = [(a+ 1t1 + 2t2, 1f1)]∼L .
Using the property mentioned above, one proves that the definition of λL is well

founded and that λ̂L(t, f, q0) = [(t, f)]∼L . This shows one direction, since a tree t is

accepted by AL if λ̂L(t, f, q0) ∈ QLfin.
Conversely, consider a deterministic finite ascending tree automaton A =

(Q,λ, q0, Qfin) which recognizes the tree language L ⊆ Σ#. We can attach to A

the relation ∼A on Σ(#) defined by (t1, f1) ∼A (t2, f2) iff λ̂(t1, f1, q0) = λ̂(t2, f2, q0).
The following property proves that this equivalence relation is left invariant. It

says that λ respects the composition of the tree monoid:

λ̂(t, f, λ̂(t′, f ′, q)) = λ̂((t, f)(t′, f ′), q).

This equation implies that λ̂((t, f)(t1, f1), q0) = λ̂((t, f)(t2, f2), q0). The left invari-

ance of ∼A implies that ∼L is coarser than ∼A, which means that card(Σ
(#)
/∼L) ≤

card(Σ
(#)
/∼A). However, card(Σ

(#)
/∼A) ≤ card(Q), and this again implies that the Nerode

equivalence ∼L has finite index and that AL has the minimal number of states among
all deterministic finite ascending tree automata recognizing L.

A stronger notion of minimality than the one based on the number of states is
the following algebraic one. An automaton A is called minimal in a given class of
automata iff every equivalent automaton A′ in the class can be mapped onto A by

46 MAURICE NIVAT AND ANDREAS PODELSKI

a corresponding automata morphism. Here a morphism π from A = (Q,λ, q0, Qfin)
onto A′ = (Q′, λ′, q′0, Q

′
fin) is a surjective mapping from Q onto Q′ which satisfies that

π(λ(q1, q2, a)) = λ′(π(q1), π(q2), a), π(q0) = q′0, and π(Qfin) = Q′fin. It is not difficult
to show that AL is minimal in the algebraic sense.4

Corollary 1. A tree language L is recognizable iff L̂ is saturated by a left-
invariant equivalence relation ∼ on the tree monoid Σ(#) which has finite index.

4. Descending tree automata. A [finite] (nondeterministic) descending tree
automaton A = (Q,λ, q0, Qfin) is given by its [finite] set of states Q, the initial state q0,
and the subset Qfin of Q of final states and the (nondeterministic) transition function

λ : Q× Σ→ P(Q×Q).

We will carry over the notions from the case of ascending to the case of descending
tree automata and sometimes use the same notation.

A computation of A on a tree t now starts at its root by associating the initial
state with this node. At each node with, say, label, A ∈ Σ and already associated
state q ∈ Q, the computation proceeds by choosing nondeterministically a pair of
successor states (q1, q2) ∈ λ(q, a) and associating q1 and q2 with the left respective
right son (“descendant”) of this node.

Formally, we define a computation on t to be a tree S ∈ Q# with support
Supp(S) = Supp(t) ∪ B(t) which satisfies the following conditions (instead of (1)
for the ascending tree automaton).

Ŝ(ε) = q0,

∀f ∈ Supp(t) : (Ŝ(f1), Ŝ(f2)) ∈ λ(Ŝ(f), t̂(f)).

The computation of A on t is called successful if it associates all border nodes with a
final state, i.e., Ŝ(g) ∈ Qfin for all g ∈ B(t). A tree t is accepted by A if there exists
a successful computation of A on t. The tree language L recognized by A, L− L(A)
is the set of all accepted trees.

It is not evident how one can define a function that describes the evaluation of a
tree by a descending tree automaton. We can, however, describe the evaluation of a
pointed tree by defining the response function λ̂ : Q× Σ(#) → P(Q) of a descending
tree automaton as follows. (Note that we changed the order of the arguments of the
response function of the ascending tree automaton.)

λ̂(q, t, f) = {Ŝ(f) | S is a computation on t,

Ŝ(ε) = q,

∀g ∈ B(t)− {f} : Ŝ(g) ∈ Qfin}

That is, q′ ∈ λ̂(q, t, f) if q′ is the state at the border node f of t obtained by a
computation of A on t which starts at the root of t with the state q and which ends
at all border nodes other than f with a final state. We also say that q′ is the result
of a computation on the pointed tree (t, f) starting in q.

We define the set of all pointed trees such that the response function assigns them
a final state:

L̂q = {(t, f) | λ̂(q, t, f) ∩Qfin 6= ∅}.

4When considering the algebraic notion of minimality of automata, one excludes automata with
nonaccessible states (a state is accessible if there exists a computation in which it occurs).

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 47

We can characterize the tree language recognized by A by L̂q0 as follows:

L = L(A) iff L̂ = {(t, f) | λ̂(q0, t, f) ∩Qfin 6= ∅}.

If we define Lq = {t ∈ Σ# | (t, f) ∈ L̂q} (where it does not matter whether we require

(t, f) ∈ L̂q for at least one or for all f ∈ B(t)), then we obtain that L(A) = Lq0 .
The following property expresses the “associativity of computation” for descend-

ing tree automata.

(2) λ̂(λ̂(q, t, f), s, g) = λ̂(q, (t, f)(s, g))

For this equation we assume the canonical extension of the response function from
states to sets of states. Its proof proceeds by induction on the structure of (t, f),

using the recursive definition of λ̂.
We use the response function in order to define some standard automata prop-

erties for a descending tree automaton A in a concise way. A state q ∈ Q is called
accessible if there exists a pointed tree (t, f) such that λ̂(q0, t, f) 3 q, i.e., an “else-
where successful” computation on t can reach this state at the border node f . For the
concept of minimality of section 6, we need to assume that the states of the automata
considered are all accessible. The state q is called coaccessible if there exists a pointed
tree (t, f) such that λ̂(q, t, f)∩Qfin 6= ∅; that is, there exists a successful computation
on t starting in this state. The automaton A is called trim if all states are accessible
and coaccessible. Of course, every finite descending tree automaton can be effectively
transformed into an equivalent trim one. Two states q, q′ ∈ Q are called separable if
there exists a pointed tree (t, f) such that λ̂(q, t, f)∩Qfin = ∅ and λ̂(q′, t, f)∩Qfin 6= ∅,
or vice versa. The automaton A is called reduced if all states are pairwise separable.

Finally, we call two states q, q′ ∈ Q disjoint if Lq and Lq′ are disjoint sets,
Lq ∩ Lq′ = ∅.

The function λ̂ can also be defined recursively on the set of pointed trees Σ(#) by

λ̂(q,Ω, ε) = {q},

λ̂(q, a+ 1t1 + 2t2, 1f1) = ∪{λ̂(q1, t1, f1) | ∃q2 ∈ Q : t2 ∈ Lq2 , (q1, q2) ∈ λ(q, a)},

λ̂(q, a+ 1t1 + 2t2, 2f2) = ∪{λ̂(q2, t2, f2) | ∃q1 ∈ Q : t1 ∈ Lq1 , (q1, q2) ∈ λ(q, a)}.

Observe that the condition t2 ∈ Lq2 , which is λ̂(q2, t2, f2) ∩ Qfin 6= ∅ for some f2 ∈
B(t2), as well as the condition t1 ∈ Lq1 are checked by recursion since t1 and t2 are

smaller trees than a+ 1t1 + 2t2. We see that the recursive definition of λ̂ suggests a
depth-first transversal of the tree t to be evaluated: for each two direct subtrees t1
and t2 of a subtree at some node f of t, the subtree t1 is traversed once a computation
on t2 is successful.

5. Introducing l-r-determinism. We now define the counterpart of the notion
of ascending deterministic tree automata.

Definition 2. A finite descending tree automaton A is l-r-deterministic if the
response function λ̂ of A is deterministic; this means that, applied on any state and
any pointed tree, its value is a singleton.

Formally, the defining condition means that card(λ̂(q, t, f)) = 1 holds for all q ∈ Q
and all (t, f) ∈ Σ(#). This is equivalent to the condition that card(λ̂(q0, t, f)) = 1

holds for all (t, f) ∈ Σ(#) and to the condition that card(λ̂(q, t, f)) = 1 holds for all
q ∈ Q and all (t, f) ∈ Γ.

48 MAURICE NIVAT AND ANDREAS PODELSKI

Fig. 3. The trees of L0.

One can express l-r-determinism also without using the response function, namely
by the following condition.5 Whenever there is a nondeterministic transition with two
successor state pairs, then the left successor states can be different only if the right
successor states are disjoint, and vice versa. Formally, this condition says that if
(q1, q2), (q′1, q

′
2) ∈ λ(q, a), then

q1 6= q′1 implies Lq2 ∩ Lq′2 = ∅,

q2 6= q′2 implies Lq1 ∩ Lq′1 = ∅.

In particular, if the two left successor states q1 and q′1 are different, then they are
disjoint; if they are equal, then the corresponding right successor states q2 and q′2 are
also equal.

For the evaluation of an l-r-deterministic descending tree automaton, this means
at a node f of a tree t several transitions might still be possible; the successor state
to the right side, however, is unique for all the transitions that can be continued
successfully on the left side (and vice versa).

That is, whichever of the transitions (q1
1 , q

1
2), . . . , (qk1 , q

k
2) is chosen, where the

subtree t′ of t starting at f2 is recognized by the right successor state (i.e., t′ lies in
Lq12 , . . . , Lqk2), then the left successor state is the same (q1

1 = · · · = qk1).
In order to compare the two notions of determinism, we consider the tree language

L0 = {a+ 1a+ 2b, a+ 1c+ 2b, a+ 1d+ 2c} over Σ = {a, b, c, d} depicted in Figure 3.
Clearly, L0 cannot be recognized by a deterministic descending tree automaton. If
(q1, q2) were the only successor state pair in λ(q0, a), then a, c ∈ Lq1 and b, c ∈ Lq2
and hence also a+ 1c+ 2c would be recognized. The same reasoning can be made for
the tree language L′0 = {a+1a+2b, a+1d+2c}. One can give simple l-r-deterministic
descending tree automata recognizing L0 and L′0. We will derive them in a way which
will serve later as an example for the l-r-determinization algorithm (from the proof of
Theorem 3) and illustrate its intrinsic difficulty.

The descending tree automaton A0 = ({q0, . . . , q6, qfin}, q0, λ, {qfin}) recognizes
L0 if we set λ(q0, a) = {(q1, q2), (q3, q4), (q5, q6)} and λ(q1, a) = λ(q2, b) = λ(q3, c) =
λ(q4, b) = λ(q5, d) = λ(q6, c) = {(qfin, qfin)}.

We now set P1 = {q1, q3}, P2 = {q2, q4}, P3 = {q5}, and P4 = {q6} and define
the descending tree automaton Ad0 = (P(Q), {q0}, λd, Qdfin), where λd({q0}, a) =
{(P1, P2), (P3, P4)} and λd(Pi, x) = {(qfin, qfin)} if x ∈ Lq for some q ∈ Pi and Qdfin =
{P ∈ P(Q)|P ∩ {qfin} 6= ∅}.

It is easy to see that Ad is l-r-deterministic and recognizes L0. For example, if
the subtree to the right side is the punctual tree b, then the successor state to the
other side is determined to be P1. Thus λ̂({q0}, a + 2b, 1) contains only the one ele-
ment P1.

5In a strict sense, this condition is not equivalent to the one in Definition 2 since it allows the
value of λ̂ to be a singleton or the empty set. The two conditions coincide if we identify the empty
set with the singleton containing a “trap state.” This identification is natural when one considers
minimal deterministic automata (which have either a partial transition function or a unique trap
state).

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 49

The following lemma describes the set of successor state pairs (q1, q2) of a state q
at a node with some label a. For every pair, there exists a tree s = a+1s1 +2s2 which
is accepted by the automaton starting in the state q, and the left successor state q1 is
determined by the right subtree of any such tree (and vice versa, the right successor
state q2 is determined by the left subtree of any such tree).

Lemma 1. Let A = (Q,λ, q0, Qfin) be a trim l-r-deterministic descending tree
automaton. Then

λ(q, a) = {(q1, q2) | ∃s1, s2 ∈ Σ# : a+ 1s1 + 2s2 ∈ Lq,
q1 = λ̂(q, a+ 2s2, 1), q2 = λ̂(q, a+ 1s1, 2)}.

Proof. We call K the set on the right-hand side. We will show λ(q, a) ⊆ K first.
Let (q1, q2) ∈ λ(q, a). Since A is assumed trim, q1 and q2 are coaccessible. Thus there
exist s1, s2 ∈ Σ# such that

∀g1 ∈ B(s1) : λ̂(q1, s1, g1) ∈ Qfin,

∀g2 ∈ B(s2) : λ̂(q2, s2, g2) ∈ Qfin.

If we choose s = a + 1s1 + 2s2, then for g ∈ B(s), say, g = 1g1, equation (2) implies

that λ̂(q, s, g) = λ̂(λ̂(q, a+ 2s2, 1), s1, g1) and thus λ(q, s, g) ∈ Qfin. Together with the

definition of λ̂ applied to λ̂(q, a+ 2s2, 1), λ̂(q, a+ 1s1, 2) this gives (q1, q2) ∈ K.
For the other inclusion, λ(q, a) ⊇ K, let (q1, q2) be an element in K and the tree

s = a+1s1 +2s2 satisfy the condition in the definition of K. Then q1 = λ̂(q, a+2s2, 1)

implies that there exists q′2 ∈ Q such that (q1, q
′
2) ∈ λ(q, a) and λ̂(q′2, s2, f) ∈ Qfin for

all f ∈ B(s2). Symmetrically, q2 = λ̂(q, a + 1s1, 2) implies that there exists q′1 ∈ Q
such that (q2, q

′
1) ∈ λ(q, a) and λ̂(q′1, s1, f) ∈ Qfin for all f ∈ B(s1).

Finally, we use equation (2) and the fact that λ̂(q, s, g) ∈ Qfin holds for all g ∈ B(s)
to infer the following. For all g1 ∈ B(s1),

λ̂(q1, s1, g1) = λ̂(λ̂(q, a+ 2s2, 1), s1, g1)

= λ̂(q, a+ 1s1 + 2s2, 1g1) ∈ Qfin

since g1 ∈ B(s1) means that 1g1 ∈ B(s).

Thus s1 ∈ Lq1 and hence q′2 ∈ λ̂(q, a + 1s1, 2). The l-r-determinism then yields
q′2 = q2. Symmetrically, q′1 = q1 and thus (q1, q2) ∈ λ(q, a).

The following corollary expresses the connection between the left and the right
successor states in a pair (q1, q2). Namely, the right successor state recognizes the
right subtree that, in turn, determines the left successor state, and vice versa.

Corollary 2. Let A = (Q,λ, q0, Qfin) be a trim l-r-deterministic descending
tree automaton. Then

λ(q, a) = {(q1, q2) | ∃s1 ∈ Lq1 : q2 = λ̂(q, a+ 1s1, 2),

∃s2 ∈ Lq2 : q1 = λ̂(q, a+ 2s2, 1)}.

Proof. We use the notation of the previous proof and call K ′ the set on the
right-hand side of the above equation. We will show that K = K ′. The direction
⊆ says that a + 1s1 + 2s2 ∈ Lq implies q1 ∈ Lq1 and q2 ∈ Lq2 , but this is clear: if
a + 1s1 + 2s2 ∈ Lq, then there must exist (q′1, q

′
2) ∈ λ(q, a) such that s1 ∈ Lq′1 and

50 MAURICE NIVAT AND ANDREAS PODELSKI

s2 ∈ Lq′2 . Hence q′1 = λ̂(q, a + 2s2, 1) and q′2 = λ̂(q, a + 1s1, 2) and thus q′1 = q1 and
q′2 = q2.

Now if q2 = λ̂(q, a+ 1s1, 2), then there exists q′1 such that s1 ∈ Lq′1 and (q′1, q2) ∈
λ(q, a). Since q2 ∈ Lq2 , a+ 1s1 + 2s2 ∈ Lq. This shows the direction ⊇.

We now introduce the structural property which, as we will show, corresponds to
the new notion of determinism.

Definition 3. A tree language L ⊆ Σ# is called homogeneous if its mem-
bership relation is “subtree distributive” in the following manner. For all subtrees
s1, s2, t1, t2 ∈ Σ#, all trees t ∈ Σ# with border node f ∈ B(t), and all labels a ∈ Σ,
the conjunction of

t+ f(a+ 1t1 + 2t2) ∈ L,
t+ f(a+ 1s1 + 2t2) ∈ L,
t+ f(a+ 1t1 + 2s2) ∈ L

implies t+ f(a+ 1s1 + 2s2) ∈ L.
Thus in a homogeneous tree language L, if one has the three pairs (t1, t2), (s1, t2),

and (t1, s2) for the left and right subtrees at the same node f of a tree in L, then the
fourth pair (s1, s2) also yields a tree in L.

Remark 1. A tree language L ⊆ Σ# is homogeneous iff for all sets of subtrees
L1, L2,K1, and K2 such that the conjunction of

t+ f(a+ 1L1 + 2L2) ⊆ L,
t+ f(a+ 1K1 + 2K2) ⊆ L,

(L1 ∩K1 6= ∅ or L2 ∩ K2 6= ∅)

implies t+ f(a+ 1(L1 ∪K1) + 2(L2 ∪K2)) ⊆ L.
Proof. Let L be homogeneous and L1, L2,K1, and K2 be as in the statement

with, say, u1 ∈ L1 ∩K1 6= ∅. Given t1 ∈ L1, t2 ∈ L2, s1 ∈ K1, and s2 ∈ K2, we will
show that t+ f(a+ 1s1 + 2t2) ∈ L and t+ f(a+ 1t1 + 2s2) ∈ L. The first follows from

t+ f(a+ 1s1 + 2s2) ∈ L,
t+ f(a+ 1u1 + 2s2) ∈ L,
t+ f(a+ 1u1 + 2t2) ∈ L.

The second membership statement follows from

t+ f(a+ 1t1 + 2t2) ∈ L,
t+ f(a+ 1u1 + 2t2) ∈ L,
t+ f(a+ 1u1 + 2s2) ∈ L.

In order to show that the condition in the remark implies that L is homogeneous,
we take trees s1, s2, t1, and t2 as in the formulation of the definition and setK1 = {s1},
K2 = {t2}, L1 = {t1}, and L2 = {s2, t2}.

The class of homogeneous languages contains properly the class of languages
which are called path closed in [12]. A path is a tree where each node has at most
one descendant. A path of a tree t is a tree p with the same labeling on its support
Supp(p) ⊆ Supp(t). A tree is an element of a path-closed language L already if each

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 51

of its paths is a path of some tree of L. This condition characterizes path closedness;
one can show that it is equivalent to the following:

t+ f(a+ 1s1 + 2s2) ∈ L,
t+ f(a+ 1t1 + 2t2) ∈ L

implies t+ f(a+ 1s1 + 2t2) ∈ L, or, equivalently (cf. Remark 1),

t+ f(a+ 1L1 + 2L2) ∈ L,
t+ f(a+ 1K1 + 2K2) ∈ L

implies t+ f(a+ 1(L1 ∪K1) + 2(L2 ∪K2)) ∈ L.
Just as the path-closed tree languages correspond to those recognizable by deter-

ministic descending tree automata [12], the homogeneous tree languages correspond
to those recognizable to l-r-deterministic descending tree automata.

Theorem 2. A [recognizable] tree language L is homogeneous iff it can be recog-
nized by a [finite] l-r-deterministic descending tree automaton A.

Proof. Let L be recognized by the trim l-r-deterministic descending tree automa-
ton A = (Q,λ, q0, Qfin). Let t, s1, s2, t1, t2 ∈ Σ#, a ∈ Σ, and f ∈ B(t) be such that

t+ f(a+ 1t1 + 2t2) ∈ L, t+ f(a+ 1s1 + 2t2) ∈ L and t+ f(a+ 1t1 + 2s2) ∈ L.

Let q = λ̂(q0, t, f) be the result of a computation on the pointed tree (t, f), and let

q1 = λ̂(q, a + 2s2, 1) and q2 = λ̂(q, a + 1s1, 2) be the results of a computation on the
basic pointed trees (a+ 2s2, 1) and (a+ 1s1, 2) starting in q. Corollary 2 yields that
(q1, q2) ∈ λ(q, a). The definition of l-r-determinism now implies that s1, t1 ∈ Lq1 and
s2, t2 ∈ Lq2 . Thus a+ 1s1 + 2s2 ∈ L1, and hence t+ f(a+ 1s1 + s2) ∈ L(A).

This shows the homogeneity of L and the “if” direction. The “only if” di-
rection will follow from Theorem 3 below (but also from Theorem 4 in the next
section).

Theorem 3. A finite descending tree automaton A recognizing a homogeneous
tree language can be effectively transformed into an equivalent l-r-deterministic de-
scending tree automaton Ad.

The näıve extension of the powered construction would define

λd(P, a) = {(λ̂(P, a+ 2t2, 1), λ̂(P, a+ 1t1, 2)) | a+ 1t1 + 2t2 ∈ LP }.

However, the example of the tree automaton A0 recognizing the tree language L0

given above shows that this does not always yield an l-r-deterministic descending tree
automaton. We will give a construction which yields Ad0 as in the example. The idea
is to augment the successor states P1 and P2 in the pairs above with all successor
states q1 and q2 of A such that Lq1 ⊆ LP1 and Lq2 ⊆ LP2 .

Proof. We denote by λ1 and λ2 the projections of λ on the first and second
component, respectively. As usual, we use the same symbol for a function and its
canonical extension to subsets of its domain. Thus λ(P, a) ∪ {λ(q, a) | q ∈ P} for
P ⊆ Q. Furthermore, let LP = ∪{Lq | q ∈ P}.

Given A = (Q,λ, q0, Qfin) recognizing the homogeneous tree language L, we will
construct the descending tree automaton Ad = (Qd, λd, qd0 , Q

d
fin). For P ⊆ Q and

a ∈ Σ, we set

λd(P, a) = {({q1 ∈ λ1(q, a) | a+ 1Lq1 + 2t2 ⊆ LP },
{q2 ∈ λ2(q, a) | a+ 1t1 + 2Lq2 ⊆ LP }) | a+ 1t1 + 2t2 ∈ LP }.

52 MAURICE NIVAT AND ANDREAS PODELSKI

We define qd0 = {q0}, Qd ⊆ P(Q) as the set of all accessible states in P(Q) and
Qdfin = {P ∈ Qd |P ∩Qfin 6= ∅}.

Since we will need the homogeneity of LP , we will first show that for every P ∈ Qd
there exists a pointed tree (t, f) ∈ Σ(#) such that LP = {s | t + fs ∈ L}. Since we
consider accessible states only, we can proceed by induction on Σ(#). Clearly, qd0
corresponds to (t, f) = (Ω, ε). Now if P1 ∈ λd(P, a + 2t2, 1), where by induction
hypothesis P corresponds to (t, f), we will show LP1

= {s | (t+fa+f2t2)+f1s ∈ L}.
By the definition of λd, there exists a tree t1 such that t + f(a + 1t1 + 2t2) ∈ L and
t+f(a+1LP1

+2t2) ⊆ L. However, for every tree t′1 such that t+f(a+1t′1 +2t2) ∈ L,
there exists a state q′1 such that t′1 ∈ Lq′1 and a+ 1Lq′1 + 2t2 ⊆ LP . Thus q′1 ∈ P1 and
the statement follows.

The fact that Ad recognizes L = L(A) is a special case (for P = {q0}) of the
equivalence

(3) t ∈ LdP iff t ∈ LP ,

which we will prove by induction over Σ#. The base step t = Ω is clear by the
definition of Qdfin. Assuming the equivalence for the trees s1 and s2, we will show it

for s = a+ 1s1 + 2s2. If s ∈ LdP , then there exist states P1 and P2 of Ad such that

s1 ∈ LdP1
, s2 ∈ LdP2

, (P1, P2) ∈ λd(P, a).

Applying the induction hypothesis and the definition of λd yields s1 ∈ LP1
, s2 ∈ LP2

and there exist trees t1 and t2 such that

a+ 1LP1
+ 2t2⊆ LP ,

a+ 1t1 + 2LP2
⊆ LP ,

a+ 1t1 + 2t2 ∈ LP .

The homogeneity of LP yields directly that s ∈ LP . Vice versa, if s = a+ 1s1 + 2s2 ∈
LP , say s ∈ Lq, where q ∈ P , then there exist states q1 and q2 of A such that s1 ∈ Lq1 ,
s2 ∈ Lq2 , and (q1, q2) ∈ λ(q, a). Hence there exist sets P1 and P2 of states of A which
include q1 and q2 (hence s1 ∈ LP1

and s2 ∈ LP2
) such that (P1, P2) ∈ λd(q, a).

Applying the induction hypothesis yields s1 ∈ LdP1
and s2 ∈ LdP2

and thus s ∈ LdP .

In order to show that Ad is l-r-deterministic, we only show the left determinism; the
proof of the right determinism is symmetrical. Assuming two successor state pairs
(P1, P2) and (P ′1, P

′
2) in λd(P, a) with LdP2

∩ LdP ′2 6= ∅, we will show P1 = P ′1.

The assumption together with (3) yields

a+ 1LP1
+ 2LP2

⊆ LP ,
a+ 1LP ′1 + 2LP ′2 ⊆ LP ,

LP2 ∩ LP ′2 6= ∅.

The homogeneity of LP and Remark 1 imply that a+1(LP1
∪LP ′1)+2(LP2∪LP ′2) ⊆ LP ,

but this, together with the definition of λd, yields P1 = P ′1.
If L is recognizable and A is chosen finite, then Ad is also finite. The determiniza-

tion described above can then be done effectively by restricting all occurring sets of
trees to sets of trees of height h ≤ 2|Q|. This is not a real restriction since the above
statements are true iff they are true when quantified over the trees of height h ≤
2|Q|.

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 53

If L(A) is path closed, then the above construction yields a deterministic de-
scending tree automaton. If L(A) is not homogeneous, then Ad recognizes just a
homogeneous superset of L(A).

6. Introducing l-r-minimization. The following definition is the analogue of
Definition 1.

Definition 4. The descending Nerode equivalence relation ≈L of a tree language
L ⊆ Σ# is the coarsest right invariant equivalence relation on the tree monoid Σ(#)

which saturates L̂.
That is, for all (t1, f1), (t2, f2) ∈ Σ(#) if (t1, f1) ≈L (t2, f2), then

(t1, f1)(t, f) ≈L (t2, f2)(t, f) ∀(t, f) ∈ Σ(#)

and

(t1, f1) ∈ L̂ iff (t2, f2) ∈ L̂.

Furthermore, if ≈ is another equivalence relation with these two properties, then
≈L is coarser than ≈, i.e., (t1, f1) ≈ (t2, f2) always implies (t1, f1) ≈L (t2, f2).

We can define≈L equivalently by the following condition. For all (t1, f1), (t2, f2) ∈
Σ(#), (t1, f1) ≈L (t2, f2) iff

(4) ∀(s, g) ∈ Σ(#) : ((t1, f1)(s, g) ∈ L̂ iff (t2, f2)(s, g) ∈ L̂).

If we define (t, f)−1L̂ = {(s, g) ∈ Σ(#) | (t, f)(s, g) ∈ L̂}, then (4) is the same as

(t1, f1)−1L̂ = (t2, f2)−1L̂. If we set

(t, f)−1L = {s ∈ Σ# | t+ fs ∈ L},

then (4) becomes, more simply,

(5) (t1, f1) ≈L (t2, f2) iff (t1, f1)−1L = (t2, f2)−1L.

Given the descending Nerode equivalence of a tree language L, we define the descend-
ing tree automaton A(L) = (QL, λL, qL0 , Q

L
fin) where

QL = {(s, g)−1L | (s, g) ∈ Σ(#)},

qL0 = L,

QLfin = {K ∈ QL |Ω ∈ K}, and

λL(K, a) = {((a+ 2s2, 1)−1K, (a+ 1s1, 2)−1K) | a+ 1s1 + 2s2 ∈ K}.

Note that qL0 ∈ QL since L = (Ω, ε)−1L.
Lemma 2. The descending tree automaton A(L) of a homogeneous tree language

L is l-r-deterministic and recognizes L.
Proof. We will first prove, by structural induction on (t, f), the validity of the

equation

(6) λ̂L((s, g)−1L, t, f) = (t, f)−1((s, g)−1L).

The base step (t, f) = (Ω, ε) follows from the definition of λ̂, since generally λ̂(q,Ω, ε) =
q for any state q and any transition function λ. For the induction step, we suppose (6)

54 MAURICE NIVAT AND ANDREAS PODELSKI

for (t1, f1) and (t2, f2) and show that for (t, f) = (a+1t1+t2, 1f1), if q ∈ λ̂L((s, g)−1L,
t, f), then q = ((s, g)(t, f))−1L.

By (2), there exists a state q1 ∈ λ̂L((s, g)−1L, a+2t2, 1) such that q ∈ λ̂L(q1, t1, f1).

By the definition of λ̂L, there exists a state q2 ∈ QL such that

(q1, q2) ∈ λL((s, g)−1L, a),(7)

λ̂L(q2, t2, f2) ∩QLfin 6= ∅ for f2 ∈ B(t2).(8)

The definition of λL and (7) imply the existence of s1, s2 ∈ Σ# such that

a+ 1s1 + 2s2 ∈ (s, g)−1L,(9)

q1 = (a+ 2s2, 1)−1(s, g)−1L,(10)

q2 = (a+ 1s1, 2)−1(s, g)−1L.(11)

We can write (9) as

s+ g(a+ 1s1 + 2s2) ∈ L.(12)

If we put the induction hypothesis on (t2, f2) and (11) together, we obtain that

λ̂L(q2, t2, f2) = ((s, g)(a + 1s1, 2)(t2, f2))−1L. According to (8), Ω ∈ λ̂L(q2, t2, f2)
or

s+ g(a+ 1s1 + 2t2) ∈ L.(13)

We will use the two facts above and the homogeneity of L in order to show that

the state q is of the form q = ((s, g)(t, f))−1L. Since q ∈ λ̂L(q1, t1, f1) and q1 is of the
form given by (10), the induction hypothesis applied to (t1, f1) yields

q = ((s, g)(a+ 2s2, 1)(t1, f1))−1L.(14)

In order to show the conjectured equality, which is q = ((s, g)(a+ 2t2, 1)(t1, f1))−1L,
let t̄ ∈ q; that is,

s+ g(a+ 1(t1 + f1t̄) + 2s2) ∈ L.(15)

The homogeneity of L together with (12), (13), and (15) now implies

s+ g(a+ 1(t1 + f1t̄) + 2t2) ∈ L,(16)

which is the same as t̄ ∈ ((s, g)(a + 2t2, 1)(t1, f1))−1L. Vice versa, the homogeneity
of L applied to (12), (13), and (16) implies (15), which proves t̄ ∈ q and hence the
statement on the form of q.

Thus the only element of λ̂L((s, g)−1L, t, f) is q = ((s, g)(t, f))−1L, which proves
the left determinism and, by symmetry, the l-r determinism. The equivalences

(t, f) ∈ L̂(A(L)) iff (Ω, ε) ∈ λ̂L(L, t, f),

iff (Ω, ε) ∈ (t, f)−1L,

iff (t, f) ∈ L̂

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 55

show that L = L(A(L)) and complete the proof of Lemma 2.

The l-r-deterministic descending tree automaton A(L) is reduced. Clearly, for

a state M = (t, f)−1L ∈ QL, L̂M = {(s, g) ∈ Σ(#) | λ̂(M, s, g) ∈ QLfin} and hence
LM = M . Therefore, the two equivalent states are equal.

We recall that an automaton A′ is called minimal (in the algebraic sense) in a
given class of automata iff every equivalent automaton A in the class can be mapped
onto A′ by an automaton morphism. A morphism π from A = (Q,λ, q0, Qfin) to
A′ = (Q′, λ′, q′0, Q

′
fin) is a mapping π : Q → Q′ (which is canonically extended to

π : P(Q × Q) → P(Q′ × Q′)) such that π(q0) = q′0, π(Qfin) ⊆ Q′fin and π(λ(q, a)) =
λ′(π(q), a). This condition implies, of course, the minimality of the number of states.
As already stated in footnote 4, one excludes automata with nonaccessible states when
considering the algebraic notion of minimality of automata.

Theorem 4. For every homogeneous tree language L there exists a minimal l-r-
deterministic descending tree automaton recognizing L. It is given by A(L). This is
the unique (up to isomorphism) reduced l-r-deterministic descending tree automaton
recognizing L. It is finite iff L is recognizable.

Proof. We assume a l-r-deterministic descending tree automaton A =
(Q,λ, q0, Qfin) whose states are all accessible and which recognizes L. The morphism
π from A on A(L) is given by the mapping π : Q→ QL, π(q) = Lq.

First we show that π is indeed a function into QL. Let q ∈ Q be a state of A and
(t, f) ∈ Σ# be a pointed tree such that λ̂(q0, t, f) = q.

By equation (2), the state λ̂(q, s, g) = λ̂(λ̂(q0, t, f), s, g) which is equal to

λ̂(q0, (t, f)(s, g)). This is a final state of A iff (t, f)(s, g) ∈ L̂. Thus Lq = (t, f)−1L
and π(q) is indeed a state of A(L).

Clearly, π is surjective. Given (t, f)−1L ∈ QL, we have (t, f)−1L = π(q) where

q = λ̂(q0, t, f), since Lq = (t, f)−1L.

If (t, f)−1L 6= ∅ ∈ QL, then λL(qL0 , t, f) 6= ∅, and setting q = λ̂(q0, t, f), we have
Lq = (t, f)−1L = π(q) and thus π is surjective. (The empty set ∅ ∈ QL is the image
of any not accessible or not coaccessible state of A. If A is assumed to be trim, we
define QL without the element ∅.)

In order to show that (q1, q2) ∈ λ(q, a) iff (π(q1), π(q2)) ∈ λ̂(π(q), a), it is sufficient

to show that π(λ̂(q, t, f)) = λ̂L(π(q), t, f), thanks to Corollary 2, but this is trivially
clear from the l-r determinism of A.

By Lemma 2, A(L) is l-r deterministic and recognizes L. If A is reduced, then
π is bijective, which proves the second statement of Theorem 4 if L is recognizable,
then there exists, by Theorem 2, a l-r-deterministic finite descending tree automaton
recognizing L. By reducing A, that is, by identifying unseparable states, AL can be
obtained effectively and is, of course, finite if A is finite.

If the tree language L is path closed, then A(L) is not only l-r deterministic
but also deterministic. Of course, every deterministic descending tree automaton
recognizing L is also l-r deterministic. Together, this implies the following corollary
whose first part has been shown in [12].

Corollary 3. For every path-closed tree language L there exists a unique (up to
isomorphism) reduced deterministic descending tree automaton recognizing L. This
minimal deterministic descending tree automaton recognizing L is given by A(L)
with, as a set of states, the left residuals of L (or the descending Nerode equivalence
classes).

Thus we have obtained the main result of [12, section II.11], with elegant methods

56 MAURICE NIVAT AND ANDREAS PODELSKI

and sharpened it: A(L) is minimal not only in the class of all deterministic, but also
in the larger class of l-r-deterministic descending tree automata. Moreover, we are
able to describe A(L) algebraically solely by means of the tree language L.

We will now investigate the meaning of A(L) is the general case, where L is not
necessarily a homogeneous tree language. We note that the intersection of any family
of homogeneous sets is again homogeneous. Hence there exists a smallest homogeneous
set containing L. We call it the homogeneous closure of L, written HC(L). Also in the
general case, we call A(L) the minimal l-r-deterministic descending tree automaton
of L; this is justified by the following characterization.

Theorem 5. For any tree language L, the minimal l-r-deterministic descending
tree automaton A(L) is finite iff L is recognizable. It recognizes the homogeneous
closure of L.

Hence A(L) recognizes always an approximation of L (i.e., a superset).

Proof. The class [(t, f)]∼L of the ascending Nerode congruence∼L is characterized
exactly by (1), the set of all sets (s, g)−1L which contain (t, f), and (2), the set of
all those sets which do not contain (t, f). Hence there are finitely many congruence
classes iff there are finitely many sets (s, g)−1L. According to property (5) from
section 6, this holds iff there are finitely many descending Nerode congruence classes
[(t, f)] ≈L.

Next, we show that every t ∈ Σ# which is recognized by A(L) starting in the
state (s, g)−1L is an element of the homogeneous closure of (s, g)−1L. We proceed
by induction over t. If t = Ω, the statement is true by definition of A(L). If t =
a + 1t1 + 2t2, where we assume the statement for t1 and t2 to hold by induction
hypothesis, then there exist trees s1 and s2 such that a+1s1 +2s2 ∈ (s, g)−1L, and t1
and t2 are recognized by A(L) starting in the corresponding left and right successor
states, which are, respectively, (a + 2s2, 1)(s, g)−1L and (a + 1s2, 2)(s, g)−1L. By
induction hypothesis, a+ 1t1 + 2s2 and a+ 1s1 + 2t2 are in the homogeneous closure
of the set (s, g)−1L. This yields the statement for t = a+ 1t1 + 2t2.

By definition, A(L) recognizes a homogeneous tree language which includes every
tree of L. Hence the homogeneous closure HC(L) is a subset of L(A(L)), and, together
with the above, the two sets are equal.

Corollary 4. A tree language L is recognizable iff the descending Nerode equiv-
alence of L has a finite index iff there exists a frontier invariant equivalence relation
on Σ(#) which saturates L̂ and has a finite index.

7. Conclusion. The two existing notions of descending tree automata being ei-
ther too restrictive or not amenable to algebraic tools, we have introduced a third,
intermediate family. The investigation in this work has shown that this family of
l-r-deterministic descending tree automata is a natural algebraic notion on which the
usual automata theoretic methods apply. Our characterization of the corresponding
family of homogeneous tree languages offers the possibility to approximate a recogniz-
able set of trees by a homogeneous superset and to represent it by an l-r-deterministic
descending tree automaton. As an immediate practical application, a type system
like the one of [19], for example (for others, cf. [28]), can be made more powerful by
incorporating this approximation.

Also with respect to the application on type systems, it would be useful to charac-
terize the corresponding family of regular systems of equations. It seems less interest-
ing, and also less feasible, to try the same for regular expressions. Another branch of
further work would consist of exploring the algorithmic aspects. Here one can exploit

MINIMAL ASCENDING AND DESCENDING TREE AUTOMATA 57

the relationship between l-r-deterministic descending tree automata and automata on
strings that we have exhibited.

Acknowledgments. We thank A. Arnold and B. Courcelle for fruitful discus-
sions and the anonymous referees for their useful detailed comments.

REFERENCES

[1] D. Beauquier and M. Nivat, About rational subsets of algebras of infinite words, in Automata,
Languages and Programming, Lecture Notes in Comput. Sci. 194, W. Brauer, ed., Springer-
Verlag, Berlin, 1985, pp. 33–42.

[2] M. P. Cohn, Universal Algebra, Harper and Row, New York, 1965.
[3] H. Comon and C. Delor, Equational formulae with membership constraints, Rapport de

Recherche 649, LRI, Université de Paris Sud, Orsay, France, 1991; Inform. and Comput.,
112 (1994), pp. 167–216.

[4] S. S. Cosmodakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi, Decidable
optimization problems for database logic programs, in Proc. 20th Annual ACM Sympo-
sium on Theory on Computing, ACM, New York, 1988, pp. 477–490.

[5] B. Courcelle, On recognizable sets and tree automata, in Resolution of Equations in Algebraic
Structures, Vol. I, H. Aı̈t-Kaci and M. Nivat, eds., Academic Press, Boston, 1989, pp. 93–
125.

[6] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in Handbook of Theoretical Computer
Science, Vol. B, J. van Leeuwen, ed., North–Holland, Amsterdam, 1990, pp. 243–309.

[7] J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci., 4 (1970),
pp. 406–451.

[8] P. J. Downey, R. Sethi, and R. E. Tarjan, Variations on the common subexpression problem,
J. Assoc. Comput. Mach., 25 (1980), pp. 758–771.

[9] S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.
[10] E. A. Emerson and C. S. Jutla, The complexity of tree automata and logics of programs,

in Proc. 29th IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 328–337.

[11] F. Gécseg and M. Steinby, Minimal ascending tree automata, Acta Cybernet, 4 (1984),
pp. 37–44.

[12] F. Gécseg and M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.
[13] R. Giegerich and K. Schmal, Code selection techniques: Pattern matching, tree parsing, and

inversion of derivors, in Proc. 1988 European Symposium on Programming, Lecture Notes
in Comput. Sci. 300, Springer-Verlag, Heidelberg, 1988, pp. 245–268.

[14] J. Heintze, Set based program analysis, Ph.D. thesis, School of Computer Science, Carnegie–
Mellon University, Pittsburgh, PA, 1992.

[15] N. Heintze and J. Jaffar, A finite representation theorem for approximating logic programs,
in Proc. 17th ACM Conference on Principles of Programming Languages, ACM, New York,
1990, pp. 197–209.

[16] C. Hemerie and J. P. Katoen, Bottom-up tree acceptors, Sci. Comput. Programming, 13
(1990), pp. 51–72.

[17] U. Heuter, First-order properties of finite trees, star-free expressions and aperiodicity, in
Proc. 5th Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes
in Comput. Sci. 294, Springer-Verlag, Berlin, New York, Heidelberg, 1988, pp. 136–149.

[18] U. Heuter, Definite tree languages, Bull. European Assoc. Theoret. Comput. Sci., 35 (1988),
pp. 137–142.

[19] P. Mishra, Towards a theory of types in prolog, in Proc. 1st IEEE Symposium on Logic
Programming, IEEE Computer Society Press, Los Alamitos, CA, 1984, pp. 456–461.

[20] D. E. Muller, Notes on the theory of automata, manuscript, University of Illinois at Urbana–
Champaign, Champaign, IL, 1987.

[21] D. E. Muller and P. E. Schupp, Alternating automata on infinite trees, Theoret. Comput.
Sci., 54 (1987), pp. 267–276.

[22] M. Nivat, Binary tree codes, in Tree Automata and Languages, M. Nivat and A. Podelski,
eds., North–Holland, Amsterdam, 1992, pp. 1–20.

[23] M. Nivat and A. Podelski, Tree monoids and recognizable sets of trees, in Resolution of
Equations in Algebraic Structures, Vol. I., H. Aı̈t-Kaci and M. Nivat, eds., Academic
Press, Boston, 1989.

58 MAURICE NIVAT AND ANDREAS PODELSKI

[24] M. Nivat and A. Podelski, Another variation on the common subexpression problem, Discrete
Math., 114 (1993), pp. 379–401.

[25] A. E. Pelegri-Llopart, Rewrite systems, pattern matching, and code generation, Ph.D. thesis,
Technical Report UCB/CSD 88/423, University of California at Berkeley, Berkeley, CA,
1988.

[26] D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, Vol. B,
J. van Leeuwen, ed., North–Holland, Amsterdam, 1990, pp. 243–309.

[27] P. Péladeu, and A. Podelski, On reverse and general definite tree languages, in Proc. Inter-
national Conference on Automata, Languages and Programming (ICALP), Lecture Notes
in Comput. Sci. 623, W. Kuich, ed., Springer-Verlag, Berlin, New York, Heidelberg, 1992,
pp. 150–161.

[28] F. Pennig, Types in Logic Programming, MIT Press, Cambridge, MA, 1992.
[29] A. Podelski, Monöıdes d’arbres et automates d’arbres, thèse de doctorat, Université de Paris

VII, Paris, 1989.
[30] J. C. Reynolds, Automatic computation of data set definition, Inform. Process., 68 (1969),

pp. 456–461.
[31] H. Seidl, Deciding equivalence of finite tree automata, SIAM J. Comput., 19 (1990), pp. 424–

437.
[32] M. Steinby, A theory of tree language varieties, in Tree Automata and Languages, M. Nivat

and A. Podelski, eds., North–Holland, Amsterdam, 1992, pp. 57–82.
[33] J. W. Thatcher and J. B. Wright, Generalized finite automata theory with an application

to a decision problem of second-order logic, Math. Systems Theory, 2 (1967), pp. 57–81.
[34] W. Thomas, Logical aspects in the study of tree languages, in 9th Colloquium on Trees in

Algebra and in Programming, B. Courcelle, ed., Cambridge University Press, Cambridge,
UK, 1984, pp. 31–49.

[35] J. Viragh, Deterministic ascending tree automata I, Acta Cybernet., 5 (1981), pp. 33–42.
[36] E. Yardeni and E. Shapiro, A type system for logic programs, in Concurrent Prolog, Vol. 2,

E. Shapiro, ed., MIT Press, Cambridge, MA, 1987, pp. 211–244.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY∗

YENJO HAN† , LANE A. HEMASPAANDRA‡ , AND THOMAS THIERAUF§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 59–78, February 1997 004

Abstract. Threshold machines are Turing machines whose acceptance is determined by what
portion of the machine’s computation paths are accepting paths. Probabilistic machines are Turing
machines whose acceptance is determined by the probability weight of the machine’s accepting com-
putation paths. In 1975, Simon proved that for unbounded-error polynomial-time machines these two
notions yield the same class, PP. Perhaps because Simon’s result seemed to collapse the threshold
and probabilistic modes of computation, the relationship between threshold and probabilistic com-
puting for the case of bounded error has remained unexplored.

In this paper, we compare the bounded-error probabilistic class BPP with the analogous threshold
class, BPPpath, and, more generally, we study the structural properties of BPPpath. We prove that

BPPpath contains both NPBPP and PNP[log] and that BPPpath is contained in PΣ
p
2
[log], BPPNP,

and PP. We conclude that, unless the polynomial hierarchy collapses, bounded-error threshold
computation is strictly more powerful than bounded-error probabilistic computation.

We also consider the natural notion of secure access to a database: an adversary who watches
the queries should gain no information about the input other than perhaps its length. We show for
both BPP and BPPpath that if there is any database for which this formalization of security differs
from the security given by oblivious database access, then P 6= PSPACE. It follows that if any set
lacking small circuits can be securely accepted, then P 6= PSPACE.

Key words. complexity theory, cryptography, probabilistic computation, threshold computa-
tion

AMS subject classifications. 68Q15, 94A60

PII. S0097539792240467

1. Introduction. In 1975, Simon [27] defined threshold machines. A threshold
machine is a nondeterministic Turing machine that accepts a given input if more than
half of all computation paths on that input are accepting paths. Gill [13] defined
the class PP as the class of sets for which there exists a probabilistic polynomial-
time Turing machine that accepts exactly the members of the set with probability
greater than 1

2 . Simon [27] showed that the class of sets accepted by polynomial-time
threshold machines characterizes the unbounded-error probabilistic class PP.

In this paper, we extend the notion of threshold computation to bounded-error
probabilistic classes, and we study the degree to which threshold and probabilistic
database (“oracle”) computations hide information from observers.

In particular, we introduce BPPpath and Rpath as the threshold analogues of
BPP and R [13]. We give evidence that, unlike the case for PP, these threshold
classes are different from their probabilistic counterparts. Section 3 studies the

∗ Received by the editors November 18, 1992; accepted for publication (in revised form) April 13,
1995.

http://www.siam.org/journals/sicomp/26-2/24046.html
† Microtec Research Inc., 2350 Mission College Boulevard, Santa Clara, CA 95054 (yenjo@

mri.com). The research of this author was supported in part by NSF grant CCR-9322513. This
research was performed while this author was at the University of Rochester.
‡ Department of Computer Science, University of Rochester, Rochester, NY 14627 (lane@

cs.rochester.edu). The research of this author was supported in part by NSF grants CCR-8957604,
CCR-9322513, INT-9116781/JSPS-ENG-207, and INT-9513368/DAAD-315-PRO-fo-ab.
§ Abteilung Theoretische Informatik, Universität Ulm, Oberer Eselsberg, 89069 Ulm, Germany

(thierauf@informatik.uni-ulm.de). The research of this author was supported in part by NSF grants
CCR-9057486 and CCR-9322513 and by DFG Postdoctoral Stipend Th 472/1-1. Part of this research
was performed while this author was visiting the University of Rochester and Princeton University.

59

60 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

AM

��
��
��
�

PP

R

@
@
@@

�
�
��

BPP

NPBPP

MA

HH
HH

HH
H

BPPpath

�
�
�
�
�
�
�
�
��

\
\
\
\
\
\
\
\
\\

BPPNP

�
�
�
�
�
�
�
�
��

NP = Rpath

HH
HH

HH
H

PNP[log]

S
S
S
S
S
S
S
S
SS

PNP

RNP

HH
HH

HH
H

Σp2

PΣp2 [log]

Σp3

Fig. 1. Inclusion relations between BPPpath and other complexity classes. Not shown are the

inclusions BPP ⊆ RNP and AM ⊆ PΣ
p
2
[log] (in fact, AM ⊆ Πp

2). As an open problem, we ask

whether BPPpath is contained in Σp2 or even RNP. There is an oracle relative to which BPPpath is

not in PNP.

properties of the class BPPpath and its relationship to other complexity classes.
For example, we show—in contrast to the BPP case—that BPPpath is self-low

(i.e., BPPpath
BPPpath = BPPpath) only if the polynomial hierarchy collapses. We

also show that BPP is low for BPPpath, that there is a relativized world in which
BPPpath does not contain the smallest reasonable counting class, and that BPPpath

has many closure properties. Figure 1 gives an overview of the inclusion relations that
we establish between BPPpath and other complexity classes; in particular, note that
though contained in the polynomial hierarchy, BPPpath contains NP and coNP.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 61

Section 4 studies, for threshold and probabilistic computations that have Turing
(that is, adaptive) access to a database, the degree to which the input can be hidden
from an observer. In particular, we consider the least restrictive possible notion
ensuring that a powerful observer should gain no information about the input other
than its length [5]. For the cases of unbounded-error probabilistic and threshold
computation, we note that this optimal degree of security can be achieved in all cases.
For the cases of bounded-error probabilistic and threshold computations, we prove
the following result: if there exists any database D to which secure access yields more
power than oblivious access (a notion in which the querying machine—until finished
querying—is wholly denied access to the input other than the length of the input [9]),
then P 6= PSPACE.

2. Definitions and discussion. Throughout this paper, we use the alphabet
Σ = {0, 1}. For a string x ∈ Σ∗, |x| denotes the length of x. For a set A ⊆ Σ∗,
A(x) denotes the characteristic function of A, A=n denotes { y | y ∈ A and |y| = n },
A≤n denotes { y | y ∈ A and |y| ≤ n }, and ‖A‖ denotes the cardinality of A. The
complement of A is A = Σ∗ −A, and for a class C of sets, co C = {A | A ∈ C }.

Let (·, ·)b : Σ∗ × Σ∗ → Σ∗ be a polynomial-time computable, polynomial-time
invertible, one-to-one, onto function. For any string z, let z+ 1 denote the string that
lexicographically follows z, and for any string z 6= ε, let z−1 denote the string that lex-
icographically precedes z. Let ks be the lexicographically kth string in Σ∗. We define
our (multi-arity, onto) pairing function by (x1, x2, . . . , xk) equals (a) (ε, ε)b when
k = 0, (b) (ε, x1 + 1)b when k = 1, and (c) (ks, (x1, (x2, (· · · (xk−1, xk)b · · ·)b)b)b)b
when k ≥ 2.

P (NP) denotes the class of languages that are accepted by polynomial-time deter-
ministic (nondeterministic) Turing machines. For nondeterministic Turing machines,
we assume without loss of generality that the nondeterministic branching degree is at
most two. M is polynomial-normalized (henceforward denoted normalized) if there is
a polynomial p such that on every input x the machine M makes exactly p(|x|) non-
deterministic moves on each computation path. FP is the class of polynomial-time
computable functions. One can define relativized classes such as PNP (respectively,
PNP[log]) by employing P machines having some NP oracle that can be asked polyno-
mially (respectively, logarithmically) many queries, i.e., so-called oracle machines [3].
This is called a Turing reduction (to NP). If the queries are made nonadaptively (i.e.,
in parallel), we call this a truth-table reduction (see Ladner, Lynch, and Selman [22]).
By PNP

tt we denote the class of sets that are truth-table reducible to NP—but, in fact,
PNP

tt = PNP[log] [15].
The polynomial hierarchy [25], [29] is defined as follows:

Σp1 = NP,

Σpk+1 = NPΣp
k (for k ∈ {1, 2, 3, . . .}), and

PH =
⋃
k≥1

Σpk.

P/poly [19] denotes the class of sets having small circuits.
For a nondeterministic polynomial-time Turing machine M , let accM (x)

(rejM (x)) denote the number of accepting (rejecting) paths of M on input x and
let totalM (x) denote the total number of paths of M on input x. #P is the class of
functions f such that for some nondeterministic polynomial-time Turing machine M
it holds that (∀x) [f(x) = accM (x)].

62 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

2.1. Probabilistic and threshold computation. A probabilistic polynomial-
time Turing machine [13] is a nondeterministic polynomial-time Turing machine M
such that M chooses with equal probability each of the nondeterministic choices at
each choice point. Pr[M(x) = 1] denotes the probability weight of those paths on
which M accepts x and Pr[M(x) = 0] denotes the probability weight of those paths
on which M rejects x.

We now define some complexity classes in terms of probabilistic polynomial-time
Turing machines.

Definition 2.1 (probabilistic classes).
1. PP [13] is the class of all sets L such that there exists a probabilistic

polynomial-time Turing machine M such that for all x ∈ Σ∗ it holds that Pr[M(x) =
L(x)] > 1

2 .
2. BPP [13] is the class of all sets L such that there exist a probabilistic

polynomial-time Turing machine M and an ε > 0 such that for all x ∈ Σ∗ it holds
that Pr[M(x) = L(x)] > 1

2 + ε.
3. R [13] is the class of all sets L such that there exists a probabilistic polynomial-

time Turing machine M such that for all x ∈ Σ∗ it holds that

x ∈ L =⇒ Pr[M(x) = 1] >
1

2
and

x 6∈ L =⇒ Pr[M(x) = 0] = 1.

By definition, we clearly have R ⊆ BPP ⊆ PP [13].
The class PP can also be characterized as the class of sets L such that there exist

a nondeterministic polynomial-time Turing machine M and a function f ∈ FP such
that for all x ∈ Σ∗ it holds that x ∈ L ⇐⇒ accM (x) ≥ f(x).

By looking at the portion of accepting paths rather than the probability weight
of the accepting paths, we now introduce the threshold analogues of the above prob-
abilistic classes. Let #[M(x) = 1] denote accM (x) and let #[M(x) = 0] denote
rejM (x).

Definition 2.2 (threshold classes).
1. PPpath [27] is the class of all sets L such that there exists a nondeterministic

polynomial-time Turing machine M such that for all x ∈ Σ∗ it holds that #[M(x) =
L(x)] > 1

2 totalM (x).
2. BPPpath is the class of all sets L such that there exist a nondeterministic

polynomial-time Turing machine M and an ε > 0 such that for all x ∈ Σ∗ it holds
that #[M(x) = L(x)] > (1

2 + ε) totalM (x).
3. Rpath is the class of all sets L such that there exists a nondeterministic

polynomial-time Turing machine M such that for all x ∈ Σ∗ it holds that

x ∈ L =⇒ accM (x) >
1

2
totalM (x) and

x 6∈ L =⇒ rejM (x) = totalM (x).

It is easy to see that Rpath ⊆ BPPpath ⊆ PPpath. For all threshold classes in this
paper, as a notational convenience we will place oracles above the word “path” (e.g.,
BPPBPP

path denotes (BPPpath)BPP).
It is known that R, BPP, and PP sets can be accepted via normalized probabilistic

polynomial-time Turing machines: just extend each computation path of a given
machine up to a fixed polynomial length and, on each new path, accept if the path
that was extended accepted and reject otherwise. The modified machine has the same

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 63

acceptance probability as the original one. Observe that for normalized machines,
the probabilistic interpretation of the machine accepts the same set as the threshold
interpretation of the machine. Thus each of the probabilistic classes is contained in the
corresponding threshold class, i.e., PP ⊆ PPpath, BPP ⊆ BPPpath, and R ⊆ Rpath.

In fact, Simon [27] has already shown that PPpath is not a bigger class than PP.
For completeness, we give a proof here.

Theorem 2.3 ([27]). PPpath = PP.
Proof. It suffices to show that PPpath ⊆ PP. Let L ∈ PPpath via PPpath

machine M with polynomial q bounding M ’s runtime. Consider the machine M ′

that on input x extends each path y of M by appending a full binary subtree of depth
q(|x|)−|y|. Furthermore, on the leftmost path of this appended subtree, M ′ branches
into two accepting (rejecting) paths if M accepted (rejected) on the path y. On each
remaining path of the subtree, M ′ branches into one accepting and one rejecting path.

M ′ on input x has 2q(|x|)+1 paths and of these 2q(|x|) + accM (x) − rejM (x) are
accepting paths. This shows that L ∈ PP via M ′.

Interestingly, this equivalence between probabilistic and threshold classes cannot
hold for R and BPP unless the polynomial hierarchy collapses to its second level.
This follows from the fact that NP is contained in Rpath and thus is also contained in
BPPpath.

Proposition 2.4. Rpath = NP.
Proof. Rpath ⊆ NP is immediate from the definition. For the reverse inclusion,

let M be a nondeterministic Turing machine and let polynomial p bound the runtime
of M .

Consider the machine M ′ that on input x first simulates M on input x, and if the
simulation ends in an accepting path y, then M ′ appends 2p(|x|)+1 accepting paths to
y and otherwise M ′ rejects.

Now more than half of all paths of M ′ on input x are accepting if x ∈ L(M), and
M ′ has no accepting paths otherwise. This shows that L(M) ∈ Rpath.

Corollary 2.5. NP ⊆ BPPpath.
It follows that if BPPpath is equal to BPP, then BPPpath, and hence NP, has

small circuits, which in turn, by the result of Karp, Lipton, and Sipser (see [19]),
implies that the polynomial hierarchy collapses. Thus we cannot expect BPPpath to
have normalized machines. For different, contemporaneous work related to normalized
versus nonnormalized computation, see Hertrampf et al. [16] and Jenner, McKenzie,
and Thérien [17].

We have now seen that there are some crucial differences between BPP and its
threshold analogue, BPPpath. We will study BPPpath in more detail in section 3 and,
especially, we will strengthen Corollary 2.5.

2.2. Secure computation. In this subsection and in section 4, we study notions
of secure adaptive access to databases in the presence of a powerful spying observer.
We give below what we feel are the most natural definitions. In these definitions, we
obtain security by requiring that an observer (seeing a path drawn uniformly from all
the machine’s paths) should learn nothing about the input string other than perhaps
its length. For threshold computation, this notion is new. For probabilistic computa-
tion, the appendix proves that this definition is equivalent to the notion of “one-oracle
instance-hiding schemes that leak at most the length of their inputs” [5]. The original
motivation for such classes, as explained, for example, by Beaver and Feigenbaum [5],
is, very roughly, to study whether weak devices can solve hard problems by asking
some powerful device questions in such a way that no observer can tell which problem

64 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

was actually solved by the weak device. Since NP ⊆ BPPpath, BPPpath is clearly
not a computationally weak class. It nonetheless makes sense to consider the same
interactive model in the case that applies here: studying whether a relatively powerful
class (BPPpath) can use a (potentially powerful) information source while shielding
information on the problem being solved even from extremely powerful observers.

Definition 2.6 (secure threshold computation). For any set D, a set A is said
to be in secureBPPDpath (that is, is said to be “securely accepted by a bounded-error
threshold polynomial-time machine via access to database D”) if there is a nondeter-
ministic polynomial-time Turing machine N such that the following hold:

1. [A ∈ BPPDpath via machine N.] There exists an ε > 0 such that for all x ∈ Σ∗

it holds that #[ND(x) = A(x)] > (1
2 + ε) totalND (x) (see part 2 of Definition 2.2).

2. [The queries of ND reveal no information to an observer other than perhaps
the length of the input.] For every k ∈ {0, 1, 2, . . .}, every vector v = (v1, v2, . . . , vk),
v1, v2, . . . , vk ∈ Σ∗, and every pair of strings x ∈ Σ∗ and y ∈ Σ∗ such that |x| = |y|,
it holds that

path-occurencesND(x)(v)

totalND (x)
=

path-occurencesND(y)(v)

totalND (y)
,

where path-occurencesND(z)(v) = ||{p | p is a path of ND(z) on which v is the sequence
of queries asked to the oracle (in the order asked, possibly with duplications if the same
query is asked more than once)1}||.

Similarly, for the probabilistic class BPP, we have the following definition of secure
access.

Definition 2.7 (secure probabilistic computation). For any set D, a set A is
said to be in secureBPPD (that is, is said to be “securely accepted by a bounded-
error probabilistic polynomial-time machine via access to database D”) if there is a
probabilistic polynomial-time Turing machine N such that the following hold:

1. [A ∈ BPPD via machine N.] There exists an ε > 0 such that for all x ∈ Σ∗

it holds that Pr[ND(x) = A(x)] > 1
2 + ε (see part 2 of Definition 2.1).

2. [The queries of ND reveal no information to an observer other than per-
haps the length of the input.] For every k ∈ {0, 1, 2, . . .}, every vector v =
(v1, v2, . . . , vk), v1, v2, . . . , vk ∈ Σ∗, and every pair of strings x ∈ Σ∗ and y ∈ Σ∗

such that |x| = |y|, it holds that
Pr[the query vector of ND(x) is v] = Pr[the query vector of ND(y) is v].

Oblivious self-reducibility was discussed in [9], and we now define complexity
classes capturing the notion of oblivious access.

Definition 2.8 (oblivious probabilistic and threshold classes). For any set D,
a set A is said to be in obliviousBPPDpath (respectively, obliviousBPPD) if there is a
nondeterministic (respectively, probabilistic) polynomial-time Turing machine N such
that the following hold:

1. [A ∈ BPPDpath (respectively, A ∈ BPPD) via machine N.] There exists an

ε > 0 such that for all x ∈ Σ∗ it holds that #[ND(x) = A(x)] > (1
2 + ε) totalND (x)

(respectively, Pr[ND(x) = A(x)] > 1
2 + ε).

2. N is an oblivious machine in the sense that on an input z it initially is given
access to a “preinput” tape on which 0|z| is written. N then performs its adaptive
queries to D. Then after making all queries to D, machine N is given access to z.

1 Henceforth, we will refer to this as a query vector.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 65

We clearly have that, for every D,

BPPDpath ⊇ secureBPPDpath ⊇ obliviousBPPDpath and

BPPD ⊇ secureBPPD ⊇ obliviousBPPD.

Are these inclusions proper? In other words, does using security against
observers as the definition of secure computation (secureBPPDpath, secureBPPD)
yield a more flexible notion of security than does blinding the machine to its input
(obliviousBPPDpath, obliviousBPPD)? Formally, is obliviousBPPDpath 6= secureBPPDpath

or obliviousBPPD 6= secureBPPD? Our intuition says that both inequalities hold.
However, section 4 shows that establishing that “yes” is the answer implies that
P 6= PSPACE (and even implies the stronger result that BPP 6= PP). Since it is
commonly believed that P 6= PSPACE, this does not provide evidence that equality
holds; rather, it merely suggests that witnessing a separation will be hard with current
techniques. We note that results (such as Theorem 4.1 and Corollary 4.2) that con-
nect the existence of an oracle separation to the existence of a real-world separation
(see, e.g., the survey [7]) usually occur in cases in which the oracle is tremendously
restricted (e.g., to the class of tally sets or the class of sparse sets [4], [24]); in contrast,
section 4 provides such a relativization result that applies without restriction of the
database D.

Note that we could also define classes partially-secure-BPPDpath and partially-

secure-BPPD based on the notion (see, e.g., [9] and the papers cited therein) that
an observer watching one query should get no information other than perhaps about
the length (clearly, for all D, BPPDpath ⊇ partially-secure-BPPDpath ⊇ secureBPPDpath

and BPPD ⊇ partially-secure-BPPD ⊇ secureBPPD), and, more generally, one could
study a variety of classes between BPPD and secureBPPD (or between BPPDpath and

secureBPPDpath) based upon security against observers using various strengths of query
access. (For example, one could require security against observers who could see two
queries, or against observers who could make O(logn) adaptive queries into the query
vector, or so on.) However, we restrict our attention to what we feel are the most
natural security classes: secureBPPD and secureBPPDpath.

There is no point in defining security classes for unbounded-error computation
since it is easy to see that, for every D, PPD = securePPD = obliviousPPD =
PPDpath = securePPDpath = obliviousPPDpath.

Finally, we note that all sets that are accepted by an oblivious machine
relative to some database D have small circuits. Let obliviousBPP? denote⋃
D∈2Σ∗ obliviousBPPD. We have the following result.

Proposition 2.9. obliviousBPP? = P/poly.
Corollary 2.10. (∃L) [L 6∈ obliviousBPPL].
Though for most common classes C it holds that (∀L) [L ∈ CL], Corollary 2.10

should not be surprising; it is natural that weak machines, when accepting a hard set
via a hard database, may leak some information to an observer. Interestingly, a similar
result holds for secure computation. Namely, Abadi, Feigenbaum, and Kilian [1] have
shown that secureBPPD ⊆ NP/poly ∩ coNP/poly for any database D. Thus for any
set D, no NP-hard set is in secureBPPD unless the polynomial hierarchy collapses.

3. BPPpath. We have already argued that BPP and BPPpath differ unless the
polynomial hierarchy collapses. These classes nonetheless share certain properties.
For example, as is also the case for BPP [36], BPPpath has a strong amplification
property.

66 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

Theorem 3.1. Let L be in BPPpath. For each polynomial q, there is a non-
deterministic polynomial-time Turing machine M such that for all x ∈ Σ∗ it holds
that

#[M(x) = L(x)] >
(

1− 2−q(|x|)
)

totalM (x).

The proof is analogous to the corresponding proof for BPP.
BPP is closed under Turing reductions [20], [34]. However, no relativizable proof

can establish the closure of BPPpath under Turing reductions. In particular, Beigel [6]
constructed an oracle relative to which PNP is not contained in PP. Since BPPpath is
clearly contained in PP (and the proof relativizes), it follows that, relative to the same
oracle, PNP is not contained in BPPpath, and hence, since NP ⊆ BPPpath, BPPpath

is not closed under Turing reductions relative to this oracle. That is, there exists an

A such that BPPApath 6= PBPPApath .
For BPPpath, we can prove closure under truth-table reductions.
Theorem 3.2. BPPpath is closed under polynomial-time truth-table reductions.
Proof. Let A ≤ptt B for B ∈ BPPpath, i.e., there exists a polynomial-time Turing

machine M such that L = L(MB) and, for each input x of length n, machine M
makes at most q(n) queries (nonadaptively) to B. Without loss of generality, we
may assume that all queries have the same length l(n), l(n) ≥ n, and that q(n) is a
nondecreasing function.

Let N be a BPPpath machine for B such that on input y,

#[N(y) = B(y)] >

(
1− 1

3q(|y|)

)
totalN (y).

Consider the machine M ′ that on input x, |x| = n, computes y1, . . . , yk, the truth-
table queries of M on input x, where k ≤ q(n), and for each query yi, machine M ′

guesses a path of N on input yi and takes the output of this path as the answer to
query yi, for i = 1, . . . , k. Using these answers instead of the oracle B, M ′ simulates
M on input x and outputs the result.

M ′ has totalM ′(x) =
∏k
i=1 totalN (yi) paths. At least on those paths on which all

the answers to the oracle queries are correct, M ′ decides correctly whether x is in A,
i.e., we have

#[M ′(x) = A(x)] ≥
k∏
i=1

#[N(yi) = B(yi)]

≥
k∏
i=1

(
1− 1

3q(l(n))

)
totalN (yi) by assumption

≥
(

1− 1

3q(n)

)k k∏
i=1

totalN (yi) since l(n) ≥ n

≥
(

1− k

3q(n)

) k∏
i=1

totalN (yi)

≥ 2

3
totalM ′(x).

This shows that A ∈ BPPpath.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 67

Corollary 3.3. BPPpath is closed under complementation, intersection, and
union.

Since NP is contained in BPPpath, it follows that the closure of NP under truth-
table reductions is contained in BPPpath.

Corollary 3.4. PNP[log] ⊆ BPPpath.

It is known that BPP is low for PP [21] and for itself [20], [34], i.e., PPBPP =
PP and BPPBPP = BPP. We show in the next theorem that BPP is also low for
BPPpath. Observe that relative to Beigel’s previously mentioned oracle making PNP

not contained in PP, we must also have that NP, and hence BPPpath, cannot be low

for PP. That is, there exists an A such that PPBPPApath 6= PPA. Furthermore, by an
easy induction, we have that if BPPpath is low for itself then the polynomial hierarchy,
PH, is contained in BPPpath. However, as we will see in Theorem 3.11 below, BPPpath

is contained in some level of the polynomial hierarchy. Thus BPPpath is not low for
BPPpath unless the polynomial hierarchy collapses.

Theorem 3.5. BPPBPP
path = BPPpath.

Proof. Let L ∈ BPPBPP
path via a machineM and a setA ∈ BPP such that polynomial

p bounds the runtime of MA and for all x ∈ Σ∗ it holds that #[MA(x) = L(x)] >
7
8 totalMA(x).

Let B = { (0n, w1, a1, . . . , wk, ak) | k ≤ p(n) and (∀i : 1 ≤ i ≤ k) [|wi| ≤ p(n) and
A(wi) = ai] }. Since BPP is closed under truth-table reductions [20], [34], B ∈ BPP.
Hence there exist a probabilistic polynomial-time Turing machine MB and a poly-
nomial q such that for any input z = (0n, w1, a1, . . . , wk, ak), MB ’s error probabil-
ity is bounded by 2−(p(n)+4) and MB ’s computation tree is a full binary tree with
totalMB

(z) = 2q(n).
Consider the machine M ′ that on input x, |x| = n, performs the following steps.

1. M ′ simulates MA on input x. Whenever M queries the oracle, M ′ nondeter-
ministically guesses the answer. Let (w1, a1), . . . , (wk, ak) be the sequence of queried
strings and guessed answers along a computation path y.

2. To verify the guessed answers, M ′ simulates MB on input (0n, w1,
a1, . . . , wk, ak).

3. M ′ amplifies the output of M on path y from the first step if the guessed
answers there are certified in the second step. More precisely, M ′ now appends 2p(n)+4

accepting (rejecting) paths if path y was accepting (rejecting) and the simulation in
the second step ended in an accepting path of MB . Otherwise, M ′ rejects.

After the first two steps, M ′ has at most 2p(n) 2q(n) computation paths. In the last
step, M ′ amplifies all paths (a) in which the guessed oracle answers are correct and
that are certified by MB in the second step, i.e., at most totalMA(x) 2q(n) paths, and
(b) all paths in which the guessed oracle answers are false but are wrongly certified
by MB , i.e., at most 2p(n) 2−(p(n)+4) 2q(n) paths. Thus we have

totalM ′(x) ≤ 2p(n) 2q(n) + 2p(n)+4
(

totalMA(x) 2q(n) + 2p(n) 2−(p(n)+4) 2q(n)
)
.

The paths on which M ′ decides correctly include at least those paths that cor-
respond to correct paths of M in the first step and are subsequently certified in the
second step. Since these paths are amplified in the last step, we have

#[M ′(x) = L(x)] ≥
(

7

8
totalMA(x)

)(
(1− 2−(p(n)+4)) 2q(n)

)
2p(n)+4.

Now it is not hard to see that #[M ′(x) = L(x)] > 2
3 totalM ′(x). Thus L ∈

BPPpath.

68 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

If we define a function class FBPPpath in the natural manner (see the analogous
class FBPP of Ko [20]), then it is not hard to see that the same proof technique also
establishes that FBPPBPP

path = FBPPpath.

Corollary 3.6. NPBPP ⊆ BPPpath.

Indeed, we even have PNPBPP[log]⊕BPP ⊆ BPPpath.
Babai [2] introduced the Arthur–Merlin classes MA and AM. It is known that

NPBPP ⊆ MA ⊆ AM ⊆ BPPNP [2], [35]. It is not known whether any of the inclusions
is strict or not, though various relevant oracle separations are known (e.g., Fenner et
al. [11] have constructed an oracle world in which NPBPP and MA differ). Below,
we strengthen Corollary 3.6 to show that even MA is contained in BPPpath. This
improves the result of Vereshchagin [33] that MA ⊆ PP.

Theorem 3.7. MA ⊆ BPPpath.
Proof. Let L ∈ MA. By standard amplification techniques, there exist a

polynomial-time predicate Q and polynomials p and q such that for all x ∈ Σ∗,

x ∈ L =⇒ (∃y ∈ Σp(|x|)) [Pr[Q(x, y, z)] > 1− 2−(p(|x|)+4)],

x 6∈ L =⇒ (∀y ∈ Σp(|x|)) [Pr[Q(x, y, z)] < 2−(p(|x|)+4)],

where the probability is taken uniformly over all z ∈ Σq(|x|).
Consider the machine M that on input x guesses y ∈ Σp(|x|) and z ∈ Σq(|x|), and

if Q(x, y, z) is false, M rejects; otherwise, M produces 2p(|x|)+2 accepting paths.
It is not difficult to see that #[M(x) = L(x)] > 2

3 totalM (x). Thus L ∈
BPPpath.

It is an open question whether AM is contained in BPPpath. Vereshchagin [33]
constructed an oracle A such that relative to A the class AM is not a subset of PP,
i.e., AMA 6⊆ PPA. Thus AM is not a subset of BPPpath relative to A. On the other
hand, BPPpath is not a subset of AM unless the polynomial hierarchy collapses. This
follows from the result of Boppana, H̊astad, and Zachos [8] that if coNP ⊆ AM, then
the polynomial hierarchy collapses to its second level. Since coNP ⊆ BPPpath, we get
the same consequence from the assumption that BPPpath is contained in AM.

Sipser and Gács [28] (see also [23]) showed that BPP ⊆ RNP. It is an open
question whether the same inclusion holds for BPPpath. However, we show that

BPPpath ⊆ BPPNP. As a first step, we show that a BPPpath set can be decided by a
deterministic polynomial-time Turing machine making logarithmically many queries
to a Σp2 oracle, and hence BPPpath is in the polynomial hierarchy. A randomized
version of this algorithm can decide a BPPpath set with an NP oracle. The proof
applies Sipser’s Coding Lemma for universal hashing [28].

We mention that we could get a shorter proof by applying the results of Stock-
meyer [30] to approximate #P functions and those of Jerrum, Valiant, and Vazi-
rani [18], who showed a probabilistic version of Stockmeyer’s theorem. However,
we prefer to give a self-contained proof here, thereby encouraging the reader to see
whether he or she can improve our result, for example, by getting a one-sided error
probabilistic algorithm (in part 2 of Theorem 3.11). Since there is an oracle relative to
which BPP is not contained in PNP [30], one cannot obtain a deterministic algorithm
with relativizable techniques.

Definition 3.8 ([28]). Let X ⊆ Σm and let H1, . . . , Hk : Σm → Σk be a
collection of linear functions given as k ×m 0–1 matrices. The predicates Separate
and Hash are defined as follows.

1. SeparateX(H1, . . . , Hk) ⇐⇒ (∀ y ∈ X) (∃ i : 1 ≤ i ≤ k) (∀ z ∈ X : y 6=

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 69

z) [Hi(y) 6= Hi(z)], where Hi(y) means multiplication of the k×m matrix Hi with the
m vector y, yielding a k vector, with the arithmetic done in GF[2].

2. HashX(k) ⇐⇒ (∃H1, . . . , Hk ∈ Σkm) [SeparateX(H1, . . . , Hk)].

The intuition about predicate Hash is that the size of the range of the hash
functions (which is determined by k) has to be sufficiently large with respect to the
size of X for a collection H1, . . . , Hk that separates X to exist.

Lemma 3.9 ([28]). Let X ⊆ Σm and let k = blog ‖X‖c + 2. For a random
collection of functions H1, . . . , Hk : Σm → Σk,

Pr[SeparateX(H1, . . . , Hk)] ≥ 7

8
.

As a consequence of this lemma, we get a lower bound for the size of a set X.
The upper bound follows by the pigeonhole principle (see [30]).

Corollary 3.10 ([28]). If X ⊆ Σm and kX is the smallest k such that HashX(k)
is true, then 2kX−3 ≤ ‖X‖ ≤ kX 2kX .

Theorem 3.11.

1. BPPpath ⊆ PΣp2 [log].

2. BPPpath ⊆ BPPNP.

Proof. Let L ∈ BPPpath. There exist a nondeterministic Turing machine M and
a polynomial p that bounds the runtime of M such that for all x ∈ Σ∗ it holds that
#[M(x) = L(x)] > (1− 2−|x|) totalM (x).

Sipser’s proof that BPP ⊆ Σp2 uses the fact that totalM (x) is known a priori.
However, here we have only an upper bound.

Fix x ∈ Σ∗; let n denote |x|. Define

A = {y 0p(n)−|y| | y is an accepting computation of M on input x} and

R = {y 0p(n)−|y| | y is a rejecting computation of M on input x}.

Clearly, ‖A‖ = accM (x) and ‖R‖ = rejM (x).

Observe that Separate is a coNP predicate in x and the hash functions H1, . . . , Hk

when applied to A or R, and Hash is a Σp2 predicate in x and k.

Let kA (kR) denote the minimal k such that HashA(k) (HashR(k)) is true. kA
and kR can be computed by a binary search making at most log p(n) many queries
to HashA and HashR(k), respectively. From Corollary 3.10, it follows that 2kA−3 ≤
accM (x) ≤ kA 2kA and that 2kR−3 ≤ rejM (x) ≤ kR 2kR . Now it is not difficult to
see that, for all but finitely many x, we have x ∈ L ⇐⇒ kR < kA. This proves
L ∈ PΣp2 [log].

Next, we show that L ∈ BPPNP. Consider the following probabilistic procedure,
which tries to approximate kA and kR by randomly generating a collection of functions
H1, . . . , Hk and directly asking the oracle SeparateX about (H1, . . . , Hk), for a given
set X and increasing k.

Approximate(x, X)
k ← 0
repeat

k ← k + 1
randomly choose H1, . . . , Hk

until SeparateX(H1, . . . , Hk) or k = p(n)
return k.

70 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

The following main algorithm decides whether x is in L, and is correct with high
probability.

Main(x)
ka ← Approximate(x, A)
kr ← Approximate(x, R)
if ka > kr then accept
else reject.

By the definition of kA, we always have kA ≤ ka. Note that by the upper bound
of Corollary 3.10 and since kA ≤ p(n), it follows that log(‖A‖/p(n)) ≤ kA. From
Lemma 3.9, it follows that ka ≤ blog ‖A‖c+ 2 holds with probability at least 7

8 . Since
the same bounds hold for kr, we have that with probability at least 3

4 it holds that

both (a) log accM (x)
p(n) ≤ ka ≤ log accM (x)+2 and (b) log rejM (x)

p(n) ≤ kr ≤ log rejM (x)+2.

This implies that for all but finitely many x it holds that x ∈ L ⇐⇒ ka > kr, with
probability at least 3

4 . Thus L ∈ BPPNP.
As already mentioned just before Theorem 3.5, BPPpath cannot be low for itself

unless the polynomial hierarchy collapses to BPPpath. From Theorem 3.11, we thus
have the following claim (see also the discussion just before Theorem 3.5).

Corollary 3.12. If BPP
BPPpath

path = BPPpath, then PH = PΣp2 [log] = BPPpath.
Zachos [35] has shown that NP ⊆ BPP implies PH = BPP. Since this result

relativizes (i.e., for all A, NPA ⊆ BPPA implies PHA = BPPA), we obtain the
following corollary from Theorem 3.11.

Corollary 3.13. Σp2 ⊆ BPPpath =⇒ PH = BPPNP.

Toda [31] and Toda and Ogiwara [32] showed that PH ⊆ BPPC for any class C
among {PP,C=P,⊕P}. As a consequence, none of these classes can be contained
in the polynomial hierarchy unless the polynomial hierarchy collapses. Thus none of
these classes can be contained in BPPpath unless the polynomial hierarchy collapses.

Ogiwara and Hemachandra [26] and Fenner, Fortnow, and Kurtz [10] indepen-
dently defined the counting class SPP as follows.

Definition 3.14 ([26], [10]). SPP is the class of all sets L such that there exist
a nondeterministic polynomial-time Turing machine M and an FP function f such
that for all x ∈ Σ∗ it holds that

x ∈ L =⇒ accM (x) = f(x) + 1 and

x 6∈ L =⇒ accM (x) = f(x).

Fenner, Fortnow, and Kurtz [10] argue that SPP is in some sense the smallest
class that is definable in terms of the number of accepting and rejecting computations.
In particular, SPP is low for PP,C=P, and ⊕P [10]. Though it is an open question
whether SPP is contained in BPPpath, there is an oracle relative to which this is not
the case.2

Theorem 3.15. There is an oracle A such that SPPA 6⊆ BPPApath.
Proof. Let M1,M2, . . . be an enumeration of nondeterministic polynomial-time

Turing machines and let p1, p2, . . . be an enumeration of polynomials such that poly-
nomial pi bounds the runtime of machine Mi. Without loss of generality, we assume
pi(n) = ni + i. Let s(i), i = 1, 2, . . ., be a sequence of integers defined by s(1) = 5
and, for i > 1, s(i+ 1) = 2s(i).

2 Very recently, Fortnow [12] has improved our result by constructing an oracle relative to which
SPP is not contained in the polynomial hierarchy.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 71

We define the test language

L(A) = {1n | (∃j) [n = s(j) and ‖A=n‖ = 2n−1]}.

Below, we will construct a set A such that for every i ≥ 1, ‖A=s(i)‖ is either 2s(i)−1

or 2s(i)−1− 1. For such an A, we have L(A) ∈ SPPA. Furthermore, we will construct
A such that, for each i ≥ 1, at least one of the following requirements holds.

(R1) MA
i is not a BPPApath machine. That is, there exists an x ∈ Σ∗ such that

1

4
totalMA

i
(x) ≤ accMA

i
(x) ≤ 3

4
totalMA

i
(x).

(R2) There exists an n ≥ 1 such that MA
i (1n) accepts if and only if 1n 6∈ L(A).

It follows from Theorem 3.1 that the existence of such an oracle establishes the
theorem.

We construct the set A in stages. In stage i, we diagonalize against machine Mi.
Initially, i = 1 and A1 = ∅.

Stage i. Let n = s(i). We will add only strings of length n to Ai. Since pj(s(j)) <
n for all j < i, this will not effect the construction done in earlier stages.

Define

A = {Ai ∪ Z | Z ⊆ Σn and ‖Z‖ = 2n−1} and

B = {Ai ∪ Z | Z ⊆ Σn and ‖Z‖ = 2n−1 − 1}.

If there is a set X ∈ A ∪ B such that X fulfills requirement (R1), i.e., MX
i is not a

BPPXpath machine, then define Ai+1 = X and go to the next stage. Otherwise, we
show that there is a set in A ∪ B such that requirement (R2) is fulfilled.

Let X be a set such that the number of paths of MX
i on input 1n is maximal for

all X ∈ A ∪ B. That is, we have

(?) (∀Y ∈ A ∪ B) [totalMY
i

(1n) ≤ totalMX
i

(1n)].

Suppose X ∈ A. If 1n 6∈ L(MX
i), then we are done since 1n ∈ L(X). Thus

suppose that 1n ∈ L(MX
i). For w ∈ X ∩ Σn, define Xw = X − {w}. By definition,

1n 6∈ L(Xw). We claim that there exists a w ∈ X ∩ Σn such that 1n ∈ L(MXw
i). For

such a w, define Ai+1 = Xw. Then requirement (R2) is fulfilled.
To prove our claim, assume that, for all w ∈ X ∩Σn, it holds that 1n 6∈ L(MXw

i).
By taking w out of X, at least accMX

i
(1n)− accMXw

i
(1n) accepting paths of M either

change to rejecting paths or disappear, and hence w must have been queried on those
paths. Since

accMX
i

(1n)− accMXw
i

(1n) ≥ 3

4
totalMX

i
(1n)− 1

4
totalMXw

i
(1n)

≥ 1

2
totalMX

i
(1n) by (?),

each w ∈ X ∩ Σn is queried by MX
i on input 1n on at least half of all paths. Thus

MX
i asks at least 2n−1 1

2 totalMX
i

(1n) = 2n−2 totalMX
i

(1n) queries to its oracle. On

the other hand, MX
i cannot ask more than pi(n) totalMX

i
(1n) queries to its oracle.

Since pi(n) < 2n−2, this yields a contradiction.
The case X ∈ B is symmetric. Here one has to define Xw by adding a string w ∈

Σn −X to X, and then, in case 1n ∈ L(MXw
i) for all w ∈ Σn −X, argue regarding

the number of rejecting instead of accepting paths of Mi.

72 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

4. If secure and oblivious computation differ, then P 6= PSPACE. We
show, for both threshold and probabilistic computation, that secure computation is
more powerful than oblivious computation only if BPP 6= PP (which would resolve
in the affirmative the important question of whether polynomial time differs from
polynomial space).

Theorem 4.1. If there is a database D such that secureBPPDpath 6= obli-

viousBPPDpath, then BPP 6= PP.

Proof. Assume BPP = PP. Note that this implies that BPP = P#P (since
PPP = P#P [4] and BPP = PBPP). Let D be a database and let L be a language such
that L ∈ secureBPPDpath. We will show that L ∈ obliviousBPPDpath, thereby proving
the theorem.

Let N be the machine of Definition 2.6 certifying that L ∈ secureBPPDpath. We

may assume without loss of generality (since it is easy to see that secureBPPDpath

machines can be amplified in the standard way and still remain secure) that the ε of
Definition 2.6 satisfies ε > 1

4 . Also, let p(n) be a polynomial, of the form ni + i for
some integer i ≥ 1, such that for all sets L the runtime of NL is at most p(n).

Very informally summarized, in the following, a secure computation of N is
decomposed (query vector by query vector) to allow an oblivious BPPpath machine to
mimic N ’s computation. This will be possible because our assumption gives #P-like
computational power to our oblivious BPPpath machine.

We will now define an oblivious machine Q such that QD certifies that L ∈
obliviousBPPDpath. Let x, |x| = n, be the input for ND. The computation of QD has

essentially two stages. In the first stage, as long as the oblivious machine QD asks
oracle queries, it only has 0n available as input. What it does is the following: QD

simulates ND on input 0n. At the end of each path, QD has defined a query vector,
say v. By the definition of secure computation, the proportion of occurrences of v is
the same in ND(0n) and ND(x), that is,

path-occurencesND(0n)(v)

totalND (0n)
=

path-occurencesND(x)(v)

totalND (x)
.(1)

In the second stage, Q gets access to its input x (and thus cannot ask anymore ora-
cle queries). Let αND(x)(v) denote the number of accepting paths of ND(x) that
have query vector v. Roughly speaking, at each path with query vector v found
in the first stage, Q will append a full binary tree having approximately a por-
tion of αND(x)(v)/path-occurencesND(x)(v) accepting paths. Therefore, QD will have

approximately the same overall acceptance behavior as ND.
More formally, we partition the unit interval into 2q intervals of equal length, for

some appropriately chosen q, and take the largest k/2q, k ∈ { 0, . . . , 2q − 1 }, that is
still less than αND(x)(v)/path-occurencesND(x)(v) as an approximation for it. This is
done as follows. For a query vector v let V = { v | v ∈ D and v is a component of v }.
Now, Q guesses k of length q and tests whether (x,v, V, k) ∈ A, where A is defined
as follows. For y ∈ Σ∗, a vector w of at most p(|y|) strings each of length at most
p(|y|), a set of strings W each occurring as a component of vector w, and a string j
of length q, interpreted as a binary number between 0 and 2q − 1,

(y,w,W, j) ∈ A ⇐⇒ j ≤ 2q
αNW (y)(w)

path-occurencesNW (y)(w)
− 1.

Clearly, A ∈ P#P, and thus A is in BPP by assumption. Hence there exist a proba-
bilistic machineMA and a polynomial h such that MA accepts A with error probability

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 73

bounded by 2−q, and furthermore, for any input (y,w,W, j), the computation tree of
MA is a full binary tree with 2h(|y|) paths.

In order to test whether (x,v, V, k) is in A, Q simulates MA on input (x,v, V, k).
Q accepts x if and only if the simulation ends in an accepting state of MA. This
completes the definition of Q.

We will argue that the machine Q has the desired properties. By the definition
of Q, it is clearly an oblivious machine. Furthermore, for any given input x, let v be
a query vector that actually occurs in the run of ND(x). From equation (1), we get
that the portion of paths in the tree of QD that have query vector v is identical to
the portion in the tree of ND(x) that have query vector v . We now argue that those
paths in QD(x) having query vector v have almost the same portion accepting as do
those paths in ND(x). Since v was an arbitrary occurring query vector, it will follow
that QD(x) has appropriate behavior.

By our construction, we can bound αQD(x)(v), the number of accepting paths

of QD that have query vector v as follows. Let V be the associated answer
set for v. Note that αNV (x)(v) = αND(x)(v) and path-occurencesNV (x)(v) =
path-occurencesND(x)(v). Hence we have (x,v, V, k) ∈ A if and only if 0 ≤ k ≤
b2q (αND(x)(v)/path-occurencesND(x)(v))c − 1. Since MA has error probability at

most 2−q, we get the following lower bound for αQD(x)(v):

path-occurencesQD(x)(v)
b2q αND(x)(v)

path-occurencesND(x)(v)c

2q
(1− 2−q) ≤ αQD(x)(v).

For an upper bound, we have to count the small number of extra accepting paths
caused by the error probability of MA:

αQD(x)(v) ≤ path-occurencesQD(x)(v)
2q

αND(x)(v)

path-occurencesND(x)(v) + 1

2q
.

With these bounds on αQD(x)(v), it is now easy to bound the error of QD for query
vector v. Namely, let

error(v) =

∣∣∣∣∣ αQD(x)(v)

path-occurencesQD(x)(v)
−

αND(x)(v)

path-occurencesND(x)(v)

∣∣∣∣∣ ;
then we get from the above bounds on αQD(x)(v) that error(v) ≤ 2−q+1. Since this
holds for each occurring query vector v, it certainly holds that 2−q+1 bounds the
overall error portion: the difference between the portion of accepting paths of ND(x)
and the portion of accepting paths of QD(x) is at most 2−q+1. Now define q = 4.
Since ND had an ε (of Definition 2.6) of at least 1

4 , and since we have 1
4 −

1
8 = 1

8 , we
may conclude that QD is an oblivious machine accepting the same language as ND

and having ε (of Definition 2.8) equal to 1
8 .

The proof of Theorem 4.1 can easily be modified to show the corresponding result
for probabilistic classes.

Corollary 4.2. If there is a database D such that secureBPPD 6= obli-
viousBPPD, then BPP 6= PP.

Recall that sets in obliviousBPPD have small circuits. Thus the existence of a
set in secureBPPD not having a small circuit would separate obliviousBPPD from
secureBPPD.

74 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

Corollary 4.3. If there is a database D such that secureBPPD 6⊆ P/poly, then
BPP 6= PP.

Since P ⊆ BPP ⊆ PP ⊆ PSPACE, we immediately have the result promised in
the section title.

Corollary 4.4. If there is a database D such that secureBPPDpath 6= obli-

viousBPPDpath, then P 6= PSPACE.

5. Open problems. There are several open problems regarding BPPpath. Is
BPPpath contained in Σp2 or even in RNP? It seems that the proof technique of
Theorem 3.11 does not suffice to establish either of these relationships. Does BPPpath

have complete sets? There is a relativized world in which BPP lacks complete sets [14];
we conjecture that the same holds for BPPpath.

Regarding secure computation, does there exist a structural condition
that completely characterizes the conditions under which (∀D) [secureBPPD =
obliviousBPPD] or that completely characterizes the conditions under which
(∀D) [secureBPPDpath = obliviousBPPDpath]? The study, mentioned in section 2.2,

of classes between BPPD and secureBPPD and of classes between BPPDpath and

secureBPPDpath also remains an interesting open area.

Appendix. Randomized databases do not strengthen secure probabilis-
tic computation. The secure probabilistic computation of Definition 2.7 can be
considered a special case of two-player interactive computation. In particular, the
database can be considered a powerful player that truthfully answers difficult ques-
tions asked by a polynomial-time player. When the powerful player in a secure prob-
abilistic computation answers a query, it is unable to take the past history of trans-
actions into consideration. In contrast, players in the usual interactive computation
models can remember the history of past transactions. Nonetheless, the secure prob-
abilistic computation model is quite powerful. Even if the database is replaced with
a deterministic player that has unlimited computation power and memory, it is clear
that the resulting interactive computation can be simulated by a polynomial-time
player with a new database that is merely a set.

In this section, we consider the effect of allowing the powerful player to be prob-
abilistic. The resulting model is called a one-oracle instance-hiding scheme that leaks
at most the length of its input [5]. We present a slightly modified but equivalent
definition.

Definition A.1 (one-oracle instance-hiding scheme that leaks at most the length
of its input). For a set L, a one-oracle instance-hiding scheme that leaks at most
the length of its input is a synchronous protocol executed by two players, MA and
MB. The number of rounds is bounded by a polynomial in the length of the input.
In each round, MA does a randomized polynomial-time local computation and sends
a message (i.e., query) to MB. Upon receiving the query from MA, MB does an
unbounded amount of local computation (possibly using an oracle and a random tape)
and sends a message (i.e., answer) to MA. The round is completed when MA receives
the answer sent by MB. Let τ denote the sequence of messages sent and received
by MA along a computation path, and let TA denote the random tape of MA. After
the last round, MA uses τ , TA, and the input x to compute a value MA(x). The
interactive computation scheme should satisfy the following two conditions:

1. [Probability of acceptance is bounded away from 1
2]. There exists an ε > 0

such that for all x ∈ Σ∗ it holds that Pr[MA(x) = L(x)] > 1
2 + ε. (Note that the

probability depends on the combined effect of the randomness of both MA and MB.)

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 75

2. [The messages reveal no information to an observer other than per-
haps the length of the input.] For every k ∈ {0, 1, 2, . . .}, every vector v =
(q1, a1, q2, a2, . . . , qk, ak), q1, a1, q2, a2, . . . , qk, ak ∈ Σ∗, and every pair of strings
x ∈ Σ∗ and y ∈ Σ∗ such that |x| = |y|, it holds that

Pr[τ = v on input x] = Pr[τ = v on input y].

For any polynomial p(·), the above probability 1
2 + ε can be amplified to 1 −

2−p(|x|) via the standard technique of repeating computations and using the most
frequent result. Clearly, if L ∈ secureBPPD for some database D, then L has a
one-oracle instance-hiding scheme that leaks at most the length of its input. The
following theorem, pointed out to us by an anonymous conference referee, shows that
the converse is also true.

Theorem A.2. If L is a language that has a one-oracle instance-hiding scheme
that leaks at most the length of its input, then there exists a database D such that
L ∈ secureBPPD.

Proof. Let L be a language that has a one-oracle instance-hiding scheme that leaks
at most the length of its input. In this proof, we use the notation of Definition A.1.
Following [1], we use the term transcript to denote τ , the sequence of queries and
answers along a computation path. Without loss of generality, we assume that no
transcript is a proper prefix of another transcript and that the length of an input
is passed to MB as the first query. In this proof, we first show that MB can be
modified so that it needs only a polynomial number of random bits. Then we show
that these random bits can be supplied by MA, thereby eliminating the need for MB

to be random. It follows that the resulting powerful but deterministic player can be
replaced with a set as claimed in the theorem. In the rest of the proof, we call the
machines MA and MB the client and the server, respectively.

Given an input of length n, the set of transcripts that have nonzero probabilities
define a tree whose depth is bounded by a polynomial in n. Let’s call this a strategy
tree. (As will become clear later in this proof, the strategy tree effectively defines
the strategy of the server. Also, it serves as a convenient template for modifying the
strategy of the server.) There are two types of nodes in a strategy tree: server nodes
and client nodes. These two types of nodes alternate in each path from the root to
a leaf. The root is a client node. The leaves are also client nodes. Each edge from a
client node is labeled with a query string; each edge from a server node is labeled with
an answer string. Each leaf represents a transcript that has a nonzero probability;
the transcript consists of labels read from the edges along the path from the root to
the leaf. Edges from the same node have distinct labels so that a transcript defines
a unique path in a strategy tree. Corresponding to each internal node in a strategy
tree, there exists a partial transcript that consists of the labels that are read from the
edges along the path from the root to the node.

Associated with each leaf is the probability with which the transcript correspond-
ing to the leaf occurs. Clearly, based on this probability distribution, we can associate
with each internal node the probability with which the partial transcript correspond-
ing to the node occurs. To each edge from a node, we associate the conditional
probability with which its label occurs as the next query or answer in a computation,
given that the current partial transcript of the computation is the one represented by
the node. Note that the sum of the probabilities associated with all the edges from a
node is one and that the probability associated with each node is the product of the
probabilities associated with the edges along the path from the root to the node.

76 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

It is easy to see that an interactive computation reveals at most the length of
the input (in the sense of part 2 in Definition A.1) if and only if its strategy tree is
the same for all inputs of the same length. In particular, the strategy of the server
(that is, the probability distribution among edges from each server node) is the same
for all inputs of the same length. Further, if we modify the server but (i) we do
not add new transcripts to the strategy tree and (ii) the client is not changed, then
the resulting strategy tree is the same for all inputs of the same length. Hence we
may arbitrarily adjust the probability distribution among the existing edges from each
server node without affecting the instance-hiding nature of the computation. However,
such change could affect the acceptance probabilities of input strings. Therefore, in the
following, we carefully modify the behavior of the server so that the acceptance of each
input string remains intact. In particular, assuming without loss of generality that
the probability of correctness (in the sense of part 1 in Definition A.1) of the original
instance-hiding computation is greater than 3

4 , we will ensure that the probability of
correctness of the modified instance-hiding computation is greater than 5

8 .

Let q(n) be a polynomial that bounds both the length of the label of each edge
and the depth of the strategy tree. The main obstacle in transforming the random-
ized server to a deterministic one is the fact that the probability of an edge from
a server node can be an arbitrary value. In order to get around the obstacle, we
adjust the probability of each edge from server nodes so that it is an integral mul-
tiple of 2−q

2(n)−q(n)−3 and that it differs from the original probability by less than
2−q

2(n)−q(n)−3. Thus the probability change at each leaf of the strategy tree is less
than q(n)2−q

2(n)−q(n)−3. Since there are at most 2q
2(n) leaves, it is easy to see that

the change in the probability of correctness of the whole computation is less than 1
8 .

Therefore, the probability of correctness of the modified secure computation is greater
than 5

8 . Note that the resulting strategy tree can be constructed by the server upon
receiving the first query (i.e., the length of the input). The server uses this strategy
tree to answer all the queries.

The server modified in this way needs at most a polynomial number (q(n)(q2(n)+
q(n) + 3)) of random bits. Hence the necessary random bits can be supplied to the
server by the client at the beginning of a computation. Note that this modification
affects neither the instance-hiding nature of the computation nor the probability of
correctness of the computation. The resulting server is deterministic, but it may not
yet be considered a deterministic function oracle since it may give different answers
to different instances of the same queried string. By prefixing each query with an
ppropriate public information with which the server can uniquely locate the current
stage of computation in the strategy tree (for example, 〈q1, . . . , qi−1〉 can be used as
a prefix to the ith query along a computation path on which qj (0 < j < i) is the
jth query), the server can be transformed into a deterministic function oracle. It is
easy to see that we can further modify the client so that it securely accepts the same
language with a set oracle (D) instead of a function oracle. Clearly, the resulting
computation is a secure probabilistic computation.

Acknowledgments. For helpful discussions, we are grateful to F. Ablayev,
G. Brassard, J. Cai, L. Fortnow, F. Green, J. Seiferas, and S. Toda. We thank an
anonymous conference referee for pointing out Theorem A.2 and for helpful pointers
to the literature.

THRESHOLD COMPUTATION AND CRYPTOGRAPHIC SECURITY 77

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, J. Comput.
System Sci., 39 (1989), pp. 21–50.

[2] L. Babai, Trading group theory for randomness, in Proc. 17th ACM Symposium on Theory of
Computing, ACM, New York, 1985, pp. 421–429.

[3] T. Baker, J. Gill, and R. Solovay, Relativizations of the P=?NP question, SIAM J. Com-
put., 4 (1975), pp. 431–442.

[4] J. Balcázar, R. Book, and U. Schöning, The polynomial-time hierarchy and sparse oracles,
J. Assoc. Comput. Mach., 33 (1986), pp. 603–617.

[5] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in Proc. 7th Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci.
415, Springer-Verlag, Berlin, 1990, pp. 37–48.

[6] R. Beigel, Perceptrons, PP, and the polynomial hierarchy, in Proc. 7th Structure in Complex-
ity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–19.

[7] R. Book, Restricted relativizations of complexity classes, in Computational Complexity Theory,
J. Hartmanis, ed., Proceedings of Symposia in Applied Mathematics 38, AMS, Providence,
RI, 1989, pp. 47–74.

[8] R. Boppana, J. Håstad, and S. Zachos, Does co-NP have short interactive proofs?, Inform.
Process. Lett., 25 (1987), pp. 127–132.

[9] J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman, The power of adaptiveness and
additional queries in random-self-reductions, in Proc. 7th Structure in Complexity Theory
Conference, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 338–346; final
version appears as Comput. Complexity, 4 (1994), pp. 158–174.

[10] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput. System
Sci., 48 (1994), pp. 116–148.

[11] S. Fenner, L. Fortnow, S. Kurtz, and L. Li, An oracle builder’s toolkit, in Proc. 8th Struc-
ture in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA,
1993, pp. 120–131.

[12] L. Fortnow, personal communication, 1994.
[13] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6

(1977), pp. 675–695.
[14] J. Hartmanis and L. Hemachandra, Complexity classes without machines: On complete

languages for UP, Theoret. Comput. Sci., 58 (1988), pp. 129–142.
[15] L. Hemachandra, The strong exponential hierarchy collapses, J. Comput. System Sci., 39

(1989), pp. 299–322.
[16] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. Wagner, On the power

of polynomial time bit-reductions (extended abstract), in Proc. 8th Structure in Complexity
Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 200–207.

[17] B. Jenner, P. McKenzie, and D. Thérien, Logspace and logtime leaf languages, in Proc. 9th
Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 242–253.

[18] M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial structures
from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[19] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity
classes, in Proc. 12th ACM Symposium on Theory of Computing, ACM, New York, 1980,
pp. 302–309; extended version has also appeared as Turing machines that take advice,
Enseign. Math. (2nd series), 28 (1982), pp. 191–209.

[20] K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Inform. Pro-
cess. Lett., 14 (1982), pp. 39–43.

[21] J. Köbler, U. Schöning, S. Toda, and J. Torán, Turing machines with few accepting com-
putations and low sets for PP, J. Comput. System Sci., 44 (1992), pp. 272–286.

[22] R. Ladner, N. Lynch, and A. Selman, A comparison of polynomial time reducibilities, The-
oret. Comput. Sci., 1 (1975), pp. 103–124.

[23] C. Lautemann, BPP and the polynomial hierarchy, Inform. Process. Lett., 14 (1983), pp. 215–
217.

[24] T. Long and A. Selman, Relativizing complexity classes with sparse oracles, J. Assoc. Comput.
Mach., 33 (1986), pp. 618–627.

[25] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring
requires exponential space, in Proc. 13th IEEE Symposium on Switching and Automata
Theory, IEEE, Piscataway, NJ, 1972, pp. 125–129.

[26] M. Ogiwara and L. Hemachandra, A complexity theory for closure properties, J. Comput.

78 Y. HAN, L. A. HEMASPAANDRA, AND T. THIERAUF

System Sci., 46 (1993), pp. 295–325.
[27] J. Simon, On some central problems in computational complexity, Ph.D. thesis, 1975; avail-

able as Technical Report TR75-224, Department of Computer Science, Cornell University,
Ithaca, NY, Jan. 1975.

[28] M. Sipser, A complexity theoretic approach to randomness, in Proc. 15th ACM Symposium
on Theory of Computing, ACM, New York, 1983, pp. 330–335.

[29] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1–22.
[30] L. Stockmeyer, On approximation algorithms for #P, SIAM J. Comput., 14 (1985), pp. 849–

861.
[31] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865–

877.
[32] S. Toda and M. Ogiwara, Counting classes are at least as hard as the polynomial-time

hierarchy, SIAM J. Comput., 21 (1992), pp. 316–328.
[33] N. Vereshchagin, On the power of PP, in Proc. 7th Structure in Complexity Theory Confer-

ence, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 138–143.
[34] S. Zachos, Robustness of probabilistic complexity classes under definitional perturbations,

Inform. Comput., 54 (1982), pp. 143–154.
[35] S. Zachos, Probabilistic quantifiers and games, J. Comput. System Sci., 36 (1988), pp. 433–451.
[36] S. Zachos and H. Heller, A decisive characterization of BPP, Inform. Control, 69 (1986),

pp. 125–135.

DISJOINT ROOTED SPANNING TREES WITH SMALL DEPTHS IN
DEBRUIJN AND KAUTZ GRAPHS∗

ZHENGYU GE† AND S. LOUIS HAKIMI†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 79–92, February 1997 005

Abstract. The problem of broadcasting long messages on store-and-forward communication
networks, where a processor (node) can send and receive messages simultaneously to and from all its
neighbors, was studied by Bermond and Fraigniaud. In such networks, the delays encountered by
a message from a node v to all other nodes over a broadcast spanning tree is directly proportional
to the length of the paths in the tree over which the message is sent. Furthermore, the speed of
the broadcast can be improved by the segmentation of the message at v into equal-length segments
and then the broadcast of these segments over arc-disjoint broadcast spanning trees simultaneously.
These observations lead Bermond and Fraigniaud to look for the maximum number of arc-disjoint
spanning trees in a deBruijn network rooted at an arbitrary node with small depths. This paper
improves and extends the results of the above authors.

Key words. broadcasting, communication networks, interconnection architectures, deBruijn
networks, Kautz networks, arc-disjoint spanning trees, fault-tolerant networks

AMS subject classifications. 05C05, 68M10, 68M15, 94

PII. S0097539793244198

1. Introduction. The deBruijn and Kautz networks represent a useful class of
interconnection architecture for multiprocessor systems [1, 2, 3, 4]. The normal defini-
tions of the deBruijn and Kautz networks yield digraphs; interesting and challenging
problems also arise when the directions of the arcs of these digraphs are ignored, thus
converting all arcs into edges and digraphs into graphs. We will denote the normal
deBruijn and Kautz digraphs by B(∆, D) and K(∆, D), where ∆ is the out-degree
(and in-degree) of each node and D is the diameter of these digraphs. We will also
denote the associated undirected graphs by UB(∆, D) and UK(∆, D).

The deBruijn and Kautz digraphs have many desirable properties such as large
number of nodes (∆D for deBruijn and ∆D + ∆D−1 for Kautz digraphs), small diam-
eter D, nearly optimal connectivities (∆ − 1 for B(∆, D) and ∆ for K(∆, D)), and
very simple routing procedures [1, 2, 6].

The arcs in digraphs represent directional communication links while edges in
graphs represent communication links that permit communication in either direction
but in one direction at a time. We will consider the store-and-forward model for
communication between nodes [5]. We will also assume that a node can simultaneously
send (receive) messages to (from) all its neighbors.

Broadcasting, that is, sending a message from a given node v to all other nodes
in the network, is an important network function that is often encountered in dis-
tributed computing or paralleled algorithms. To effectively broadcast a message from
a node v to all other nodes, one must accomplish this task at high transmission rates
(throughput) and with small delays. In a store-and-forward network, broadcasting a
message from node v occurs over the arcs of a (broadcast) spanning tree rooted at
v. The maximum delay that the message at v encounters is directly proportional to
the depth of this broadcast tree. Thus if we wish to broadcast a message at v to all

∗ Received by the editors February 8, 1993; accepted for publication (in revised form) April 13,
1995. This research was supported by National Science Foundation grant NCR-91-02534.

http://www.siam.org/journals/sicomp/26-1/24419.html
† Department of Electrical and Computer Engineering, University of California at Davis, Davis,

CA 95616 (slhakimi@ucdavis.edu).

79

80 ZHENGYU GE AND S. LOUIS HAKIMI

other nodes with the least delay, we select a shortest-path spanning tree rooted at v
in the network as our broadcast tree. In fact, this choice would guarantee that the
message from v is received at every node with the least amount of time delay. Suppose
that we are also interested in the rate of transmission of the message at v. Barring
improvements in hardware, the way to achieve the improvement is through parallel
broadcasting. Parallel broadcasting involves the segmentation of the message at v into
d equal-length segments and then the broadcast of each of these d segments over one
of the d arc-disjoint broadcast trees in the network rooted at v. Improvement in delay
can also be achieved by pipelining the packets in the segmentation of the message in
each of these trees [1, 5, 9]. Since pipelining can be carried out independently of the
parallel-broadcasting technique discussed here, it will not be further elaborated.

The above observation lead Bermond and Fraigniaud [1] to look for the maximum
number of arc-disjoint broadcast trees rooted at node v with small depths in deBruijn
digraphs. More precisely, they showed that in B(∆, D), there are ∆ − 1 arc-disjoint
broadcast trees rooted at any node v, with the depth of each tree not exceeding
D + 2bD2 c + 1(≥ 2D). This represents the speedup of the rate of transmission by a

factor of ∆− 1 and an increase in the maximum delay by 2bD2 c+ 1 over the shortest-
path broadcast tree.

In this paper, we say that two spanning trees are arc disjoint if no arc appears
in both trees, and we say that two trees are pseudo node disjoint if no node can be
internal nodes in both trees, where an internal node in a tree is a node which is
neither the root nor a leaf node of that tree. Thus in a group of rooted pseudo-node-
disjoint spanning trees, if a node is an internal node in one tree, it will be a leaf node
in all other trees. It is easy to see that if two spanning trees rooted at node v are
pseudo node disjoint, then they are also arc disjoint, with the possible exception of
arcs emanating from root v. However pseudo-node-disjoint trees generated in this
paper never share any arcs emanating from the root. Thus pseudo-node-disjoint trees
generated here are also arc disjoint.

In this paper, we present methods for generating pseudo-node-disjoint spanning
trees (PNDSTs) rooted at an arbitrary node in B(∆, D) and arc-disjoint spanning
trees (ADSTs) rooted at an arbitrary node in K(∆, D). More precisely, we will
demonstrate that there are ∆−1 PNDSTs of depth no greater than d 3D

2 e in B(∆, D)

and there are ∆ ADSTs of depth no greater than d 3D
2 e+ 1 in K(∆, D).

One of the shortcomings of the above results is that they are obtained for digraphs
which are neither the normal model of the computer networks nor the interconnection
architecture of multiprocessor systems. We will present a proof for the existence of ∆
PNDSTs in UB(∆, D), with the bound on the depths of these trees being at most 2D.
Although the removal of the directions on the arcs of K(∆, D) may actually reduce
the depths of the ∆ spanning trees in UK(∆, D), we have not been able to prove that
the bound on the depths can always be reduced.

In the concluding section of this paper, the relations between the results of this
paper and certain measures of reliability of networks are explained.

2. Disjoint spanning trees in deBruijn and Kautz digraphs: Prelim-
inary considerations. B(∆, D) is a digraph whose node set corresponds the set
of all sequences of length D on the alphabet {1, 2, . . . ,∆}. For the Kautz digraph
K(∆, D), the node set corresponds to all sequences of length D over the alpha-
bet {1, 2, . . . ,∆ + 1} provided no two consecutive letters in such a sequence can
be the same. We will refer to the sequences with this feature as Kautz sequences.
The set of arcs of B(∆, D) corresponds the set of all sequences of length D + 1 on

DISJOINT ROOTED TREES 81

the alphabet {1, 2, . . . ,∆} and the set of arcs in K(∆, D) corresponds to the set
of all Kautz sequences of length D + 1 on the alphabet {1, 2, . . . ,∆ + 1}. The arc
e = (a1, a2, . . . , aD+1) in B(∆, D) and in K(∆, D) is from node (a1, a2, . . . , aD) to
node (a2, a3, . . . , aD+1). There are exactly ∆ arcs into and out of each node inB(∆, D)
and K(∆, D).

Let R = (r1, r2, . . . , rD) be a node in B(∆, D) or K(∆, D). We intend to broad-
cast the message at R to all other nodes. We are, in fact, seeking ∆ − 1 PNDSTs
(respectively, ∆ ADSTs) rooted at R in B(∆, D) (respectively, in K(∆, D)). We refer
to these sets of trees as TB(D,R) and TK(D,R), respectively.

The depth of a tree is the length of a longest path in the tree starting at the root
R. Furthermore, if a node u (respectively, an arc e) is the ith node (arc) in a path in
the tree from R, then the node u is said to be at the (i − 1)th level and the arc e is
at the ith level, while the root R itself is considered at the 0th level.

We call u = (a1, a2, . . . , aD) ∈ B(∆, D) a corner node if a1 = a2 = · · · = aD.
There are exactly ∆ corner nodes in B(∆, D). If R = (r1, r2, . . . , rD) is a corner
node, then R has ∆− 1 outgoing arcs, excluding the loop, in B(∆, D) and thus each
of the ∆ − 1 trees in TB(D,R) rooted at R has exactly one outgoing arc incident
at R. Otherwise, R will have ∆ outgoing arcs; thus all but one of the ∆ − 1 trees
in TB(D,R) have exactly one outgoing arc incident at R and the exceptional tree
in TB(D,R) may have two arcs incident at R. We call the other end nodes of these
outgoing arcs from R the subroots. For K(∆, D), which does not have the corner
nodes, all the ∆ trees in TK(D,R) have exactly one subroot.

Let G(V,E) be a digraph with node set V = V (G) and arc set E = E(G). For
v ∈ V , let Γv = {u ∈ V | (v, u) ∈ E} and Γ−1v = {u ∈ V | (u, v) ∈ E}. We will call
Γv the successors of v and Γ−1v the predecessors of v. If G is a rooted directed tree,
the successors of v are called child nodes of v and the predecessor of v is called the
parent node of v.

The line digraph of digraph G, denoted by L(G), is a digraph with V (L(G)) =
E(G), that is, there is a node in L(G) for each arc in E(G); and, furthermore, there
is an arc in L(G) from e1 to e2 if the sequence of arcs e1e2 forms a directed path in
G.

Lemma 2.1. (See [3, 6, 7].) Let B(∆, D) and K(∆, D) be the deBruijn and Kautz
digraphs as previously defined. Then for each D ≥ 1, B(∆, D + 1) = L(B(∆, D))
and K(∆, D + 1) = L(K(∆, D)) and consequently B(∆, D) = LD(B(∆, 1)) and
K(∆, D) = LD(K(∆, 1)), where LD(G) = L(LD−1(G)), B(∆, 1) is a complete di-
graph on ∆ nodes with a loop on each node, and K(∆, 1) is a complete digraph on
∆ + 1 nodes without any loops.

Let a, b ∈ {1, 2, . . . ,∆} and ∆ > 2. (Since our problem is trivial when ∆ = 2, this
case will not be considered.) An a − b node is a node u = (a1, a2, . . . , aD) such that
ai ∈ {a, b} for i = 1, 2, . . . , D. Note that a corner node is a special case of the a − b
nodes when a = b. Thus the following theorem is a generalization of a result in [1].

Theorem 2.2. Let R = (r1, r2, . . . , rD) be an a− b node in B(∆, D). Then there
is a set TB(D,R) of ∆ − 1 PNDSTs rooted at R in B(∆, D) with depths equal to
D + 1.

Proof. An algorithm is offered in this proof which provides the ∆ − 1 PNDSTs
described in Theorem 2.2. Actually, we will prove a stronger result as follows. If u
is an internal node in one tree of TB(D,R), then it must be a node at the last level,
D + 1, in all other trees in TB(D,R). Thus the trees in TB(D,R) are definitely
pseudo node disjoint.

82 ZHENGYU GE AND S. LOUIS HAKIMI

Consider the set of ∆− 2 shortest-path spanning trees T ′(si) in B(∆, D) rooted
at the ∆−2 nodes Si = (r2, . . . , rD, si) with si ∈ {1, 2, . . . ,∆}−{a, b}. We first prove
that these trees {T ′(si) | si ∈ {1, 2, . . . ,∆} − {a, b}} are pseudo node disjoint.

Consider two such trees T ′(si) and T ′(sj) with si 6= sj . Note that the depths of
these trees are D. For convenience, though an abuse of notation, we say that the root
Si is at level 1 in T ′(si) and thus the last level nodes in T ′(si) are at level D + 1.
Let u and v be nodes in T ′(si) and T ′(sj) at levels p and q from the roots Si and Sj ,
respectively. Assume that both u and v are not nodes at the last levels, D+ 1. Then
if 1 ≤ p ≤ D − 1 and 1 ≤ q ≤ D − 1, we can write

u = (rp+1, . . . , rD, si, x1, . . . , xp−1), xs ∈ {1, 2, . . . ,∆} for s = 1, . . . , p− 1,
v = (rq+1, . . . , rD, sj, y1, . . . , yq−1), yt ∈ {1, 2, . . . ,∆} for t = 1, . . . , q − 1,

and if p = D and q = D,

u = (si, x1, . . . , xD−1), xs ∈ {1, 2, . . . ,∆} for s = 1, . . . , D − 1;
v = (sj, y1, . . . , yD−1), yt ∈ {1, 2, . . . ,∆} for t = 1, . . . , D − 1.

Because R is an a− b node, rk ∈ {a, b} ∀k, si, sj ∈ {1, 2, . . . ,∆}− {a, b}, and si 6= sj ,
we have u 6= v. Therefore, any node u ∈ B(∆, D) could be an internal node in at
most one of the trees in {T ′(si) | si ∈ {1, 2, . . . ,∆}−{a, b}}. This implies that T ′(si)
and T ′(sj) are pseudo node disjoint.

Since si 6∈ {a, b}, all a − b nodes, including node R, are in level D + 1 of T ′(si),
and thus they are leaves. This implies that if we remove the arc into R from T ′(si)
and add the arc (R,Si) ∈ B(∆, D) to it, we obtain a new tree denoted by T (si). It is
easy to see that {T (si) | si ∈ {1, 2, . . . ,∆}−{a, b}} are directed spanning trees rooted
at R and that they are pseudo node disjoint of depths D + 1.

Before proceeding to construct the last tree in TB(D,R), we would like to
clarify the relation between the levels of the nodes in the trees in {T (si) | si ∈
{1, 2, . . . ,∆} − {a, b}} and the labels (i.e., sequences) associated with the nodes. For
example, consider the nodes in T (si) in the following order. The root R at level 0
followed by the subroot Si at level 1, a node at level k, 1 < k < D, a node at level D,
and finally a node at level D + 1 will have the following labels:

R = (r1, r2, . . . , rD)→ Si = (r2, . . . , rD, si)→ · · · → (rk+1, . . . , rD, si, x1, . . . , xk−1)

→ · · · → (si, x1, . . . , xD−1)→ (x1, . . . , xD).

We will use this notation to designate a node at a particular level, say in tree T (si).
We will now prove that there is one more tree rooted at R in B(∆, D) of depth

D + 1 which is pseudo node disjoint from the trees in {T (si) | si ∈ {1, 2, . . . ,∆} −
{a, b}}. (The special case of the above claim, when a = b, has already been established
in [1]). Toward this goal, we proceed as follows. Let Sa = (r2, . . . , rD, a) and Sb =
(r2, . . . , rD, b), a 6= b, be the two subroots, and let T ′(ab) be a constrained shortest-
path spanning tree rooted at R in B(∆, D) in which every path starting at R passes
through the subroot Sa or Sb. Note that the length of a path in T ′(ab) from R to any
node whose first letter is in {a, b} is at most D, and otherwise, this length is D + 1.
It is easy to see that the depth of T ′(ab) will be D + 1.

Let T ′(a) and T ′(b) be the partial trees of T ′(ab) rooted at nodes Sa and Sb,
respectively. Note that V (T ′(ab)) = V (T ′(a)∪ T ′(b)∪R). Without loss of generality,
let u ∈ T ′(a) be a node of T ′(ab) at level p, 1 ≤ p ≤ D. If u is identical to a node
v ∈ T (si), si ∈ {1, 2, . . . ,∆} − {a, b}, at level q, 1 ≤ q ≤ D, then we have

v = (rq+1, rq+2, . . . , . . . , . . . , . . . , . . . , rD, si, x1, . . . , xq−1),

DISJOINT ROOTED TREES 83

where x1, . . . , xq−1 is an arbitrary sequence over {1, 2, . . . ,∆}. Since u = v and
si 6∈ {a, b}, we may write

u = (rp+1, rp+2, . . . , rD,a, a1, a2, . . . , ap−q−1, si, x1, . . . , xq−1),

where a1, a2, . . . , ap−q−1 is an a− b sequence. Since the length of the a− b sequence,
a1, a2, . . . , ap−q−1, is nonnegative, we have p− q − 1 ≥ 0, or

q ≤ p− 1.

Note that u and v may or may not be internal nodes in their respective trees.
Suppose an internal node u′ at level h, h ≤ D, of T ′(ab) is a node at level D+1 in

all other trees T (si), si ∈ {1, 2, . . . ,∆} − {a, b}. Then we claim that all nodes on the
path in T ′(ab) from R to u′ excluding R are also nodes at level D+1 in all other trees
T (si), si ∈ {1, 2, . . . ,∆} − {a, b}. To see this, suppose otherwise; that is, there is at
least one node on the path from R to u′ in T ′(ab) that is not at level D+1 in all other
trees T (si), si ∈ {1, 2, . . . ,∆} − {a, b}. Among all such nodes, let w be the closest
one to u′. Suppose w is at level p, p ≤ h− 1 ≤ D − 1, in T ′(ab), and assume w is at
level q, q ≤ D, in some other tree T (si). As before, we must have q ≤ p− 1 ≤ D− 2.
Since T (si) was produced from the shortest-path spanning tree T ′(si) rooted at Si,
the successor nodes of w in B(∆, D) are at a level at most q + 1 ≤ D − 1 in T (si).
This implies the child node, say z, of w which is on the path from w to u′ in T ′(ab)
is also not at level D + 1 in all other trees. This is a contradiction since w was the
closest one to u′.

The above claim states that if T ′(ab) contains some internal nodes, denoted by
In(T ′(ab)), that are not at level D + 1 in all other trees T (si) ∀si ∈ {1, 2, . . . ,∆} −
{a, b}, then the child nodes of any node in In(T ′(ab)) are either in In(T ′(ab)) or are
leaves of T ′(ab). This in turn implies that there is a node in In(T ′(ab)) whose child
nodes are all leaves. Without loss of generality, let u ∈ T ′(a) be such an internal node
at level p, p ≤ D, of T ′(ab) whose child nodes are all leaves. Suppose u is identical to
v ∈ T (si), si ∈ {1, 2, . . . ,∆} − {a, b}, at level q, q ≤ p− 1. Let the node u∗ ∈ T ′(ab)
be defined as follows:

u∗ = (r∗p+1, rp+2, . . . , rD,a, a1, . . . , ap−q−1, si, x1, . . . , xq−1)

or, equivalently,

u∗ = (r∗q+1, rq+2, . . . , . . . , . . . , . . . , rD, si, x1, . . . , xq−1),

where r∗p+1 = r∗q+1 ∈ {a, b}, r∗p+1 6= rp+1. Note that u∗ and u have the same successor
nodes in B(∆, D). Let T ′′(ab) be obtained from T ′(ab) by transferring the child nodes
from u in T ′(ab) to u∗ in T ′′(ab). We will establish that (i) the depth of T ′′(ab) is
still D+ 1 and (ii) all nodes on the path from R to u∗, excluding R but including u∗,
correspond to nodes at level D+ 1 in all other trees T (si), si ∈ {1, 2, . . . ,∆}− {a, b}.

We will explain shortly that the validity of the two statements above enables
one to use the above process of transferring child nodes to eliminate all internal
nodes in T ′(ab) which could possibly be internal nodes in any other tree T (si), si ∈
{1, 2, . . . ,∆} − {a, b}.

(i) Since the first letter in u∗ is in {a, b}, the distance from R to u∗ in T ′(ab) is
at most D. Since the child nodes of u in T ′(ab) are leaves, the depth of T ′′(ab) is not
more than D + 1.

84 ZHENGYU GE AND S. LOUIS HAKIMI

(ii) Let w be a node on path from R to u∗ in T ′(ab) at level, say k. Note that if
k ≥ p− q + 1, then

w = (rk+1, rk+2, . . . , rp, r
∗
p+1, rp+2, . . . , rD,a, a1, . . . , ap−q−1, si, x1, . . . , xk+q−p−1)

or, equivalently,

w = (rk+q−p+1, . . . , rq, r
∗
q+1, rq+2, . . . , . . . , . . . , . . . , rD, si, x1, . . . , xk+q−p−1).(1)

On the other hand, if k < p − q + 1, then w will be an a − b node. However, if w
is an a − b node, we already know that w will be at level D + 1 in all trees T (si),
si ∈ {1, 2, . . . ,∆} − {a, b}. Therefore, we need to examine the case when w is not an
a− b node. To the contrary, suppose w is at level m, m ≤ D, in some other tree, say,
T (sh), sh ∈ {1, 2, . . . ,∆} − {a, b}. Then we have

w = (rm+1, rm+2, . . . , . . . , . . . , . . . , rD, sh, y1, y2, . . . , ym−1),(2)

where y1, y2, . . . , ym−1 is an arbitrary sequence over {1, 2, . . . ,∆}. Since the subse-
quence in equation (1) up to si and the subsequence in equation (2) up to sh are
a − b sequences, we have si = sh. This implies that w is in T (si) = T (sh) at level
m = k + q − p, but this is impossible because then equation (2) becomes

w = (rk+q−p+1, . . . , rq, rq+1, rq+2, . . . , . . . , . . . , . . . , rD, si, x1, . . . , xk+q−p−1);(3)

this is a contradiction to (1) as rq+1 6= r∗q+1.
At this stage, we can conclude that if u ∈ T ′(ab) whose child nodes are all leaves

in T ′(ab) is not at level D + 1 of all other trees T (si), si ∈ {1, 2, . . . ,∆} − {a, b}, we
can always transfer the child nodes of u to u∗, consequently forcing u to be a leaf in
T ′′(ab), and the path length from R to the child nodes will not exceed D + 1.

We do this examination and adjustment from all parent nodes of the leaf nodes
in T ′(ab) backward to lower levels until we meet the internal nodes such as u′ which
are at level D + 1 of all other trees T (si), si ∈ {1, 2, . . . ,∆} − {a, b}. The resulting
directed tree, denoted by T (ab), will be pseudo node disjoint from the other ∆ − 2
trees. This completes the proof of Theorem 2.2.

We will now present the counterpart of Theorem 2.2 for K(∆, D). Let a and b
belong to {1, 2, . . . ,∆,∆ + 1}, a 6= b, and ∆ ≥ 2. Note that there are exactly two
a− b nodes in K(∆, D) for the specified a and b, (. . . abab) and (. . . baba). Thus the
total number of a− b nodes in K(∆, D) is 2(∆+1

2). For simplicity, we will denote the
Kautz sequence (. . . abab) of length p ending with letter b by {ab}p and the Kautz
sequence (. . . baba) of length q ending with letter a by {ba}q.

Theorem 2.3. Let R be an a − b node in K(∆, D). Then 1. there are ∆ − 1
PNDSTs rooted at R in K(∆, D) of depths D + 1 and 2. there are ∆ ADSTs rooted
at R in K(∆, D) of depths D + 2.

Proof. We begin with an algorithm for constructing the ∆ − 1 PNDSTs rooted
at R in K(∆, D) of depths D + 1 for the proof of part 1 of Theorem 2.3.

1. Without loss of generality, let R = (. . . abab) = ({ab}D). For si ∈ {1, 2, . . . ,∆+
1} − {a, b}, let Si = (. . . ababsi) = ({ab}D−1si), and let T ′(si) be the shortest-path
spanning tree in K(∆, D) rooted at Si. The depth of T ′(si) is D, the root Si is
considered at level 1, and the last level is D+ 1. Note that there are ∆−1 such trees.
Consider two of them, T ′(si) and T ′(sj) with si 6= sj . We will now show that T ′(si)
and T ′(sj) are pseudo node disjoint. Let u and v be possible internal nodes in T ′(si)

DISJOINT ROOTED TREES 85

and T ′(sj) at levels p and q from the roots Si and Sj respectively, 1 ≤ p ≤ D and
1 ≤ q ≤ D.

u =
(
{ab}D−psi{1, 2, . . . ,∆ + 1}−sip−1

)
,

v =
(
{ab}D−qsj{1, 2, . . . ,∆ + 1}−sjq−1

)
,

where {1, 2, . . . ,∆+1}−sip−1 is an arbitrary Kautz sequence of length p−1 on {1, 2, . . . ,∆
+ 1} whose first letter is not si. It is now easy to see that because si 6= sj , si 6∈ {a, b},
and sj 6∈ {a, b}, we have u 6= v. This implies that T ′(si) and T ′(sj) are pseudo node
disjoint.

Note that all nodes at levels from 1 to D in T ′(si) contain the letter si in their
labels; thus since R is an a−b node, R is at level D+1 of T ′(si), si ∈ {1, 2, . . . ,∆+1}−
{a, b}. Then the arc into R is removed from T ′(si) and the arc (R,Si) of K(∆, D) is
added to T ′(si). The resulting tree is denoted by T (si), si ∈ {1, 2, . . . ,∆+1}−{a, b}.
The set {T (si) | si ∈ {1, 2, . . . ,∆ + 1} − {a, b}} constitutes a set of ∆ − 1 PNDSTs
rooted at R in K(∆, D) of depths D + 1.

Similar to the deBruijn case, the nodes, say in T (si), at level 0, level 1, level
p, 1 < p < D, level D, and finally at level D + 1 will have the following labels:

R = ({ab}D)→ Si = ({ab}D−1si)→ · · · → ({ab}D−psi{1, 2, . . . ,∆ + 1}−sip−1)

→ · · · → (si{1, 2, . . . ,∆ + 1}−siD−1)→ ({1, 2, . . . ,∆ + 1}−siD).

2. We will build a new tree of depth D+ 2 denoted by T (ab) which is arc disjoint
from all trees in the above set. Let T ′′(ab) be the shortest-path spanning tree rooted
at the subroot Sab = (. . . ababa) = ({ba}D). We now wish to characterize the nodes
in T ′′(ab). We say that the node Sab = ({ba}D) is at level 1 of T ′′(ab), and it is easy
to see that the nodes at level 2 of T ′′(ab) are

({ba}D−1sk), sk ∈ {1, 2, . . . ,∆ + 1} − {a}.

Note that R = ({ab}D) is at level 2 with sk = b. Generally, the nodes at level p of
T ′′(ab), 2 ≤ p ≤ D + 1, have the form

({ba}D−p+1sk{1, 2, . . . ,∆ + 1}−skp−2), sk ∈ {1, 2, . . . ,∆ + 1} − {a}, 2 ≤ p ≤ D + 1.

By removing the arc (Sab,R) from T ′′(ab), discarding the partial tree rooted at R
in T ′′(ab), and adding the arc (R,Sab) of K(∆, D) to T ′′(ab), we build a subtree in
K(∆, D), denoted by T ′(ab). T ′(ab) can be characterized as follows. Beginning with
root R and then subroot Sab = (. . . ababa) = ({ba}D), the tree T ′(ab) proceeds as
the maximum breadth-first subtree with depth up to D + 1 which contains as many
nodes of K(∆, D) as possible. At this stage, T ′(ab) is not a spanning tree, and every
path from R to any node u in it is the shortest path in K(∆, D) which begins with
R and then Sab. In fact, the node set at level p, 2 ≤ p ≤ D+ 1, in T ′(ab), denoted by
Vin(T ′(ab)), has the form

Vin(T ′(ab))

= {({ba}D−p+1si{1, 2, . . . ,∆ + 1}−sip−2) | si ∈ {1, 2, . . . ,∆ + 1} − {a, b}, 2 ≤ p ≤ D + 1}.

It can be easily seen that the nodes that are missing from T ′(ab) may be described
by

Vmis(T
′(ab))

= {({ab}D−psi{1, 2, . . . ,∆ + 1}−sip−1) | si ∈ {1, 2, . . . ,∆ + 1} − {a, b}, 1 ≤ p ≤ D − 1},

86 ZHENGYU GE AND S. LOUIS HAKIMI

which are the nodes of the partial tree in T ′′(ab) rooted at R. Note that V (K(∆, D)) =
{R ∪ Sab ∪ Vin(T ′(ab)) ∪ Vmis(T

′(ab))}.
We first claim that the subtree T ′(ab) is pseudo node disjoint from those trees in

{T (si) | si ∈ {1, 2, . . . ,∆ + 1} − {a, b}}. To see this, we observe that the set of the
nodes at level q, 1 ≤ q ≤ D, say in T (si), may be described as follows:

Vin(T (si))

= {({ab}D−qsi{1, 2, . . . ,∆ + 1}−siq−1) | si ∈ {1, 2, . . . ,∆ + 1} − {a, b}, 1 ≤ q ≤ D}.

Now let us consider the above set of nodes. If 1 ≤ q ≤ D − 1, it is easy to see that
these nodes belong to Vmis(T

′(ab)). If q = D, these nodes all belong to Vin(T ′(ab)) at
level p = D + 1. This proves the claim.

To complete the proof, we will show that for each node u ∈ Vmis(T
′(ab)), there

exists a node u′ ∈ Vin(T ′(ab)) at level D + 1 of T ′(ab) such that the arc (u′, u) is not
in any tree in the set {T (si) | si ∈ {1, 2, . . . , D + 1} − {a, b}}. Let

u = ({ab}D−psi{1, 2, . . . ,∆ + 1}−sip−1), 1 ≤ p ≤ D − 1.

If p = 1, we select

u′ = (si{ab}D−1);

if 2 ≤ p ≤ D − 1, we select

u′ = (si{ab}D−psi{1, 2, . . . ,∆ + 1}−sip−2).

We first observe that u′ is at level D + 1 in the trees T (sj), sj 6= si. Thus the arc
(u′, u) cannot exist in these trees T (sj) in this case. In T (si), node u is at level p,
p ≤ D − 1, and u′ is at level D, which implies that the arc (u′, u) cannot belong to
T (si) either. Note, however, that u′ is an internal node in T (si) and T (ab).

3. Disjoint spanning trees in deBruijn and Kautz networks: General
case. We first consider the problem of constructing ∆ − 1 PNDSTs in B(∆, D)
rooted at an arbitrary node R = (r1, r2, . . . , rD). This set of trees will be denoted
by TB(D,R). We call the reader’s attention to two groups of nodes around R in
B(∆, D). The first group consists of the subroots, denoted by Sb(R), that are the
successor nodes of R; more precisely,

Sb(R) = Γ(R) = {u | u = (r2, . . . , rD, si), si ∈ {1, 2, . . . ,∆}}.

The second group is the other ∆ − 1 predecessors of the subroots, called adopters,
denoted by Ad(R),

Ad(R) = {u | u = (d, r2, . . . , rD), d ∈ {1, 2, . . . ,∆} and d 6= r1}.

Note that R ∪Ad(R) are the whole set of the ∆ predecessors of the subroots.
Let p be the minimum nonnegative integer such that the last D − p letters in

R = (r1, r2, . . . , rD) are an a − b subsequence for some letters a and b which belong
to {1, 2, . . . ,∆}. Let R(0) = (rp+1, rp+2, . . . , rD) represent this subsequence and note
that D − p ≥ 2. Our process for obtaining the ∆− 1 PNDSTs in TB(D,R) is based
on a recursive algorithm involving p+ 1 stages.

Let D(i), R(i), and B(∆, D(i)) denote the diameter, the root, and the de-
Bruijn digraph in stage i, 0 ≤ i ≤ p. Note that D(i) = D − p + i and R(i) =

DISJOINT ROOTED TREES 87

(rp−i+1, rp−i+2, . . . , rD). Initially, in the 0th stage of our algorithm, let D(0) =
D− p, R(0) = (rp+1, rp+2, . . . , rD); we find the ∆− 1 PNDSTs in TB(D(0), R(0)) in
B(∆, D(0)). Since R(0) is an a− b sequence, Theorem 2.2 establishes that the ∆− 1
PNDSTs in TB(D(0), R(0)) exist, and these trees have depths D − p+ 1. In the fol-
lowing stages, 1 ≤ i ≤ p, we recursively use the following algorithm, whose ith stage
involves finding the ∆− 1 PNDSTs, TB(D(i), R(i)) = {tj(i), j = 1, 2, . . . ,∆− 1}, in
digraph B(∆, D(i)), where tj(i) denotes a tree in TB(D(i), R(i)). Note that when
i = p, we obtain the desired set TB(D(p), R(p)), where D(p) = D, R(p) = R.

Assuming that we have obtained TB(D(i− 1), R(i− 1)), which are PNDSTs for
B(∆, D(i− 1)), we will now present the ith stage of the algorithm, which consists of
three steps. Also, we present a number of simple observations within the description
of the algorithm; most of the proofs for the observations are elementary and are left
out.

Algorithm. (For the ith stage, 1 ≤ i ≤ p.)
Step 1. Note that the root R(i) = (rp−i+1, rp−i+2, . . . , rD) ∈ B(∆, D(i)) corre-

sponds to the arc directed toward R(i − 1) in B(∆, D(i − 1)). We add an auxiliary
node x(i− 1) = (rp−i+1, rp−i+2, . . . , rD−1) with the arc R(i) = (x(i− 1), R(i− 1)) to
each of the ∆ − 1 PNDSTs in TB(D(i − 1), R(i − 1)). We denote these augmented
trees by TB∗(D(i − 1), R(i − 1)) = {t∗j(i − 1), j = 1, 2 . . . ,∆ − 1}, and we say that
the arc R(i) is at the 0th level of trees in TB∗(D(i − 1), R(i − 1)). We find the line
digraph tjL(i) of each tree in TB∗(D(i − 1), R(i − 1)), denote the resulting set by

TBL(D(i), R(i)) = {tjL(i), j = 1, 2 . . . ,∆− 1}, and refer to the set of the trees as the
line trees.

We make the following observations: 1. Let tjL(i) ∈ TBL(D(i), R(i)) be the line

tree of the tree t∗j(i−1) ∈ TB∗(D(i−1), R(i−1)); then we have V (tjL(i)) = E(t∗j(i−
1)), where E(t∗j(i− 1)) is the arc set of tree t∗j(i− 1) which contains all of the arcs
in tj(i − 1) plus the arc R(i). 2. Each digraph tjL(i) in TBL(D(i), R(i)) is a subtree
of B(∆, D(i)) rooted at R(i). 3. Since the trees in TB(D(i− 1), R(i− 1)) are pseudo
node disjoint and therefore also arc disjoint, the line trees in TBL(D(i), R(i)) are
strictly node disjoint except at R(i), and thus each node of B(∆, D(i)) except R(i)
is in at most one tree in TBL(D(i), R(i)). 4. The depth of the trees TBL(D(i), R(i))
are the same as those of the trees in TB(D(i − 1), R(i − 1)), and an arc at level m
in a tree in TB∗(D(i − 1), R(i − 1)) becomes a node at the same level in a tree in
TBL(D(i), R(i)).

Step 2. We extend the line trees tjL(i) ∈ TBL(D(i), R(i)) as follows. We take

each node, except R(i), in each tjL(i) and add as many as possible outgoing arcs
which are available at that node in B(∆, D(i)) and whose other end nodes are not
already in tjL(i), to this node. The resulting digraph is denoted by tjLE(i). We do

this for all line trees tjL(i) ∈ TBL(D(i), R(i)), and we denote the set of tjLE(i) for all
j by TBLE(D(i), R(i)). We call this set of digraphs the extended line trees, and we
will show later that the extended line trees are in fact trees within the observation 1
below and its proof.

We now make the following observations; the proofs for observations 1 and 5 are
given at the end of this algorithm and the proofs of the other observations are simple
and thus are left out: 1. Each extended line tree tjLE(i) ∈ TBLE(D(i), R(i)) is a
subtree of B(∆, D(i)) rooted at R(i). 2. The extended line trees in TBLE(D(i), R(i))
are pseudo node disjoint because the line trees in TBL(D(i), R(i)) are strictly node
disjoint and we only do breadth-first extension to the nodes in TBL(D(i), R(i)); thus
no nodes can be internal nodes in more than one tree. 3. From observation 1 in Step

88 ZHENGYU GE AND S. LOUIS HAKIMI

1, these nodes added to a line tree tjL(i) correspond to the arcs which did not belong to
the tree t∗j(i− 1) in TB∗(D(i− 1), R(i− 1)), and they are leaf nodes in the extended
line tree tjLE(i) in TBLE(D(i), R(i)). 4. The depths of the extended line trees increase
by one from those of the trees in TB(D(i− 1), R(i− 1)). 5. The nodes of B(∆, D(i))
which do not already belong to an extended line tree tjLE(i) ∈ TBLE(D(i), R(i)),

denoted by Vmis(t
j
LE(i)), are given by

Vmis(t
j
LE(i))

= {u = (rp−i+2, . . . , rD, x) | x ∈ {1, 2, . . . ,∆}, u is not a subroot of tjLE(i)}.

Note that the set Vmis(t
j
LE(i)) corresponds to the outgoing arcs from R(i − 1) in

B(∆, D(i− 1)).
Step 3. Consider the set of adopters

Ad(R(i)) = {ajd(i) = (dj, rp−i+2, . . . , rD) | dj ∈ {1, 2, . . . ,∆} and dj 6= rp−i+1}.

Note that the set of adopters corresponds to the incoming arcs into R(i − 1) in
B(∆, D(i−1)), and such arcs do not belong to any tree in TB(D(i−1), R(i−1)). From
observation 3 in Step 2, the adopters are leaves in every tree of TBLE(D(i), R(i)).
Furthermore, because R(i − 1) is not a corner node and thus has no loop at it,
Ad(R(i)) ∩ Vmis(t

j
LE(i)) = ∅ ∀j. Also note that the ∆ − 1 adopters are the other

predecessors of Vmis(t
j
LE(i)), we can easily establish a 1–1 mapping between nodes

in Ad(R(i)) and the extended line trees in TBLE(D(i), R(i)) by arbitrarily selecting
one adopter ajd(i) ∈ Ad(R(i)) to map to one tree tjLE(i) ∈ TBLE(D(i), R(i)) ∀j and

add the missing nodes Vmis(t
j
LE(i)) to tjLE(i) by adding the arcs from ajd(i) to each

missing node of Vmis(t
j
LE(i)), thus making tjLE(i) a spanning tree, denoted by tj(i).

The set of these new trees tj(i) is denoted by TB(D(i), R(i)). From observation 2 in
Step 2, it is clear that the trees in TB(D(i), R(i)) are PNDSTs. Obviously, if adopter
ajd(i) at the last level of tjLE(i) is selected for tjLE(i), then after adding the missing

nodes Vmis(t
j
LE(i)) to ajd(i) in tjLE(i), the depth of tj(i) will increase by one from that

of tjLE(i). Otherwise, the depth of tj(i) will remain the same as that of tjLE(i).
Proof of observations 1 and 5 of Step 2. To prove observation 1 in Step 2, we

must show that the resulting graph tjLE(i) ∈ TBLE(D(i), R(i)) is a rooted tree, in
particular, we are going to show that there is no node, say w ∈ B(∆, D(i)), which
is not in tjL(i) that can have two or more distinct predecessors in tjL(i). Suppose

otherwise; then there must be nodes u ∈ tjL(i) and v ∈ tjL(i) and a node w 6∈ tjL(i)
such that arcs (u,w) and (v, w) ∈ B(∆, D(i)). Note that the nodes u, v, and w
correspond to arcs, say eu, ev, and ew in B(∆, D(i − 1)), and that both arcs eu and
ev are directed to the tail node of arc ew in B(∆, D(i− 1)). On the other hand, since
nodes u and v ∈ tjL(i), from observation 1 of Step 1, we have that both arcs eu and ev
belong to tj(i− 1). This is impossible because tj(i− 1) is a tree and thus each node
has only one incoming arc in it.

We will now prove observation 5 of Step 2. Note that each node u of B(∆, D(i))
corresponds to an arc eu = (u′, u′′) of B(∆, D(i − 1)). We consider two cases. Case
1: node u′ 6= R(i− 1). Since u′ ∈ B(∆, D(i− 1)) belongs to every tree in TB(D(i−
1), R(i−1)), u′ has ∆−1 incoming arcs in TB(D(i−1), R(i−1)), one arc belonging to
each tree in the set. Note that these ∆−1 arcs are adjacent to arc eu through node u′

in B(∆, D(i− 1)). Therefore, these ∆− 1 arcs become ∆− 1 nodes, one node in each
tree in TBL(D(i), R(i)) after Step 1, and thus node u belongs to all of the ∆−1 trees

DISJOINT ROOTED TREES 89

of TBLE(D(i), R(i)) definitively after Step 2 in this case. Case 2: if u′ = R(i − 1),
those incoming arcs to u′ = R(i− 1) correspond to the set of nodes R(i) ∪Ad(R(i)),
and these arcs do not belong to the trees in TB(D(i−1), R(i−1)). In this case, node u
must belong to the set Sb(R(i)). For any tjLE(i) ∈ TBLE(D(i), R(i)), note that tjLE(i)
has already had one (or possibly two) member(s) of Sb(R(i)) in it as its subroot(s).
From observation 3 of Step 2, the nodes in Ad(R(i)) are leaf nodes without children
in TBLE(D(i), R(i)); thus all the other members of Sb(R(i)) have to be absent from
tjLE(i) ∈ TBLE(D(i), R(i)). This proves that Vmis(t

j
LE(i)) is as claimed.

A trivial bound of 2D − 1 on the depths of the trees in TB(D,R) may be es-
tablished as follows. From the above algorithm, observe that the depths increase
by one in Step 2 and by at most one in Step 3. Since initially the depths in
TB(D(0), R(0)) are D − p + 1, after p stages, the depths will increase to at most
D− p+ 1 + 2p = D+ p+ 1 ≤ 2D− 1 since p ≤ D− 2. However, we will prove a much
stronger result in the following theorem.

Theorem 3.1. There are ∆−1 PNDSTs rooted at any node in B(∆, D) of depths
not exceeding d3D

2 e.
Proof. We prove this theorem by induction on the stage number, i, 0 ≤ i ≤ p.

Note the that the diameter of B(∆, D(0)) is D(0) = D − p, the depth of the trees in
TB(D(0), R(0)) isD−p+1 by Theorem 2.2, and sinceD−p ≥ 2, D−p+1 ≤ d3

2 (D−p)e.
Thus the theorem is correct when i = 0.

Assume that Theorem 3.1 is true for TB(D(i − 1), R(i − 1)). The proof of ob-
servations 1 and 5 of Step 2 of the algorithm implies that we will be able to obtain
the trees in TB(D(i), R(i)) from TB(D(i−1), R(i−1)); this would in turn imply the
correctness of the algorithm. We will now prove the bound on the depth of the trees
in TB(D,R).

If in the ith stage, an adopter ajd(i) = (dj, rp−i+2, . . . , rD), dj 6= rp−i+1, at the

last level of a tree tjLE(i) ∈ TBLE(D(i), R(i)) is chosen, then the depth of tj(i) ∈
TB(D(i), R(i)) will increase by two from the depth of tj(i−1) ∈ TB(D(i−1), R(i−1))
in stage i. In this case, note that the nodes in the last level of tj(i) are the nodes
u ∈ Vmis(t

j
LE(i)), that is, u = (rp−i+2, . . . , rD, sh) for some sh, and u is not a subroot

of tjLE(i). Then after Step 2 of the next stage, stage i+ 1, the nodes at the last level

of tree tjLE(i+ 1) ∈ TBLE(D(i+ 1), R(i+ 1)) will have the form

u′ = (rp−i+2, rp−i+3, . . . , rD, sh, x), x ∈ {1, 2, . . . ,∆}.(4)

We claim that the nodes at the last level of tjLE(i+1) cannot belong to the adopter

set Ad(R(i+ 1)). This would mean that the depth of tjLE(i+ 1) will not increase by
the action of Step 3 of stage i+1, which in turn implies that the depth of tj(i+1) will
increase by at most three in two contiguous stages from that of tj(i− 1). Therefore,
after p ≤ D − 2 stages, the depths will increase by at most d3p

2 e. Since the depths of
the initial tree rooted at an a−b node are D−p+1, the depths of the trees in TB(D,R)
are less than or equal to D − p+ 1 + d 3p

2 e = D + dp2e+ 1 ≤ D + dD−2
2 e+ 1 ≤ d3D

2 e.
To prove this claim, assume u′ ∈ Ad(R(i + 1)). By the definition of the adopter

set,

u′ = (dj , rp−i+1, . . . , rD), dj 6= rp−i.(5)

From equations (4) and (5), we have rp−i+1 = rp−i+3, rp−i+2 = rp−i+4, and rp−i+3 =
rp−i+5, . . . , rD−2 = rD. However, this would imply that the rootR(i) = (rp−i+1, rp−i+2,
. . . , rD) is an a − b node like (abab . . .). This is a contradiction since R(i) is not an
a− b node for i ≥ 1.

90 ZHENGYU GE AND S. LOUIS HAKIMI

Our next goal in this section is to show that there are ∆ ADSTs in K(∆, D)
rooted at an arbitrary node R = (r1, r2, . . . , rD). This set of trees will be denoted by
TK(D,R). Two sets of nodes around R in K(∆, D) are of particular interest (as in
the deBruijn digraph case): the subroots Sb(R),

Sb(R) = Γ(R) = {u | u = (r2, . . . , rD, si), si ∈ {1, 2, . . . ,∆ + 1} and si 6= rD};

and the adopters Ad(R),

Ad(R) = {u | u = (d, r2, . . . , rD), d ∈ {1, 2, . . . ,∆ + 1}, d 6= r1 and d 6= r2},

where the sequences are Kautz sequences.
Let p be the minimum nonnegative integer such that the last D−p letters in R =

(r1, r2, . . . , rD) form an a−b Kautz sequence of two letters a and b in {1, 2, . . . ,∆+1}.
Let R(0) = (rp+1, rp+2, . . . , rD) represent this sequence and note that D−p ≥ 2. Our
process for obtaining the ∆ ADST in TK(D,R) is similar to that in the previous
case.

Theorem 3.2. There are ∆ ADSTs rooted at any node in K(∆, D) of depths
not exceeding d 3D

2 e+ 1.
Proof. We follow the same algorithm as in the previous case with the following

two exceptions: 1. We begin with the set TK(R(0), D(0)), where R(0) is an node
represented by an a − b Kautz sequence. By Theorem 2.3, TK(R(0), D(0)) consists
of ∆ ADSTs of depths D(0) + 2 = D − p + 2. 2. In this case, in Step 3 of the ith
stage, 1 ≤ i ≤ p,

Ad(R(i))

= {ajd(i) = (dj , rp−i+2, . . . , rD) | dj ∈ {1, 2, . . . ,∆ + 1}, dj 6= rp−i+1 and dj 6= rp−i+2}.

Thus we have |Ad(R(i))| = ∆−1 adopters, but we have a set of ∆ extended line trees in
TKLE(D(i), R(i)). Therefore, we cannot expect to establish the 1–1 mapping between
the adopters Ad(R(i)) and the extended line trees TKLE(D(i), R(i)) as before. To
overcome this difficulty, for j = 1, . . . ,∆ − 1, we chose one adopter, say ajd(i) ∈
Ad(R(i)), for tree tjLE(i) ∈ TKLE(D(i), R(i)) with subroot Sj = (rp−i+2, . . . , rD, sj)

to add the missing node set Vmis(t
j
LE(i)) = Γ(R(i)) − {Sj} to tjLE(i). This leads to

the spanning trees tj(i) ∈ TK(D(i), R(i)) for j = 1, . . . ,∆− 1.
We now consider the last extended line tree t∆LE(i) ∈ TKLE(D(i), R(i)). Observe

that the arc (ajd(i), Sj) is not used for constructing tj(i) for j = 1, . . . ,∆− 1 and that
Vmis(t

∆
LE(i)) = Γ(R(i)) − S∆ = {u | u = Sj , j = 1, . . . ,∆ − 1}. To construct t∆(i),

we start with t∆LE(i) and then add the arcs (ajd(i), Sj), j = 1, . . . ,∆− 1, to t∆LE(i) to
obtain the spanning tree t∆(i). This produces the set of ∆ ADSTs TK(D(i), R(i)) =
{tj(i), j = 1, . . . ,∆}.

Since the remaining parts in the proof are identical to the proof of Theorem
3.1, they will not be given. Due to difference 1 above, the bound on the depths is
d 3D

2 e+ 1.
We now briefly consider the disjoint spanning trees in the undirected deBruijn and

Kautz graphs. We define undirected deBruijn graphs UB(∆, D) and Kautz graphs
UK(∆, D) as follows. We begin with the digraph B(∆, D) (respectively, K(∆, D)).
Then 1. ignore the directions of the arcs, thus replacing arcs with edges; 2. if for
some nodes u and v in B(∆, D) (respectively, in K(∆, D)), both arcs (u, v) and (v, u)
belong to B(∆, D) (respectively, to K(∆, D)), we would have both edges joining u and

DISJOINT ROOTED TREES 91

v in UB(∆, D) (respectively, in UK(∆, D)); and 3. remove the loops from B(∆, D).
We note that graphs UB(∆, D) and UK(∆, D) are not simple graphs and UB(∆, D)
is no longer a regular graph because the corner nodes have degree equal to 2(∆− 1)
while the others have degree equal to 2∆.

By Theorem 3.1, it is clear that there are ∆−1 PNDSTs of depth at most d 3D
2 e in

UB(∆, D) rooted at an arbitrary node R. We will now show that there are ∆ PNDSTs
in UB(∆, D). We note that there are |V | = ∆D nodes and |E| = ∆D+1 − ∆ =
∆(∆D − 1) = ∆(|V | − 1) edges in UB(∆, D), and thus total number of edges |E| in
UB(∆, D) is exactly the number of edges required in the ∆ edge-disjoint spanning
trees. Thus we know that there are at most ∆ PNDST in UB(∆, D). Actually, we
have the following result, which is a direct consequence of a result in [1].

Corollary 3.3. (See [1, Proposition 5.1].) There are ∆ PNDSTs rooted at any
node R in UB(∆, D) of depths no larger than 2D.

Proof. We begin with the digraph B(∆, D). For a ∈ {1, 2, . . . ,∆}, let T (a) be
the shortest-path spanning tree rooted at the corner node (aa . . . a). It is known that
T (1), T (2), . . . , T (∆) are all arc disjoint and of depth D [1]. Furthermore, it can be
seen that each node in T (a) except the root (aa . . . a) is of degree either ∆ + 1 or 1.
Let the undirected tree UT (a) be obtained from T (a) by ignoring the directions of
arcs in T (a). Note that the diameter of the tree UT (a) is exactly 2D. Let R be an
arbitrary node in UB(∆, D); then the set of trees {UT (1), UT (2), . . . , UT (∆)} can be
considered to be a set of edge-disjoint spanning trees rooted at R of depths less than
or equal to 2D. Furthermore, since each internal node in T (a) has degree ∆ + 1, no
node can be an internal node in more than one tree; thus the above set of trees are
pseudo-node-disjoint trees in UB(∆, D).

We now consider the case of UK(∆, D). Note that the numbers of nodes and
edges in UK(∆, D) are |V | = ∆D + ∆D−1 and |E| = ∆D+1 + ∆D, respectively, and
the ∆ ADSTs TK(∆, R) have used T = ∆(|V |−1) = |E|−∆ edges; thus there are only
∆ free edges which do not belong to the directed trees in TK(∆, R). Actually, they
are the ∆ incoming arcs to the root R. The following result is a direct consequence
of Theorem 3.2.

Corollary 3.4 (corollary to Theorem 3.2). There are ∆ edge-disjoint spanning
trees rooted at any node R in UK(∆, D) of depths not exceeding d 3D

2 e+ 1.

4. Conclusions and fault-tolerance considerations. The deBruijn and
Kautz graphs and digraphs have become contenders for interconnect architectures
of multiprocessor systems and computer networks. Since broadcasting is an impor-
tant function in such systems, the results of this paper further enhance the viability
of these graphs for such applications.

The results of this paper also have fault-tolerance implications. The fact that
there are ∆− 1 pseudo-node-disjoint trees rooted at a particular node R in B(∆, D)
implies that the network can tolerate up to ∆ − 2 node failures and still perform
its broadcast function. More precisely, let DN(f ,G) (respectively, DL(f ,G)) be
the maximum depth of a spanning tree rooted at arbitrary node R in a graph G
if up to f nodes (respectively, links) failed. This notion is similar to the previously
introduced notion of f -node-diameter vulnerability [6, 8]. Our results imply that
DN(f,B(∆, D)) ≤ d 3D

2 e if f = ∆−2 and DN(f, UB(∆, D)) ≤ 2D if f = ∆−1. The
same relations apply to DL(f,B(∆, D)) and DL(f, UB(∆, D)). It is easy to see that
DL(f,K(∆, D)) ≤ d3D

2 e + 1 if f = ∆ − 1, and a similar statement would also hold
for UK(∆, D). However, the situation for DN(f,K(∆, D)) is a bit more complex.

We claim that DN(f,K(∆, D)) ≤ d 3D
2 e + 1 if f = ∆ − 2. To see the validity of

92 ZHENGYU GE AND S. LOUIS HAKIMI

this claim, we refer the reader to the last stage, stage p, in our algorithm. After Step
2 of the algorithm, the trees in TKLE(D(p + 1), R(p + 1)) are pseudo node disjoint.
However, after Step 3, each adopter, say ajd(p+ 1), becomes an internal node in both

the tree tj(p+ 1) and the tree t∆(p+ 1). Thus the failure of adopter ajd(p+ 1) would
destroy the two spanning trees tj(p+1) and t∆(p+1). However, each additional node
failure would destroy at most one more tree. Thus even if ∆− 2 nodes failed, there is
at least one remaining tree of depth at most d 3D

2 e+ 1. The above result also remain
valid for UK(∆, D). In all of the above cases, if the number of failures f ′ < f , then
we would have f − f ′ + 1 remaining rooted spanning trees with the above depths.

Finally, the bounds on the depths in this paper are not tight bounds. In particular,
we believe that the bound on the depths in Theorem 3.1 can be further improved if
a more suitable 1–1 mapping between the adopters Ad(R(i)) and the extended line
trees TBLE(D(i), R(i)) in Step 3 of each stage of our algorithm is selected.

REFERENCES

[1] J-C. Bermond and P. Fraigniaud, Broadcasting and gossiping in deBruijn networks, SIAM
J. Comput., 23 (1994), pp. 212–225.

[2] A.-H. Esfahanian and S. L. Hakimi, Fault-tolerant routing in deBruijn communication net-
works, IEEE Trans. Comput., 34 (1985), pp. 777–788.

[3] J-C. Bermond and C. Peyrat, DeBruijn and Kautz networks: Competitor for the hypercube?,
in Hypercube and Distributed Computers, F. Andre and J. P. Verjus, eds., Elsevier–North–
Holland, Amsterdam, 1989, pp. 279–293.

[4] M. R. Samatham and D. K. Pradhan, The deBruijn multiprocessor network: A versatile
parallel processing and sorting network for VLSI, IEEE Trans. Comput., 38 (1989), pp.
567–581.

[5] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Prentice–Hall, Englewood Cliffs,
NJ, 1992.

[6] D.-Z. Du, Y.-D. Lyuu, and D. F. Hsu, Line digraph iterations and the spread concept: With
applications to graph theory, fault tolerance, and routing, in Graph Theoretic Concepts in
Computer Science, G. Schmidt and R. Berghammer, eds., Springer-Verlag, Berlin, 1991,
pp. 169–179.

[7] R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, in Selected Topics In
Graph Theory, L. W. Beineke and R. J. Wilson, eds., Academic Press, London, 1978.

[8] M. Imase, T. Soneoka, and K. Okada, Fault-tolerant processor interconnection networks,
Systems Comput. Japan, 17 (1986), pp. 21–30.

[9] Q. F. Stout and B. Wagar, Intensive hypercube communication, J. Parallel Distrib. Comput.,
10 (1990), pp. 167–181.

POLYNOMIAL-TIME RECOGNITION OF 2-MONOTONIC
POSITIVE BOOLEAN FUNCTIONS GIVEN BY AN ORACLE∗

ENDRE BOROS† , PETER L. HAMMER† , TOSHIHIDE IBARAKI‡ , AND

KAZUHIKO KAWAKAMI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 93–109, February 1997 006

Abstract. We consider the problem of identifying an unknown Boolean function f by asking
an oracle the functional values f(a) for a selected set of test vectors a ∈ {0, 1}n. Furthermore, we
assume that f is a positive (or monotone) function of n variables. It is not yet known whether
or not the whole task of generating test vectors and checking if the identification is completed can
be carried out in polynomial time in n and m, where m = |minT (f)| + |maxF (f)| and minT (f)
(respectively, maxF (f)) denotes the set of minimal true (respectively, maximal false) vectors of f .
To partially answer this question, we propose here two polynomial-time algorithms that, given an
unknown positive function f of n variables, decide whether or not f is 2-monotonic and, if f is
2-monotonic, output both sets minT (f) and maxF (f). The first algorithm uses O(nm2 + n2m)
time and O(nm) queries, while the second one uses O(n3m) time and O(n3m) queries.

Key words. 2-monotonic Boolean function, oracle, polynomial-time identification

AMS subject classifications. 68T05, 68Q25, 90C09

PII. S0097539793269089

1. Introduction. In this paper, we investigate the problem of identifying an
unknown Boolean function f by successively constructing test vectors a ∈ {0, 1}n and
asking an oracle their functional values f(a) (i.e., membership queries). We propose
two polynomial-time algorithms for a specific class of 2-monotonic positive Boolean
functions.

Recall that a Boolean function (or simply a function) f of n variables is a mapping
f :{0, 1}n → {0, 1}. We shall write g ≤ f if g(a) = 1 implies f(a) = 1 for all vectors
a ∈ {0, 1}n. If g ≤ f and there exists a vector a satisfying g(a) = 0 and f(a) = 1,
we shall write g < f . A function f is called positive (or monotone) if a ≤ b (i.e.,
ai ≤ bi for i = 1, 2, . . . , n) always implies f(a) ≤ f(b). A vector a ∈ {0, 1}n is a true
(resp. false) vector if f(a) = 1 (resp. f(a) = 0) holds. The set of true vectors and
false vectors of f are, respectively, denoted T (f) and F (f). A true vector is called a
minimal (resp. maximal) if there is no true vector (resp. false vector) b such that b ≤ a
(resp. b ≥ a) and b 6= a. The sets of minimal true vectors and maximal false vectors
are, respectively, denoted min T (f) and maxF (f). The definition of 2-monotonicity
is given in section 2. We only point out here that the class of 2-monotonic positive
functions properly includes the class of positive threshold functions [20, 26].

The problem of identifying Boolean functions arises in various settings of theory
and practice. A first application is the testing of logic circuits, i.e., the identification of

∗ Received by the editors May 4, 1993; accepted for publication (in revised form) April 17, 1995.
This research was partially supported by AFOSR grants 89-0512B and F49620-93-1-0041 and ONR
grants N00014-92-J-1375 and N00014-92-J-4083. A preliminary version of this paper appeared in
ISA ’91 Algorithms, Lecture Notes in Comput. Sci. 557, Springer-Verlag, Berlin, 1991, pp. 104–115
[7].

http://www.siam.org/journals/sicomp/26-1/26908.html
† RUTCOR, Rutgers University, New Brunswick, NJ 08903 (boros@rutcor.rutgers.edu, ham-

mer@rutcor.rutgers.edu).
‡ Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University,

Kyoto 606, Japan (ibaraki@kuamp.kyoto-u.ac.jp, kawakami@kuamp.kyoto-u.ac.jp). The research of
these authors was partially supported by a Scientific Grant-in-Aid of the Ministry of Education,
Science, and Culture of Japan.

93

94 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

the Boolean function realized by the circuit. This identification requires the selection
of a (possibly small) set of binary vectors on which the circuit is to be tested. Another
example is found in the process of forming a “concept” from partially observed data
[6, 11], in which hypotheses for the functional form of a hidden Boolean function are
generated. It is assumed that the hidden function belongs to a specified subclass of
Boolean functions, known a priori.

Probably the most rigorous mathematical basis for our problem is provided by
the recent development of computational learning theory. The problem discussed in
this paper is an example of exact learning (see, e.g., [1]), in which only membership
queries are allowed. Our result shows that a polynomial-time exact learning of this
type is possible for the class of 2-monotonic positive Boolean functions.

If no a priori information is available about the Boolean function f , it is obvious
that it cannot be identified unless the values f(a) for all 2n vectors a ∈ {0, 1}n are
tested. Therefore, the problem becomes interesting only when some knowledge about
f is at hand. An important class in the above problem setting of concept formation
and learning theory is that of positive functions.

In this paper, a positive function will be considered identified if both the sets of
minimal true vectors, minT (f), and maximal false vectors, maxF (f), are explicitly
obtained. We shall call these two sets the output of the identification algorithm, where
the length of output is denoted by

m = |minT (f)|+ |maxF (f)|.(1)

This definition, while it may appear somewhat redundant since either of these sets can
be computed from the other, is justified by the following two reasons. First of all, in
general, the computation of one of these sets from the other can take exponential time
in the size of these sets. Second, the knowledge of both sets, min T (f) and maxF (f),
is necessary to ensure that the function obtained at the end of the algorithm is indeed
completely specified. It is known that the total size m of these sets can become as
large as (

n

bn2 c

)
+

(
n

bn2 + 1c

)
,

and therefore polynomiality in n only cannot be expected. However, the complexity
of an identification algorithm in terms of both the input and the output sizes is not
known.

The papers by Angluin [1] and Gainanov [14] contain an algorithm that identifies
minT (f) of a positive function f of n variables by issuing O(n|minT (f)|) membership
and equivalence queries. (Equivalence queries test whether the target function f is
equivalent to the hypothesis f ′.) This means that the identification can be done
in polynomial time if both membership and equivalence queries are allowed. An
explanation for this is the fact that if f and f ′ are not equivalent, the equivalence
oracle returns a binary vector a at which f and f ′ disagree and which is then sent to
the membership oracle. However, when only membership queries are allowed, the time
to generate such query vectors must be taken into account, and, in spite of intensive
studies on this topic (see, e.g., [4, 14, 15, 16, 24]), it is not yet known whether or not
this can be accomplished in polynomial time. Note, however, that upon measuring
the complexity only by n and m1 = |minT (f)| (instead of m), Angluin obtained a
negative result (see [1]), showing that there exists a positive Boolean function f which
cannot be identified by a polynomial (in n and m1) number of membership queries

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 95

even if unlimited computation time is allowed. The underlying reason for this is that,
for any vector a ∈ maxF (f), there exists another positive Boolean function f ′ for
which minT (f ′) = minT (f) ∪ {a}. Hence the information necessary to distinguish
between f and f ′ assumes a membership query for all such vectors a. This implies
that the identification of f requires at least as many as m0 = |maxF (f)| membership
queries, and this quantity m0 is known to be exponential in n and m1 for many
positive Boolean functions. This is another reason to introduce in this paper the
parameter m = m0 +m1 for evaluating the complexity of an identification algorithm.

It is being realized that the problem of identifying a general positive function
by membership queries is equivalent to many other problems in the sense that the
former is solvable in polynomial time in n and m if and only if the latter problems
are solvable in polynomial time. Among the many problems of this type (see, e.g.,
[4, 12]), we mention the dualization of positive Boolean functions, the recognition
of self-dual positive functions, the recognition of saturated simple hypergraphs, and
so forth. Although the exact complexity of these problems is still open, the recent
result by Fredman and Khachiyan [13] shows that these problems can be solved in
O(mo(logm)) time, suggesting that it is quite unlikely that they are NP-hard.

The main results in this paper are two polynomial-time algorithms (more pre-
cisely, incrementally polynomial-time algorithms [17, 18]), which, for a given unknown
positive function f of n variables, decide whether or not f is 2-monotonic or not and,
if it is 2-monotonic, output both minT (f) and maxF (f). The first algorithm uses
O(nm2 + n2m) time and O(nm) queries, while the second one uses O(n3m) time
and O(n3m) queries. (Throughout this paper, the stated computation time does not
include the time spent on the oracle to answer the given membership queries.) The
proposed algorithms make use of the results of Gainanov [14] and Valiant [25] to gen-
erate a vector in minT (f) ∪maxF (f) and of a new characterization of 2-monotonic
positive functions in terms of their sets of minimal true and maximal false vectors.
They are also related to the results in [3, 5, 10, 21, 22] showing that the dualization of
2-monotonic positive functions can be done in O(mn) time. We also note that there
are some other classes of positive functions for which polynomial-time identification
algorithms are known [19], which are based on the concept of maximum latency of
function classes.

In concluding this section, we comment that there is a wide spectrum of research
about the exact learning of Boolean functions. Most of this research, however, is
based on the model of using both membership and equivalence queries. In this model,
in addition to the class of positive functions, there are a number of classes such as
read-once functions (see, e.g., [2, 9]), which are learnable in polynomial time in n and
the length of the formula expressing the function. Recently, Bshouty [8] showed that
any Boolean function is polynomially learnable either as DNF (disjunctive normal
form) or CNF (conjunctive normal form).

2. Definitions and basic properties. Let f be a positive function of n vari-
ables. f is completely characterized by one of the sets minT (f) and maxF (f) since
f is defined, for example, by

f(a) =

{
1 if a ≥ b for some b ∈ minT (f),
0 otherwise.

It is known in Boolean algebra that another characterization of a positive function f
is that f has a disjunctive form in which all literals appear uncomplemented. In this
case, each prime implicant of f corresponds one to one to a minimal true vector of f .

96 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

The dual fd of a function f is defined by

fd(x) = f̄(x̄),

where f̄ (respectively, x̄) denotes the complement of f (respectively, x). The Boolean
expression of fd is obtained from that of f by exchanging ∧ (and) and ∨ (or) as well
as the constants 1 and 0.

An assignment A of binary values 0 or 1 to k variables xi1 , xi2 , . . . , xik out of all
n variables is called a k-assignment and is denoted by

A = {xi1 ← a1, xi2 ← a2, . . . , xik ← ak},(2)

where each of the values a1, . . . , ak is either 1 or 0. Let the complement of A, denoted
by Ā, represent the assignment obtained from A by complementing all the 1’s and 0’s
of A. When a function f(x) of n variables and a k-assignment A are given,

fA(x) = f(x;xi1 ← a1, xi2 ← a2, . . . , xik ← ak)

denotes the function of (n− k) variables obtained by fixing the variables xi1 , xi2 , . . .,
xik as specified by A.

Let f be a Boolean function of n variables. If either fA ≤ fĀ or fA ≥ fĀ holds
for every k-assignment A, then f is said to be k-comparable. If a function f is k-
comparable for every k such that 1 ≤ k ≤ m, then f is said to be m-monotonic.
(For more detailed discussion on these topics, see, e.g., [20, 26].) In particular, f is
1-monotonic if f(xi←1) ≥ f(xi←0) or f(xi←1) ≤ f(xi←0) holds for any i ∈ {1, 2, . . . , n}.
It can be shown that if f is positive, then it is 1-monotonic and f(xi←1) ≥ f(xi←0)

holds for every i.
Now consider a 2-assignment A = {xi ← 1, xj ← 0}. The relation fA ≥ fĀ

(respectively, fA > fĀ) will be denoted by xi �f xj (respectively, xi �f xj). Two
variables xi and xj are said to be comparable if either xi �f xj or xi �f xj holds.
When xi �f xj and xi �f xj hold simultaneously, we shall write xi ≈f xj . If f is
2-monotonic, the binary relation �f over the set of variables is known to be a total
preorder. A 2-monotonic positive function f of n variables is called regular if

x1 �f x2 �f x3 �f · · · �f xn.(3)

Any 2-monotonic positive function becomes regular by permuting the variables.
As an example, consider a function f = x2 ∨ x1x3 of three variables. It can

be easily checked that f(x;xi ← 1) ≥ f(x;xi ← 0) for i = 1, 2, 3, and hence f is
1-monotonic and positive. The 2-monotonicity of f can be checked in the same way,
and x2 �f x1 ≈f x3 holds. Although f is not regular, after the relabeling x′1 = x2,
x′2 = x1, and x′3 = x3, it becomes regular.

The property of 2-monotonicity was originally introduced in conjunction with
threshold functions (e.g., [20, 26]). A positive function f is called threshold if there
exist n+ 1 nonnegative real numbers c1, c2, . . . , cn ≥ 0 and t such that:

f =

{
1 if

∑n
i=1 cixi ≥ t,

0 if
∑n

i=1 cixi < t.

Since ci > cj implies xi �f xj and ci = cj implies xi ≈f xj , a threshold function is
always 2-monotonic. The converse, however, is not true.

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 97

3. Outline of the algorithms. We shall present an outline of our algorithms
which, for a given unknown positive function f , decide whether or not f is 2-monotonic
and, if the function f is 2-monotonic, output minT (f) and maxF (f). Both of the
presented algorithms will be based on an oracle to obtain the values f(a) for a selected
set of vectors a, i.e., on membership queries. The details of the steps of the algorithms
and the analysis of their time complexity will be given in the subsequent sections.

In the proposed algorithms, we shall maintain two subsets of vectors MT and
MF such that

MT ⊆ minT (f) and MF ⊆ maxF (f).(4)

Let us define the sets of vectors T and F by

T = {a ∈ {0, 1}n|a ≥ a′ for some a′ ∈MT},
F = {b ∈ {0, 1}n|b ≤ b′ for some b′ ∈MF},(5)

and let us call a vector a unknown if

a 6∈ T ∪ F

since f(a) for such a vector a cannot be deduced from the knowledge of MT and
MF . Given a binary vector a = (a1, a2, . . . , an), let ā = (ā1, ā2, . . . , ān) denote its
complement. Let us further define two positive functions g1 and g0 by

g1(a) =

{
1 if a ∈ T,
0 otherwise,

g0(a) =

{
1 if ā ∈ F,
0 otherwise.

(6)

In each iteration of the algorithms, given the current sets MT and MF , we test
whether the two functions g0 and g1 satisfy the following two conditions:

(a) Both g1 and g0 are 2-monotonic.
(b) The orders of variables for g1 and g0 coincide, i.e., xi �g1 xj if and only if

xi �g0 xj for any i 6= j.
If these conditions do not hold, we shall distinguish two cases:
(i) We can conclude that f is not 2-monotonic and the algorithms stop.
(ii) We can find an unknown vector a with respect to the current MT and MF .

In this case, with the aid of membership queries, another vector c is generated from
a for which we have

c ∈ (minT (f) ∪maxF (f)) \ (MT ∪MF).(7)

Then MT or MF is augmented with c, and the algorithms proceed to the next
iteration.

On the other hand, if g1 and g0 satisfy both conditions (a) and (b) above, we test
whether the current MT and MF satisfy

MT = minT (f) and MF = maxF (f).(8)

The following outcomes are possible:
(iii) Condition (8) holds. Then g1 = f and f is identified (also g0 = gd1 = fd

holds). Our algorithms stop here.

98 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

(iv) Condition (8) does not hold. Then an unknown vector a is found and the
algorithms proceed as in (ii) above.

The above procedure is repeated until it stops in (i) or (iii).
The key tasks in an efficient implementation of these steps are the following:
Task 1: initializing the sets MT and MF .
Task 2: checking whether both conditions (a) and (b) hold for the current g1 and

g0 of (6) and, if not, either concluding that f is not 2-monotonic or providing an
unknown vector a.

Task 3: checking whether or not the termination condition (8) holds and, if not,
providing an unknown vector a.

Task 4: given an unknown vector a, finding a vector c which satisfies (7).
These points will be separately discussed in the subsequent sections. As we shall

see, Task 1 is quite easy, and a polynomial-time solution for Task 4 is already well
known. The contribution of this paper consists mainly in providing polynomial-time
algorithms for Tasks 2 and 3 above.

4. Construction of a minimal true vector or a maximal false vector.
Given an unknown vector a of a positive function f , Gainanov [14] and Valiant [25]
present an algorithm to enlarge the set MT ∪MF by finding a vector c satisfying (7).
It proceeds as follows.

Assume that an unknown vector a0 = a satisfies f(a) = 1. For i = 1, 2, . . . , n,
define

ai =

{
ai−1 if ai = 0, or if ai = 1 and f(ai−1 − ei) = 0,
ai−1 − ei if ai = 1 and f(ai−1 − ei) = 1,

where ei denotes the ith unit vector. Then c = an satisfies c ∈ minT (f) and c ≤ a,
implying that c satisfies (7).

The case of f(a) = 0 is treated symmetrically, and the algorithm produces a
vector c ∈ maxF (f). In either case, at most n+ 1 vectors are tested by membership
queries and the total time required for this task is O(n).

As an example, consider a positive function f of five variables and assume that
MT = ∅ and minT (f) = {10100, 01010}. Let us test the vector a = (11110). Clearly,
f(a) = 1 (since a > 10100), and the following sequence is generated:

a0 = (11110), f(a0) = 1,
a1 = (01110) since f(a0 − e1) = f(01110) = 1,
a2 = (01110) since f(a1 − e2) = f(00110) = 0,
a3 = (01010) since f(a2 − e3) = f(01010) = 1,
a4 = (01010) since f(a3 − e4) = f(01000) = 0,
a5 = (01010) since a5 = 0.

Consequently, c = a5 = (01010) is a minimal true vector.

5. An algorithm for identifying 2-monotonic functions. In this section,
we present an algorithm IDENTIFY-1 for identifying a 2-monotonic positive function
in O(nm2 + n2m) time by asking O(nm) queries. Another procedure that requires
O(n3m) time and O(n3m) queries will be presented in the next section.

5.1. Initialization. If MT = ∅ and MF = ∅, any a is an unknown vector. It is
convenient to start with a1 = (111 . . . 1). If f(a1) = 0, then the positivity of f implies
that f is identically 0 (i.e., f is identified). Let us assume therefore that f(a1) = 1,

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 99

and let c1 be the vector (satisfying (7)) obtained by the algorithm described in section
4. A similar procedure is then applied to a0 = (000 . . . 0). If f(a0) = 1, then f is
identically 1 (i.e., f is identified); otherwise, a vector c0 satisfying (7) is produced.
Our algorithms initialize MT and MF as

MT := {c1} and MF := {c0}.

5.2. Checking the 2-monotonicity of gi. Since g1 and g0 of (6) can be treated
in a similar manner, in this subsection, we shall refer to either of g1 and g0 as g and
to either of the corresponding sets MT and

CMF = {ā|a ∈MF}

as M . In other words, minT (g) = M holds. The algorithm described below decides
if g is 2-monotonic or not, and if g is 2-monotonic, it also computes the �g order of
the variables. The cases in which g is not 2-monotonic or the orders �g1 and �g0 do
not coincide will be discussed in the next two subsections.

Let us note that the existence of a pair of vectors a and b for which

a ∈M, g(b) = 0,(9)

and

ai = 1, aj = 0, bi = 0, bj = 1,
ak = bk for k 6= i, j

(10)

implies gA 6≤ gĀ for the assignment A = {xi ← 1, xj ← 0}, that is, xi 6� xj . Con-
versely, if xi 6� xj , then there exist vectors a′ and b′ such that g(a′) = 1 (possibly
a′ 6∈M), g(b′) = 0, and (10) holds for a′ and b′. By the definition of g, there exists a
vector a ≤ a′ for which a ∈ M . For this vector a, g(a) = 1 holds and hence a 6≤ b′,
which implies that ai = 1 and aj = 0. Let us then define a vector b by

bk =

 0 if k = i,
1 if k = j,
ak otherwise.

Since b ≤ b′ follows from a ≤ a′, the vectors a and b satisfy conditions (9) and
(10). Therefore, the existence of a pair of vectors a and b satisfying (9) and (10) is a
necessary and sufficient condition for xi 6� xj . In other words, xi � xj if and only if
there is no pair a and b that satisfy (9) and (10), which is then equivalent to saying
that, for every vector a ∈M and indices i 6= j for which

ai = 1 and aj = 0,(11)

there exists a vector d ∈M satisfying

di = 0, dj = 1, and dk ≤ ak for k 6= i, j.(12)

We obtain the following.
Lemma 5.1. Given a positive Boolean function g with M = minT (g) and indices

i 6= j, the following three conditions are equivalent:
(i) xi �g xj.
(ii) There is no pair of vectors a and b satisfying (9) and (10).

100 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

(ii) For every vector a ∈M satisfying (11), there exists a vector d ∈M satisfying
(12).

Let us observe that the existence of indices i 6= j for vectors a, d ∈ M satisfying
(11) and (12) is equivalent to

dj = 1, aj = 0 hold for exactly one j,
dk ≤ ak for all k 6= j

(13)

since the minimality of vectors in M guarantees the existence of an index i for which
di < ai.

To test conditions (11) and (12), we shall construct for each a ∈ M an n × n
matrix P (a) such that

Pij(a) =

{
1 if a satisfies (11) and there is no d ∈M satisfying (12),
0 otherwise

(14)

and let

P =
∑
a∈M

P (a).(15)

The next lemma follows immediatly from Lemma 5.1 and from the definition of
P .

Lemma 5.2. For a positive function g, we have
(i) xi ≺g xj if and only if Pij = 0 and Pji > 0,
(ii) xi ≈g xj if and only if Pij = 0 and Pji = 0,
(iii) xi and xj are not comparable (implying that g is not 2-monotonic) if and

only if Pij > 0 and Pji > 0.
The 2-monotonicity of g can be tested by constructing the matrix P and applying

Lemma 5.2. If g is 2-monotonic, the order �g of the variables can also be obtained
from P .

Let us now consider the computation of the matrices P (a) and P . Initially, we
start with P ≡ 0 corresponding to M = ∅. Let us assume in the general step that P
for the current M has already been computed, and a new vector c is added to M .

Step 1. Initialize the matrix P (c) by setting

Pij(c) :=

{
1 if ci = 1 and cj = 0,
0 otherwise,

(16)

and let M := M ∪ {c} and P := P + P (c).
Step 2. Compare c with each e(6= c) ∈ M to see if condition (13) holds. If c and

e can be regarded as a and d in (13), respectively, then let Pij(c) := 0 for all i and
j satisfying (11) and (12). Similarly, if c and e can be regarded as d and a in (13),
respectively, then let Pij(e) := 0 for all i and j satisfying (11) and (12).

Step 3. Update the matrix P to reflect all modifications in Step 2.
The time required in Step 1 is clearly O(n2). As noted in condition (13), there

is a unique index j used in modifying matrices Pij(c) or Pij(e) in Step 2, and thus
Step 2 requires O(n) time for each vector e ∈ M . Hence the total time for Step 2 is
O(n|M |). Finally, Step 3 to update P as a result of the changes of Pij(c) and Pij(e)
in Step 2 can be done in O(n|M |) time. Therefore, the time required to increment M
by a vector c is O(n|M |+ n2).

Since the sets MT and MF can be incremented by at most |minT (f)| and
|maxF (f)| times, respectively, the total time required for this part isO(n(|minT (f)|2
+ |maxF (f)|2) + n2(|minT (f)|+ |maxF (f)|)) = O(nm2 + n2m).

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 101

5.3. When g is not 2-monotonic. Assuming that the g tested in the previous
subsection is not 2-monotonic, we show here that one can either conclude that f is
not 2-monotonic or find an unknown vector (as discussed in (i) and (ii) of section 3).

If g is not 2-monotonic, there must exist indices i 6= j for which Pij > 0 and
Pji > 0. This implies by the definition of P that there exist vectors a, b ∈ M for
which

ai = 1, aj = 0, bi = 0, bj = 1.

Let us define the vectors a′ and b′ by complementing the ith and jth components of
a and b, respectively. We shall consider the cases g = g1 and g = g0 separately.

If g = g1 (and hence M = MT), then the vectors a′ and b′ do not belong to T , i.e.,
there is no a′′ ∈ MT or b′′ ∈ MT such that a′ ≥ a′′ or b′ ≥ b′′ since the existence of
such an a′′ ∈MT (respectively, b′′ ∈MT) would contradict the assumption Pij(a) > 0
(respectively, Pji(b) > 0) (in view of condition (13) with d = a′′ or d = b′′).

(i) If f(a′) = f(b′) = 0, then we can conclude that f is not 2-monotonic. Indeed,
xi 6�f xj follows from f(a) = 1 and f(a′) = 0, and xj 6�f xi follows from f(b) = 1
and f(b′) = 0.

(ii) If at least one of f(a′) and f(b′) is 1, say f(a′) = 1, then a′ 6∈ T ∪ F (since
a′ 6∈ T , as seen above, and a′ 6∈ F because f(a′) = 1), and hence a′ is an unknown
vector.

On the other hand, if g = g0 (and hence M = CMF), we consider ā, b̄, ā′, and
b̄′, where ā denotes the complement of a, etc. By definition (6) of g0, we have the
following.

(i′) If f(ā′) = f(b̄′) = 1, then f is not 2-monotonic.

(ii′) If at least one of f(ā′) and f(b̄′) is 0, say f(ā′) = 0, then ā′ is an unknown
vector.

5.4. When the variable orders of g1 and g0 do not coincide. Assume that
g1 and g0 of (6) are both 2-monotonic but the orders �g1 and �g0 of the variables do
not coincide. In this case, we shall identify an unknown vector.

For simplicity, let xi �g1 xj but xi ≈g0 xj or xi ≺g0 xj . In order to avoid
confusion, let us denote Pij(a) for g1 (respectively, for g0) by P 1

ij(a) (respectively, by

P 0
ij(a)). Then as discussed in section 5.2, there is a vector a ∈MT with

P 1
ij(a) > 0 and ai = 1, aj = 0,(17)

and the vector a′ obtained from a by complementing the components ai and aj does
not belong to T (since there is no d ∈ MT satisfying (13) for this a). This a′ does
not belong to F either, i.e., it is an unknown vector. Indeed, if a′ ∈ F , then there is
a vector a′′ ≥ a′ with a′′ ∈ MF . It is easy to see that a′i = 0, a′j = 1, a′′i = 0, a′′j = 1,

and a′′k ≥ a′k for k 6= i, j. Therefore, ā′′i = 1, ā′′j = 0, āi = 0, āj = 1, and ā′′k ≤ āk
for k 6= i, j. Then ā′′ ∈ CMF (i.e., g0(ā′′) = 1) and a ∈ MT (i.e., g0(ā) = 0)
together imply that there is no vector d for which the pair ā′′ and d satifies (13).
Thus P 0

ij(ā
′′) > 0, in contradiction to the assumption that xi ≈g0 xj or xi ≺g0 xj .

Similarly, if xi �g0 xj but xi ≈g1 xj or xi ≺g1 xj , then there is a vector a ∈ CMF
satisfying (17). Defining a′ similarly as above, we see that ā′ is an unknown vector.

5.5. Checking if g1 = f . Assume now that both g1 and g0 are 2-monotonic,
and the orders �g1 and �g0 coincide. We show how to test condition (8) of section 3

102 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

and how to obtain an unknown vector if (8) does not hold (i.e., steps (iii) and (iv) of
section 3). For simplicity of discussion, we assume in this subsection that

x1 �gi x2 �gi · · · �gi xn for i = 0, 1,(18)

i.e., g1 and g0 are regular. The order (18) can be obtained in O(n logn) time by
applying a sorting algorithm to the preorder �gi . If the sets T and F are defined by
(5), then the definition of g1 and g0 shows that

T ∩ F = ∅.(19)

From assumption (18) and the definition of the �gi order, it follows that the set T is
left-shift stable, i.e.,

a ∈ T implies a+ ei − ej ∈ T for any i < j
such that ai = 0 and aj = 1,

(20)

where ei is the ith unit vector, and similarly, F is right-shift stable, i.e.,

b ∈ F implies b− ei + ej ∈ F for any i < j
such that bi = 1 and bj = 0.

(21)

Our test algorithm for condition (8) is based on the following lemma.
Lemma 5.3. Assume that both of the functions g1 and g0 defined from MT and

MF are 2-monotonic and satisfy (18). If MT , MF , and T, F of (5) further satisfy
the properties that

(i) a− ej ∈ F for all a ∈MT and for all j with aj = 1, and
(ii) b+ ej ∈ T for all b ∈MF and for all j with bj = 0,

then there is no unknown vector, i.e., MT = minT (f) and MF = maxF (f) (hence
g1 = f).

Proof. Taking any vector c 6∈ F , we show that c ∈ T . (This proves that there is
no unknown vector c 6∈ T ∪ F .) Let us choose the maximum k such that the vector
ck defined by

ckj =

{
cj , j = 1, 2, . . . , k,
0, j = k + 1, . . . , n

(22)

satisfies

ck ∈ F.

Obviously, k < n and

ck+1 = 1(23)

by the maximality of k. Let us then choose a vector d ∈ MF such that d ≥ ck. By
the maximality of k, this d satisfies dk+1 = 0. Moreover,

dj = cj , j = 1, 2, . . . , k,(24)

since if di = 1 and ci = 0 for some i ≤ k, then property (21) shows that the vector d′

obtained from d by complementing di and dk+1 belongs to F , implying that the vector
ck+1 defined by (22) satisfies ck+1 ≤ d′ ∈ F , in contradiction with the maximality of
k.

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 103

Now let the vector d′′ be obtained from d by flipping dk+1 = 0 to 1. Because of
assumption (ii), the vector d′′ belongs to F ; hence there is a d∗ ∈MT such that

d∗ ≤ d′′.(25)

If there are several vectors in MT satisfying (25), we shall choose for d∗ the “leftmost”
one in the sense that

d∗ + ei − eh 6≤ d′′ for all i < h such that d∗i = 0 and d∗h = 1.(26)

This d∗ satisfies d∗k+1 = 1 since otherwise d∗ ≤ d and hence d∗ ∈ F, a contradiction.
We claim that

d∗j = 0, j = k + 2, k + 3, . . . , n,(27)

that is, d∗ ≤ c by (23), (24), and (25). This implies c ∈ T , proving the lemma.
To prove (27), assume that d∗h = 1 for some h > k + 1. If there is an i ≤ k + 1

such that ci = 1 and d∗i = 0, we have

d∗ + ei − eh ≤ d′′ (by (24) and the definition of d′′),

in contradiction with the selection rule (26) of d∗. Therefore,

d∗j = cj , j = 1, 2, . . . , k + 1,

and hence ck+1 ∈ F is implied by assumption (i) applied to d∗ ∈MT . However, this
contradicts the maximality of k, and hence (27) holds.

In order to check conditions (i) and (ii) of this lemma, we shall need the following
characterization, which follows directly from the definition of regularity.

Lemma 5.4. Let us consider the sets MT and MF and functions g1 and g0 of
Lemma 5.3. Then we have the following:

(i) Condition (i) of Lemma 5.3 holds if and only if, for every a ∈MT , there exists
a b ∈MF such that b ≥ a− ej, where j denotes the maximum index with aj = 1.

(ii) Condition (ii) of Lemma 5.3 holds if and only if, for every b ∈ MF , there
exists an a ∈MT such that a ≤ b+ ej, where j is the maximum index with bj = 0.

Furthermore, as pointed out in [23], the existence of a ∈ MT (respectively, b ∈
MF) satisfying a ≤ y (respectively, b ≥ y) for a given vector y can be tested in
O(n) time if g1 defined by MT (respectively, g0 defined by MF) is regular. Such
a procedure will be described below for the case of MT since MF can be handled
analogously.

Let us store all the vectors of MT in a binary tree B(MT) of height n, in which
the left edge (respectively, right edge) from a node in depth j − 1 represents the
case xj = 0 (respectively, xj = 1). A leaf node v of B(MT) in depth n stores the
vector a ∈ MT , the components of which correspond to the edges of the path from
the root to v. In order to have a compact representation, edges with no descendants
are removed from B(MT). An example for such a binary tree is shown in Fig. 1,
corresponding to the set MT = {011, 101, 110}.

Given a vector y, the algorithm starts from the root v0 of B(MT) and follows
the edges down to the leaf corresponding to a vector a satisfying a ≤ y. At each node
vj−1 of depth j − 1 in B(MT), an edge is selected by the following rule:

1. If j ≤ n and yj = 0, then follow the left edge from vj−1 to the next node vj .
If there is no left edge to follow, then stop (there is no a ∈MT satisfying a ≤ y).

104 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMIu

u u

uuu

u u u

HHHHHHHHHHHH
@
@
@
@
@
@
�
�
�
�
�
�

�
�

�
�

�
�
A
A
A
A
A
A

������������
@
@
@
@
@
@
A
A
A
A
A
A

x1 = 0 x1 = 1

x2 = 1 x2 = 0 x2 = 1

x3 = 1
x3 = 1 x3 = 0

(011) (101) (110)

Fig. 1. A data structure B(MT).

2. If j ≤ n and yj = 1, then follow the right edge from vj−1. If there is no right
edge from vj−1, then follow the left edge to the next node vj .

3. If j = n+1, then stop (the vector a associated with the current leaf vn satisfies
a ≤ y).

Based on Lemma 5.4 and on this algorithm, it is easy to see that condition (i) of
Lemma 5.3 for a vector a ∈MT and condition (ii) for a vector b ∈MF can be checked
in O(n) time, respectively. In the algorithm of this section, the sets MT and MF are
gradually augmented. Therefore, in each iteration, conditions (i) and (ii) have to be
checked only for the newly added vectors a ∈MT and b ∈MF . Therefore, the total
time needed for this part is O(n|MT |+ n|MF |) = O(nm).

In this process, if condition (i) or (ii) of Lemma 5.3 fails to hold (i.e., either no
b ∈MF satisfies b ≥ a− ej or no a ∈MT satisfies a ≤ b+ ej), then the vector a− ej
or b + ej is an unknown vector for the current MT and MF . In other words, the
computation in this subsection either concludes that g1 = f holds or provides a new
unknown vector.

Remark. Although we did not need it in our algorithm, the condition MT =
minT (f) can also be checked by utilizing a polynomial-time algorithm for dualizing
a regular function [3, 5, 10, 21, 22]. Since

maxF (g1) = {ā | a ∈ minT (gd1)},

maxF (g1) can be computed by applying such a dualization algorithm to g1. Then
MT = minT (f) holds if and only if maxF (g1) = MF . The time required for dual-
ization is O(n|MT |+n|MF |) = O(nm) [3, 22], and maxF (g1) = MF can be checked
in O(n|MF |) time if we sort both sets lexicographically in O(n|MF |) time and then
compare them.

5.6. Description of the algorithm. The algorithm described so far is summa-
rized as follows.

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 105

1 Program IDENTIFY-1
2 begin
3 Initialize MT and MF as described in section 5.1.

{f = 0 or f = 1 may be concluded here. All vectors in MT ∪ MF are
unscanned.}

4 repeat
5 while (g1 or g0 is not 2-monotonic, or the orders �g1 and �g0 do not coincide)

{The functions g1 and g0 are defined by minT (g1) = MT and minT (g0) =
{ā|a ∈ MF}, and the 2-monotonicity of gi as well as the �gi orders are
checked as in section 5.2.}

6 do {See sections 5.2, 5.3, and 5.4.}
8 if (f is concluded not to be 2-monotonic)
9 then {See (i) or (i′) of section 5.3.}

STOP.
10 else

Using an unknown vector a found as in (ii) or (ii′) of section 5.3 or in
section 5.4, obtain a vector c satisfying (7) as described in section 4.
Set MT := MT ∪ {c} if f(c) = 1, and set MF := MF ∪ {c} if f(c) = 0.
{The added c is unscanned. Although not explicitly stated, the matrices
P (a) for a ∈M and P are updated as described in section 5.2.}

11 endif
12 endwhile {g1 and g0 are 2-monotonic, and satisfy (18).}
13 repeat {Check if minT (f) = MT and maxF (f) = MF hold.}
14 if (there is an unscanned vector a ∈MT or b ∈MF)
15 then

Test if conditions (i) and (ii) of Lemma 5.4 hold for the vector a as
described in section 5.5 (vector a is now scanned).

16 endif
17 until (either new unknown vectors are found as explained in section 5.5,

or there are no more unscanned vectors in MT ∪MF)
18 if (unknown true vectors a1, a2, . . . , ak and unknown false vectors b1, b2, . . . , bh

have been found in the above repeat-loop {k + h > 0})
19 then

Construct minimal true vectors c1, c2, . . . , ck from a1, a2, . . . , ak as in section
4, and set MT := MT ∪ {c1, c2, . . . , ck}. {These ci’s are unscanned.}
Construct maximal false vectors d1, d2, . . . , dh from b1, b2, . . . , bh as in sec-
tion 4, and set MF := MF ∪ {d1, d2, . . . , dh}. {These di’s are unscanned.}

20 endif
21 until (no unknown vector remains)
22 STOP. {f is identified, i.e., minT (f) = MT and maxF (f) = MF .}
23 endprogram

Let us now analyze the time complexity. Each time the while-loop of lines 5–12
or the if-block of lines 18–20 is executed, MT or MF is augmented by new vectors.
Thus these sets are updated at most m = |minT (f)|+ |maxF (f)| times.

Let us note next that checking the 2-monotonicity of g1 and g0 and computing
their orders �g1 and �g0 is done by maintaining the matrices P (a) and P for MT
and MF , as explained in section 5.2. As discussed there, the total time required for
this computation is

O(nm2 + n2m).

106 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

Conditions (i) and (ii) of Lemma 5.4 are tested in the inner repeat-loop of lines 13–17.
As explained in section 5.5, the total time needed for this step is

O(nm).

Finally, whenever an unknown vector is found, a new vector c in MT ∪ MF is
computed by the algorithm of section 4. Since each execution requires O(n) time,
the total time needed for this is O(nm). Summing these terms, we see that the time
complexity of IDENTIFY-1 is

O(nm2 + n2m).

The number of queries, i.e., test vectors a for which f(a) are evaluated, is O(nm).
This can be shown as follows. First, the values f(a) are evaluated to find unknown
vectors in the while-loop of lines 5–12 and in the repeat-loop of lines 13–17. From the
discussion of sections 5.3, 5.4, and 5.5, it is easy to see that at most two vectors are
evaluated to find one unknown vector. The number of unknown vectors obtained in
the entire algorithm is m since one new vector in MT ∪MF is generated from each
unknown vector. In the process of obtaining a vector inMT ∪MF from each unknown
vector, O(n) vectors are evaluated by the method of section 4. This argument proves
the stated bound for the number of queries to the oracle.

Theorem 5.5. Given an unknown positive function f of n variables, algorithm
IDENTIFY-1 decides whether or not f is 2-monotonic, and if f is 2-monotonic, it
outputs minT (f) and maxF (f). The time required is O(nm2 +n2m) and the number
of queries to the oracle is O(nm), where m = |minT (f)|+ |maxF (f)|.

6. Another algorithm for identifying 2-monotonic functions. An algo-
rithm that requires O(n3m) time and O(n3m) queries will be presented in this section.

6.1. Reducing time complexity of IDENTIFY-1. Since m > n frequently
holds, the computation of the matrices P (a) and P for M = MT and M = CMF (see
section 5.2), requiring O(nm2 +n2m) time, represents the most time-consuming por-
tions of IDENTIFY-1. We shall show here that in case m > n2, the total complexity
can be reduced at the cost of increasing the number of queries.

We first consider the computation of P (a) and P . For simplicity, consider the
case of M = MT and g = g1. Instead of conditions (9) and (10) of section 5.2, we
look for the pairs of vectors a and b such that

a ∈MT,
ai = 1, aj = 0,

b is obtained from a by complementing ai and aj ,
f(b) = 0

(28)

and compute the n× n matrices P (a), a ∈MT , redefined here by

Pij(a) =

{
1 if a and b satisfy (28),
0 otherwise.

(29)

The matrix P is then defined by (15). Since here the condition g(b) = 0 in (9) is
replaced by f(b) = 0, P (a) is independent of other members of MT . Therefore, once
P (a) is computed at the time of generating a ∈MT , it will not change later on. Also,
it is not difficult to show that Lemma 5.2 of section 5.2 holds for the matrix P defined
in this way.

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 107

The computation of the values Pij(a) for a ∈ MT is carried out by generating
vectors b obtained by complementing the components ai and aj of a for all pairs of
indices i 6= j for which ai = 1 and aj = 0 and then asking the oracle whether or not
f(b) = 0 holds. Since there are O(n2) vectors b, the time and the number of queries
required to construct P (a) is O(n2) for each a ∈MT .

If f(b) = 1 holds for the vector b generated as above, then there are two cases:
either b ∈ T (i.e., g(b) = 1) or b 6∈ T (i.e., g(b) = 0). In the latter case, b is an
unknown vector and can be treated as in (ii) of section 3. The task of checking if
b ∈ T requires O(n|MT |) time for each b (e.g., by comparing b with every c ∈ MT
to check the inequality b ≥ c). If we allow the use of additional queries, this task
can be reduced to O(n) time as follows. By applying the procedure of section 4 and
using O(n) queries, we can obtain a vector c ∈ minT (f) in O(n) time from a vector b
with f(b) = 1. Let us assume that all the vectors a ∈MT are stored in a binary tree
B(MT) of O(nm) size, which was introduced after Lemma 5.4 in section 5.5. Then
condition c ∈ MT can be decided in O(n) time by directly checking the existence of
the path leading to the node that stores c. Obviously, b ∈ T if and only if c ∈ MT .
(Let us remark that the technique described after Lemma 5.4 in section 5.5 to check
the condition b ≥ c directly on B(TM) could not be used here since g may not be
2-monotonic.)

In conclusion, the total time and the number of queries required in this part are
both O(n3).

The above argument can be easily modified to the case of M = CMF and g = g0.
Condition (28) becomes

a ∈MF,
ai = 0, aj = 1,

b is obtained from a by complementing ai and aj ,
f(b) = 1,

(30)

and the rest of the procedure follows the above outline.

6.2. Description of the algorithm. The identification algorithm with the
above modifications is very similar to IDENTIFY-1 given in section 5.6. The algo-
rithm IDENTIFY-2 is obtained from IDENTIFY-1 by modifying only the while-loop
of lines 5–12 in IDENTIFY-1.

while (g1 or g0 is not 2-monotonic, or orders �g1 and �g0 do not coincide)
do

begin
if (f is found not to be 2-monotonic) then STOP else

begin
Using an unknown vector a found as in (ii) or (ii′) of section 5.3
or in section 5.4, obtain a vector c satisfying (7) as in section 4.
Set MT := MT ∪ {c} if f(c) = 1, and set MF := MF ∪ {c} if
f(c) = 0.
{The added c is unscanned.}

end;
while (there is an unscanned vector a ∈MT ∪MF) do

begin
Compute P (a) as described in section 6.1.
{Vector a is now scanned.}

108 E. BOROS, P. L. HAMMER, T. IBARAKI, AND K. KAWAKAMI

if (new vectors c 6∈ MT ∪ MF are generated while computing
P (a))

then {See section 6.1.}
If f(c) = 1, set MT := MT ∪ {c}.
If f(c) = 0, set MF := MF ∪ {c}.
{The added vector c is unscanned.}

end
end

The analysis of the time and the number of queries proceeds in a manner similar
to that of section 5.6. The time required to construct each P (a), a ∈ MT ∪MF , is
O(n2) as discussed in section 6.1, and therefore the total time of these operations is

O(n2|minT (f)|+ n2|maxF (f)|) = O(n2m).

The number of queries in this part is also O(n2m). The operations related to deter-
mining if the vector b is unknown or not and the generation of new vectors c require
both O(n3) time and queries for every vector a ∈ MT ∪MF . Therefore, both the
total time and the total number of queries of all these operations are

O(n3|minF (f)|+ n3|maxF (f)|) = O(n3m).

The total time and the number of queries to check conditions (i) and (ii) of Lemma 5.4
is O(nm) as described in section 5.5. The rest of the computation can be treated as
in section 5.6 and will not increase the total complexity.

Theorem 6.1. Given an unknown positive function f of n variables, algorithm
IDENTIFY-2 decides whether or not f is 2-monotonic, and if f is 2-monotonic, it
outputs minT (f) and maxF (f). The time required is O(n3m) and the number of
queries to the oracle is O(n3m).

7. Discussion. Two polynomial-time identification algorithms are presented in
this paper for 2-monotonic positive functions. It would be important to reduce the
time complexity and the number of queries further. It appears not unreasonable to
conjecture that there is an algorithm with O(n2m) time and O(n2m) queries.

Another more ambitious goal is to develop a polynomial-time algorithm for iden-
tifying positive (not necessarily 2-monotonic) functions (or to disprove its existence).
However, it is known for this case that Lemma 5.3 is no longer true [19], and hence
different novel approaches are needed.

Acknowledgments. The discussion with Yves Crama of Universite de Liege,
and Kazuhisa Makino of Kyoto University was very beneficial. The authors also
appreciate the comments given by the anonymous reviewers, which helped improve
the readability of this paper.

REFERENCES

[1] D. Angluin, Queries and concept learning, Mach. Learning, 2 (1988), pp. 319–342.
[2] D. Angluin, L. Hellerstein, and M. Karpinski, Learning read-once formulas with queries,

J. Assoc. Comput. Mach., 40 (1993), pp. 185–210.
[3] P. Bertolazzi and A. Sassano, An O(mn) time algorithm for regular set-covering problems,

Theoret. Comput. Sci., 54 (1987), pp. 237–247.
[4] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean

functions, Inform. and Comput., 123 (1995), pp. 50–63.

RECOGNITION OF 2-MONOTONIC BOOLEAN FUNCTIONS 109

[5] E. Boros, Dualization of aligned Boolean functions, Research report 9-94, RUTCOR, Rutgers
University, New Brunswick, NJ, 1994.

[6] E. Boros, P. L. Hammer, and J. N. Hooker, Predicting cause-effect relationships from
incomplete discrete observations, SIAM J. Discrete Math., 7 (1994), pp. 531–543.

[7] E. Boros, P. L. Hammer, T. Ibaraki, and K. Kawakami, Identifying 2-monotonic positive
Boolean functions in polynomial time, in ISA ’91 Algorithms, W. L. Hsu and R. C. T. Lee,
eds., Lecture Notes in Comput. Sci. 557, Springer-Verlag, Berlin, 1991, pp. 104–115.

[8] N. H. Bshouty, Exact learning via the monotone theory, in Proc. 34th IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993,
pp. 302–311.

[9] N. H. Bshouty, T. Hancock, and L. Hellerstein, Learning arithmetic read-once formulas,
in Proc. 24th ACM Symposium on Theory of Computing, ACM, New York, 1992, pp. 370–
381.

[10] Y. Crama, Dualization of regular Boolean functions, Discrete Appl. Math., 16 (1987), pp. 79–
85.

[11] Y. Crama, P. L. Hammer, and T. Ibaraki, Cause–effect relationships and partially defined
boolean functions, Ann. Oper. Res., 16 (1988), pp. 299–326.

[12] T. Eiter and B. Gottlob, Identifying the minimal transversals of a hypergraph and related
problems, Technical report CD-TR 91/16, Christial Doppler Labor für Expertensysteme,
Technische Universität Wien, Vienna, 1991.

[13] M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms, Technical report LCSR-TR-225, Department of Computer Science, Rutgers
University, New Brunswick, NJ, 1994.

[14] D. N. Gainanov, On one criterion of the optimality of an algorithm for evaluating monotonic
Boolean functions, Comput. Math. Math. Phys., 24 (1984), pp. 176–181.

[15] A. V. Genkin and P. N. Dubner, Aggregation algorithm for finding the informative features,
Automat. Remote Control, 49 (1988), pp. 81–86.

[16] J. Hansel, On the number of monotonic Boolean functions of n variables, Cybernet. Collect.,
5 (1968), pp. 53–58.

[17] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating all maximal inde-
pendent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[18] E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput., 9 (1980), pp. 558–
565.

[19] K. Makino and T. Ibaraki, The maximum latency and identification of positive Boolean
functions, in ISAAC ’94 Algorithms and Computation, D. Z. Du and X. S. Zhang, eds.,
Lecture Notes in Comput. Sci. 834, Springer-Verlag, Berlin, 1994, pp. 324–332.

[20] S. Muroga, Threshold Logic and Its Applications, John Wiley, New York, 1971.
[21] U. N. Peled and B. Simeone, Polynomial-time algorithms for regular set-covering and thresh-

old synthesis, Discrete Appl. Math., 12 (1985), pp. 57–69.
[22] U. N. Peled and B. Simeone, An O(nm)-time algorithm for computing the dual of a regular

Boolean function, Discrete Appl. Math., 49 (1994), pp. 309–323.
[23] J. S. Provan and M. O. Ball, Efficient recognition of matroids and 2-monotonic systems, in

Applications of Discrete Mathematics, R. Ringeisen and F. Roberts, eds., SIAM, Philadel-
phia, 1988, pp. 122–134.

[24] N. A. Sokolov, On the optimal evaluation of monotonic Boolean functions, Comput. Math.
Math. Phys., 22 (1979), pp. 207–220.

[25] L. G. Valiant, A theory of learnable, Comm. Assoc. Comput. Mach., 7 (1984), pp. 1134–1142.
[26] R. O. Winder, Threshold Logic, Ph.D. dissertation, Department of Mathematics, Princeton

University, Princeton, NJ, 1962.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN∗

AVRIM BLUM† , PRABHAKAR RAGHAVAN‡ , AND BARUCH SCHIEBER§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 110–137, February 1997 007

Abstract. Consider a robot that has to travel from a start location s to a target t in an
environment with opaque obstacles that lie in its way. The robot always knows its current absolute
position and that of the target. It does not, however, know the positions and extents of the obstacles
in advance; rather, it finds out about obstacles as it encounters them. We compare the distance
walked by the robot in going from s to t to the length of the shortest (obstacle-free) path between
s and t in the scene. We describe and analyze robot strategies that minimize this ratio for different
kinds of scenes. In particular, we consider the cases of rectangular obstacles aligned with the axes,
rectangular obstacles in more general orientations, and wider classes of convex bodies both in two and
three dimensions. For many of these situations, our algorithms are optimal up to constant factors.
We study scenes with nonconvex obstacles, which are related to the study of maze traversal. We also
show scenes where randomized algorithms are provably better than deterministic algorithms.

Key words. robot navigation, computational geometry, on-line algorithms

AMS subject classifications. 68Q25, 68T05, 52C05

PII. S0097539791194931

1. Motivation and results. Practical work on robot motion planning falls into
two categories: motion planning through a known scene, in which the robot has a com-
plete map of the environment, and motion planning through an unknown scene, in
which an autonomous robot must find its way through a new environment (see, for
example, [9, 13, 15, 21, 24] and references therein). Virtually all previous theoretical
work (see [32] and references therein) has focused on the former problem. Papadim-
itriou and Yannakakis [26] studied the latter problem, which is also the subject of this
paper: the design and evaluation of strategies for navigation in an unknown environ-
ment. The unfamiliar environment may be either a warehouse or factory floor whose
contents are frequently moved or a remote terrain such as Mars [30]. The design and
evaluation of algorithms for such navigation is a natural algorithmic problem that
deserves more theoretical study.

1.1. Model. A scene S is a region (of R2 or R3) containing a start point s and
a target t together with a set of opaque, impenetrable, nonoverlapping obstacles, none
of which contains s or t. Most of this paper will consider two-dimensional scenes. The
target t may be a point, a polygon/polyhedron, or an infinite wall. To avoid certain
degeneracies, we assume that a unit diameter circle (unit cube in three dimensions)
can be inscribed in each obstacle; this guarantees that the obstacles have a certain
minimum “thickness.”

A point robot has to travel from s to t, and it knows both its current absolute
position and the position of t. In walking towards t, it must circumvent the obstacles

∗ Received by the editors February 11, 1991; accepted for publication (in revised form) April 20,
1995.

http://www.siam.org/journals/sicomp/26-1/19493.html
† School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (avrim@

theory.cs.cmu.edu). Part of this research was performed while this author was visiting the IBM
T. J. Watson Research Center, and part was performed while this author was at the Massachusetts
Institute of Technology and supported by an NSF graduate fellowship.
‡ IBM Research Division, Almaden Research Center, San Jose, CA 95120 (pragh@almaden.

ibm.com).
§ IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (sbar@

watson.ibm.com).

110

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 111

in S. The robot does not know the positions and extents of these obstacles in advance;
rather, it finds out about obstacles as it encounters them. Where two obstacles touch,
we assume that the robot can “squeeze” between them. Thus a scene that consists
only of convex obstacles cannot have a nonconvex obstacle composed of abutting
convex obstacles.

The most natural mechanism for the robot to learn about a scene is vision: the
robot discovers obstacles as they come into its view and uses this information to decide
how to proceed towards t. For simplicity of exposition, we describe our algorithms
assuming that when the robot first sees an obstacle, it is given the shape, size, and
position of the obstacle (even though much of that obstacle may be invisible from
where it stands). However, we show how many of our algorithms can be made to work
with essentially the same upper bounds (up to a constant factor) under a considerably
weaker assumption—a tactile robot that learns about obstacles only by bumping into
them and moving along them. For this we use variants on the “doubling” strategies
of Baeza-Yates et al. [1].

Let R(S) be the total distance walked by a robot R in going from s to t in scene
S, and let d(S) denote the length of the shortest (obstacle-free) path in the scene
between s and t. (Because of the obstacles, this may be substantially larger than the
Euclidean distance between s and t.) Let S(n) denote the set of scenes in which the
Euclidean distance between s and t is n. Following the lead of [26], we use as the
figure of merit for the robot the ratio

ρ(R,n) = sup
S∈S(n)

R(S)

d(S)

and study its growth as a function of n.
For convenience, we put the scene in Cartesian coordinates, using “north”/“south”

to denote the direction of increasing/decreasing y value, “east”/“west” for the direc-
tion of increasing/decreasing x value, and “up”/“down” for the direction of increas-
ing/decreasing z value, respectively. In two dimensions, we also use “vertical” to
mean parallel to the y-axis and “horizontal” to mean parallel to the x-axis. The start
point s is always assumed to be at the origin, and unless otherwise specified, we will
assume that the current scene belongs to S(n). Finally, we use logn to denote log2 n.

1.2. Summary of results. For most of this paper, we consider two-dimensional
scenes where t is a point and the obstacles are rectangles with sides parallel to the
axes (rather than squares as in [26]). Surprisingly, even this problem turns out to
be quite complicated. We solve this problem by breaking it into the following two
subproblems:

The wall problem: scenes in which t is an infinite vertical line and the obstacles
are oriented rectangles. The goal is to reach a point on t of the robot’s choosing.

The room problem: scenes in which the obstacles are oriented rectangles that are
confined to lie within a square “room.” Here s is a point on a wall of the room and
t is the point at the center of the room. The robot can “squeeze” between any two
obstacles or between the walls and any obstacle. This intriguing special case is of
interest in its own right as a model for navigation in a bounded region such as a
warehouse.

Section 2 describes an optimal algorithm for the wall problem. The algorithm
achieves an upper bound of O(

√
n) on the ratio ρ(R,n), matching the lower bound

of [26]. To devise this algorithm, we develop a general “sweep” paradigm that is fairly
natural: a human lost in a strange city would probably do a similar search.

112 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

Section 3 considers the room problem. The algorithm for this problem achieves a

ratio ρ(R,n) that is O(2
√

3 logn). Following and building upon our result, Bar-Eli et
al. [2] have established a tight bound of Θ(logn) on the ratio of deterministic algo-
rithms for the room-problem. The approach taken by the room-problem algorithm is
different from the one taken for the wall problem. Here we develop a “caliper” method
that pins the target down to lie within a sequence of advancing paths. Intriguingly,
in the room problem, the shortest path from s to t has length O(n). To see this,
suppose that s is the southwest corner of the room. Therefore, the greedy path from
the target t that travels due south if possible and otherwise due west will reach s and
have as its length the L1 distance between s and t. (If s is not in the corner, then by
traveling along the room boundaries, one can reach s at an additional constant factor
cost.) In contrast, greedy paths from s are not guaranteed to go anywhere near t.
Thus getting out of a room is easy, but getting in towards a small target seems to be
hard.

Section 4 shows how to combine our solutions for the wall and room problems to
obtain a tight bound of Θ(

√
n) for point-to-point navigation in scenes consisting of

oriented rectangular obstacles.
Section 5 describes how our algorithms work (with at worst a constant factor

degradation in ratio) when the robot is tactile: it learns about obstacles by “feeling”
them. In this case, our algorithms bump into obstacles and slide along their edges in
a manner reminiscent of compliant motion planning [7] in the context of navigation
with a map.

Section 6.1 considers the room problem with arbitrary rectangular obstacles. We
show that d(S) can now be Ω(n3/2). Unlike the case of oriented rectangles, the greedy
path is no longer guaranteed to find an inexpensive way out of the room. For these
scenes, we give lower and upper bounds on ρ(R,n).

Section 6.2 extends our algorithms for the room problem to the case of more
general convex polygonal obstacles.

Section 7 gives extensions of our algorithm for the wall problem to three di-
mensions and also for point-to-point navigation in three dimensions. Both of these
algorithms work provided the obstacles are oriented rectangular cuboids, achieving
optimal ratios. (A cuboid is a rectangular parallelepiped.)

In section 8, we give a randomized algorithm for certain cases of the wall problem.

We show that the (expected) ratio of our algorithm is 2O(
√

log n log log n), which is much
smaller than the corresponding deterministic lower bound. This demonstrates the
power of randomization in navigation.

Section 9 deals with nonconvex obstacles (and therefore mazes). We give a lower
bound for randomized algorithms and show that a deterministic algorithm of Rao
et al. [28] meets this bound. The algorithm is memory intensive, and so we offer
an alternative algorithm that is very simple, memoryless, and randomized and that
achieves the same upper bound in the plane.

We conclude with a list of some open problems in section 10.

1.3. Related theoretical work. The ratio ρ(R,n) is studied by Papadimitriou
and Yannakakis [26] and independently by Eades, Lin, and Wormald [14]. Papadim-
itriou and Yannakakis proved that when s and t are points in the plane and all obsta-
cles are squares, ρ(R,n) is at least 1.5, and they complement this with an algorithm
that attains ρ(R,n) ≤ 1.5 + o(1) for all n. It is also shown in [14, 26] that when t is
an infinite wall at distance n from s and the obstacles are oriented rectangles, then
ρ(R,n) is Ω(

√
n). Coffman and Gilbert [12] study the performance of simple heuris-

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 113

tics in the presence of randomly placed obstacles. Kalyanasundaram and Pruhs [16]
and Mei and Igarashi [22] consider scenes in which all obstacles have bounded aspect
ratios. Klein [18] has given a small constant upper bound on the ratio for scenes that
are streets, a class of simple polygons. Earlier, Lumelsky and Stepanov [21] gave a
simple navigation algorithm that guarantees R(S) to be bounded by d(S) plus the
sum of the perimeters of all obstacles with no restrictions on the aspect ratios or the
convexity of the obstacles. Their algorithm does not minimize the ratio ρ. Several
papers (see [25, 28, 29] and references therein) give algorithms for building up a map
of a scene by exploring it entirely. Maze traversal has received considerable attention
in the past in various papers [5, 19, 27], none of which considers the ratio metric. The
reader is referred to [20] for a comprehensive survey of the results in these papers.

The ratio measure ρ(R,n) has close connections to the competitiveness measure
used in the study of on-line algorithms [6, 23, 31]; indeed, our problem resembles
an on-line setting in which the obstacles encountered by the robot form a sequence
of “requests,” and we compare its total cost R(S) to the “off-line cost” d(S). It is
therefore worth pointing out some key differences between the models: (a) In the
navigation problem, the robot has a definite target towards which it moves, while
there is no such notion in on-line paging [31], for example. (b) The robot can move
back and forth through the scene, revisiting previously seen obstacles, thus having
some control on the requests it encounters in the future. (c) Competitive analysis
deals with request sequences of arbitrary (possibly infinite) length, whereas here we
have a fixed number of obstacles in the scene. Thus we cannot cast our navigation
problem in a standard on-line framework such as the server problem [23] or metrical
task systems [6]. Nevertheless, the analogy with on-line algorithms proves useful in
the study of randomized navigation (section 8).

2. The wall problem. In this section, we consider scenes in which t is an infinite
vertical wall at distance n to the east of s and the obstacles are rectangles whose sides
are parallel to the axes. At the end of the section, we show how to modify our
algorithm to work also when t is not vertical. We call the width of an obstacle its
length in the x-direction and the height of an obstacle its length in the y-direction.
To make the presentation clearer, we assume below that

√
n is an integer. However,

our algorithm and analysis can trivially be adapted to the general case.

We present an algorithm that achieves ratio ρ(R,n) = O(
√
n). This matches the

lower bound proven in [26], so our algorithm is optimal up to constant factors.

The algorithm maintains four variables: the window size W , a threshold τ , a sweep
direction, and a sweep counter. Initially, W is set to n, the sweep direction is south,
and the sweep counter is set to zero. The threshold τ is always set to W/

√
n.

We begin with a high-level view of the algorithm and its analysis. The algorithm
maintains a window of varying size around the x-axis. The robot makes

√
n sweeps in

directions alternating between north and south for each window size. Upon completion
of these

√
n sweeps, the window size is doubled. Given a window of size W (which

ranges from y = +W/2 to y = −W/2), the distance walked by the robot in sweeping
is O(W

√
n). We show that the shortest path that cuts through all of the

√
n sweeps

has length Ω(
√
nτ) = Ω(W). Let Wf be the window size at the time the robot

reaches t. We prove that the total distance walked by the robot is O(Wf
√
n), while

d(S) = Ω(Wf).

We now describe the algorithm. Starting from point s, the robot travels due east
until it either reaches t or hits an obstacle, say at (x, y). Below, we assume that the
current sweep direction is south; the other case is symmetric. The next steps are

114 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

determined by the following rules:
Rule 1. If the distance to the nearest corner is less than τ , then the robot just

goes “around” the obstacle. Specifically, it travels either south or north to the nearest
corner, then east along the width of the obstacle to the opposite corner, and finally
back along the height of the obstacle to the point (x+w, y), where w is the width of
the obstacle. (See Fig. 1(a).) From this point, it continues to travel due east until it
hits the next obstacle (or reaches t and stops).

(a) (b) (c)

w
2

Fig. 1. Going around an obstacle in the sweep algorithm.

Rule 2. If the obstacle extends past both sides of the window (i.e., its north
edge has y-coordinate greater than W/2 and its south edge has y-coordinate less than
−W/2), then the robot doubles the window width W and threshold τ and resets the
sweep counter to 0 and the sweep direction to south. Note that the ratio W/τ remains√
n.

Rule 3. Otherwise (i.e., the distance to the nearest corner is more than τ , and
the obstacle does not extend past both sides of the window), the robot travels south
along the obstacle until it either hits the obstacle’s southwest corner or reaches the
window boundary (y-coordinate −W/2). In the first case, the robot just continues
due east to the next obstacle (or t). (See Fig. 1(b).) In the second case, the robot
increments the sweep counter by 1 and flips the sweep direction. If the counter is
greater than

√
n, the robot resets the counter to zero and doubles the window size

and the threshold. (See Fig. 1(c).)
Let Wf be the window size at the time the robot arrives at t.
Theorem 2.1. The total distance walked by the robot is O(Wf

√
n).

Proof. To prove that the distance is bounded by O(Wf
√
n), we divide the path

taken by the robot into three components: (1) horizontal segments, (2) segments
walked south and north “along” obstacles using Rule 1, and (3) segments walked
south and north using Rule 3.

Notice that (i) the total distance walked east is n ≤ Wf
√
n since Wf ≥ n, and

(ii) since the width of each obstacle is at least one unit, the total distance walked
south and north using Rule 1 is bounded by 2nτf ≤ 2Wf

√
n, where τf is the final

threshold. It suffices to bound the third component as well. Fix a window size W .
The distance walked by the robot using Rule 3 to complete one sweep is O(W). Since

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 115

the robot makes at most
√
n + 1 sweeps for each window size, the total distance for

a fixed window size is O(W
√
n). The window size is doubled each time it is changed,

and thus the total distance traveled over all window sizes is also O(Wf
√
n).

Theorem 2.2. The length of the shortest path from s to t, d(S), is Ω(Wf).

Proof. Since we are just interested in the length of the shortest path up to a
constant factor, we may assume that the path consists only of horizontal and vertical
segments. The length of the horizontal segments is clearly at least n. If Wf = n, then
we are done. Also, if Wf is determined by Rule 2 (there is an obstacle that extended
past both sides of the previous window), we are done as well. Therefore, assume that
neither of these is the case, which means that the robot has completed at least

√
n full

sweeps for some window size W ≥ 1
2Wf . We now show that the vertical component

of the shortest path has length Ω(W) = Ω(Wf).

Consider a point on the shortest path with y-coordinate of maximum absolute
value. If this absolute value is at least W/2 − τ , then clearly the shortest path has
length at least W/2− τ = Ω(W). Suppose that this is not the case. Given a shortest
path, for each of the

√
n sweeps, define its first entry point to be the first point on the

shortest path whose x-coordinate is the same as the x-coordinate of the starting point
of the sweep. Similarly, define its first exit point to be the first point on the shortest
path whose x-coordinate is the same as that of the end point of the sweep. Note that
since sweeps do not overlap in their x-coordinates, the exit point of sweep i appears
before the entry point of sweep i+ 1. Thus to lower bound the length of the shortest
path, we can add together for each sweep i the vertical components of the shortest
path from the ith entry point to the ith exit point. Consider the obstacles touched by
the robot during some sweep—let’s say it is a “south” sweep—that require the use of
Rule 3. Each such obstacle extends at least τ to the north of the southernmost point
of the previous such obstacle. Therefore, to travel from the entry point of the sweep
(which is not between any two such obstacles) to the exit point of the sweep (also not
between any two such obstacles) requires traveling a vertical distance of at least τ .
Since there are

√
n sweeps, the total vertical component is at least τ

√
n = W .

Corollary 2.3. Our sweep algorithm achieves a ratio of O(
√
n) for the wall

problem provided every obstacle is an oriented rectangle.

A simple transformation of our algorithm allows it to achieve the same bounds
even if the wall t is not vertical.

Theorem 2.4. The modified sweep algorithm below achieves a ratio of O(
√
n) for

the wall problem with oriented rectangular obstacles, even if the wall is not vertical.

Proof. The algorithm depends on the angle θ that tmakes with the y-axis. Assume
that 0 ≤ θ < π/4 and that the wall runs from southwest to northeast. (The other
three possibilities are analogous.) Here n is the shortest Euclidean distance between
s and t. We distinguish between two cases:

Case 1: sin θ ≥ 1/
√
n. In this case, the robot walks to t using the greedy east–

south path from s (a path that travels due east if possible and otherwise due south).
Observe that the length of this greedy path is the L1 distance between s and the
point of t that the path hits. The x-component of this L1 distance is no more than√

2n. Since sin θ ≥ 1/
√
n, the y-component is bounded by O(n1.5), implying that

ρ(R,n) = O(
√
n).

Case 2: sin θ < 1/
√
n. We run the sweep algorithm exactly as described above

until the first time the robot reaches a point (x0, y0) such that the point (x0,−W/2)
is on or below t, where W is the width of the current window. Then the robot walks
to t using the greedy east–south path. By Theorem 2.1, the distance walked by the

116 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

robot until reaching (x0, y0) is O(W
√
n), and it is clear that the length of the greedy

path from there to t is O(n+W). By an argument identical, to the one in the proof
of Theorem 2.2, the shortest path from s to the vertical line x = x0 has length Ω(W).
By the requirement on θ, the shortest path from s to t has length Ω(W) as well.

3. The room problem. In this section, we consider the room problem: scenes
in which the obstacles are oriented rectangles confined to lie within a square room
such that no obstacle touches the room walls; the point s is on the border of the room
and t is in the center. (See Fig. 2.)

Later, we extend our results to rectangular rooms. Since travel along the room
walls is “cheap,” we may assume that s is in the southwest corner of the room, and
for convenience we let t have coordinates (n, n), so the distance from s to t is in fact
n
√

2.

Define a greedy 〈+x,+y〉 path to be a path that travels due east if possible and
otherwise due north. Similarly, define greedy 〈+y,+x〉 paths, 〈+x,−y〉 paths, and
so forth, to be ones that travel in the first direction if possible and otherwise the
second direction. A brute-force 〈+x〉 path is one that travels due east, going around
obstacles in its way along the shorter direction, but otherwise maintaining a constant
y-coordinate. A monotone path from (x1, y1) to (x2, y2) is a path that does not both
increase and decrease in any coordinate. For example, if x2 > x1 and y2 < y1, then
the x-coordinate will never decrease and the y-coordinate will never increase. Notice
that a greedy path is always monotone.

We now describe an algorithm that achieves R(S) = O(n3/2) and thus ρ(R,n) =
O(
√
n). An improvement that uses this algorithm recursively achieves ρ(R,n) =

O(2
√

3 logn).

The algorithm maintains the following invariant at the start of each iteration:
the robot knows of a monotone obstacle-free path from a point (x0, n) to a point
(n, y0), where 0 ≤ x0, y0 ≤ n. Furthermore, the robot is positioned on a point of this
monotone path. We begin with x0 = y0 = 0, where the known path is just a path
along the room borders. Each loop through the algorithm will increase either x0 or
y0 by at least an amount

√
n, walking a distance of only O(n). (If the value increased

(x0 or y0) is within
√
n of n, then it is increased only up to n.) Since each of x0 and

y0 can be increased by this amount only d
√
ne times, the total distance walked by the

robot to reach t is O(n3/2).

For this first version of the algorithm, let m =
√
n. We will describe the algorithm

as if t were allowed to be inside an obstacle, in which case the goal is simply to reach
the obstacle containing t; this will allow for easier recursive application.

Algorithm Oriented-Room-Find (See Fig. 3.)

Initialization. Set x0 and y0 to 0. Set the monotone path to be the path along
the room boundary from (x0, n) to (n, y0).

Step 1. Define t̃ to be the point with x-coordinate min{x0+m,n} and y-coordinate
min{y0 + m,n}. That is, unless we are close to t along some dimension, we have
t̃ = (x0 +m, y0 +m). The goal of this step is to travel to some point t′ not inside an
obstacle that is to the northeast of t̃ and southwest of t inclusive. If no such point
exists, we wish to travel to some point on the obstacle containing both t̃ and t.

For this (nonrecursive) version of the algorithm, we may reach t′ as follows. First,
traverse the monotone path to a point with y-coordinate equal to that of t̃. Then, if
this is to the west of t̃, travel in a brute-force 〈+x〉 path until t̃ is reached or an obstacle
containing t̃ is first encountered. In the latter case, unless the obstacle contains both

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 117

t

s

A path from t to s.<−y,−x>

Fig. 2. The room problem.

t̃ and t (and we are done), we can just follow the obstacle boundary to a point in the
desired region.

Step 2. Make a greedy 〈+x,+y〉 path from t′ until either the x- or y-coordinate
equals n. If we are at t, then halt. Otherwise, without loss of generality, assume that
the robot has traveled to the west of t, so the current coordinates are (x̂, n) for x̂ < n.
Notice that x̂ ≥ x0 +m since the path was greedy.

Step 3. Let x0 = x̂. Travel a greedy 〈+x,−y〉 path from (x̂, n) until either a point

118 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

(n, ŷ) is reached (in which case let y0 = ŷ) or the previous monotone path is hit. In
either case, we have a new monotone path from (x0, n) to (n, y0) with x0 increased by
at least m. If the greedy 〈+x,−y〉 path was such that it reached (n, y0) and in doing
so followed the border of a single obstacle, then we must be at an obstacle containing
t and so we are done. (Similarly, the robot would travel a greedy 〈+y,−x〉 path if it
had hit to the south of target t in Step 2.)

Now go back to Step 1.

t~

t

x +m

y +mo

o
n

n

x

y

o

o

Fig. 3. The algorithm for the room problem. Here t̃ = t′.

The distance walked performing Step 1 is O(n) for traversing the monotone path
and final obstacle and O(m2) = O(n) for the brute-force path traveled since the lower
end of any obstacle encountered cannot extend below the monotone path (so there
is at most 2m cost for every unit of progress made). Steps 2 and 3 together require
traveling at most a distance 3n since each consists of a single greedy path, and in the
two paths together, at least one coordinate is nondecreasing. Since these steps are
iterated at most 2 dn/me times, the total distance traveled is at most O(n3/2).

We can reduce the distance traveled toO(n·2
√

3 logn) by using algorithm Oriented-
Room-Find recursively to reach t̃ (or an obstacle containing t̃) in Step 1 and optimizing
the value of m. This works because to begin the algorithm needs only a monotone
path of the form mentioned in the invariant, and not a true “room.” In particular,
there need not be any boundary “above” the obstacles at all. Define T (n) to be the
total distance traveled using this strategy to reach point t = (n, n) (or a point on

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 119

the boundary of the obstacle containing t if t is inside some obstacle), given that the
robot is on a known monotone obstacle-free path from (0, n) to (n, 0). As a base case,
say if n ≤ 8, we just use a brute-force path to reach t. Thus the distance traveled at
each iteration of Step 1 is at most 2n for traversing the monotone path, T (m) for the
recursive call, and 3n for following the boundary of the final obstacle encountered.1

Since the number of iterations is at most 2 dn/me, we can bound the total cost T (n)
by

T (n) ≤ 2 dn/me [T (m) + 8n] for n > 8.

By substituting m = n/(2
√

3 logn) and using the inequality
√
x− k

√
x ≤

√
x − k/2

for k > 0, we get T (n) ≤ cn · 2
√

3 logn for c = 16(2 +
√

2). We therefore have the
following theorem.

Theorem 3.1. The algorithm for the room problem achieves ρ(R,n) = O(2
√

3 logn).
If we consider a version of the room problem in which s and t are arbitrary points

in the room, then the following strategy can be used to walk from s to t at a total

cost that is O(n2
√

3 logn): simply walk from s out to a corner of the room, then use
the above algorithm. Note, however, that in this case the length of the shortest path
between s and t may be o(n).

A generalization that will be used for the general point-to-point problem is when
the room is rectangular with dimensions 2N × 2n, for N ≥ n, and t = (N,n). We
use the same algorithm as for the square room, with one difference: we define point
t̃ = (min{x0 + mr,N},min{y0 + m,n}) for r = N/n. (Again, if n ≤ 8, we can just
use a brute-force strategy to reach t traveling distance O(N).) The value of m is
optimized as follows. Define T (n, r) to be the total distance traveled to reach point
t = (nr, n), given that the robot is on a known monotone obstacle-free path from
(0, n) to (nr, 0). For a fixed value of m, the distance traveled at each iteration of Step
1 is at most T (m, r) + 5nr, while the distance traveled at each iteration of Steps 2
and 3 is at most n+ 2N ≤ 3nr. The number of iterations is at most 2 dn/me, so we
have

T (n, r) ≤ 2 dn/me [T (m, r) + 8nr] for n ≥ 8.

The substitution used above [m = n/(2
√

3 logn)] results in T (n, r) = O(rn · 2
√

3 logn).
Because we only needed a monotone path to start with, and not an entire room,

we in fact have the following theorem.
Theorem 3.2. Given a monotone obstacle-free path between (0, n) and (N, 0),

for N ≥ n, the above algorithm will reach point (N,n) starting from that path with

total cost O(N · 2
√

3 logn).

4. Point-to-point navigation. We combine the algorithms for the wall and
room problems to obtain an algorithm for navigation in scenes where t is a point at
(n, n) and the obstacles are oriented rectangles with no upper bounds on their extents.

The robot starts by taking a greedy 〈+x,+y〉 path from the start point s until it
reaches a point s′ with either x- or y-coordinate equal to that of t. Suppose that s′

and t have the same y-coordinate. The robot now uses the sweep algorithm for the
wall problem to travel to a point (n, y0) with the same x-coordinate as t. Without

1 The cost of traveling along the final obstacle can actually be amortized away at the expense of
additional sentences of analysis.

120 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

loss of generality, assume y0 ≥ n. Notice that the path from s′ to (n, y0) taken by the
robot in the sweep algorithm never decreases in the x-direction and that y0 − n is at
most the final window width Wf . This path guarantees us that the greedy 〈−y,−x〉
path P from (n, y0) will reach a point (x0, n) with x0 ≥ 0. (In fact, x0 is at least the
x-coordinate of s′.) Now we invoke the algorithm for the room problem (Theorem 3.2)
to arrive at t using the monotone path P as the room walls.

We analyze the distance walked by the robot. The distance traveled using the
algorithm for the wall problem is at most O(Wf

√
n), where Wf is the size of the

last window considered. The size of the (rectangular) room then created is at most
n×Wf . Therefore, using the algorithm of Theorem 3.2, the distance walked to reach
t is O(Wf

√
n). By Theorem 2.2, the length of the shortest path from s′ to t is at

least cWf for some constant c > 0. Now if Wf ≤ 4n/c, then we have an O(
√
n) ratio

since d(S) ≥ n. If Wf > 4n/c, then since the length of the shortest path from s′ to
s is at most 2n, d(S) ≥ cWf − 2n ≥ (c/2)Wf , so we also have an O(

√
n) ratio. We

therefore have the following theorem.
Theorem 4.1. For two-dimensional scenes S in which s and t are points and

every obstacle is a rectangle whose sides are parallel to the axes, our algorithm achieves
a ratio of ρ(R,n) = O(

√
n).

5. A tactile robot suffices. In this section, we use a technique due to Baeza-
Yates et al. [1] to demonstrate that all of our algorithms given so far can be modified
to work with essentially the same ratio bounds even if the robot is tactile: it learns
about obstacles on bumping into them and can infer the size of an obstacle only by
moving along its boundary.

Suppose that the robot hits a side of a rectangular obstacle. Let d be the distance
from its present position p to the nearest corner of the obstacle; it does not know d
or the direction in which this nearest corner lies. The robot can reach this corner
traveling a distance at most 9d + 2 by applying the following “doubling” procedure
suggested by Baeza-Yates et al. until a corner is reached. Walk along the side of the
obstacle one unit in one direction, then turn back and walk two units past p in the
other direction; turn back, and continue in this manner walking 2i−1 units past p on
the ith iteration. If desired, in case a corner is reached which the robot is not certain
is the nearest to p, the robot can simply walk an equal distance from p in the opposite
direction to check. A simple analysis shows that the total length of the walk is at
most 9d+ 2.

It remains to show that in each of the deterministic algorithms we have described,
we can use this procedure to ensure that a tactile robot suffices (with a constant-factor
overhead in the ratio). In our sweep algorithm for the wall problem of section 2, note
that in negotiating an obstacle our decision is essentially based on the distance to the
nearest corner of the obstacle. By using the above doubling procedure, we thus travel
at most nine times the distance that the visual robot does, plus a low-order term for
the additive constant.

Next, consider the room problem. In our algorithm Oriented-Room-Find, the
only parts that required vision were the brute-force path, and finding a point between
t̃ and t if t̃ was inside an obstacle in Step 1. Both can be handled with constant-factor
overhead by the procedure of Baeza-Yates et al.

6. More general obstacle types.

6.1. Arbitrary rectangular obstacles. What if rectangular obstacles with
sides not parallel to the axes are allowed in the room problem? We begin by proving

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 121

two theorems that demonstrate the difference between scenes containing only oriented
rectangular obstacles and scenes containing arbitrary rectangular obstacles.

Theorem 6.1. For infinitely many n, there exist scenes S for the room problem
containing rectangular obstacles whose sides are at arbitrary angles for which d(S) ≥
πn3/2/81.

Thus the length of the shortest path between s and t is not always bounded above
by the L1 distance as in the oriented case.

Theorem 6.2. For any deterministic robot R, there exist scenes S for the room
problem containing rectangular obstacles whose sides are at arbitrary angles for which
ρ(R,n) = Ω(

√
n).

Thus the upper bound for oriented rectangles cannot be achieved in this case.

n
3−

n2
3

Fig. 4. The lower bound in Theorem 6.2. The obstacles touched by the robot are shaded.

Proof of Theorem 6.1. Consider bn/27c+1 circles centered at t with radii dn/3e+
1+9i, i = 0, . . . , bn/27c. (See Fig. 4.) Inscribe in each a regular b

√
nc-gon, aligning all

these polygons. Rotate all the polygons inscribed in circles of radii dn/3e+9i for even
i by an angle π/

√
n. Each edge of each polygon can now be replaced by a rectangular

obstacle of unit width (in the radial direction) and length very nearly the length of
that edge. The length of each obstacle is at least 2π

√
n/3. Now any obstacle-avoiding

path between s and t has to walk a distance of at least 2π
√
n/3 going from a vertex

of the polygon (i.e., gap between the obstacles) on the circle with radius dn/3e+ 18i
to a vertex on the circle with radius dn/3e+ 18i+ 18 for 0 ≤ i < n/54.

Proof of Theorem 6.2. Consider the scene described in the proof of Theorem 6.1.

122 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

We allow a (deterministic) robot to walk from s to t. We now remove from the scene
any obstacle not touched by the robot. Let T be the number of obstacles it touches.
There is a constant c1 such that the distance walked by the robot between touching
a corner of every fourth new obstacle is at least c1

√
n. This sums to a distance of

at least c1T
√
n/4. The total area of the obstacles touched by the robot is bounded

from above by 2c1T
√
n. Thus there exists an angle 2iπ/

√
n, 1 ≤ i ≤

√
n, such that

the path from t to s given by staying on the radius at this angle and going “around”
obstacles encountered is of distance at most c2T for some constant c2. This implies
that ρ(R,n) = Ω(

√
n). Notice that the lower bound holds only if the robot is tactile

and cannot use any visual information. To make the lower bound work in the case of
a robot that uses visual information, we use a slightly different construction together
with a technique given in [26].

Again consider bn/27c + 1 circles centered at t with radii dn/3e + 1 + 9i, i =
0, . . . , bn/27c, and inscribe in each a regular b

√
nc-gon, aligning the polygons. This

time, however, rotate all the polygons inscribed in circles of radii dn/3e + 18i and
dn/3e+ 18i+ 9 for even i by an angle π/

√
n. For each i, call the polygons inscribed

in circles of radii dn/3e + 18i and dn/3e + 18i + 9 a layer. Each edge of the inner
polygon of each layer is replaced by a rectangular obstacle as above, except that it
has thin openings spaced at unit distances. The outer polygon has similar obstacles
in all edges but one, which has a solid rectangular obstacle with no holes. The holes
in each inner polygon are out of alignment with the corresponding holes in the outer
polygon; thus the robot cannot see through any layer.

We run the robot algorithm layer by layer, and we make the first obstacle seen
by the robot in each outer polygon a solid obstacle. By the same argument as above,
it follows that the robot walks Ω(

√
n) between every fourth layer.

We now turn to upper bounds. Define the angle of a rectangle to be the angle
of its longest edge with the x-axis. We first describe a modification of algorithm
Oriented-Room-Find to handle not just obstacles of angles of 0 and π/2 but obstacles
angled in the range [0, π/2] as well. Note that we do not allow obstacles angled in
the remaining range of (π/2, π). Then we describe how this new algorithm can be
modified for scenes S where there is a fixed known excluded range (d1, d2) of angles
(for example, d1 = π/5 and d2 = π/4). Let ñ = n/α, where α = d2 − d1. Our

algorithm achieves R(S) = (ñ · 23
√

log ñ log log ñ). The length of the shortest path in
such scenes is O(n). We remark that for “practical” cases, it may be enough to
consider scenes where there is a known excluded range, especially when the number
of different angles is small. Finally, we give a randomized algorithm that achieves

ρ(R,n) =
√
n · 2O(

√
log n log log n) regardless of the angles of the obstacles.

Suppose that the obstacles are angled in the range [0, π/2]. We describe our
algorithm for this case in two steps. We first show that we need only consider the
case where obstacles are zero-width line segments angled in the range [0, π/2] such
that at most some constant number of obstacles cross any line of length one. We then
give an algorithm for that special case.

The idea for translating into the zero-width case is to view each obstacle as either
two or four line-segment obstacles consisting of its edges that are in the legal angle
range. (All four edges are in the legal range only if the obstacle is oriented.) One
can easily verify that this implies a constant upper bound on the number of obstacles
that cross any given line segment of length one. Let us first assume that when the
robot touches an obstacle, it is given its entire description (as has been our standard
model). Therefore, the robot can simulate an algorithm for the zero-width case,

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 123

and if the simulated algorithm enters a real obstacle, the robot just waits until that
algorithm exits and then meets it at the exit point and continues. By going around
the obstacle in the shortest way, the (actual) robot travels at most twice as much as
the simulated algorithm. To do the simulation with a tactile robot, notice that when
an obstacle edge is touched, the robot can determine whether it should be treated as
a zero-width obstacle or as empty space based on its angle. If the obstacle is to be
treated as empty space, the robot can use the technique of Baeza-Yates et al. to find
the point where the simulated algorithm would exit the (actual) obstacle with only a
constant factor additional cost. The key point here and in the previous case is that
the longer edges of an obstacle are never treated as empty space.

We now describe the algorithm for the zero-width case. The reason for reducing
to this case is that since every obstacle edge now has an angle in the range [0, π/2], we
can perform greedy 〈+x,+y〉 and 〈+y,+x〉 paths. The reason we cannot immediately
use algorithm Oriented-Room-Find, however, is that we can no longer make the greedy
〈+x,−y〉 and 〈+y,−x〉 paths required in Step 3. Instead, we will replace that portion
of the algorithm with a less efficient binary-search strategy.

More precisely, let us say our start point is (x0, y0) and t is at (n, n). In contrast
to Oriented-Room-Find, our invariant will be that we have two monotone paths: a
〈+y,+x〉 path from (x0, y0) to some point to the west of t (i.e., a point (x, n), where
x ≤ n) and a 〈+x,+y〉 path from (x0, y0) to some point to the south of t. As in
Oriented-Room-Find, we begin by recursively (or using brute-force if the distance to
t is sufficiently small) traveling to a temporary point t′ defined as in that algorithm
at distance O(m) from s. Now in place of Steps 2 and 3 of that algorithm, we will
instead use a binary search (described below) to find a point with either the same
x-coordinate or the same y-coordinate as t′ (and to the northeast of (x0, y0)) with the
following property P : the greedy 〈+x,+y〉 and 〈+y,+x〉 paths from this point pass to
the south and west of t, respectively. Thus we will maintain our invariant, increasing
either the x- or y-coordinate of the new “start point” as in Oriented-Room-Find.

We now show how to find the desired point. First, if t′ is such a point, we are done.
Otherwise, suppose that both greedy 〈+x,+y〉 and greedy 〈+y,+x〉 paths starting at
t′ hit points to the south of t. (The other case is analogous.) Let s′ be a point with
the same y-coordinate as t′ on the 〈+y,+x〉 path from (x0, y0) given by our invariant.
Since the 〈+y,+x〉 path from s′ hits a point to the west of t, if the 〈+x,+y〉 path
from s′ hits a point to the south of t, then we are done as well. Otherwise, we travel
to a point t′′ halfway between s′ and t′—using the same procedure as that used to
reach t′—and examine the 〈+x,+y〉 and 〈+y,+x〉 paths from t′′. (If t′′ as defined
is inside an obstacle, we examine the two points to the west and east of t′′ on that
obstacle boundary.) Depending on the outcomes of these greedy paths, we either halt
with success or continue the binary search with a new t′′′ and so on. We stop the
binary search when either success is discovered or the interval under consideration
has length at most 1. Thus at most dlogne iterations of the binary search will be
made. If the binary search stops because the interval remaining is too short, a point
with property P can easily be found by traveling from the west endpoint to the east
endpoint of the interval and, each time an obstacle is hit (this can happen at most a
constant number of times), testing it for property P before going around the obstacle,
which costs only O(n). This strategy succeeds because if two points a and b have
the same y-coordinate and there is either no obstacle, between them or both are at
the boundary of the same obstacle, then the 〈+x,+y〉 path from the leftmost point
intersects the 〈+y,+x〉 path from the rightmost point.

124 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

We get that the total distance is given by:

T (n) ≤ d2n/me dlogne [T (m) + cn] for some constant c.

Substituting m = dn/2
√

log n log log ne yields

T (n) = O
(
n · 23

√
log n log log n

)
.

This strategy can be used for a smaller range (d1, d2) of excluded angles by just
performing a rotation and a coordinate transformation on the space. Essentially,
instead of writing t as n~x + n~y for orthogonal unit vectors ~x and ~y, we may write
t as (n′ ~d1 + n′′ ~d2), where ~d1 and ~d2 are unit vectors in the d1 and d2 directions.
It is not difficult to see that both n′ and n′′ are O(n/α), where α = d2 − d1. Let
ñ = n/α. The performance of the previous algorithm after the transformation is

R(S) = O(ñ · 23
√

log ñ log log ñ) since the lengths are changed by at most a factor of
1/α.

Theorem 6.3. There is a deterministic algorithm for the room problem with

an excluded angular range of size α that achieves R(S) = O(ñ23
√

log ñ log log ñ). Here
ñ = n/α.

Now consider the general case where the angles of the obstacles may be in any
range. A simple pigeonholing argument implies that a constant fraction of the ranges
[iπ/
√
n, (i + 1)π/

√
n] for 0 ≤ i <

√
n have the property that the total perimeter of

the obstacles angled in this range is no more than 2/
√
n of the total perimeter. To

bound the total perimeter, note that from our assumption that a unit circle can be
inscribed in each obstacle, it follows that the perimeter of an obstacle, is always less
than four times its area. Since the total area of all obstacles is at most n2, the total
perimeter of obstacles in such a range is O(n3/2).

Consider a randomized algorithm that first guesses such a range. It then applies
the above algorithm assuming that there are no obstacles with angles in this range.
On actually encountering any obstacle in this range, it just goes around the obstacle
at cost at most the perimeter of the obstacle. From the definition of the “forbidden
angle range,” it follows that on any given greedy path, the robot will go around any
such obstacle at most once. Therefore, the expected total distance walked by this
algorithm is given by the recursion given above where ñ = n3/2, and a constant times
n3/2 is added to the cñ term (which remains O(ñ)). Thus we obtain the solution

T (n) = n3/2 · 2O(
√

log n log log n).
Theorem 6.4. There is a randomized algorithm that achieves a ratio of

√
n · 2O(

√
log n log log n) for the room problem provided that every obstacle is a rectangle

within which a unit circle can be inscribed.

6.2. Arbitrary convex polygons. We now describe how our randomized al-
gorithm for the room problem can be extended to handle arbitrary convex polygons
provided that a unit circle can be inscribed in each obstacle and that the entire de-
scription of an obstacle is given to the robot when that obstacle is touched. (The only
part of the description of the obstacle that is required is the angle that its longest
diagonal makes with the x-axis.) We do not have a solution for the wall problem with
arbitrary convex obstacles, and thus we have no solution for point-to-point navigation
with convex obstacles.

We define the angle of a convex polygonal obstacle to be the angle its longest
diagonal makes with the x-axis. The idea for the conversion is that each time the

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 125

robot encounters an obstacle, it picks a longest diagonal D and treats that obstacle as
a collection of line segments parallel to D. In particular, it imagines a line segment at
D and then additional segments (if any) parallel to and at distance 1, 2, 3, etc. from
D, each as long as possible to still be contained within the obstacle. It then feeds
this collection of line segments to the algorithm for rectangular obstacles. As in the
case for unoriented rectangular obstacles, suppose the line-segment algorithm wishes
to travel a path along line segments that leads through one of the convex obstacles:
say the path is between points a and b on some obstacle’s border. The robot then
simply travels the shortest path from a to b along the obstacle boundary. Since the
line segments are parallel to the longest diagonal of the obstacle and the obstacle is
convex, we are guaranteed that the shortest path along the obstacle between a and b
is at most a constant multiple of the straight-line path.

We note that in case there is a fixed known excluded range of angles, then the
algorithm of Theorem 6.3 can be extended as well.

7. Extensions to three dimensions. This section summarizes extensions of
our techniques to three dimensions. We begin by extending our study of the wall
problem to three dimensions, and then we extend our optimal algorithm for point-to-
point navigation to three dimensions.

7.1. The wall problem in three dimensions. Suppose that t is an infinite
plane perpendicular to the x-axis at distance n from the origin s. We begin by
extending the lower bound of [26] to three dimensions, showing a lower bound of
Ω(n2/3). We then give a generalization of the two-dimensional sweep algorithm that
achieves a matching upper bound.

Theorem 7.1. For any deterministic robot, there are scenes S of the three-
dimensional wall problem for which ρ(R,n) = Ω(n2/3).

Proof. To prove the lower bound, it will be convenient to assume a tactile robot.
Using the technique of [26] used in section 6.1, this proof can be extended to robots
with visual capabilities.

As the robot walks in the direction of t, the adversary places obstacles as follows.
Each obstacle is a cuboid whose cross-section parallel to the yz-plane is a square of
side n2/3 and whose width in the x-direction is one. Whenever the robot first reaches
x-coordinate i for each i ∈ {0, 1, . . . , n− 1}, a cuboid is placed directly in front of it.
Thus the robot must travel a distance at least 1

2n
2/3 perpendicular to the x-axis in

order to advance one unit parallel to the x-axis. Thus R(S) ≥ 1
2n

5/3.

We now show that d(S) ≤ 3n. Since the cross-sectional area of each cuboid is
n4/3, by the pigeonhole principle, there is a line ` parallel to the x-axis with the
following properties: (a) its distance from the x-axis is at most n; (b) it cuts at
most n1/3 cuboids. Consider a path that starts from s and first goes to the leftmost
point of `. It then goes along ` parallel to the x-axis, traveling around each cuboid it
encounters.

The distance from s to the leftmost point of ` is at most n. The distance traveled
parallel to the x-axis is also n. The total perpendicular distance traveled in circum-
venting the cuboids cut by ` is at most n1/3 × n2/3 = n. Therefore, d(S) ≤ 3n and
the ratio ρ(R,n) = Ω(n2/3).

We now give an algorithm that matches this lower bound to within a constant.
At a high level, the algorithm can be viewed as an extension of the two-dimensional
sweep algorithm. The window, which in the plane was the region between two lines
parallel to the x-axis, now becomes a cylinder whose axis is the x-axis. The radius of

126 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

this cylinder is initially n and is subsequently increased at certain points. The sweep
used in the plane is now replaced by a spiral about the x-axis.

For simplicity, we first describe the algorithm as if every obstacle were a cylinder
of circular cross-section with its axis parallel to the x-axis and its center placed directly
in front of the robot. The radii and lengths of these obstacles can vary. Following the
analysis of this simple case, we outline the extension of the algorithm to more general
obstacles.

Consider a point orbiting around a fixed point, with the radius of the orbit in-
creasing linearly with angular position at a rate of D units for every 2π radians of
angular position. We call the path of the moving point a spiral and D the spacing of
this spiral. (See Fig. 5.)

-20 -15 -10 -5 5 10 15

-10

10

20

s

t

Fig. 5. A projection of a spiral with radius 20 and spacing 2, overlaid with a projection of
a cylinder of radius 6. The point s is the projection of the point where the robot encountered the
obstacle, and point t is the projection of the nearest point on the outward spiral that is not covered.

Our algorithm begins with W = n; at all times, τ = W/n1/3. Consider a spiral
whose center is on the x-axis and whose orbits lie in a plane perpendicular to the

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 127

x-axis. The spacing will be τ/3. Thus there are at most 3n1/3 orbits in the spiral
within the current window.

The y- and z-coordinates of the robot will always lie on such a spiral. Analogous
to the sweep direction in the plane (north or south), the robot now maintains a spiral
direction that is either “outwards” or “inwards” along the spiral. On encountering
a (cylinder) obstacle directly in front of it, the robot first checks if the radius of the
cylinder exceeds τ . If not, the robot “goes around” the cylinder, retaining its current
yz-coordinates. On the other hand, if the radius does exceed τ , the robot proceeds
to the nearest point p on the spiral along its current spiral direction (outwards or
inwards) that is not covered by the cylinder, proceeding as far along the x-direction
as it can in the process. If this nearest point lies at a distance W ′ from the x-axis
that exceeds W , the robot increases W to 2W , resets the sweep counter to zero, and
proceeds to begin a new spiral inwards from this point. Whenever the robot completes
an inward spiral by reaching the x-axis or an outward spiral by reaching a point at
distance W from the x-axis, it increments the sweep counter. Whenever the sweep
counter reaches n1/3, the robot doubles W (and τ), resets the sweep counter to zero,
and continues.

Theorem 7.2. The spiral algorithm achieves a ratio of O(n2/3), provided that
every obstacle is a cylinder whose center is directly in front of the robot when it is
first encountered.

Proof. The analysis is essentially identical to that of Theorems 2.1 and 2.2. Let
Wf be the final window radius. Since there are at most 3n1/3 orbits in each spiral,
the distance walked by the robot in the last completed spiral is O(n1/3Wf). Since
there are at most

⌈
n1/3

⌉
complete spirals in each window, the total distance walked

by the robot is O(n2/3Wf).

We show that the length of the shortest path is Ω(Wf). First, we may assume
that the robot has completed

⌈
n1/3

⌉
spirals for some window size W ≥ 1

2Wf , or else
we are immediately done. (This is by the same reasoning used for the two-dimensional
wall problem.) Consider a point on the shortest path that is farthest from the x-axis.
If the distance of this point to the x-axis is at least W , then clearly the shortest path
has length at least W , so we may assume that this is not the case.

Given a shortest path, for each of the completed spirals, define its first entry
point to be the first point on the shortest path whose x-coordinate is the same as the
x-coordinate of the starting point of the spiral. Similarly, define its first exit point to
be the first point on the shortest path whose x-coordinate is the same as that of the
end point of the spiral. As in the two-dimensional problem, the exit point of spiral
i appears before the entry point of spiral i + 1. Therefore, we need only show that
for each spiral in some window of size W , the yz-plane component of the shortest
path from the entry point to the exit point of the spiral is Ω(τ). This will imply that
the total yz-plane component of the shortest path is Ω(τn1/3) = Ω(W). Therefore,
imagine projecting the completed spiral onto the yz-plane, projecting all the cylinders
encountered in that spiral onto circles in the yz-plane. Observe that every point on
the spiral is at distance at most τ/2 from the center of one such circle of radius at least
τ . Since the orbits of the spiral are at distance τ/3 from one another, for any point
of distance at most W from the origin, there exists a circle such that the distance of
this point from the periphery of the circle is Ω(τ). In particular, this also holds for
the projection of the entry point of the sweep. Thus the yz component of any path
from the entry point to the exit point must be Ω(τ).

The extension to the case of general cylindrical obstacles is similar. We define a

128 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

general cylindrical obstacle to be one for which there is a simple closed curve C in
the yz-plane such that the obstacle’s intersection with any plane perpendicular to the
x-axis when translated to the yz-plane is either empty or it is C and its interior. As
long as the robot moves in the positive x-direction, it will hit an obstacle only at some
point of its unique “west face” in the yz-plane. On encountering such an obstacle,
the robot measures the shortest distance from its present position to a point p on the
spiral not touched by the obstacle. If this quantity is less than τ , it uses this shortest
path to circumvent the obstacle and retain its yz-coordinates. Otherwise, it goes to
p and proceeds as far along the x direction as it can. The analysis is very similar to
the case of unit-height cylinders.

Theorem 7.3. For three-dimensional scenes S with general cylindrical obstacles
and in which s and t are points, our spiral algorithm achieves a ratio of ρ(R,n) =
O(n2/3) for the wall problem.

7.2. Point-to-point navigation in three dimensions. We now give an upper
bound for point-to-point navigation in three dimensions that matches the lower bound
to within a constant factor provided that every obstacle is a cuboid whose sides are
parallel to the axes. As in two dimensions, our upper bound for point-to-point navi-
gation comes from combining an algorithm for point-to-plane navigation and another
for the room problem. However, in the three-dimensional case, it suffices to com-
bine the three-dimensional wall algorithm with the two-dimensional room algorithm
to obtain a three-dimensional point-to-point navigation algorithm. For simplicity of
analysis, we assume that all obstacles have vertices at integral coordinates. However,
our algorithm would still work provided that a unit cube can be inscribed within every
cuboid in the scene.

Suppose without loss of generality that the x-, y-, and z-coordinates of s are less
than those of t. The algorithm consists of three stages. In the first stage, the robot
reaches a point s′′ such that at least two of its coordinates are the same as t. This is
done as follows. The robot starts by taking a greedy 〈+x,+y,+z〉 path until one of
the three coordinates is the same as t. Call this point s′ and without loss of generality
say the y-coordinates of s′ and t are the same. Next, fixing the y-coordinate (i.e.,
staying in the xz-plane of point s′), the robot takes a greedy 〈+x,+z〉 path from s′

until one of the other two coordinates is the same as t. The endpoint of this path is
the desired point s′′. Without loss of generality, assume that the y- and z-coordinates
of s′′ are the same as t and let nx ≤ n be the distance between s′′ and t. The total
distance walked in the first stage is O(n).

In the second stage, the robot uses the three-dimensional wall algorithm from s′′

to reach a point t′ with the same x-coordinate as t. See Fig. 6. The total distance
walked in this step is at most O(n2/3) times d(S). Let nw be the distance between t′

and t.

Assume that t′ is not t (otherwise we are done). Consider the plane that contains
the three points s′′, t′, and t. (See Fig. 6.) In the third stage, the robot will stay in
this plane. Notice that since all of the obstacles are cuboids, the intersections of all
obstacles with this plane are oriented rectangles. Define w to be a linear combination
of y- and z-directions so that points on this plane can be written in (x,w) coordinates,
and translate these so that s′′ = (0, nw), t′ = (nx, 0), and t = (nx, nw) in this system.

From t′ do a greedy 〈+w,−x〉 path until either the w-coordinate is nw or else
the x-coordinate is 0, whichever comes first. If the first case occurs, then the greedy
path is a monotone boundary and we can apply the room-problem algorithm of The-
orem 3.2. (The two-dimensional slice may technically violate our conditions for the

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 129

t

t’

S’’

Fig. 6. The plane that contains the points s′′, t′, and t.

room problem by having obstacles that are too “thin.” However, because a unit cube
can be inscribed in each of the three-dimensional obstacles, there is sufficient separa-
tion for the room-problem algorithm to work.) If the second case occurs (we reached
a point with x-coordinate 0), then go back to s′′, retracing all our steps if we have to,
and perform a greedy 〈+x,−w〉 path from there. This is guaranteed to hit a point
with x-coordinate of nx and w-coordinate at least 0 since it cannot cross our previous
greedy path. Therefore, we again have a room and can run the room algorithm. The
distance walked in this stage is O(

√
n · d(S)) since nw ≤ d(S). We therefore have the

following theorem.

Theorem 7.4. For three-dimensional scenes S in which s and t are points and
every obstacle is a cuboid whose sides are parallel to the axes, our algorithm achieves
a ratio of ρ(R,n) = O(n2/3).

To extend this result to a tactile robot, we again use the technique due to Baeza-
Yates et al. [1]. Their strategy allows one to start from a face of a cuboid and travel to
the nearest edge (at distance d), walking distance O(d) in the process, without prior
knowledge of d or the direction to the nearest edge. As in section 5, this allows our
algorithm for point-to-point navigation in three dimensions to work for tactile robots
with the same asymptotic ratio bounds.

8. The power of randomization. We now consider randomized robots that
toss coins as they walk from s to t. The scene S is fixed in advance by an oblivious
adversary [3] who knows the randomized algorithm but not the coin tosses made by
the robot during a walk. The cost of robot R on scene S is now a random variable; we
thus define the ratio ρ(R,n) to be supS∈S(n)E[R(S)]/d(S). The main result of this
section is a randomized algorithm for the two-dimensional wall problem that achieves

a ratio of 2O(
√

log n log log n) provided that the obstacles are all vertical line segments
with endpoints at integral x-coordinates and the robot is allowed vision. Notice that
for this situation, the robot can see the entire “column” of obstacles directly in front of
it; that is, if the robot is at a point with x-coordinate in the range (i−1, i) for integer

130 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

i, it can see all obstacles of x-coordinate i. To keep with our previous conventions on
the thickness of obstacles, we could equivalently consider obstacles of width between
one and two having their left walls only at even x-coordinates; this would still allow
the robot to see an entire “column” at once.

The Papadimitriou–Yannakakis lower bound of Ω(
√
n) still holds for deterministic

algorithms for this restricted class of scenes [26]. Therefore, for such scenes, a ran-
domized algorithm is provably better than a deterministic one. We leave as an open
question whether one can achieve similar bounds for the more general wall problem.

The idea for the randomized algorithm is to view the problem as a k-server prob-
lem on (k + 1) equally spaced points on a line and then use as a subroutine known
randomized strategies [4] for that server problem. For the benefit of the reader, we
now define the k-server problem, first defined in [23]. An on-line algorithm manages
k mobile servers located at the vertices of a graph G whose edges have positive real
lengths. The algorithm has to satisfy on-line a sequence of requests, each of which is
some vertex v of G, by moving a server to v unless it already has a server there. Each
time it moves a server, it pays a cost equal to the distance moved by that server. We
compare the cost of such an algorithm to the cost of an adversary that, in addition
to moving its servers, also generates the sequence of requests. In fact, our problem
can be better described as a metrical task system of [6], but we will use the language
of servers here. In the lower bound direction, a recent result of Karloff et al. for
the server problem shows that even for the special case of scenes we consider, no
randomized algorithm can achieve a constant ratio [17].

We now present our randomized algorithm. There is a randomized strategy for
k servers on k + 1 equally spaced points on the line that achieves competitiveness

2O(
√

log k log log k) against the oblivious adversary [4]. (For completeness, details are
given in the appendix.) We map the navigation problem to this k-server problem as
follows. Let k = n− 1 and define the spacing between adjacent points on the line to
be W/n, where W is the width of a window of y-coordinates currently considered by
the robot; the value of W will be specified below. Each point in the server problem
corresponds to a range of W/n y-coordinates for the navigation problem. The “hole”
(the point without a server) represents the range currently inhabited by the robot.

We begin with W = n and start the hole at the center of the line. Each time
the robot sees a column of obstacles, the robot notes all points in the server problem
corresponding to ranges that are completely blocked by obstacles. It then makes
enough requests to the server algorithm on those points so that for the server algorithm
of [4], the hole no longer resides on such points. Note that this request sequence is
determined by the scene and thus obeys the definition of an oblivious adversary. The
robot then moves to the range occupied by the hole (if it is not already there) and
then moves a vertical distance at most W/n to find a point where it can go forward
in the +x direction to the next column. Thus the distance moved by the robot is at
most the on-line server cost plus W/n+ 1 for each unit moved in the +x direction. If
the off-line server cost reaches W , the robot doubles the window width and restarts
the server algorithm; each point now corresponds to a larger range of y-values.

Theorem 8.1. The randomized algorithm above achieves a ratio of 2O(
√

log n log log n)

for the wall problem in the plane where the robot uses vision and the obstacles are ver-
tical line segments at integral x-coordinates.

Proof. For a fixed window width, the off-line server cost in the above transfor-
mation is a lower bound on the length of the shortest path for the robot problem
(assuming the off-line hole is also started at the center of the line). The off-line server

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 131

cost could be a bit lower than the length of the shortest path since we do not make
requests to points corresponding to y-value ranges only partially blocked by obsta-
cles. Note that when the off-line cost exceeds W , the shortest path might escape the
window, which is why W is doubled.

As mentioned previously, the on-line cost for the robot is a most the on-line
cost for the server problem plus W/n + 1 for each unit advance in the x-direction.
Therefore, if Wf is the final window width used, the total distance traveled by the

robot is at most (Wf + n) +Wf2O(
√

log n log log n) = d(S)2O(
√

log n log log n).

9. Nonconvex obstacles and mazes. When the obstacles are nonconvex, the
scene can be a maze. In this case, it is easy to see that ρ(R,n) cannot be bounded
by any function of n (the Euclidean distance between s and t). Instead, we prove a
ratio between R(S) and d(S) as a function of the total number of vertices in all the
obstacles, |V |.

Theorem 9.1. No randomized algorithm achieves a ratio better than (|V | −
10)/6.

Proof. Consider the maze in Fig. 7 and its obvious generalization.

t

s

Fig. 7. A maze achieving the lower bound. Each line segment corresponds to an obstacle with
four vertices.

The maze has (|V | − 10)/6 passages that could lead from s to t. An algorithm
attempts various passages in turn until it finds the sole passage open to t. For any
randomized algorithm, there is one passage whose expected “time to attempt” is at

132 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

least (number of passages − 1)/2; this passage is left open to t. The robot walks
2d(S) on every failure before that attempt, and d(S) on that attempt.

The bound applies a fortiori to deterministic algorithms. Rao et al. [28] give a
deterministic algorithm that explores a maze by building a map of the scene, proceed-
ing at each step to that unexplored vertex of the maze nearest to the vertices that
have already been visited. It is easy to show that this algorithm achieves a ratio of
at most 2|V |, matching the above lower bound to within a constant. This algorithm
is memory intensive, and this may be a handicap when space is limited or the scene
changes quickly enough that a map is not worth building. We now give a simple,
memoryless, randomized alternative based on a random walk that works for scenes
in the plane. We first define a graph G(S) on the vertices of the polygons in S and
prove a simple geometric property of this graph. We then describe how the robot can
perform a random walk on this graph, and we invoke a result on random walks to
prove that the robot’s ratio is O(|V |).

The graph G(S) is defined as follows: each vertex of a polygon in S is a node in the
graph. A node v in G(S) chooses up to twelve neighbors, defined as follows. Consider
the twelve cones defined by angular intervals [πi/6, π(i+ 1)/6), i = 1, 2, . . . , 12 about
v. There is an edge joining v to the nearest visible vertex (if any) in each cone.
Thus G(S) has at most 12|V | edges. A construction similar to G(S) appears in
Clarkson [11], where a result similar to the following lemma was given:

Lemma 9.2. Let dst(S) be the distance between two vertices s and t in the scene
S. There is a path in G(S) between s and t of length at most 2.1dst(S).

Proof. For two vertices u and v in the scene that are mutually visible, denote by
duv the distance between them. The shortest path in S between s and t is a path in
the visibility graph of S [32]: a graph whose nodes are the vertices of obstacles in S,
with two nodes being joined by an edge if they are visible from each other. We now
show that given this shortest path (of length dst(S)) in the visibility graph, we can
find a path in G(S) between s and t whose length is at most 2.1dst(S). Note that we
can afford to find this path “off-line”: we only wish to exhibit the existence of a short
path in G(S) from s to t.

We use an iterative strategy: we take the first edge of the visibility graph on the
shortest path, say (s, a). If (s, a) is an edge in G(S), we proceed to a and continue
from there. Otherwise, we show that there is an edge (s, b) in G(S) with the following
property: dbt(S) ≤ dst(S) − 0.48dsb. (Note that s and b are mutually visible.) We
therefore go from s to b in the first step of our path in G(S) from s to t, having ensured
that (1) we move to a node whose distance to t in S is less than from s and (2) the
distance we have walked is proportional to the reduction in the remaining distance.
We now continue the iteration from b, with b playing the role of s. In fact, since
our distance to t diminishes at each iteration, we will have at most |V | − 1 iterations
before arriving at t.

It remains for us to bound the first step (s, b) when (s, a) is not an edge in G(S).
Since s and a are mutually visible, the only reason that segment sa is not an edge
in G(S) is that the cone containing the line segment sa has a node b in it such that
(s, b) is an edge in G(S), i.e., dsb ≤ dsa. Consider the sector of the circle with center
s and radius dsb that lies in the cone containing the segment sa. Let c be the point
where this sector cuts segment sa. Since b is the closest vertex to s in the cone, no
obstacle vertex lies in this sector. Further, since both a and b are visible from s, no
portion of any obstacle lies in this sector. Therefore, b and c are mutually visible, as

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 133

are a and c. Figure 8 illustrates these facts. Thus

dbt(S) ≤ dbc + dca + dat(S).

On the other hand,

dst(S) = dsc + dca + dat(S).

Using some elementary trigonometry and the fact that the angle between segments
sa and sb is at most π/6, we have

dbt(S) ≤ dst(S)− dsc + dbc ≤ dst(S)− 0.48dsb.

s a

b

c

Fig. 8. dbc < 0.52dsc and dsb = dsc.

We now describe the random walk that the robot executes in going from s to t.
At each node, it looks out to see the nearest node in each of the twelve cones, if such
a node exists; let them be v1, v2, . . . , vk at distances d1, d2, . . . , dk, respectively. Then
it chooses to go to vi with probability

1/di∑k
j=1 1/dj

.

Note that this probabilistic decision is a local choice that does not need knowledge
of G(S) in advance; at each vertex, the robot measures the distance to the nearest
visible node in each cone and chooses each with probability inversely proportional to
its distance. The robot stops the process on arriving at t.

Theorem 9.3. The expected distance traveled by the robot is at most 50.4|V |dst(S).
Thus it achieves a ratio of at most 50.4|V |.

Proof. Chandra et al. [8] have studied the following general walk in a graph with
positive real edge lengths: at each node, the walk chooses the next edge to walk along
with probability inversely proportional to its length. They show that the expected
distance traversed by the walk in going from a node a to a node b is at most 2m`ab,
where m is the number of edges and `ab is the length of the shortest path in the graph
between a and b.

In our case, m ≤ 12|V |, and `st ≤ 2.1dst(S) by Lemma 9.2; combining these facts
with the result in [8] yields the theorem.

134 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

Clearly, there is a tradeoff between the number of cones in the graph G(S) that
we define and the factor 2.1 in Lemma 9.2; had we used 36 cones each of angle π/18,
we could have gotten a tighter factor there but the number of edges in the graph
(which figures in the ratio achieved by the random walk) would have gone up. Our
choice of twelve cones optimizes this tradeoff.

10. Open problems. We conclude with some open problems.
• What are the tight bounds (deterministic as well as randomized) for the room

problem with general obstacles?
• Can a randomized algorithm for the room problem beat deterministic algo-

rithms?
• Extend the sweep algorithm for the wall problem to handle arbitrary polygo-

nal obstacles and hence or otherwise obtain an algorithm for point-to-point navigation
with such obstacles.

• Extend all of the above to three dimensions.
• Give an algorithm that achieves a provably good ratio for three-dimensional

scenes with nonconvex obstacles (three-dimensional mazes).
• Blum and Kozen [5] show that a planar maze can be traversed in a number of

steps polynomial in the number of vertices in the maze by a deterministic automaton
using two pebbles. We have seen that the deterministic algorithm of Rao et al.
achieves an optimal ratio but is memory intensive, whereas the random walk achieves a
similar ratio without using memory to build a map. Is there a deterministic automaton
using few pebbles (small memory) that achieves a good ratio? It seems reasonable to
expect that the automaton would need a distance counter as well.

Appendix.. We outline the randomized k-server algorithm invoked in section 8
and the proof of its competitiveness.

Theorem A.1 (see [4]). There is a randomized algorithm for k = n − 1 servers
on n equally spaced points on a line that achieves an expected competitiveness ratio of

2O(
√

log n log log n) against an oblivious adversary.
Proof. Without loss of generality, assume that the points are spaced at unit

distance. For convenience, we call the point without any server the “hole” and think
of the algorithm as being on the hole position and having to move when it is “hit” by
a request. The idea of the algorithm is to break the line into a collection of equal-sized
intervals and then to stay within some interval until the adversary has made “enough”
requests inside it. Once the adversary has made enough requests, the algorithm moves
the hole to a different interval, choosing at random from those intervals into which
“not too many” requests have been made.

More specifically, the algorithm proceeds as follows. Let m = dn/2
√

log n log log ne.
Algorithm Randomized-Line

Step 1. Break the line into dn/me intervals, each of m points except possibly the
last. We label these intervals I1, . . . , Idn/me. Initialize each interval to be “unmarked.”

Step 2. For each point i (1 ≤ i ≤ n), initialize a variable C(i) to zero. Each
C(i) represents the minimum possible off-line cost of ending at point i given the
sequence of requests seen since the last initialization (and assuming the off-line server
may start at any point). Updating C(i) is easy: after a request is made at point i,
C(i)← min{C(i− 1) + 1, C(i+ 1) + 1}. To handle the endpoints, initialize C(0) and
C(n+ 1) to infinity.

Step 3. Randomly choose one unmarked interval Ij . Stay inside the larger interval
Ij−1 ∪ Ij ∪ Ij+1, running Randomized-Line recursively within that region, until the

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 135

minimum cost C(i) for i ∈ Ij has risen to be greater than m/2. As a base case, for
a small enough interval, any deterministic algorithm will do (e.g., the deterministic
algorithm given in [10]). For consistency at the endpoints, define I0 and Idn/me+1 to
be empty and always marked.

Remark. The reason for staying within a larger interval of size 3m is a technical
one to handle the “edge effects” that occur at the boundaries of the intervals Ij , as
discussed in the analysis.

Step 4. Mark all intervals Ij such that the minimum cost C(i) for all i ∈ Ij is at
least m/2. If there is some unmarked interval left, then go back to Step 3.

Step 5. All intervals are now marked, so the off-line cost since the last initialization
of the C(i)’s is at least m/2. Go back to Step 2 and reinitialize.

Analysis. Let T (n) be the expected cost of algorithm Randomized-Line for n− 1
servers on a line of n unit-spaced points for a sequence of requests yielding a minimum
off-line cost of dn/6e.

Each application of Step 3 costs the algorithm at most an expected n+T (3m): n
for moving to the chosen interval and T (3m) for the cost inside that interval. Notice
that the cost function C(i) for i ∈ Ij−1 ∪ Ij ∪ Ij+1 may not yield values as high
as those computed by the recursive application. The reason is the “edge effects”:
in the recursive application, the off-line costs of the endpoints of the range are not
constrained by the costs of points outside it. However, the range is large enough so
that for all i in the middle region Ij , the cost C(i) is at least that computed by the
recursive application as long as C(i) ≤ dm/2e.

Each application of Step 3 results in half of the unmarked intervals becoming
marked in Step 4 on average since the central interval Ij inhabited by the hole is
chosen randomly from the unmarked intervals. Thus after O(logn) applications of
Step 3, with high probability all intervals have been marked. Once we repeat Steps
2–5 dn/(3m)e times, the off-line cost has increased by at least n/6.

Therefore, we get the following recurrence:

T (n) ≤ dn/3me
[
O(logn)[T (3m) + n]

]
for, say, n ≥ 16

≤ c(n logn)

m
[T (3m) + n] for some constant c.

Substituting m = dn/2
√

log n log log ne yields

T (n) = O
(
n · 23

√
log n log log n

)
.

Acknowledgments. We thank Alok Aggarwal, Allan Borodin, Don Copper-
smith, Leo Guibas, Sandy Irani, Ming Kao, Howard Karloff, Samir Khuller, and
Yishay Mansour for comments and suggestions. We also thank the referees for many
valuable comments.

REFERENCES

[1] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, Searching in the plane, Inform.
and Comput., 106 (1993), pp. 234–252.

[2] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan, On-line navigation in a room, J. Algorithms,
17 (1994), pp. 319–341.

[3] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in on-line algorithms, in Proc. 22nd Annual ACM Symposium on Theory
of Computing, ACM, New York, 1990, pp. 379–388.

136 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

[4] A. Blum, A. Borodin, D. Foster, H. J. Karloff, Y. Mansour, P. Raghavan, M. Saks, and

B. Schieber, Randomized on-line algorithms for graph closures, unpublished manuscript,
1990.

[5] M. Blum and D. Kozen, On the power of the compass (or, why mazes are easier to search
than graphs), in Proc. 19th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1978, pp. 132–142.

[6] A. Borodin, N. Linial, and M. Saks, An optimal online algorithm for metrical task systems,
in Proc. 19th Annual ACM Symposium on Theory of Computing, ACM, New York, 1987,
pp. 373–382.

[7] S. J. Buckley, Planning compliant motion strategies, Internat. J. Robotics Res., 8 (1989),
pp. 28–44.

[8] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, The electrical
resistance of a graph captures its commute and cover times, in Proc. 21st Annual ACM
Symposium on Theory of Computing, 1989, pp. 574–586.

[9] L. Cheng and J. D. McKendrick, Autonomous knowledge based navigation in an unknown
two dimensional environment with convex polygonal obstacles, Proc. Internat. Soc. Opt.
Engrg., 1095 (1989), pp. 752–759.

[10] M. Chrobak, H. J. Karloff, T. Payne, and S. Vishwanathan, New results on server prob-
lems, in Proc. 1st ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1990, pp. 291–300.

[11] K. L. Clarkson, Approximation algorithms for shortest path motion planning, in Proc. 19th
ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 56–65.

[12] E. G. Coffman and E. N. Gilbert, Paths through a maze of rectangles, Networks, 22 (1992),
pp. 349–367.

[13] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser, J. Rosenblatt, D. Tseng,

and V. Wong, Autonomous cross-country navigation with the ALV, in Proc. IEEE Inter-
national Conference on Robotics and Automation, Vol. 2, IEEE Computer Society Press,
Los Alamitos, CA, 1988, pp. 718–726.

[14] P. Eades, X. Lin, and N. C. Wormald, Performance guarantees for motion planning with
temporal uncertainty, Austral. Comput. J., 25 (1993), pp. 21–28.

[15] J. Hallam, P. Forster, and J. Howe, Map free localization in a partially moving 3-D world:
The Edinburgh feature based navigator, in Proc. International Conference on Intelligent
Autonomous Systems, Vol. 2, IOS Press, Burke, VA, 1989, pp. 726–736.

[16] B. Kalyanasundaram and K. Pruhs, A competitive analysis of algorithms for searching un-
known scenes, Comput. Geom., 3 (1993), pp. 139–155.

[17] H. J. Karloff, Y. Rabani, and Y. Ravid, Lower bounds for randomized server algorithms,
in Proc. 23rd ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 278–
288.

[18] R. Klein, Walking an unknown street with bounded detour, in Proc. 32nd Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1991, pp. 303–313.

[19] V. Lumelsky, Algorithmic issues of sensor-based robot motion planning, in Proc. 26th IEEE
Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos, CA,
1987, pp. 1796–1801.

[20] V. Lumelsky, Algorithmic and complexity issues of robot motion in an uncertain environment,
J. Complexity, 3 (1987), pp. 146–182.

[21] V. J. Lumelsky and A. A. Stepanov, Dynamic path planning for a mobile automaton with
limited information on the environment, IEEE Trans. Automatic Control, AC-31 (1986),
pp. 1058–1063.

[22] A. Mei and Y. Igarashi, An efficient strategy for robot navigation in unknown environment,
Inform. Process. Lett., 52 (1994), pp. 51–56.

[23] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for on-line
problems, J. Algorithms, 11 (1990), pp. 208–230.

[24] H. Moravec, The Stanford cart and the CMU rover, Proc. IEEE, 71 (1983), pp. 872–874.
[25] B. J. Oomen, S. S. Iyengar, N. S. V. Rao, and R. L. Kashyap, Robot navigation in unknown

terrains using learned visibility graphs, part I: The disjoint convex obstacle case, IEEE J.
Robotics Automation, 3 (1987), pp. 672–681.

[26] C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map, in Proc. 16th Inter-
national Colloquium on Automata, Languages, and Programming, Springer-Verlag, Berlin,
1989, pp. 610–620.

[27] N. S. V. Rao, Algorithmic framework for learned robot navigation in unknown terrains, IEEE
Trans. Comput., 22 (1989), pp. 37–43.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 137

[28] N. S. V. Rao, S. S. Iyengar, and G. deSaussure, The visit problem: visibility graph based
solution, in Proc. IEEE International Conference on Robotics and Automation, IEEE Com-
puter Society Press, Los Alamitos, CA, 1988, pp. 1650–1655.

[29] N. S. V. Rao, S. S. Iyengar, B. J. Oomen, and R. L. Kashyap, On terrain model acquisi-
tion by a point robot amid polyhedral obstacles, IEEE J. Robotics Automation, 4 (1988),
pp. 450–455.

[30] C. N. Shen and G. Nagy, Autonomous navigation to provide long distance surface traverses
for Mars rover sample return mission, in Proc. IEEE International Symposium on Intelli-
gent Control, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 362–367.

[31] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
Assoc. Comput. Mach., 28 (1985), pp. 202–208.

[32] C.-K. Yap, Algorithmic motion planning, in Advances in Robotics, J. T. Schwartz and C. K.
Yap, eds., Lawrence Erlbaum Associates, Hillsdale, NJ, 1987, pp. 95–144.

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION∗

MARTIN BEAUDRY† , PIERRE MCKENZIE‡ , PIERRE PÉLADEAU§ , AND

DENIS THÉRIEN¶

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 138–152, February 1997 008

Abstract. The problem of evaluating a circuit whose wires carry values from a finite monoid
M and whose gates perform the monoid operation provides a meaningful generalization to the well-
studied problem of evaluating a word over M . Evaluating words over monoids is closely tied to
the fine structure of the complexity class NC1, and in this paper analogous ties between evaluating
circuits over monoids and the structure of the complexity class P are exhibited. It is shown that
circuit evaluation in the case of any nonsolvable monoid is P complete, while circuits over solvable
monoids can be evaluated in DET ⊆ NC2. Then the case of aperiodic monoids is completely
elucidated: their circuit evaluation problems are either in AC0 or L- or NL-complete, depending on
the precise algebraic properties of the monoids. Finally, it is shown that the evaluation of circuits
over the cyclic group Zq for fixed q ≥ 2 is complete for the logspace counting class co-MODqL, that
the problem for p-groups (p a prime) is complete for MODpL, and that the more general case of
nilpotent groups of exponent q belongs to the Boolean closure of MODqL.

Key words. complexity theory, automata and formal languages, monoids

AMS subject classifications. 68Q15, 68Q25, 20M35

PII. S0097539793249530

1. Introduction. Fix a finite monoid M , that is, a finite set with an associative
binary operation ∗ for which an element of the set acts as an identity. Define a circuit
over monoid M as a circuit whose inputs are elements of M and whose gates perform
the operation ∗.

The circuit evaluation problem over the monoid M , denoted CEP(M), is that of
determining the monoid element computed at a designated output gate in a circuit
over M prescribed on input.

CEP(M) can be thought of as a generalization of the word problem over M , in
which a sequence m1,m2, . . . ,mk of elements of M is given and the task is to evaluate
m1 ∗m2 ∗ · · · ∗mk. CEP(M) is thus particularly interesting in view of the role played
by word problems over monoids in the algebraic characterization of NC1 and its
subclasses [4, 7, 6, 14, 28]. In this paper, we investigate the complexity of CEP(M)
for various M . Our results suggest that in a strong sense, circuit evaluation problems

∗Received by the editors May 24, 1993; accepted for publication (in revised form) April 21, 1995.
This paper revises and extends the abstract “Circuits with monoidal gates” that was presented by the
first, second, and third authors at the 1993 Symposium on Theoretical Aspects of Computer Science
and appeared in Proc. 10th Symposium on Theoretical Aspects of Computer Science, Lecture Notes
in Comput. Sci. 665, Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 555–565 [11].

http://www.siam.org/journals/sicomp/26-1/24953.html
†Département de Mathématiques et d’Informatique, Université de Sherbrooke, Sherbrooke, PQ

J1K 2R1, Canada (beaudry@dmi.usherb.ca). The research of this author was supported by NSERC
grant OGP0089786 and FCAR grants 92-NC-0608 and 91-ER-0642.
‡Département d’Informatique et Recherche Opérationnelle, Université de Montréal, C. P. 6128,

Succursale Centre Ville, Montréal, PQ H3C 3J7, Canada (mckenzie@iro.umontreal.ca). The research
of this author was supported by NSERC grant OGP0009979 and FCAR grant 91-ER-0642.
§LITP, Université de Paris IV, 4 Place Jussieu, 75253 Paris, France. Current address: Booz,

Allen, and Hamilton, 112 Avenue Kléber, 75116 Paris, France.
¶School of Computer Science, McGill University, 3480 University Street, Montréal, PQ H3A

2A7, Canada (denis@cs.mcgill.ca). The research of this author was supported by the NSERC and
the FCAR.

138

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 139

over monoids are to the complexity class P what word problems over monoids are to
the complexity class NC1.

Boolean circuit evaluation over the basis {∨,∧,¬} or over the singleton basis
{NAND} is a well-known P -complete problem [27]. Viewing CEP(M) as a circuit
evaluation over a “basis” consisting of a single associative operator, one might expect
CEP(M) for any M to be markedly easier than circuit evaluation in the Boolean case.
This is not so, however. We prove that whenever M is a nonsolvable monoid, i.e.,
includes a subset which forms a nonsolvable group, CEP(M) is P -complete. Such an
increase in complexity associated with nonsolvability of the monoid has already been
encountered in another context: the word problem over a fixed monoid M is complete
for the complexity class NC1 if M is nonsolvable [4] and believed to be contained in
a proper subclass of NC1 otherwise [7].

What happens, then, when M is solvable, i.e., contains no subset which forms a
nonsolvable group? The complexity of CEP(M) then apparently drops significantly.
We prove that CEP(M) then belongs to DET , a subclass of NC2 defined as the clo-
sure of the integer determinant problem under NC1 (Turing) reducibility [20]. This
proof relies on a nondeterministic algorithm, which is an interesting application of
language-theoretical concepts described in section 3, and on the fact, discussed and
proved in section 2, that the logspace counting class MODqL appropriately rela-
tivized to a DET oracle is contained in DET . (Here MODqL is the set of languages
Y for which some nondeterministic logspace Turing machine N satisfies the prop-
erty that x ∈ Y iff the number of accepting paths of N on input x is not divisible
by q [18].)

In the absence of groups altogether, we are able to completely elucidate the com-
plexity of CEP(M), assuming that the classes L and NL are distinct. Indeed let M be
an aperiodic monoid, i.e., a monoid none of whose subsets forms a nontrivial group. If
M is commutative and idempotent, then CEP(M) ∈ AC0. Otherwise, if M contains
at least one nonidempotent element and every idempotent of M commutes with each
element of M , then CEP(M) is L-complete. Otherwise, CEP(M) is NL-complete.
The different cases coincide with varieties of monoids, namely J1, the variety of all
commutative and idempotent monoids, Mnil, the idempotent central monoids, and
the variety A of all aperiodic monoids. (Terms used in this paragraph are defined in
a later section.)

Further, write Zq for the cyclic group of order q ≥ 2. We prove that CEP(Zq) is
co-MODqL complete. Moreover, if G is any p-group (i.e., a group of order a power
of the prime p), then CEP(G) is MODpL-complete. Finally, in the general case of a
nilpotent group G of exponent q, CEP(G) belongs to the Boolean closure of MODqL.

Table 1 summarizes our results; some of the notation and terminology used in
this table is explained in sections 2 and 3.

Section 2 gives preliminaries and proves that MODqL relativized to DET is
contained in DET . Section 3 presents the minimal background on monoids required
for what follows. The main section is section 4, which discusses the complexity of
CEP(M). Section 5 concludes with a discussion and suggestions for further work.

2. Preliminaries and definitions. Fix a finite monoid M and let “product”
refer to its associative binary operation. We define the unconnected circuit evaluation
problem UCEP(M) and its connected variant CEP(M).

DEFINITION. Problem UCEP(M):
Given an element x ∈ M and a directed acyclic graph of arbitrary indegree and

arbitrary outdegree in which each in-degree-0 (input) node is labeled with an element

140 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

Table 1.1

Our results on the complexities of CEP(M) and UCEP(M) as the algebraic properties of M
vary. 〈MODqL〉 denotes the Boolean closure of the class MODqL.

Monoid M CEP(M) UCEP(M)

Nonsolvable P -complete P -complete
Solvable ∈ DET ∈ DET

APERIODIC CASE:
M ∈ J1 ∈ AC0 NL-complete

M ∈Mnil − J1 L-complete NL-complete
M 6∈Mnil NL-complete NL-complete

SELECT GROUP CASES:
Nilpotent, exponent q ∈ 〈MODqL〉 ∈ 〈MODqL〉

Cyclic group Zq co-MODqL-complete co-MODqL-complete
p-group, p-prime MODpL-complete MODpL-complete

from M and some out-degree-0 node is designated as the output node.

Determine whether x is the value computed at the output node, where computation
proceeds by having each internal node broadcast along its “output wires,” the product
of the sequence of monoid elements received along its “input wires.”

DEFINITION. Problem CEP(M): restricted variant of UCEP(M) in which there
is a unique out-degree-0 node, accessible from each and every other node in the graph.

Clearly an upper bound on the complexity of UCEP(M) applies to CEP(M) as
well, and a hardness result on the complexity of CEP(M) applies to UCEP(M).

A circuit is prescribed on input by a variant of its direct connection language (see
[19]). Since the operation performed at a gate is in general noncommutative, we add
the condition that the tuples encoding the connections between a node and its inputs
be numbered in a manner consistent with the order of evaluation at that node.

We assume familiarity with NP, P , NL, and L and with AC0 and NCk in their
uniform settings. The precise choice of uniformity will not matter, but for definiteness
we adopt DLOGTIME uniformity for AC0 [5] and UE∗ uniformity for NCk [30, 20].
The class DET is defined as the closure of the integer determinant problem under
NC1 (Turing) reducibility [20]:

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ DET ⊆ NC2 ⊆ P

In general, we let the context distinguish between classes of languages and classes
of functions, for example, between L and the class FL of functions computed in
logspace. Throughout this paper, we will say that language A “NC1 reduces” to lan-
guage B, written A ≤NC1

m B, iff A “many–one” reduces to B via an NC1-computable
function.

Let t ≥ 0 and q ≥ 1 be natural numbers. Define the θt,q relation on N as follows:

iθt,qj ⇐⇒ [(i = j) ∨ ((i ≥ t) ∧ (j ≥ t))] ∧ [i ≡ j(mod q)].

The θt,q relations have algebraic significance because they are the only equivalence
relations on N which are in fact finite index congruences (see [35]). Let MODt,qL
denote the set of languages Y such that for some i ∈ N and some nondeterministic
logspace Turing machine M the following holds for each input x:

x 6∈ Y ⇐⇒ iθt,q|ACCEPT(M,x)|,

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 141

where ACCEPT(M,x) denotes the set of accepting paths of M on input x. Observe
that MOD0,qL is exactly the class MODqL as defined in [18]; this is because not
just zero but any other single congruence class (mod q) could have been used in the
definition of MODqL [18] without affecting the complexity class (see [13]). Observe
further that MOD1,1L = NL ∪ co-NL = NL [34, 24].

In order to analyze the complexity of problems CEP(M) in the case of solvable
monoids, it will be convenient to first obtain a structural complexity result which is of
independent interest (Theorem 2.1 below). This result deals with relativized counting
classes and requires a suitable definition of relativized space. Here we borrow the
definition proposed by Ruzzo, Simon, and Tompa [31].

DEFINITION (space-bounded oracle machine model). Define MA as the language
recognized by a (possibly nondeterministic) machine M using oracle A in the following
controlled manner: M has a write-only query tape not subject to a space bound and
operates deterministically from the time some symbol is written onto the tape until
the time the next oracle query is made, after which the query tape is erased.

As pointed out in [31, Lemma 7], a language Y is equal to MA for a logspace
bounded machine M iff Y is logspace Turing reducible to some B (using queries which
are subject to the space bound) and B is many–one reducible to A via a logspace
transducer also having access to M ’s input.

When C is a complexity class and D is a set of languages, CD represents the set
of languages MA such that M is a machine obeying the resource bounds associated
with C and A ∈ D.

Theorem 2.1. (MODt,qL)DET ⊆ DET and (co-MODt,qL)DET ⊆ DET for
any t ≥ 0 and any q ≥ 1.

Proof. We do the proof for (MODt,qL)DET . A desirable consequence of the
above definition of relativized space is that (even) a nondeterministic logspace machine
cannot make more than a polynomial number of distinct oracle queries in the course
of its computation on any given input. This is because each query is the image,
under transduction, of a logspace bounded “prequery.” The simulation of a MODt,qL
machine M with oracle A ∈ DET on input x will thus

1. list all possible queries,

2. compute all query answers and insert them into the list,

3. compute |ACCEPT(MA, x)|, and

4. reject iff iθt,q|ACCEPT(MA, x)|, where i is the target number specified
with M .

The first step is a logspace computation, which an NC1 circuit with DET oracle
gates can simulate because L ⊆ DET [20]. The second step involves another layer of
NC1 circuitry with DET oracle gates because A ∈ DET . The fourth step is a pure
NC1 computation involving binary subtraction and division by a constant.

Now consider step three. It is easy to simulate machine M , which uses A as
oracle, with a logspace bounded machine M ′ with no oracle, provided we input to
M ′ the list computed in step two together with x. This simulation is easily made to
preserve the number of accepting paths. But then computing the number of accepting
paths of M ′ from its input is a #L computation. Since #L ⊆ DET [1], step three
can also be carried out by an NC1 circuit layer with DET oracle gates.

An argument similar to the above is used in [18] to prove the (probably) weaker
statement that L#L ⊆ DET .

In section 4, we will freely apply Theorem 2.1 to the situation in which aMODt,qL
machine queries several oracles L0, L1, . . . , Ls ∈ DET . The standard technical justifi-

142 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

cation for this is the obvious fact that if A ∈ DET and B ∈ DET then A]B ∈ DET ,
where A]B is the disjoint union of A and B defined as {w0 : w ∈ A}∪{w1 : w ∈ B}
(see [3]). Thus, instead of querying Li directly, a MODt,qL machine can query the
oracle (· · · ((L0] L1)] L2) · · ·] Ls) and obtain the desired answer. Since this holds
for each i, 0 ≤ i ≤ s, the single oracle (· · · ((L0] L1)] L2) · · ·] Ls) ∈ DET suffices
to answer all Li queries.

3. Background on monoids, languages, and varieties. Recall that a monoid
is a set equipped with an associative binary operation and an identity for this opera-
tion. We will use M to denote both the monoid and its underlying set and represent
the operation as a concatenation (i.e., the product of a ∈ M and b ∈ M will be
denoted ab).

Let A be a finite set or alphabet. We write A∗ for the free monoid over A with
concatenation as operation and the empty word as identity. Given a monoid M , let
φ : M∗ → M be the canonical morphism. We will call a word problem of M any set
or language of the form Qφ−1, where Q ⊆M .

We write Zq for the cyclic group modulo q and Ct,q for the monoid performing
addition modulo θt,q on the set {0, 1, . . . , t + q − 1}. In particular, the operation of
monoid C1,1 = {0, 1} corresponds to the Boolean OR.

The reverse of a monoid M has the same underlying set as M but its operation is
read in reverse order, i.e., evaluating abc in the reverse of M is equivalent to evaluating
cba in M .

The usual notations for the monoid identity element and the universally absorb-
ing element, when it is present, are 1 and 0, respectively. We depart from this con-
vention and use 0 for the identity, however, when we speak of the Zq and Ct,q, as
above.

It is extremely useful to classify monoids according to their algebraic complexity,
and the tool to do this is the variety. A variety of monoids is a set of monoids which is
closed under division (the operation of taking a homomorphic image of a submonoid)
and finite direct products. See [22] and [29] for references on this subject. Notice
that the natural ordering of monoids induced by division has bearing on the relative
complexities of the CEP problems: indeed if N divides M , then clearly CEP(N) NC1

reduces to CEP(M).
Varieties of monoids explicitly mentioned in this paper are the set of all nilpotent

groups (i.e., direct products of groups of prime power order); the set of all solvable
monoids (i.e., from which the only simple groups that can be obtained are cyclic); the
set of all aperiodic (i.e., group-free) monoids, which is denoted by A; the smallest non-
trivial aperiodic variety, denoted J1, which consists of all idempotent (i.e., satisfying
x2 = x for each x) and commutative monoids; its superset the variety J of J-trivial
monoids, consisting of all monoids M such that for each m, n ∈M if MmM = MnM
then m = n (see [29]); the variety Mnil of the idempotent central monoids, which
contains J1 and is contained in J and consists of those monoids M such that for all
e, m ∈M such that e2 = e, em = me [33].

Each of the varieties J1, J, and Mnil has the property that there is a finite set of
minimal aperiodic monoids outside it, that is, a set of aperiodic monoids such that any
monoid outside of the variety is divided by at least one of the monoids in the minimal
set. For example, T2 = {1, a, a2} is the smallest J-trivial monoid outside of J1. The
monoid R1 = {1, a, b} with operation satisfying aa = ab = a and ba = bb = b and its
reverse L1, monoid BA2 = {1, a, b, ab, ba, 0} with operation satisfying aa = bb = 0,
aba = a, and bab = b, and monoid BH2 = {1, a, b, ab, ba, 0} with operation satisfying

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 143

aa = aba = a, bb = 0, and bab = b (each of BA2 and BH2 is equal to its reverse),
are the minimal aperiodic monoids which are not J-trivial. (Also, C1,1 is the minimal
nontrivial aperiodic monoid.) To our knowledge the minimal monoids outside of Mnil

had not been identified until now.
Let Mba∗ be the syntactic monoid of the language ba∗ over the alphabet {a, b}.

This monoid has four elements {1, a, b, 0} with products aa = a, ba = b, and ab =
bb = 0.

Lemma 3.1. R1, Mba∗ , and their reverses, along with BA2 and BH2, are the
minimal aperiodic monoids outside of Mnil.

Proof. If M is not J-trivial, then it is divided by R1 or its reverse, by BA2, or by
BH2. Thus we only need to show that Mba∗ and its reverse are the minimal J-trivial
monoids outside of Mnil.

Let M be a J-trivial monoid outside of Mnil. There are therefore e, m ∈M such
that e2 = e and em 6= me. Let α = em and β = me. We first show that monoid M
satisfies the property

(∗) (eβ 6= βe ∧ ∀k ≥ 2 : βk 6= β) ∨ (eα 6= αe ∧ ∀k ≥ 2 : αk 6= α),

from which the lemma will be proved. Denoting by f ≤J g the relation MfM ⊆
MgM , observe that if (eβ 6= βe ∧ ∀k ≥ 2 : βk 6= β) does not hold, then β ≤J α, and
similarly α ≤J β if (eα 6= αe ∧ ∀k ≥ 2 : αk 6= α) is false. Since M is J-trivial and
α 6= β, both β ≤J α and α ≤J β cannot be true. This proves (∗).

To conclude the lemma from (∗), we distinguish two cases. If (eβ 6= βe ∧ ∀k ≥
2 : βk 6= β) holds, then let M ′ be the monoid generated by e and β. It is easy to see
that M ′ = {1, e, β} ∪ {βk : k ≥ 2} ∪ {eβk : k ≥ 1}. Let the function φ : M ′ → Mba∗

be defined by φ(1) = 1, φ(e) = a, φ(β) = b, and φ(βk+1) = φ(eβk) = 0 for any
k ≥ 1. The definition of φ is unambiguous. Indeed, note that 1, e, and β are distinct.
Next, since M is J-trivial, β ≤J e implies e 6≤J β; hence for k ≥ 1, βk+1 and eβk

are different from 1 and e. Meanwhile, βk+1 6= β by assumption. Finally, assuming
that eβk = β, we have eβ = eβk = eβke = βe, which contradicts the assumption.
Verifying that φ is a surjective morphism is a standard exercise. Therefore, monoid
Mba∗ divides M .

The other case where (eα 6= αe ∧ ∀k ≥ 2 : αk 6= α) is treated dually and yields
the conclusion that the reverse of Mba∗ divides M .

Another way to look at monoids is through the languages they recognize (via mor-
phisms). A language Y ⊆ A∗ is recognized by a monoid M iff Y is the inverse image
of a subset of M under some homomorphism from A∗ to M . The syntactic monoid
of a language Y ⊆ A∗ is the smallest monoid (in the ordering induced by monoid
division) which recognizes Y . Straubing [33] identified the languages recognized by
the idempotent central monoids.

Theorem 3.2. A language Y ⊆ A∗ is recognized by a monoid in Mnil iff
it is a Boolean combination of languages of the form B∗a1B

∗a2 · · ·B∗akB∗ where
a1, . . . , ak ∈ A and B = A− {a1, . . . , ak}.

Note that in Theorem 3.2 the ai are not assumed to be distinct.
At the other end of the spectrum, Straubing [32] and Thérien [35] have developed

a useful parametrization of the languages recognized by solvable monoids. Recall
the θt,q congruence defined in section 2. If L0, . . . , Ls are languages over A∗ and
a1, . . . , as ∈ A, we denote by [L0, a1, L1, . . . , as, Ls]i;t,q the set of those words w ∈ A∗
for which the number of factorizations w = u0a1u1 · · · asus, uj ∈ Lj , 0 ≤ j ≤ s is
congruent to i with threshold t and period q. Also, if L denotes a class of languages, let

144 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

〈L〉 denote its Boolean closure. We take from [35] the following two parametrizations
of the languages recognized by solvable monoids.

Theorem 3.3. A language L ⊆ A∗ has a syntactic monoid which is finite and
solvable iff L ∈Mk

t,q, where M0
t,q = 〈A∗〉 and for k ≥ 1:

Mk
t,q = 〈{[L0, a, L1]i;t,q : L0, L1 ∈Mk−1

t,q , i ∈ N}〉.

Theorem 3.4. A language L ⊆ A∗ has a syntactic monoid which is finite and
solvable iff L ∈ N k

t,q, where N 0
t,q = 〈A∗〉 and for k ≥ 1:

N k
t,q = 〈{[L0, a1, L1, . . . , as, Ls]i;t,q : L0, . . . , Ls ∈ N k−1

t,q , i, s ∈ N}〉.

If we choose to work in the Mk
t,q hierarchies of languages, membership of x in

language L is determined by counting (with respect to θt,q) those occurrences of the
character a that occur in the context of a prefix in L0 and a suffix in L1. In the
N k
t,q hierarchies, we would instead count occurrences of subwords a1, . . . , as within

contexts L0, . . . , Ls. Contrary to [7], where the former hierarchies were used, we find
here that the N k

t,q hierarchies seem more appropriate to the study of problem CEP.
The following results are taken from [35] and [36]. They describe some of the

main special cases of solvable monoids.
Theorem 3.5. A language Y is recognizable by a finite aperiodic monoid iff Y

is in N k
t,1 for some k, t ≥ 0 iff Y is in N k

1,1 for some k ≥ 0.
Theorem 3.6. A language Y is recognizable by a finite solvable group iff Y is in

N k
0,q for some k ≥ 0, q ≥ 1.

Theorem 3.7. A language Y is recognizable by a finite nilpotent group iff Y is
in N 1

0,q for some q ≥ 1.
Theorem 3.8. A language Y is recognizable by a finite solvable monoid iff Y is

in N k
t,q for some k, t ≥ 0, q ≥ 1 iff Y is in N k

1,q for some k ≥ 0, q ≥ 1.
A byproduct of these theorems is that given a finite solvable monoid M , one can

find parameters k, t, and q such that every word problem of M lies in N k
t,q. (Recall

that word problems and the canonical morphism φ were defined at the beginning of
this section.) In fact, given any Q ⊆M , one can actually compute an expression that
represents Qφ−1 involving M∗, the characters of M , the Boolean operations, and the
operation L0, a1, L1, . . . , as, Ls → [L0, a1, L1, . . . , as, L1]i;t,q. Notice that parameter q
is a multiple of the exponents of all maximal subgroups of M (of M itself if M is a
group).

4. Complexity of circuit problems. This section contains our upper bounds
and hardness results on the complexities of UCEP(M) and CEP(M). Except when
M is aperiodic (see subsection 4.2), the two problems have identical complexities.

4.1. The impact of solvability. In this subsection we exhibit a significant gap
in the complexity of CEP(M), depending on whether M is solvable or not (within
the hypothesis that NC2 6= P). We prove that CEP(M) and UCEP(M) are P -

complete under ≤NC1

m reducibility if M is nonsolvable and belong to DET , hence to
NC2, otherwise. Then we investigate the special cases of cyclic groups, p-groups, and
nilpotent groups, and we prove an NL upper bound in the aperiodic case.

Throughout this subsection, each result obtained applies equally well to CEP(M)
and to UCEP(M), even when this is not stated explicitly.

Lemma 4.1. If M contains a nonsolvable group, then CEP(M) is P -complete.
Proof. Membership in P is obvious. To prove hardness, as shown below, we

merely adapt Barrington’s simulation of the Boolean operations AND, OR, and NOT

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 145

Fig. 4.1. Circuit over A5 simulating X NAND Y .

by products within the alternating group A5 [4, Theorem 1]. The generalization
to the case of any nonsolvable group follows as in [4, Theorem 5]. (Alternatively,
Zalcstein pointed out that a construction related to Barrington’s had been investigated
independently by Bergman [15] and others.)

It suffices to explain how to simulate a NAND gate, because evaluating a Boolean
circuit with NAND gates is clearly P -hard [27]. Let α, β ∈ A5 be 5 cycles such that
α−1β−1αβ is also a 5 cycle. Let σ ∈ A5 satisfy

σ−1α−1β−1αβσ = (12345).

Furthermore, for any 5 cycle γ ∈ A5, write πγ for the unique element of A5 satisfying
π−1
γ (12345)πγ = γ. Then we simulate a NAND gate with Boolean inputs X and Y

using the constant-fan-in, constant-depth subcircuit given by Figure 1.
Let [X] denote the subcircuit over A5 which encodes the work of gate X. As-

suming inductively that [X] evaluates to the identity of A5 (resp., (12345)) iff X
outputs the Boolean value 0 (resp., 1), and similarly for [Y], then the subcircuit on
Figure 1 evaluates to the identity (resp., (12345)) iff X NAND Y = 0 (resp., X NAND
Y = 1).

Remark. The circuit over A5 built in the proof of hardness has gates of bounded
fan-in. Recall however that the definition of problem CEP(M) allows gates with
arbitrary fan-in and that associativity can be used to collapse a depth d instance
of CEP(M) into a depth 1 instance consisting of the inputs and of one gate with
fan-in 2O(d). Thus gate fan-in can be traded for circuit depth. Using this idea, it
can be shown that problem CEP(M) restricted to depth-O(logk n) circuits is com-
plete for NCk+1 under logspace reducibility. The proof repeats that of Lemma
4.1; in the NCk+1 hardness part, the depth O(logk+1 n), constant fan-in instance
of CEP(A5) obtained as an intermediate result, is divided into depth d subcircuits,
d ∈ O(logn), which are then collapsed into gates of polynomial fanin, reducing the
depth to O(logk n). For further details we refer the reader to [10], where a technique
for an analogous deterministic logspace reduction is described.

Theorem 4.2. If M is a solvable monoid then UCEP(M) belongs to DET .
Proof. Consider the circuit in a UCEP(M) instance. The idea behind the al-

gorithm developed below is that a word of M∗ can be associated with each node in
the circuit: a one-character word for the input gates, otherwise the concatenation of

146 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

the words associated with those nodes from which the gate receives its inputs. Thus
determining the element of M computed at the output gate g is equivalent to apply-
ing M ’s canonical homomorphism φ to the word W (g) associated with g, which in
turn amounts to testing whether W (g) belongs to a language recognized by M . This
enables us to exploit the hierarchical parametrizations of the languages recognized by
a solvable monoid.

Let M be a solvable monoid and φ : M∗ → M denote its canonical homo-
morphism. By Theorem 3.8, for each m ∈ M , mφ−1 belongs to N km

tm,qm for some
km, tm ≥ 0, and qm ≥ 1. Setting k = max{km}, t = max{tm}, and q = lcm{qm}
yields mφ−1 ∈ N k

t,q for each m ∈M .

Let g be the output gate specified in the instance of UCEP(M); testing for output
g amounts to testing for membership of W (g) in a language [L0, a1, L1, . . . , as, Ls]i;t,q
recognized by M . Let Mr with operation ∗r be the syntactic monoid of Lr for 0 ≤
r ≤ s. Let Br ⊆ Mr be the image of Lr under an appropriate morphism φr :
M∗ → Mr. The testing will be done by counting the successful computations of the
following nondeterministic algorithm, that is, counting the accepting computations of
a nondeterministic logspace Turing machine with oracles for UCEP(Mr), 0 ≤ r ≤ s.
From Theorem 2.1 and the closure of DET under Boolean operations, it will follow
inductively that UCEP(M) belongs to DET . (Remark that the algorithm works on a
circuit with in-degree-2 gates, which can be obtained from an arbitrary circuit through
a logspace transduction.)

• Let u1, . . . , us be pointers to nodes of the input circuit over M , each initialized
to g.

• Let b0, . . . , bs be Boolean values initialized to false, except for b0 and for bs,
which are true.

• Let x1 = · · · = xs = 1, where each xr is regarded as an element of monoid
Mr−1.

• Let y1 = · · · = ys = 1, where each yr is regarded as an element of monoid Mr.

• Repeat until each ur is an input node, or the instance is rejected:

• nondeterministically pick a child vr for each ur (let vr = ur if ur is a leaf);

• if there is an r < s such that br = false and vr and vr+1 are the right
and left child, respectively, of node ur = ur+1, then reject the instance;
(∗comment: subword characters ar and ar+1 would then be accessed in the
wrong order∗)

• for r = 1 . . . s do

• if br−1 = true and vr is the right child of ur, then evaluate the subcircuit
rooted at the left child of node ur as if it were on monoid Mr−1, that is,
for each m ∈Mr−1, test whether the subcircuit, having each of its input
gate labels appropriately translated through morphism φr−1 into the cor-
responding element of Mr−1, evaluates to m. Denote by z the value thus
obtained. Then let xr = xr ∗r−1 z.

• if br = true and vr is the left child of ur, then evaluate the subcircuit
rooted at the right child of node ur as if it were on monoid Mr; that is,
for eachm ∈Mr, test whether the subcircuit, having each of its input gate
labels appropriately translated through morphism φr into the correspond-
ing element of Mr, evaluates to m. Denote by z the value thus obtained.
Then let yr = z ∗r yr.

• for r = 1 . . . s do: If br = false and vr 6= vr+1, then let br = true.

• for r = 1 . . . s do: Let ur = vr.

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 147

• If each ur is an input node carrying value ar and x1 ∈ B1 and yr ∗r xr+1 ∈ Br
for 1 ≤ r ≤ s − 1 and ys ∈ Bs and br = true for 0 ≤ r ≤ s, then accept; else
reject.

The algorithm is a nondeterministic logspace computation with oracle. Here the
ur’s and vr’s are pointers used for top-down traversal of the circuit; each path from g
to an input node coincides with a character of W (g), and the orderings of the paths
and of the characters are consistent. Each Boolean variable br indicates whether
the paths to characters ar and ar+1 still coincide (br = false) or have split apart.
From the observation that the number α of accepting computations of the algorithm
is the number of ways in which circuit inputs labeled a1, . . . , as can appear in the
word W (g) within the appropriate contexts in L0, . . . , Ls, we obtain that W (g) ∈
[L0, a1, L1, . . . , as, Ls]i;t,q iff i θt,q α.

The analysis goes by induction on k. The base case k = 0 is clear because then
xφ−1 = M∗ or xφ−1 = ∅, where x is the target element, and the algorithm can output
an answer without looking at its input. Now for the induction step. In general,
xφ−1 is a Boolean combination of languages of the kind [L0, a1, L1, . . . , as, Ls]i;t,q.
Testing for membership in such a language is done by counting accepting computations
of our algorithm, which runs in nondeterministic logspace with calls to an oracle
for UCEP(M0), . . . , UCEP(Ms), but then we are done by applying Theorem 2.1
inductively.

Intuition might suggest that a preliminary step to the above algorithm would be
to compute that portion of the (unconnected) circuit which is connected to the output
node. However this is not necessary, for the evaluation problem amounts to counting
(context-dependent) paths from the root to certain input nodes, and this is precisely
what the algorithm does through nondeterministic descents in the circuit. A good
way to see this is to apply the algorithm to the case in which the monoid is a cyclic
group of order q: problem UCEP(M) is then equivalent to the mod-q accessibility
problem in an acyclic-directed graph (see Lemma 4.6).

We now apply the algorithm to some special cases of solvable monoids.

Corollary 4.3. If M is an aperiodic monoid then CEP(M) belongs to NL.

Proof. By Theorem 3.5, the algorithm deals with a language xφ−1 ∈ N k
1,1.

Hence the counting involved amounts to determining whether the number of ac-
cepting computations is zero or at least one. The analysis therefore gives an in-
ductive step complexity in NLNL. The result follows from the fact that NLNL = NL
[24, 34].

Corollary 4.4. Let M be the cyclic group Zq. Then problem CEP(M) belongs
to co-MODqL.

Proof. This is a special case in which the above algorithm deals with a language
in N 1

0,q, so that the recursive calls require no computation at all. Indeed, an instance
of CEP(Zq) can be thought of as a circuit with two leaves, carrying inputs 0 and 1;
then the value of the output equals the number of paths from the 1 leaf to the output
node, counted modulo q. Thus testing whether the circuit evaluates to a given target
value reduces to testing whether the number of paths between two given nodes in
an acyclic-directed graph is congruent to 0 modulo q; this “zero mod-q accessibility
problem” is co-MODqL complete [18].

Corollary 4.5. Let M be a nilpotent group of exponent q for q ≥ 2. Then
problem CEP(M) belongs to the Boolean closure of MODqL.

Proof. We reason as in Corollary 4.3, noting that every language recognized by a
nilpotent group of exponent q belongs to N 1

0,q by Theorem 3.7.

148 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

The following hardness result completes the picture afforded by the last two corol-
laries.

Lemma 4.6. Let q ≥ 2. If M contains an element of period q, then CEP(M) is

hard for co-MODqL under ≤NC1

m reducibility.
Proof. It suffices to show that CEP(Zq) is hard for co-MODqL. We reduce from

the problem of determining whether the number of paths from u (of in-degree 0) to
v (of out-degree 0) in an acyclic-directed graph is a multiple of q [18]. Assign 1 to u
and 0 to any other in-degree-0 node. Then for each node w 6= v of out-degree 0, add a
gadget connecting w to node v through exactly q distinct paths. The resulting graph
viewed as a circuit over Zq evaluates to 0 at the unique output gate v iff the number
of paths from u to v in the original graph was a multiple of q.

Theorem 4.7. For q ≥ 2 a fixed integer, problem CEP(Zq) is co-MODqL-

complete under ≤NC1

m reducibility.
In the special case where q is prime, Corollary 4.5 and the fact that MODqL =

MODqnL, n ≥ 1 is closed under Boolean operations [18] combine with Theorem 4.7
to yield a stronger statement.

Corollary 4.8. For p ≥ 2 a fixed prime integer and any p-group M , problem
CEP(M) is MODpL-complete under ≤NC1

m reducibility.

4.2. The aperiodic case. In this section, we discuss the computational com-
plexity of problems CEP(M) and UCEP(M) when M is aperiodic. In the aperiodic
case the complexities of the two variants differ. Indeed, counting in an aperiodic
monoid implies distinguishing between “zero” and “at least one,” which in the con-
text of circuit evaluation means deciding whether at least one input node carrying a
nontrivial value is connected with the output node. Consequently, UCEP(M) is NL-
hard for any nontrivial aperiodic monoid M (Proposition 4.14). However the main
result in this section is the following striking characterization of the complexities of
CEP(M) as M ranges over the set of all finite aperiodic monoids.

Theorem 4.9. When M is an aperiodic monoid, exactly three cases arise:
• If M belongs to variety J1, then CEP(M) belongs to AC0 (Lemma 4.10).
• If M belongs to variety Mnil and is nonidempotent, then CEP(M) is L-complete

(Lemmas 4.11 and 4.12).
• If M does not belong to Mnil, then CEP(M) is NL-complete. (Lemma 4.13

and Corollary 4.3).
Corollary 4.3 was proved in subsection 4.1; we complete the proof of the theorem

with the following four lemmas.
Lemma 4.10. If M belongs to J1, then CEP(M) can be solved in AC0.
Proof. When the expression for an element of an idempotent and commutative

monoid is evaluated, each character involved contributes exactly once. To see this,
take an arbitrary expression and first apply commutativity to regroup together all
occurrences of the same character. Then, since a2 = a for all a ∈M , replace them with
a single occurrence. Thus by looking only at the content of the leaves and ignoring the
rest of the circuit (thus relying heavily on the hypothesis that the circuit is connected),
we obtain for the output a fixed-length expression which can be evaluated using table
lookup.

Lemma 4.11. If M is a nonidempotent aperiodic monoid, then CEP(M) is L-

hard under ≤NC1

m reducibility.
Proof. This follows by reduction from the accessibility problem in a directed forest

[21] to problem CEP(T2), where T2 = {1, a, a2} divides all nonidempotent aperiodic
monoids (see section 3). Let an instance of the accessibility problem consist of asking

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 149

whether leaf u belongs to the tree rooted at v; let all edges in a tree be oriented toward
the root. The reduction consists of first creating two new nodes named v′ and w and
adding an edge from each child of v to v′ and then an edge from each out-degree-0
node to w. We obtain a graph with one root w and with nodes of out-degree at most
1, except for the children of v which have out-degree 2. Next, we label all interior
nodes with the operation of T2, leaf u with element a, and all other leaves with 1. If
v can be reached from u, then there are exactly two paths from u to w (through v
and v′), so that the circuit evaluates to a2. Else there is exactly one path, and the
output is a.

Lemma 4.12. If M belongs to variety Mnil then problem CEP(M) belongs to L.

Proof. Let M ∈ Mnil. From Theorem 3.2, for each x ∈ M the language xφ−1

is a Boolean combination of languages B∗a1B
∗a2 · · ·B∗akB∗, with a1, . . . , ak ∈ M

and B = M − {a1, . . . , ak} (the ai not necessarily distinct). Using the closure of
L under Boolean operations, we evaluate the circuit by checking, for each such lan-
guage in the Boolean combination for xφ−1, whether the ordered sequence of all
paths from the leaves to the root yields a word in the language. Given one such
language B∗a1B

∗a2 · · ·B∗akB∗, let A′ = {a′1, . . . , a′k′} be the set of characters in
S = {a1, . . . , ak}. For each character a′i, count the number of paths from the leaves
labeled a′i to the root; if it differs from the number of occurrences of a′i in S, reject
the instance. Otherwise, there are mi paths from the leaves labeled a′i to the root,
and we must next verify that all

∑
mi = k paths are combined in the appropriate

order (unless M is commutative, in which case the algorithm stops here). Create a
fixed-length register for each pair (r, s) of those paths, with possible values first (path
r comes before s in the lexicographic order of root-leaf paths), second (r comes after
s), and neither (ordering unknown). Initialize all registers to neither. Then, start every
path at the appropriate leaf and advance along them toward the root, synchronously,
one node at a time. If the paths are of different lengths, then start the shorter ones
with an appropriate delay in such a way that all paths reach the root at the same
time. Whenever two paths meet at a node, we obtain information on their relative
ordering, depending on the edges used to reach the node; we store this information
in the appropriate register. The paths may later part (the register is then reset to
neither), but since all paths eventually reach the same node at the same time, we are
certain to obtain their ordering, i.e., a setting of the registers which tells whether the
inputs combine to give an element of B∗a1B

∗ · · ·B∗akB∗.
Since the number of relevant paths involved in a positive CEP(M) instance de-

pends only on the monoid and therefore is a constant, the above algorithm can be
executed in deterministic logspace. In particular, making critical use of the CEP(M)
assumption that a path exists in the circuit from each node to the output node, the
breadth-first-search procedure (from leaf to output) invoked to count the number of
paths from a leaf to the output node can be aborted when the number of stacked
nodes exceeds the constant.

Lemma 4.13. If monoid M does not belong to Mnil, then problem CEP(M) is

NL hard under ≤NC1

m reducibility.

Proof. By Lemma 3.1, at least one of monoids R1,Mba* or their reverses, BA2,
or BH2 divides M . Thus it suffices to prove hardness for these five minimal monoids.
In all cases, we reduce from the accessibility problem in directed acyclic graphs. Let
an instance consist in asking whether root v and leaf u are connected. We describe
the reduction for the case of monoid R1. First, we arbitrarily order the roots, placing
v in the leftmost position. Then we create two new nodes v′ and w, and we add an

150 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

edge from every root to w, plus one from v′ to w, in such a way that the ordering of
the roots is respected and that v′ is inserted in this ordering immediately to the right
of v. Next, we label all interior nodes with the operation of R1, leaf u with element
a, leaf v′ with element b, and every other leaf with 1. The circuit evaluates to a at
the output gate w iff the edge from v to w carries value a; that is, iff node v can be
reached from u. Otherwise, the circuit evaluates to b.

The reduction for monoid Mba∗ is identical; there the modified circuit evaluates
to ab = 0 if u and v are connected and to b otherwise. The reduction for the reverse of
one of the above two monoids is obtained by simply reversing the order of the children
of the output node w.

Finally, the reductions for monoids BA2 and BH2 are also similar; set u = ab,
v′ = b, and all the other leaves to 1, then if u is connected to v the circuit evaluates
to 0, and if u is not connected to v the circuit will evaluate to b.

We conclude this section with the case of UCEP(M).
Proposition 4.14. If M is a nontrivial aperiodic monoid, then problem

UCEP(M) is NL-complete.
Proof. Corollary 4.3 provides the upper bound. For NL-hardness, consider the

minimal nontrivial aperiodic monoid, C1,1. A reduction from the accessibility problem
in a directed acyclic graph to UCEP(M) is obtained by labeling the source node with
value 1 and all other in-degree-0 nodes with value 0.

5. Conclusion. Finite monoids play a crucial role in the algebraic theory of
finite automata. In particular, the algebraic classification of finite monoids maps
to a classification of regular languages, and vice versa. In more general complexity
theory, two recent streams of results have linked the classification of finite monoids
to fundamental complexity classes. The first characterized the fine structure of the
complexity class NC1 in terms of word problems over monoids (see [4, 7, 28]). The
second linked the classification of finite monoids to the discrete jumps in complexity,
from membership in AC0 to PSPACE completeness, of the membership problem in
transformation monoids (see [8, 9, 12, 26] and also [2]). In this paper, a third link
between the structure of monoids and fundamental complexity classes was established,
via the circuit evaluation problem.

When M is nonsolvable, CEP(M) is P -complete. When M is aperiodic, CEP(M)
is either NL-complete, L-complete, or in AC0, depending on further basic algebraic
properties of M . Assuming L 6= NL 6= P , the complexity of CEP(M) is therefore
completely determined in these cases. In the remaining solvable cases, CEP(M) ∈
DET ⊆ NC2.

As an open question, our analysis in the solvable case needs refinement. For
example, in the study of word problems over solvable monoids, the derived length1

is closely related to the precise circuit depth of the corresponding NC1 subclasses.
What parameter associated with natural DET subclasses corresponds to the derived
length in the context of CEP(M)?

Along those lines, we suspect a close connection between problem CEP(M) and
the concept of leaf languages studied in [16, 17, 23]. Leaf languages provide a way
to use regular languages as a basis for defining more general languages, as follows.
Let each final configuration of a nondeterministic polynomial time Turing machine M

1For a solvable group G, the derived length of G is the length of the series G0 = {1} / G1 / · · · /
Gk = G in which Gi/Gi−1 is an Abelian quotient of Gi, 1 ≤ i ≤ k: it is also the smallest k such
that all languages recognized by G belong to Mk

0,q . By analogy, we define the derived length of a

solvable monoid M to be the smallest k such that all languages recognized by M belong to Mk
1,q .

FINITE MONOIDS: FROM WORD TO CIRCUIT EVALUATION 151

emit a character from a fixed alphabet A. Ordering nondeterministic choices, let the
leaf string of M on input x be the sequence of characters emitted at the leaves of M ’s
computation tree on input x. Then, via M , any “leaf language” Y ⊆ A∗ defines a
language, namely the set of inputs x such that the leaf string of M on x belongs to Y .
A wealth of complexity classes, including PSPACE and the polynomial hierarchy,
were characterized as sets of languages definable via appropriately chosen regular leaf
languages [16, 17, 23].

Now write R(V) for the class of languages definable via a regular leaf language
recognized by a monoid from variety V (using nondeterministic logspace Turing ma-
chines). The hierarchy of solvable monoid varieties induces a (perhaps collapsing)
hierarchy of classes R(V). What is the exact relationship between this hierarchy and
problem CEP(M)? (This question has been partially investigated in [25].) Can such
a relationship be exploited in order to define a useful parametrization of complexity
classes like DET? In particular, adapting the several equivalent definitions of the
polynomial hierarchy yields several possible meaningful definitions for complexity hi-
erarchies built above MODqL and contained in DET . It would seem useful to know
how these definitions relate to one another and whether the levels of these hierarchies
have complete CEP(M) problems.

Acknowledgments. We thank the anonymous referees for their very thoughtful
reading of our manuscript and for a more streamlined proof of Lemma 3.1.

REFERENCES

[1] C. Àlvarez and B. Jenner, A very hard log space counting class, in Theoret. Comput. Sci.,
107 (1993), pp. 3–30.

[2] L. Babai, E. Luks, and A. Seress, Permutation groups in NC, in Proc. 19th ACM Symposium
on the Theory of Computing, Association for Computing Machinery, New York, 1987,
pp. 409–420.

[3] J. L. Balcázar, J. Díaz, and J. Gabarró, Structural Complexity I and II, Springer-Verlag,
Berlin, New York, Heidelberg, 1988 and 1990.

[4] D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1, J. Comput. System Sci., 38 (1989), pp. 150–164.

[5] D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, J. Com-
put. System Sci., 41 (1990), pp. 274–306.

[6] D. A. Barrington, H. Straubing, and D. Thérien, Non-uniform automata over groups,
Inform. Comput., 89 (1990), pp. 109–132.

[7] D. A. Barrington and D. Thérien, Finite monoids and the fine structure of NC1, J. Assoc.
Comput. Mach., 35 (1988), pp. 941–952.

[8] M. Beaudry, Membership testing in commutative transformation semigroups, Inform. and
Comput., 79 (1988), pp. 84–93.

[9] M. Beaudry, Membership testing in threshold one transformation monoids, Inform. and Com-
put., 113 (1994), pp. 1–25.

[10] M. Beaudry and P. McKenzie, Circuits, matrices, and nonassociative computation, in
J. Comput. System Sci., 50 (1995), pp. 441–455.

[11] M. Beaudry, P. McKenzie, and P. Péladeau, Circuits with monoidal gates, in Proc. 10th
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci.
665, Springer-Verlag, Berlin, New York, Heidelberg, 1993, pp. 555–565.

[12] M. Beaudry, P. McKenzie, and D. Thérien, The membership problem in aperiodic trans-
formation monoids, J. Assoc., Comput. Mach., 39 (1992), pp. 599–616.

[13] R. Beigel, J. Gill, and U. Hertrampf, Counting classes: Thresholds, parity, mods, and
fewness, in Proc. 7th Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Comput. Sci. 415, Springer-Verlag, Berlin, New York, Heidelberg, 1990, pp. 49–
57.

[14] F. Bédard, F. Lemieux, and P. McKenzie, Extensions to Barrington’s M-program model,
Theoret. Comput. Sci., 107 (1993), pp. 31–61.

152 M. BEAUDRY, P. MCKENZIE, P. PÉLADEAU, AND D. THÉRIEN

[15] G. Bergman, Embedding arbitrary algebras into groups, Algebra Universalis, 25 (1988),
pp. 107–120.

[16] D. Bovet, P. Crescenzi, and R. Silvestri, Complexity classes and sparse oracles, in Proc.
6th IEEE Structure in Complexity Theory Conference, IEEE Computer Society Press, Los
Alamitos, CA, 1991, pp. 102–108.

[17] D. Bovet, P. Crescenzi, and R. Silvestri, A uniform approach to define complexity classes,
Theoret. Comput. Sci., 104 (1992), pp. 263–283.

[18] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, Structure and importance of
logspace MOD-classes, Math. Systems Theory, 25 (1992), pp. 223–237.

[19] S. R. Buss, S. Cook, A. Gupta, and V. Ramachandran, An optimal parallel algorithm for
formula evaluation, SIAM J. Comput., 21 (1992), pp. 755–780.

[20] S. A. Cook, A taxonomy of problems with fast parallel solutions, Inform. and Comput.,
64 (1985), pp. 2–22.

[21] S. A. Cook, and P. McKenzie, Problems complete for deterministic logarithmic space, J. Al-
gorithms, 8 (1987), pp. 385–394.

[22] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.
[23] U. Hertrampf, C. Lautermann, T. Schwentick, H. Vollmer, and K. Wagner, On the

power of polynomial time bit-reductions, in Proc. 8th IEEE Structure in Complexity Theory
Conference, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 200–207.

[24] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput.,
17, 5 (1988), pp. 935–938.

[25] B. Jenner, P. McKenzie, and D. Thérien, Logspace and logtime leaf languages, Inform. and
Comput., 129 (1996), pp. 21–33.

[26] D. Kozen, Lower bounds for natural proof systems, in Proc. 18th ACM Symposium on the
Theory of Computing, Association for Computing Machinery, New York, 1977, pp. 254–
266.

[27] R. E. Ladner, The circuit value problem is log-space complete for P , ACM SIGACT Newslett.
7 (1975), pp. 18–20.

[28] P. McKenzie, P. Péladeau, and D. Thérien, NC1: The automata-theoretic viewpoint, Com-
put. Complexity, 1 (1991), pp. 330–359.

[29] J.-E. Pin, Variétés de langages formels, Masson, Paris, 1984 (in French); Varieties of Formal
Languages, Plenum Press, New York, 1986 (in English).

[30] W. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365–383.
[31] W. Ruzzo, J. Simon, and M. Tompa, Space-bounded hierarchies and probabilistic computa-

tions, J. Comput. System Sci., 28 (1984), pp. 216–230.
[32] H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups,

Ph.D. thesis, University of California at Berkeley, Berkeley, CA, 1978.
[33] H. Straubing, The variety generated by finite nilpotent monoids, Semigroup Forum, 24 (1982),

pp. 25–38.
[34] R. Szelepcsényi, The method of forcing for nondeterministic automata, Bull. European Assoc.

Theoret. Comput. Sci., 33 (1987), pp. 96–100.
[35] D. Thérien, Classification of finite monoids: The language approach, Theoretical Comput.

Sci., 14 (1981), pp. 195–208.
[36] D. Thérien, Subword counting and nilpotent groups, in Combinatorics on Words: Progress and

Perspectives, L. J. Cummings, ed., Academic Press, New York, 1983, pp. 297–305.

PARALLELISM ALWAYS HELPS∗

LOUIS MAK†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 153–172, February 1997 009

Abstract. It is shown that every unit-cost random-access machine (RAM) that runs in time
T can be simulated by a concurrent-read exclusive-write parallel random-access machine (CREW
PRAM) in time O(T 1/2 log T). The proof is constructive; thus it gives a mechanical way to translate
any sequential algorithm designed to run on a unit-cost RAM into a parallel algorithm that runs
on a CREW PRAM and obtain a nearly quadratic speedup. One implication is that there does not
exist any recursive function that is “inherently not parallelizable.”

Key words. computational complexity, time complexity, random-access machine, parallel
random-access machine, simulation, speedup

AMS subject classifications. 68Q05, 68Q10, 68Q15, 03D10, 03D15

PII. S0097539794265402

1. Introduction.

1.1. Motivation. For some problems, the direct parallelization of a sequential
algorithm gives a faster parallel algorithm. An example is matrix multiplication.
The brute-force sequential algorithm for matrix multiplication runs in O(n3) time for
n × n matrices. It is straightforward to parallelize this sequential algorithm to get
an O(logn)-time parallel algorithm using O(n3/logn) processors. On the other hand,
some problems are very difficult to parallelize. For example, depth-first search does
not seem to admit itself to parallelization [7]. In this paper, we address the following
question: Are all sequential algorithms parallelizable?

Cook and Reckhow [3] defined the unit-cost random-access machine (RAM). For-
tune and Wyllie [6] introduced the parallel random-access machine (PRAM). These
two models are, respectively, the most commonly used machine models for analyz-
ing sequential and parallel algorithms. Thus the above question can be rephrased
as follows: Given any unit-cost RAM R that runs in time T , is it always possible
to construct a PRAM that simulates R in time T ′ = o(T)? We answer this ques-
tion affirmatively by exhibiting such a construction with T ′ = O(T 1/2 log T). Several
variants of the PRAM have appeared in the literature since it was first introduced.
The original model of Fortune and Wyllie has become known as the concurrent-read
exclusive-write (CREW) PRAM, which is the model we use in our construction.

Parberry and Schnitger [15] considered the WRAM, a powerful variant of the
PRAM. The WRAM differs from the CREW PRAM in three respects:

1. The WRAM is a concurrent-read concurrent-write (CRCW) priority PRAM
[5].

2. The WRAM has a richer instruction set for arithmetic operations. The
CREW PRAM supports only addition and subtraction, whereas the WRAM also
allows unit-time unrestricted right shifts and modulus operations.

3. The WRAM and the CREW PRAM differ in the manner in which the proces-
sors are activated. In the WRAM, an arbitrary number of processors are self-activated
at the beginning of the computation. In the CREW PRAM, only one processor is

∗ Received by the editors March 30, 1994; accepted for publication (in revised form) April 24,
1995. This research was supported by National Science Foundation grants CCR-8922008 and CCR-
9315696.

http://www.siam.org/journals/sicomp/26-1/26540.html
† Coordinated Science Laboratory and Department of Computer Science, University of Illinois at

Urbana–Champaign, Urbana, IL 61801 (mak@grinch.csl.uiuc.edu).

153

154 LOUIS MAK

active initially. An active processor activates an idle processor explicitly by execut-
ing a Fork instruction. Consequently, in t steps, a PRAM can activate at most 2t

processors.
Parberry and Schnitger showed that every Turing machine that runs in time T

can be simulated in constant time by a WRAM with 2O(T) processors. The best-
known simulation of unit-cost RAMs by Turing machines incurs a cubic overhead in
the running time [3]. It follows that every unit-cost RAM with time complexity T

can be simulated in constant time by a WRAM with 2O(T 3) processors. It is desirable
to reduce this huge number of processors used in the simulation for two reasons. The
first reason is, obviously, to reduce the hardware requirement.

The second and more important reason is that the ability of the WRAM to use an
arbitrary number of processors renders this model unreasonably powerful. The above
result of Parberry and Schnitger essentially says that every decidable problem can
be decided in constant time by a WRAM. This anomaly arises mainly from allow-
ing self-activated processors. The parallel-computation thesis [8, 14] asserts that the
class of languages accepted by any reasonable parallel-machine model in polynomial
time is equivalent to PSPACE, where PSPACE, as usual, denotes the class of lan-
guages that can be accepted by deterministic Turing machines in polynomial space.
The WRAM violates the parallel-computation thesis and is considered unreasonably
powerful [13]. In contrast, the PRAM is considered reasonable because it obeys the
parallel-computation thesis [6]. So the challenge is to speed up a unit-cost RAM by a
PRAM with a reasonable number of processors; the number of processors should be
small enough so that all processors can be activated explicitly within the simulation
time.

1.2. Comparison with previous results. Dymond and Tompa [4] showed
that every deterministic Turing machine running in time T can be simulated by a
CREW PRAM in time O(T 1/2). However, the random-access memory of the PRAM
is much more flexible than the linear tapes of the Turing machine, which forbid ran-
dom access into individual tape cells. It was unclear whether it is the parallelism,
the more flexible storage structure, or the combination of both that realizes such a
quadratic speedup. Our result demonstrates that parallelism alone suffices to achieve
an almost quadratic speedup.

To the best of our knowledge, in all previous speedup results [4, 10, 13, 15, 16, 18,
20], the machine being simulated is limited to the Turing machine. All these results
depend on the fact that the changes in the configuration of a Turing machine in t steps
are localized to the 2t−1 cells around each tape head. In contrast, the random-access
memory of a unit-cost RAM allows the RAM to change the contents of registers with
widely different addresses in consecutive steps. The versatility of the random-access
memory of a unit-cost RAM has defied all prior attempts to speed up a unit-cost
RAM by a PRAM. This paper presents the first speedup theorem of unit-cost RAMs
by PRAMs.

Reif [17] demonstrated that every probabilistic unit-cost RAM that runs in
time T can be simulated by a probabilistic CREW PRAM in time t(T, L) =
O((T log T log(LT))1/2), where L is the largest integer manipulated by the proba-
bilistic RAM during its computation. It is straightforward to modify Reif’s proof to
show that every unit-cost RAM running in time T can be simulated by a CREW
PRAM in time t(T, L). With unit-time addition, however, a RAM can generate in-
tegers as large as 2O(T) in time T . Reif’s result does not guarantee a speedup since
t(L, T) = O(T (log T)1/2) when L = 2O(T). Our result gives a definite speedup of unit-
cost RAMs by PRAMs, regardless of the value of L. It is routine to generalize our

PARALLELISM ALWAYS HELPS 155

proof to establish a speedup theorem of probabilistic unit-cost RAMs by probabilistic
CREW PRAMs. This paper subsumes the above result of Reif. Thus all algorithms
(deterministic and probabilistic) are parallelizable.

In summary, all previous simulation results suffer from one or more of the following
drawbacks:

1. No definite speedup is guaranteed (Reif [17]).
2. The machine being sped up is limited to the Turing machine [4, 10, 13, 15,

16, 18, 20].
3. The speedup result fails to isolate the effect of parallelism; that is, apart from

the parallelism, the simulator enjoys some additional advantage over the machine
being simulated—for example, a more flexible storage structure (Dymond and Tompa
[4]).

4. The simulator is too strong to be called reasonable because it violates the
parallel computation thesis (Parberry and Schnitger [15]).
Our result does not suffer from any of the above drawbacks.

The rest of this paper is organized as follows. Section 2 defines the RAM and
the PRAM models precisely. In section 3, we build up a repertoire of techniques for
programming a PRAM efficiently. We use these techniques in section 4 to establish
our main result: for every unit-cost RAM R with time complexity T , we construct
a CREW PRAM that simulates R in time O(T 1/2 log T). We conclude with a few
comments in section 5. All logarithms are taken to base 2.

2. Definitions.

2.1. The unit-cost RAM. A RAM R consists of a memory, and a program.
The memory is an infinite sequence of registers (r(i)), i = 0, 1, The address of
r(i) is the integer i. Each register can hold an integer. Let 〈r(i)〉 denote the content
of r(i) and |〈r(i)〉| denote the absolute value of 〈r(i)〉. The program consists of a finite
number of statements, numbered 1, 2, . . . , Q. Each statement contains one instruction.
The allowed instructions are shown in Table 1. The input of R is a binary number
α = α0α1 . . . αn−1, where each αi ∈ {0, 1}. Initially, r(0), r(1), . . . , r(K − 1) hold
some constant values required in the computation of R, where K is a constant that
depends on R; r(K + i) holds αi for 0 ≤ i < n, and r(K + n) holds −1 to mark
the end of the input. All other registers contain 0. A unit-cost RAM executes each
instruction in one step. Each step takes unit time. Thus step t takes a unit-cost RAM
from time t − 1 to time t. The running time of a unit-cost RAM is the number of
steps performed.

Table 1

Instructions of a RAM.

Instruction Meaning
r(i)← r(j) r(i) gets 〈r(j)〉.
r(i)← (r(0)) r(i) gets 〈r(j)〉, where j = |〈r(0)〉|.
(r(0))← r(j) r(i) gets 〈r(j)〉, where i = |〈r(0)〉|.
r(i)← r(j) + r(k) r(i) gets 〈r(j)〉+ 〈r(k)〉.
r(i)← r(j)− r(k) r(i) gets 〈r(j)〉 − 〈r(k)〉.
Jump q If 〈r(0)〉 ≤ 〈r(1)〉, then jump to statement q.
Accept Accept and halt.
Reject Reject and halt.

2.2. The PRAM. A PRAM P comprises a collection of processors P (0), P (1),
. . . , which communicate via a global memory (g(i)). The initial contents of the global
memory are as follows: the first K ′ global registers hold some constants, where K ′

156 LOUIS MAK

is another constant that depends on P ; the next n + 1 global registers hold the n
input bits, followed by the end-of-input marker, and all other global registers contain
0. Every processor is a unit-cost RAM. Each P (p) has its own local memory (rp(i))
and can use every global memory register in the same manner as it uses a local
memory register. In addition, each processor has an extra Fork q instruction for
processor activation. Initially, only P (0) is active. Whenever a processor executes a
Fork q instruction, a new processor is activated and starts running at statement q.
When P (p) executes the Fork instruction the tth time, processor P (2t−1(2p+ 1)) is
activated. The processor id (PID) of P (p) is the integer p. When P (p) is activated,
its local register rp(0) is initialized with its PID p, and all other local registers of P (p)
contain 0. The PRAM P accepts if and only if P (0) executes an Accept instruction.

In a PRAM, several processors may attempt to access the same memory cell at
the same time. A PRAM may allow concurrent-read and concurrent-write (CRCW)
operations, concurrent-read and exclusive-write (CREW) operations, or exclusive-
read and exclusive-write (EREW) operations [2, 22, 25]. In a CRCW PRAM, some
mechanism is necessary to resolve the simultaneous write conflicts [2, 8, 21]. Fich et al.
[5] studied the relationships between CRCW PRAMs with different conflict-resolution
mechanisms.

In what follows, we restrict our attention to CREW PRAMs. Unless otherwise
stated, our results also hold for CRCW PRAMs.

3. Techniques for programming PRAMs. In this section, we present several
techniques for programming the PRAM. First, we show how to perform the follow-
ing operations quickly on a PRAM: logical AND, summation, and multiplication of
“small” integers. Second, we describe a fast implementation of multidimensional mem-
ory on a PRAM. Third, we explain how every processor can extract useful information
from its PID efficiently.

3.1. Logical AND, summation, and multiple memories. It is convenient
to interpret integers as logical values. We interpret a nonzero integer as true and 0 as
false.

Lemma 3.1. [folklore] Suppose in a PRAM P , the global memory registers g(1),
g(2), . . . , g(n) store n integers k1, k2, . . . , kn. Then P can find the sum and the logical
AND of these n integers in O(logn) time.

By interleaving memory registers, Cook and Reckhow [3] demonstrated that a
unit-cost RAM with a single memory can simulate a unit-cost RAM with multiple
memories with merely a constant factor overhead in the running time. By applying
the same technique to the PRAM, it is easy to prove the following lemma.

Lemma 3.2. [folklore] Let γ > 1. Every PRAM with time complexity T and γ
global memories (g1(i)), (g2(i)), . . . , (gγ(i)) can be simulated in time O(T) by a PRAM
with one global memory.

3.2. Multiplication of small integers. Trahan et al. [24] studied PRAMs with
unit-time multiplication. By the following lemma, we may assume that ordinary
PRAMs can perform unit-time multiplication of “small” integers.

Lemma 3.3. Let P be a PRAM that (i) runs in time T and (ii) can perform
unit-time multiplication on T -bit integers. Then P can be simulated by an ordinary
PRAM in time O(T).

Proof. We use a PRAM P ′ with multiple memories to simulate P . Lemma 3.3
then follows from Lemma 3.2. P ′ simulates P step by step. We only need to show that
P ′ can multiply two T -bit integers in O(1) time. Multiplication reduces to squaring
and halving via the identity xy = ((x+ y)2 − x2 − y2)/2. For two T -bit integers x

PARALLELISM ALWAYS HELPS 157

and y, x+ y and 2xy are, respectively, at most T + 1 and 2T + 1 bits long. It suffices
to show that P ′ can perform in O(1) time (i) squaring on (T + 1)-bit positive integers
and (ii) halving (right shift) on (2T + 1)-bit positive integers. Before simulating P ,
P ′ precomputes a Square Table of size 2T+1 and a Right-Shift Table of size 22T+1.
Then during the simulation, P ′ can perform squaring and halving in O(1) time by
table lookup. It remains to demonstrate that the Square Table and the Right-Shift
Table can be precomputed in O(T) time.

P ′ uses four global memories (ls(i)), (rs(i)), (lsb(i)), and (sq(i)) to implement
four tables:

1. Left-Shift Table: 〈ls(i)〉 = 2i;
2. Right-Shift Table: 〈rs(i)〉 = bi/2c;
3. Least-Significant-Bit Table: 〈lsb(i)〉 = least significant bit of i;
4. Square Table: 〈sq(i)〉 = i2.

P ′ initializes the first three tables for 0 ≤ i < 22T+1 as follows. In O(T) time, P ′

activates processors P (0), P (1), . . . , P (22T+1− 1). Each processor does the following:
1. Store PID + PID in ls(PID).
2. Store PID in rs(PID + PID) and rs(PID + PID + 1).
3. Store PID− ls(rs(PID)) in lsb(PID).

Obviously, steps 1, 2, and 3 take O(1) time. After the Left-Shift Table, the Right-Shift
Table, and the Least-Significant-Bit Table are initialized, then for 0 ≤ i < 2T+1, each
P (i) computes the square of its PID using the paper–pencil multiplication method
(repeated shift and add) and stores the result in sq(i). This takes O(T) time. Hence
all four tables can be precomputed in O(T) time.

We have assumed that P ′ knows the value of T a priori. This assumption can
be removed easily; P ′ just tries successive powers of two as an estimate of T . This
modification does not increase the asymptotic running time of P ′.

3.3. Multidimensional memory. A d-dimensional RAM is one with memory
(r(i1, i2, . . . , id)), where i1, i2, . . . , id ≥ 0. A d-dimensional PRAM is one with global
memory (g(i1, i2, . . . , id)); each processor of a d-dimensional PRAM is a d-dimensional
RAM. Robson [19] showed that ordinary RAMs can simulate multidimensional RAMs
with only a constant-factor overhead in the running time. However, the proof of
Robson cannot be adapted directly to prove the analogous result for PRAMs. Briefly,
the reason is as follows. To simulate a RAM R with two-dimensional memory (r(i, j))
by an ordinary RAM R′ with memory (r′(i)), Robson devised a mapping from the
r(i, j)’s to the r′(i)’s. This mapping depends on the sequence of r(i, j)’s accessed
during the computation of R, and R′ constructs this mapping incrementally as it
simulates R step by step. Consider applying the same idea to simulate a PRAM P
with two-dimensional global memory (g(i, j)) by an ordinary PRAM P ′ with global
memory (g′(i)). If we simulate each processor of P by a corresponding processor of
P ′ as in the proof of Robson, then different processors of P may access the g(i, j)’s in
different ways, and hence different processors of P ′ may have different mappings. Thus
some processor of P ′ may think that the value of g(0, 0) is stored in g′(0), whereas
another processor of P ′ thinks that the same value is stored in g′(1). Obviously, such
a simulation of P by P ′ does not work.

All in all, the analogous result for PRAMs does hold, as shown by the next lemma.
Lemma 3.4. Every d-dimensional PRAM P running in time T can be simulated

by an ordinary PRAM P ′ in time O(T).
Proof. P ′ uses processor P ′(i) to simulate the corresponding processor P (i) of

P . Every P ′(i) simulates P (i) step by step. It suffices to explain how to emulate
d-dimensional memories by one-dimensional memories. We demonstrate how P ′(i)

158 LOUIS MAK

emulates an access of P (i) to the d-dimensional global memory of P by an access
to the one-dimensional global memory of P ′. P ′(i) uses its one-dimensional local
memory to emulate the d-dimensional local memory of P (i) in a similar fashion.

P has global memory (g(i1, i2, . . . , id)); P
′ has global memory (g′(i)). In time T ,

P (i) can produce integers no longer than CT bits for some constant C. Define b = 2CT

and η(i1, i2, . . . , id) =
∑d
j=1 ijb

j−1. We map g(i1, i2, . . . , id) of P to g′(η(i1, i2, . . . , id))
of P ′. It is easy to verify that the η(i1, i2, . . . , id)’s are distinct for 0 ≤ i1, i2, . . . , id <
2CT . To emulate an access to g(i1, i2, . . . , id) by P (i), P ′(i) computes η(i1, i2, . . . , id)
and accesses g′(η(i1, i2, . . . , id)).

It remains to show that computing η takes O(1) time. By repeated doubling,
b = 2CT can be precomputed in O(T) time. For i1, i2, . . . , id < 2CT , η is at most dCT
bits long. By Lemma 3.3, we may assume that P ′(i) can perform multiplication on
dCT -bit integers in O(1) time. Thus P ′(i) can compute η in O(1) time.

Again, we have presumed that the value of T is available. This assumption can
be removed in the same way as in the proof of Lemma 3.3.

Lemma 3.4 shows that without loss of generality, we may assume that CREW
PRAMs have multidimensional memories. Apparently, some authors have used this
fact without proof [4, 17].

3.4. Extracting information from the PID. The advantage of a PRAM over
a RAM is that in a PRAM, many processors can work together in parallel. Clearly,
this advantage is defeated if all processors just do the same thing on the same data,
in which case one processor is as good as many. To take advantage of the parallelism,
therefore, different processors have to operate differently. This is easily achieved by
exploiting the distinctness of the PIDs; each processor consults its PID to determine
its operation. For our later purpose, we require each processor to be able to look at
successive single bits and successive O(log T) bits of its PID in order to determine
its operation. Next, we demonstrate that every PRAM can be modified to fulfill this
requirement.

Let P be a PRAM with time complexity T . In time T , P can activate at most
2T processors. The PID of every processor is at most T bits long. We modify P as
follows.

1. P activates all 2T processors before any actual computation.
2. P starts its computation by initializing in O(1) time a Least-Significant-Bit

Table, a Right-Shift Table, and a Left-Shift Table, all of size 2T , as described in the
proof of Lemma 3.3. Using the first two tables, each processor can extract successive
single bits of its PID, spending O(1) time per bit.

3. P implements two additional tables with global memories (lsb′(i)) and
(rs′(i)):

(i) lsb′(i) = the least significant blog T c bits of i.
(ii) rs′(i) =

⌊
i/2blog Tc⌋, i.e., i right-shifted blog T c bits.

These two tables can be precomputed in O(log T) time as follows. We presume the
availability of the three tables mentioned in modification 2. For 0 ≤ i < 2T , processor
P (i) does the following:

(i) Right shift its PID blog T c times and store the result in rs′(i).
(ii) Left shift rs′(i) blog T c times, subtract the result from its PID, and store

the difference in lsb′(i).
Then each processor can extract successive blog T c bits of its PID by table

lookup, spending O(1) time per blog T c bits. We have assumed that P knows a priori
the values of T and blog T c. The knowledge of T is justifiable, as argued in the proof
of Lemma 3.3, and blog T c is simply the number of bits in the binary representation

PARALLELISM ALWAYS HELPS 159

of T .
These modifications increase the running time of P by at most a constant factor.

4. Speedup of RAMs by PRAMs. We now prove that the PRAM is always
faster than the RAM.

Theorem 4.1. Every unit-cost RAM running in time T can be simulated by a

CREW PRAM in time O(T 1/2 log T) with TO(T 1/2) processors.
Let R be a unit-cost RAM with memory (r(i)) and time complexity T = T (n). We

devise a CREW PRAM P with multiple multidimensional memories that simulates R
in time O(T 1/2 log T). Theorem 4.1 then follows from Lemmas 3.2 and 3.4. Let A be
a large enough constant so that every address in the program of R can be encoded in
A bits; we choose A to be at least 3 log 3 + 1 to suit our later purpose. As the input
length n tends to infinity, so does T since T (n) ≥ n. Consequently, if n exceeds some
constant n0, then AT 1/2 > log(2(T +K+n+ 1)), where K is a constant that depends
on R as explained in section 2.1. It suffices to argue that P runs in O(T 1/2 log T) time
for n > n0 since we can modify P to handle inputs of length less than n0 by table
lookup. We assume that P knows the value of T 1/2 in advance. Otherwise, P tries
successive powers of two as an estimate of T 1/2.

4.1. Overview of simulation. Dymond and Tompa [4] proved that every Tur-
ing machine with time complexity t can be sped up by a CREW PRAM in time O(t1/2);
briefly, their proof is as follows. In O(t1/2) time, the PRAM precomputes a transition
table that represents the t1/2-step transition function of the Turing machine. Then
the PRAM can simulate a block of t1/2 steps of the Turing machine in O(1) time
by consulting this table. The PRAM accesses this table t1/2 times to simulate the
Turing machine for t steps. We would like to point out that this standard technique
of precomputing a transition table, though useful for simulating the Turing machine,
cannot be applied to speed up the unit-cost RAM by the CREW PRAM. Below we
explain why this technique works for the Turing machine but not the unit-cost RAM.

In t1/2 steps, the changes in the configuration of a Turing machine M depend
only on the local configuration of M , i.e., the state of M and the contents of O(t1/2)
cells around each tape head. Consider a transition table that maps the current local
configuration of M to the local configuration t1/2 steps afterwards. Such a table

contains 2O(t1/2) entries since there are 2O(t1/2) different local configurations. A CREW
PRAM can build this table in O(t1/2) = o(t) time. Thus an asymptotic speedup is
possible.

Now consider the unit-cost RAM R (with time complexity T). In T 1/2 steps, the
changes in the configuration of R are not localized to O(T 1/2) consecutive registers;
the PRAM P cannot build a transition table for local configurations as in the case
of the Turing machine. In time T , R can construct integers as large as 2Θ(T). With
indirect addressing, R may use these integers as addresses and assigns to register
r(i) an integer j, where 0 ≤ i, j ≤ 2Θ(T). In T steps, R can write to Θ(T) different

registers. Hence there are at least (2Θ(T))Θ(T) = 2Ω(T 2) different configurations of R.
A transition table that maps the current configuration of R to the configuration T 1/2

steps afterwards will have 2Ω(T 2) entries. To generate such a huge table, P requires
Ω(T 2) = ω(T) time; this results in an asymptotic slowdown. Therefore, the technique
of precomputing a transition table does not work for the unit-cost RAM. The novel
idea in this paper is to simulate the unit-cost RAM without building its transition
table.

Fix an input α = α0α1 . . . αn−1 and consider the computation of R on α. For-
mally, the configuration of R at time t consists of the statement number of R at time

160 LOUIS MAK

t and the contents of all registers at time t. Denote the configuration of R at time t
by config(t).

Our simulation comprises two phases. In phase I, P uses O(T 1/2 log T) time to

activate T 1/2 groups of TO(T 1/2) processors. For 1 ≤ m ≤ T 1/2, the processors in group
m perform some preprocessing such that after the preprocessing, config(mT 1/2) can be
computed from config((m−1)T 1/2) in O(log T) time. All groups do the preprocessing
simultaneously. In phase II, P finds config(T) as follows. The initial configuration
of R, config(0), can be determined trivially. For m = 1, 2, . . . , T 1/2, P computes
config(mT 1/2) from config((m − 1)T 1/2) in O(log T) time. Let q∗ be the statement
number in config(T). P accepts if and only if statement q∗ contains an Accept

instruction. Both phases take O(T 1/2 log T) time. Next, we present an efficient rep-
resentation of the configuration of R and then provide the details of phases I and
II.

4.2. Representing the configuration of R. The PRAM P uses a data struc-
ture CONFIG to represent the configuration of R. One difficulty is that P cannot
use a single register to store the content of a corresponding register of R. This is
because R can generate integers as large as 2O(T) in time T , but P can produce

integers no larger than TO(T 1/2) within the intended O(T 1/2 log T) time bound. To
overcome this difficulty, P divides every O(T)-bit integer into N = O(T 1/2) blocks,
each B = AT 1/2 bits long. Without loss of generality, we assume that R represents
negative integers using sign-and-magnitude representation; thus R works with non-
negative integers exclusively. With this simplifying assumption, every block in our
blockwise representation is a nonnegative integer.

Initially, all registers of R contain 0, except for r(0), r(1), . . . , r(K + n). By
convention, the first step of R is step 1, and r(0), r(1), . . . , r(K + n) are first written
to in step 0 (i.e., they are initialized at time 0). For 0 ≤ i ≤ K + n, let ui denote
r(i). For i > K + n, if a new register of R is written to in step i−K − n, then let ui
denote this register; otherwise, ui is undefined. To describe the configuration of R at
time t, it suffices to specify the statement number of R at time t and the address and
content at time t of ui for 0 ≤ i ≤ t+K + n.

CONFIG consists of three global memories (a(i, j)), (c(i, j)), and (b(i)). To rep-
resent the configuration of R at time t, register b(0) holds the statement number of
R at time t. If 0 ≤ i ≤ t + K + n and ui is defined, then c(i, j) holds the jth block

of B bits in 〈ui〉. Thus 〈ui〉 =
∑N−1
j=0 〈c(i, j)〉2jB . For brevity, we say that c(i) holds

〈ui〉, or 〈c(i)〉 = 〈ui〉, implying the blockwise representation. Register a(i) holds the
address of ui in the same blockwise format. If t < i−K − n ≤ T or ui is undefined,
then a(i) holds −1, and c(i) is not used. The number of registers that CONFIG uses
is therefore O(NT) = O(T 3/2).

Henceforth, when we mention config(t), we imply the above representation.

4.3. Phase I.

4.3.1. Static, dynamic, and effective instructions. Due to conditional
jumps, a program statement may be executed more than once. For clarity, we dis-
tinguish between a static instruction and a dynamic instruction. The former is a
static entity in a program statement of R. The latter is an executed instruction—an
instance of a static instruction during the computation of R. A static instruction may
correspond to none or many dynamic instructions.

Divide the dynamic instructions of R into three types:

1. Accept, Reject, and Jump;

PARALLELISM ALWAYS HELPS 161

2. direct and indirect load and store instructions: r(i) ← r(j), r(i) ← (r(0)),
and (r(0))← r(j);

3. arithmetic operations: r(i)← r(j) + r(k) and r(i)← r(j)− r(k).
Consider the effect of each dynamic instruction on the memory of R. A type-1 instruc-
tion does not change the content of any register. As far as the effect on the memory is
concerned, a type-1 instruction is equivalent to a u0 ← u0 instruction. An instruction
of type-2 copies the content of one register to another. Without loss of generality, we
assume that r(K − 1) always holds 0. Reading from an uninitialized register is the
same as reading from r(K−1) = uK−1 since all uninitialized registers contain 0. The
effect of a type-2 instruction is thus ui′ ← uj′ for some 0 ≤ i′, j′ ≤ T+K+n. A type-3
instruction finds the sum or difference of the contents of two registers and stores the
result in a third register. The effect of a type-3 instruction is either ui′ ← uj′ + uk′

or ui′ ← uj′ − uk′ for some 0 ≤ i′, j′, k′ ≤ T + K + n. Therefore, each dynamic
instruction is, in effect, of the form ui′ ← uj′ , ui′ ← uj′ + uk′ , or ui′ ← uj′ − uk′
for some 0 ≤ i′, j′, k′ ≤ T + K + n. Since T = T (n) ≥ n, there are O(T 3) effective
instructions of the above forms. Note that one static instruction may correspond to
several dynamic instructions, each equivalent to a different effective instruction.

4.3.2. The preprocessing. We fix m and describe the processors in group m.
Let πm be the triple (qm, βm, σm), where qm is the statement number of R at time
(m − 1)T 1/2, σm is the sequence of T 1/2 effective instructions from time (m − 1)T 1/2

to mT 1/2, and βm is a binary string that encodes the outcomes of all conditional
jumps between time (m−1)T 1/2 and mT 1/2. For uniformity, we view every static and
dynamic instruction as a conditional jump. An Accept instruction, for example,
may be viewed as a conditional jump where the condition is always false, and the
destination of the jump is statement 1. In this way, βm is always of length T 1/2. The
triple πm specifies the behavior of R between time (m − 1)T 1/2 and mT 1/2. Using
the information contained in πm, group m performs some preprocessing that enables
config(mT 1/2) to be computed from config((m − 1)T 1/2) quickly. One problem is
that group m does not know πm in advance. To surmount this problem, group m uses
enough processors to try all possible triples. Let Q be the number of statements in the

program of R. The number of possible triples is thus Q×2T
1/2×O(T 3)T

1/2

= TO(T 1/2).

Group m uses TO(T 1/2) processors, which can be activated in O(T 1/2 log T) time. Each
processor is responsible for a distinct triple, which is encoded in the processor’s PID.
All processors in all groups carry out their preprocessing simultaneously in parallel.

We focus on one specific processor Pπ of group m, which is responsible for one
particular triple π = (q, β, σ). Notice the difference in notation: the PID of P (p)
is p, whereas the PID of Pπ is not π, but the triple π is encoded in the PID of
Pπ. Pπ decodes its PID to obtain q, β, and σ. To obtain the sequence of T 1/2

effective instructions σ, Pπ extracts the least significant O(T 1/2 log T) bits from its
PID, O(log T) bits at a time. Every effective instruction can be encoded in O(log T)
bits since there are O(T 3) different effective instructions. To recover the individual
bits of β, Pπ extracts the next T 1/2 bits from its PID, one bit at a time. The next
blogQc+1 bits of the PID constitute q. Using the techniques prescribed in section 3.4,
Pπ can decode its PID in O(T 1/2) time. Pπ saves all decoded information in tables so
that it can access each bit of β and each effective instruction in O(1) time by table
lookup.

To facilitate our discussion, we say the triple π “happens” if the actual behavior of
R conforms with the information contained in π. Now π may or may not happen. In
phase I, Pπ performs some preprocessing so that in phase II, once config((m−1)T 1/2)
has been computed, Pπ is able to decide in O(log T) time whether π actually happens

162 LOUIS MAK

and, if so, computes config(mT 1/2) from config((m−1)T 1/2) in O(log T) time. Because
of the way we represent the configuration of R (section 4.2), to compute config(mT 1/2)
from config((m− 1)T 1/2), it suffices to determine the following:

1. the statement number of R at time mT 1/2;
2. for (m− 1)T 1/2 < i−K − n ≤ mT 1/2, the address of ui if ui is defined;
3. for 0 ≤ i ≤ mT 1/2 +K + n, the content of ui at time mT 1/2 if ui is defined.

Below we explain the preprocessing that enables Pπ to determine each of the above
three items efficiently in phase II, assuming π actually happens.

4.3.3. The statement number. Starting from statement q, Pπ steps through
the program of R statement by statement, following the flow of control defined by
β. Meanwhile, Pπ keeps track of the statement number of R. After T 1/2 steps, Pπ
obtains the statement number of R at time mT 1/2. This preprocessing takes O(T 1/2)
time.

4.3.4. The addresses of the ui’s. In O(log T) time, Pπ activates T 1/2 proces-
sors Pi, where (m − 1)T 1/2 < i −K − n ≤ mT 1/2. Each Pi is responsible for finding
the address of ui.

We fix i and describe Pi. Pi considers the effective instruction in step s = i−K−n
given by σ. Suppose this effective instruction is of the form ui′ ← uj′ . Other cases
are handled similarly. If i′ 6= i, then no new register is written to in step s, and ui
is undefined. Otherwise, ui is the register first written to in step s. Pi steps through
the program of R in the same manner as described in section 4.3.3 and finds the
dynamic instruction in step s. If this dynamic instruction is of the form r(j)← r(k)
or r(j) ← (r(0)), then the address of ui is j. The blockwise representation of j is
readily obtained since all addresses in the program of R are at most A ≤ B bits long;
the least significant B-bit block of j is just j itself, and all other blocks are 0. If the
dynamic instruction in step s is of the form (r(0)) ← r(k), then the address of ui is
the content of r(0) at time s − 1. Denote by 〈ui, t〉 the content of ui at time t. In
section 4.3.5, we explain the preprocessing for finding 〈ui,mT 1/2〉. Pi performs the
preprocessing for finding 〈r(0), s− 1〉 = 〈u0, s− 1〉 in a similar fashion.

4.3.5. The contents of the ui’s. Since the sole arithmetic operations permit-
ted are addition and subtraction, it follows that for a fixed π, 〈ui,mT 1/2〉 is a linear
combination of the 〈ui, (m− 1)T 1/2〉’s. Let

〈ui,mT 1/2〉 =
T+K+n∑
j=0

Cij〈uj , (m− 1)T 1/2〉,

where the Cij ’s are integer coefficients which depend only on π. In O(log T) time,
Pπ deploys O(T 2) processors Pij , where 0 ≤ i, j ≤ T +K + n. Each Pij finds Cij in
phase I.

We fix i and j and describe Pij . Pij creates an empty directed multigraph G and
then processes the effective instructions specified by σ one by one. As Pij considers
each effective instruction, it inserts nodes and edges into G. Pij marks each edge
either “positive” or “negative.” Node w is a positive child of node v if the edge (v, w)
is positive. A negative child is defined analogously. Let v+ and v−, respectively, be
the set of positive and negative children of v.

Pij maintains a counter τ to keep track of the step corresponding to the effective
instruction currently under consideration. Pij initializes τ to (m − 1)T 1/2 + 1 and
increments τ after every effective instruction. Pij names each node either [uk, (m −
1)T 1/2] or [uk, τ] for some 0 ≤ k ≤ T + K + n. Intuitively, node [uk, t] represents

PARALLELISM ALWAYS HELPS 163

〈uk, t〉. For a node v = [uk, t], we write 〈v〉 for 〈uk, t〉. The edges are marked such
that

〈v〉 =
∑
w∈v+

〈w〉 −
∑
w∈v−

〈w〉 for each node v.(1)

This will become clear after we explain how Pij constructs G. After processing all
T 1/2 effective instructions, Pij uses G to obtain Cij .

4.3.6. Constructing G. Pij considers the T 1/2 effective instructions specified
by σ one by one and constructs G as follows. For a ui′ ← uj′ instruction, Pij does the
following. Create node [ui′ , τ]. If G does not contain a node [uj′ , τ

′] for some τ ′ < τ ,
then create node [uj′ , (m − 1)T 1/2]. Let τj′ < τ be maximum such that G contains
node [uj′ , τj′]. Insert edge ([ui′ , τ], [uj′ , τj′]) and mark it positive.

Pij processes a ui′ ← uj′ − uk′ instruction as follows. Create node [ui′ , τ]. If
G does not contain a node [uj′ , τ

′] for some τ ′ < τ , then create node [uj′ , (m −
1)T 1/2]. Similarly, if G does not contain a node [uk′ , τ

′] for some τ ′ < τ , then create
node [uk′ , (m − 1)T 1/2]. Let τj′ , τk′ < τ be maximum such that G contains nodes
[uj′ , τj′] and [uk′ , τk′]. Insert a positive edge ([ui′ , τ], [uj′ , τj′]) and a negative edge
([ui′ , τ], [uk′ , τk′]). A ui′ ← uj′ + uk′ instruction is processed in the same way except
that both of the inserted edges are positive.

It is mechanical to verify that the above construction yields a graph which satisfies
(1), and every node of the graph has out-degree at most two. We illustrate the above
construction with an example for Pπ of group m = 1 with T 1/2 = 5. Figure 1 shows
the effective instructions specified by π. The graph constructed by Pij appears in
Fig. 2.

Step Instruction
1 u0 ← u1

2 u0 ← u0 + u0

3 u0 ← u0 − u2

4 u1 ← u1 + u0

5 u0 ← u0 + u1

Effect on memory: 〈u0, 5〉 = 5〈u1, 0〉 − 2〈u2, 0〉,
〈u1, 5〉 = 3〈u1, 0〉 − 〈u2, 0〉.

In this example, C01 = 5, C02 = −2, C11 = 3, and C12 = −1.

Fig. 1. The T 1/2 = 5 effective instructions specified by π and their effect on the memory
(example).

4.3.7. Computing Cij. We explain how Pij uses G to compute Cij . Pij checks
whether G contains a node [ui, τ

′] for some τ ′ > (m− 1)T 1/2.
Case I (no such node exists). By construction of G, Pij will create node [ui, τ

′]
if R writes to ui in step τ ′. The hypothesis thus implies that R does not write to ui
between time (m− 1)T 1/2 and mT 1/2. It follows that 〈ui,mT 1/2〉 = 〈ui, (m− 1)T 1/2〉.
Ergo, Cij = 0 for j 6= i, and Cii = 1.

Case II (otherwise). Let τi be maximum such thatG contains node [ui, τi]. Similar
arguments as in Case I give 〈ui,mT 1/2〉 = 〈ui, τi〉.

Consider the subgraph H of G induced by node [ui, τi] and all its descendants. By
construction, G (and hence H) is a directed acyclic multigraph. Pij sorts the nodes in
H topologically and labels each edge in H with an integer as follows. Pij considers the
nodes in H in topological order. For each node v, Pij labels the outgoing edges of v.
When Pij considers node v, all incoming edges of v are labeled since Pij considers the

164 LOUIS MAK

[u1, 0]

[u0, 1]

[u0, 2]

[u0, 3]

[u2, 0]

[u1, 4]

[u0, 5]

+

+ +

+ −

+

+

+ +

Fig. 2. The graph G constructed by Pij after processing the effective instructions in Fig. 1.

nodes in topological order. Evidently, the first node considered is [ui, τi]. Pij labels
every positive and negative outgoing edge of [ui, τi] with 1 and −1, respectively. For
each remaining node v in topological order, let λ(H, v) be the sum of the labels on
the incoming edges of v in H. Pij labels each positive and negative outgoing edge of
v with λ(H, v) and −λ(H, v), respectively. Figure 3 shows the result of applying the
above labeling algorithm to the graph in Fig. 2.

For s > 0, let Hs be the subgraph of H induced by all labeled edges after s
nodes are considered. The leaves of Hs, denoted by L(Hs), are the nodes in Hs with
no outgoing edges. The following invariant is a consequence of (1): After s nodes
are considered, 〈ui, τi〉 =

∑
v∈L(Hs)

λ(Hs, v)〈v〉. Therefore, after all edges in H are

labeled, 〈ui,mT 1/2〉 =
∑
v∈L(H) λ(H, v)〈v〉. By construction, every leaf of H is named

[uj , (m − 1)T 1/2] for some j. Hence Cij = λ(H, [uj , (m − 1)T 1/2]) if [uj , (m − 1)T 1/2]
is a leaf of H; otherwise, Cij = 0. For the example in Fig. 3, P01 determines that
C01 = 4 + 1 = 5, and P02 concludes that C02 = −2.

In the above labeling algorithm, the sum of the absolute values of all the labels
on the edges of Hs is at most triple that of Hs−1 since every node in H has out-degree
at most two. The number of nodes in H is |H| ≤ |G| ≤ 3T 1/2 because at most three

nodes are created for each of the T 1/2 effective instructions. Therefore, |Cij | ≤ 33T 1/2

for all i and j. Each Cij is at most B = AT 1/2 bits long, since A ≥ 3 log 3 + 1.
The number of edges in G is O(|G|), since each node has bounded out-degree.

Constructing G and H, topologically sorting H, labeling the edges of H, and com-
puting λ(H, [uj , (m − 1)T 1/2]) all take O(|G|) = O(T 1/2) time. Thus the bottleneck
in phase I is the activation of enough processors to try all possible π, which takes
O(T 1/2 log T) time.

4.3.8. Table precomputation. In phase II, P has to extract efficiently the
most and least significant B bits of a 2B-bit integer. In phase I, P precomputes
two tables (h1(i)) and (h2(i)) so that the first and second half of i can be ex-

PARALLELISM ALWAYS HELPS 165

[u1, 0]

[u0, 1]

[u0, 2]

[u0, 3]

[u2, 0]

[u1, 4]

[u0, 5]

4

2 2

2 −2

1

1

1 1

Fig. 3. The result of applying the labeling algorithm of section 4.3.7 to the graph in Fig. 2.

tracted in O(1) time by table lookup. P uses O(T 1/2) time to activate processors
P (0), P (1), . . . , P (22B − 1) and builds up a Left-Shift Table and a Right-Shift Table
of size 22B as in the proof of Lemma 3.3. Next, for 0 ≤ i < 22B , each P (i) extracts
in O(T 1/2) time the first and second halves of its PID as follows. The first half is ob-
tained by shifting the PID right B times using the Right-Shift Table. The second half
is obtained by shifting the first half left B times and subtracting the (shifted) first half
from the PID. P (i) stores the first and second halves in h1(i) and h2(i), respectively.
Hence the two tables (h1(i)) and (h2(i)) can be precomputed in O(B) = O(T 1/2)
time.

4.4. Phase II. The data structure CONFIG has O(T 3/2) registers. In phase
II, P initializes CONFIG in parallel using O(log T) time so that CONFIG contains

config(0). For m = 1, 2, . . . , T 1/2, the TO(T 1/2) processors in group m do the following:

1. Each processor Pπ in group m checks in O(log T) time whether π actually
happens.

2. If so, compute config(mT 1/2) from config((m− 1)T 1/2) (stored in CONFIG)
in O(log T) time and update CONFIG accordingly.

After T 1/2 updates, CONFIG contains config(T). P accepts if and only if statement
q∗ contains an Accept instruction, where q∗ is the statement number in config(T).
Notice that in step 1, exactly one Pπ determines that π happens. So in step 2, no
write conflicts arise when updating CONFIG.

Next, we demonstrate that Pπ can compute config(mT 1/2) from config((m −
1)T 1/2) in O(log T) time, provided that π actually happens. In section 4.5, we prove
that O(log T) time suffices to verify whether π actually happens. The preprocessing
of section 4.3.3 yields the statement number at time mT 1/2 directly. For (m− 1)T 1/2

< i − K − n ≤ mT 1/2, the preprocessing of section 4.3.4 either gives the address of
ui directly or reduces the problem of finding the address of ui to that of finding the
content of u0. It remains to explain how to determine the contents of the ui’s.

166 LOUIS MAK

4.4.1. Computing contents of registers. We now explain how Pπ computes
the contents of the ui’s at time mT 1/2 from the contents of the ui’s at time (m−1)T 1/2.
Suppose config((m−1)T 1/2) is available in CONFIG as described in section 4.2. Then
c(j, k) holds the kth B-bit block of 〈uj , (m− 1)T 1/2〉. Recall that

1. 〈ui,mT 1/2〉 =
∑T+K+n
j=0 Cij〈uj , (m− 1)T 1/2〉;

2. in phase I, Pπ dispatches processor Pij to calculate Cij ;
3. Cij is a B-bit integer.

The product Cij〈c(j, k)〉 is thus a 2B-bit integer. In phase II, the Pij ’s cooperate to
compute 〈ui,mT 1/2〉 in O(log T) time as follows. The Pij ’s use four multidimensional
global memories (g(i1, i2, i3, i4)), (g′(i1, i2, i3, i4)), (h(i1, i2, i3)), and (h′(i1, i2, i3)).
Let p be the PID of Pπ. In O(log T) time, every Pij activates O(T) processors P ′k,
where 0 ≤ k ≤ T +K+n. Each P ′k multiplies Cij with 〈c(j, k)〉 and puts the most and
least significant B bits of the product in g′(p, i, j, (k+1)) and g(p, i, j, k), respectively.
By Lemma 3.3, we may assume that the multiplication requires O(1) time. Extracting
the most and least significant B bits also takes O(1) time as discussed in section 4.3.8.
Then

〈ui,mT 1/2〉 =
T+K+n∑
j=0

Cij〈c(j)〉,(2)

〈c(j)〉 =
N−1∑
k=0

〈c(j, k)〉2kB ,(3)

Cij〈c(j, k)〉 = 〈g′(p, i, j, (k + 1))〉2B + 〈g(p, i, j, k)〉.(4)

From (2), (3), and (4),

〈ui,mT 1/2〉 =
T+K+n∑
j=0

N∑
k=0

(〈g′(p, i, j, k)〉+ 〈g(p, i, j, k)〉)2kB .(5)

Next, Pπ uses O(log T) time to deploy O(T 3/2) processors P ′ik, where 0 ≤ i ≤ T+K+n
and 0 ≤ k ≤ N . Each P ′ik computes the sum

φik =
T+K+n∑
j=0

(〈g′(p, i, j, k)〉+ 〈g(p, i, j, k)〉)

in O(log T) time (Lemma 3.1). The sum of 2(T + K + n + 1) integers, each B bits
long, is at most B + log(2(T + K + n + 1)) ≤ 2B bits long. P ′ik extracts the most
and least significant B bits of φik and places them in h′(p, i, (k + 1)) and h(p, i, k),
respectively. Therefore,

T+K+n∑
j=0

(〈g′(p, i, j, k)〉+ 〈g(p, i, j, k)〉) = h′(p, i, (k + 1))2B + h(p, i, k).(6)

Let ψi =
∑N+1
k=0 〈h(p, i, k)〉2kB and ψ′i =

∑N+1
k=0 〈h′(p, i, k)〉2kB . From (5) and (6),

〈ui,mT 1/2〉 =
N+1∑
k=0

(〈h′(p, i, k)〉+ 〈h(p, i, k)〉)2kB = ψ′i + ψi.(7)

Consider the carries into and out of the kth B-bit block when we add ψ and ψ′

together. By (7), the kth block of 〈ui,mT 1/2〉 is (roughly) 〈h′(p, i, k)〉 + 〈h(p, i, k)〉,

PARALLELISM ALWAYS HELPS 167

except that we have to adjust for the carries into and out of the kth block. A carry into
the block amounts to an increment by 1, whereas a carry out of the block is offset by
subtracting 2B . The value 2B is precomputed during phase I in O(B) = O(T 1/2) time
by repeated doubling. In section 4.4.2, we show that all block-to-block carries can
be determined in O(log T) time. To update c(i) with 〈ui,mT 1/2〉, every P ′ik finds the
kth block of 〈ui,mT 1/2〉 (by adding 〈h′(p, i, k)〉 and 〈h(p, i, k)〉 and adjusting for the
carries) and updates c(i, k) accordingly. Hence Pπ is able to compute config(mT 1/2)
from config((m− 1)T 1/2) in O(log T) time during phase II.

In the above discussion, we have presumed that all Cij ’s are positive. Strictly

speaking, to calculate 〈ui,mT 1/2〉 =
∑T+K+n
j=0 Cij〈c(j)〉, we have to sum up the posi-

tive and the negative components separately using the above method, do a blockwise
subtraction, and adjust for the block-to-block borrows. The calculation of the borrows
is analogous to that of the carries.

4.4.2. Computing the carries. Consider adding two O(T)-bit integers to-
gether. By parallel-prefix computation [1, 11], it is possible to determine all the
bit-to-bit carries in O(log T) time, provided that the individual bits of the integers
are immediately accessible. In our case, however, the integers are represented in a
blockwise instead of bitwise format. To apply the parallel-prefix technique, we formu-
late the computation of the block-to-block carries as a prefix-sum problem in a way
slightly different from that in the bitwise case. The idea is to let a block take the
place of a bit. Define a binary operation ⊗ on {ḡ, s̄, p̄} as follows:

x⊗ y =

{
y if y 6= p̄,
x otherwise.

(8)

It is routine to check that ⊗ is associative. For 0 ≤ k ≤ N + 1, let

xk =

 ḡ if 〈h′(p, i, k)〉+ 〈h(p, i, k)〉 ≥ 2B ,
p̄ if 〈h′(p, i, k)〉+ 〈h(p, i, k)〉 = 2B − 1,
s̄ otherwise.

Intuitively, xk = ḡ if a carry is “generated” in the kth block; xk = p̄ if a carry is
“propagated” through the kth block (i.e., there is a carry out of the kth block if and
only if there is a carry into the kth block); and xk = s̄ if a carry is “stopped” in the kth
block (i.e., no carry out of the kth block regardless of whether there is a carry into the
kth block). Let x−1 = s̄, and for −1 ≤ k ≤ N + 1, let yk = x−1⊗x0⊗x1 · · · ⊗xk. By
(8), yk = xk′ , where k′ ≤ k is maximum such that xk′ 6= p̄. This implies yk = ḡ if and
only if there is a carry out of the kth block. By parallel-prefix computation, we can
determine all the yk’s, and hence all block-to-block carries, in O(logN) = O(log T)
time.

4.5. Verifying π. During phase I, Pπ performs some additional preprocessing
so that during phase II, Pπ can decide in O(log T) time whether π actually happens.
We first outline the verification process and then supply the details.

4.5.1. The outline. Now π specifies the behavior of R between time (m−1)T 1/2

and mT 1/2. We say that π “happens up to time t” if the behavior of R from time
(m − 1)T 1/2 to time t agrees with π. Similarly, we say that π “happens in step t” if
the behavior of R from time t − 1 to time t agrees with π. Pπ uses T 1/2 processors
P ∗t , where (m−1)T 1/2 ≤ t < mT 1/2. Each P ∗t checks whether π happens in step t+ 1,
assuming that π happens up to time t. Each P ∗t obtains a true or false answer. Clearly,
π happens if and only if all these answers are true. Pπ calculates the logical AND

168 LOUIS MAK

of these T 1/2 answers in O(log T) time (Lemma 3.1) and decides whether π actually
happens.

4.5.2. Preprocessing for verification. Pπ activates all P ∗t ’s in phase I using
O(log T) time. Recall that in phase I, Pπ performs some preprocessing based on the
triple π = (q, β, σ); if π happens, then this preprocessing enables Pπ to compute
config(mT 1/2) from config((m − 1)T 1/2) in O(log T) time. During phase I, every P ∗t
performs the analogous preprocessing using the triple (q, β(t), σ(t)), where β(t) and
σ(t) are prefixes of β and σ respectively that define the behavior of R between time
(m − 1)T 1/2 and t. If π happens up to time t, then this preprocessing enables P ∗t to
compute config(t) from config((m−1)T 1/2) in O(log T) time. As argued in section 4.3,
this preprocessing takes O(T 1/2) time.

4.5.3. The actual verification. In section 4.4, we discussed how Pπ computes
config(mT 1/2) from config((m − 1)T 1/2), provided that π actually happens. In an
analogous manner, each P ∗t computes config(t) from config((m−1)T 1/2) during phase
II, assuming that π actually happens up to time t. Using config(t), P ∗t verifies whether
π happens in step t+ 1 in O(log T) time.

If π actually happens, then every P ∗t obtains a positive answer (true), and Pπ
deduces that π actually happens. Otherwise, let t′ be maximum such that π happens
up to time t′. Then P ∗t′ determines config(t′) correctly and discovers that π does
not happen in step t′ + 1. P ∗t′ answers false, and Pπ infers that π does not happen.
Note that for t > t′, the preprocessing of P ∗t yields nothing useful, and P ∗t cannot
compute config(t) correctly. This does not concern us, however, since the negative
answer of P ∗t′ renders other answers immaterial. We merely need to guarantee that
P ∗t finishes its preprocessing within O(T 1/2) time and produces some answer within
O(log T) time. This is readily accomplished by having each P ∗t count the number of
steps it executes.

4.5.4. Verifying a single step. It remains to explain how P ∗t uses config(t) to
check whether π = (q, β, σ) happens in step t+ 1. Recall the following facts:

1. The integer q specifies the statement number of R at time (m− 1)T 1/2.
2. We treat every static and dynamic instruction as a conditional jump, and β is

a binary string of length T 1/2. For each dynamic instruction from step (m−1)T 1/2 +1
to step mT 1/2, β stipulates whether the condition of the jump is true or false.

3. Every dynamic instruction is equivalent to an effective instruction, and σ
gives the sequence of effective instruction from step (m− 1)T 1/2 + 1 to step mT 1/2.

4. Every uninitialized register of R contains 0, and r(K − 1) = uK−1 contains
0 throughout the computation of R.
To decide whether π happens in step t+ 1, P ∗t performs the following checks:

1. Check for q. Let q′ be the statement number in config(t). If t = (m− 1)T 1/2,
then P ∗t checks that q = q′.

2. Check for β. Let s = t− (m− 1)T 1/2 + 1. The sth bit of β specifies whether
the condition is true or false for the dynamic instruction in step t+ 1. This dynamic
instruction corresponds to the static instruction in statement q′. P ∗t checks that the
sth bit of β is 1 if and only if statement q′ indeed contains a Jump instruction, and
the condition of the jump is true, i.e., 〈u0, t〉 ≤ 〈u1, t〉 according to config(t).

3. Check for σ. P ∗t checks that the effective instruction in step t + 1 specified
by σ is equivalent to the dynamic instruction in step t+ 1.
The first two checks need no further explanation. We supply the details of the third
check below. In section 4.3.1, we showed that every dynamic instruction is equivalent
to an effective instruction of the form ui′ ← uj′ , ui′ ← uj′ + uk′ , or ui′ ← uj′ −

PARALLELISM ALWAYS HELPS 169

uk′ for some 0 ≤ i′, j′, k′ ≤ T + K + n. The dynamic instruction in step t + 1
corresponds to the static instruction in statement q′. Consider the effective instruction
in step t + 1 specified by σ. P ∗t checks that the form of this effective instruction
is “compatible” with the static instruction in statement q′. Table 2 shows the four
categories of compatible instruction pairs. P ∗t performs some further checks according
to the category of the compatible pair.

Table 2

Compatible effective and static instruction pairs.

Category Effective Instruction Static Instruction
1 u0 ← u0 Accept, Reject, and Jump

2 ui′ ← uj′ r(i)← r(j), r(i)← (r(0)), and (r(0))← r(j)
3 ui′ ← uj′ + uk′ r(i)← r(j) + r(k)
4 ui′ ← uj′ − uk′ r(i)← r(j)− r(k)

Category 1. No further check is necessary.
Category 2. The static instruction in statement q′ is either r(i) ← r(j), r(i) ←

(r(0)), or (r(0)) ← r(j); σ stipulates that the effective instruction in step t + 1 is
ui′ ← uj′ . Let aw be the address of the register that is written to in step t + 1, and
let ar be the address of the register that is read from in step t+ 1. More precisely,

aw =

{
i if the static instruction in statement q′ is r(i)← r(j) or r(i)← (r(0)),
〈r(0), t〉 if the static instruction in statement q′ is (r(0))← r(j),

ar =

{
j if the static instruction in statement q′ is r(i)← r(j) or (r(0))← r(j),
〈r(0), t〉 if the static instruction in statement q′ is r(i)← (r(0)).

According to σ, R reads from uj′ and writes to ui′ in step t+ 1. P ∗t compares ar

with the addresses of all uk’s in config(t) in parallel. By definition, the addresses of
all uk’s are distinct. If ar equals the address of uk for some k, then P ∗t checks that
j′ = k. Otherwise, R reads from an uninitialized register in step t+ 1; P ∗t checks that
j′ = K − 1.

If i′ = t + 1 + K + n, then according to σ, a new register is written to in step
t + 1; P ∗t checks that aw is different from the addresses of all uk’s in config(t). If
i′ < t+ 1 +K + n, then according to σ, R writes to ui′ in step t+ 1, but not for the
first time; P ∗t checks that aw is the address of ui′ in config(t). If i′ > t+ 1 +K + n,
then σ stipulates that in step t+ 1, R writes to ui′ , which by definition is the register
first written to in step i′−K−n > t+ 1. The information contained in σ contradicts
itself; P ∗t simply answers false.

P ∗t uses N processors (comparators) to compare two addresses in the blockwise
format for equality. Each comparator checks for equality in a corresponding block
and obtains a true or false answer; P ∗t calculates the logical AND of these answers in
O(logN) = O(log T) time (Lemma 3.1). To compare ar and aw against the addresses
of all uk’s in parallel, P ∗t requires O(NT) = O(T 3/2) comparators. Observe that
although these comparators are used in phase II, all comparators can be preactivated
in phase I using O(log T) time. We will need this observation in section 4.6.

Categories 3 and 4. These cases are similar to those in Category 2.
Hence Pπ can verify whether π actually happens in O(log T) time. This concludes

the proof of Theorem 4.1.

4.6. Time–processor tradeoffs. In this section, we discuss how to reduce the
number of processors used in the simulation at the expense of increasing the simulation
time. The following theorem is a generalization of Theorem 4.1.

170 LOUIS MAK

Theorem 4.2. Let ρ > 1. Every unit-cost RAM that runs in time T can be
simulated by a CREW PRAM in time O(ρ log T + (T log ρ)/ρ) with TO(ρ) processors.

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. We explain how
to modify the proof of Theorem 4.1 to establish Theorem 4.2. Instead of dividing each
integer into N = O(T 1/2) blocks, we divide every O(T)-bit integer into N ′ = O(ρ)
blocks, each O(T/ρ) bits long. We use T/ρ groups of processors. During phase I,
group m performs the preprocessing based on the triple (q′m, β

′
m, σ

′
m), where q′m is the

statement number at time (m−1)ρ, β′m is a binary string that encodes the outcomes of
all condition jumps from time (m−1)ρ to timemρ, and σ′m is the sequence of ρ effective
instructions between time (m−1)ρ and mρ. In phase I, group m uses O(ρ log T) time
to activate TO(ρ) processors to try all possible triples. Similar analysis as in section 4.3
reveals that the preprocessing takes O(ρ) time. Again, the bottleneck in phase I is
the activation of enough processors to try all triples, which takes O(ρ log T) time.

The content of each ui at time mρ is a linear combination of the 〈ui, (m− 1)ρ〉’s.
Let 〈ui,mρ〉 =

∑
j C
′
ij〈uj , (m− 1)ρ〉. Observe that such a linear combination has at

most O(ρ) nonzero coefficients since all arithmetic operations between time (m− 1)ρ
and mρ involve at most O(ρ) registers. Let J = {j | C ′ij 6= 0}. In section 4.4.1,

we described how to compute
∑T+K+n
j=0 Cij〈uj , (m − 1)T 1/2〉 in O(logN + log(T +

K + n)) = O(log T) time. Using the same method, we can compute 〈ui,mρ〉 =∑
j∈J C

′
ij〈uj , (m − 1)ρ〉 in O(logN ′ + log |J |) = O(log ρ) time. Verification of the

triple also takes O(log ρ) time. Note that the verification of the triple requires O(Tρ)
comparators, which can be preactivated in O(log T + log ρ) time during phase I. The
preprocessing thus enables group m to compute config(mρ) from config((m− 1)ρ) in
O(log ρ) time during phase II.

In phase II, the PRAM P computes config(T) in O((T log ρ)/ρ) time as follows.
For m = 1, 2, . . . , T/ρ, group m computes config(mρ) from config((m−1)ρ) in O(log ρ)
time. Let q∗ be the statement number in config(T). P accepts if and only if statement
q∗ contains an Accept instruction. This simulation takes O(ρ log T+(T log ρ)/ρ) time
and uses TO(ρ) processors.

5. Discussion.

5.1. Parallelism always helps. We have shown that we can always speed up
a sequential computation on a unit-cost RAM by a CREW PRAM. We mentioned
in section 1.1 that the unit-cost RAM is the most commonly used machine model
for analyzing sequential algorithms. There are, however, other machine models of
sequential computation, for example, the Turing machine, tree Turing machine, mul-
tidimensional Turing machine, and log-cost RAM. In a separate paper [12], we show
that a sequential computation on each of these other models can also be sped up by
a corresponding parallel machine model:

1. Every tree Turing machine that runs in time T can be simulated by an
alternating Turing machine in time O(T/log T).

2. Every d-dimensional Turing machine that runs in time T can be simulated
by an alternating Turing machine in time O(T5d log∗ T/log T).

3. Every log-cost RAM that runs in time T can be simulated by an alternating
log-cost RAM in time O(T log log T/log T).
We conclude that parallelism always helps us speed up a sequential computation.

5.2. Speedup using a polynomial number of processors. It is well known
that the Turing machine enjoys the constant speedup theorem [26]: Let ε > 0 and M
be a Turing machine with time complexity T ; then M can be simulated by another
Turing machine in time εT + n. Hence efforts on speeding up the Turing machine

PARALLELISM ALWAYS HELPS 171

have focused on asymptotic speedup [4, 10, 16]. The unit-cost RAM, however, does
not enjoy the constant speedup theorem [23]; that is, there exist an ε > 0 and a
unit-cost RAM R with time complexity T such that R cannot be simulated by any
unit-cost RAM in time εT + n. Thus it is not trivial to speed up the computation of
a unit-cost RAM by a constant factor. Theorem 4.2 shows that it is possible to speed
up a unit-cost RAM by an arbitrary constant factor with a CREW PRAM using a
polynomial number of processors.

5.3. Is result optimal? We have constructed a simulator that runs in time
O(T 1/2 log T). We do not know whether our result is optimal, but we believe that it is
difficult to reduce the simulation time by more than a logT factor because this would
imply improvements over some best-known results, as explained below. We would like
to call the reader’s attention to the following previously established results:

1. Every CREW PRAM that runs in time T can be simulated by a Turing
machine in space O(T 2) (Fortune and Wyllie [6]).

2. Every Turing machine that runs in time T can be simulated by a unit-cost
RAM in time O(T/log T) (Hopcroft, Paul, and Valiant [10]).

3. Every Turing machine that runs in time T can be simulated by another
Turing machine in space O(T/log T) (Hopcroft, Paul, and Valiant [9]).

4. Every Turing machine that runs in time T can be simulated by a CREW
PRAM in time O(T 1/2) (Dymond and Tompa [4]).

These are the best-known results for the respective simulations. For our problem,
namely, simulation of unit-cost RAMs by CREW PRAMs, reducing the simulation
time to o((T log T)1/2), together with the first result of Hopcroft et al. above, implies
an improvement over the result of Dymond and Tompa. By the same reasoning, if we
manage to reduce the simulation time to o(T 1/2), then we can simulate every Turing
machine with time complexity T by a CREW PRAM in time o((T/log T)1/2). It then
follows from the above result of Fortune and Wyllie that for Turing machines, time
T can be simulated in space o(T/log T), improving the second result of Hopcroft et
al. above. This would be a significant breakthrough in simulating time by space for
Turing machines.

Acknowledgments. Many thanks go to my advisor, Professor Michael Loui, for
his many contributions to this paper; he proposed the problem, suggested generalizing
Theorem 4.1 to Theorem 4.2, and provided useful references. His extensive comments
significantly improved the disposition of this paper. Also, I would like to thank
Professor Larry Ruzzo for bringing to my attention the work of Reif.

REFERENCES

[1] G. E. Blelloch, Prefix sums and their applications, in Synthesis of Parallel Algorithms, J. H.
Reif, ed., Morgan Kaufmann, San Mateo, CA, 1993, pp. 35–60.

[2] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of com-
putation, J. Comput. System Sci., 30 (1985), pp. 130–145.

[3] S. A. Cook and R. A. Reckhow, Time bounded random access machines, J. Comput. System
Sci., 7 (1973), pp. 354–375.

[4] P. W. Dymond and M. Tompa, Speedups of deterministic machines by synchronous parallel
machines, J. Comput. System Sci., 30 (1985), pp. 149–161.

[5] F. E. Fich, P. Ragde, and A. Wigderson, Relations between concurrent-write models of
parallel computation, SIAM J. Comput., 17 (1988), pp. 606–627.

[6] S. Fortune and J. Wyllie, Parallelism in random access machines, in Proc. 10th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1978, pp. 114–118.

[7] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, Cam-
bridge, UK, 1988.

172 LOUIS MAK

[8] L. M. Goldschlager, A universal interconnection pattern for parallel computers, J. Assoc.
Comput. Mach., 29 (1982), pp. 1073–1086.

[9] J. Hopcroft, W. Paul, and L. Valiant, On time versus space, J. Assoc. Comput. Mach., 24
(1977), pp. 332–337.

[10] J. E. Hopcroft, W. J. Paul, and L. G. Valiant, On time versus space and related ques-
tions, in Proc. 16th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1975, pp. 57–64.

[11] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA, 1992.

[12] L. Mak, Are parallel machines always faster than sequential machines?, Technical report
UILU-ENG-92-2236 (ACT 128), Coordinated Science Laboratory, University of Illinois
at Urbana–Champaign, Urbana, IL, 1993.

[13] I. Parberry, Parallel speedup of sequential machines: A defense of the parallel computation
thesis, ACM SIGACT News, 18 (1986), pp. 54–67.

[14] I. Parberry, Parallel Complexity Theory, John Wiley, New York, 1987.
[15] I. Parberry and G. Schnitger, Parallel computation with threshold functions, J. Comput.

System Sci., 36 (1988), pp. 278–302.
[16] W. Paul and R. Reischuk, On alternation II, Acta Inform., 14 (1980), pp. 391–403.
[17] J. H. Reif, On synchronous parallel computations with independent probabilistic choice, SIAM

J. Comput., 13 (1984), pp. 46–56.
[18] J. M. Robson, Fast probabilistic RAM simulation of single tape Turing machine computations,

Inform. and Control, 63 (1984), pp. 67–87.
[19] J. M. Robson, Random access machines with multi-dimensional memories, Inform. Process.

Lett., 34 (1990), pp. 265–266.
[20] J. M. Robson, Deterministic simulation of a single tape Turing machine by a random access

machine in sub-linear time, Inform. and Comput., 99 (1992), pp. 109–121.
[21] Y. Shiloach and U. Vishkin, Finding the maximum, merging, and sorting in parallel compu-

tation model, J. Algorithms, 2 (1981), pp. 88–102.
[22] M. Snir, On parallel searching, SIAM J. Comput., 14 (1985), pp. 688–708.
[23] I. H. Sudborough and A. Zalcberg, On families of languages defined by time-bounded ran-

dom access machines, SIAM J. Comput., 5 (1976), pp. 217–230.
[24] J. L. Trahan, M. C. Loui, and V. Ramachandran, Multiplication, division, and shift instruc-

tions in parallel random access machines, Theoret. Comput. Sci., 100 (1992), pp. 1–44.
[25] U. Vishkin, Implementation of simultaneous memory address access in models that forbid it,

J. Algorithms, 4 (1983), pp. 45–50.
[26] C. K. Yap, Theory of Complexity Classes, Oxford University Press, Oxford, UK, to appear.

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE AND
PRECEDENCE CONSTRAINTS∗

ZHEN LIU† AND ERIC SANLAVILLE‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 173–187, February 1997 010

Abstract. In this paper, we consider the stochastic profile scheduling problem of a partially
ordered set of tasks on uniform processors. The set of available processors varies in time. The
running times of the tasks are independent random variables with exponential distributions. We
obtain a sufficient condition under which a list policy stochastically minimizes the makespan within
the class of preemptive policies. This result allows us to obtain a simple optimal policy when the
partial order is an interval order, an in-forest, or an out-forest.

Key words. stochastic scheduling, profile scheduling, makespan, precedence constraint, interval
order, in-forest, out-forest, uniform processors, stochastic ordering.

AMS subject classifications. Primary, 90B35, 68M20; Secondary, 90A80

PII. S0097539791218949

1. Introduction. Consider the following scheduling problem. We are given a
set of tasks to be run in a system consisting of uniform processors (i.e., processors
having different speeds). The executions of these tasks must satisfy some precedence
constraints which are described by a directed acyclic graph, referred to as the task
graph. The processing requirements of the tasks are independent random variables
with a common exponential distribution. The set of processors available to these
tasks varies in time. The availability of the processors is referred to as the profile,
and it can be arbitrary. The goal is to find preemptive schedules that stochastically
minimize the makespan.

Our study of scheduling under variable profile is motivated by situations where
processors are subject to failures and repairs. The failure and repair times are ar-
bitrary. Another motivation is scheduling of multiprogrammed systems. In such a
system, execution of tasks of a program may be preempted by tasks of higher-priority
programs.

When the task graph is an in-forest and the profile is a constant set of two
processors, Chandy and Reynolds [2] proved that the highest-level-first (HLF) policy
minimizes the expected makespan. Here the level of a task is simply the distance
from it to the root of the tree in which it appears. Bruno [1] subsequently showed
that HLF stochastically minimizes the makespan when the system has two identical
parallel processors. Pinedo and Weiss [14] extended this last result to the case where
tasks at different levels may have different expected task running times. Frostig [7]
further generalized the result of Pinedo and Weiss to include increasing likelihood ratio
distributions for the task running times. Recently, Kulkari and Chimento [9] extended
the result of [1] to the case of variable profile (with two identical parallel processors).
When the number of identical parallel processors in the system is arbitrarily fixed
and the task running times have a common exponential distribution, Papadimitriou

∗ Received by the editors September 4, 1991; accepted for publication (in revised form) April 25,
1995.

http://www.siam.org/journals/sicomp/26-1/21894.html
† INRIA Centre Sophia Antipolis, 2004 Route des Lucioles, B.P. 109, 06561 Valbonne, France

(liu@sophia.inria.fr).
‡ Laboratoire LITP/IBP, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris cedex 05,

France (erik@mustang.ibp.fr).

173

174 ZHEN LIU AND ERIC SANLAVILLE

and Tsitsiklis [12] proved that HLF is asymptotically optimal as the number of tasks
tends to infinity.

Coffman and Liu [3] investigated the stochastic scheduling of out-forest on iden-
tical parallel processors with constant profile. For a uniform out-forest where all
subtrees are ordered by an embedding relation (see definition in section 4.3), they
showed that an intuitive priority scheduling policy induced by the embedding re-
lation, referred to as the most-successors (MS) policy in this paper, stochastically
minimizes the makespan when there are two processors. If, in addition, the out-forest
satisfies a uniform root-embedding constraint, then the greedy policy stochastically
minimizes the makespan on an arbitrary number of processors.

Papadimitriou and Yannakakis [13] studied the deterministic scheduling of interval-
ordered tasks. Under the assumptions of unit execution time and constant profile,
they showed that for an arbitrary number of identical processors, the simple list
scheduling induced by the interval order, still referred to as the MS policy in this
paper, minimizes the makespan.

The notion of profile scheduling was first introduced by Ullman [16] and later by
Garey et al. [8] in the complexity analysis of deterministic scheduling algorithms.
Dolev and Warmuth [4, 5, 6] carried out various studies on the deterministic nonpre-
emptive profile scheduling with parallel identical processors. In such a case, the profile
is simply the number of available processors at any time. When the tasks have unit
execution time, Dolev and Warmuth obtained polynomial algorithms for specific pro-
files (e.g., zigzag profile, bounded profile, etc.) and specific task graphs (e.g., in-forest,
out-forest, opposing forest, flat graph, etc.). Some of their results were extended to
deterministic preemptive profile scheduling by Liu and Sanlaville [11].

In this paper, we investigate profile scheduling in the stochastic setting with uni-
form processors. The scheduling is allowed to be preemptive; the profile is arbitrary
and may be unknown a priori. We obtain a sufficient condition under which a list-
scheduling policy is optimal among preemptive policies, such that the makespan is
stochastically minimized. This result allows us to prove the optimality of MS pol-
icy when the task graph has an interval-order structure, an in-forest structure, or a
uniform out-forest structure.

The results concerning interval-ordered tasks are new, even for constant profile
and parallel identical processors. The optimality of the MS policy extends the result
of [9] for in-forests to uniform processors and the result of [3] for out-forests to variable
profile and uniform processors.

Our paper is organized as follows. In section 2, the scheduling problem is described
in detail, and some preliminaries are presented. In section 3, a sufficient condition
for a list-scheduling policy to stochastically minimize the makespan is established.
In section 4, this result is applied to MS policies for the stochastic minimization of
makespan for interval-order task graphs, in-forests, and uniform out-forests. Conclud-
ing remarks are provided in section 5.

2. Problem description and preliminaries. A task graph G = (V,E) is a
directed acyclic graph, where V = {1, 2, . . . , |V |} is the set of vertices representing
the tasks and E ⊂ V × V is the set of edges representing the precedence constraints:
(i, j) ∈ E implies that task i must complete execution before task j can start. Denote
by p(i) and s(i) the sets of immediate predecessors and successors of i ∈ V , i.e.,

p(i) = {j : (j, i) ∈ E}, s(i) = {j : (i, j) ∈ E}.

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 175

A task without predecessors will be called initial task. Let S(i) be the set of (not
necessarily immediate) successors of i ∈ V , i.e.,

∀i : if s(i) = ∅, then S(i) = ∅ else S(i) = s(i)
⋃ ⋃

j∈s(i)
S(j)

 .

When necessary, notation SG(i) is used to indicate that S(i) is defined with respect
to graph G.

Particular attention will be paid to the following three classes Ci.o, Ci.f , and Co.f
of task graphs.

Interval order G ∈ Ci.o: Each vertex i corresponds to an interval bi in the real
line such that (i, j) ∈ E if and only if x ∈ bi and y ∈ bj imply x < y.

In-forest G ∈ Ci.f : Each vertex has at most one immediate successor: |s(i)| ≤ 1,
i ∈ V . A vertex i ∈ V is called a leaf of in-forest G if p(i) = ∅. A vertex i ∈ V is
called a root of in-forest G if s(i) = ∅.

Out-forest G ∈ Co.f : Each vertex has at most one immediate predecessor: |p(i)| ≤
1, i ∈ V . A vertex i ∈ V is called a leaf of out-forest G if s(i) = ∅. A vertex i ∈ V is
called a root of out-forest G if p(i) = ∅.

(2)

1

3 2

(3)

3 2

1

(4)

1

3

6

2 4

5

(1)

5 64

2 3

1

Fig. 1. Examples of task graphs.

Four graphs belonging to these classes are illustrated in Figure 1. Graph 1 is an

176 ZHEN LIU AND ERIC SANLAVILLE

interval-order graph, with the associated collection of real intervals beside it. Graph
2 is an in-forest. Graphs 3 and 4 are out-forests.

Note that these classes of graphs have the following closure property: for all
C ∈ {Ci.o, Ci.f , Co.f}, if G = (V,E) ∈ C, then G − {v} ∈ C for all v ∈ V such that
p(v) = ∅, where G − {v} is the graph obtained by deleting vertex v and its adjacent
edges. This closure property (by deletion) will be used in establishing our results.

The processing requirements of the tasks are independent and identically dis-
tributed (i.i.d.) random variables with a common exponential distribution of a con-
stant parameter, say 1. The running time of a task is the processing requirement of
the task divided by the speed of the processor on which the task is running.

There are K ≥ 1 uniform processors, indexed by 1, 2, . . . ,K. The speed of pro-
cessor k, 1 ≤ k ≤ K, is denoted by αk. The running times of tasks on processor k
are thus i.i.d. random variables with exponential distribution of parameter αk. We
assume, by convention, that α1 ≥ α2 ≥ · · · ≥ αK .

The set of processors available to these tasks varies in time due to, e.g., failures of
the processors or executions of higher-priority tasks. The availability of the processors
is referred to as the profile, and is specified by the sequence {an,Mn}∞n=1, where the
random variables 0 = a1 < a2 < · · · < an < · · · are the time epochs where the
profile is changed and Mn, n ≥ 1, is a random set whose elements are the indices of
the processors available during the time interval [an, an+1). The profile {an,Mn}∞n=1

is assumed to be independent of the running times of the tasks. Without loss of
generality, we assume that for all n ≥ 1, Mn 6= ∅. We will also assume that the
profile is not changed infinitely often during any finite time interval: for all x ∈ IR+,
there is some finite n ≥ 1 such that an > x. The profile is said to be bounded by
p ∈ IN+ ≡ {1, 2, . . .} if for all n ∈ IN+, |Mn| ≤ p.

The scheduling policies decide when an enabled task, i.e., an unfinished task all of
whose predecessors have finished, should be assigned to an available processor. At any
time, a task can be assigned to at most one processor, and a processor can execute
at most one task. Throughout this paper, we assume that the scheduling policies
are preemptive. We assume that the scheduler has no information on the samples of
the (remaining) processing requirements of the tasks. Let Ψ denote the class of such
policies. For any π ∈ Ψ, denote by π(G) the makespan of the partially ordered set of
tasks G, i.e., the maximum of the completion times of the tasks in G.

The goal of the paper is to find policies in Ψ that stochastically minimize the
makespan of G. A policy πo is said to be optimal within a class C if for any policy
π ∈ Ψ, πo(G) ≤st π(G) for all G ∈ C, where the symbol ≤st refers to the standard
stochastic inequality. Random variable X ∈ IR is stochastically smaller than random
variable Y ∈ IR, denoted by X ≤st Y , if and only if for any increasing function
f : IR → IR, the inequality E[f(X)] ≤ E[f(Y)] holds, provided the expectations
exist.

The proofs of our main results will use a coupling argument based on the following
well-known result due to Strassen, where =st denotes equality in distribution.

Lemma 2.1 (Strassen [15]). Two random variables X,Y ∈ IR satisfy X ≤st Y if
and only if there exist two random variables X̂ and Ŷ defined on a common probability
space such that X =st X̂, Y =st Ŷ , and X̂ ≤ Ŷ almost surely (a.s.).

In order to simplify the proofs of the main results in the paper, we make some
restrictions on the class of policies Ψ.

Observe first that due to the memoryless property of exponential distributions,
at any time, the distribution of the remaining running time of a task assigned to

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 177

processor k is still exponential with parameter αk, 1 ≤ k ≤ K. If we represent the
state of the system by the set of available processors, the remaining task graph, and
the distributions of the remaining running times of the tasks, then the state does not
change between the instants of task completions and of profile modifications. There-
fore, we can without loss of generality confine ourselves to the class of policies where
preemptions and new task assignments occur only at the instants of task comple-
tions and profile modifications. These instants are referred to as the decision epochs.
Hence we assume that all the policies in Ψ make their scheduling decisions at these
time instants only.

A policy is idling if it allows a processor to remain idle when there is an initial task
waiting for execution. It is easy to see that an optimal policy should never be idling
since the distributions of the task running times have infinite support and preemptions
are allowed. Furthermore, an optimal policy should always use the fastest available
processors. (See [10] for a complete proof of these basic properties.) Throughout
this paper, we will assume that all the policies in Ψ are nonidling and use the fastest
available processors at all decision epochs.

3. Optimal list-scheduling policies. We will pay particular attention to a
class of simple scheduling policies, referred to as list schedules. A policy λ is called
a list schedule if for any task graph G = (V,E), a priority list is defined on the set
of tasks V = (v1, v2, . . . , vn), given by, e.g., v1 >λ v2 >λ · · · >λ vn, where vi >λ vj
means that task vi has higher priority than vj in the list. At any decision time epoch,
policy λ assigns the enabled tasks with the highest priorities to the fastest available
processors. Clearly, all list schedules are in the class Ψ and satisfy the properties
mentioned at the end of last section. Note that the priority list can be changed
dynamically, i.e., for a given policy, the relative priority order between two tasks can
be changed when a task is removed from the graph.

Let C be a class of graphs which is closed under deletion. The class C will be said
to be λ(p)-monotonic for some list schedule λ and some p ∈ IN+ if for any G ∈ C and
any initial tasks u, v ∈ G, relation u >λ v implies that for any profile bounded by p,

λ(G− {u}) ≤st λ(G− {v}),

where recall that λ(G) denotes the makespan of G under schedule λ.

Observe that according to the definition, if C is λ(p)-monotonic, then it is λ(p−1)-
monotonic, Trivially, any class of graphs is λ(1)-monotonic for any list schedule λ.
However, it will be seen in the next section that few classes are λ(2)-monotonic for
some list schedule λ.

Theorem 3.1. Let C be a class of graphs closed under deletion and λ(p)-
monotonic for some list schedule λ and some p ∈ IN+. Then for any G ∈ C, policy λ
stochastically minimizes the makespan of G under any profile {an,Mn}∞n=1 bounded
by p:

∀π ∈ Ψ : λ(G) ≤st π(G).(1)

The proof of the theorem needs the following lemma.

Lemma 3.2. Let C be a class of graphs which is closed under deletion and is
λ(p)-monotonic for some list schedule λ and some p ∈ IN+. Let G ∈ C be a task
graph, π, ρ ∈ Ψ two policies of G which follow the priority list of λ all the time ex-
cept at the first decision epoch. At the first decision epoch, policy π assigns tasks

178 ZHEN LIU AND ERIC SANLAVILLE

v1, v2, . . . , vk to the available processors q1, q2, . . . , qk, respectively, with, by assump-
tion, v1 >λ v2 >λ · · · >λ vk, whereas policy ρ assigns tasks v1, v2, . . . , vk to the pro-
cessors qχ(1), qχ(2), . . . , qχ(k), respectively, where χ is the permutation on {1, 2, . . . , k}
such that qχ(1) < qχ(2) < · · · < qχ(k). Then

ρ(G) ≤st π(G).

Proof. If q1 < q2 < · · · < qk, then ρ is identical to π so that the assertion trivially
holds. Assume that there are integers 1 ≤ i < j ≤ k such that qi > qj . Let χ1 be the
permutation on {1, 2, . . . , k} defined as follows:

χ1(i) = j, χ1(j) = i, χ1(n) = n ∀n ∈ {1, 2, . . . , k} − {i, j}.

Let ρ1 ∈ Ψ be a policy which follows the priority list of λ all the time except at the
first decision epoch. At the first decision epoch, policy ρ1 assigns tasks v1, v2, . . . , vk
to the processors qχ1(1), qχ1(2), . . . , qχ1(k), respectively. We will show that

ρ1(G) ≤st π(G).(2)

We couple the running times on processors q1, . . . , qk in such a way that under
both policies π and ρ1, the running time on processor qn starting from time 0 is τn,
1 ≤ n ≤ k. In such a coupled model, the second decision epoch occurs at the same
time under both policies. Let this time epoch be fixed, referred to as d2,

d2 = min(a2, τ1, . . . , τk).

If this decision epoch corresponds to a profile modification, i.e., d2 = a2, then
ρ1(G) =st π(G).

Now assume that the second decision epoch corresponds to a task completion. It
is easy to see that for any increasing function f : IR→ IR,

E [f (π(G)− d2)] =
1

β

k∑
n=1

αqnE [f (λ(G− {vn}))],(3)

E [f (ρ1(G)− d2)] =
1

β

k∑
n=1

αqχ1(n)
E [f (λ(G− {vn}))],(4)

where β =
∑k
n=1 αqn .

Since C is λ(p)-monotonic, we have that λ(G− {vi}) ≤st λ(G− {vj}) so that

E [f (λ(G− {vi}))] ≤ E [f (λ(G− {vj}))].

Thus the fact that qi > qj (so that αqi ≤ αqj) implies that

αqjE [f (λ(G− {vi}))] + αqiE [f (λ(G− {vj}))]
≤ αqiE [f (λ(G− {vi}))] + αqjE [f (λ(G− {vj}))].

Hence for any increasing function f : IR→ IR,

E [f (ρ1(G)− d2)] ≤ E [f (π(G)− d2)],

which implies

ρ1(G)− d2 ≤st π(G)− d2.

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 179

Unconditioning on d2 in the above relation yields (2).
Consider now policy ρ1. If χ1 = χ, then we are done. Otherwise, there are

integers 1 ≤ i′ < j′ ≤ k such that qχ1(i′) > qχ1(j′). Let χ2 be the permutation on
{1, 2, . . . , k} defined as follows:

χ2(i′) = χ1(j′), χ2(j′) = χ1(i′), χ2(n) = χ1(n) ∀n ∈ {1, 2, . . . , k} − {i′, j′}.

Let ρ2 ∈ Ψ be a policy which follows the priority list of λ all the time except at the
first decision epoch. At the first decision epoch, policy ρ2 assigns tasks v1, v2, . . . , vk
to the processors qχ2(1), qχ2(2), . . . , qχ2(k), respectively. As above, we can show that

ρ2(G) ≤st ρ1(G).

Repeating this procedure for at most k(k− 1)/2 times finally yields policy ρ such
that

ρ(G) ≤st · · · ≤st ρ2(G) ≤st ρ1(G) ≤st π(G).

Proof of Theorem 3.1. We prove by induction on n that for any G = (V,E) ∈ C
such that |V | ≤ n, the relation

λ(G) ≤st π(G)(5)

holds for any profile.
If G is a singleton, i.e., |V | = 1, then (5) is trivial since both policies λ and π

assign the task to the fastest available processor.
Assume that for some n ≥ 1, relation (5) holds for all G such that |V | ≤ n. Now

consider the task graphs G ∈ C such that |V | = n+ 1.
Fix the task graph G ∈ C, the profile {an,Mn}∞n=1, and the policy π ∈ Ψ. Denote

by {dn}∞n=1 the sequence of decision epochs of π for finishing tasks in G, with d1 = 0.
Without loss of generality, we assume that d2 corresponds to a task completion. The
other case can be analyzed similarly.

Since all policies of Ψ are nonidling and use the fastest available processors, the
numbers of tasks assigned for execution at the first decision epoch are the same
under policies λ and π. At the first decision epoch, policy π assigns initial tasks
v1, v2, . . . , vk to the available processors q1, q2, . . . , qk, respectively, where v1 >λ v2 >λ
· · · >λ vk, whereas policy λ assigns initial tasks u1, u2, . . . , uk to the processors
qχ(1), qχ(2), . . . , qχ(k), respectively, where u1 >λ u2 >λ · · · >λ uk and χ is the per-
mutation on {1, 2, . . . , k} such that qχ(1) < qχ(2) < · · · < qχ(k).

We construct an intermediate policy ρ which follows the priority list of λ all the
time except at the first decision epoch. At the first decision epoch, policy ρ assigns
tasks u1, u2, . . . , uk to the processors q1, q2, . . . , qk, respectively.

According to Lemma 3.2, λ(G) ≤st ρ(G). We show below that

ρ(G) ≤st π(G),(6)

which will complete the proof.
Under the assumption that d2 corresponds to a task completion, we have that for

any increasing function f : IR→ IR,

E [f (ρ(G)− d2)] =
1

β

k∑
i=1

αqiE [f (λ(G− {ui}))],(7)

E [f (π(G)− d2)] =
1

β

k∑
i=1

αqiE [f (π(G− {vi}))],(8)

180 ZHEN LIU AND ERIC SANLAVILLE

where β =
∑k
i=1 αqi .

The definition of the list schedule λ implies that ui >λ vi, 1 ≤ i ≤ k, where
relation >λ is understood to be antisymmetric. Therefore, the λ(p)-monotonicity of
G implies that

λ(G− {ui}) ≤st λ(G− {vi}),

which, together with the inductive assumption, implies

λ(G− {ui}) ≤st λ(G− {vi}) ≤st π(G− {vi}).

Therefore (cf. (7) and (8)), E [f (ρ(G)− d2)] ≤ E [f (π(G)− d2)], which readily im-
plies (6).

4. Optimality of MS policies. A class of intuitively good list schedules is the
MS policies, where the priority of a task is defined by the number of (not necessarily
immediate) successors, i.e., |S(u)| > |S(v)| implies u ≺MS v. The difference between
MS policies is the way that ties are broken (the ways of assigning priorities to tasks
having the same number of successors). In this section, we will show that these
policies are optimal for some special classes of task graphs, i.e., interval-order graphs,
in-forests, and uniform out-forests.

In order to prove these optimality properties, we need to compare task graphs,
which is done using the following majorization. Let G1 = (V 1, E1) and G2 = (V 2, E2)
be two task graphs, with the vertices of V 1 = {v1

1 , . . . , v
1
n1
} and V 2 = {v2

1 , . . . , v
2
n2
}

ordered according to the number of successors: g1 = |SG1(v1
1)| ≥ |SG1(v1

2)| ≥ · · · ≥
|SG1(v1

n1
)| = 0 and g2 = |SG2(v2

1)| ≥ |SG2(v2
2)| ≥ · · · ≥ |SG2(v2

n2
)| = 0. We say that

G1 is majorized by G2, denoted by G1 ≺s G2, if

n1 ≤ n2 and ∀i, 1 ≤ i ≤ n1 : |SG1(v1
i)| ≤ |SG2(v2

i)|.

In our proofs, the following equivalent definition will also be used. Let V 1 and
V 2 be partitioned into sets T 1

0 , T
1
1 , T

1
2 , . . . , T

1
g1 and T 2

0 , T
2
1 , T

2
2 , . . . , T

2
g2 , where T jk =

{i ∈ V j , |SGj (i)| = k}, j = 1, 2, 1 ≤ k ≤ gj . In words, T jk is the set of vertices having
k successors in graph Gj . As an example, for the interval-order graph in Figure 1,
T3 = {1}, T2 = {2}, T1 = {3}, and T0 = {4, 5, 6}. When the graph is an in-forest,
Tk is the set of vertices at level k. Now the equivalent definition is given as follows.
Graph G1 is majorized by G2 if

g1 ≤ g2 and ∀i, 0 ≤ i ≤ g1 :

g1∑
k=i

|T 1
k | ≤

g2∑
k=i

|T 2
k |.

4.1. Stochastic profile scheduling of interval-order graphs. LetG = (V,E)
∈ Ci.o be an interval-order graph. Note that except for a possible set of isolated ver-
tices (i.e., vertices without predecessors and without successors), an interval-order
graph is connected.

An equivalent definition of interval-order graphs (cf. [13]) is that for all i, j ∈ V ,
either S(i) ⊆ S(j) or S(j) ⊆ S(i). An immediate consequence of this definition is
that if |S(i)| ≤ |S(j)|, then S(i) ⊆ S(j), and consequently, if |S(i)| = |S(j)|, then
S(i) = S(j). Thus any subset Tk = {i ∈ V, |S(i)| = k} of V contains vertices whose
sets of successors are identical (and of cardinality k).

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 181

Theorem 4.1. For any profile {an,Mn}∞n=1 and any set of interval-ordered tasks
G ∈ Ci.o,

∀π ∈ Ψ : MS(G) ≤st π(G).(9)

Proof. In view of Theorem 3.1, we only need to show that Ci.o is MS(p)-monotonic
for any positive integer p, i.e., for any two initial tasks u and v of G, if |S(u)| ≥ |S(v)|,
then

MS(G− {u}) ≤st MS(G− {v}).(10)

Let G1 = (V 1, E1) = G− {u} and G2 = (V 2, E2) = G− {v}. We will show that
there is a common probability space such that

MS(G1) ≤MS(G2) a.s.(11)

Further, applying Strassen’s theorem (cf. Lemma 2.1) yields (10).
Owing to the memoryless property of the exponential distributions, we can con-

sider a coupled processing model where all processors 1, . . . ,K, whenever they are
available, are continually executing tasks. When a completion occurs and there is
no task assigned to that processor, it corresponds to the completion of a fictitious
task. When a task is assigned to a processor, it is assigned a running time equal to
the remainder of the running time already underway at that processor. Thus if tasks
u ∈ G1 and v ∈ G2 are assigned to the same processor at some time, they have the
same (remaining) running time.

Denote by {cn}∞n=1 the (increasing) sequence of completion times of the tasks
in G1 and G2 at the available processors under the MS policy. Let {dn}∞n=1 be the
superposition of the sequences of the decision epochs of MS for G1 and G2 in such a
probability space. More specifically, {dn}∞n=1 is the superposition of the sequences of
profile modification times {an}∞n=1 and of the task completion times {cn}∞n=1. Clearly,
d1 = a1 = 0.

For j = 1, 2 and n ≥ 1, let Gj(n) = (V j(n), Ej(n)) be the remaining graph
of Gj at time dn under MS in the coupled model. Let g = maxi∈V |S(i)|. Denote
T jk (n) = {i ∈ V j(n), |S(i)| = k}, j = 1, 2, 0 ≤ k ≤ g, and n ≥ 1. We show that for
all n ≥ 1,

G1(n) ≺s G2(n),(12)

which immediately implies (11).
Relation (12) is proved by induction on n. For n = 1, it is trivial that

G1(1) = G1 ≺s G2 = G2(1).

Assume that (12) holds for some n ≥ 1.
Let there be m available processors at time d+

n . Without loss of generality, we
assume that the processors 1, 2, . . . ,m are available. Recall that, by convention, these
processors are ordered by their speed: α1 ≥ α2 ≥ · · · ≥ αm.

Under the MS policy, the initial tasks with the largest sets of successors are
assigned to the fastest processors. Let u1, u2, . . . , um1 be the tasks of G1(n) that are
assigned to the processors 1, 2, . . . ,m1, respectively, under the MS policy. Similarly,
let v1, v2, . . . , vm2

be the tasks ofG2(n) that are assigned to the processors 1, 2, . . . ,m2,
respectively, under the MS policy. By definition, m ≥ max(m1,m2), and

S(u1) ⊇ S(u2) ⊇ · · · ⊇ S(um1
), S(v1) ⊇ S(v2) ⊇ · · · ⊇ S(vm2

).

182 ZHEN LIU AND ERIC SANLAVILLE

If G1(n) is empty, then (12) trivially holds for n + 1. If the time epoch dn+1

corresponds to a profile modification, then

G1(n+ 1) = G1(n) ≺s G2(n) = G2(n+ 1)

so that relation (12) holds for n + 1. Now assume that G1(n) is not empty and
that dn+1 corresponds to a completion at some processor, say processor h, 1 ≤ h ≤
max(m1,m2). Let uh, if any, belong to T 1

a (n), and vh, if any, belong to T 2
b (n). Tasks

uh and/or vh finish at time dn+1. There are three cases to be investigated.
Case 1: m1 > m2 and m2 + 1 ≤ h ≤ m1. In this case, only task uh is finished. It

is easy to see that

∀i, 0 ≤ i ≤ g :

g∑
k=i

|T 1
k (n+ 1)| ≤

g∑
k=i

|T 1
k (n)| ≤

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|

so that relation (12) holds for n+ 1.
Case 2: h ≤ min(m1,m2). In this case, both tasks uh and vh are finished. There

are two subcases:
Case 2.1: b ≤ a. It is simple that

∀i, a+ 1 ≤ i ≤ g :

g∑
k=i

|T 1
k (n+ 1)| =

g∑
k=i

|T 1
k (n)| ≤

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|,

∀i, b+ 1 ≤ i ≤ a :

g∑
k=i

|T 1
k (n+ 1)| = −1 +

g∑
k=i

|T 1
k (n)| ≤ −1 +

g∑
k=i

|T 2
k (n)|

= −1 +

g∑
k=i

|T 2
k (n+ 1)| ≤

g∑
k=i

|T 2
k (n+ 1)|,

∀i, 0 ≤ i ≤ b :

g∑
k=i

|T 1
k (n+ 1)| = −1 +

g∑
k=i

|T 1
k (n)|

≤ −1 +

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|.

Therefore, relation (12) holds for n+ 1.
Case 2.2: b > a. Observe first that

∀i, b+ 1 ≤ i ≤ g :

g∑
k=i

|T 1
k (n+ 1)| =

g∑
k=i

|T 1
k (n)| ≤

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|,

∀i, 0 ≤ i ≤ a :

g∑
k=i

|T 1
k (n+ 1)| = −1 +

g∑
k=i

|T 1
k (n)|

≤ −1 +

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|.

We examine the case a+ 1 ≤ i ≤ b. Let 0 ≤ i1, i2 ≤ g be the integers defined as
follows:

T 1
g (n) = · · · = T 1

i1+1(n) = ∅,T 1
i1(n) 6= ∅,

T 2
g (n) = · · · = T 2

i2+1(n) = ∅,T 2
i2(n) 6= ∅.

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 183

Note that i1 and i2 are uniquely defined. Under the inductive assumption, one has
that

g∑
k=i1

|T 2
k (n)| ≥

g∑
k=i1

|T 1
k (n)| > 0.

Thus i1 ≤ i2.
For 0 ≤ i, k ≤ g, let nk(i) = |Tk ∩ S(Ti)|, where S(Ti) ≡ S(w) for some w ∈ Ti.

Note that nk(i) = 0 if k ≥ i. Note also that nk(i) ≤ nk(i + 1). According to
the definitions, nk(ij) is the number of noninitial tasks of T jk (n) in Gj(n), j = 1, 2,
1 ≤ k ≤ g.

For all i, a+ 1 ≤ i ≤ b, we have uh 6∈ Tg ∪ · · · ∪ Ti so that there are at most h− 1
initial tasks u1, u2, . . . , uh−1 in T 1

g (n) ∪ · · · ∪ T 1
i (n). Thus

g∑
k=i

|T 1
k (n)| ≤ h− 1 +

g∑
k=i

nk(i1).

On the other hand, vh ∈ Tb implies that the h initial tasks v1, v2, . . . , vh are in
T 2
g (n) ∪ · · · ∪ T 2

i (n). Hence

g∑
k=i

|T 2
k (n)| ≥ h+

g∑
k=i

nk(i2).

The two inequalities above together with the fact that nk(i1) ≤ nk(i2) imply that

g∑
k=i

|T 1
k (n)| ≤ −1 +

g∑
k=i

|T 2
k (n)|.

Therefore, for all i, a+ 1 ≤ i ≤ b,
g∑
k=i

|T 1
k (n+ 1)| =

g∑
k=i

|T 1
k (n)| ≤ −1 +

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|,

which completes the proof of (12) for n+ 1 in Case 2.2.
Case 3: m1 < m2 and m1 + 1 ≤ h ≤ m2. In this case, only task vh finishes.
It is clear that for all b+ 1 ≤ i ≤ g,

g∑
k=i

|T 1
k (n+ 1)| =

g∑
k=i

|T 1
k (n)| ≤

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|.

Since m ≥ m2 ≥ m1 + 1, and since only m1 tasks of G1(n) are assigned to the
available processors, we obtain that for all i ≤ b,

g∑
k=i

|T 1
k (n)| ≤ m1 +

g∑
k=i

nk(i1).(13)

On the other hand, vh ∈ Tb implies that the h initial tasks v1, v2, . . . , vh are in
T 2
g (n) ∪ · · · ∪ T 2

i (n). Hence for all i ≤ b,
g∑
k=i

|T 2
k (n)| ≥ h+

g∑
k=i

nk(i2) ≥ m1 + 1 +

g∑
k=i

nk(i2) ≥ m1 + 1 +

g∑
k=i

nk(i1).(14)

184 ZHEN LIU AND ERIC SANLAVILLE

Inequalities (13) and (14) imply that

g∑
k=i

|T 1
k (n)| ≤ −1 +

g∑
k=i

|T 2
k (n)|.

Therefore, for all i ≤ b,
g∑
k=i

|T 1
k (n+ 1)| =

g∑
k=i

|T 1
k (n)| ≤ −1 +

g∑
k=i

|T 2
k (n)| =

g∑
k=i

|T 2
k (n+ 1)|

so that (12) holds for n+ 1 in Case 3.
Therefore, by induction, relation (12) holds for all n ≥ 1. Consequently, MS(G1) ≤

MS(G2) a.s. in that probability space.

4.2. Stochastic profile scheduling of in-forests. Let G = (V,E) ∈ Ci.f be
an in-forest. A task of in-forest G is an initial task if and only if it is a leaf of G. For
any task, the number of its successors is equal to its level in the in-forest, i.e., the
distance from it to the root of the tree in which it appears. (The level of the roots is
zero by convention.) Thus the MS policy coincides with the HLF policy.

Theorem 4.2. For any profile {an,Mn}∞n=1 bounded by 2 and for any in-forest
G ∈ Ci.f ,

∀π ∈ Ψ : MS(G) ≤st π(G).(15)

The proof of the theorem is similar to that of Theorem 4.1, using the fact that Cif
is MS(2)-monotonic, and is omitted here. The reader is referred to [10] for a detailed
proof.

Note that the above theorem generalizes the result of Kulkari and Chimento [9]
to uniform processors (with a different scheme of proof). Note also that such a result
holds only when |Mn| ≤ 2. Simple counterexamples can be found when there are
three processors (see [2]).

4.3. Stochastic profile scheduling of out-forests. Let G = (V,E) ∈ Co.f be
an out-forest. A task of out-forest G is an initial task if and only if it is a root of
G. Vertex v ∈ V and all its successors is a subtree of G, denoted by TG(v) or simply
T (v) when there is no ambiguity.

In general, MS policies are not optimal within the class of out-forests Co.f . Coun-
terexamples are provided in [3]. However, we will show that within the classes of
uniform and r-uniform out-forests (introduced in Coffman and Liu [3]), a policy is
optimal if and only if it is MS.

Let T1, T2 ∈ Co.f be two out-trees. The out-tree T2 is said to embed the out-tree
T1, or T1 is embedded in T2, denoted by T2 �e T1 or T1 ≺e T2, if T1 is isomorphic to
a subgraph of T2. Formally, T2 embeds T1 if there exists an injective function f from
T1 into T2 such that ∀u, v ∈ T1, v ∈ s(u) implies f(v) ∈ s(f(u)). The function f is
called an embedding function.

Let r1 and r2 be the roots of the out-trees T1 and T2, respectively. If T2 �e T1 and
if there is an embedding function f such that f(r1) = r2, then f is a root-embedding
function, and we write T2 �r T1 or T1 ≺r T2.

An out-forest G ∈ Co.f is said to be uniform (respectively, r-uniform) if all of
its subtrees {T (v), v ∈ G} can be ordered by the embedding (respectively, root-
embedding) relation. The class of uniform (respectively, r-uniform) out-forests is

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 185

denoted by Cu.o.f (respectively, Cr.o.f). It is clear that Cr.o.f ⊂ Cu.o.f ⊂ Co.f . In
Figure 1, graph 3 is a uniform out-forest but not a r-uniform out-forest. Graph 4 is
a r-uniform out-forest.

The embedding relation is extended to uniform out-forests as follows. Let G1 =
(V 1, E1) and G2 = (V 2, E2) be two uniform out-forests. Denote by TG(v) the subtree
of out-forest G composed of v and all the successors of v in G. Assume that the
vertices of G1 and G2 are indexed in such a way that

TG1(1) �e TG1(2) �e · · · �e TG1(|V 1|),

TG2(1) �e TG2(2) �e · · · �e TG2(|V 2|).

Out-forest G1 is embedded in G2, referred to as G1 ≺e G2, if and only if

|V 1| ≤ |V 2|, and ∀i, 1 ≤ i ≤ |V 1| : TG1(i) ≺e TG2(i).

Similarly, G1 ≺r G2 if and only if

TG1(1) �r TG1(2) �r · · · �r TG1(|V 1|),

TG2(1) �r TG2(2) �r · · · �r TG2(|V 2|),

|V 1| ≤ |V 2|, and ∀i, 1 ≤ i ≤ |V 1| : TG1(i) ≺r TG2(i).

We will show that MS policies are optimal for uniform out-forests and profiles
bounded by 2, as well as for r-uniform out-forests and arbitrary profiles. In order
to establish these optimality properties, we first prove that Cu.o.f (resp. Cr.o.f) is
MS(2)-monotonic (resp. MS(p)-monotonic for any positive integer p).

Observe that for any two roots u and v of a uniform out-forest G ∈ Cu.o.f (resp.
r-uniform out-forest G ∈ Cr.o.f), T (u) �e T (v) (resp. T (u) �r T (v)) if and only if
|S(u)| ≥ |S(v)|. Thus for any two subgraphs G1 and G2 of G which are obtained
from deleting initial tasks of G, G1 ≺e G2 (resp. G1 ≺r G2) if and only if G1 ≺s G2.
This last property allows us to use the arguments of Coffman and Liu [3] for the
establishment of the following MS-monotonicities.

Lemma 4.3. Let G ∈ Cr.o.f be an arbitrary r-uniform forest and let u and v be
two roots of G such that |S(u)| ≥ |S(v)|. Then for any profile {an,Mn}∞n=1 bounded
by 2,

MS(G− {u}) ≤st MS(G− {v}).

The proof of the above lemma is analogous to the proof of Theorem 1 of Coffman
and Liu [3]. Although the proof of Theorem 1 in [3] was given for constant profile
and parallel identical processors, the fact that both graphs G− {u} and G− {v} are
scheduled by an MS policy allows us to use the same argument. The detailed proof
is left to the interested reader.

Lemma 4.4. Let G ∈ Cr.o.f be an arbitrary r-uniform forest and let u and v be
two roots of G such that |S(u)| ≥ |S(v)|. Then for any profile {an,Mn}∞n=1,

MS(G− {u}) ≤st MS(G− {v}).

186 ZHEN LIU AND ERIC SANLAVILLE

The assertion of the lemma can be shown by mimicking the proof of Theorem 2
of Coffman and Liu [3]. The detailed proof is omitted.

Now applying Theorem 3.1 yields the following result.
Theorem 4.5. For any profile {an,Mn}∞n=1 bounded by 2, and for any uniform

out-forest G ∈ Cu.o.f ,

∀π ∈ Ψ : MS(G) ≤st π(G).(16)

Theorem 4.6. For any profile {an,Mn}∞n=1 and any r-uniform out-forest G ∈
Cr.o.f ,

∀π ∈ Ψ : MS(G) ≤st π(G).(17)

5. Concluding remarks. We have considered the scheduling problem for the
stochastic minimization of the makespan of task graphs under a variable profile. Un-
der the assumption that task running times are independent random variables with
exponential distributions, we have established a general condition for a list-scheduling
policy to stochastically minimize the makespan. This result has allowed us to show
the optimality of MS policies when the partial order is an interval order, an in-forest,
or an out-forest.

We can further show that, except in the degenerate case where there is a single
available processor all the time, MS is the only optimal policy for the stochastic
minimization of the makespan. The reader is referred to [10] for details.

All results of the paper hold if the speed of the processors, as well as their avail-
ability, is allowed to vary. The task assignment will change whenever the speed ratio
between two processors is reversed. Such an extension allows one to analyze systems
with processor sharing among different jobs (i.e., sets of tasks).

Acknowledgments. We would like to thank the referees for various constructive
comments which helped to improve both the contents and the presentation of the
paper.

REFERENCES

[1] J. Bruno, On scheduling tasks with exponential service times and in-tree precedence con-
straints, Acta Inform., 22 (1985), pp. 139–148.

[2] K. M. Chandy and P. F. Reynolds, Scheduling partially ordered tasks with probabilistic
execution times, Oper. System Rev., 9 (1975), pp. 169–177.

[3] E. G. Coffman and Z. Liu, On the optimal stochastic scheduling of out-forests, Oper. Res.,
40 (1992), pp S67–S75.

[4] D. Dolev and M. K. Warmuth, Scheduling precedence graphs of bounded height, J. Algo-
rithms, 5 (1984), pp. 48–59.

[5] D. Dolev and M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput., 14 (1985), pp.
638–657.

[6] D. Dolev and M. K. Warmuth, Profile scheduling of opposing forests and level orders, SIAM
J. Algebraic Discrete Meth., 6 (1985), pp. 665–687.

[7] E. Frostig, A stochastic scheduling problem with intree precedence constraints, Oper. Res., 36
(1988), pp. 937–943.

[8] M. R. Garey, D. S. Johnson, R. E. Tarjan, and M. Yanakakis, Scheduling opposite forests,
SIAM J. Algebraic Discrete Meth., 4 (1983), pp. 72–93.

[9] V. G. Kulkari and P. F. Chimento, Jr., Optimal scheduling of exponential tasks with intree
precedence constraints on two parallel processors subject to failure and repair, Oper. Res.,
40 (1992), pp. S263–S271.

[10] Z. Liu and E. Sanlaville, Stochastic scheduling with variable profile and precedence con-
straints, Research Report 1525, INRIA, Valbonne, France, 1991.

STOCHASTIC SCHEDULING WITH VARIABLE PROFILE 187

[11] Z. Liu and E. Sanlaville, Preemptive scheduling with variable profile, precedence constraints
and due dates, Research Report 1622, INRIA, Valbonne, France, 1992; Discrete Appl.
Math., 58 (1995), pp. 253–280.

[12] C. H. Papadimitriou and J. N. Tsitsiklis, On stochastic scheduling with in-tree precedence
constraints, SIAM J. Comput., 16 (1987), pp. 1–6.

[13] C. H. Papadimitriou and M. Yannakakis, Scheduling interval-ordered tasks, SIAM J. Com-
put., 8 (1979), pp. 405–409.

[14] M. Pinedo and G. Weiss, Scheduling jobs with exponentially distributed processing times and
intree precedence constraints on two parallel machines, Oper. Res., 33 (1985), pp. 1381–
1388.

[15] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat.,
36 (1965), pp. 423–439.

[16] J. D. Ullman, NP-complete scheduling problems, J. Comput. System Sci., 10 (1975), pp. 384–
393.

ON BOUNDED QUERIES AND APPROXIMATION∗

RICHARD CHANG† , WILLIAM I. GASARCH‡ , AND CARSTEN LUND§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 188–209, February 1997 011

Abstract. This paper investigates the computational complexity of approximating several NP-
optimization problems using the number of queries to an NP oracle as a complexity measure. The
results show a tradeoff between the closeness of the approximation and the number of queries required.
For an approximation factor k(n), log logk(n) n queries to an NP oracle can be used to approximate

the maximum clique size of a graph within a factor of k(n). However, this approximation cannot be
achieved using fewer than log logk(n) n−c queries to any oracle unless P = NP, where c is a constant

that does not depend on k. These results hold for approximation factors k(n) ≥ 2 that belong to
a class of functions which includes any integer constant function, log n, loga n, and n1/a. Similar
results are obtained for Graph Coloring, Set Cover, and other NP-optimization problems.

Key words. bounded queries, approximation algorithm, NP-completeness, maximum clique,
chromatic number, set cover

AMS subject classifications. 68Q15, 03D15

PII. S0097539794266481

1. Introduction. The approximability of NP-optimization problems is a cen-
tral theme both in the study of algorithms and in computational complexity theory.
Most NP-optimization problems have decision versions that are NP-complete and are
hence equivalent to each other as decision problems. However, the approximability
of the optimization problems may vary greatly. For some NP-optimization problems,
there are efficient algorithms that find good approximate solutions. For others, no
such algorithm can exist unless some standard intractability assumption is violated
(e.g., P = NP or the polynomial hierarchy (PH) collapses). Recently, Arora et al.
[3] showed that the problem of finding the largest clique in a graph is in the latter
category. Following a series of breakthrough results [4, 5, 18, 26, 29], they showed
that there exists a constant ε such that no deterministic polynomial-time algorithm
can approximate the maximum clique size ω(G) of a graph G with n vertices within
a factor of nε unless P = NP. While this result strongly suggests that no efficient
algorithm can find good approximations to the maximum-clique problem, it does not
resolve all of the questions about the computational complexity of approximating the
maximum clique size of a graph. In particular, it is not clear what computational re-
sources are sufficient and/or necessary to compute an approximation of the maximum
clique size using any of the traditional resource-bounded measures (e.g., time, space,
random bits, and alternation).

In this paper, we use the number of queries to an NP-complete oracle as a com-
plexity measure. Krentel [24] used this measure to show that the maximum clique size

∗Received by the editors April 21, 1994; accepted for publication (in revised form) April 25, 1995.
A preliminary version of this paper appeared in Proc. 34th IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 547–556.

http://www.siam.org/journals/sicomp/26-1/26648.html
†Department of Computer Science and Electrical Engineering, University of Maryland Baltimore

County, Baltimore, MD 21228 (chang@umbc.edu). The research of this author was supported in
part by NSF research grant CCR-9309137 and by the University of Maryland Institute for Advanced
Computer Studies.
‡Department of Computer Science and University of Maryland Institute for Advanced Computer

Studies, University of Maryland College Park, College Park, MD 20742 (gasarch@cs.umd.edu). The
research of this author was supported in part by NSF research grant CCR-9020079.
§AT&T Research, 600 Mountain Avenue, Murray Hill, NJ, 07974 (lund@ research.att.com).

188

ON BOUNDED QUERIES AND APPROXIMATION 189

Table 1.1

Upper and lower bounds for approximating the maximum clique size.

Factor Upper bound Lower bound (unless P = NP)

2 log logn log logn− log 1/ε

k log logn− log log k log logn− log log k − log 1/ε

loga n log logn− log log loga n log logn− log log loga n− log 1/ε

n1/a log a log a− log 1/ε

is complete for polynomial-time functions which use only O(logn) queries, denoted

PFNP[O(log n)]. Since Krentel’s original work, many connections between bounded
query classes and standard complexity classes have been discovered [1, 2, 6, 7, 13,
14, 20, 23, 32, 33]. In many circumstances, these results show that one cannot de-
crease the number of queries needed to solve a problem by even a single query unless
P = NP or PH collapses. For example, Hoene and Nickelsen [21] showed that to
determine how many of the formulas in F1, . . . , Fr are satisfiable, dlog(r+ 1)e queries
are both sufficient and necessary (unless P = NP). A näıve binary search can deter-
mine the number of satisfiable formulas using dlog(r + 1)e queries to the NP oracle.
The number of queries needed is dlog(r + 1)e rather than dlog re because there are
r + 1 possible answers ranging from 0 to r. A tree-pruning technique shows that no
polynomial-time machine can determine the number of satisfiable formulas using one
fewer query to any oracle unless P = NP. Thus the algorithm which uses the fewest
queries is simply the näıve binary search algorithm. In this paper, we show that for
several NP-optimization problems, binary search is also the approximation algorithm
that uses the fewest queries. In the first parts of the paper, we will focus on the
complexity of approximating the size of the maximum clique in a graph.

In order to state the results in this paper correctly, we need to be more precise
with the term “approximation.” Let ω(G) denote the size of the maximum clique in
the graph G. We say that a number x is an approximation of ω(G) within a factor
of k(n) if ω(G)/k(n) ≤ x ≤ ω(G). Our results show a tradeoff between the closeness
of the approximation and the number of queries needed to solve the approximation
problem—finding closer approximations requires more queries.

For example we can approximate ω(G) within a factor of 2 using only log logn
queries to NP, where n is the number of vertices in the graph G. In contrast, comput-
ing ω(G) exactly can be done with logn queries and requires Ω(logn) queries (unless
P = NP) [24]. Moreover, we show that no function using fewer than (log logn)−log 1/ε
queries to any oracle can approximate ω(G) within a factor 2 unless P = NP. (Here
ε is the constant given in Corollary 3 of [3].) In general, our results show that for
any “nice” approximation factor k(n) ≥ 2, ω(G) can be approximated within a fac-
tor of k(n) using log logk(n) n queries but not with fewer than log logk(n) n − log 1/ε
queries to any oracle unless P = NP. In Corollary 3.3, we show that the difference,
log 1/ε, between the upper and lower bounds has a natural interpretation. Table 1.1
summarizes our results for some common approximation factors.

We make a few observations about these results. First, since ε is a constant, for
a large enough constant k, log log k would exceed log 1/ε. Hence for this k, the upper
bound on approximating ω(G) within a factor of k will be strictly less than the lower
bound for approximating within a factor of 2. Hence for this large k, the problem of
approximating ω(G) within a factor k has strictly lower complexity in terms of the
number of queries than approximating within a factor of 2 unless P = NP. Similarly,

190 R. CHANG, W. I. GASARCH, AND C. LUND

approximating within a factor of logn has a lower complexity than approximating
within any constant; and approximating within a factor of n1/k has an even lower
complexity. We believe that these are the first results which show a tradeoff between
complexity and closeness of approximation. In contrast, Garey and Johnson [19]
showed that if ω(G) can be approximated within a constant factor in P, then it can
be approximated within any constant factor in P. While these are not contradictory
theorems, they certainly have very different flavors.

In the next section, we state the lemmas, definitions, and notations needed to
prove the results. In section 3, we show that a uniform binary search routine provides
the upper bounds we have mentioned. To prove the lower bound results, we start in
section 4.2 with a simple proof which shows that no function in PFX[1] for any oracle
X can approximate ω(G) within a factor of 2 unless P = NP. We go on to the proof of
the general lower-bound results. In section 5, we discuss how these results extend to
other NP optimization problems (e.g., Chromatic Number). In section 6, we ponder
the value of the constant ε. Finally, in section 7, we combine our techniques with the
results of Lund and Yannakakis [27] on the hardness of approximating the Set Cover
problem to derive upper and lower bounds on the query complexity of approximating
the minimum set-cover size.

2. Preliminaries.
Definition 2.1. For every graph G, let |G| denote the number of vertices in the

graph and let ω(G) denote the size of the largest clique in G. We say that a function
A(G) approximates the maximum clique size within a factor of k(n) if for all graphs
G with n vertices,

ω(G)/k(n) ≤ A(G) ≤ ω(G).

Some papers use the alternative condition that ω(G)/k(n) ≤ A(G) ≤ k(n) ·ω(G),
but we find it unintuitive to consider A(G) an approximation of ω(G) if there does
not exist a clique of size A(G) in G. However, the results in this paper still hold under
the alternative definition.

To prove the lower bounds, we need the result of Arora et al. [3], which showed
that there exists an ε > 0 such that the maximum clique size cannot be approximated
within a factor of nε in deterministic polynomial time unless P = NP, where n is the
number of vertices in the graph. Their construction yields the next lemma.

Lemma 2.2 (see [3]). There exist constants s, b, and d, 0 < s < b < d, such that
given a Boolean formula F with t variables, we can construct in polynomial time a
graph G with m = td vertices, where

F ∈ SAT =⇒ ω(G) = tb and

F 6∈ SAT =⇒ ω(G) < ts.

The constants b, s, and d will be fixed for the remainder of the paper. Of par-
ticular interest is the ratio (b − s)/d because it is equal to the ε mentioned before
Lemma 2.2. To prove the intractability of nε approximation, first assume that we
have a polynomial-time algorithm to approximate ω(G) within nε. Take any Boolean
formula F , and let t be the number of variables in F . Construct G as described
in Lemma 2.2. Use the polynomial-time algorithm to obtain an approximation x of
ω(G). Since |G| = td, an nε approximation is within a factor of (td)ε = tb−s. There-
fore, if F ∈ SAT, the algorithm must guarantee that x ≥ tb/tb−s = ts. On the other
hand, if F 6∈ SAT, then x < ts. Thus F ∈ SAT ⇐⇒ x ≥ ts.

ON BOUNDED QUERIES AND APPROXIMATION 191

Definition 2.3. Let PFX[q(n)] be the class of functions computed by polynomial-
time oracle Turing machines which ask at most q(n) queries to the oracle X. Since the
queries are adaptive, the query strings may depend on answers to previous queries.

3. Upper bounds. We first examine the upper bounds on the complexity of
approximating NP-optimization problems in terms of bounded query classes. The
general idea is to use each query to SAT to narrow down the range where the optimal
solution exists. For example, for a graph G with n nodes, 1 ≤ ω(G) ≤ n. We can
compute ω(G) exactly using binary search and logn queries of the form: “Is ω(G)
greater than x?”

On the other hand, to approximate ω(G) within a factor of 2, we only need to
find a number x such that x ≤ ω(G) ≤ 2x. Thus we first partition the numbers from
1 to n into the intervals

[1, 2], (2, 4], (4, 8], . . . ,
(

2dlog ne−1, 2dlog ne
]
.

If ω(G) is in the interval (2i, 2i+1], then we can simply use 2i as a factor-2 approx-
imation of ω(G). Thus our strategy is to use binary search on the left endpoints of
the intervals to determine which interval contains ω(G). Since there are only dlogne
intervals, we only need dlogdlognee queries to SAT to perform this binary search. In
the general case, if we want to find an approximation of ω(G) that is within a factor of
k(n), there will be dlogk(n) ne intervals of the form

(
k(n)i, k(n)i+1

]
and binary search

would use dlogdlogk(n) nee queries to SAT. Thus, we have the following lemma.
Lemma 3.1. Let k(n) be a polynomial-time-computable function such that 1 <

k(n) < n. Then there exists a function in PFSAT[dlogdlogk(n) nee] which approximates
ω(G) within a factor of k(n) for all graphs G with n vertices.

The lemma is stated for the maximum-clique-size problem, but it obviously holds
for any NP-optimization problem where the solution is an integer ranging from 1 to
n. Note that it does not matter if k(n) is not an integer because checking whether
ω(G) is greater than x is still an NP question when x is a fractional number. Once we
have determined that ω(G) is contained in the interval (k(n)i, k(n)i+1], we can output
dk(n)ie as an approximation to ω(G). Also, if we drop the ceilings from our notation,
then we can derive more readable upper bounds on the complexity of approximating
ω(G) for some common approximation factors (see Table 1.1).

The binary search strategy used to find the approximation to ω(G) may seem
näıve. However, we shall see later that the upper bounds differ from the lower bounds
by at most an additive constant. In any case, we can improve the upper bounds if
there exists a polynomial-time algorithm which gives an approximate solution within
a factor of f(n). Then our strategy is to first use the polynomial-time algorithm to
obtain an approximation x. We know that the solution is between x and x · f(n).
Now, to find an approximation that is within a factor of k(n), we divide the numbers
from x to x · f(n) into intervals:

[x, xk(n)],
(
xk(n), xk(n)2

]
, . . . ,

(
x
f(n)

k(n)
, xf(n)

]
.

In this case, the number of intervals is dlogk(n) f(n)e, and we have the following
lemma.

Lemma 3.2. Let k(n) be a polynomial-time-computable function such that 1 <
k(n) < n. Suppose that there exists a polynomial-time algorithm which approximates

192 R. CHANG, W. I. GASARCH, AND C. LUND

ω(G) within a factor of f(n). Then there exists a function in PFSAT[dlogdlogk(n) f(n)ee]

which approximates ω(G) within a factor of k(n) for all graphs G with n vertices.

Again, we note that this lemma applies to any NP-optimization problem whose
solutions range from 1 to n. This lemma may seem somewhat useless since the best
known polynomial-time algorithm can only approximate the size of the maximum
clique within a factor of O(n/(logn)2) [10]. If we were to use the new strategy outlined
above, we would reduce the number of queries needed to find a factor-2 approximation
of ω(G) to log(log n− 2 log logn), which would save us at most one query for various
values of n. However, the following corollary of the lemma does allow us to gauge the
quality of our lower bound results.

Corollary 3.3. If no function in PFSAT[log logk(n) n−log 1/δ] approximates ω(G)
within a factor of k(n), then no polynomial-time algorithm can approximate ω(G)
within a factor of nδ.

Corollary 3.3 gives us a natural interpretation of the difference between the up-
per bound of log logk(n) n in Lemma 3.1 and the lower bound of log logk(n)− log 1/ε
(Theorem 4.8). This difference of log 1/ε reflects the fact that we do not know if there
exists a polynomial-time algorithm which approximates ω(G) within a factor of nδ for
ε < δ < 1. Thus an improvement of either the upper or the lower bound is possible.

Moreover, the observations about Lemma 3.2 are most useful when they are ap-
plied to NP-optimization problems such as Set Cover. In the Set Cover problem, we
are given a finite collection C of subsets of {1, . . . , n} and asked to find the size of the
smallest subcollection C ′ ⊆ C that covers {1, . . . , n}. Since the size of the smallest
set cover can be approximated within a factor ln(n)+1 [22, 25], we have the following
lemma.

Lemma 3.4. Let k(n) be a polynomial-time-computable function such that 1 <

k(n) < n. Then there exists a function in PFSAT[dlogdlogk(n)(lnn+1)ee] which approxi-
mates the size of the minimum set cover within a factor of k(n).

Now, by comparing Lemma 3.1 against Lemma 3.4, we can obtain a quantita-
tive difference between the complexity of approximating ω(G) and the complexity of
approximating the size of the minimum set cover—not just a qualitative difference.
For example, if we are allowed to make log log(lnn+ 1) queries to SAT, then we can
approximate the minimum set cover within a factor of 2. However, using the same
number of queries, we can only approximate ω(G) within a factor of n1/ log(lnn+1).
Thus we can conclude that approximating the set cover within a factor of 2 has
about the same complexity as approximating ω(G) within a factor of n1/ log(lnn+1).
Such a comparison is only possible by taking a quantitative view of the complexity of
approximations in terms of the number of queries.

Note that the existence of a “good” polynomial-time approximation algorithm for
a problem has a greater effect on the complexity of approximating the problem than
on the complexity of finding the exact solution. For example, suppose that we have
some NP-optimization problem where the solution ranges from 1 to n. Without the
help of an approximation algorithm, we would need logn queries to find the exact
solution and log logn queries to find a factor-2 approximation. Now suppose that we
are given a polynomial-time algorithm that guarantees a factor-4 approximation. To
find the exact solution we would still need log(n−n/4) = O(logn) queries. However,
we only need one query (log log 4 = 1) to approximate within a factor of 2.

The upper bounds proven in this section use a näıve binary search strategy to
determine an interval that contains the optimal solution. One might suspect that a
more clever algorithm could use substantially fewer queries to the oracle. In the rest

ON BOUNDED QUERIES AND APPROXIMATION 193

of the paper, we show that unless some intractability assumption is violated (e.g.,
P = NP and RP = NP), no polynomial-time algorithm can reduce the number of
queries by more than an additive constant. These results give us relative lower bounds
on the number of queries needed to approximate the maximum clique size of a graph.
We are also able to extend these techniques to determine the query complexity of
approximating the chromatic number of a graph and the minimum set cover.

4. Lower bounds.

4.1. Promise problems and clique arithmetic. To prove our lower-bound
results, we need to introduce some more definitions and notations.

Definition 4.1. Let #SAT
r(n)(F1, . . . , Fr(n)) be the number of formulas in {F1, . . . ,

Fr(n)} which are satisfiable. In other words, #SAT
r(n)(F1, . . . , Fr(n)) = |{F1, . . . , Fr(n)} ∩

SAT|.
Definition 4.2. Let r(t) be a polynomially bounded polynomial-time function.

We define Pr(t) to be the following promise problem. Given a sequence of Boolean
formulas F1, . . . , Fr(t), where each Fi has t variables, and the promise that for all i,
2 ≤ i ≤ r(t), Fi ∈ SAT implies that Fi−1 ∈ SAT, output #SAT

r(t) (F1, . . . , Fr(t)).

Technically, the size of the input to the promise problem is |F1, . . . , Fr(t)|. This
size is O(tr(t)) when the Boolean formulas are restricted to ones where each variable
occurs only a constant number of times. To simplify our notation, in the following
lemma, we count the queries as a function of t rather than |F1, . . . , Fr(t)|. The follow-
ing lemma provides a tight lower bound on the complexity of Pr and can be proven
using the self-reducibility of SAT and a tree-pruning technique [21]. We include the
proof for the sake of completeness.

Lemma 4.3. Let r(t) be a logarithmically bounded polynomial-time-computable
function. If there exists an oracle X such that some polynomial-time function solves
Pr(t) using fewer than dlog(r(t) + 1)e queries to X, then P = NP.

Proof. Let q(t) = dlog(r(t) + 1)e−1 and let M be a polynomial-time oracle Turing
machine which solves Pr using q(t) queries to X. We know that q(t) = O(log log n), so
the entire oracle computation tree ofM on input F1, . . . , Fr(t) is polynomially bounded
and can be searched deterministically. In fact, the oracle computation tree has at
most r(t) leaves since for all x, 2dlog xe < 2x. One of these leaves represents the cor-
rect computation of MX(F1, . . . , Fr(t)) and contains the value of #SAT

r(t) (F1, . . . , Fr(t)).

However, there are r(t) + 1 possible answers for #SAT
r(t) (F1, . . . , Fr(t)) ranging from 0

to r(t). Therefore, one possible answer, call it z, does not appear in any leaf. More-
over, one of the leaves contains the correct answer, so z 6= #SAT

r(t) (F1, . . . , Fr(t)). Thus

we can construct a polynomial time Turing machine M ′ which on input F1, . . . , Fr(t)
prints out a number z ≤ r(t) such that z 6= #SAT

r(t) (F1, . . . , Fr(t)).
Now we show that P = NP under this condition. Given a Boolean formula F ,

consider its disjunctive self-reduction tree. Each node in the tree is a formula; the
children of a node are the two formulas obtained by instantiating one of the variables
in the formula by 0 and by 1. With F at the root of the tree, the tree has height t
and exponential size. However, we will only examine r(t) levels of the tree at a time.
Now let F = F1, . . . , Fr(t) be a path in this tree. Suppose that Fi+1 ∈ SAT. Since
Fi+1 is a child of Fi, we can assume that Fi ∈ SAT. Thus the promise condition of
Pr(t) holds and we can use M ′ to find a number z such that z 6= #SAT

r(t) (F1, . . . , Fr(t)).
Now replace the subtree rooted at Fz with the subtree rooted at Fz+1. If Fz 6∈ SAT,
then Fz+1 6∈ SAT by the promise condition. If Fz ∈ SAT and Fz+1 6∈ SAT, then
z would equal #SAT

r(t) (F1, . . . , Fr(t)), which contradicts our construction of M ′. Thus

194 R. CHANG, W. I. GASARCH, AND C. LUND

Fz+1 ∈ SAT iff Fz ∈ SAT and we have shortened the path by 1. Repeat this process
for all paths in any order until all the paths in the tree have length less than r(t). Now
the original formula F is satisfiable iff one of the leaves (in which all the variables have
been instantiated) evaluates to true. Since the final tree is polynomially bounded, we
can check every leaf exhaustively.

In the proofs that follow, we need to construct graphs in which the maximum
clique size can occur only at restricted intervals. To assist in this construction, we
define two operators on graphs: ⊕ and ⊗. We also use Ki to denote the complete
graph with i vertices.

Definition 4.4. Given two graphs G1 and G2, the graph H = G1 ⊕ G2 is
constructed by taking the disjoint union of the vertices of G1 and G2. The edges of
H are all the edges of G1 and G2, plus the edges (u, v) for each vertex u in G1 and v
in G2. (Thus every vertex in G1 is connected to every vertex in G2).

Definition 4.5.
1 Given two graphs G1 and G2, the graph H = G1 ⊗ G2 is

constructed by replacing each vertex of G1 with a copy of G2. Furthermore, for each
edge (u, v) in G1, each vertex in the copy of G2 replacing u is connected to every
vertex in the copy of G2 replacing v. Note that ⊗ is not commutative and that we
give ⊗ higher precedence than ⊕.

Lemma 4.6. Let G1 and G2 be any two graphs, then

ω(G1 ⊕G2) = ω(G1) + ω(G2) and

ω(G1 ⊗G2) = ω(G1) · ω(G2).

4.2. A simple lower bound. As a first lower-bound result, we show that for
all oracles X, no function in PFX[1] can approximate ω(G) within a factor of 2 unless

P = NP. To do this, we start with the assumption that some function f ∈ PFX[1] does
approximate ω(G) within a factor of 2 and show that using this function we can solve
the promise problem P2 using only one query to X. Then P = NP by Lemma 4.3.

In our construction, we start with the input to the promise problem P2, which is
a pair of Boolean formulas F1 and F2, each with t variables. Now, using the reduction
from Lemma 2.2, we construct two graphs G1 and G2 with td vertices such that

Fi ∈ SAT =⇒ ω(Gi) = tb and

Fi 6∈ SAT =⇒ ω(Gi) < ts.

Then let H = G1 ⊕ (K2 ⊗ G2). By Lemma 4.6, ω(H) = ω(G1) + 2 · ω(G2). Also,
assume that t is sufficiently large so that tb > 6 · ts.

Consider the effect of the satisfiability of F1 and F2 on ω(H). If F1 6∈ SAT and
F2 6∈ SAT, then

ω(H) = ω(G1) + 2 · ω(G2) < 3 · ts.

On the other hand, if F1 ∈ SAT and F2 6∈ SAT, then tb ≤ ω(H) < tb + 2 · ts. Finally,
if F1 ∈ SAT and F2 ∈ SAT, then ω(H) = 3 · tb.

Because of the promise condition of the promise problem, we do not have the
case where F1 6∈ SAT and F2 ∈ SAT. This restricts the value of ω(H) to three
nonoverlapping intervals. In fact, these intervals are separated by a factor of 2. Thus
a factor-of-2 approximation of ω(H) will tell us which formulas are satisfiable. For

1This is identical to graph composition in Garey and Johnson [19]. The cover of [19] is the picture
of a 3-clique composed with a graph that has three points connected by two edges.

ON BOUNDED QUERIES AND APPROXIMATION 195

example, if we are given an approximation x guaranteed to be within a factor of 2, and
x ≥ 1.5 · tb, then we know that both F1 and F2 are satisfiable. If this approximation
can be achieved using only one query to X, then we can solve the promise problem
P2 in PFX[1] and P = NP.

4.3. The general construction. In this section, we prove the general theorem
for the lower bound on approximating the size of the maximum clique in a graph.
First, we define a class of approximation factors.

Definition 4.7. We call a function k : N→ R a nice approximation factor if it
is computable in polynomial time and all of the following hold:

1. ∃n0 ∀n > n0, 2 ≤ k(n) < n.
2. ∃n0 ∀m > n > n0, k(m) ≥ k(n).
3. ∀δ > 0, ∃n0, ∀m > n > n0,

(1 + δ)
logm

log k(m)
>

logn

log k(n)
.

Please note that k(n) is nice if k(n) equals n1/a, logn, (logn)a, or a constant
≥ 2. The natural interpretation of the third condition is the following. Consider
the function f(n) = (logn)/(log k(n)). The function f(n) is also related to k(n)
by k(n) = n1/f(n). The third condition is satisfied if f(n) is increasing, if f(n) is
constant, or if f(n) is decreasing but converges to a limit (e.g., when k(n) =

√
n/2).

Since k(n) < n, f(n) is bounded below by 1. Thus if f(n) is decreasing almost
everywhere, it must converge to a limit. Hence the third condition is not satisfied
only when f(n) alternates between increasing and decreasing infinitely often. We rule
out these functions as approximation factors.

Theorem 4.8. Let k(n) be a nice approximation factor which (1) is unbounded,
(2) converges to an integral constant, or (3) converges to a sufficiently large constant.
Then for all oracles X, no polynomial-time function can approximate ω(G) within a
factor of k(n) using blog logk(n) n − cc or fewer queries to X unless P = NP, where
c = 1 + log(1/ε).

Proof. The general strategy of this proof is to reduce the promise problem Pr to
the problem of approximating the maximum clique size of a graph H within a factor
of k(n). Since Lemma 4.3 provides us with a lower bound on the complexity of Pr
(assuming that P 6= NP), we obtain a lower bound on the complexity of approximating
ω(H).

Therefore, we begin with the input to the promise problem Pr, the Boolean
formulas F1, . . . , Fr, each with t variables. (The actual value of r will be chosen
later.) We convert each formula Fi into a graph Gi with m = td vertices according to
the construction described in Lemma 2.2. The values of ω(Gi) are restricted by

Fi ∈ SAT =⇒ ω(Gi) = tb and

Fi 6∈ SAT =⇒ ω(Gi) < ts.

Then we choose a gap size g. In the simple example above, g is 2. In this proof,
the value of g and r will depend on t. However, for notational convenience, we do
not make this dependency explicit. Moreover, we can only choose g to be a whole
number. Now, given the choices of r and g, we construct the graph H as follows:

H = G1 ⊕ (Kg ⊗G2)⊕ (Kg2 ⊗G3)⊕ · · ·

⊕ (Kgi−1 ⊗Gi)⊕ · · · ⊕ (Kgr−1 ⊗Gr).

196 R. CHANG, W. I. GASARCH, AND C. LUND

At first glance, this does not appear to be a polynomial-time construction because
we could double the size of each succeeding graph. However, r will turn out to be
logarithmically bounded, so |H| will be polynomially bounded. Finally, let

νj =

j−1∑
i=0

gi =
gj − 1

g − 1
;

then n = |H| = νr ·m = νr · td.
Now suppose there exists a polynomial-time function which approximates ω(H)

within a factor of k(n) using log logk(n) n− c queries to X. We want to show that the

factor-k(n) approximation of ω(H) also tells us the value of #SAT
r (F1, . . . , Fr). Also,

we want to constrain the choice of g and r so that log logk(n) n − c < dlog(r + 1)e.
Then by Lemma 4.3, being able to approximate ω(H) within a k(n) factor using only
log logk(n) n − c queries to X would imply that P = NP. To make this claim, our
choices of g and r are critical. We have already encountered one constraint on g and
r. The other constraints arise when we analyze the possible values of ω(H).

For the moment, assume that there are exactly z satisfiable formulas in F1, . . . , Fr.
Then F1, . . . , Fz are in SAT and Fz+1, . . . , Fr are in SAT by the promise condition of
Pr. We can calculate ω(H) as follows:

ω(H) =

r∑
i=1

gi−1ω(Gi)

=

(
z∑
i=1

gi−1ω(Gi)

)
+

(
r∑

i=z+1

gi−1ω(Gi)

)

= νzt
b +

(
r∑

i=z+1

gi−1ω(Gi)

)
.

Since Fi is unsatisfiable, for z+1 ≤ i ≤ r, we can estimate the size of the second term
by νr · ts. Then we can bound the size of the maximum clique of H:

νzt
b ≤ ω(H) ≤ νztb + νrt

s.

We want to show that an approximation of ω(H) within a factor of g will also
allow us to calculate #SAT

r (F1, . . . , Fr). Therefore, assume that we are provided with
a function which approximates ω(H) within a factor g. To distinguish the case where
z formulas are satisfiable from the case where z + 1 formulas are satisfiable, we must
have g ·(νztb+νrt

s) < νz+1t
b. That is, the upper bound on ω(H) when z formulas are

satisfiable must be smaller by a factor of g than the lower bound on ω(H) when z+ 1
formulas are satisfiable. Since νz+1 = gνz + 1, this condition is satisfied if we have
the constraint that gνrt

s < tb. Similarly, under this constraint, we would also have
g(νz−1t

b + νrt
s) < νzt

b. Hence we have restricted the possible values of ω(H) to r+ 1
disjoint intervals which are separated by a factor of g. Thus given a number x which is
guaranteed to be an approximation of ω(H) within a factor of k(n), k(n) ≤ g, we can
find the largest z such that gx ≥ νzt

b. This largest z is equal to #SAT
r (F1, . . . , Fr).

It is important to note here that the approximation factor k(n) depends on n which
is the size of H and not the size of the original input. Furthermore, the value of n
depends on the value of g. Thus it is not a simple task to choose g and have k(n) ≤ g.
(Recall that n = νrt

d.)

ON BOUNDED QUERIES AND APPROXIMATION 197

In summary, we must choose g and r such that the following constraints hold.
(Recall that we use g and g(t) interchangeably.)

Constraint 1. g(t)νrt
s def

= g · (gr − 1)/(g − 1) · ts < tb.
Constraint 2. k(n) ≤ g(t).
Constraint 3. b(log logk(n) n)− cc < dlog(r(t) + 1)e.
The main difficulty of this proof is to choose the correct values for the parameters.

For example, we can satisfy Constraint 3 by picking a large value for r. However, if r
is large, then Constraint 1 is harder to satisfy. We also satisfy Constraint 2 easily by
choosing a large g, but a large g would force us to pick a small r, which then violates
Constraint 3. Let n′ = tb−s+d. We will show that the following choices satisfy the
constraints:

• g = dk(tb−s+d)e def
= dk(n′)e.

• r = blogg t
b−s(g − 1)/gc.

Note that g and r are chosen to be integers. This is important for our construction,
but it is also the source of some difficulties in our calculations. The reader may find
the proof easier to follow by substituting 2 or

√
n for g. These are the two extreme

possibilities.
First, we show that Constraint 1 holds. By our choice of r, r ≤ logg(t

b−s(g−1)/g).

By removing the logg, isolating tb, and using the fact that gr − 1 < gr, we obtain the
following, and hence Constraint 1 holds:

gνrt
s = g · g

r − 1

g − 1
· ts < g · gr

g − 1
· ts ≤ tb.(4.1)

We can also use equation (4.1) to estimate n in terms of t. From our construction,
we know that n = νrt

d. From equation (4.1), we know that νr < tb−s. Hence
n < tb−s+d = n′. Since k(n) is a nice approximation factor, it is monotonic after some
point. Hence for large enough t, k(n) ≤ k(n′) ≤ dk(n′)e = g(t). Thus Constraint 2
holds.

Finally, we have to show that Constraint 3 holds. Since c = 1 + log(1/ε), 2−c =
ε/2. It suffices to show that (log logk(n) n)−c < log(r+1) or that (ε/2) logk(n) n < r+1.
By substituting the definition of r and being careful with the floor notation, we can
satisfy Constraint 3 by showing that

2

ε
logg

g

g − 1
+ logk(n) n <

2

ε
logg t

b−s.(4.2)

In the next step, we rewrite (2/ε) as follows. Recall that ε = (b− s)/d.

2

ε
=

2

(1 + ε)

(1 + ε)

ε
=

(
1− ε
2 + 2ε

+
3 + ε

2 + 2ε

)
b− s+ d

b− s .

Thus

2

ε
logg t

b−s =
1− ε
2 + 2ε

logg n
′ +

3 + ε

2 + 2ε
logg n

′.

Since ε must be less than 1, (3 + ε)/(2 + 2ε) > 1 and (1 − ε)/(2 + 2ε) > 0. We can
satisfy Constraint 3 by showing the following two inequalities:

2

ε
logg

g

g − 1
<

1− ε
2 + 2ε

logg n
′,(4.3)

logk(n) n <
3 + ε

2 + 2ε
logg n

′.(4.4)

198 R. CHANG, W. I. GASARCH, AND C. LUND

Equation (4.3) holds since g/(g − 1) is bounded by 2 and n′ = tb−s+d is unbounded.
Now we have to show that equation (4.4) holds. First, pick δ > 0 small enough

so that

(1 + δ)2 <
3 + ε

2 + 2ε
.

Recall that g = dk(n′)e. Thus

3 + ε

2 + 2ε
logg n

′ > (1 + δ)2 · logn′

log k(n′)
· log k(n′)

log dk(n′)e .

Consider the ratio log k(n′)/ log dk(n′)e. If k(x) is always an integer, then the ratio
is just 1. If k(x) is growing monotonically, then the ratio converges to 1 from below
and will eventually rise above the constant 1/(1+ δ). In fact, it is sufficient to assume
that k(x) is an unbounded function. The proof also works when k(x) converges to
an integral constant or a sufficiently large constant. The proof does not work when
k(x) is a small fractional constant (e.g., 2.5). Hence we exclude this case in the
hypothesis of the theorem. (In that case, however, we can prove the same theorem
with c = 2 + log(1/ε), which results in a worse lower bound.) Thus we may assume
that for sufficiently large t,

3 + ε

2 + 2ε
logg n

′ > (1 + δ)
logn′

log k(n′)
.

Using the third niceness property of k(x), for sufficiently large t,

(1 + δ)
logn′

log k(n′)
>

logn

log k(n)
= logk(n) n.

Thus, equations (4.3) and (4.4) are true, and all of the constraints are satisfied for
large enough t.

In the preceding theorem, we make some additional assumptions about k(n) be-
yond niceness to show that equation (4.4) holds. If we are willing to settle for a
slightly worse lower bound, we can prove a similar result for all nice approximation
functions k(n). Alternatively, we can make the assumption that ε ≤ 1/4. The proof
for each case is nearly identical to the proof of Theorem 4.8 except we use the fact
that the ratio log k(n′)/ log dk(n′)e is bounded below by log 2/ log 3 ≈ 0.6309 since
k(n) ≥ 2 for all n.

Corollary 4.9. Let k(n) be a nice approximation factor. Then for all oracles
X, no polynomial-time function can approximate ω(G) within a factor of k(n) using
blog logk(n) n− cc or fewer queries to X unless P = NP, where c = 2 + log(1/ε).

Corollary 4.10. Let k(n) be a nice approximation factor. If ε ≤ 1/4, then
for all oracles X, no polynomial-time function can approximate ω(G) within a factor
of k(n) using blog logk(n) n − cc or fewer queries to X unless P = NP, where c =
1 + log(1/ε).

5. Approximating the chromatic number. The results that we have stated
so far also hold for many other NP-optimization problems. For any NP-optimization
problem where the solutions range from 1 to n (or even na), the upper bound on the
number of queries needed to approximate the problem can be easily derived from the
techniques in section 3. To show that the lower bounds hold, we need a reduction

ON BOUNDED QUERIES AND APPROXIMATION 199

from SAT to the new problem similar to the one for Clique in Lemma 2.2. Recently,
Lund and Yannakakis have discovered such reductions for Graph Coloring and some
related problems [27]. To repeat the proof, special attention must be given to any
differences that may arise between minimization and maximization (see section 7).
Thus we could obtain results analogous to the ones in Theorem 4.8 for the problem
of approximating the chromatic number of a graph.

In this section, we take an alternative approach and prove the lower bounds
using an approximation-preserving reduction from the maximum-clique-size problem
to the chromatic number of a graph [27]. However, this reduction increases the size
of the graphs, so the proof does not produce the best lower bounds. This approach
can be extended to most of the problems which Lund and Yannakakis show to have
approximability properties similar to that of Graph Coloring. We can show that
Clique Partition, Clique Cover and Biclique Cover have similar lower bounds. This
follows from approximation preserving reductions due to Simon [30] for Clique Cover
and Biclique Cover. These reductions preserve the approximation ratio within 1 + ε
for any ε > 0 where the new problems have size nO(1/ε). On the other hand, we
have not been able to obtain a similar result for Fractional Chromatic Number. The
reason is that the reduction there only preserves the approximation ratio with a logn
multiplicative factor.

In the following, let α(G) and χ(G) denote, respectively, the size of the largest
independent set and the chromatic number of a graph G. The next lemma is an
application of the results of Lund and Yannakakis.

Lemma 5.1. There exists a polynomial-time transformation T (G) such that for
all graphs G with n vertices and for all primes p with n ≤ p ≤ 2n, H = T (G) has the
property that

p3n2

α(G)
≤ χ(H) ≤ p3n2(1 + 1/n)

α(G)
.

Furthermore, |H| = n2 · p5 ≤ 32 · n7.
Proof. By Proposition 4.12 in the appendix of Lund and Yannakakis [27], there

exists a polynomial-time transformation T ′(G, p, r) such that if G is a graph, p is a
prime, r is a number, p2 ≥ r ≥ α(G), p ≥ n, and H = T ′(G, p, r), then

p3 · r

α(G)
≤ χ(H) ≤ p3 ·

⌈
r

α(G)

⌉
.

Given a graph G on n vertices, we define T as follows. Let r = n2 and find a prime
p such that n ≤ p ≤ 2n. (Such primes exist by Bertrand’s theorem and can be
found easily since the length of the input is n not log n.) Let T (G) = T ′(G, p, r). If
H = T (G), then

p3 · n2

α(G)
≤ χ(H) ≤ p3 ·

⌈
n2

α(G)

⌉
< p3 · n

2(1 + 1/n)

α(G)
.

The following theorem shows that we can derive a lower bound on the complexity
of approximating the chromatic number of a graph using the lemma above.

2Proposition 4.1 as stated by Lund and Yannakakis requires that p > r, but the proofs show that
in fact p2 > r and p ≥ n are sufficient. We use this proposition instead of their main theorem because
it deals with general graphs instead of the special graphs produced by the reduction in Lemma 2.2.

200 R. CHANG, W. I. GASARCH, AND C. LUND

Theorem 5.2. Let k(n) be a nice approximation factor such that for large n,
k(n8) < n/2. Then for all oracles X, no polynomial-time function can approximate
χ(G) within a factor of k(n) using blog logk(n) n − cc or fewer queries to X unless
P = NP, where c = 6 + log(1/ε).

Proof. We reduce approximating the clique size of a graph Q to approximating
the chromatic number of a graph H. If χ(H) can be approximated using too few
queries, then the lower bound on approximating ω(Q) from Corollary 4.9 would be
violated and we can conclude that P = NP.

We are given a nice approximation factor k(n). Suppose that some polynomial-
time algorithmA(G) approximates χ(G) within a factor of k(n) using blog logk(n) n−cc
queries to X for all graphs G with n vertices. Let k′(n) = k(n8). It is simple to check
that 2k′(n) is also a nice approximation factor.

Now, given any graph Q with n vertices, we approximate ω(Q) within a factor of
2k′(n) as follows. Construct H ′ = T (Q′) using Lemma 5.1, where Q′ is the comple-
ment of Q. Thus we know that α(Q′) = ω(Q) and |H ′| ≤ 32·n7. Now we construct the
graph H by adding dummy vertices to H ′ so that |H| = n8 = N and χ(H) = χ(H ′).
Finally, we use the algorithm A to compute an approximation of χ(H) within a factor
of k(N). This uses no more than

blog logk(N)N − 6− log(1/ε)c = blog log n− log log k(n8)− 3− log(1/ε)c

queries to X. Since A(H) is a factor-k(N) approximation, we know that

χ(H) ≤ A(H) ≤ k(N)χ(H).

From Lemma 5.1, we also know that

p3n2

α(Q′)
≤ χ(H ′) <

p3n2(1 + 1/n)

α(Q′)
.

Since α(Q′) = ω(Q) and χ(H) = χ(H ′), we obtain

ω(Q)

k(N)(1 + 1/n)
≤ p3n2

A(H)
≤ ω(Q).

Thus the value p3n2/A(H) approximates ω(Q) within a factor of

k(N)

(
1 +

1

n

)
≤ 2k(n8) = 2k′(n).

Since 2k′(n) is a nice approximation factor, by Corollary 4.9, approximating ω(Q)
within factor 2k′(n) has a lower bound of⌊

log log2k′(n) n− 2− log

(
1

ε

)⌋
=

⌊
log log n− log log 2k(n8)− 2− log

(
1

ε

)⌋
.

Finally, since (log log k(n8))+1 > log((log k(n8))+1), computing A(H) used no more
than blog log2k′(n) n − 2 − log(1/ε)c queries to X. Thus if such an algorithm exists,
P = NP.

Theorem 5.2 decreases the lower bound of Corollary 4.9 by four queries. This
decrease is due in part to the fact that |H| ≈ |Q|7. Thus a more efficient reduction
from clique size to chromatic number would yield a tighter lower bound. Also, for
specific approximation factors, especially where the relationship between k(n) and
k(n7) is explicit, we can obtain slightly better lower bounds by reproducing the proof
of Theorem 4.8.

ON BOUNDED QUERIES AND APPROXIMATION 201

6. The value of ε. The lower-bound results in the preceding sections depend
on the value of the constant ε, where 0 < ε ≤ 1. Recall that this is the same ε used
by Arora et al. to show that no polynomial-time algorithm can approximate ω(G)
within a factor of nε unless P = NP. Note that a larger value of ε indicates a better
nonapproximability result which in turn provides tighter upper and lower bounds in
the results of previous sections. Also, recall that for bounded query classes, even an
improvement of one query is significant.

Currently, the exact value of ε is not known. However, by weakening the assump-
tion that P 6= NP to BPP 6= NP, Bellare et al. [8] have shown that no polynomial-time
algorithm can approximate ω(G) within a factor of n1/30−o(1). A further improvement
was made by Bellare and Sudan [9], who showed that no polynomial-time algorithm
can approximate ω(G) within a factor of n1/5−o(1) unless NP = ZPP. In this section,
we use these results to obtain explicit lower bounds on the number of queries needed
to approximate ω(G) under the stronger assumption that RP 6= NP.

To prove these lower bound results, we need to adapt the proof techniques of the
previous section to work with randomized functions instead of deterministic functions.
A näıve approach would use a straightforward modification of Lemma 2.2 to produce
a randomized reduction f from SAT to Clique Size such that

F ∈ SAT =⇒ Probz[ω(f(F, z)) = tb] = 1,

F 6∈ SAT =⇒ Probz[ω(f(F, z)) < ts] ≥ 1− δ.

The difficulty with this approach is that the randomized version of Lemma 4.3 will
use this randomized reduction polynomially many times. Thus when we show that
RP = NP if the lower bounds are violated, we have to be very careful with the value
of δ to make certain that the success probability of the overall procedure remains
high enough. Such detailed analysis is possible using the techniques developed by
Rohatgi [28]. However, the analysis can be made much simpler by observing that
the randomized reduction from SAT to Clique Size can be achieved with “uniform”
probability—that is, the same random string z can be used to correctly reduce any
instance of SAT of a certain length. In the following, let |F | denote the length of the
encoding of the Boolean formula F .

Lemma 6.1. There exist constants s, b, and d with 0 < s < b < d, polynomials
p(·) and q(·), and a deterministic polynomial-time function f such that

(∀z ≤ p(t))(∀F, |F | = t)[F ∈ SAT =⇒ ω(f(F, z)) = tb] and

Probz≤p(t)[(∀F, |F | = t)[F 6∈ SAT =⇒ ω(f(F, z)) < ts]] ≥ 1− 2−q(t),

where for each Boolean formula F , |F | = t, and each random string z ≤ p(t), f(F, z)
produces a graph with td vertices.

Proof sketch. This reduction is implicit in the work of Zuckerman [34]; we include
a proof sketch for completeness. In this proof, the reduction f constructs a graph G
from the formula F and a random string z. The random string z is used to choose
a disperser graph H which allows f to amplify probability bounds. Choosing this
disperser is the only random step used by f . If the randomly chosen H is indeed
a disperser, then the same H can be used to reduce any formula F with t variables
to a graph G. Hence the success probability of the reduction is independent of the
particular formula F .

The starting point of the proof is not the deterministic reduction in Lemma 2.2
but the probabilistically checkable proof for SAT. As reported by Arora et al., there is

202 R. CHANG, W. I. GASARCH, AND C. LUND

a probabilistically checkable proof for SAT where the verifier V uses c1 logn random
bits and looks at c2 bits of the proof such that

F ∈ SAT =⇒ ∃π, ∀z ∈ {0, 1}c1 log n, V π(F, z) accepts,

F 6∈ SAT =⇒ ∀π, Probz∈{0,1}c1 logn [V π(F, z) accepts] <
1

2
.

From the verifier V and the input F with t variables, we can use the construction of
Feige et al. [18] to construct a graph G such that

F ∈ SAT =⇒ ω(G) = tc1 ,

F 6∈ SAT =⇒ ω(G) <
1

2
· tc1 .

In this construction, each vertex of G represents one computation path of the verifier
V (for every possible random string and every sequence of answer bits from the proof).
An edge is added between two vertices if some proof π contains the answer bits which
agree with both computation paths.

The construction above gives an approximation “gap” of only 1/2. To obtain
better results, we have to decrease the probability that V accepts an incorrect proof
when F 6∈ SAT without using too many additional random bits. This decrease can
be achieved deterministically [15], which leads to Lemma 2.2, but then we lose track
of the values of b, s, and d. Alternatively, as Zuckerman [34] pointed out, we can
decrease the verifier’s error randomly.

The key idea to Zuckerman’s construction is to use special graphs called dispersers
which were first introduced by Sipser [31]. For our purposes, a disperser may be
defined as a bipartite graph with tc3 vertices on the left and tc1 vertices on the right
such that each left vertex has degree D = c3 log t+2 and every set of tc1 left vertices is
connected to at least tc1/2 right vertices. The value of the constant c3 will be chosen
later. By a theorem which Zuckerman attributes to Sipser [34, Theorem 3], such a
disperser can be randomly generated with probability 1 − 2−t

c1
by choosing the D

neighbors of each left vertex randomly.
Suppose that we have a disperser H. We use H to construct a new verifier V ′.

We interpret each left vertex of H as a random string for V ′ and each right vertex of
H as a random string for V . V ′ simulates V by randomly choosing a left vertex of H.
This uses c3 log t random bits. Let z1, . . . , zD be the right vertices connected to the
chosen left vertex. V ′ simulates V D times using each of z1, . . . , zD as the random
string for V . If every simulation of V accepts the proof π, then V ′ accepts the proof
π. The complete simulation uses c3 log t random bits and looks at Dc2 bits of the
proof.

Clearly, if F ∈ SAT, then V ′ will always accept. In fact, V ′ will accept even when
H does not have the desired properties. Conversely, consider the case when F 6∈ SAT.
We want to show that V ′ accepts with probability less than tc1/tc3 . Therefore, suppose
that V ′ accepted with probability ≥ tc1/tc3 . Then tc1 of the left vertices cause V ′

to accept. Thus all the right vertices connected to these left vertices must cause V
to accept. Since H is a disperser with the properties mentioned above, at least tc1/2
right vertices must cause V to accept. This contradicts our assumption about the
error probability of V . Thus when F 6∈ SAT, V ′ accepts a proof π with probability
less than tc1/tc3 .

Now we construct a graph G from V ′ as described above. Since V ′ uses c3 log t
random bits and looks at Dc2 bits of the proof, the graph G will have n = 2c3 log t+Dc2

ON BOUNDED QUERIES AND APPROXIMATION 203

vertices. When F ∈ SAT, G has a “big” clique of size tc3 . When F 6∈ SAT, G has a
“small” clique of size no more than tc1 . The ratio of the size of the “big” clique to
the size of the “small” clique expressed in terms of n is

tc3−c1 = n(c3−c1) log t/(c3 log t+Dc2).

Substituting c3 log t+ 2 for D, we derive

ε =
b− s
d

=
1− c1/c3

1 + c2 + 2c2/(c3 log t)
.

Thus for all δ > 0, we can have ε > (1 + c2)−1 − δ by choosing c3 to be large enough.
Recall that c2 is the number of bits in the proof that the verifier reads. This calculation
shows the effect of c2 on the value of ε. Finally, observe that the only random step
used in the reduction is choosing the disperser H.

The results of Bellare et al. [8] can be used to show that in Lemma 6.1 the ratio
(b− s)/d = 1/30− o(1) because they produce a verifier for SAT that uses only 29 bits
of the proof and follow Zuckerman’s construction as described above. However, we are
unable to exploit the results of Bellare and Sudan [9] because they use randomness for
sampling—not just to generate pseudorandom bits. Nevertheless, we can give explicit
lower bounds on the query complexity of approximating ω(G).

Theorem 6.2. Let k(n) be a nice approximation factor. Then for all oracles
X, no polynomial-time function can approximate ω(G) within a factor of k(n) using
blog logk(n) n− 6c or fewer queries to X unless RP = NP.

Proof sketch. To prove this theorem, we simply follow the proof of Theorem 4.8
except that we use ε = 1/31 and Lemma 6.1 instead of Lemma 2.2 to reduce SAT
to Clique Size. Since the success probability of the reduction is independent of the
formula F , repeated use of the reduction does not decrease the success probability of
the overall procedure. Again, the only random step in the entire procedure is randomly
choosing a disperser graph H. This is also the case when we use the tree-pruning
procedure in Lemma 4.3 to look for a satisfying assignment for the given Boolean
formula. Since our procedure accepts a formula only when a satisfying assignment
is found, it will never accept an unsatisfiable formula. The procedure may reject
a satisfiable formula if the graph H turns out not to be a disperser. However, the
probability of this happening is small. Thus the overall procedure is an RP algorithm
for SAT.

Finally, note that in equation (4.2) of Theorem 4.8, we need to show that

2

ε
logg

g

g − 1
+ logk(n) n <

2

ε
logg t

b−s.

In this proof, the value of ε is known, so we can rewrite the 2/ε as

2

ε
=

2

(1 + ε)

(1 + ε)

ε
= 1.9375 · 1 + ε

ε
= (0.1375 + 1.8) · b− s+ d

b− s .

Then, as before,

2

ε
logg

g

g − 1
< 0.1375 · logg n

′

because g/(g − 1) ≤ 2. Also, we do not need any additional assumptions on k(n) to
show that

1.8 · logg n
′ = 1.8 · logn′

log k(n′)
· log k(n′)

log dk(n′)e > (1 + δ)
logn′

log k(n′)

204 R. CHANG, W. I. GASARCH, AND C. LUND

because log k(n′)/ log dk(n′)e ≥ log 2/ log 3 ≈ 0.6309. Hence 1.8 · log k(n′)/ log dk(n′)e
> 1.1 and we can let δ = 0.1. Thus the assumption that k(n) is nice and c =
1 + log 31 < 6 suffices.

Using the proof techniques described above, we can also extend our results to
lower bounds for approximating the chromatic number.

Corollary 6.3. Let k(n) be a nice approximation factor such that for large n,
k(n) < n/2. Then for all oracles X, no polynomial-time function can approximate
χ(G) within a factor of k(n) using blog logk(n) n − 10c or fewer queries to X unless
RP = NP.

7. Lower bounds for set cover. An instance of the Set Cover problem is a
set system S = (n;S1, . . . , Sm) such that for all i, Si ⊆ {1, . . . , n}. We are asked to
find the size of the smallest collection of Si which covers {1, . . . , n}. We denote the
size of the minimum cover of S as SETCOVER(S).

As we have discussed in the section on upper bounds, the Set Cover problem
has a different complexity compared to Clique or Chromatic Number because there
exist polynomial-time algorithms that approximate the size of the minimum set cover
within a factor of lnn+ 1. In this section, we derive a lower bound on the complexity
of approximating the size of the minimum set covering in terms of the number of
queries to SAT.

One difficulty arises when we apply our techniques to minimization problems.
To illustrate this, consider the construction of the graph H in section 4.2. We use
the reduction from SAT to Clique to construct a graph G1 from a formula F1. This
reduction has the special property that if F1 ∈ SAT, then ω(G1) = tb. This equality
is very important because it allows us to put only two copies of G2 in H. If we only
knew that ω(G1) ≥ tb, then ω(G1) could be as large as m. Thus to ensure a large
enough gap between the case where F1 ∈ SAT and F2 6∈ SAT and the case where
F1, F2 ∈ SAT, we would have to use 2m/tb copies of G2. This would make the graph
H too big and produce very bad lower bounds in the general theorem.

If equality is not possible, then we can settle for a good upper bound. For example,
if the reduction from SAT to Clique guaranteed that F1 ∈ SAT =⇒ tb ≤ ω(G1) ≤ 3tb,
then we only need to put six copies of G2 in H. In the general case, we would obtain
a lower bound of log log3k(n) n− c.

The reduction from SAT to Set Cover in [27] does not give an upper bound on
the size of the minimum set cover when the original formula is unsatisfiable. Thus we
must use the following lemma and theorem.

Lemma 7.1. There exists a constant CONST such that for all l,m ≥ CONST where
l ≤ m and log lnm < 0.09l, there exist a set B and subsets C1, C2, . . . , Cm ⊆ B such
that the following hold:

1. For any sequence of indices 1 ≤ i1 < i2 < · · · < il ≤ m, no collection
Di1 , Di2 , . . . , Dil covers B where Dij is either Cij or the complement of Cij .

2. C1, . . . , C1.1l do cover B.
3. |B| = (l + l ln(m) + 2)2l.

Furthermore, there exists a probabilistic Turing machine which on input l,m (in
binary) produces such a set system with probability 2/3.

Proof. Let B = {1, . . . , (l + l ln(m) + 2)2l}. Let the subsets C1, . . . , Cm be a
collection of subsets of B chosen randomly and independently—i.e., for each x ∈ B
and each Ci, x ∈ Ci with probability one half. We show that with probability over 2/3
this collection suffices. Fix Di1 , Di2 , . . . , Dil as in the statement of the lemma. The
probability that B = Di1 ∪ · · · ∪Dil is (1− (1/2)l)|B|. The number of different Dij ’s

ON BOUNDED QUERIES AND APPROXIMATION 205

is at most 2l(ml). Thus the probability that some collection of Di1 , . . . , Dil covers B
is bounded by

2l
(
m

l

)(
1−

(
1

2

)l)|B|
≤ el+l ln(m)−|B|/2l <

1

6
.

Hence the probability that item 1 occurs is at least 5/6.
Second, note that the probability that the first 1.1l sets cover B is(

1−
(

1

2

)1.1l
)|B|

≥ e−2(l+l ln(m)+2)2l/21.1l

= e−2(l+l ln(m)+2)2−0.1l

,

using the fact that (1−x) ≥ e−2x for x ∈ [0, 1/2]. We need this quantity to be greater
than 5/6 = e−c, where c = ln(6/5) > 0. Hence we need

2(l + l ln(m) + 2)2−0.1l<
5

6
,

12

5
(l + l ln(m) + 2)< 20.1l,

log
12

5
+ log l + log(ln(m) + 2)< 0.1l.

Since log lnm < 0.09l, this holds for large enough l and m. Therefore, the desired
constant CONST can be found. Hence the probability of satisfying item 2 is at least 5/6.
Since the probability of satisfying item 1 is ≥ 5/6 and the probability of satisfying
item 2 is ≥ 5/6, the probability of satisfying both is at least 2/3.

Theorem 7.2. Given a formula ϕ, let Sϕ be the instance of Set Cover described
below. Let N be the size of Sϕ. Then there exists an integer K (depending only on
the size of ϕ) such that

ϕ ∈ SAT =⇒ SETCOVER(Sϕ) = K,

ϕ 6∈ SAT =⇒ 0.99K

2
logN ≤ SETCOVER(Sϕ) ≤ 1.1K

2
logN,

where the last property holds with probability at least 2/3. Furthermore, the reduction
can be applied to any number of formulas ϕ of the same size, and with probability 2/3,
all the instances of Set Cover obtained will have the property above.

Proof. The proof of this theorem is a modification of the construction by Lund and
Yannakakis [27]. In the rest of this proof, we assume that the reader is familiar with
the notation and the proof in [27]. Given a formula ϕ, we carry out the construction in
section 3.1 of [27] except that we use the sets B,C1, . . . , Cm as specified in Lemma 7.1
as our building blocks. Using the ideas in [27], we obtain the following:

1. ϕ ∈ SAT implies SETCOVER(Sϕ) = K, where K = |Q1|+ |Q2|.
2. ϕ 6∈ SAT implies SETCOVER(Sϕ) ≥ l

2 (1−o(1))K. Moreover, SETCOVER(Sϕ) ≤
1.1l(|Q2|) since the first 1.1l answers for every query in Q2 cover all the points by
Lemma 7.1. Then since |Q1| = |Q2|,

l

2
(1− o(1))K ≤ SETCOVER(Sϕ) ≤ 1.1l

2
K.

Now the theorem follows since l can be chosen such that l = (1 − ε) logN for any
ε > 0. Also, note that m = 2O(l) and thus we can apply Lemma 7.1.

206 R. CHANG, W. I. GASARCH, AND C. LUND

Furthermore, note that once we have chosen one set system from Lemma 7.1, we
can use it in any number of reductions involving instances of the same size. Thus if
the set system has the required property, then all the reduced instances will have the
required properties.

The consequence of this theorem is that there exists a randomized reduction from
SAT to Set Cover which runs in time O(npolylog n). This reduction allows us to
duplicate the construction of Theorem 4.8 for Set Cover and obtain the following
lower bound.

Theorem 7.3. Let k : N → R be a function such that for all n large enough,
2 ≤ k(n) < n; m > n implies k(m) ≥ k(n); and ∀δ > 0, m > n implies that

(1 + δ)
log logm

log k(m)
>

log log n

log k(n)
.

Let S be an instance of Set Cover. Then for all oracles X, no polynomial-time function
can approximate the size of the minimum set cover within a factor of k(n) using
log logk(n) lnn− 1 or fewer queries to X unless NP ⊆ RTIME[npolylog n].

Proof. This proof is analogous to the proof of Theorem 6.2. We start with the
promise problem Pr with r to be chosen later. Since our construction is in time
O(npolylog n), we need a different lower bound on the complexity of Pr. Using the
proof technique of Lemma 4.3, one can show that for r = O(polylogn), if some
DTIME[npolylog n] machine solves Pr using fewer than dlog(r + 1)e queries to any
oracle X, then NP ⊆ DTIME[npolylog n]. As in Theorem 6.2, it is important that in
Theorem 7.2 the randomized reduction from SAT to Set Cover can be used repeatedly
without decreasing the success probability of the overall procedure.

Now let F1, . . . , Fr be a sequence of Boolean formulas with t variables each which
satisfies the promise condition of the promise problem Pr. We use Theorem 7.2 to
construct r instances of Set Cover S1, . . . ,Sr. Let m be the size of the underlying
set of Si. Since the construction takes time O(npolylog n), m is O(tpolylog t). We know
with probability 2/3 that for each i,

Fi ∈ SAT =⇒ SETCOVER(Si) = K,

Fi 6∈ SAT =⇒ 0.99K

2
logm ≤ SETCOVER(Si) ≤

1.1K

2
logm.

We will now restrict our attention to this case. We combine the r instances of
Set Cover into a single instance of Set Cover T :

T = gr−1 ⊗ S1 ⊕ gr−2 ⊗ S2 ⊕ · · · ⊕ g ⊗ Sr−1 ⊕ Sr.

Let n be the size of the underlying set for T . We define ⊕ and ⊗ so that

SETCOVER(S1 ⊕ S2) = SETCOVER(S1) + SETCOVER(S2),

and for any positive integer a,

SETCOVER(a⊗ S) = a · SETCOVER(S).

This is accomplished as follows. Let S1 = (n1;S1,1, . . . , S1,p) and S2 = (n2;S2,1, . . . ,
S2,q) be two instances of Set Cover. We define S1 ⊕ S2 to be

(n1 + n2;S1,1, . . . , S1,p, S
′
2,1, . . . , S

′
2,q),

ON BOUNDED QUERIES AND APPROXIMATION 207

where S′2,i = {x + n1 | x ∈ S2,i}. Then we can define a ⊗ S simply as S ⊕ · · · ⊕ S
repeated a times.

As in the proof of Theorem 4.8, the value of g in the construction of T will be
chosen later. Note that we construct T using gr−1 copies of S1 instead of gr−1 copies
of Sr. This is “backwards” compared to the construction H in Theorem 4.8. We
need to make this change because SETCOVER(Si) is small when Fi ∈ SAT and large
when Fi 6∈ SAT (again, backwards compared to Clique). Then a good approximation
of SETCOVER(T) will solve the promise problem Pr. However, here the approximation
must be within a factor of 0.9g instead of g because we only know that SETCOVER(Si)
is in the interval between (0.99/2)K logm and (1.1/2)K logm when Fi 6∈ SAT.

In this construction, when there are exactly z satisfiable formulas in F1, . . . , Fr,
we have the following bounds:

0.99

2
vr−zK logm ≤ SETCOVER(T) ≤ vrK +

1.1

2
vr−zK logm.

Thus we can obtain a lower bound for approximating the size of the minimum set
cover (assuming NP 6⊆ RTIME[npolylog n]) if we show that there exist r and g which
satisfy the following constraints. Recall that m and n are the sizes of the underlying
sets for S and T , respectively. The value of m is expressible in terms of t. To make our
notation simpler, we express g and r in terms of m instead of t or drop the argument
altogether.

Constraint 1. g(m)νr < (1.1/2) logm.

Constraint 2. k(n) ≤ 0.9g(m).

Constraint 3. blog logk(n) lnn− 1c < dlog(r(m) + 1)e.
For this proof, we let n′ = (1.1/2)m logm and choose g and r as follows:

• g(m) = dk(n′)/0.9e.
• r = blogg(((1.1/2) logm) · (g − 1)/g)c.

As in the proof of Theorem 4.8, our choice of r implies that Constraint 1 holds and that
n′ > n. Since k(n) is nondecreasing almost everywhere, it follows that k(n) ≤ 0.9g(m)
and that Constraint 2 also holds.

Finally, we show that Constraint 3 holds. It suffices to show that the following
equations hold. (They are analogous to equations (4.3) and (4.4) in Theorem 4.8.)

2 · logg
g

g − 1
< 0.25 · logg

(
1.1

2
logm

)
,(7.1)

logk(n) lnn < 1.75 · logg

(
1.1

2
logm

)
.(7.2)

Equation (7.1) is satisfied for m large since g ≥ 2, g/(g − 1) ≤ 2. Equation (7.2) is
proved as follows. We start with the “niceness” assumptions on k(n) and obtain

logk(n) lnn ≤ log log n

log k(n)
< 1.05 · log log n′

log k(n′)
.

Recall that n′ = (1.1/2)m logm. Then for large m, (logn′)1.05 < (logm)1.1. Thus we
have

1.05 · log log n′

log k(n′)
< 1.1 · log logm

log k(n′)
.

208 R. CHANG, W. I. GASARCH, AND C. LUND

Then using the fact that for x ≥ 2, log 3 · log x/ logdx/0.9e > 1, we have

1.1 · log logm

log k(n′)
< 1.1 · log 3 · log logm

log k(n′)
· log k(n′)

logdk(n′)/0.9e = 1.1 · log 3 · log logm

log g
.

Now log 3 ≈ 1.584963 . . . , so 1.1 · log 3 < 1.75− 0.005. Also, we know that for m large
enough, 0.005 log logm > 1.75 · log(2/1.1). Therefore,

1.1 · log 3 · log logm

log g
<

1.75 · log logm− 0.005 · log logm

log g
< 1.75 · logg

(
1.1

2
logm

)
.

Therefore, equation (7.2) holds and we have completed the proof.

8. Updates. Since the original submission of this paper, additional connections
between bounded query classes and NP-approximation problems have been discov-
ered. Chang [11] showed that approximating clique size is actually complete for
certain bounded query classes. This completeness produces reductions between NP-
approximation problems (e.g., from approximating the chromatic number to approx-
imating clique size). In addition, bounded query classes can also be used to measure
the difficulty of finding the vertices of an approximate clique, not just its size [12].
Also, Crescenzi et al. [16] have shown that finding the vertices of the largest clique
cannot be reduced to finding the vertices of an approximate clique unless the polyno-
mial hierarchy collapses. Bounded query classes have also been used to measure the
hardness of optimization problems [17] and to compare various kinds of approximation
preserving reductions [16].

Acknowledgments. The authors would like to thank Richard Beigel and Suresh
Chari for many helpful discussions. Thanks also go to Samir Khuller, Martin Kummer,
and Frank Stephan for proofreading drafts of this paper.

REFERENCES

[1] A. Amir, R. Beigel, and W. I. Gasarch, Some connections between bounded query classes
and non-uniform complexity, in Proc. 5th Structure in Complexity Theory Conference,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 232–243.

[2] A. Amir and W. I. Gasarch, Polynomial terse sets, Inform. and Comput., 77 (1988), pp. 37–
56.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, in Proc. IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–23.

[4] S. Arora and S. Safra, Probabilistic checking of proofs, in Proc. IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 2–13.

[5] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover
interactive protocols, Comput. Complexity, 1 (1991), pp. 3–40.

[6] R. Beigel, A structural theorem that depends quantitatively on the complexity of SAT, in
Proc. 2nd Structure in Complexity Theory Conference, IEEE Computer Society Press, Los
Alamitos, CA, 1987, pp. 28–32.

[7] R. Beigel, Bounded queries to SAT and the Boolean hierarchy, Theoret. Comput. Sci., 84
(1991), pp. 199–223.

[8] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically check-
able proofs and applications to approximations, in Proc. ACM Symposium on Theory of
Computing, ACM, New York, 1993, pp. 294–304.

[9] M. Bellare and M. Sudan, Improved non-approximability results, in Proc. ACM Symposium
on Theory of Computing, ACM, New York, 1994, pp. 184–193.

[10] R. B. Boppana and M. M. Halldórsson, Approximating maximum independent sets by ex-
cluding subgraphs, BIT, 32 (1992), pp. 180–196.

ON BOUNDED QUERIES AND APPROXIMATION 209

[11] R. Chang, On the query complexity of clique size and maximum satisfiability, in Proc. 9th
Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 31–42; J. Comput. System Sci., to appear.

[12] R. Chang, Structural complexity column: A machine model for NP-approximation problems
and the revenge of the Boolean hierarchy, Bull. European Assoc. Theoret. Comput. Sci.,
54 (1994), pp. 166–182.

[13] R. Chang and J. Kadin, The Boolean hierarchy and the polynomial hierarchy: A closer
connection, SIAM J. Comput., 25 (1996), pp. 340–354.

[14] R. Chang, J. Kadin, and P. Rohatgi, On unique satisfiability and the threshold behavior of
randomized reductions, J. Comput. System Sci., 50 (1995), pp. 359–373.

[15] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proc. IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1989, pp. 14–19.

[16] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan, Structure in approximation classes,
in Proc. 1st Computing and Combinatorics Conference, Lecture Notes in Comput. Sci. 959,
Springer-Verlag, Berlin, 1995, pp. 539–548.

[17] P. Crescenzi and L. Trevisan, On approximation scheme preserving reducibility and its
applications, in Proc. 14th Conference on the Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Comput. Sci. 880, Springer-Verlag, Berlin,
1994, pp. 330–341.

[18] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique
is almost NP-complete, in Proc. IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 2–12.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[20] W. Gasarch, M. W. Krentel, and K. Rappoport, OptP-completeness as the normal behav-
ior of NP-complete problems, Math. Systems Theory, 28 (1995), pp. 487–514.

[21] A. Hoene and A. Nickelsen, Counting, selecting, sorting by query-bounded machines, in Proc.
10th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 665, Springer-Verlag, Berlin, 1993, pp. 196–205.

[22] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,
9 (1974), pp. 256–278.

[23] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM
J. Comput., 17 (1988), pp. 1263–1282.

[24] M. W. Krentel, The complexity of optimization problems, J. Comput. System Sci., 36 (1988),
pp. 490–509.

[25] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[26] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, in Proc. IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1990, pp. 2–10.

[27] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,
J. Assoc. Comput. Mach., 41 (1994), pp. 960–981.

[28] P. Rohatgi, Saving queries with randomness, J. Comput. System Sci., 50 (1995), pp. 476–492.
[29] A. Shamir, IP = PSPACE, in Proc. IEEE Symposium on Foundations of Computer Science,

IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 11–15.
[30] H. U. Simon, On approximate solutions for combinatorial optimization problems, SIAM J.

Discrete Math., 3 (1990), pp. 294–310.
[31] M. Sipser, Expanders, randomness, or time versus space, in Structure in Complexity Theory,

Lecture Notes in Comput. Sci. 223, Springer-Verlag, Berlin, 1986, pp. 325–329.
[32] K. Wagner, More complicated questions about maxima and minima and some closures of

NP, in Proc. 13th International Colloquium on Automata, Languages, and Programming,
Lecture Notes in Comput. Sci. 226, Springer-Verlag, Berlin, 1986, pp. 434–443.

[33] K. Wagner and G. Wechsung, On the Boolean closure of NP, in Proc. 1985 International
Conference on Fundamentals of Computation Theory, Lecture Notes in Comput. Sci. 199,
Springer-Verlag, Berlin, 1985, pp. 485–493.

[34] D. Zuckerman, NP-complete problems have a version that’s hard to approximate, in Proc. 8th
Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 305–312.

SPARSE DYNAMIC PROGRAMMING FOR EVOLUTIONARY-TREE
COMPARISON∗

MARTIN FARACH† AND MIKKEL THORUP‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 210–230, February 1997 012

Abstract. Constructing evolutionary trees for species sets is a fundamental problem in biology.
Unfortunately, there is no single agreed upon method for this task, and many methods are in use.
Current practice dictates that trees be constructed using different methods and that the resulting
trees should be compared for consensus. It has become necessary to automate this process as the
number of species under consideration has grown. We study one formalization of the problem: the
maximum agreement-subtree (MAST) problem.

The MAST problem is as follows: given a set A and two rooted trees T0 and T1 leaf-labeled by the
elements of A, find a maximum-cardinality subset B of A such that the topological restrictions of T0
and T1 to B are isomorphic. In this paper, we will show that this problem reduces to unary weighted
bipartite matching (UWBM) with an O(n1+o(1)) additive overhead. We also show that UWBM reduces
linearly to MAST. Thus our algorithm is optimal unless UWBM can be solved in near linear time. The
overall running time of our algorithm is O(n1.5 logn), improving on the previous best algorithm,

which runs in O(n2). We also derive an O(nc
√

logn)-time algorithm for the case of bounded degrees,
whereas the previously best algorithm runs in O(n2), as in the unbounded case.

Key words. sparse dynamic programming, computational biology, evolutionary trees

AMS subject classifications. 05C05, 05C85, 05C90, 68C25, 92B05

PII. S0097539794262422

1. Introduction. An evolutionary tree, or phylogeny, is a model of the evolu-
tionary history for a set of species. Constructing such trees from observations on a
set of living species is one of the fundamental tasks of computational biology. This
is because the evolutionary relation of species provides a great deal of information
about their biochemical machinery. For example, RNA’s secondary structure is most
accurately determined by selecting correlated mutations of a class of related species.

To construct a tree from a set of species, one must have a model of what makes
one tree better than another. Many criteria have been proposed, but in general,
these turn out to be NP-hard to optimize [15, 24]. There is also no consensus in
the biology community as to what makes a good tree. As is typically the case when
there is no really good solution to a problem, the number of solutions actually in use
is quite large. Within the biology literature, various heuristics have been proposed
(see, e.g., [8, 9, 11, 19, 22, 20]). More recently, a variety of solutions have been
examined rigorously [1, 6, 16]. Not surprisingly, these various methods do not always
give the same answer on the same inputs. Given that there is no “gold standard”
for constructing evolutionary trees, current practice dictates that several different
methods be applied to the data. The resulting trees may agree in some parts and

∗ Received by the editors January 27, 1994; accepted for publication (in revised form) April 26,
1995. A preliminary version of this paper appeared in Proc. 1994 Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994.

http://www.siam.org/journals/sicomp/26-1/26242.html
† DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), Rutgers Uni-

versity, Box 1179, Piscataway, NJ 08855 (farach@cs.rutgers.edu). The research of this author was
supported by DIMACS, a National Science Foundation Science and Technology Center, under NSF
contract STC-8809648.
‡ Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100

Copenhagen East, Denmark (mthorup@diku.dk). The research of this author was supported by the
Danish Technical Research Council, by the Danish Research Academy, and by DIMACS under NSF
contract STC-8809648. Most of the research in this paper was done while this author was visiting
DIMACS.

210

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 211

differ in others. In general, one is interested in finding the largest set of species on
which the trees agree [18]. In other settings, a particular method may be applied to
different data sets for the same set of species [13] or on a single data set which has
been permuted some number of times for statistical analysis [9]. The resulting trees
are then compared in order to arrive at some consensus. Many consensus techniques
have been proposed and are currently in use (see [5] for a review). One of the most
extensively studied consensus methods was defined by Finden and Gordon [10] as
follows.

Let A be a set of species. We will define an evolutionary tree T on A to be a
rooted tree with no degree-1 nodes such that the leaves of T are uniquely labeled with
the elements of A. In such a tree, the leaves represent the species under consideration,
and the internal nodes represent posited ancestors. Now suppose that we are given
two trees T0 and T1 which are evolutionary trees on the same species set A. If the two
trees differ, it is reasonable to ask for the “intersection” of the information contained
in the trees. By viewing the input trees as the outcomes of experiments performed
to discover the history of some species, we will typically have more confidence in
information given in the “intersection” than in information unique to each tree. But
what is the intersection of two evolutionary trees?

Finden and Gordon’s answer to this question involves the notion of a “topological
restriction” of an evolutionary tree to a subset of the species. Given an evolutionary
tree T on set A and given B ⊆ A, then the topological restriction of T to B, written
T |B, is the evolutionary tree on B such that B has the same history in T |B as it does
in T . More formally, first, given any rooted tree T , by a topological subtree of T , we
mean a rooted tree U with no degree-1 nodes, obtained from a normal subtree S of
T by replacing dipaths with single arcs. That is, U can be obtained from the subtree
S by repetition of the following operation: if a vertex v has only one child w, we may
delete (“jump”) v, making the original parent of v the parent of w. Note that the
topological subtree U is uniquely defined in terms of its leaf set. The full vertex set of
U is the closure of the leaf set under the least-common-ancestor operation in T . Now,
formally, T |B denotes the topological subtree of T whose leaves are the the leaves
of T with labels in B. This restriction operator immediately implies the following
similarity measure on trees.

Problem. The maximum agreement-subtree (MAST) problem.

Input. A pair (T0, T1) of evolutionary trees for some common set A of species.

Output. A maximum-cardinality subset B of A such that T0|B and T1|B have a

leaf-label preserving isomorphism.

Finden and Gordon [10] gave a heuristic method for computing the maximum agree-
ment subtree of two binary trees. However, their algorithm, which has an O(n5) run-
ning time, does not guarantee an optimal solution. In [17], Kubicka et al. presented

an O(n(1
2+ε) logn)-time algorithm for the binary MAST problem. Steel and Warnow [21]

gave the first polynomial algorithm, which we will refer to as SW. The SW algorithm
is a dynamic-programming approach which runs in O(n2)-time on bounded-degree
trees and in O(n4.5 logn) time on unbounded-degree trees. We showed in [7] that the
SW algorithm can be modified to yield an O(n2)-time algorithm for the unbounded
case.

Both the SW algorithm and our modification of it perform some computation—a
weighted bipartite matching—for each pair of nodes from the input trees. Hence this
approach cannot give a o(n2)-time algorithm for the MAST problem. We therefore
run into the dynamic-programming bottleneck which is endemic in computational
molecular biology. A wide variety of biocomputing problems, e.g., in the string-

212 MARTIN FARACH AND MIKKEL THORUP

edit-distance problem, RNA secondary structure, etc., have solutions which involve
dynamic programming. To avoid the too costly quadratic complexity of these algo-
rithms, researchers have either turned to heuristics (e.g., the BLAST program [2]) or
to the design of input-sensitive algorithms. Notable in the latter class is the algorithm
of Hunt and Szymanski [14]. This latter class of algorithms has the property that they
speed up various dynamic programs to almost linear time in the best case but have
at least quadratic-time worst cases.

In this paper, we use sparsity conditions to break the dynamic-programming
bottleneck and have subquadratic running times in the worst case. In fact, we
show tight bounds. Our main result is an algorithm which solves MAST within the
same asymptotic time bound as that for solving unary weighted bipartite matching
(UWBM), i.e., a weighted bipartite matching where the size of the input is measured
as the sum of the weights of all edges—so unweighted bipartite matching is a spe-
cial case (see [12] for definitions of matchings, etc.). More precisely, we show that
time(MAST(n)) = O(n1+o(1) + time(UWBM(n))).1 Using the best known algorithm [12]
for weighted bipartite matching, this gives us an O(n1.5 logn)-time algorithm for
the MAST problem, thus breaking the Ω(n2) bottleneck. If the degrees are bounded,

our algorithm runs in O(nc
√

log n) = O(n1+o(1)) time, beating the previous O(n2)
bound [21] for this case.

While UWBM does not often appear as a natural upper bound, and typically one
sees reference to either unweighted or fully weighted bipartite matching instead, we
show that the unary weighting is inherent in bounding the complexity of MAST by
observing that, in fact, time(MAST(n)) = Ω(time(UWBM(n))). Thus, for all intents
and purposes, our reduction is optimal since getting the complexity of UWBM, or just
bipartite matching, down anywhere near O(n1+o(1)) is a long-standing open problem.

The fact that our algorithm works by sparsity means that we identify a small set
of significant computations in the dynamic program. The exact size of this set de-
pends on the running time of the bipartite-matching algorithm used; thus we carefully
balance the time spent at a single node pair in the dynamic program with the number
of such node pairs that we evaluate. The key to this balancing is the parameterized
core trees which we introduce in this paper. The core tree is a generalization of the
separator of a tree, which will turn out to be useful in guiding our computation.

Finally, we note that two variants of the MAST problem have been investigated.
First, the unrooted version was the primary focus of the Steel and Warnow paper
[21]. The above cited complexities for their algorithms (O(n4.5 logn) for unbounded
degrees and O(n2) for bounded degrees) apply to the unrooted case. However, they
noticed that the rooted case reduces to the unrooted case and hence that these com-
plexities carry over to the rooted case. In [7], our main result was to improve the

complexity of the unbounded unrooted case to O(n2c
√

log n). We believe that the
unrooted case is much harder than the rooted case and know of no O(n2) algorithm
for this problem. Another variant is that of considering three or more trees. Amir
and Keselman [3] showed that the MAST problem on three or more trees is NP-hard
for trees of unbounded degree, while polynomial if just one of the trees has bounded
degree. While the constant-degree restriction may be suitable in some settings, the
unbounded-degree algorithm is important since there are many tree-construction tech-
niques available which place no restrictions on the degree of the trees produced [22].

Another problem related to our MAST problem is the tree-homeomorphism prob-

1 This complexity is understood to be modulo a class of “well-behaved” functions explicitly defined
in Theorem 4.6.

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 213

lem. In [4], Chung presents an O(n2.5) algorithm for the rooted-tree-homeomorphism
problem of deciding whether one rooted tree (no leaf labels) is a topological subtree
of another. This algorithm is quite similar to the SW algorithm. Unfortunately, none
of our optimizations to the SW algorithm apply to the tree-homeomorphism prob-
lem since they all rely on the restriction that the agreement isomorphism should be
leaf-label preserving.

In section 2, we show the reduction from UWBM to MAST. In section 3, we give
some basic definitions and an overview of our algorithm. In section 4, we prove the
correctness of the algorithm and give a general sketch of its time complexity. In
section 5, we reduce the number of comparisons in the dynamic program and finish
the time analysis for the bounded-degree case. In section 6, we describe how to reduce
the work of the matchings and finish the time analysis for the unbounded-degree case.

2. Lower bound. We show a reduction from a size-n UWBM problem to an O(n)-
leaf MAST problem. We define the size of a UWBM instance to be the sum of the edge
weights; hence an n-size UWBM instance can code a WBM instance with total integer
edge weight n and up to O(n) edges and O(n) nodes. Using the the best algorithm
known [12] for WBM, such a problem can be solved in O(n1.5 logn).

We now show a reduction from UWBM to MAST. Given a connected weighted bi-
partite graph G = (U ∪ V,E,W : E → IN) such that

∑
e∈EW (e) = n, construct

evolutionary trees TU and TV with O(n) labels as follows. For each X ∈ {U, V },
set rX to be the root of TX , and for each x ∈ X, create a child cx of rX . For
each e = {u, v} ∈ E, add W (e) leaf children to cu in TU and label them 〈x, y, i〉,
1 ≤ i ≤W (e). Add leaf children with the same labels to cv in TV . Finally, pick n+ 2
new labels and build a star tree S on the labels. Attach the root of one copy of S
to the root of TX and attach the root of another copy of S to the root of TY . The
size of the star S guarantees that any solution to MAST will map the roots to each
other. Hence there is a bijection between the maximum-weight matchings M and the
maximum-agreement subsets B such that if {v, w} ∈M then A(cv) ∩ A(cw) ⊆ B.

Theorem 2.1. There is a linear reduction from UWBM to MAST.
In [3], Amir and Keselman use a similar reduction from three-dimensional match-

ing to prove that the MAST problem on three or more trees is NP-Hard.

3. Ideas and outline.

3.1. Preliminaries. In this subsection, we will describe a rooted version of the
SW algorithm. This algorithm will form the basis of our discussion of more efficient
algorithms. For simplicity, all algorithms presented will compute only the maximal
cardinality of an agreement set, i.e., the cardinality of the output set for the MAST

problem. However, after this cardinality has been found, the computation can easily
be traced back in order to derive a concrete set. In this subsection, we will also
introduce the main notation and terminology for the rest of the paper.

Given an evolutionary tree T , by V(T) we denote the set of its vertices, by r(T)
its root, by A(T) the set of its leaf labels. For v ∈ V(T), let p(v) be the parent of v,
C(v) be the set of its children, and d(v) be its degree. If v ∈ V(T), then t(v) denotes
the subtree descending from v. For a set of nodes V ⊆ V(T), we define LCA(V) to be
the closure of V with respect to least common ancestors.

For the rest of the paper, fix an instance of the MAST problem consisting of two
evolutionary trees T0 and T1 for some common set A of species. We measure the size
n of the problem as the cardinality of A, which equals the number of leaves for both
T0 and T1. To simplify some boundary cases in the discussion below, we allow the
situation where T0 and T1 are empty. In this case, MAST(T0, T1) = |A| = n = 0. Finally,

214 MARTIN FARACH AND MIKKEL THORUP

fix an arbitrary left to the right ordering of the children of each node. Thus T0 and
T1 are henceforth considered ordered.

The roles of the evolutionary trees T0 and T1 are symmetric. In order to avoid
unnecessary repetitions in our definitions, we will commonly use 0̄ to mean 1 and vice
versa. Also, we introduce the generic term opposing pair , by which we refer to a pair
{x, y} where x is contained in Ti and y is contained in Tı. Here x and y might be
of different types. For example, x might be a vertex of Ti while y is a subset of the
vertices of Tı.

For any opposing pair {v, w} of vertices, let mast{v, w} denote the MAST of the
subtrees rooted, respectively, at v and w. Here the subtrees are understood to be
topologically restricted to the intersection of their label sets. Thus mast{v, w} is the
MAST of T0|B and T1|B, where B = A(t(v)) ∩ A(t(w)).

The following lemma appears with some minor modifications in [21] and is the
basis for their dynamic-program approach to the unrooted version of this problem.

Lemma 3.1 (see [21]). For all v ∈ V (T0) and w ∈ V (T1),

mast{v, w} =

{
|A(t(v)) ∩ A(t(w))| if v or w is a leaf ;
max{Diag{v, w}, match{v, w}} otherwise,

where Diag(v, w) = {mast{v, w1}|w1 ∈ C(w)} ∪ {mast{v0, w}|v0 ∈ C(v)} and where
match{v, w} is the value of the maximum-weight matching of the weighted bipartite
graph ((C(v) ∪ C(w), C(v)× C(w), mast{·, ·}).

The lemma is illustrated in Figure 3.1. It is clear from this lemma that we need
some values on subtrees in order to compute the mast of two nodes. To simplify
the discussion, we introduce the following notation. By the base pairs of an opposing
vertex pair {x0, x1}, we understand the set of opposing pairs {w0, w1} such that either
w0 ∈ C(v0) and w1 ∈ C(v1) ∪ {v1} or, conversely, w0 ∈ C(v0) ∪ {v0} and w1 ∈ C(v1).
By the base of {x0, x1}, we mean the set of values mast{w0, w1} for all base pairs
of {x0, x1}. Thus the base forms the set of values needed by a dynamic program to
compute the mast values for {x0, x1}.

Later in the paper, we will need a generalized version of a base defined over
pairs of opposing sets of vertices. First, for any set V of vertices in a tree, set
C(V) =

⋃
{C(v)|v ∈ V } \ V . We call the members of C(V) the proper children of V .

Now if V0 and V1 are subsets of V(T0) and V(T1), then the base pairs of {V0, V1} are
the opposing vertex pairs {w0, w1} such that either w0 ∈ C(V0) and w1 ∈ C(V1) ∪ V1

or, conversely, w0 ∈ C(V0)∪ V0 and w1 ∈ C(V1). By the base of {V0, V1}, we mean the
values mast{w0, w1} for all base pairs of {V0, V1}. Thus the base of {V0, V1} contains
all the values needed for a dynamic bottom-up computation of mast{v0, v1} for all
v0 ∈ V0 and v1 ∈ V1.

Lemma 3.1 suggests the following dynamic-programming algorithm for the MAST

problem.
Algorithm A: first algorithm for MAST:

A.1. Input T0 and T1.

A.2. Let O be the lexicographic ordering of V(T0)× V(T1), where the vertices
in each Ti are postordered.

A.3. For each (v0, v1) in increasing order in O do
A.3.1. Compute mast{v0, v1}.
A.4. Return mast{r(T0), r(T1)}.
Algorithm A computes MAST by applying Lemma 3.1 to all the O(n2) pairs of

opposing vertex pairs. The bottom-up ordering of O guarantees that the base of a

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 215

?

(a)

(b)

(c)

v

v

v

w

w

w

Fig. 3.1. In order to find mast{v, w} as in (a), we can either try a “diagonal,” as in (b), or
we can find a maximum-weight matching between the sets of children, as in (c).

node pair is ready whenever mast is evaluated. For bounded degree, mast can be com-
puted in O(1) time, thus giving O(n2) total work. For unbounded degree, the bottle-
neck in the comparisons is the matchings, which sum up to O(

∑
v∈V(T1),w∈V(T2)

d(v) ·
d(w)

√
d(v) + d(w) logn) = O(n2

√
n logn) using Gabow and Tarjan’s matching algo-

rithm [12]. Note that the Gabow–Tarjan algorithm is not only the fastest known for
normal weighted bipartite matching where the weights are assumed to be in a binary
encoding, but it is also the fastest known for the case of unary weighted matching,
i.e., the case where the input is measured as the sum of all of the edge weights in the
graph. It is in this latter sense that we are interested in the Gabow–Tarjan algorithm.

In [7], we showed that most matching graphs can be preprocessed so that they
are quite sparse. We were able to show a bound of O(n2) time for all computations of
mast, thus showing that the MAST of two trees can be computed in O(n2), even when
the degree is unbounded.

We improve this result by two types of sparsification. First of all, we reduce

216 MARTIN FARACH AND MIKKEL THORUP

Core tree Critical vertex Spine vertex Side tree

Fig. 3.2. The core-tree-related concepts.

the number of mast values evaluated in the dynamic program. Second, we reduce
the work done in the matchings. This second phase is analogous to our previous
work [7] in reducing the matching work, but here we require stronger techniques
in order to achieve optimality in the sense of equivalence to one unary weighted
bipartite matching. For the moment, we will focus entirely on reducing the number
of comparisons, returning to weighted matchings in section 6.

3.2. A faster algorithm. Our key to sparsifying the dynamic program is the
core tree, which is defined in terms of some parameter κ (which will turn out to be

16 for unbounded degrees and 4
√

log n for bounded degrees). We say that a node is
a core node if it has more than n/κ descendant leaves. Otherwise, it is a side node.
Then the core tree is the component induced by the core nodes and the side trees are
the components induced by side nodes. We denote by Ui the core tree of tree Ti. Note
that the core tree is indeed a tree since it is connected. Further, note that the core
tree has at most κ leaves since the leaves are roots of disjoint subtrees, each with at
least n/κ leaves.

We make one final distinction within the core tree. We partition the nodes of
the core tree into critical nodes and spine nodes. A critical node is either the root, a
leaf of the core tree, or a branching node, i.e., a core node with at least two children
which are core nodes. If a core node is not a critical node, then it is a spine node.
Notice that the spine nodes can be further partitioned into connected components. In
fact, each such connected component forms a chain of nodes where all nodes but the
last have exactly one core child—but possibly Ω(n) side children. We call each such
component a spine. The concepts are illustrated at Figure 3.2. Note that we have
O(κ) critical nodes and spines but O(n) spine nodes. The following trivial fact gives
one of the main uses of side trees.

Fact 3.2. Let S1, . . . , Sx and S′1, . . . , S
′
y be partitionings of the side trees of T0

and T1, respectively. Let lij = |
⋃
t∈Si A(t) ∩

⋃
t∈S′

j
A(t)|. Then

∑x
i=1

∑y
j=1 lij = n.

Given the core trees, we naturally divide the MAST computation into two phases.

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 217

First, we compute the base of the opposing core trees, that is, mast values of opposing
vertex pairs where one is the root of a side tree and the other is either the root of a side
tree or a core vertex. Second, we concentrate on computing mast values for opposing
pairs of core nodes, including the root pair. For the base computation, we note that
the base of the core trees is of size Θ(n2), so we cannot afford to compute the whole
base. Instead, we will build a data structure allowing us to retrieve any desired base
value quickly. More specifically, we will implement the following procedure.

Procedure 1. Core-Base: This procedure computes a data structure such that
every mast value in the base of the opposing core trees, i.e., of {V(U0), V(U1)}, can be
determined in O(logn) time.

This data structure will be computed by a routine which recurses on all side trees.
Thus within the recursion, all subproblems considered are of size proportional to that
of the side trees (O(n/κ)). Using this fact, we will show that for unbounded-degree
trees, the recursion will have no asymptotic consequence for the overall computa-
tion time. More precisely, we will show that we have a dominating bottleneck in
the maximum-weighted-matching evaluations in computing match for opposing pairs
of core vertices. For bounded-degree trees, match takes constant time, and in this
case, it will turn out that the recursion contributes to the overall running time by

multiplicative factor of O(c
√

log n) for some constant c.
Second, we will find an efficient implementation of the following procedure.
Procedure 2. Core-Trees: Given the base of the opposing core trees (which

we can compute as needed by the Core-Base data structure), this procedure computes
mast{r(U0), r(U1)} = mast{r(T0), r(T1)} = MAST(T0, T1).

This procedure will be implemented by a sparse version of the dynamic pro-
gram described in Algorithm A. In O(κn polylogn) time, it will select O(κn) signif-
icant mast values to be computed, including, in particular, mast{r(U0), r(U1)}. For
bounded degrees, each of these mast values can be computed in constant time. For
unbounded degrees, it will be shown that they can be computed in the same total time
as that of one unary weighted bipartite matching of size O(n). Thus, very generally,
MAST is implemented as follows.

Algorithm B:

B.1. Input T0 and T1.

B.2. Find their core trees U0 and U1.

B.3. Compute Core-Base.

B.4. Compute Core-Trees.

B.5. Return mast{r(T0), r(T1)}.
As noted above, a näıve algorithm would simply apply Lemma 3.1 to each core–

core pair. This would yield once again an Ω(n2) algorithm, the bottleneck of which
is in comparing spines. The following procedure will be used to circumvent this
bottleneck. We will use it to complete a sketch of Core-Trees.

Procedure 3. Spines{S0, S1}: For opposing spines S0 and S1, this procedure
computes mast{r(Si), vı} for i = 0, 1, and for all vı ∈ V(Sı).

With this procedure we get the following algorithm for Core-Trees.
Algorithm C:

C.1. For i ∈ {0, 1}, let U ′i denote the tree obtained by identifying each spine
of Ui with a single vertex.

C.2. Let O be the lexicographic ordering of V(U ′0) × V(U ′1) where the vertices
in each U ′i are postordered.

218 MARTIN FARACH AND MIKKEL THORUP

C.3. For each (c0, c1) in increasing order in O do
C.3.1. Case: c0 and c1 are critical. Do
C.3.1.1. Compute mast{c0, c1,}.
C.3.2. Case: ci is a spine node and cı is a critical node, for i ∈ {0, 1}. Do:
C.3.2.1. Let s1, . . . , sk be the spines nodes of ci in ascending order.
C.3.2.2. For j ← 1 to k compute mast{cı, sj}.
C.3.3. Case: c0 and c1 are spine representing nodes. Do:
C.3.3.1. Compute Spines{c0, c1}.
Observation 3.3. Core-Trees makes O(κn) direct mast computations (Steps

C.3.1.1 and C.3.2.2) and calls Spines O(κ2) times (Step C.3.3.1). All other processing
is done in time O(κn).

4. Computing CORE-BASE. The goal of Core-Base is to preprocess T0 and
T1 so that we may quickly retrieve values from the base of the core trees, that is, mast
values of opposing vertex pairs where one is the root of a side tree and the other is
either the root of a side tree or a core vertex. This will be done recursively using the
following extension of MAST, which for both roots computes the mast value against all
opposing vertices.

Procedure 4. Trees{T0, T1}, where each Ti is an evolutionary tree: For i =
0, 1, this procedure computes mast{r(Ti), vı} for all vı ∈ V(Tı).

Assuming an appropriate implementation of Trees, we will apply it to each side
tree s against the opposing tree restricted to the label set of s. Thus all problems
considered are of size O(n/κ). The following lemma shows that such a computation
for all side trees essentially gives us the whole base of the core trees, or even more:
for each root of a side tree, it allows us to derive the mast value against any opposing
vertex.

Lemma 4.1. Let s be a side tree of Ti, ts = Tı|A(s), and let W = V(ts).
Then for all v ∈ V(Tı), mast{r(s), v} = 0 if v has no descendant in W ; otherwise,
mast{r(s), v} = mast{r(s), w}, where w is the unique first descendant of v in W .

Proof. Set B = A(s) ∩A(t(v)). Then V(Tı|B) is exactly the set of descendants of
v in W = V(ts) = V(Tı|A(s)). By definition, mast{r(s), v} = MAST{T0|B, T1|B}. Thus
mast{r(s), v} = 0 if B = ∅, but then v has no descendants in W . We may therefore
assume that B 6= ∅. Then r(Tı|B) is the first descendant of v in W . Moreover,
A(t(v)) ⊇ A(t(r(Tı|B))) ⊇ B, so A(s)∩A(t(r(Tı|B))) = B, and hence mast{r(s), v)} =
mast{r(s), r(Tı|B)}. This completes the proof.

Notice that Trees is a strengthening of MAST in that it computes more values.
Algorithm B implements Trees except for the mast values between the roots and
their opposing side nodes. Call these missing values the side values. In order to make
Algorithm B implement Trees completely, we extend our specification of Core-Base

to compute the side values as well. That is, Core-Base should make retrievable not
only the values from the base of the core trees but also these side values. However,
the following trivial lemma shows that this is already done by our recursion over the
side trees.

Lemma 4.2. For any v ∈ V(s), where s is a side tree of Ti, ts = Tı|A(s),
mast{v, r(Tı)} = mast{v, r(ts)}.

We have now shown that we can compute all values needed for Core-Base by
recursively applying Trees on all side trees s along with their opposing restrictions
ts. Thus the remaining question is how to implement the various steps described in
an efficient manner. First, we need to compute the ts’s. The following lemma states
that all ts’s can be computed in linear time since the label set of different side trees
of the same evolutionary tree are disjoint.

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 219

Lemma 4.3 (see [7]). Let T be a rooted tree with vertex set V , and let {V1, . . . , Vk}
be a family of subsets of V . Then in time O(

∑
|Vi|+ |V |), we can compute all of the

topological subtrees Ti with V(Ti) = LCA(Vi).
Thus given a partition L0, . . . , Lk of the labels of an evolutionary tree T of size

n, we can compute all of T |L0, . . . , T |Lk in O(n) total time.
Now in order to implement the descendant operation from Lemma 4.1, we need

the following technical lemma.
Lemma 4.4. Let T be a rooted tree with vertex set V , and let {W1, . . . ,Wk} be a

family of subsets of V , each of which is closed under least common ancestors. Then
in O(

∑
|Wi| + |V |) time, we can build a data structure such that given any vertex

v ∈ V and index i ≤ k, we can return the nearest descendant of v in Wi, if any, in
time O(log |Wi|).

Proof. First, we organize the vertices of T in an Euler tour E, that is, we make
a depth-first traversal from the root, noting each time we visit every vertex. For
every vertex v, denote the first occurrence in E by f(v) and the last occurrence in
E by l(v). Now w is a descendant of v if and only if f(v) ≤ f(w) < l(v). Next, for

i = 1, . . . , k, we construct the subsequence Efi of E containing f(w) for each vertex

w in Wi. Clearly, both the Euler tour and the splitting of it into the Efi ’s can all be
done in time O(

∑
|Wi|+ |V |).

Now, given a vertex v ∈ V and index i ≤ k, by an O(log |Efi |) = O(log |Wi|)-time

binary search, we find the first element f(w) in Efi greater than or equal to f(v). If
f(w) ≥ l(v), we may conclude that v has no descendant in ts. Otherwise, f(w) < l(v).
Since Wi is closed under the least-common-ancestor operation, we may then conclude
that w is the unique first descendant v in Wi.

Summing up, we have the following result.
Proposition 4.5. Core-Base can be computed in time

O(n) + 2 max∑
ni=n,

ni∈{1,...,bn/κc}

∑
time(Trees(ni)).

Proof. Lemma 4.3 allows us to compute all {s, ts} pairs in O(n) time. Clearly,∑
s |A(s)| = n, and for each s, |A(s)| < n/κ. We can compute Trees{s, ts} for all s

in time bounded by

2 max∑
ni=n,

ni∈{1,...,bn/κc}

∑
time(Trees(ni)).

By Lemma 4.2, we are now done with the side values. Concerning the base of the
core trees, now preprocess for any queries of the form mast{r(s), v}, where s is a side
tree and v is any opposing vertex. For simplicity, we assume that s is a side tree of
T0 and v is a vertex of T1. The case where s is a side tree of T1 and v is a vertex of
T0 is symmetric.

By Lemma 4.1, our problem is to decide if v has a descendant in ts and, if so,
to return the first such descendant of v in ts. Such a query can be answered in time
O(log |V(ts)|) = O(logn) if we first apply the preprocessing of Lemma 4.4 to all the
sets V(ts). The time for this preprocessing is

O

(
|V(T0)|+

∑
s

|V(ts)|
)

= O

(
n+

∑
s

(2|A(s)| − 1)

)
= O(n).

Thus all the preprocessing is completed within the desired bounds.

220 MARTIN FARACH AND MIKKEL THORUP

4.1. A master theorem. The following theorem will be used to bound the over-
all work for the bounded-degree and general versions of the MAST problem throughout
the remainder of the paper. Our goal is to make our result apply, even if the complex-
ity of maximum-weighted matching is improved. Thus we must allow our recurrence
to hold for a wide possible set of choices for the complexity of maximum-weighted
matching. While general theorems have been proven for solving recurrences (see, e.g.,
Verma [23]), we know of no results that directly apply. Thus we offer the following
“master theorem” for solving the types of recurrence we need.

Theorem 4.6. Assume for some monotone function C : IR≥1 → IR that Core-

Trees can be computed in time at most C(κan), where a is a constant independent
of our parameter κ. Moreover, assume that C(x) = x1+εf(x), where ε ≥ 0 is a
constant, f(x) = O(xo(1)), f is monotone, and for some constants b1 and b2, ∀x, y ≥
b1 : f(xy) ≤ b2f(x)f(y). If ε = 0, there is a constant c such that we can compute MAST

in time O(C(n)c
√

log n). Otherwise, if ε > 0, setting κ = 4
√

log n, we can compute
MAST in time O(C(n)). Thus MAST is computable in time O(n1+o(1) + C(n)).

Proof. By Proposition 4.5 and the definition of C, using Algorithm B, we compute
Trees in time

O(n) + 2 max∑
ni=n,

ni∈{1,...,bn/κc}

∑
time(Trees(ni)) + C(kan).

Thus for any constant n0 ≥ 1 (to be fixed later), we may choose a constant k1 such
that

∀n ∈ IN : 1 ≤ n ≤ n0 ⇒ time(Trees(n)) ≤ k1C(n),(1)

∀n ∈ IN : n0 < n⇒
〈
∀κ ∈ IR : 1 ≤ κ ≤ n ⇒

time(Trees(n)) ≤ k1C(κan) + 2 max∑
ni=n,

ni∈{1,...,bn/κc}

∑
time(Trees(ni))

〉
.(2)

Inductively from (1) and (2), it follows that the time complexity for Trees is bounded
by any monotone function T : IR≥1 → IR that satisfies

∀x ∈ IR : 1 ≤ x ≤ n0 ⇒
T (x) ≥ k1C(x),(3)

∀x ∈ IR : n0 < x⇒
〈
∃κ ∈ IR : 1 ≤ κ ≤ x ∧

T (x) ≥ k1C(κax) + 2 max∑
xi=n,

1≤xi≤n/κ

∑
T (ni)

〉
.(4)

In our search for such an adequate function T , we will restrict ourselves to superlinear
functions that satisfies

∃monotone g : IR≥1 → IR ∀x ∈ IR≥1 : T (x) = xg(x).(5)

As a convenient consequence, for any x, x1, . . . , xl ∈ IR≥1 such that
∑
xi = x and

1 ≤ xi ≤ x/κ, we have that
∑
T (xi) =

∑
(xig(xi)) ≤

∑
(xig(x/κ)) = xg(x/κ) =

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 221

κT (x/κ). Thus (4) follows if

∀x ∈ IR : x > n0 ⇒ 〈∃κ ∈ IR : 1 ≤ κ ≤ x ∧ T (x) ≥ k1C(κax) + 2κT (x/κ)〉.(6)

The rest of the proof divides into cases depending on ε.

ε = 0. For this case, we let n0 be the least number such that n0 ≥ b1, 4a
√

log n0 ≥
b1, and 4

√
log n0 ≤ n0. The last inequality is satisfied if and only if n0 ≥ 16. Recall

that our choice of n0 affects k1. Since ε = 0, C(x) = O(x1+o(1)), so we may choose
a constant k2 ≥ (2b2)−1 such that ∀x ∈ IR≥1 : C(x) ≤ k2x

1.5. For a solution to our
problem, we define T such that

∀x ∈ IR≥1 : T (x) = 2b2k1k2c
√

log xC(x), where c = max{8a, 4}.(7)

Clearly, (3) is satisfied since

∀x ∈ IR≥1 : T (x) = 2b2k1k2c
√

log xC(x) ≥ 2b2k1(2b2)−1C(x) = k1C(x).

Also, (5) is satisfied because for the function that maps x to

T (x)/x = 2b2k1k2c
√

log xC(x)/x = 2b2k1k2c
√

log xxf(x)/x = 2b2k1k2c
√

log xf(x)

is monotone since f is monotone. Hence (4) follows if we can settle (6). Fix x > n0

and set κ = 4
√

log x. Notice that 1 < κ < x, κa > b1, and x > b1. Now

k1C(κax) ≤ k1b2C(κa)C(x) ≤ b2k1k2(κa)1.5C(x) = b2k1k241.5a
√

log xC(x)

≤ b2k1k2c
√

log xC(x) ≤ T (x)/2.

Moreover,√
log(x/κ) =

√
log(x/4

√
log x) =

√
log x− 2

√
log x ≤

√
log x− 1,

and hence

κT (x/κ) ≤ κ2b2k1k2c
√

log(x/κ)C(x/κ) ≤ κ2b2k1k2c
√

log x−1(x/κ)f(x/κ)

≤ 2b2k1k2(c
√

log x/c)xf(x) ≤ 2b2k1k2c
√

log xC(x)/c ≤ T (x)/4.

Thus

k1C(κax) + 2κT (x/κ) ≤ T (x)/2 + 2T (x)/4 = T (x),

so (6) and hence (4) is satisfied. We may therefore conclude that with ε = 0, we can

compute Trees on a problem of size n in time 2b2k1k2c
√

log nC(n) = O(C(n)c
√

log n) =
O(n1+o(1)), as desired.

ε > 0. In this case, we fix κ = max{41/ε, a
√
b1} and set n0 = κb1. For a solution

to our problem, we define T such that

∀x ∈ IR≥1 : T (x) = k1k3C(x) where k3 = max{1, 2b2C(κa)}.(8)

Clearly, (3) and (5) are satisfied. Fix x > n0. Now

k1C(κax) ≤ b2C(κa)k1C(x) ≤ T (x)/2

222 MARTIN FARACH AND MIKKEL THORUP

and

κT (n/κ) = κb2k3(n/κ)1+εf(x/κ) ≤ b2k3n
1+εκ−εf(x) ≤ b2k3n

1+εf(x)/4 = T (x)/4,

so

k1C(κax) + 2κT (x/κ) ≤ T (x)/2 + 2T (x)/4 = T (x),

Thus (6) and hence (4) is satisfied. We may therefore conclude that with ε > 0, we can
compute Trees on a problem of size n in time b2k1k3C(n) = O(C(n)), completing
the proof.

5. Computing SPINES. To implement MAST for bounded-degree trees, we need
only show how to quickly compute Spines (Procedure 3). To this end, we introduce
the concept of intervals. For spine S with c the critical child of the lowest vertex,
let v, w ∈ V(S) ∪ {c}, where w is an ancestor of v. Then v and w characterize an
interval I of S, denoted by]v, w]. If I =]v, w], we set c(I) = v and r(I) = w. By
V(I) we denote the set of vertices that are descendants of w and strict ancestors of
v. If v 6= w, V(I) induces a segment of S, and we will often identify I with this
segment. If v = w, the interval I corresponds to the empty segment together with a
position. For any interval I, we define SideT(I) to be the forest of side trees whose
roots are children of vertices in I. Let I0 and I1 be intervals from opposing core
trees. We say that the pair of opposing intervals {I0, I1} is interesting if and only if
A(SideT(I0)) ∩ A(SideT(I1)) 6= ∅. A pair which is not interesting is said to be boring.
We will show how to implement Spines quickly by giving an efficient method for
dealing with boring interval pairs.

For specificity, fix {S0, S1} to be a pair of opposing spines for which we wish to
compute Spines{S0, S1}. To ease the presentation, we will identify S0 and S1 with the
intervals with the same vertex sets. Moreover, we set m0 = |V(S0)|, m1 = |V(S1)|, and
l = |A(SideT(S0))∩A(SideT(S1))|. Notice that the number of maximal boring interval
pairs can be as bad as Ω(l2). However, we are going to identify O(m0 +m1 + l logn)
boring interval pairs together with O(m0 + m1 + l) vertex pairs, representing all
computations needed to implement Spines{S0, S1}.

Our algorithm for Spines will proceed as follows. In section 5.1, we will choose
a small subset of interval pairs on which to compute certain values. We will organize
these intervals into an interval tree. In section 5.2, we will prove the main technical
lemmas needed for dealing with boring interval pairs. In section 5.3, we will show
how to actually implement Spines in terms of the interval tree.

5.1. The interval tree. Consider an interval I =]v, w], and let u be the vertex
such that |V(]u,w])| = d|V(I)|/2e. Then I l denotes]v, u] and Ir denotes]u,w]. Note
that V(I l) and V(Ir) are disjoint. Also note that if I =]v, v] then I l = Ir = I.

Given an opposing pair {I0, I1} of intervals, we call mast{c(I0), c(I1)} the floor,
mast{c(I0), r(I1)} and mast{r(I0), c(I1)} the diagonals, and mast{r(I0), r(I1)} the
ceiling of the pair. Thus if I0 and I1 are intervals of spines S0 and S1, then the
diagonals, together with the floor, are exactly the values from the base of {V(I0), V(I1)}
that are not in the base of {V(S0), V(S1)}.

We are now going to construct a rooted tree E whose nodes are opposing interval
pairs. The root pair is (S0, S1). Suppose (I0, I1) is a node in E and that one of the
following conditions is satisfied:

(i) {I0, I1} is interesting and one of I0 and I1 contains more than one vertex.
(ii) One of I0 and I1 has the spine root as root, and the other contains more than

one vertex.

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 223

Then {I0, I1} has four children: (I l0, I
l
1), (I l0, I

r
1), (Ir0 , I

l
1), and (Ir0 , I

r
1); otherwise,

{I0, I1} is a leaf.
We are going to compute the ceiling and the diagonals of all the pairs in E .

Clearly, we will thereby implement Spines since if r is the root of one of the spines
and v is a vertex from the other spine, then the second condition defining E ensures
that mast{r, v} is the ceiling of some pair in E .

Proposition 5.1. The size and construction time for E is O(m0 +m1 + l logn).
Proof. In our argument, we will focus on the size of E . However, a correspond-

ing construction will be indicated on the side. The depth of E is no more than
max{dlog2 |V(S0)|e, dlog2 |V(S1)|e}. Clearly, we only need to bound the number of in-
ternal nodes since the number of leaves is less than a factor of four larger. We will
separately count the number of nodes made internal by the two conditions. Thereby,
we accept a certain overlap where a node {I0, I1} satisfies both conditions.

Concerning condition (i), by induction starting at the root, for each a ∈
A(SideT(S0)) ∩ A(SideT(S1), there is exactly one node {I0, I1} at each level in E
such that a ∈ A(SideT(I0)) ∩ A(SideT(I1). Thus at each level, we have at most l =
|A(SideT(S0))∩A(SideT(S1)| satisfying condition (i), so in total we have at most l logn
nodes in E satisfying (i). In order to find these nodes, starting from the root, with each
node {I0, I1} we store the set A(SideT(I0))∩A(SideT(I1))—{I0, I1} is interesting if the
set is nonempty. If condition (i) is satisfied, in time O(|A(SideT(I0))∩ A(SideT(I1)|),
we partition A(SideT(I0))∩A(SideT(I1) into A(SideT(I l0))∩A(SideT(I l1), A(SideT(Ir0)∩
A(SideT(I l1), and A(SideT(Ir0))∩A(SideT(Ir1) for the children. For each of the O(logn)
levels, the total size of these sets is no more than l, so the construction time is
O(l logn).

Concerning the internal nodes satisfying (ii), ignoring the symmetric case, we
restrict (ii) to

(ii)0 r(I0) = r(S0) and I1 contains more than one vertex.
Consider a node (I0, I1) of E satisfying (ii)0. Then due to the first part of the condition,
the only children of (I0, I1) that can satisfy (ii)0 are (Ir0 , I

l
1) and (Ir0 , I

r
1). Since there

is no freedom in choosing first coordinate of the children, the number of internal nodes
in E satisfying (ii)0 is

|{Sα1 : α ∈ {l, r}∗, |V(Sα1)| > 1}| < |{Sα1 : α ∈ {l, r}∗, |V(Sα1)| = 1}|
= |V(S1)| ≤ |A(SideT(S1))| = m1.

The first inequality follows from the fact that the number of internal nodes of a binary
tree is smaller than the number of leaves.

Equivalently, for the symmetric case (ii)1, where r(I1) = r(S1) and I0 contains
more than one vertex, we get at most m0 internal nodes in E . Thus there are at most
m0 +m1 internal nodes in E satisfying (ii) [= (ii)0∨ (ii)1], so we conclude that in total
there are at most O(m0 + m1 + l logn) nodes in E . Moreover, E can be generated
from the root (S0, S1), adding each new node in constant time.

We are going to compute the ceiling and the diagonals of all the pairs in E re-
specting the linear order < such that for each internal pair (I0, I1) of E , we have
(I l0, I

l
1) < (I l0, I

r
1) < (Ir0 , I

l
1) < (Ir0 , I

r
1) < (I0, I1). Thus whenever we compute a pair,

we can assume that all previous pairs have been computed.
Observation 5.2. For any internal pair of E, the ceiling and diagonals are the

ceiling and diagonals of its children. The floor of any pair in E is the ceiling or
diagonal of some preceding pair.

Thus we need only concern ourselves with computations at the leaves, which are
either boring interval pairs or interesting node pairs.

224 MARTIN FARACH AND MIKKEL THORUP

5.2. Handling boring interval pairs.
Lemma 5.3. If the interval pair {I0, I1} is boring, then

mast{r(I0), r(I1)} = max

{
mast{c(I0), r(I1)}, mast{c(I1), r(I0)},
side-mast{c(I0), I1}+ side-mast{c(I1), I0}

}
.

Here side-mast{v, I} = max{mast{v, r(t)}|t ∈ SideT(I)}.
Proof. Let lhs and rhs denote the left- and right-hand side of the equality of the

lemma. First we prove lhs ≥ rhs. Clearly, mast{r(I0), r(I1)} ≥ max{mast{c(I0), r(I1},
mast{c(I1), r(I0)}}. For i = 0, 1, let tı be a side tree in SideT(Iı) such that
mast{c(Ii), r(tı)} = side-mast{c(Ii), Iı}. Let pi and ci denote the parent and core
sibling of r(tı). By application of Lemma 3.1, we get the following inequalities:

mast{ci, r(tı)} ≥ mast{c(Ii), r(tı)} for i = 0, 1,

mast{f0, f1} ≥ mast{c0, r(t1)}+ mast{r(t0), c1},
mast{r(I0), r(I1)} ≥ mast{f0, f1}.

Hence it follows that mast{r(I0), r(I1} ≥ side-mast{c(I0), I1}+side-mast{c(I1), I0},
and we may therefore conclude that lhs ≥ rhs.

We show that lhs ≤ rhs by contradiction. Assume that there is a pair (f0, f1) ∈
V(I0) × V(I1) such that mast{f0, f1} > rhs and fix (f0, f1) to be a minimal such
pair. First, we observe that the strict inequality implies that s0 6= c(I0) and s1 6=
c(I1). For i = 0, 1, let ci denote the core child of fi. By the minimality of (f0, f1),
we cannot have mast{fi, fı} = mast{ci, fı}. Also by minimality, we cannot have
mast{fi, fı} = mast{si, fı}, where si is a side child of fi, because since our pair of
intervals is boring, mast{si, fı} = mast{si, cı} ≤ mast{fi, cı}. Thus by Lemma 3.1,
we have mast{f0, f1} = match{f0, f1}. Let M be a minimal matching in C(f0)×C(f1)
such that match{f0, f1} =

∑
(v0,v1)∈M mast{v0, v1}. Since our interval pair is boring,

we can only have an edge in M if either its head or its tail is core. By the minimality
of (f0, f1), we cannot have M = {(c0, c1)}. Thus we have M ⊆ {(c0, s1), (c1, s0)},
where si is a specific side child of fi. Putting everything together, we get

rhs < match{f0, f1}
=

∑
(v0,v1)∈M

mast{v0, v1}

= mast{c0, s1}+ mast{c1, s0}
= mast{c(I0), s1}+ mast{c(I1), s0}
≤ side-mast{c(I0), I1}+ side-mast{c(I1), s0}
≤ rhs,

and hence we have the desired contradiction.
What makes this useful is the following technical lemma.
Lemma 5.4. After an O(n logn) preprocessing based on the base of the core trees,

given any pair of a vertex v from one core tree and an interval I from the other core
tree, we can compute side-mast{v, I} in time O(log2 n).

Proof. For simplicity, we assume that v is from T0 and I is from T1. A symmetric
preprocessing is needed for the opposite case where I is from T0 and v is from T1. First,
for each spine S in T1, we construct a balanced binary tree IS over some nonempty
intervals of S. The root of IS is S itself, and given any node I in IS , I is a leaf
if it consists of a single vertex; otherwise, I has children I l and Ir. IS has depth

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 225

dlog2 |V(S)|e. Denote by I the forest of the IS ’s. Now the spines of T constitute the
top level of I. Generally, we have that all intervals at any specific level are mutually
disjoint.

Our goal is to find an O(n logn) preprocessing such that given any vertex from
T0 and interval I from I, we can derive side-mast(v, I) in time O(logn). Assume
that this is done. Then any interval I from T1 is the concatenation I1 · · · Il of at most
2 logn intervals from I, and then side-mast(v, I) = maxi{side-mast(v, Ii)}. Thus
such a preprocessing allows us to compute side-mast in time O(log2 n), as desired.

For i = 0, 1 and for every label a, let sri(a) denote the root of the side tree of Ti
containing the leaf with label a. By contraction of the side trees, we precompute all
values of sr in time O(n).

The remaining preprocessing is divided into O(logn) separate O(n) preprocess-
ings: one for each level in I. Let I1, . . . , Ik be all the intervals at some specific
level in I. Then I1, . . . , Ik are mutually disjoint, so, in particular, A(SideT(I1)), . . . ,
A(SideT(Ik)) are mutually disjoint.

Consider an arbitrary fixed interval I of T0, and note the following recursion
formula for side-mast(·, I):

side-mast(v, I) = max{
max{mast(v, r(t))|t ∈ SideT(I)},(9)

max{side-mast(w, I)|w is a descendant v}}(10)

Set VI = {p(sr0(a))|a ∈ A(SideT(I))} and WI = LCA(VI). Then VI contains all core
vertices v for which (9) is relevant. Moreover, WI contains all the values of w that
are relevant for (10). Let tI denote the topological subtree of T0 with vertex WI . All
of the sets VIi are easily computed in time O(n), and by Lemma 4.3, in time O(n) we
can compute all the tIi ’s.

Consider any specific tIi . We want to compute side-mast(v, Ii) for all v ∈
V(tIi) = WIi . For this purpose, we introduce an variable sm(v) for each v ∈WIi . Ini-
tially sm(v) := 0 for all v ∈WIi . Now, corresponding to (9), for all a ∈ A(SideT(Ii)),
set

sm(p(sr0(a))) := max{sm(p(sr0(a))), mast{p(sr0(a))), sr1(a)}.

Next, corresponding to (10), go through the vertices of tIi in post-order. When visiting
the vertex v, set

v := max{sm(v),max{sm(w)|w is a child of v in tIi}}.

When the computation is finished sm(v) = side-mast(v, Ii) for all v ∈ V(tIi) = WIi .
The time of the computation is O(|A(SideT(Ii))|+ |WIi |) = O(|A(SideT(Ii))|). Thus
we can precompute side-mast(v, Ii) for all Ii, w ∈WIi in time O(

∑
|A(SideT(Ii))|) =

O(n).
Now consider any query side-mast(v, Ii) where v 6∈WIi . Then side-mast(v, I) =

side-mast(w, I), where w is the nearest descendant of v in WIi , if any; otherwise,
side-mast(v, I) = 0. We solve the nearest-descendant query in O(logn) time by first
applying the preprocessing from Lemma 4.4 to all the WIis. This preprocessing takes
time O(

∑
Ii
|WIi |), where∑

Ii

|WIi | < 2
∑
Ii

|VIi | ≤ 2
∑
Ii

|A(SideT(Ii))| = 2n.

Thus all preprocessing of I1, . . . , Ik is done in time O(n), so the total preprocessing
is done in time O(n logn), as desired.

226 MARTIN FARACH AND MIKKEL THORUP

5.3. Using the interval tree.
Proposition 5.5. Any diagonal of a pair in E can be computed in time O(log2 n).
Proof. Let (I0, I1) be any pair in E . By symmetry, it is sufficient to show the

computation of mast{c(I0), r(I1)}. Suppose there is a vertex v0 ∈ V(S0) below or
equal to c(I0) which is interesting with respect to some vertex in I1. Fix v′0 to be the
highest such vertex, i.e., the one closest to c(I0). Let I ′0 be the interval in I0 which
contains v0 and which is on the same level as I0 and hence as I1 in I1. Thus I ′0 is
interesting with respect to I1, and since they are on the same level in their respective
interval trees, we can conclude that (I ′0, I1) ∈ E . Trivially, (I ′0, I1) < (I0, I1), so we
can assume that the ceiling mast{r(I ′0), r(I1)} is computed.

Set I ′′0 =]r(I ′0), c(I0)]. By choice of v′0, the pair (I ′′0 , I1) is boring—but typically
not in E . The diagonal mast{c(I ′′0), r(I1)} is exactly the ceiling of (I ′0, I1) which we
saw was computed, and the diagonal mast{r(I ′0), c(I1)} is the floor of (I0, I1) which is
computed by Lemma 5.2. Thus by Lemmas 5.3 and 5.4, we can compute the ceiling
mast{r(I ′′0), r(I1)} in time O(log2 n). However, this ceiling is exactly the desired
diagonal of (I0, I1).

Corollary 5.6. Any boring pair in E can be computed in time O(log2 n).
Proof. By Proposition 5.5, we can compute the diagonals in time O(log2 n), but

then we can apply Lemmas 5.3 and 5.4 to get the ceiling in time O(log2 n).
For any opposing pair {v0, v1}, by time(mast{v0, v1}) we refer to the time it takes

to compute mast{v0, v1} assuming that every value in the base of {v0, v1} is available
in time O(logn).

Corollary 5.7. Any interesting leaf pair (I0, I1) in E can be computed in time
O(log2 n+ time(mast{r(I0), r(I1)}).

Proof. Again, the diagonals are computed by Proposition 5.5, and the floor follows
by Lemma 5.2. Hence we have the whole basis of {V(I0), V(I1)} available. Since (I0, I1)
is an interesting leaf pair, it follows that V(Ii) = {r(Ii)} for i = 0, 1. Thus, in fact,
we have the basis of {r(I0), r(I1)} available, so the ceiling mast{r(I0), r(I1)} can be
computed directly.

Summing up, we conclude as following.
Proposition 5.8. Spines{S0, S1} (Procedure 3) can be computed in time O((m0+

m1 + l logn) log2 n + (
∑
{v0,v1}∈F time(mast{v0, v1})), where m0 = |V(S0)|, m1 =

|V(S1)|, l = |A(SideT(S0)) ∩ A(SideT(S1))|, and F ⊆ V(S0) × V(S1) contains at most
l pairs.

Proof. We observed above that, indeed, computing all the ceilings of pairs in E
is sufficient for implementing Spines; and now, from Proposition 5.1, Lemma 5.2,
and Corollaries 5.6 and 5.7 together with the observation that there are at most l
interesting leaf pairs, it follows that we can compute all ceilings and diagonals of the
pairs in E within the desired time bound.

Theorem 5.9. Core-Trees (Procedure 2) can be computed in time O(κn log3 n+∑
{v0,v1}∈E time(mast{v0, v1})). Here E divides into two sets E1 and E2. The set E1

contains all the O(κn) pairs of core vertices where one is critical. The set E2 contains
the at most n interesting pairs of spine vertices.

Proof. Let S denote the set of pairs of spines from opposing core trees. Since there
can be at most κ spines in each core tree, we get (

∑
{S0,S1}∈S |V(S0)|+ |V(S1)|) ≤ κn.

Moreover, by Fact 3.2, we get that (
∑
{S0,S1}∈S |A(SideT(S0)) ∩ A(SideT(S1))|) ≤

n. Thus the result follows directly from Observation 3.3 together with Proposition
5.8.

Corollary 5.10. For trees T0 and T1 with bounded degree, Trees{T0, T1} can

be computed in time O(nc
√

log n).

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 227

Proof. For bounded degrees, time(mast{v0, v1})) = O(logn), so the result follows

from Theorem 4.6 with κ = 4
√

log n and Theorem 5.9.

6. Computing the matchings. The aim of this section is to reduce the work
of computing the O(κn) mast values of the set E specified in Theorem 5.9 when the
trees given have unbounded degree. Recall that mast{v, w} is found as the maximum
value over Diag{v, w} and match{v, w}. The maximum diagonal of the O(κn) pairs in
E can easily be computed in O(κn logn) time by a bottom-up dynamic program, so
our problem is to bound the work on matchings. Recall that the matching associated
with a pair {v, w} is on the weighted bipartite graph whose vertex sets are C(v) and
C(w) and whose edges (u, v) are weighted by mast{u, v}. We denote this graph by
Gvw. For any weighted bipartite graph G, let match(G) be the value of the maximal
weighted bipartite matching on G. Thus match{v, w} = match(Gvw) for all opposing
vertex pairs {v, w}. We will reduce the size of the matchings by reducing the number
of nodes and edges and the total sum of the edge weights involved. Initially, these
values are O(n2), O(n2), and O(n3), respectively. Our goal is to reduce them to
O(κn), O(κn), and O(κ2n). We will do this by deleting some edges and reducing the
weights of others. In general, we will be building a set of matching graphs Hvw from
the original matching graphs Gvw such that the maximum weight of a matching in
Gvw can be deduced from the maximum weight of a matching in Hvw. Note that we
will not explicitly build the Gvw since their total size can be as large as Ω(n2).

The vertices will be bounded by the number of edges. Recall that nodes come in
three types: side, critical, and spine. All edges in the matching are between children
of core nodes. Let a side–side edge be a nonzero edge between opposing side children.
For matching graph Gvw, we will let lvw be the number of side–side edges in the
graph. By Fact 3.2, there can be no more than n side–side edges, and the sum of
their weights is also bounded by n.

Recall that the opposing pairs in E from Theorem 5.9 come in two varieties: E1

contains all the pairs of core vertices where one is critical; E2 contains the at most n
interesting pairs of spine vertices. We will bound the size of the E1 and E2 matchings
separately.

Lemma 6.1. There are graphs Hvw for all {v, w} ∈ E1 such that match(Hvw) =
match(Gvw) and such that

∑
{v,w}∈E1

|E(Hvw)| = O(κn).
Proof. As note above, there are at most n side–side edges. All other edges

are incident on a core child of a critical node. There are a total of O(κ) such core
children, and no node can be involved in more than O(n) matching edges. Thus just
by consideration of nonzero edges, we see that in total we need only O(κn) edges for
the Hvw.

Lemma 6.2. There are graphs Hvw for all {v, w} ∈ E2 such that match(Hvw) =
match(Gvw), |E(Hvw)| ≤ 3lvw + 3 and

∑
{v,w}∈E2

|E(Hvw)| = O(n).
Proof. First of all, our reduced matching graph Hvw contains all side–side edges

and the edge between the two opposing core nodes. This gives at most lvw + 1 edges.
The question is which edges we need to include between the two core nodes and their
opposing side nodes.

Let c be one of the core nodes. From c to the opposing side nodes, we will include
all of the at most lvw edges to side nodes incident with side–side edges. Moreover,
we will include one of the maximum-weight remaining edges to side nodes. Let this
edge be {c, cs}. Thus Hvw contains a total of at most lvw + 1 + 2(lvw + 1) = 3lvw + 3
edges, as required.

We need to prove that that match(Hvw) = match(Gvw). Consider an arbitrary
maximal matching M in Gvw. We assume that M has no zero-weight edges. Suppose

228 MARTIN FARACH AND MIKKEL THORUP

that M contains an edge outside Hvw. Then this edge must be between a core node
c and an opposing side node u which is not incident on a side–side edge and which is
different from cs. Then cs cannot be matched in M , so we get a new matching M ′ in
Gvw if we replace {c, u} by the edge {c, cs} from Hvw. Moreover, from our choice of
cs, it follows that the weight of M ′ is at least that of M . We may therefore conclude
that one of the maximal matchings in Gvw is a maximal matching in Hvw.

Finally, we must bound the summation
∑
{v,w}∈E2

3lvw + 3. However, |E2| ≤ n

and
∑
lvw ≤ n by Fact 3.2.

Lemma 6.3. We can compute all of the Hvw’s in O(n log3 n) time.

Proof. The matching graphs Hvw from Lemma 6.1 come automatically from only
considering nonzero-weight matching edges. In order to sparsify matching graphs of
Lemma 6.2, we first choose an arbitrary ordering of the side children of each vertex.
It is now meaningful to talk about intervals of side children. With the same technique
that was used in the proof of Lemma 5.4, we can make an O(n logn) preprocessing
such that given any vertex v and interval I of side children of some opposing vertex,
we can compute max{mast{v, w}|w ∈ V(I)} in time O(log2 n).

Recall our problem: we are given a vertex v together with a vertex w and a subset
S of the side children which already participate in the matching since they share labels
with the side trees of w. Let wc be the core children of w. We want to find the side
child vs of v outside S which has the MAST with wc.

This is done in time O(|S| log2 n) because removing the vertices from S leaves us
with no more than |S|+ 1 intervals, each of which we can deal with in time O(log2 n),
and afterwards we just need to find the maximum, which is done in time O(|S|).

Having reduced the number of edges in our matching to O(κn), we can triv-
ially conclude that the total weight is (κn2). We will now show that we can reduce
some edge weights before applying the matching algorithm so that the total becomes
O(κ2n). We will further show that the weight reductions are reversible in that we
will easily be able to retrieve the maximum-weighted matching on the original graph
from the matching on the weight-reduced graph. With the current best algorithm
for (unary) weighted bipartite matching [12], this reduction of the weights has no
significance because the weights only effect the running time by a logarithmic fac-
tor. However, the point of this paper is to show an equivalence to unary weighted
bipartite matching which holds even if more weight-sensitive algorithms for unary
weighted bipartite matching are found. For the weight reduction, we will use the
following technical observation.

Observation 6.4. Let G = (V0 ∪ V1, E,W) be a weighted bipartite graph, and
let v ∈ V0. For all edges {v, w}, set ∆{v, w} = W{v, w} −max({0} ∪ {W{v′, w}|v′ ∈
V0 \ {v}). Moreover, set ∆(v) = max{∆{v, w}|{v, w} ∈ E}.

If ∆(v) > 1, let G′ be the weighted bipartite graph obtained by reducing the weights
of all edges incident with v by ∆(v)−1. Then ∆′(v) = 1, and then the maximal weight
matchings in G′ are the same as those in G and their weights are exactly ∆(v) − 1
smaller.

Proof. The observation follows directly from the fact that v has to be in any
maximal matching if ∆(v) ≥ 1.

Clearly, we can find ∆(v) in time linear in the number of edges. Thus for each of
our matchings, we may choose a constant number of vertices v that we reduce, getting
∆′(v) ≤ 1, before we apply a matching procedure.

Proposition 6.5. The total weight of matching edges can be reduced to O(κ2n)
in time O(κn).

Proof. The total weight of the side–side edges is at most n, so if for each matching

SPARSE DYNAMIC PROGRAMMING FOR TREE COMPARISON 229

based on spine nodes we apply the reduction to their two core children, the total sum of
their matching weights becomes O(n), and if for each matching based on a spine node
and a critical node we apply the reduction to the core child of the spine node, the total
sum of their matching weights becomes O(κn). With regards to the O(κ2) matchings
based on two critical nodes, their sum cannot exceed O(κ2n) in total weight. Thus,
since we have a total of O(κn) edges involved in the matchings, in time O(κn), we
can reduce the total sum of the matching weights to O(κ2n).

Theorem 6.6. Let M : IR≥1 → IR be a monotone function bounding the time
complexity UWBM. Moreover, let M satisfy that M(x) = x1+εf(x), where ε ≥ 0 is
a constant, f(x) = O(xo(1)), f is monotone, and for some constants b1 and b2,
∀x, y ≥ b1 : f(xy) ≤ b2f(x)f(y). Then, with κ = ε

√
4, MAST is computable in time

O(n1+o(1) +M(n)).

Proof. We spend O(n polylogn+time(UWBM(κ2n))) on the matchings. Therefore,
by Theorem 5.9, we have that Core-Trees can be computed in time O(n polylogn+
time(UWBM(κ2n))). Applying Theorem 4.6 gives the desired complexity.

Inserting the best known bounds for unary weighted bipartite matching [12], with
κ = 1/2

√
4 = 16, we get the following result.

Corollary 6.7. MAST is computable in time O(n1.5 logn).

As a general remark, we note that we can get somewhat tighter bounds as fol-
lows. Let UWBM(n, b) be the unary weighted bipartite matching problem in which the
independent sets can be no larger than b and the sum of the weights in bounded
by n. Let the MAST(n, b) problem be the MAST problem on two n leaf trees with
degree bound b. We can generalize our results to show that UWBM(n, b) reduces
linearly to MAST(n, b). We cannot, in general, bound the work on MAST(n, b) by
O(n1+o(1) + time(UWBM(n, b))), but we note that using the Gabow–Tarjan algorithms
gives a time of O(n

√
b logn) for UWBM(n, b). In this case, we can bound the total

work for MAST(n, b) by O(n1+o(1) + n
√
b logn), thus unifying the complexities of the

bounded and general cases.

Acknowledgments. We thank the referees for their careful reading and helpful
comments.

REFERENCES

[1] R. Agarwala and D. Fernandez-Baca, A polynomial-time algorithm for the phylogeny prob-
lem when the number of character states is fixed, in Proc. 34th IEEE Annual Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1994, pp. 140–147.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment
search tool, J. Molecular Biol., 215 (1990), pp. 403–410.

[3] A. Amir and D. Keselman, Maximum agreement subtrees in multiple evolutionary trees, in
Proc. 35th IEEE Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1995, pp. 758–769.

[4] M. J. Chung, O(n2.5) time algorithms for the subgraph homeomorphism problem on trees, J.
Algorithms, 8 (1987), pp. 106–112.

[5] W. H. E. Day, Foreward: Comparison and consensus of classifications, J. Classification, 3
(1986), pp. 183–185.

[6] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, Algorithmica, 13 (1995), pp. 155–179.

[7] M. Farach and M. Thorup, Fast comparison of evolutionary trees (extended abstract), in
Proc. 5th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1994, pp. 481–488.

[8] J. S. Farris, Estimating phylogenetic trees from distance matrices, Amer. Naturalist, 106
(1972), pp. 645–668.

230 MARTIN FARACH AND MIKKEL THORUP

[9] J. Felsenstein, Phylogenies from molecular sequences: Inference and reliability, Annual Rev.
Genetics, 22 (1988), pp. 521–565.

[10] C. R. Finden and A. D. Gordon, Obtaining common pruned trees, J. Classification, 2 (1985),
pp. 255–276.

[11] W. M. Fitch and E. Margoliash, The construction of phylogenetic trees, Science, 155 (1976),
pp. 29–94.

[12] H. Gabow and R. Tarjan, Faster scaling algorithms for network problems, SIAM J. Comput.,
18 (1989), pp. 1013–1036.

[13] D. M. Hillis, Molecular vs. morphological approaches to systematics, Annual Rev. Systematics
and Ecology, 18 (1987), pp. 23–42.

[14] J. Hunt and T. Szymanski, A fast algortihm for computing longest common subsequences,
Comm. Assoc. Comput. Mach., 20 (1977), pp. 350–353.

[15] F. K. Hwang and D. S. Richards, Steiner tree problems, Networks, 22 (1992), pp. 55–89.
[16] S. Kannan, E. Lawler, and T. Warnow, Determining the evolutionary tree, in Proc. 1st

Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1990, pp.
475–484.

[17] E. Kubicka, G. Kubicki, and F. R. McMorris, An algorithm to find agreement subtrees, J.
Classification, 12 (1995), pp. 91–100.

[18] G. J. Olsen. Earliest phylogenetic branchings: Comparing rRNA-based evolutionary trees
inferred with various techniques, Cold Spring Harbor Sympos. on Quantitative Biol., 52
(1987), pp. 825–837.

[19] N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing
phylogentic trees, Molecular Biol. Evol., 4 (1987), pp. 406–424.

[20] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, W. H. Freeman, San Francisco,
1973.

[21] M. Steel and T. Warnow, Kaikoura tree theorems: Computing the maximum agreement
subtree, Inform. Process. Lett., 48 (1993), pp. 77–82.

[22] D. L. Swofford and G. J. Olsen, Phylogeny reconstruction, in Molecular Systematics, D. M.
Hillis and C. Moritz, eds., Sinauer Associates Inc., Sunderland, MA, 1990, pp. 411–501.

[23] R. M. Verma, General techniques for analyzing recursive algorithms with applications, Tech-
nical report, Computer Science Department, University of Houston, Houston, TX, 1992.

[24] H. T. Wareham, On the computational complexity of inferring evolutionary trees, Master’s
thesis, Technical report 9301, Department of Computer Science, Memorial University of
Newfoundland, St. John’s, NF, Canada, 1993.

TOTAL PROTECTION OF ANALYTIC-INVARIANT INFORMATION
IN CROSS-TABULATED TABLES∗

MING-YANG KAO†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 231–242, February 1997 013

Abstract. To protect sensitive information in a cross-tabulated table, it is a common practice
to suppress some of the cells in the table. An analytic invariant is a power series in terms of the
suppressed cells that has a unique feasible value and a convergence radius equal to +∞. Intuitively,
the information contained in an invariant is not protected even though the values of the suppressed
cells are not disclosed. This paper gives an optimal linear-time algorithm for testing whether there
exist nontrivial analytic invariants in terms of the suppressed cells in a given set of suppressed
cells. This paper also presents NP-completeness results and an almost linear-time algorithm for the
problem of suppressing the minimum number of cells in addition to the sensitive ones so that the
resulting table does not leak analytic-invariant information about a given set of suppressed cells.

Key words. statistical tables, data security, analytic invariants, mathematical analysis, mixed
graph connectivity, graph augmentation

AMS subject classifications. 68Q22, 62A99, 05C99, 54C30

PII. S0097539793253589

1. Introduction. Cross-tabulated tables are used in a wide variety of documents
to organize and exhibit information, often with the values of some cells suppressed in
order to conceal sensitive information. Concerned with the effectiveness of the practice
of cell suppression [12], statisticians have raised two fundamental issues and developed
computational heuristics to various related problems [5, 7, 8, 9, 10, 11, 28, 29, 30, 31].
The detection issue is whether an adversary can deduce significant information about
the suppressed cells from the published data of a table. The protection issue is how a
table maker can suppress a small number of cells in addition to the sensitive ones so
that the resulting table does not leak significant information.

This paper investigates the complexity of how to protect a broad class of infor-
mation contained in a two-dimensional table that publishes (1) the values of all cells
except a set of sensitive ones, which are suppressed, (2) an upper bound and a lower
bound for each cell, and (3) all row sums and column sums of the complete set of
cells. The cells may have real or integer values. They may have different bounds, and
the bounds may be finite or infinite. The upper bound of a cell should be strictly
greater than its lower bound; otherwise, the value of that cell is immediately known
even if that cell is suppressed. The cells that are not suppressed also have upper and
lower bounds. These bounds are necessary because some of the unsuppressed cells
may later be suppressed to protect the information in the sensitive cells. (See Tables
1 and 2 for an example of a complete table and its published version.)

An unbounded feasible assignment to a table is an assignment of values to the
suppressed cells such that each row or column adds up to its published sum. A bounded
feasible assignment is an unbounded one that also obeys the bounds of the suppressed

∗ A preliminary version of this work appeared in Proc. 11th Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Comput. Sci. 775, Springer-Verlag, Berlin, 1994,
pp. 723–734. This research was supported in part by NSF grants MCS-8116678, DCR-8405478, and
CCR-9101385.

http://www.siam.org/journals/sicomp/26-1/25358.html
† Department of Computer Science, Duke University, Durham, NC 27708 (kao@cs.duke.edu). Part

of this work was done while the author was at the Department of Computer Science, Yale University,
New Haven, CT 06520.

231

232 M.-Y. KAO

Table 1

A complete table.

row
column
index

a b c d e f g h i row
sum

1 9.5 4.5 1.5 7 1.5 1.5 5.5 2 3 36.0

2 4.5 9.5 9.5 4.5 4.5 9.5 9.5 9.5 4.5 65.5

3 6 1.5 9.5 0 9.5 6 5.5 2 5.5 45.5

4 2 1.5 4 7 1.5 4.5 9.5 5.5 2 37.5

5 1.5 5.5 4 6 5.5 0 0 4.5 9.5 36.5

6 2 3 3 4 6 5.5 2 2 9.5 37.0

column
sum 25.5 25.5 31.5 28.5 28.5 27.0 32.0 25.5 34.0

Table 2

A published table.

row
column
index

a b c d e f g h i row
sum

1 1.5 7 1.5 1.5 5.5 2 3 36.0

2 65.5

3 6 1.5 6 5.5 2 5.5 45.5

4 2 1.5 4 7 1.5 5.5 2 37.5

5 1.5 5.5 4 6 5.5 36.5

6 2 3 3 4 6 5.5 2 2 37.0

column
sum 25.5 25.5 31.5 28.5 28.5 27.0 32.0 25.5 34.0

Note: Let Xp,q denote the cell at row p and column q. The lower and
upper bounds for all suppressed cells except X2,c and X3,c are −∞ and
+∞. The lower and upper bounds for X2,c and X3,c are 0 and 9.5.

cells. An analytic function of a table is a power series of the suppressed cells, each
regarded as a variable, such that the convergence radius is∞ [1, 4, 21, 22, 26, 27]. An
analytic invariant is an analytic function that has a unique value at all the bounded
feasible assignments. If an analytic invariant is formed by a linear combination of the
suppressed cells, then it is called a linear invariant [17, 19]. Similarly, a suppressed cell
is called an invariant cell [14, 15] if it is an invariant by itself. For instance, in Table

TOTAL PROTECTION OF STATISTICAL TABLES 233

2, a published table, let Xp,q be the cell at row p and column q. X6,i is an invariant
because it is the only suppressed cell in row 6. X2,c and X3,c are invariant cells
because their values are between 0 and 9.5, their sum is 19, and both cells are forced
to have the same unique value 9.5. Consequently, (X3,c·X2,c + 0.5·X2,c − 95)2·X1,b +
sin(X2,c·X2,a − 9.5·X2,a) is also an invariant.

Intuitively, the information contained in an analytic invariant is unprotected be-
cause its value can be uniquely deduced from the published data. In this paper, a
set of suppressed cells is totally protected if there exists no analytic invariant in terms
of the suppressed cells in the given set, except the trivial invariant that contains no
nonzero terms. Since the analytic power series form a very broad family of mathe-
matical functions, total protection conceals from the adversary a very large class of
information. This paper gives a very simple algorithm for testing whether a given
set of suppressed cells is totally protected. When a graph representation, called the
suppressed graph, of a table is given as input, this algorithm runs in optimal O(m+n)
time, where m is the number of suppressed cells and n is the total number of rows and
columns. This paper also considers the problem of computing and suppressing the
minimum number of additional cells so that a given set of original suppressed cells be-
comes totally protected. This problem is shown to be NP-complete. For a large class
of tables, this optimal-suppression problem can be solved in O((m+ n)·α(n,m+ n))
time, where α is an Ackerman’s inverse function and its value is practically a small
constant [2, 3, 6, 16]. Moreover, for this class of tables, every optimal set of cells for
additional suppression forms a spanning forest of some sort. As a consequence, at
most n− 1 additional cells need to be suppressed to achieve the total protection of a
given set of original suppressed cells. Since the size of a table may grow quadratically
in n, the suppression of n − 1 additional cells is a negligible price to pay for total
protection for a reasonably large table.

Previously, four other levels of data security have been considered that protect
information contained, respectively, in individual suppressed cells [14, 15], in a row
or column as a whole, in a set of k rows or k columns as a whole, and in a table
as a whole [18]. These four levels of data security and total protection differ in two
major aspects. First, these four levels of data security primarily protect information
expressible as linear invariants, whereas total protection protects the much broader
class of analytic-invariant information. Second, these four levels of data security em-
phasize protecting regular regions of a table, whereas total protection protects any
given set of suppressed cells and is more flexible. These four levels of data security and
total protection share some interesting similarities. As total protection corresponds to
spanning forests in suppressed graphs, these four levels of data security are equivalent
to some forms of 2-edge connectivity [14, 15], 2-vertex connectivity, k-vertex connec-
tivity, and graph completeness [18]. In this paper, the NP-completeness results and
efficient algorithms for total protection rely heavily on its graph characterizations.
Similarly, the equivalence characterizations of these four levels of data security have
been key in obtaining efficient algorithms [14, 15, 18] and NP-completeness proofs [18]
for various detection and protection problems.

Section 2 discusses basic concepts. Section 3 formally defines the notion of to-
tal protection and gives a linear-time algorithm to test for this notion. Sections 4
and 5 give NP-completeness results and efficient algorithms for optimal suppression
problems of total protection. Section 6 concludes this paper with discussions.

2. Basics of two-dimensional tables. This section discusses basic relation-
ships between tables and graphs.

234 M.-Y. KAO

row
column
index

a b c row
sum

1 0 9 1 10

2 9 9 0 18

3 6 0 5 11

column
sum 15 18 6

z z z
z z z

- -

��

? ?

Ca R2 Cc

R1 Cb R3

In the above 3 × 3 table, the number in each cell is the value of that cell. A cell with a
box is a suppressed cell. The lower and upper bounds of the suppressed cells are 0 and 9.
The graph below the table is the suppressed graph of the table. Vertex Rp corresponds to
row p, and vertex Cq to column q.

Fig. 1. A table and its suppressed graph.

A mixed graph is one that may contain both undirected and directed edges. A
traversable cycle or path in a mixed graph is one that can be traversed along the
directions of its edges. A direction-blind cycle or path is one that can be traversed if
the directions of its edges are disregarded. The word direction-blind is often omitted
for brevity. A mixed graph is connected (respectively, strongly connected) if each pair
of vertices are contained in a direction-blind path (respectively, traversable cycle). A
connected component (respectively, strongly connected component) of a mixed graph
is a maximal subgraph that is connected (respectively, strongly connected). A set of
edges in a mixed graph is an edge cut if its removal disconnects one or more connected
components of that graph. An edge cut is a minimal one if it has no proper subset
that is also an edge cut.

Henceforth, let T be a table, and let H′ = (A,B,E′) and H = (A,B,E) be the
bipartite mixed graphs constructed below. H′ and H are called the total graph and
the suppressed graph of T , respectively [15]. For each row (respectively, column) of T ,
there is a unique vertex in A (respectively, B). This vertex is called a row (respectively,
column) vertex. For each cell Xi,j at row i and column j in T , there is a unique edge
e in E between the vertices of row i and column j. If the value of Xi,j is strictly
between its bounds, then e is undirected. Otherwise, if the value is equal to the lower
(respectively, upper) bound, then e is directed towards to its column (respectively,
row) endpoint. Note that H′ is a complete bipartite mixed graph, i.e., there is exactly
one edge between each pair of vertices from the two vertex sets of the graph. The
graph H is the subgraph of H′ whose edge set consists of only those corresponding to
the suppressed cells of T . Figure 1 illustrates a table and its suppressed graph. For

TOTAL PROTECTION OF STATISTICAL TABLES 235

convenience, a row or column of T will be regarded as a vertex in H and a cell as an
edge, and vice versa.

Theorem 2.1 (see [15]). A suppressed cell of T is an invariant cell if and only
if it is not in an edge-simple traversable cycle of H.

The effective area of an analytic function F of T , denoted by EA(F), is the set of
variables in the nonzero terms of F . The function F is called nonzero if EA(F) 6= ∅.
Note that because the convergence radius of F is ∞, EA(F) is independent of the
point at which F is expanded into a power series.

Theorem 2.2 (see [17]). For every minimal edge cut Y of a strongly connected
component of H, T has a linear invariant F with EA(F) = Y .

The bounded kernel (respectively, unbounded kernel) of T , denoted by BK(T)
(respectively, UK(T)), is the real vector space consisting of all linear combinations
of x − y, where x and y are arbitrary bounded (respectively, unbounded) feasible
assignments of T .

Because H is bipartite, every cycle of H is of even length. Thus the edges of an
edge-simple direction-blind cycle of H can be alternately labeled with +1 and −1.
Such a labeling is called a direction-blind labeling. A direction-blindly labeled cycle
is regarded as an assignment to the suppressed cells of T . If the corresponding edge
of a suppressed cell is in the given cycle, then the value assigned to that cell is the
label of that edge; otherwise, the value is 0. Note that this assignment needs not be
an unbounded feasible assignment of T .

Theorem 2.3 (see [19]).
1. UK(T) = BK(T) if every connected component of H is strongly connected.
2. Every direction-blindly labeled cycle of H is a vector in UK(T).

3. Total protection. A set Q of suppressed cells of T is totally protected in T
if there is no nonzero analytic invariant F of T with EA(F) ⊆ Q. The goal of total
protection can be better understood by considering Q as the set of suppressed cells
that contain sensitive data. The total protection of Q means that no precise analytic
information about these data, not even their row and column sums, can be deduced
from the published data of T . Since analytic power series form a very large class of
functions in mathematical sciences, this notion of protection requires a large class of
information about Q to be concealed from the adversary.

The next lemma and theorem characterize the notion of total protection in graph
concepts.

Lemma 3.1. If F is a nonzero analytic invariant of T such that the edges in
EA(F) are contained in the strongly connected components of H, then for some
strongly connected component D of H, EA(F) ∩D is an edge cut of D.

Remark. The converse of this lemma is not true; for a counterexample, consider
the linear combination X1,a + 2·X1,b for the table in Figure 1. Also, if F is a nonzero
linear invariant, then for every strongly connected component D of H, the set D ∩
EA(F) is either empty or is an edge cut of D [17].

Proof. Let Ts be the table constructed from T by also publishing the suppressed
cells that are not in the strongly connected components of H. By Theorem 2.1, F
remains a nonzero analytic function of Ts. Also, the connected components of the
suppressed graph Hs of Ts are the strongly connected components of H. Thus to
prove the lemma, it suffices to prove it for Ts, Hs, and F .

Let x0 be a fixed bounded feasible assignment of Ts. Let K = {x − x0|x is a
bounded feasible assignment of Ts}. Since F is an analytic invariant of Ts, the function
G(x) = F (x)−F (x0) is an analytic invariant of Ts with EA(G) = EA(F) and its value

236 M.-Y. KAO

is zero over x0 +K. Because K contains a nonempty open subset of BK(Ts), G is zero
over x0 + BK(Ts). By Theorem 2.3(1) and the strong connectivity of the connected
components ofHs, BK(Ts) = UK(Ts) and G is zero over x0+UK(Ts). Thus it suffices
to show that if D−EA(F) is connected for all connected components D of Hs, then
G(x0 + z0) 6= 0 for some z0 ∈ UK(Ts). To construct z0, let EA(G) = {e1, . . . , ek}.
Let Di be the connected component of Hs that contains ei. By the connectivity of
Di −EA(F), there is a vertex-simple path Pi in Di −EA(F) between the endpoints
of ei. Let Ci be the vertex-simple cycle formed by ei and Pi. Next, direction-blindly
label Ci with ei labeled +1. Since G is a nonzero power series, G(x0+y0) 6= 0 for some

vector y0. Note that y0 is not necessarily in UK(Ts). Therefore, let z0 =
∑k
i=1 hi·Ci,

where hi is the component of y0 at variable ei. Then by Theorem 2.3(2), z0 ∈ UK(Ts).
Because Pi is in Hs −EA(F), ei appears only in the term Ci in

∑k
i=1 hi·Ci. Thus z0

and y0 have the same component values at the variables in EA(G). Since the variables
not in EA(G) do not appear in any expansion of G, G(x0 + z0) = G(x0 + y0) 6= 0,
proving the lemma.

Theorem 3.2. A set Q of suppressed cells is totally protected in T if and only
if the two statements below are both true:

1. The edges in Q are contained in the strongly connected components of H.
2. For each strongly connected component D of H, the graph D−Q is connected.

Proof. It is equivalent to show that Q is not totally protected if and only if
Q contains some edges not in the strongly connected components of H or for some
strongly connected component D of H, the graph D − Q is not connected. The ⇒
direction follows from Lemma 3.1. As for the ⇐ direction, if Q contains some edges
not in the strongly connected components of H, then by Theorem 2.1, Q contains
some invariant cells of T and thus cannot be totally protected. If for some strongly
connected component D of H, the graph D − Q is not connected, then some subset
Y of Q is a minimal edge cut of D. By Theorem 2.2, T has a linear invariant F with
EA(F) = Y and thus Q is not totally protected.

This paper investigates the following two problems concerning how to achieve
total protection.

Problem 1 (protection test).

• Input: The suppressed graph H and a set Q of suppressed cells of a table T .
• Output: Is Q totally protected in T ?

Theorem 3.3. Problem 1 can be solved in linear time in the size of H.

Proof. This problem can be solved within the desired time bound by means of
Theorem 3.2 and linear-time algorithms for computing connected components and
strongly connected components [2, 3, 6, 16].

Problem 2 (optimal suppression).

• Input: A table T , a subset Q of E, and an integer p ≥ 0, where E is the set
of all suppressed cells in T .

• Output: Is there a set P consisting of at most p published cells of T such that
Q is totally protected in the table T formed by T with the cells in P also
suppressed?

This problem is clearly in NP. Section 4 shows that this problem with Q = E is
NP-complete. In contrast, section 5 proves that if the total graph of T is undirected,
then this problem with general Q can be solved in almost linear time.

4. NP-completeness of optimal suppression. Throughout this section, the
total graph of T may or may not be undirected.

TOTAL PROTECTION OF STATISTICAL TABLES 237

Theorem 4.1. Problem 2 with Q = E is NP-complete.

To prove this theorem, the idea is to first transform Problem 2 with Q = E to the
following graph problem and then prove the NP-completeness of the graph problem.

Problem 3.

• Input: A complete bipartite mixed graph H′ = (A,B,E′), a subgraph H =
(A,B,E), and an integer p ≥ 0.
• Output: Does any set P of at most p edges in E′ − E hold the following two

properties?

Property N1: Every connected component of (A,B,E ∪ P) is strongly con-
nected.
Property N2: The vertices of each connected component of H are connected
in (A,B, P), i.e., contained in a connected component in (A,B, P).

Lemma 4.2. Problem 2 with Q = E and Problem 3 can be reduced to each other
in linear time.

Proof. Given an instance T and p of Problem 2 with Q = E, the desired instance
of Problem 3 is the total graph H′ = (A,B,E′), the suppressed graph H = (A,B,E)
of T , and p itself. This transformation can easily be computed in linear time. There
are two directions to show that it reduces Problem 2 to Problem 3. Assume that P
is a desired set for Problem 3. By Property N1, statement 1 in Theorem 3.2 is true.
Also, every strongly connected component of (A,B,E ∪P) is a union of edge-disjoint
connected components in H and (A,B, P). Therefore, by Property N2, statement 2 of
Theorem 3.2 holds. As a result, P itself is a desired set for Problem 2. On the other
hand, assume that P is a desired set for Problem 2. Let P ′ be the set of all edges in
P that are also in the strongly connected components of (A,B,E ∪P). By statement
1 of Theorem 3.2 and the total protection of E in T , the connected components of
(A,B,E∪P ′) are the strongly connected components of (A,B,E∪P). Thus P ′ holds
Property N1. Next, because a connected component of H is included in a strongly
connected component of (A,B,E ∪P ′), by statement 2 of Theorem 3.2, P ′ also holds
Property N2 and thus is a desired set for Problem 3.

Given an instance H′, H, and p of Problem 3, the desired instance of Problem 2
with Q = E is p itself and the table defined as follows. For each vertex in A (respec-
tively, B), there is a row (respectively, column). The upper and lower bounds for each
cell are 2 and 0. For each edge e in E′, its corresponding cell is at the row and column
corresponding to its endpoints. The value of that cell is 1 (respectively, 0 and 2) if e
is undirected (respectively, directed from A to B or directed from B to A). For each
edge e in H, its corresponding cell is suppressed. Note that the total and suppressed
graphs of this table are H′ and H themselves. Thus the remaining proof details for
this reduction are essentially the same as for the other reduction.

Both Problem 2 with Q = E and Problem 3 are clearly in NP. To prove their
completeness in NP, by Lemma 4.2, it suffices to reduce the following NP-complete
problem to Problem 3.

Problem 4 (hitting set [13]).

• Input: A finite set S, a nonempty family W of subsets of S, and an integer
h ≥ 0.
• Output: Is there a subset S′ of S such that |S′| ≤ h and S′ contains at least

one element in each set in W?

Given an instance S = {s1, . . . , sq}, W = {S1, . . . , Sr}, h of Problem 4, an in-
stance H′ = (A,B,E′), H = (A,B,E), p of Problem 3 is constructed as follows:

• Rule 1: Let A = {a0, a1, . . . , aq}. The vertices a1, . . . , aq correspond to

238 M.-Y. KAO

s1, . . . , sq, but a0 corresponds to no si.
• Rule 2: Let B = {b0, b1, . . . , br}. The vertices b1, . . . , br correspond to
S1, . . . , Sr of S, but b0 corresponds to no Sj .
• Rule 3: Let E′ be the union of the following sets of edges:

1. {b0 → a0};
2. {a0 → bj | ∀ j with 1 ≤ j ≤ r};
3. {ai → b0 | ∀ i with 1 ≤ i ≤ q};
4. {bj → ai | ∀ si and Sj with si ∈ Sj};
5. {ai → bj | ∀ si and Sj with si 6∈ Sj}.

• Rule 4: Let E = {a0 → b1, . . . , a0 → br}.
• Rule 5: Let p = h+ r + 1.

The above construction can easily be computed in polynomial time. The next
two lemmas show that it is indeed a desired reduction.

Lemma 4.3. If some set S′ ⊆ S with |S′| ≤ h contains at least one element
in each Sj, then there is a set P ⊆ E′ − E consisting of at most p edges that holds
Properties N1 and N2.

Proof. For each Sj , let sij be an element in S′ ∩ Sj ; by the assumption of
this lemma, these elements exist. Next, let P1 = {b1 → ai1 , . . . , br → air} and
P2 = {ai1 → b0, . . . , air → b0}; by Rule 3, these two sets exist. Now let P =
P1 ∪ P2 ∪ {b0 → a0}. Note that P ⊆ E′ − E. Since P1 consists of r edges and P2

consists of at most |S′| edges, P has at most p edges. P holds Property N1 because
E ∪ P consists of the edges in the traversable cycles b0 → a0, a0 → bj , bj → aij , and
aij → b0. Property N2 of P follows from the fact that P connects {a0, b1, . . . , br},
which forms the only connected component of H with more than one vertex.

Lemma 4.4. If some set P ⊆ E′−E consisting of at most p edges holds Properties
N1 and N2, then there exists a set S′ ⊆ S with |S′| ≤ h that contains at least one
element in each Sj.

Proof. By Property N1, P must contain some edge bj → aij for each j with
1 ≤ j ≤ r. By Rule 3(4), sij ∈ Sj . Now let S′ = {si1 , . . . , sir}. To calculate the
size of S′, note that by Property N1, P must also contain b0 → a0 and at least
one edge leaving aij for each j. Thus |P | ≥ |S′| + r + 1. Then |S′| ≤ h because
|P | ≤ p = r + h+ 1.

The above lemma completes the proof of Theorem 4.1.

5. Optimal suppression in almost linear time. Under the assumption that
the total graph of T is undirected, this section considers the following optimization
version of Problem 2.

Problem 5 (optimal suppression).
• Input: The suppressed graph H = (A,B,E) of a table T and a subset Q of
E.
• Output: A set P consisting of the smallest number of published cells in T

such that Q is totally protected in the table T formed by T with the cells in
P also suppressed.

For all positive integers n and m, let α denote the best known function such that
m + n unions and finds of disjoint subsets of an n-element set can be performed in
O((m+ n)·α(n,m+ n)) time [2, 3, 6, 16].

Theorem 5.1. Problem 5 can be solved in O((m + n)·α(n,m + n)) time, where
m is the number of suppressed cells and n is the total number of rows and columns in
T .

To prove Theorem 5.1, Problem 5 is first converted to the next problem.

TOTAL PROTECTION OF STATISTICAL TABLES 239

Problem 6.

• Input: An undirected bipartite graph H = (A,B,E) and a subset Q of E.
• Output: A forest P formed by the smallest number of undirected edges be-

tween A and B but not in E such that the vertices of each connected com-
ponent of (A,B,Q) are connected in (A,B, (E −Q)∪P), i.e., contained in a
connected component of (A,B, (E −Q) ∪ P).

Lemma 5.2. Problems 5 and 6 can be reduced to each other in linear time.

Proof. The proof uses arguments similar to those in the proof of Lemma 4.2. The
strong connectivity properties in Problem 3 and Theorem 3.2 can be ignored because
this section assumes that the total graph of T is undirected. The forest structure of
P follows from its minimality.

Note that because Q ⊆ E, the vertices of each connected component of (A,B,Q)
are connected in (A,B, (E − Q) ∪ P) if and only if the vertices of each connected
component of H are connected in (A,B, (E − Q) ∪ P). Using this equivalence, the
next stage of the proof of Theorem 5.1 further reduces Problem 6 to another graph
problem with the steps below:

M1. Compute the connected components D1, . . . , Dr of H.
M2. For each Di, compute a maximal forest Ki over the vertices of Di using only

the edges in E −Q.
M3. For each Di, extend Ki to a maximal forest Li over the vertices of Di using

additional edges only from the complement graph Dc
i of Di.

M4. Construct a graph Ĥ from H by contracting each tree in each Li into a single
vertex.

M5. For each Di, compute its contracted version D̂i in Ĥ.
M6. Divide the vertices of Ĥ into three sets, VA, VB , and VAB , where a vertex in

VA (respectively, VB) consists of a single vertex from A (respectively, B) and a vertex
in VAB contains at least two vertices (thus with at least one from each of A and B).

A set of undirected edges between vertices in VA, VB , and VAB is called semitri-
partite if every edge in that set is between two of the three sets or is between two
vertices in VAB . Note that the set of edges in Ĥ is semitripartite.

Problem 7.

• Input: Three disjoint finite sets VA, VB , and VAB and a partition D̂1, . . . , D̂r

of VA ∪ VB ∪ VAB .
• Output: A semitripartite set P̂ consisting of the smallest number of edges

such that no edge in P̂ connects two vertices in the same Di and the vertices
in each Di are connected in the graph formed by is P̂ .

Lemma 5.3. Problem 6 can be reduced to Problem 7 in O((m+ n)·α(n,m + n))
time, where m is the number of edges and n is the number of vertices in H.

Proof. The key idea is that an optimal P for Problem 6 can be obtained by
connecting the vertices of each Di first with edges in E − Q, which can be used
for free, next with edges in Dc

i , and then with edges outside Di ∪ Dc
i . Let P ′ be

a set of |P̂ | edges in the complement of H that becomes P̂ after step M4. Then
P ′ ∪ (L1 −K1) ∪ · · · ∪ (Lr −Kr) is a desired output P for Problem 6, showing that
steps M1–M6 can indeed reduce Problem 6 to Problem 7. Step M3 is the only step
that requires more than linear time. It is important to avoid directly computing Dc

i

at step M3. Computing these complement graphs takes Θ(|A|·|B|) time if some Di

contains a constant fraction of the vertices in H. In such a case, if H is sparse, then
the time spent on computing Dc

i alone is far greater than the desired complexity.
Instead of this näıve approach, step M3 uses efficient techniques recently developed

240 M.-Y. KAO

for complement-graph problems [20] and takes the desired O((m + n)·α(n,m + n))
time.

The last stage of the proof of Theorem 5.1 is to give a linear-time algorithm for
Problem 7. A component D̂i is good if it has at least two vertices with at least one
from VAB ; it is bad if it has at least two vertices with none from VAB (and thus with
at least one from each of VA and VB). The goal is to use as few edges as possible to
connect the vertices in each of these components. Let wg and wb be the numbers of
good and bad components, respectively. There are three cases based on the value of
wg.

Case 1: wg = 0. If wb = 0, then let P̂ = ∅ because no D̂i needs to be connected.

If wb > 0 and |VAB | > 0, then include in P̂ an edge between each vertex in the bad
components and an arbitrary vertex in VAB . If wb > 0 and |VAB | = 0, then there
does not exist a desired P̂ and the given instance of Problem 7 has no solution.

Case 2: wg = 1. Let D̂j be the unique good component.

If wb > 0, then find a bad component D̂k and three vertices u ∈ VAB ∩ D̂j ,

v1 ∈ VA ∩ D̂k, and v2 ∈ VB ∩ D̂k. Next, include in P̂ an edge between v2 and each
vertex in (D̂j ∩ (VA ∪ VAB))− {u}, an edge between v1 and each vertex in D̂j ∩ VB ,
and an edge between u and each vertex in the bad components.

If wb = 0 and VAB − D̂j 6= ∅, then include in P̂ an edge between every vertex in

D̂j and an arbitrary vertex in VAB − D̂j .

If wb = 0 and VAB − D̂j = ∅, then there are sixteen subcases depending on

whether VA ∩ D̂j = ∅, VA − D̂j = ∅, and VB ∩ D̂j = ∅, VB − D̂j = ∅. If VA ∩ D̂j 6= ∅,
VA− D̂j 6= ∅, VB ∩ D̂j 6= ∅, and VB − D̂j 6= ∅, then include in P̂ an edge between each

vertex in VA∩ D̂j and a vertex v2 ∈ VB− D̂j , an edge between each vertex in VB ∩ D̂j

and a vertex v1 ∈ VA − D̂j , and an edge between v1 and each vertex in VAB ∪ {v2}.
The other fifteen subcases are handled similarly.

Case 3: wg ≥ 2. Let d be the total number of vertices in the good and bad

components. Let w′ be the number of connected components in P̂ that contain the
vertices of at least one good or bad D̂i; let d′ be the number of vertices in these
connected components of P̂ that are not in any good or bad D̂i. By its minimality, P̂
forms a forest and |P̂ | = d′+ d−w′. The techniques for Cases 1 and 2 can be used to
show that there exists an optimal P̂ with d′ = 0. Thus to minimize |P̂ | is to maximize
w′. Because two bad components cannot be connected by edges between them alone,
the strategy for maximizing w′ is to pair a good component with a bad one, whenever
possible, and include in P̂ edges between them to connect their vertices into a tree.
After this step, if there remain unconnected bad components but no unconnected good
ones, then add to P an edge between each vertex in the remaining bad components
and an arbitrary vertex in the intersection of VAB and a good component. On the
other hand, if there remain good components but no bad ones, then pair up these good
components similarly. After this step, if there remains a good component, then add
to P̂ an edge between each vertex in this last good component and an arbitrary vertex
in the intersection of VAB and another good component. (As a result, if wg ≤ wb,

then |P̂ | = d− wg; otherwise, |P̂ | = d− bwg+wb2 c.)
The above discussion yields a linear-time algorithm for Problem 7 in a straight-

forward manner. This finishes the proof of Theorem 5.1.

6. Discussions. Lemma 5.2 has several significant implications. Since P is a
forest, it has at most n−1 edges. Thus for a table with an undirected total graph, no
more than n−1 additional cells need to be suppressed to achieve total protection. This

TOTAL PROTECTION OF STATISTICAL TABLES 241

is a small number compared to the size of the table, which may grow quadratically
in n. Moreover, when H is connected and E = Q, (A,B, P) is a spanning tree. In
this case, many well-studied tree-related computational concepts and tools, such as
minimum-cost spanning trees, can be applied to consider other optimal suppression
problems for total protection.

Acknowledgments. The author is deeply grateful to Dan Gusfield for his con-
stant encouragement and help. The author wishes to thank an anonymous referee
for very helpful and thorough comments. The referee has also pointed out that some
very interesting materials related to Theorems 2.2 and 2.3 have been developed in the
context of protecting sums of suppressed cells [23, 24, 25].

REFERENCES

[1] L. Ahlfors, Complex Analysis, McGraw–Hill, New York, 1979.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison–Wesley, Reading, MA, 1974.
[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison–

Wesley, Reading, MA, 1983.
[4] T. M. Apostol, Mathematical Analysis, Addison–Wesley, Reading, MA, 1974.
[5] G. J. Brackstone, L. Chapman, and G. Sande, Protecting the confidentiality of individ-

ual statistical records in Canada, in Proc. Conference of the European Statisticians 31st
Plenary Session, Conference of European Statistics, Geneva, 1983.

[6] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1991.

[7] L. H. Cox, Disclosure analysis and cell suppression, in Proceedings of the American Statistical
Association, Social Statistics Section, American Statistical Association, Alexandria, VA,
1975, pp. 380–382.

[8] L. H. Cox, Suppression methodology in statistics disclosure, in Proc. American Statistical
Association, Social Statistics Section, American Statistical Association, Alexandria, VA,
1977, pp. 750–755.

[9] L. H. Cox, Automated statistical disclosure control, in Proc. American Statistical Association,
Survey Research Method Section, American Statistical Association, Alexandria, VA, 1978,
pp. 177–182.

[10] L. H. Cox, Suppression methodology and statistical disclosure control, J. Amer. Statist. Assoc.,
75 (1980), pp. 377–385.

[11] L. H. Cox and G. Sande, Techniques for preserving statistical confidentiality, in Proc. 42nd
Session of the International Statistical Institute, the International Association of Survey
Statisticians, Voorburg, The Netherlands, 1979.

[12] D. Denning, Cryptography and Data Security, Addison–Wesley, Reading, MA, 1982.
[13] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, New York, 1979.
[14] D. Gusfield, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987), pp. 599–612.
[15] D. Gusfield, A graph theoretic approach to statistical data security, SIAM J. Comput., 17

(1988), pp. 552–571.
[16] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, New

York, 1976.
[17] M. Y. Kao, Minimal linear invariants, in Algorithms, Concurrency and Knowledge, Proc. 1995

Asian Computing Science Conference, K. Kanchanasut and J. J. Levy, eds., Lecture Notes
in Comput. Sci. 1023, Springer-Verlag, New York, 1995, pp. 23–33.

[18] M. Y. Kao, Data security equals graph connectivity, SIAM J. Discrete Math., 9 (1996), pp. 87–
100.

[19] M. Y. Kao and D. Gusfield, Efficient detection and protection of information in cross tab-
ulated tables I: Linear invariant test, SIAM J. Discrete Math., 6 (1993), pp. 460–476.

[20] M. Y. Kao and S. H. Teng, Simple and efficient compression schemes for dense and com-
plement graphs, in Proc. 5th International Symposium on Algorithms and Computation,
D. Z. Du and X. S. Zhang, eds., Lecture Notes in Comput. Sci. 834, Springer-Verlag, New
York, 1994, pp. 201–210.

[21] S. Lang, Complex Analysis, Springer-Verlag, New York, 1985.

242 M.-Y. KAO

[22] L. H. Loomis and S. Sternberg, Advanced Calculus, Addison–Wesley, Reading, MA, 1968.
[23] F. M. Malvestuto, A universal-scheme approach to statistical databases containing homoge-

neous summary tables, ACM Trans. Database Systems, 18 (1993), pp. 679–708.
[24] F. M. Malvestuto and M. Moscarini, Query evaluability in statistical databases, IEEE

Trans. Knowledge Data Engrg., 2 (1990), pp. 425–430.
[25] F. M. Malvestuto, M. Moscarini, and M. Rafanelli, Suppressing marginal cells to protect

sensitive information in a two-dimensional statistical table, in Proc. ACM Symposium on
Principles of Database Systems, ACM, New York, 1991, pp. 252–258.

[26] H. L. Royden, Real Analysis, Macmillan, New York, 1988.
[27] W. Rudin, Principles of Mathematical Analysis, McGraw–Hill, New York, 1975.
[28] G. Sande, Towards automated disclosure analysis for establishment based statistics, Technical

report, Statistics Canada, Ottawa, ON, 1977.
[29] G. Sande, A theorem concerning elementary aggregations in simple tables, Technical report,

Statistics Canada, Ottawa, ON, 1978.
[30] G. Sande, Automated cell suppression to preserve confidentiality of business statistics, Statist.

J. United Nations, 2 (1984), pp. 33–41.
[31] G. Sande, Confidentiality and polyhedra: An analysis of suppressed entries on cross tabula-

tions, Technical report, Statistics Canada, Ottawa, ON.

ON THE POWER OF REAL TURING MACHINES OVER BINARY
INPUTS∗

FELIPE CUCKER† AND DIMA GRIGORIEV‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 243–254, February 1997 014

Abstract. In this paper, we study the computational power of real Turing machines over binary
inputs. Our main result is that the class of binary sets that can be decided by real Turing machines
in parallel polynomial time is exactly the class PSPACE/poly.

Key words. real-number machines and computations, complexity classes

AMS subject classifications. 68Q05, 68Q15

PII. S0097539794270340

Introduction. In recent years, the study of the complexity of computational
problems involving real numbers has been an increasing research area. A foundational
paper has been [5], where a computational model—the real Turing machine—for deal-
ing with the above problems was developed.

One research direction that has been studied intensively during the last two years
is the computational power of real Turing machines over binary inputs. The general
problem can be roughly stated in the following way. Let us consider a class C of
real Turing machines that work under some resource bound (for instance, polynomial
time, branching only on equality, etc.). If we restrict these machines to work on binary
inputs (i.e., finite words over {0, 1}), they define a class of binary languages D. The
question is, what can we say about D depending on C?

More formally, let us denote by IR∞ the direct sum of countably many copies
of IR and let P(IR∞) be the set of its subsets. Also, let us denote by Σ the subset
{0, 1} of IR and—as usual—by Σ∗ the subset of IR∞ consisting of those vectors whose
components are in Σ. Given any complexity class C ⊆ P(IR∞), we define its Boolean
part to be the class of binary languages

BP(C) = {X ∩ Σ∗ : X ∈ C}.

Our problem now can be stated as follows: given a complexity class of real sets C
characterize BP(C).

A possible origin of the problem is the recent interest in the computational power
of neural networks. The first results characterized the power of nets with rational
weights working within polynomial time by showing that they compute exactly the
sets in P (cf. [28]). The same problem was then considered for neural networks with
real weights, and it was shown that the power of these nets working within polynomial
time is exactly P/poly (cf. [29] and [23]).

This latter problem considers in a natural way a setting in which an algebraic
model having real constants operates over binary inputs. A next step was then taken

∗ Received by the editors June 27, 1994; accepted for publication (in revised form) April 28, 1995.
http://www.siam.org/journals/sicomp/26-1/27034.html
† Universitat Pompeu Fabra, Balmes 132, Barcelona 08008, Spain (cucker@upf.es). The research

of this author was partially supported by DGICyT PB 920498 and EC ESPRIT BRA Program
contracts 7141 and 8556, projects ALCOM II and NeuroCOLT.
‡ Departments of Computer Science and Mathematics, Pennsylvania State University, University

Park, PA 16802 (dima@cse.psu.edu). The research of this author was partially supported by the
Volkswagen–Stiftung.

243

244 F. CUCKER AND D. GRIGORIEV

by Koiran, who passed from a structured model—the neural net—to a general one—
the real Turing machine. However, he did not deal with the real Turing machine as it
was introduced in [5] but with a restricted version of it that can do only a moderate
use of multiplication, namely, all rational functions intermediately computed (in the
input variables as well as in the machine’s constants) must have degree and coefficient
size bounded by the running time. For this weak model, he considered the class PW
of sets accepted in polynomial time and he proved that BP(PW) = P/poly (see [20]).

Subsequently, several papers exhibited new results on Boolean parts. In [13], it
was shown that BP(PARW) = PSPACE/poly, where PARW is the class of subsets
of IR∞ decided in weak parallel polynomial time. Also, for additive machines (i.e.,
real Turing machines that do not perform multiplications at all), it was shown in
[21] that BP(Padd) = P/poly and BP(NPadd) = NP/poly. Here Padd and NPadd
denote the obvious classes, but we recall that the nondeterministic guesses in this
model are real numbers. Moreover, if the machines are order free, i.e., they are
required to branch only on equality tests, we now have that BP(P=

add) = P and that
BP(NP=

add) = NP [21]. These results were subsequently generalized in [11] to all the
levels of the polynomial hierarchy constructed upon NPadd (or NP=

add) as well as to
the class PARadd (or PAR =

add) of sets computed in parallel polynomial time whose
Boolean part is proven to be PSPACE/poly (respectively, PSPACE).

None of the results mentioned was done for the (unrestricted) real Turing machine.
In fact, for this case, it was even asked whether there exists a subset of Σ∗ not
belonging to the BP(PIR) (cf. [14]). First steps in this direction were done in [22],
where it was shown that if we consider order-free machines, then we have the inclusion
BP(P=

IR) ⊆ BPP (the class of sets decided by randomized machines in polynomial time
with bounded probability error; see [1, Chapter 6]) as well as a positive answer to
the question above. In fact, if PHIR is the polynomial hierarchy constructed upon
NPIR, the existence of binary languages not belonging to BP(PHIR) (and a fortiori
not belonging to BP(PIR)) was also proved in [22].

The aim of this paper is to prove that BP(PARIR) = PSPACE/poly, where PARIR

is the class of sets computed in parallel polynomial time by (ordinary) real Turing
machines. As a consequence, we obtain the existence of binary sets that do not belong
to the Boolean part of PARIR (an extension of the result in [22] since PHIR ⊆ PARIR).
Also, a separation of complexity classes in the real setting follows. If we consider the
class EXPW of subsets of IR∞ accepted by RTM in weak exponential time as defined
in [20], the Boolean part above implies that the inclusion PARIR ⊂ EXPW is strict.

Refining our main theorem a bit, we show that it is even possible to allow a
polynomial advice (i.e., a polynomially long sequence of real numbers) to PARIR

without modifying its Boolean part—in other words, that we have BP(PARIR)/poly =
PSPACE/poly. Since it is known from [11] that the Boolean part of PARadd (where
no multiplications are allowed) is PSPACE/poly, we deduce that multiplication or
nonuniformity (under the form of a polynomial advice) are of no help to decide binary
sets in the presence of parallelism.

1. Some geometrical background. In this paper, IN,ZZ, 0Q, IR, and C denote
the sets of natural, integer, rational, real, and complex numbers, respectively. By IRalg
we denote the real closure of 0Q, i.e., the field of all real algebraic numbers. Also, for
any polynomial f with integer coefficients, we shall denote by |coeff(f)| the maximal
absolute value of its coefficients.

The aim of this section is to show how to find real algebraic points in the connected
components of nonempty open sets. We closelly follow [16]. Thus let g1, . . . , gN ∈

ON THE POWER OF REAL TURING MACHINES 245

ZZ[X1, . . . , Xk] and let

V = {x ∈ IRk : g1(x) > 0& · · ·&gN (x) > 0}

be an open nonempty semialgebraic set. For the rest of this section, we consider d a
bound on the degree of each gi and consider L a bound for all |coeff(gi)|.

Lemma 1.1 (see [16, Lemma 10]). Let g =
∏N
i=1 gi and dg be the degree of g.

Then there exists a positive integer γ1 such that any connected component of V has a
nonempty intersection with the ball B(R), where

R = Ldg
kγ1
.

Let us now recall (see [6, section 9.5]) that a point a ∈ IRk is a critical point for
a function f : IRk → IR when it satisfies

∂f

∂X1
(a) = · · · = ∂f

∂Xk
(a) = 0.

In this case, the value b = f(a) is said to be a critical value of f . In the case when f
is a polynomial function, Sard’s lemma (see [6, Théorème 9.5.2] or [24]) implies that
there are only a finite number of critical values of f .

This last fact was used in [16] (and in several subsequent papers) to reduce the
dimension of nonempty semialgebraic sets to zero (thus avoiding cascading of projec-
tions) in the algorithm for deciding emptiness of semialgebraic sets.

Let us now consider the polynomials

g0 = R2 −
k∑
i=1

X2
i

and

G = g0

N∏
i=1

gi.

We have that degG = dG < Nd+ 2 and LG = |coeff(G)| ≤ LdG
O(k)

(Ldk)O(N) due to
Lemma 1.1.

The following result gives a bound on the small critical values of G.
Lemma 1.2. There exists a positive integer γ2 such that for every nonzero critical

value b of G, we have |b| > C−1, where

C = LdG
kγ2

G .

Proof. Let us consider the system of equations in the variables X1, . . . , Xk, Z,

G− Z =
∂G

∂X1
= · · · = ∂G

∂Xk
= 0,

as well as its set of solutions S ⊆ IRk+1. On any connected component of S, the
coordinate Z, being the critical value of G, is constant since G is continuous and
due to Sard’s lemma. Now, since the degrees and the coefficients of the polynomials
appearing in this system are bounded by dG and O(LGdG), respectively, if we apply

246 F. CUCKER AND D. GRIGORIEV

the quantifier-elimination algorithm given in [18] or [25] along X1, . . . , Xk onto Z, we
get a finite set of points in IR (just the critical values) such that each nonzero point
has absolute value greater than (

LdG
kγ2

G

)−1

.

Remark 1. In the preceding proof, the use of quantifier elimination is not strictly
necessary. One can instead use the bounds for the representative points from the
connected components of S given in the main theorem of [16].

Because of the preceding lemma, we have that the algebraic set

W0 = {x ∈ IRk : G(x) = C−1}

is a nonsingular, closed hypersurface with the property that each connected compo-
nent of V ∩ B(R) contains at least one (bounded) connected component of W0 (cf.
[24]). Note that W0 do not intersect the boundary of B(R).

Now Lemma 5 of [16] asserts the existence of integers 0 ≤ v2, . . . , vn ≤ (2dG)k

such that the system

G− C−1 =

(
∂G

∂X2

)2

− v2
(2dG)kk

∆ = · · · =
(
∂G

∂Xk

)2

− vk
(2dG)kk

∆ = 0,

where ∆ =
∑k
i=1(∂G∂Xi)

2, has a finite number of solutions in IRk. Moreover, each of
these solutions is an absolutely irreducible zero–dimensional component of the variety
in Ck given by this system of equations. Due to Bezout’s inequality, the number of
real solutions is bounded by (2dG)k. Besides (cf. Lemma 4 in [16]), each bounded
connected component of W0 contains a point satisfying the system.

We can summarize the preceding results in the following theorem, which will be
our main technical tool in the next section.

Theorem 1.3. Let g1, . . . , gN ∈ ZZ[X1, . . . , Xk] satisfy for every i ≤ N the bounds
deg(gi) ≤ d and |coeff(gi)| ≤ L. Then with the notations introduced above, there are
integers 0 ≤ v2, . . . , vk ≤ (2dG)k such that the set W ⊆ IRk defined by

G− C−1 =

(
∂G

∂X2

)2

− v2
(2dG)kk

∆ = · · · =
(
∂G

∂Xk

)2

− vk
(2dG)kk

∆ = 0

is finite. Moreover, the number of its points does not exceed (2dG)k and every con-
nected component of

V = {x ∈ IRk : g1(x) > 0 & · · ·& gN (x) > 0}

contains at least one point of W .

2. Some background on machine models. In the following sections, we shall
deal with real Turing machines (or RTMs for short) as introduced in [5].

Let us give a brief description of them for the finite-dimensional case. A finite-
dimensional RTM is specified by an input space IRn, an output space IRm, and a
state space IRs (s ≥ n,m) together with a finite directed graph whose nodes, labeled
{1, . . . , N}, are of four different types. The first one is the input node that initializes
the computation by locating the input x = (x1, . . . , xn) ∈ IRn in the first n coordinates
of the ouput space and 0 in all of the others. It has only one next node. Then there

ON THE POWER OF REAL TURING MACHINES 247

are computation nodes. They have associated a rational function in some of the
s coordinates of the state space and they replace one such coordinate by the real
number obtained by evaluating this rational function in the actual content of the
state space. They also have only one next node. There are also branch nodes. They
check whether zi ≥ 0 for a certain coordinate of the state space and select one of
their two possible next nodes according to the answer. Finally, there is one output
node. It has no next node, and therefore when it is reached, the computation halts.
Moreover, the first m coordinates of the state space are mapped into the output space
and constitute the output of the machine.

If the computation takes time at most t for all inputs, the RTM M computes
a total function from IRn to IRm. A key fact in what follows is that in this case,
M can also be “unwound” into an algebraic computation tree TM (see [3]) that has
depth t and computes the same function, and at each branching node i of this tree,
the value whose sign is tested can be written as hi(α1, . . . , αk, x1, . . . , xn), where
x = (x1, . . . , xn) ∈ IRn is the input, α1, . . . , αk ∈ IR are the possible coefficients of the
functions associated with the computation nodes of M , and

hi ∈ 0Q(Z1, . . . , Zk, X1, . . . , Xn).

For the infinite-dimensional case, we want to consider as inputs and outputs real
vectors of arbitrary dimension. Recall that we denote by IR∞ the direct sum

⊕
i∈IN IR.

Then we want to replace the input, output, and state spaces in the description above
for IR∞. Since the number of computation nodes is finite, the same thing happens for
the number of coordinates that can be accessed or modified. Thus some mechanism
for “moving” information inside the state space is needed. We refer the reader to [5]
for the details of how this is done as well as for a comprehensive introduction to these
machines. We recall from there that we denote by PIR the class of subsets of IR∞ that
can be decided by an RTM in polynomial time.

It is important to note that if we again have a bound t on the running time
of an RTM M , the number of accessed coordinates of the input, output, and state
space is bounded by t. Therefore, we can find a finite-dimensional machine Mf that
computes the same function (by replacing the moving operations by rational functions
on IRt). Thus, following the discussion above, we can associate with the pair (M, t)
an algebraic computation tree TM,t that computes the same function and branching
as discussed above. This will be central in the proof of Theorem 3.2.

In the following sections, we will also be concerned with parallel computations.
Therefore, let us recall from [10] the definition of a computational model for parallelism
in the real Turing machine setting together with the complexity class it defines when
restricted to polynomial time.

Definition 1. An algebraic circuit C over IR is a directed acyclic graph where
each node has in-degree 0, 1, or 2. Nodes with in-degree 0 are labeled either as inputs
or with elements of IR. (We shall call the latter constant nodes.) Nodes with in-
degree 2 are labeled with “+”,“−”,“∗”, or “/”. Finally, nodes with in-degree 1 are of
a unique kind and are called sign nodes. There is one node with out-degree 0 called
an output node. In what follows, the nodes of a circuit will be called gates.

We inductively associate with each gate a function of the input variables in the
usual way. In particular, we shall refer to the function associated with the output
gate as the function computed by the circuit. Note that sign gates return 1 if their
input is greater than or equal to 0 and return 0 otherwise.

Definition 2. For an algebraic circuit C, we define its size to be the number

248 F. CUCKER AND D. GRIGORIEV

of gates in C and its depth to be the length of the longest path from some input or
constant gate to the output gate.

Definition 3. Given an algebraic circuit C, the canonical encoding of C is a
sequence of 4-tuples of the form (g, op, gl, gr) ∈ IR4, where g represents the gate label,
op is the operation performed by the gate, gl is the gate which provides the left input
to g, and gr provides its right input. By convention, gl and gr are 0 if gate g is an
input gate, and gr is 0 if gate g is a sign gate (whose input is then given by gl) or a
constant gate (the associated constant then being stored in gl). Also, we shall suppose
that the first n gates are the input gates and the last gate is the output gate.

Definition 4. Let {Cn}n∈IN be a family of algebraic circuits. We shall say that
the family is P-uniform if there exists a real Turing machine M that generates the
encoding of the ith gate of Cn with input (i, n) in time polynomial in n.

Definition 5. We shall say that a set S can be decided in parallel polynomial
time (S ∈ PARIR for short) when there is a P-uniform family of circuits {Cn} with
depth polynomial in n and such that Cn computes the characteristic function of S
restricted to inputs of size n.

Remark 2. It is possible to define [10] parallel polynomial time in a different way,
namely, by putting an exponential number of RTMs to work together with the same
program and in polynomial time. One can prove, however, that this model defines
the same class PARIR that we just introduced.

The definition above closely follows the one given in the classical seting (i.e.,
over {0, 1}) of parallel machines. In this case, one uses Boolean circuits instead of
algebraic ones and the uniformity condition is provided by a classical Turing machine.
A description of this computational model and the classes it defines can be found in
[2]. A particular feature of the classical setting is that the class defined by polynomial
parallel time requirements coincides with PSPACE, the class defined by polynomial
space bounds. This is an old result of Borodin (see [7] or [2, Chapter 4]) that we shall
use repeatedly in this paper.

3. Computing with binary inputs. The goal of this section is to prove that
the Boolean part of PIR is included in PSPACE/poly, i.e., that any subset of Σ∗

that can be decided in polynomial time by a real Turing machine can be decided by a
(classical) Turing machine in polynomial space using a polynomial advice. In the next
section, we will prove a more general result, namely, a similar inclusion for parallel
real Turing machines. However, because of clarity of exposition, we will first show the
inclusion for the Boolean part of PIR.

We begin by recalling the definition of nonuniform classes as given in [19], which
we extend to complexity classes over the reals.

Definition 6. Let C ⊆ Σ∗ (resp. C ⊆ IR∞) be a class of sets and F be any class
of functions from IN to Σ∗ (resp. from IN to IR∞). The class C/F is defined to be the
class of all subsets B ⊆ Σ∗ (resp. B ⊆ IR∞) for which there exists a set A ∈ C and a
function f ∈ F such that B = {x : 〈x, f(|x|)〉 ∈ A}.

We will be interested mainly in the case F = poly, the class of functions f such
that for some polynomial p, we have |f(n)| ≤ p(n) for each n ∈ IN. For the Boolean
case, one can find the main properties and characterizations of classes like P/poly or
PSPACE/poly (as well as of some other nonuniform complexity classes) in Chapter 5
of [1].

A final result that we want to recall before proceeding to the main theorem of
this section is the following.

Proposition 3.1 (see [17, Proposition 12]). Let W be a real algebraic set

ON THE POWER OF REAL TURING MACHINES 249

defined by a set of m polynomials with integer coefficients bounded in absolute
value by L. Then we can determine the dimension of W within parallel time
(n log(md logL))O(1).

Theorem 3.2. The inclusion BP(PIR) ⊆ PSPACE/poly holds.
Proof. Let M be an RTM working in polynomial time, say nq, and let α1, . . . , αk

be its real constants.
For any n ∈ IN, machine M has an associated algebraic computation tree TM,n

with depth nq and size bounded by 2n
q

. To each branching node i of this tree,
there corresponds a rational function hi ∈ 0Q(Z1, . . . , Zk, X1, . . . , Xn) such that the
branching is done according to whether the actual input x ∈ IRn satisfies hi(α, x) ≥ 0
or hi(α, x) < 0 for α = (α1, . . . , αk).

The idea of the proof is to find β1, . . . , βp ∈ IRalg such that for every x ∈ Σn, the

path followed by x in the tree T̃M,n obtained by replacing the constants αj by βj is

the same as the path followed in TM,n. This ensures that the tree T̃M,n accepts the
same subset of Σn as TM,n. On the other hand, we will require some codification of

the β’s that allows us to perform the operations in T̃M,n in PSPACE together with a
short way of writing this codification that will make possible to give it as a polynomial
advice.

Before obtaining a description of the β’s, let us do a final modification on TM,n

that was first used in [20]. Let I be the set of branching nodes of TM,n. For every
i ∈ I and every x ∈ Σn, we consider the rational functions

gi,x ∈ 0Q(Z1, . . . , Zk)

defined by gi,x = hi(Z1, . . . , Zk, x1, . . . , xn) and the real numbers τi,x =
gi,x(α1, . . . , αk) The accepted subset of Σn can be characterized by the set of signs

σi,x = sign(τi,x),

where sign(z) is 1 if z > 0, −1 if z < 0, and 0 otherwise. Now for some i and x, the
element τi,x can be zero. However, since the set of values

{τi,x : i ∈ I, x ∈ Σn}

is finite, there exists an ε > 0 such that all of the negative values in the above set are
strictly smaller than −ε, and for this ε the following equivalences hold:

gi,x(α1, . . . , αk) ≥ 0 iff gi,x(α1, . . . , αk) + ε > 0,

gi,x(α1, . . . , αk) < 0 iff gi,x(α1, . . . , αk) + ε < 0.

Replacing the tests gi(X) ≥ 0 by gi(X)+ε ≥ 0, we thus have that the new computation
tree (which has real constants α1, . . . , αk, ε) satisfies the following property: for every
x ∈ Σn, all of the test values are different from zero.

Assuming that the rational functions gi,x(Z1, . . . , Zk) are polynomials (something
that we can do by simply replacing gi,x by the product of its numerator and de-
nominator), we can rephrase the above remarks in the following way: the elements
α1, . . . , αk, ε satisfy a system of polynomial inequations of the form

gi,xσi,x > 0 : i ∈ I, x ∈ Σn(1)

and any other real numbers β1, . . . , βk, ξ satisfying this system will, when used as
constants in the tree TM,n, produce the same outcome for every x ∈ Σn.

250 F. CUCKER AND D. GRIGORIEV

We can now describe how to obtain such numbers.
First, we construct the g0 and G of the preceding section for the set of polynomials

{g2
i,x ∈ ZZ[Z1, . . . , Zk, Y] : i ∈ I, x ∈ Σn}. Then, applying Theorem 1.3, we deduce

the existence of integer vectors ~v = (v2, . . . , vk, vk+1) such that the set W described
in the statement of Theorem 1.3 is finite and nonempty. Let ~v∗ be the first such
vector for the lexicographical ordering in INk and let W ∗ be its corresponding set of
solutions. We then have that any connected component of the semialgebraic set S
given by system (1) contains a point of W ∗. (Note that by squaring all the gi,x’s, we
ensure that each connected component of S is one connected component of the set V
defined by the conditions g2

i,x > 0.) Thus we take β1, . . . , βk, ξ to be any point of W ∗

belonging to S, and we distinguish it among the other points of W ∗ by its position
p for the lexicographical ordering in IRk+1. Note that from the equations defining
W ∗ and this p, we can code (cf. [18] or [25]) each coordinate of this point (see the
complexity analysis below).

The following nonuniform parallel algorithm then decides the same language as
M when restricted to binary inputs.

input(a1, . . . , an)
get the advice p corresponding to n
for all x ∈ Σn in parallel do (s1)

for all path γ in parallel do
for all i branch node in γ do

compute the polynomial gi,x
od

od
od
compute g0 and G (s2)
compute C (s3)

compute ~v∗ (s4)
code the coordinates of the pth point β of (s5)

the set W ∗ given by ~v∗, C, and G
simulate the computation of M over a1, . . . , an (s6)
replacing the α1, . . . αk, ε by the point β coded in (s5)

Let us estimate the complexity of the algorithm above. As we have seen, the
number of nodes of the tree TM,n is bounded by 2n

q

. Therefore, the number of
polynomials gi,x is bounded by 2n

q

2n = 2n
q+n. Each of these polynomials is computed

by a straight-line program of length nq, and thus we get again a bound of 2n
q

for their

degrees and 22n
q

for the absolute value of their coefficients. The degree dG of G is
then bounded by 2n

q · 2nq = 2O(1)nq and the absolute value of its coefficients LG is
bounded by

(22n
q

)2
nq

= 222nq

(and thus by 22nq in bit length). We can then—according to Theorem 1.3—bound by

(2dG)k+1 = 2O(1)nq

the integers v2, . . . , vk, vk+1 and by

(2dG)k+1 = 2O(1)nq

the number of points in W ∗. A first consequence of these last two upper bounds is
the fact that the advice above has polynomial size.

ON THE POWER OF REAL TURING MACHINES 251

Concerning the running time, it is clear that step (s1) can be done in polynomial
time using an exponential number of processors because, given an x ∈ Σn and a path
γ, the—at most—nq polynomials that appear in that path have exponential degree in
a constant number (k + 1, in fact) of variables and therefore an exponential number
of monomials. Any arithmetical operation between two such polynomials can be done
within these resources, and we have a polynomial number of such operations.

The product G is computed with a binary tree of products having polynomial
depth. Since each product can be done in parallel polynomial time, the same applies
for the whole tree and then for step (s2). A similar remark holds for the constant C
and thus for step (s3).

The determination of ~v∗ can be done by checking in parallel for all possible vectors
~v whether the dimension of the resulting W is zero and then selecting the first one that
gives a positive answer. However, the determination of the dimension of each W can
be done in parallel time bounded by (kn)O(q) by a direct application of Proposition
3.1. Thus the overall parallel time needed to compute ~v∗ is bounded by (kn)O(q).

For step (s5), one can apply the algorithms given in [18] or [26]. However, we
remark here that a cylindrical algebraic decomposition together with the coding à la
Thom (see [8] for the algorithms and [27] and [12] for complexity analysis) suffices
because the double-exponential behavior of this algorithm is only in the number of
variables—which is constant in our case—and it is NC in the rest of the parameters.
This results on a procedure for (s5) working in parallel polynomial time.

Finally, note that each arithmetical operation of M is translated in step (s6) into
an operation of elements in ZZ[Z1, . . . , Zk], and this is also done in parallel polynomial
time. On the other hand, at each test of the form g(Z1, . . . , Zk) ≥ 0, we use the same
algorithm of step (s5) for determining the sign of g(Z1, . . . , Zk)+Y on the point coded
in (s5).

The above considerations show that the algorithm runs in parallel polynomial
time. Since this is equivalent to polynomial space, we have shown that the set decided
by the algorithm above belongs to PSPACE/poly.

4. Binary inputs for parallel real Turing machines. Our next goal is to
extend our previous result to the class PARIR of sets decided in parallel polynomial
time. Before going into the next theorem, we will recall a result concerning the number
of satisfiable sign conditions of a polynomial system.

Lemma 4.1 (see [15, Lemma 1]). Let f1, . . . , fs ∈ IR[X1, . . . , Xk] be a finite family
of polynomials and D =

∑s
i=1degree(fi). Then the number of satisfiable systems of

the form

f1(X1, . . . , Xk)σ1 & · · ·& fs(X1, . . . , Xk)σs,

where σi belongs to {≥ 0, > 0} for i = 1, . . . , s, is bounded by DO(k).

Theorem 4.2. The equality BP(PARIR) = PSPACE/poly holds.

Proof. Let S be a set in PARIR and {Cn} be the family of circuits deciding S. Also,
let M be the RTM that generates these circuits and α1, . . . , αk be its real constants.

Given any n ∈ IN, we consider for any sign gate i of Cn and any binary string
x ∈ Σn the rational function gi,x,α ∈ 0Q(α1, . . . , αk)(X1, . . . , Xn) that the gate receives
as input. Note that besides the trivial dependence of the coefficients of gi,x,α on α,
there is a more subtle dependence on x since these coefficients also depend on the
output of previous sign gates. Since the number of possible answers to previous
sign gates is doubly exponential, we obtain an a priori doubly exponential number of

252 F. CUCKER AND D. GRIGORIEV

rational functions, and therefore we cannot directly apply the construction of Theorem
3.2. However, we can use Lemma 4.1 to reduce this number.

Let us fix x ∈ Σn and plug x into the input gates of Cn. This will force us to
consider rational functions in 0Q(Z1, . . . , Zk). Also, let nq be a bound on the depth of
Cn. At depth 1, there are at most 2n

q

sign gates whose input functions have degree
bounded by 1. By Lemma 4.1, the number of possible outputs of these sign gates is
bounded by

(2n
q

)O(k) = 2O(k)nq .

For each set of outputs ω at depth 1, we consider the sign gates at depth 2. There
are at most 2n

q−1 of them, and their associated functions have degree bounded by 2.
Thus, again by Lemma 4.1, we bound by

(2n
q

)O(k) = 2O(k)nq

the number of possible outputs for ω. Multiplying both expressions, we deduce that
the total number of possible outputs at depths 1 and 2 is bounded by

22O(k)nq .

Inductively, we prove that the number of possible outputs over all of the sign gates is
bounded by

2O(k)nqnq = 2O(k)n2q

,

a number which is singly exponential in n.
Let us then consider for any x ∈ Σn the set of all rational functions

gi,x,ω(Z1, . . . , Zk) obtained by varying i over all sign gates of Cn and ω over all pos-
sible outputs of the set of sign gates. If we now consider this set for any x ∈ Σn, we
will have that the set decided by the circuit Cn is determined by the signs that the
functions in this set take when evaluated at α1, . . . , αk.

As in Theorem 3.2, we can assume the functions gi,x,ω to be polynomials and we
can also assume that they do not vanish on α1, . . . , αk by adding a new real number
ε.

Since the number of polynomials gi,x,ω is singly exponential in n, we can apply
the method of Theorem 3.2. However, note that the corresponding step (s1) will now
be required to select for any x ∈ Σn and any depth l the possible sign conditions for
the test gates at depth l. This is done sequentially in l in order to avoid dealing with
a doubly exponential number of sign conditions. Once these possible sign conditions
are known, the rest of the algorithm works like the one in Theorem 3.2, simulating
the circuit Cn instead of the tree. This shows that the binary elements of S are a
language in PSPACE/poly.

On the other hand, the inclusion of PSPACE/poly in BP(PARIR) is trivial.
An immediate corollary of Theorem 4.2 is the following separation, left open

in [13]. Recall that EXPW is the class of subsets of IR∞ accepted by RTMs in
weak exponential time, i.e., in exponential time but such that for all intermediately
computed rational functions g deg(g) and the bit length of |coeff(g)| are exponentialy
bounded (see [20] or [13] for a formal definition of the weak model).

Corollary 4.3. The inclusion PARIR ⊂ EXPW is strict.
Proof. The Boolean part of EXPW is the class of all subsets of Σ∗. Therefore, it

strictly contains PSPACE/poly.

ON THE POWER OF REAL TURING MACHINES 253

Remark 3. Corollary 4.3 improves the separation PARIR 6= EXPIR shown in [9].
In this latter case, the fact that a real Turing machine working in exponential time can
produce polynomials of doubly exponential degree (while a circuit of polynomial depth
cannot) together with an irreducibility argument sufficed to show the separation. The
arguments used now are much more delicate and, somewhat surprisingly, pass through
the Boolean part of these classes.

We can still improve Theorem 4.2 a bit by allowing the real machine to take
advice.

Theorem 4.4. The equality BP(PARIR/poly) = PSPACE/poly holds.

Proof. The polynomial advice in PARIR/poly introduces a polynomial number
of real constants, say nh, for each input size n. One can now simply check that
replacing the constant value k in the proof of Theorem 4.2 by nh does not affect the
exponential character of the bounds there, and thus the same arguments apply. The
only limitation is that in steps (s5) and (s6), one cannot use cylindrical algebraic
decomposition (because of the exponential dependence that it has in the number of
variables for its parallel running time) and is restricted to using the “faster” algorithms
given in [18] and [25].

5. Conclusions and open problems. Theorems 4.2 and 4.4 are rather sur-
prising since they show that multiplication or nonuniformity (under the form of a
polynomial advice function) do not help in the presence of parallelism to decide bi-
nary sets. Note that results weaker than Theorem 4.2, namely, that the Boolean
part of PARadd (where no multiplications are allowed) or of PARW (where few mul-
tiplications are allowed) coincide both with PSPACE/poly, were proved in [11] and
[13].

On the other hand, a main question that remains open is whether BP(PIR) =
PSPACE/poly. We know that this Boolean part contains P/poly, but its exact power is
still to be determined. Note that for integer RAMs, it is known that the computational
power of this model in polynomial time is exactly PSPACE for several sets of primitive
operations. However, in all of these cases, there is a primitive operation that cannot
be efficiently simulated by a real Turing machine. Thus, for instance, it is shown
in [4] that integer RAMs with operations (+,−, ∗,÷) have the power of PSPACE.
However, the simulation of integer division by a real Turing machine over integers of
exponential length takes exponential time, and therefore the arguments of [4] cannot
be used to show the inclusion PSPACE/poly ⊆ BP(PIR).

Acknowledgment. Thanks are due to Pascal Koiran for pointing out to us the
possibility of allowing advice in the real complexity classes that lead from Theorem
4.2 to Theorem 4.4.

REFERENCES

[1] J. L. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, EATCS Monographs on
Theoretical Computer Science 11, Springer-Verlag, Berlin, 1988.

[2] J. L. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity II, EATCS Monographs
on Theoretical Computer Science 22, Springer-Verlag, Berlin, 1990.

[3] M. Ben-Or, Lower bounds for algebraic computation trees, in Proc. 15th ACM Symposium
on the Theory of Computing, ACM, New York, 1983, pp. 80–86.

[4] A. Bertoni, G. Mauri, and N. Sabadini, Simulations among classes of random access ma-
chines and equivalence among numbers succinctly represented, Ann. Discrete Math., 25
(1985), pp. 65–90.

254 F. CUCKER AND D. GRIGORIEV

[5] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer.
Math. Soc., 21 (1989), pp. 1–46.

[6] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin,
1987.

[7] A. Borodin, On relating time and space to size and depth, SIAM J. Comput., 6 (1977),
pp. 733–744.

[8] M. Coste and M.-F. Roy, Thom’s lemma, the coding of real algebraic numbers and the
topology of semi-algebraic sets, J. Symbolic Comput., 5 (1988), pp. 121–129.

[9] F. Cucker, PIR 6= NCIR, J. Complexity, 8 (1992), pp. 230–238.
[10] F. Cucker, On the complexity of quantifier elimination: The structural approach, Comput. J.,

36 (1993), pp. 400–408.
[11] F. Cucker and P. Koiran, Computing over the reals with addition and order: Higher com-

plexity classes, J. Complexity, 11 (1995), pp. 358–376.
[12] F. Cucker, H. Lanneau, B. Mishra, P. Pedersen, and M.-F. Roy, NC algorithms for real

algebraic numbers, Appl. Algebra Engrg. Comm. Comput., 3 (1992), pp. 79–98.
[13] F. Cucker, M. Shub, and S. Smale, Complexity separations in Koiran’s weak model, Theo-

ret. Comput. Sci., 133 (1994), pp. 3–14.
[14] J. B. Goode, Accessible telephone directories, J. Symbolic Logic, 59 (1994), pp. 92–105.
[15] D. Y. Grigoriev, Complexity of deciding Tarski algebra, J. Symbolic Comput., 5 (1988),

pp. 65–108.
[16] D. Y. Grigoriev and N. N. Vorobjov, Solving systems of polynomial inequalities in subex-

ponential time, J. Symbolic Comput., 5 (1988), pp. 37–64.
[17] J. Heintz, T. Krick, M.-F. Roy, and P. Solernó, Geometric problems solvable in single

exponential time, in Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes:
Proc. 8th International Conference, S. Sakata, ed., Lecture Notes in Comput. Sci. 508,
Springer-Verlag, Berlin, 1991, pp. 11–23.

[18] J. Heintz, M.-F. Roy, and P. Solernó, Sur la complexité du principe de Tarski–Seidenberg,
Bull. Soc. Math. France, 118 (1990), pp. 101–126.

[19] R. Karp and R. Lipton, Turing machines that take advice, Enseign. Math., 28 (1982),
pp. 191–209.

[20] P. Koiran, A weak version of the Blum, Shub and Smale model, in Proc. 34th Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1993, pp. 486–495.

[21] P. Koiran, Computing over the reals with addition and order, Theoret. Comput. Sci., 133
(1994), pp. 35–47.

[22] P. Koiran, A weak version of the Blum, Shub and Smale model, Technical report 94-10,
DIMACS, Rutgers University, Piscataway, NJ, 1994.

[23] W. Maass, Bounds for the computational power and learning complexity of analog neural
nets, in Proc. 25th Symposium on the Theory of Computing, ACM, New York, 1993,
pp. 335–344.

[24] J. Milnor, Topology from the Differentiable Viewpoint, University Press of Virginia, Char-
lottesville, VA, 1965.

[25] J. Renegar, On the computational complexity and geometry of the first-order theory of the
reals, part III, J. Symbolic Comput., 13 (1992), pp. 329–352.

[26] J. Renegar, On the computational complexity and geometry of the first-order theory of the
reals, part I, J. Symbolic Comput., 13 (1992), pp. 255–299.

[27] M.-F. Roy and A. Szpirglas, Complexity of computation on real algebraic numbers, J. Sym-
bolic Comput., 7 (1990), pp. 39–51.

[28] H. T. Siegelmann and E. D. Sontag, On the computational power of neural nets, in Proc. 5th
ACM Workshop on Computational Learning Theory, ACM, New York, 1992, pp. 440–449.

[29] H. T. Siegelmann and E. D. Sontag, Analog computation via neural networks, Theoret. Com-
put. Sci., 131 (1994), pp. 331–360.

AN NC ALGORITHM FOR MINIMUM CUTS∗

DAVID R. KARGER† AND RAJEEV MOTWANI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 255–272, February 1997 015

Abstract. We show that the minimum-cut problem for weighted undirected graphs can be solved
in NC using three separate and independently interesting results. The first is an (m2/n)-processor
NC algorithm for finding a (2 + ε)-approximation to the minimum cut. The second is a randomized
reduction from the minimum-cut problem to the problem of obtaining a (2 + ε)-approximation to
the minimum cut. This reduction involves a natural combinatorial set-isolation problem that can be
solved easily in RNC. The third result is a derandomization of this RNC solution that requires a
combination of two widely used tools: pairwise independence and random walks on expanders. We
believe that the set-isolation approach will prove useful in other derandomization problems.

The techniques extend to two related problems: we describe NC algorithms finding minimum
k-way cuts for any constant k and finding all cuts of value within any constant factor of the minimum.
Another application of these techniques yields an NC algorithm for finding a sparse k-connectivity
certificate for all polynomially bounded values of k. Previously, an NC construction was only known
for polylogarithmic values of k.

Key words. randomized algorithms, derandomization, parallel algorithms, minimum cut, mul-
tiway cut, edge connectivity, connectivity certificate

AMS subject classifications. 68Q22, 68Q25

PII. S0097539794273083

1. Introduction. Some of the central open problems in the area of parallel algo-
rithms are those of devising NC algorithms for s-t minimum cuts and maximum flows,
maximum matchings, and depth-first search trees. There are RNC algorithms for all
of these problems [1, 24, 29]. The problem of finding global minimum cuts belongs to
this category of unsolved derandomization problems, and it is representative in that
obtaining an NC algorithm for the case of directed graphs would resolve the other
derandomization questions [18]. We take a (possibly small) step towards resolving
these open problems by presenting the first NC algorithm for the min-cut problem
in weighted undirected graphs. Our results extend to minimum multiway cuts and to
the problem of enumerating all approximately minimal cuts.

The min-cut problem is defined as follows: given a multigraph with n vertices and
m (possibly weighted) edges, we wish to partition the vertices into two nonempty sets
S and T so as to minimize the number of edges crossing from S to T (if the graph
is weighted, we wish to minimize the total weight of crossing edges). We distinguish
the minimum-cut problem from the s-t minimum-cut problem, where we require that
two specified vertices s and t be on opposite sides of the cut; in the minimum-cut

∗ Received by the editors August 22, 1994; accepted for publication (in revised form) April 28,
1995. A preliminary version of this paper appeared as an extended abstract in Proc. 25th ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 487–506 [22].

http://www.siam.org/journals/sicomp/26-1/27308.html
† Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology

Square, Cambridge, MA 02138 (karger@lcs.mit.edu, http://theory.lcs.mit.edu/∼karger). Part of this
work was done while this author was at Stanford University and supported by a National Science
Foundation Graduate Fellowship, NSF grants CCR-9010517 and CCR-9357849, and Mitsubishi.
‡ Department of Computer Science, Stanford University, Stanford, CA 94305 (motwani@

cs.stanford.edu, http://theory.stanford.edu/∼motwani). The research of this author was supported
by an Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, grants from Mit-
subishi and the OTL, NSF grant CCR-9010517, and NSF Young Investigator Award CCR-9357849,
with matching funds from IBM, the Schlumberger Foundation, the Shell Foundation, and Xerox
Corporation.

255

256 DAVID R. KARGER AND RAJEEV MOTWANI

problem there is no such restriction. Our work deals only with minimum cuts. We
assume that the graph is connected since otherwise the problem is trivial. The value
of a minimum cut in an unweighted graph is also called the graph’s edge connectivity.

The min-cut problem has numerous applications in many fields. The problem of
determining the connectivity of a network arises frequently in the study of network
design and network reliability [9]. (Recently, Karger [21] has shown that enumer-
ating all nearly minimum cuts is the key to a fully polynomial-time approximation
scheme for the all-terminal network-reliability problem.) Picard and Queyranne [32]
survey many other applications of weighted minimum cuts. In information retrieval,
minimum cuts have been used to identify clusters of topically related documents
in hypertext systems [5]. Padberg and Rinaldi [31] discovered that the solution of
minimum-cut problems was the computational bottleneck in cutting-plane-based al-
gorithms for the traveling-salesman problem and many other combinatorial problems
whose solutions induce connected graphs. Applegate [3] also observed that a faster
algorithm for finding all minimum cuts might accelerate the solution of traveling-
salesman problems.

The approach we take is typical of derandomization techniques that treat random
bits as a resource. We develop a randomized algorithm and then show that it can be
made to work using few random bits. If we can reduce the number of bits the algorithm
needs to examine for a size-n problem to O(logn) without affecting its probability
of correctness, then we know that it runs correctly on at least some of these small
random inputs. Therefore, by trying all nO(1) possible O(logn)-bit random inputs,
we ensure that we will run correctly at least once and thus find the correct answer
(this requires that we can check which of our many answers is correct, but here that
just involves comparing the values of the cuts that are found).

The NC algorithm we devise is clearly impractical; it serves to demonstrate the
existence of a deterministic parallel algorithm rather than to indicate what the “right”
such algorithm is.

A preliminary version of this paper has appeared earlier as an extended ab-
stract [22]. A more extensive version of this article and its context can be found
in the first author’s dissertation [19].

1.1. Previous work. The first minimum-cut algorithms used the duality be-
tween s-t minimum cuts and maximum flows [11, 12]. An s-t max-flow algorithm can
be used to find an s-t minimum cut, and by taking the minimum over all

(
n
2

)
possible

choices of s and t, a minimum cut may be found. Until recently, the best sequential
algorithms for finding minimum cuts used this approach [15]. Parallel solutions to the
min-cut problem have also been studied. Goldschlager, Shaw, and Staples [14] showed
that the s-t min-cut problem on weighted directed graphs is P-complete. A simple
reduction [18, 19] shows that the (unrestricted) min-cut problem is also P-complete
in such graphs.

For unweighted graphs, any RNC matching algorithm can be combined with a
well-known reduction of s-t maximum flows to matching [24] to yieldRNC algorithms
for s-t minimum cuts. By performing n of these computations in parallel, we can
solve the min-cut problem in RNC. For an input graph with n vertices and m
edges, the RNC matching algorithm of Karp, Upfal, and Wigderson [24] runs in
O(log3 n) time using O(n6.5) processors, while the one due to Mulmuley, Vazirani, and
Vazirani [29] runs in O(log2 n) time using O(n3.5m) processors. The processor bounds
are quite large, and the technique does not extend to graphs with large edge weights.
No deterministic parallel algorithm is known. Indeed, derandomizing max-flow on

AN NC ALGORITHM FOR MINIMUM CUTS 257

unweighted, undirected graphs is equivalent to derandomizing maximum bipartite
matching—a problem that has long been open. A reduction in [18, 19] shows that the
global min-cut problem for directed graphs is also equivalent.

1.2. Contraction-based algorithms. Recently, a new paradigm has emerged
for finding minimum cuts in undirected graphs [18, 23, 30]. This approach is based
on contracting graph edges. Given a graph G and an edge (u, v), contracting (u, v)
means replacing u and v with a new vertex w and transforming each edge (x, u) or
(x, v) into a new edge (x,w). Any (u, v) edge turns into a self loop on w and can be
discarded.

A key fact is that contracting edges cannot decrease the minimum cut. The reason
is that any cut in the contracted graph corresponds to a cut of exactly the same value
in the original graph—if u and v were contracted to w, then a vertex partition (A,B)
in the contracted graph with w ∈ A corresponds to a partition (A ∪ {u, v} − {w}, B)
in the original graph that cuts the same edges. Let us fix a particular minimum cut,
which from now on we will refer to as the minimum cut (there may be as many as(
n
2

)
[10, 18]). The power of contractions comes from their interaction with cuts. If

we contract an edge that is not in the minimum cut, then the minimum cut in the
contracted graph is equal to the minimum cut in the original graph.

Several contraction-based minimum-cut algorithms have recently been developed.
They all work by contracting non-min-cut edges until the graph has been reduced to
two vertices. These two vertices define a cut in the original graph. If no min-cut
edge is contracted, then the corresponding cut must be a minimum cut. The edges
connecting the two vertices correspond to the cut edges.

Nagamochi and Ibaraki [30] used graph contraction to develop an O(mn+n2 log2 n)-
time algorithm for the min-cut problem. In O(m + n logn) time, they find a sparse
connectivity certificate (i.e., a subgraph that contains all the min-cut edges) that
excludes some edge of the graph. This edge can be contracted without affecting the
minimum cut. Constructing a sparse certificate to identify an edge to contract requires
O(m + n logn) time and must be done n times; thus the running time. Matula [27]
used the Nagamochi–Ibaraki certificate algorithm in a linear-time algorithm for find-
ing a (2 + ε)-approximation to the minimum cuts—the change is to use the sparse
certificate to identify a large number of edges that can be contracted simultaneously.

Karger [18] observed that a randomly selected graph edge is unlikely to be in the
minimum cut; it followed that repeated random selection and contraction of graph
edges could be used to find a minimum cut. This led to the contraction algorithm, the
first RNC algorithm for the weighted min-cut problem, which used mn2 processors.
Karger and Stein [23] improved the processor cost of the contraction algorithm, as
well as its sequential running time, to Õ(n2); this is presently the most efficient
known min-cut algorithm for weighted graphs.1 A side effect of the analysis of [18]
was a bound on the number of approximately minimal cuts in a graph; this plays an
important role in our analysis.

Luby, Naor, and Naor [26] observed that in the contraction algorithm, it is not
necessary to choose edges randomly one at a time. Instead, given that the min-
cut size is c, they randomly mark each edge with probability 1/c and contract all
of the marked edges. With constant probability, no min-cut edge is marked while
the number of graph vertices is reduced by a constant factor. Thus after O(logn)
phases of contraction, the graph is reduced to two vertices that define a cut. Since

1 The notation Õ(f(n)) denotes O(f(n) polylogn).

258 DAVID R. KARGER AND RAJEEV MOTWANI

the number of phases is O(logn) and there is a constant probability of missing the
minimum cut in each phase, there is an n−O(1) probability that no min-cut edge is
ever contracted; if this happens, then the cut determined at the end is the minimum
cut. Observing that pairwise-independent marking of edges can be used to achieve the
desired behavior, they show that O(logn) random bits suffice to run a phase. Thus
O(log2 n) bits suffice to run this modified contraction algorithm through its O(logn)
phases.

Unfortunately, this algorithm cannot be fully derandomized. It is indeed possible
to try all (polynomially many) random seeds for a phase and be sure that one of the
outcomes is good (i.e., contracts nonmin-cut edges incident on a constant fraction
of the vertices); however, there is no way to determine which outcome is good. In
the next phase, it is thus necessary to try all possible random seeds on each of the
polynomially many outcomes of the first phase, squaring the number of outcomes
after two phases. In all, Ω(nlog n) combinations of seeds must be tried to ensure that
we find the desired sequence of good outcomes leading to a minimum cut.

1.3. Overview of results. Our main result is an NC algorithm for the min-cut
problem. Our algorithm is not a derandomization of the contraction algorithm but is
instead a new contraction-based algorithm. Throughout, we take G to be a multigraph
with n vertices, m edges, and min-cut value c. Most of the paper discusses unweighted
graphs; in section 6.4, we reduce the weighted graph problem to the unweighted graph
problem. Our algorithm extends to finding minimum multiway cuts that partition the
graph into r ≥ 2 disconnected pieces.

Our algorithm depends upon three major building blocks. The first building
block (sections 2 and 3) is an NC algorithm that uses m2/n processors to find a
(2 + ε)-approximation to the minimum cut. Recall that Matula’s sequential algo-
rithm [27] was based on the sequential sparse certificate algorithm of Nagamochi and
Ibaraki [30] (discussed in the previous section). It repeatedly finds a sparse certifi-
cate containing all min-cut edges and then contracts the edges not in the certificate,
terminating after a small number of iterations. Our NC algorithm uses a new par-
allel sparse certificate algorithm to parallelize Matula’s algorithm. A parallel sparse
k-connectivity certificate algorithm with running time Õ(k) was given by Cheriyan,
Kao, and Thurimella [6]; we improve this in a necessary way by presenting an al-
gorithm that runs in O(logm) time using km processors and is thus in NC for all
k = nO(1).

Our next building block (section 4) uses a result obtained from the analysis of
the contraction algorithm. Karger [18] proved that there are only polynomially many
cuts whose size is within a constant factor of the minimum cut. If we find a collection
of edges that contains one edge from every such cut except for the minimum cut, then
contracting this set of edges yields a graph with no small cut except for the minimum
cut. We can then apply the NC approximation algorithm mentioned in the previous
paragraph. Since the minimum cut will be the unique contracted-graph cut within
the approximation bounds, it will be found by the approximation algorithm. One can
view this approach as a variant on the isolating lemma approach used to solve the
perfect matching problem [29]. As was the case there, the problem is relatively easy
to solve if the solution is unique, so the goal is to destroy all but one solution to the
problem and then to easily find the unique solution.

Randomization yields a simple solution to this problem: contract each edge inde-
pendently with probability Θ(logn/c). Because the number of small cuts is polyno-
mially bounded, there is a sufficient (larger than one over a polynomial) probability

AN NC ALGORITHM FOR MINIMUM CUTS 259

that no edge from the minimum cut is contracted but one edge from every other small
cut is contracted. Of course, our goal is to do away with randomization.

A step towards this approach is a modification of the Luby, Naor, and Naor
technique. If we contract each edge with probability Θ(1/c), then with constant
probability we contract no min-cut edge while contracting edges in a constant fraction
of the other small cuts. Pairwise independence in the contracting of edges is sufficient
to make such an outcome likely. However, this approach seems to contain the same
flaw as before: Ω(logn) phases of selection are needed to contract edges in all the
small cuts, and thus Ω(log2 n) random bits are needed.

We work around this problem with our third building block (section 5). The
problem of finding a good set of edges to contract can be formulated abstractly as the
set-isolation problem: given an unknown collection of sets (the cuts) over a known
universe, with one of the unknown sets declared “safe,” find a collection of elements
that intersects every set except for the safe one. After giving a simple randomized
solution, we show that this problem can be solved in NC by combining the techniques
of pairwise independence [7, 25] with the technique of random walks on expanders [2].
We feel that this combination should have further application in derandomizing al-
gorithms; similar ideas were used previously to save random bits, e.g., in the work of
Bellare, Goldreich, and Goldwasser [4].

Finally, in section 6, we apply the above results to finding minimum cuts, mini-
mum multiway cuts, and weighted minimum cuts and to enumerating approximately
minimum cuts.

2. An approximation algorithm. In the next two sections, we describe an
NC algorithm that, for any constant ε > 0, finds a cut whose value is less than (2 + ε)
times that of the minimum cut. We use the fact that contracting a non-min-cut edge
does not change the value of the minimum cut. We first formalize this notion of
contraction. To contract an edge (v1, v2), we replace both endpoints by a vertex v
and let the set of edges incident on v be the union of the sets of edges incident on v1
and v2. We do not merge edges from v1 and v2 that have the same other endpoint;
instead, we create multiple instances of those edges. However, we remove self loops
formed by edges originally connecting v1 to v2. Formally, we delete all edges (v1, v2)
and replace each edge (v1, w) or (v2, w) with an edge (v, w). The rest of the graph
remains unchanged.

Since contracting a non-min-cut edge does not affect the minimum cut, we can
find the minimum cut by repeatedly finding and contracting non-min-cut edges. Each
time we do this, the number of graph vertices decreases by one; thus after n − 2
iterations, we will have a two-vertex graph with an obvious minimum cut. The need
to find non-min-cut edges motivates the following definition and lemma.

Definition 2.1. A k-jungle is a set of k disjoint forests in G. A maximal
k-jungle is a k-jungle such that no other edge in G can be added to any one of the
jungle’s forests without creating a cycle in that forest.

Lemma 2.2 (see [30]). A maximal k-jungle contains all the edges in any cut of k
or fewer edges.

Proof. Consider a maximal k-jungle J , and suppose it contains fewer than k edges
of some cut C. Then some forest F in J must have no edge crossing C. Now suppose
some edge e from C is not in the forest (if all cut-edges are in the forest, we are done).
There is no path in F connecting the endpoints of e since such a path would have
to cross C. Thus e can be added to F , contradicting the maximality of J . Thus all
edges in C must already be in J .

260 DAVID R. KARGER AND RAJEEV MOTWANI

Nagamochi and Ibaraki [30] gave an algorithm for constructing a k-jungle that
excluded one non-min-cut edge which could then be contracted. This led to an algo-
rithm with running time O(mn). Subsequently, Matula [27] observed that if we were
willing to settle for a (2 + ε)-approximation to the minimum cut, we could construct
a k-jungle, k > c, that excluded many edges, all of which could then be contracted in
one step. This allows much faster progress towards a two-vertex graph, leading to a
linear-time min-cut algorithm. We show how this algorithm can be parallelized.

The approximation algorithm is described in Figure 1. We give it as an algorithm
to approximate the cut value; it is easily modified to find a cut with the returned
value. The basic idea is to consider the minimum graph degree δ as an approximation
to the minimum cut c. Clearly, c < δ. If (2 + ε)c > δ, then our approximation is
good enough. Otherwise, we will see that a k-jungle that excludes many edges can be
constructed with k > c.

Procedure Approx-Min-Cut(multigraph G)
1. Let δ be the minimum degree of G.
2. Let k = δ/(2 + ε).
3. Find a maximal k-jungle.
4. Construct G′ from G by contracting all nonjungle edges.
5. Return min(δ,Approx-Min-Cut(G′)).

Fig. 1. The approximation algorithm

Lemma 2.3. Given a graph with minimum cut c, the approximation algorithm
returns a value between c and (2 + ε)c.

Proof. Clearly, the value is at least c because it corresponds to some cut the algo-
rithm encounters. That is, the minimum-degree vertex in a contracted intermediate
graph corresponds to a cut of the same value in the original graph. For the upper
bound, we use induction on the size of G. We consider two cases. If δ < (2+ ε)c, then
since we return a value of at most δ, the algorithm is correct. On the other hand,
if δ ≥ (2 + ε)c, then k ≥ c. It follows from Lemma 2.2 that the jungle we construct
contains all the min-cut edges. Thus no edge in the minimum cut is contracted while
forming G′, so G′ has minimum cut c. By the inductive hypothesis, the recursive call
returns a value between c and (2 + ε)c.

Lemma 2.4. There are O(logm) levels of recursion in the approximation algo-
rithm.

Proof. If G has minimum degree δ, then summing over vertices, G must have at
least δn edge-endpoints and thus at least δn/2 edges. On the other hand, the graph G′

that we construct contains only jungle edges; since each forest of the jungle contains
only n−1 edges, G′ can have at most k(n−1) = δ(n−1)/(2+ε) edges. It follows that
each recursive step reduces the number of edges in the graph by a constant factor;
thus at a recursion depth of O(logm), the problem can be solved trivially.

Note that the extra ε factor above 2 is needed to ensure a significant reduction
in the number of edges at each stage and thus keep the recursion depth small. The
depth of recursion is in fact Θ(ε−1 logm).

Each step of this algorithm, except for step 3, can be implemented in NC using
m processors. Since the number of iterations is O(logm), the running time of this
algorithm is O(T (m,n) polylogm), where T (m,n) is the time needed to construct a
maximal jungle. It only remains to show how to construct a maximal k-jungle in NC.

AN NC ALGORITHM FOR MINIMUM CUTS 261

3. Finding maximal jungles. The notation needed to describe this construc-
tion is somewhat complex, so first we give some intuition. To construct a maximal
jungle, we begin with an empty jungle and repeatedly augment it by adding addi-
tional edges from the graph until no further augmentation is possible. Consider one
of the forests in the jungle. The nonjungle edges that may be added to that forest
without creating a cycle are just the edges that cross between two different trees of
that forest. We let each tree claim some such edge incident upon it. Hopefully, each
forest will claim and receive a large number of edges, thus significantly increasing the
number of edges in the jungle.

Two problems arise. The first is that several trees may claim a particular edge.
However, the arbitration of these claims can be transformed into a matching problem
and solved in NC. Another problem is that since each tree is claiming an edge, a
cycle might be formed when the claimed edges are added to the forest—for example,
two trees may each claim an edge connecting those two trees. We will remedy this
problem as well.

3.1. Augmentations.
Definition 3.1. An augmentation of a k-jungle J = {F1, . . . , Fk} is a collection

A = {E1, . . . , Ek} of k disjoint sets of nonjungle edges from G. At least one of the
sets Ei must be nonempty. The edges of Ei are added to forest Fi.

Definition 3.2. A valid augmentation of J is one that does not create any cycles
in any of the forests of J .

Fact 3.3. A jungle is maximal if and only if it has no valid augmentation.
Given a jungle, it is convenient to view it in the following fashion. We construct

a reduced (multi)graph GF for each forest F . For each tree T in F , the reduced graph
contains a reduced vertex vT . For each edge e in G that connects trees T and U , we
add an edge eF connecting vT and vU . Thus the reduced graph is what we get if we
start with G and contract all the forest edges. Since many edges can connect two
forests, the reduced graph may have parallel edges. An edge e of G may induce many
different edges, one in each forest’s reduced graph.

Given any augmentation, the edges added to forest F can be mapped to their
corresponding edges in GF , inducing an augmentation subgraph of the reduced graph
GF .

Fact 3.4. An augmentation is valid if and only if the augmentation subgraph it
induces in each forest’s reduced graph is a forest.

Care should be taken not to confuse the forest F with the forest that is the
augmentation subgraph of GF .

3.2. The augmentation algorithm. Our construction proceeds in a series of
O(logm) phases in which we add edges to the jungle J . In each phase, we find a
valid augmentation of J whose size is a constant fraction of the largest possible valid
augmentation. Since we reduce the maximum possible number of edges that can be
added to J by a constant fraction each time, and since at the beginning the maximum
number of edges we can add is at most m, J will have to be maximal after O(logm)
phases.

To find a large valid augmentation, we solve a maximal matching problem on a
bipartite graph H. Let one vertex set of H consist of the vertices vT in the various
reduced multigraphs, i.e., the trees in the jungle. Let the other vertex set consist of
one vertex ve for each nonjungle edge e in G. Connect each reduced vertex vT of GF
to ve if eF is incident on vT in GF . Equivalently, we are connecting each tree in the
jungle to the edges incident upon it in G. Note that this means each edge in GF is a

262 DAVID R. KARGER AND RAJEEV MOTWANI

valid augmenting edge for F . To bound the size of H, note that each vertex ve will
have at most 2k incident reduced-graph edges because it will be incident on at most
two trees of each forest. Thus the total number of edges in H is O(km).

Lemma 3.5. A valid augmentation of J induces a matching in H of the same
size.

Proof. Consider a valid augmentation of the jungle. We set up a corresponding
matching in H between the edges of the augmentation and the reduced vertices as
follows. For each forest F in J , consider its reduced multigraph GF . Since the
augmentation is valid, the augmenting edges in GF form a forest (Fact 3.4). Root
each tree in this forest arbitrarily. Each nonroot reduced vertex vT has a unique
augmentation edge eF leading to its parent. Since edge e is added to F , no other forest
F ′ will use edge eF ′ , so we can match vT to ve. It follows that every augmentation
edge is matched to a unique reduced vertex.

Lemma 3.6. Given a matching in H, a valid augmentation of J of size at least
half the size of the matching can be constructed in NC.

Proof. If edge e ∈ G is matched to reduced vertex vT ∈ GF , tentatively assign
e to forest F . Consider the set A of edges in GF that correspond to the G-edges
assigned to F . The edges of A may induce cycles in GF , which would mean (Fact 3.4)
that A does not correspond to a valid augmentation of F . However, if we find an
acyclic subset of A, then the G-edges corresponding to this subset will form a valid
augmentation of F .

To find this subset, arbitrarily number the vertices in the reduced graph GF .
Direct each edge in A away from the reduced vertex to which it was matched (so each
vertex has out-degree one) and split the edges into two groups: A0 ⊆ A are the edges
directed from a smaller-numbered to a larger-numbered vertex, and A1 ⊆ A are the
edges directed from a larger-numbered to a smaller-numbered vertex. One of these
sets, say A0, contains at least half the edges of A. However, A0 creates no cycles
in the reduced multigraph. Its (directed) edges can form no cycle obeying the edge
directions since such a cycle must contain an edge directed from a larger-numbered
to a smaller-numbered vertex. On the other hand, any cycle disobeying the edge
directions must contain a vertex with out-degree two, an impossibility. It follows
that the edges of A0 form a valid augmentation of F of at least half the size of the
matching.

If we apply this construction to each forest F in parallel, we get a valid augmen-
tation of the jungle. Furthermore, each forest will gain at least half the edges assigned
to it in the matching, so the augmentation has the desired size.

Theorem 3.7. Given G and k, a maximal k-jungle of G can be found in NC
using O(km) processors.

Proof. We begin with an empty jungle and repeatedly augment it. Given the
current jungle J , construct the bipartite graph H as previously described and use
it to find an augmentation. Let a be the size of a maximum augmentation of J .
Lemma 3.5 shows that H must have a matching of size a. It follows that any maximal
matching in H must have size at least a/2, since at least one endpoint of each edge
in any maximum matching must be matched in any maximal matching. Several NC
algorithms for maximal matching exist—for example, that of Israeli and Shiloach [17].
Lemma 3.6 shows that after we find a maximal matching, we can (in NC) transform
this matching into an augmentation of size at least a/4. If we add these augmentation
edges, the resulting graph has a maximum augmentation of at most 3a/4 (since it can
be combined with the previous size-a/4 augmentation to get an augmentation of the

AN NC ALGORITHM FOR MINIMUM CUTS 263

starting graph). Since we reduce the maximum augmentation by 3/4 each time, and
since the maximum jungle size is m, the number of augmentations needed to make a
J maximal is O(logm). Since each augmentation is found in NC, the maximal jungle
can be found in NC.

The processor cost of this algorithm is dominated by that of finding the matching
in the graph H. The algorithm of Israeli and Shiloach requires a linear number of
processors and is run on a graph of size O(km).

Corollary 3.8. A (2 + ε)-approximate minimum cut can be found in NC using
m2/n processors.

Proof. A graph with m edges has a vertex with degree O(m/n); the minimum cut
can therefore be no larger. It follows that our approximation algorithm will construct
k-jungles with k = O(m/n).

4. Reducing to approximation. In this section, we show how the problem of
finding a minimum cut in a graph can be reduced to that of finding a 3-approximation.2

Our technique is to “kill” all cuts of size less than 3c other than the minimum cut
itself. The minimum cut is then the only cut of size less than 3c, and thus it must
be the output of the (2 + ε)-approximation algorithm of section 2 if we run it with
ε = 1. To implement this idea, we focus on a particular minimum cut that partitions
the vertices of G into two sets A and B. Consider the graphs induced by A and B.

Lemma 4.1. The minimum cuts in A and in B have value at least c/2.

Proof. Suppose A has a cut into X and Y of value less than c/2. Only c edges
go from A = X ∪ Y to B, so one of X or Y (say X) must have at most c/2 edges
leading to B. Since X also has less than c/2 edges leading to Y , the cut (X,X) has
value less than c, a contradiction.

Theorem 4.2 (see [18]). There are O(n2α) cuts of value at most α times the
minimum.

Combining Lemma 4.1 and Theorem 4.2, it follows that in each of A and B, every
cut has value at least c/2 and there are O(n6) cuts of value less than 3c. Note that
these are not the small cuts in G but rather those in the graphs induced by A and B.
Call these cuts the target cuts.

Lemma 4.3. Let Y be a set containing edges from every target cut but not the
minimum cut. If every edge in Y is contracted, then the contracted graph has a unique
cut of weight less than 3c—the one corresponding to the original minimum cut.

Proof. Clearly, contracting the edges of Y does not affect the minimum cut.
Now suppose this contracted graph had some other cut C of value less than 3c. It
corresponds to some cut of the same value in the original graph. Since it is not the
minimum cut, it must induce a cut in either A or B, and this induced cut must also
have value less than 3c. This induced cut is then a target cut, so one of its edges will
have been contracted. However, this prevents C from being a cut in the contracted
graph, a contradiction.

It follows that after contracting Y , running the approximation algorithm of sec-
tion 2 on the contracted graph will reveal the minimum cut since the actual minimum
cut is the only one that is small enough to meet the approximation criterion. Our
goal is thus to find a collection of edges that intersects every target cut but not the
minimum cut. This problem can be phrased more abstractly as follows: Over some
universe U , an adversary selects a polynomially sized collection of “target” sets of

2 We reduce to 3-approximation for simplicity. Should this approach ever become practical, it
will most likely be more efficient to reduce to (2 + ε)-approximation for some smaller ε.

264 DAVID R. KARGER AND RAJEEV MOTWANI

roughly equal size (the small cuts’ edge sets), together with a disjoint “safe” set of
about the same size (the min-cut edges). We want to find a collection of elements
that intersects every target set but not the safe set. Note that we do not know what
the target or safe sets are, but we do have an upper bound on the number of target
sets. We proceed to formalize this problem as the set-isolation problem.

5. The set-isolation problem. We describe a general form of the set-isolation-
problem. Fix a universe U = {1, . . . , u} of size u.

Definition 5.1. A (u, k, α) set-isolation instance consists of a safe set S ⊆ U
and a collection of k target sets T1, . . . , Tk ⊆ U such that

• α > 0 is a constant,
• for 1 ≤ i ≤ k, |Ti| ≥ α|S|, and
• for 1 ≤ i ≤ k, Ti ∩ S = ∅.

We will use the notation that s = |S|, ti = |Ti|, and t = αs ≤ ti. It is important
to keep in mind that the value of s is not specified in a set-isolation instance but,
as will become clear shortly, it is reasonable to assume that it is known explicitly.
Finally, while the safe set S is disjoint from all of the target sets, the target sets may
intersect each other.

Definition 5.2. An isolator for a set-isolation instance is a set that intersects
all of the target sets but not the safe set.

An isolator is easy to compute (even in parallel) for any given set-isolation instance
provided the sets S, T1, . . . , Tk are explicitly specified. However, our goal is to find an
isolator in the setting where only u, k, and α are known but the actual sets S, T1,
. . . , Tk are not specified. We can formulate this as the problem of finding a universal
isolating family.

Definition 5.3. A (u, k, α)-universal isolating family is a collection of subsets
of U that contains an isolator for any (u, k, α) set-isolation instance.

To see that this general formulation captures our cut-isolation problem, note that
the minimum cut is the safe set in an (m, k, α) set-isolation instance. The universe is
the set of edges and is of size m; the target sets are the small cuts of the two sides of
the minimum cut; k is the number of such small cuts and (by Lemmas 4.1 and 4.2)
can be bounded by a polynomial in n < m; and α = 1/2 since each target cut has
size at least c/2 (by Lemma 4.1). The safe-set size s is the min-cut size c.

If we had an (m, k, α)-universal isolating family, then one of the sets in it would
be an isolator for the set-isolation instance corresponding to the minimum cut. By
Lemma 4.3, contracting all of the edges in this set would isolate the minimum cut as
the only small cut. If the size of the universal family were polynomial in m and k, we
could try each set in the universal family in parallel in NC and be sure that one such
set isolates the minimum cut so that the approximation algorithm can find it.

In section 7, we give an NC algorithm for constructing a polynomial-size (in u
and k) (u, k, α)-universal isolating family. Before doing so, we give the details of how
it can be used to solve the minimum-cut problem in NC.

6. Minimum cuts and extensions. We start by solving the min-cut problem
for unweighted graphs. To extend this result to weighted graphs, we must first digress
to finding minimum multiway cuts (minimum sets of edges that partition the graph
into more than two parts) and approximately minimum cuts (cuts with value nearly
equal to the minimum-cut). The weighted minimum-cut problem is then solved by
reduction to these problems.

AN NC ALGORITHM FOR MINIMUM CUTS 265

6.1. Unweighted minimum cuts. We first consider the unweighted min-cut
problem. We have already shown (in section 4) that all we need to do is solve the
set-isolation problem for the nO(1) small cuts on both sides of the minimum cut. In
our case, the universe size u is just the number of graph edges m, the safe-set size is
c = O(m/n) (which we can estimate to within a factor of 3 using the approximation
algorithm), and there are nO(1) target sets. Thus in NC we can generate and try all
members of a universal isolating family of mO(1) sets. One of the sets we try will be
an isolator for our problem, intersecting all small cuts except for the minimum cut.
When we contract the edges in this set, running the approximation algorithm on the
contracted graph will find the minimum cut. The number of processors used is mO(1),
and the running time is polylogarithmic in m. In other words, the minimum cut can
be found in NC.

6.2. Extension to multiway cuts. The r-way min-cut problem is to partition a
graph’s vertices into r nonempty groups so as to minimize the number of edges crossing
between groups. AnRNC algorithm for constant r appears in [18], and a more efficient
one appears in [23]. For constant r, we can use the set-isolation technique to solve
the r-way cut problem in NC. The next lemma reduces to Lemma 4.3 when r = 2.

Lemma 6.1. In an r-way min-cut (X1, . . . , Xr) of value c, each Xi has minimum
cut at least 2c/(r − 1)(r + 2).

Proof. Assume that set X1 has a cut (A,B) of value w. We prove the lemma by
lower-bounding w.

Suppose that two sets Xi and Xj are connected by more than w edges (where
1 6= i 6= j 6= 1). Then merging Xi and Xj and splitting X1 into A and B would yield
an r-way cut of smaller value, a contradiction. Summing over

(
r−1
2

)
pairs Xi and

Xj , it follows that the total number of cut-edges not incident on X1 can be at most(
r−1
2

)
w.

Now suppose that more than 2w edges connect X1 and some Xj for j 6= 1. Then
more than w edges lead from Xj to either A or B, say A. Thus splitting X1 into A
and B and merging A with Xj would produce a smaller r-way cut, a contradiction.
It follows that the number of edges incident on X1 can be at most 2(r − 1)w.

Combining the previous two arguments, we see that the r-way cut value c must
satisfy

c ≤
(
r − 1

2

)
w + 2w(r − 1),

implying the desired result.
Combining the two previous lemmas shows that there is a polynomial-sized set

of target cuts that we can eliminate with the set-isolation technique to isolate the
minimum r-way cut.

Theorem 6.2. On unweighted graphs, the r-way min-cut problem can be solved
in NC for any constant r.

Proof. We proceed exactly as in the two-way min-cut case. Consider the minimum
r-way cut (X1, . . . , Xr) of value c. By the previous lemma, the minimum cut in each
component is at least 2c/(r − 1)(r + 2). Thus by Lemma 4.3, the number of cuts
in each Xi whose size is less than 2c is O(n2(r−1)(r+2)), a polynomial for constant r.
It follows that we can find a universal isolating family containing an isolator for the
minimum r-way cut. Contracting the edges in this isolator yields a graph in which
each component of the r-way minimum cut has no small cut. Then the (two-way)
minimum cut in this contracted graph must be a “part of” the r-way minimum cut.

266 DAVID R. KARGER AND RAJEEV MOTWANI

More precisely, it cannot cut any one of the Xi’s, so each Xi is entirely on one or
the other side of the cut. We can now find minimum cuts in each of the sides of the
minimum cut; again, they must be part of the r-way minimum cut. If we repeat this
process r times, we will find the r-way minimum cut.

6.3. Extension to approximate cuts. We can similarly extend our algorithm
to enumerate all cuts with value within any constant-factor multiple of the minimum
cut. This plays an important role in our extension to weighted graphs.

Lemma 6.3 (see [18]). The number of r-way cuts with value within a multiplicative
factor of α of the r-way min-cut is O(n2α(r−1)).

Lemma 6.4. Let c be the min-cut value in a graph. If (A,B) is a cut with value
αc, then the minimum r-way cut in A has value at least (r − α)c/2.

Proof. Let {Xi}ri=1 be the optimum r-way cut of A, with value β. Let us contract
each Xi to a single vertex (removing resulting self loops) and sum the degrees of
these r vertices two different ways. There are β edges (the r-way cut edges) with one
endpoint in each of two different Xi’s. This contributes 2β to the sum of contracted-
vertex degrees. There are also αc edges with exactly one endpoint in A (and thus in
sum Xi), namely, the edges crossing cut (A,B). These contribute an additional αc to
the sum of degrees. Thus the sum of the degrees of the Xi’s is 2β + αc. Counting a
different way, we know that each Xi has degree no less than the minimum cut, so the
sum of degrees is at least rc. Thus 2β + αc ≥ rc, and the result follows.

Theorem 6.5. For any constant α, all cuts with value at most α times the
minimum cut’s can be found in NC.

Proof. For simplicity, assume without loss of generality that α is an integer. Fix a
particular cut (A,B) of value αc. Let r = α+ 2. By Lemma 6.4, the minimum r-way
cut in A (and in B) has value at least c. Lemma 6.3 says that as a consequence there
are nO(1) r-way cuts in A (or B) with value less than 3rαc. Define a set-isolation
instance whose target sets are all such multiway cuts and whose safe set is the cut
(A,B). By finding an isolator for the instance and contracting the edges in it, we
ensure that the minimum r-way cut in each of A and B exceeds 3rαc.

Suppose that after isolating the cut we want, we run our parallelization of Matula’s
algorithm, constructing k-jungles with k = αc. Since the r-way cut is at least 3rαc
in each of A and B, at most (r − 1) vertices in each set have degree less than 6αc.
It follows that so long as the number of vertices exceeds 4r, the number of edges will
reduce by a constant factor in each iteration of the algorithm. In other words, in
O(logm) steps, the number of vertices will be reduced to 4r in such a way that the
cut of value αc is preserved. We can find it by examining all possible partitions of
the 4r remaining vertices since there are only a constant number.

There is an obvious extension to approximate multiway cuts; however, we omit
the notationally complicated exposition.

6.4. Extension to weighted graphs. If the weights in a graph are polynomi-
ally bounded integers, we can transform the graph into a multigraph with a polynomial
number of edges by replacing an edge of weight w with w parallel unweighted edges.
Then we can use the unweighted multigraph algorithm to find the minimum cut.

If the edge weights are reals, we use the following reduction from [18, 19] to the
case of integral polynomial edge weights. We first estimate the minimum cut to within
a multiplicative factor of O(n2). To do so, we simply compute a maximum spanning
tree of the weighted graph and then let w be the weight of the minimum-weight
edge of this maximum spanning tree. Removing this edge partitions the maximum
spanning tree into two sets of vertices such that no edge of G connecting them has

AN NC ALGORITHM FOR MINIMUM CUTS 267

weight greater than w (or else it would be in the maximum spanning tree). Therefore,
the minimum cut is at most n2w. On the other hand, the maximum spanning tree
has only edges of weight at least w, so one such edge crosses every cut. Thus the
minimum cut is at least w. This estimate can clearly be done in NC.

Given this estimate, we can immediately contract all edges of weight exceeding
n2w since they cannot cross the min-cut. Afterwards, the total amount of weight
remaining in the graph is at most n4w. Now multiply each edge weight by n3/w so
that that the minimum cut is scaled to be between n3 and n5. If we now round each
edge weight to the nearest integer, we will be changing the value of each cut by at most
n2 in absolute terms, implying a relative change by at most a (1 + 1/n) factor. Thus
the cut of minimal weight in the original graph has weight within a (1 + 1/n) factor
of the minimum cut in the new graph. By Theorem 6.5, all such nearly minimum
cuts can be found in NC with the previously described algorithms. All we need to do
to find the actual minimum cut is inspect every one of the small cuts we find in the
scaled graph and compute its value according to the original edge weights.

7. Solving the set-isolation problem. It remains to show how to construct a
universal isolating family in NC. Our goal is, given U and k, to generate a (u, k, α)-
universal isolating family of size polynomial in u and k in NC. We first give an
existence proof for universal families of the desired size. The proof uses the proba-
bilistic method; for this and other ideas in this section involving randomization, refer
to the book by Motwani and Raghavan [28].

Theorem 7.1. There exists a (u, k, α)-universal isolating family of size ukO(1)

for any constant α.
Proof. First, assume that the safe-set size s is known explicitly. We use a standard

probabilistic existence argument. Fix attention on a particular set-isolation instance
with safe-set size s. Suppose we mark each element of the universe with probability
(log 2k)/αs and let the marked elements form one member of the universal family.
With probability k−O(1), the safe-set is not marked but all the target sets are. If
so, then the marked elements form an isolator for the given instance. Thus if we
perform kO(1) trials, we can reduce the probability of not producing an isolator for
this instance to 1/2. If we do this ukO(1) times, then the probability of failure on

the instance is 2−uk
O(1)

. If we now consider all 2uk
O(1)

set-isolation instances, the
probability that we fail to to generate an isolator for all of them during all the trials
is less than 1.

Now consider the assumption that s is known. It can be removed by performing
the above randomized marking trial for each value of s in the range 1, . . . , u; their
union would be a universal isolating family. This would increase the size of the family
by a factor of u. More efficiently, since a constant-factor estimate of s suffices, we
could apply the construction for s = 1, 2, 4, 8, . . . , u and take the union of the results.
This would increase the number of sets in the universal isolating family by a factor of
log u but would increase the total size (in number of elements) of all sets in the family
by only a constant factor.

It is not very hard to see that this existence proof can be converted into a random-
ized (RNC) construction of a polynomial-size (u, k, α)-universal isolating family. In
the application to the minimum-cut problem, we only know of an upper bound on the
value of k, but it is clear that this suffices for the existence proof and the randomized
construction. Furthermore, since we can get a constant-factor approximation to the
minimum cut, we do not in fact need to construct isolators for all possible values of
s but only for the estimate.

268 DAVID R. KARGER AND RAJEEV MOTWANI

7.1. Deterministically constructing universal families. We proceed to de-
randomize the construction of a universal isolating family. As in the randomized
construction, we can assume that the safe-set size s is known. While performing the
derandomization, we fix our attention on a particular set-isolation instance and show
that our construction will contain an isolator for that instance. It will follow that our
construction contains an isolator for every instance.

Our derandomization happens in two steps. We first replace the randomized
construction’s fully independent marking by pairwise-independent marking and show
that despite this change we have a good chance of marking any one target set while
avoiding the safe set. We then use random walks on expanders to let us mark all the
target sets simultaneously while avoiding the safe set.

7.1.1. Pairwise independence. We first show how pairwise-independent mark-
ing isolates any one target set from the safe set. The analysis of the use of pairwise
instead of complete independence is fairly standard [7, 25, 28], and the particular
proof given below is similar to that of Luby, Naor, and Naor [26].

Choose p = 1/(2 + α)s. Suppose each element of U is marked with probability
p pairwise independently to obtain a mark set M ⊆ U . For any element x ∈ U , we
define the following two events under the pairwise-independent marking:

• Mx: the event that element x is marked;
• Sx: the event that element x is marked but no element of the safe set S is

marked.

We have that Pr[Mx] = p and the events {Mx} are pairwise independent. We say
that a mark set is good for Ti if some element of Ti is marked but no element of S
is marked, and in that case the set of marked elements M is called a good set for Ti.
The mark set is an isolator if it is good for every Ti.

Observe that the mark set M is good for a target set Ti if and only if the event
Sx occurs for some element x ∈ Ti. The following lemmas help to establish a constant
lower bound on the probability that M is good for Ti.

Lemma 7.2. For any element x ∈ U \ S,

Pr[Sx] ≥ p(1− sp).

Proof. The probability that x is marked but no element of S is marked can be
written as the product of the following two probabilities:

• the probability that x is marked, and
• the probability that no element of S is marked conditional upon x being

marked.

We obtain that

Pr[Sx] = Pr[∩j∈SMj ∩Mx]

= Pr[∩j∈SMj | Mx]× Pr[Mx]

= (1− Pr[∪j∈SMj | Mx])× Pr[Mx]

≥

1−
∑
j∈S

Pr[Mj | Mx]

× Pr[Mx].

Since x 6∈ S, we have that j 6= x. The pairwise independence of the marking now

AN NC ALGORITHM FOR MINIMUM CUTS 269

implies that Pr[Mj | Mx] = Pr[Mj], and so we obtain that

Pr[Sx] ≥

1−
∑
j∈S

Pr[Mj]

× Pr[Mx]

= (1− sp)p.

Lemma 7.3. For any pair of elements x, y ∈ U \ S,

Pr[Sx ∩ Sy] ≤ p2.

Proof. Using conditional probabilities as in the proof of Lemma 7.2, we have that

Pr[Sx ∩ Sy] = Pr[(Mx ∩My) ∩ (∩j∈SMj)]

= Pr[∩j∈SMj | Mx ∩My]× Pr[Mx ∩My]

≤ Pr[Mx ∩My]

= p2,

where the last step follows from the pairwise independence of the marking.
Theorem 7.4. The probability that the pairwise-independent marking is good for

any specific target set Ti is bounded from below by a positive constant.
Proof. Recall that |Ti| ≥ t = αs and arbitrarily choose a subset T ⊆ Ti such that

|T | = t = αs, assuming without loss of generality that t is a positive integer. The
probability the mark set M is good for Ti is given by Pr[∪x∈TiSx]. We can lower
bound this probability as follows:

Pr[∪x∈TiSx] ≥ Pr[∪x∈TSx]

≥
∑
x∈T

Pr[Sx]−
∑
x,y∈T

Pr[Sx ∩ Sy],

using the principle of inclusion-exclusion. Invoking Lemmas 7.2 and 7.3, we obtain
that

Pr[∪x∈TiSx] ≥ tp(1− sp)−
(
t

2

)
p2

≥ tp(1− sp)− t2p2

= αsp(1− sp)− (αsp)2

=
α

2(2 + α)
,

where the last expression follows from our choice of sp = 1/(2 + α). Clearly, for any
positive constant α, the last expression is a positive constant.

A pairwise-independent marking can be achieved using O(log u + log s) random
bits as a seed to generate pairwise-independent variables for the marking trial [7]. The
O(log u) term comes from the need to generate u random variables; the O(log s) term
comes from the fact that the denominator in the marking probability is proportional
to s. Since s ≤ u, the number of random bits needed to generate the pairwise-
independent marking is O(log u).

We can boost the probability of success to any desired constant β by using O(1)
independent iterations of the random marking process, each yielding a different mark

270 DAVID R. KARGER AND RAJEEV MOTWANI

set. This increases the size of the seed needed by only a constant factor. We can
think of this pairwise-independent marking algorithm as a function f that takes a
truly random seed R of O(log u) bits and returns O(1) subsets of U . Randomizing
over seeds R, the probability that f(R) contains at least one good set for target Ti is
at least β.

7.1.2. Expander walks. The above construction lets us isolate any one target
set from the safe set with reasonable probability. The next step is to isolate all target
sets simultaneously. We do so by reducing the probability of failure from a constant
1−β to k−O(1), making it unlikely that we fail to mark any one target set. This relies
on the behavior of random walks on expanders.

We need an explicit construction of a family of bounded-degree expanders, and
a convenient construction is that of Gabber and Galil [13]. They show that for suffi-
ciently large n, there exists a graph Gn on n vertices with the following properties: the
graph is 7-regular; it has a constant expansion factor; and, for some constant ε, the
second eigenvalue of the graph is at most 1 − ε. The following is a minor adaptation
of a result due to Ajtai, Komlós, and Szemerédi [2] which presents a crucial property
of random walks on the expander Gn. (Refer to Cohen and Wigderson [8], Impagli-
azzo and Zuckerman [16], and Motwani and Raghavan [28] for a formal definition of
expanders and further details about random walks on expanders.)

Theorem 7.5 (see [2]). There exist constants β, γ > 0 such that for any subset
B ⊆ V (Gn) of size at most (1− β)n and for a random walk of length γ log k on Gn,
the probability that the vertices visited by the random walk are all from B is O(k−2).

Notice that performing a random walk of length γ log k on Gn requires O(logn+
log k) random bits—choosing a random starting vertex requires logn random bits and,
since the degree is constant, each step of the walk requires O(1) random bits. We
use this random walk result as follows. Each vertex of the expander corresponds to
a seed for the mark-set generator f described above; thus log n = O(log u), implying
that we need a total of O(log u + log k) random bits for the random walk. Choosing
B to be the set of bad seeds for Ti, i.e., those that generate set families containing
no good sets for Ti, and noting that by construction B has size (1− β)n allows us to
prove the following theorem.

Theorem 7.6. A (u, k, α) universal family for U of size (uk)O(1) can be generated
in NC for any constant α.

Proof. Use Θ(log u+log k) random bits in the expander walk to generate Θ(log k)
pseudorandom seeds. Then use each seed as an input to the mark-set generator f . Let
H denote the Θ(log k) sets generated throughout these trials (we give Θ(log k) inputs
to f , each of which generates O(1) sets). Since the probability that f generates a good-
for-i set on a random input is β, we can choose constants and apply Theorem 7.5 to
ensure that with probability 1− 1/k2, one of our pseudorandom seeds is such that H
contains a good set for Ti. It follows that with probability 1− 1/k, H contains good
sets for every one of the Ti’s. Note that the good sets for different targets might be
different. However, consider the collection C of all possible unions of sets in H. Since
H has O(log k) sets, C has size 2|H| = kO(1). One set in C consists of the union of all
the good-for-some-i sets in H; this set intersects every Ti but does not intersect the
safe set, and it is thus an isolator for our instance.

We have shown that with O(log u + log k) random bits, we generate a family of
kO(1) sets such that there is a nonzero probability that one of the sets isolates the
safe set. It follows that if we try all possible O(log u + log k)-bit seeds, one of them
must yield a collection that contains an isolator. All these seeds together will generate

AN NC ALGORITHM FOR MINIMUM CUTS 271

(uk)O(1) sets, one of which must be the desired one.
For a given input seed, the pairwise-independent generation of sets by f is easily

parallelizable. Given a particular O(log u + log k)-bit seed for the expander walk,
Theorem 7.5 says that performing the walk to generate the seeds for f takes O(log u+
log k) time. We can clearly do this in parallel for all possible seeds. The various sets
that are output as a result must contain a solution for any particular set-isolation
instance; it follows that the output collection is a (u, k, c)-universal isolating fam-
ily.

It should be noted that by itself, this set-isolation construction is not sufficient
for derandomization. Combined directly with the technique of Luby, Naor, and Naor
[26], it can find a set of edges that contains an edge incident on each vertex but not
any of the minimum-cut edges. Unfortunately, contracting such an edge set need only
halve the number of vertices (e.g., if the edge set is a perfect matching), so Ω(logn)
phases would still be necessary. This approach would therefore use Ω(log2 n) random
bits, just as [26] did. The power of the technique comes through its combination
with the approximation algorithm, which allows us to solve the entire problem in a
single phase with O(logn) random bits. This, of course, lets us fully derandomize the
algorithm.

8. Conclusion. We have shown that, in principle, the minimum-cut problem
can be solved in NC. This should be viewed as a primarily theoretical result since
the algorithm in its present form is extremely impractical. A natural open problem
is to find an efficient NC algorithm for minimum cuts. An easier goal might be to
improve the efficiency of the approximation algorithm. Our algorithm uses m2/n
processors. Matula’s sequential approximation algorithm uses only linear time, and
the RNC min-cut algorithm of [23] uses only n2 processors. Also, an RNC (2 + ε)-
approximation algorithm using only a linear number of processors is given in [20].
These facts suggest that a more efficient NC algorithm might be possible.

We also introduced a new combinatorial problem, the set-isolation problem. This
problem seems very natural, and it would be nice to find further applications for it.
Other applications of the combination of pairwise independence and random walks
would also be interesting.

REFERENCES

[1] A. Aggarwal and R. J. Anderson, A random NC algorithm for depth first search, Combi-
natorica, 8 (1988), pp. 1–12.

[2] M. Ajtai, J. Komlós, and E. Szemerédi, Deterministic simulation in logspace, in Proc. 19th
ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 132–140.

[3] D. Applegate, AT&T Bell Labs, Murray Hill, NJ, personal communication, 1992.
[4] M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in interactive proofs, Com-

put. Complexity, 3 (1993), pp. 319–354; abstract in Proc. 31st Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 563–572.

[5] R. A. Botafogo, Cluster analysis for hypertext systems, in Proc. 16th Annual International
ACM Conference on Research and Development in Information Retrieval (SIGIR), ACM,
New York, 1993, pp. 116–125.

[6] J. Cheriyan, M. Y. Kao, and R. Thurimella, Scan-first search and sparse certificates:
An improved parallel algorithm for k-vertex connectivity, SIAM J. Comput., 22 (1993),
pp. 157–174.

[7] B. Chor and O. Goldreich, On the power of two-point sampling, J. Complexity, 5 (1989),
pp. 96–106.

[8] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proc. 30th Annual Symposium on the Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1989, pp 14–19.

272 DAVID R. KARGER AND RAJEEV MOTWANI

[9] C. J. Colbourn, The Combinatorics of Network Reliability, International Series of Monographs
on Computer Science, Vol. 4. Oxford University Press, Oxford, UK, 1987.

[10] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov, On the structure of a family of
minimum weighted cuts in a graph, in Studies in Discrete Optimization, A. A. Fridman,
ed., Nauka, Moscow, 1976, pp. 290–306.

[11] L. R. Ford, Jr. and D. R. Fulkerson, Maximal flow through a network, Canad. J. Math.,
8 (1956), pp. 399–404.

[12] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

[13] O. Gabber and Z. Galil, Explicit construction of linear-sized superconcentrators, J. Com-
put. System Sci., 22 (1981), pp. 407–420.

[14] L. M. Goldschlager, R. A. Shaw, and J. Staples, The maximum flow problem is logspace
complete for P, Theoret. Comput. Sci., 21 (1982), pp. 105–111.

[15] J. Hao and J. B. Orlin, A faster algorithm for finding the minimum cut in a directed graph,
J. Algorithms, 17 (1994), pp. 424–446; preliminary version in Proc. 3rd Annual ACM–SIAM
Symposium on Discrete Algorithms, SIAM, Phialdelphia, 1992, pp. 165–174.

[16] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in Proc. 30th Annual
Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1989, pp. 222–227.

[17] A. Israeli and Y. Shiloach, An improved parallel algorithm for maximal matching, In-
form. Process. Lett., 22 (1986), pp. 57–60.

[18] D. R. Karger, Global min-cuts in RNC and other ramifications of a simple mincut algorithm,
in Proc. 4th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1993, pp. 21–30.

[19] D. R. Karger, Random sampling in graph optimization problems, Ph.D. thesis, Stanford
University, Stanford, CA, 1994; contact author at (karger@lcs.mit.edu); available by ftp
from (theory.lcs.mit.edu), directory (pub/karger).

[20] D. R. Karger, Using randomized sparsification to approximate minimum cuts, in Proc. 5th
Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1994,
pp. 424–432.

[21] D. R. Karger, A randomized fully polynomial approximation scheme for the all terminal
network reliability problem, in Proc. 27th ACM Symposium on Theory of Computing,
ACM, New York, 1995, pp. 11–17.

[22] D. R. Karger and R. Motwani, Derandomization through approximation: An NC algorithm
for minimum cuts, in Proc. 25th ACM Symposium on Theory of Computing, ACM, New
York, 1993, pp. 497–506.

[23] D. R. Karger and C. Stein, An Õ(n2) algorithm for minimum cuts, in Proc. 25th ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 757–765.

[24] R. M. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching is in random
NC, Combinatorica, 6 (1986), pp. 35–48.

[25] M. G. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
J. Comput., 15 (1986), pp. 1036–1053.

[26] M. G. Luby, J. Naor, and M. Naor, On removing randomness from a parallel algorithm for
minimum cuts, Technical report TR-093-007, International Computer Science Institute,
Berkeley, CA, 1993.

[27] D. W. Matula, A linear time 2 + ε approximation algorithm for edge connectivity, in
Proc. 4th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1993, pp. 500–504.

[28] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, 1995.

[29] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix inversion,
Combinatorica, 7 (1987), pp. 105–113.

[30] H. Nagamochi and T. Ibaraki, Computing edge connectivity in multigraphs and capacitated
graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.

[31] M. Padberg and G. Rinaldi, An efficient algorithm for the minimum capacity cut problem,
Math. Programming, 47 (1990), pp. 19–39.

[32] J. C. Picard and M. Queyranne, Selected applications of minimum cuts in networks, INFOR:
Canad. J. Oper. Res. Inform. Process., 20 (1982), pp. 394–422.

RESOURCE BOUNDS FOR SELF-STABILIZING MESSAGE-DRIVEN
PROTOCOLS∗

SHLOMI DOLEV† , AMOS ISRAELI‡ , AND SHLOMO MORAN§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, pp. 273-290, February 1997 016

Abstract. Self-stabilizing message-driven protocols are defined and discussed. The class weak
exclusion that contains many natural tasks such as `-exclusion and token passing is defined, and it is
shown that in any execution of any self-stabilizing protocol for a task in this class, the configuration
size must grow at least in a logarithmic rate. This last lower bound is valid even if the system
is supported by a time-out mechanism that prevents communication deadlocks. Then we present
three self-stabilizing message-driven protocols for token passing. The rate of growth of configuration
size for all three protocols matches the aforementioned lower bound. Our protocols are presented
for two-processor systems but can be easily adapted to rings of arbitrary size. Our results have an
interesting interpretation in terms of automata theory.

Key words. self-stabilization, message passing, token passing, shared memory

AMS subject classifications. 68M10, 68M15, 68Q10, 68Q20

PII. S0097539792235074

1. Introduction. A distributed system is a set of state machines, called pro-
cessors, which communicate either by shared variables or by message-passing. In the
first case, the system is a shared-memory system; in the second case, the system is a
message-passing system. A distributed system is self-stabilizing if it can be started in
any possible global state. Once started, the system regains its consistency by itself,
without any kind of an outside intervention. The self-stabilization property is very
useful for systems in which processors may crash and then recover spontaneously in
an arbitrary state. When the intermediate period in between one recovery and the
next crash is long enough, the system stabilizes. Self-stabilizing systems were defined
and discussed first in the fundamental paper of Dijkstra [7]. The work of [7] as well
as most of the following work on self-stabilizing systems assume the communication
model of shared variables. Among these papers are [2], [4], [6], [8], [9], [11], [14], [15],
[17], [19], [20], and [22].

In the study of fault-tolerant message-passing systems, it is customarily assumed
that messages might be corrupted over links; hence processors may enter arbitrary
states and link contents may be arbitrary. Self-stabilizing protocols treat these prob-
lems naturally since they are designed to recover from inconsistent global states.
Surprisingly, there are very few papers which address self-stabilizing message-passing
systems. The earliest research in this model was done by Gouda and Multari in [13],
[21]. In that work, they have developed a self-stabilizing sliding-window protocol
and two-way handshake that use unbounded counters. They proved that any self-
stabilizing message-passing protocol must use time-outs and have infinite number of
safe states. Following [13], two additional works dealt with self-stabilizing protocols

∗ Received by the editors July 29, 1992; accepted for publication (in revised form) May 3, 1995.
An extended abstract of this work was presented at the 10th Annual ACM Symposium on Principles
of Distributed Computing, 1991 [10].

http://www.siam.org/journals/sicomp/26-1/23507.html
† Department of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva 84105,

Israel (dolev@cs.bgu.ac.il).
‡ Intel, P.O. Box 1659, Haifa 31015, Israel (aisraeli@iil.intel.com). The research of this author

was partially supported by the NWO through NFI Project ALADDIN under contract NF 62-376.
§ Department of Computer Science, Technion, Haifa 32000, Israel (moran@cs.technion.ac.il).

273

274 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

in this model. The work of Katz and Perry [16] presents a general tool for extend-
ing an arbitrary message-passing protocol to a self-stabilizing protocol. The work of
Afek and Brown [1] presents a self-stabilizing version of the well-known alternating-bit
protocol (see, e.g., [5]).

In this work, we research complexity issues related to self-stabilizing message-
passing systems; to do this, we define a configuration of any message-passing system
as a list of the states of the processors and of the messages which are in transit on
each link. The size of a configuration of a message-passing system is the number of
bits required to encode the configuration entirely. A protocol for a message-passing
system is message driven if any action of the processors is initiated by receiving a
message. In the work of Gouda and Multari [13], it is proven that any message-driven
protocol has a possible configuration in which all processors are waiting for messages
but there are no messages on any link. This unwanted situation is called commu-
nication deadlock. A self-stabilizing system should stabilize when started from any
possible initial configuration, including a configuration with communication deadlock.
This implies that a nontrivial, completely asynchronous, self-stabilizing system can-
not be message-driven. This problem can be dealt with in at least two methods.
Gouda and Multari [13] proposed the use of a time-out mechanism which preserves
the message-driven structure of the protocol at the expense of compromising the com-
plete asynchronicity. On the other hand, Katz and Perry [16] chose to give up the
message-driven structure and present protocols for which at any configuration there
is at least one processor whose next operation is sending a message. Thus there is
an execution in which in every atomic step a message is sent, and no message is ever
received. In this execution, the size of the configurations grows linearly.

In this work, we define and study the class of self-stabilizing message-driven proto-
cols. By the argument of [13], there exists no self-stabilizing message-driven protocol
which is completely asynchronous. Since we look for protocols whose configuration
size does not grow at a linear rate, we resort to slightly limited assumptions of asyn-
chronous behavior. For lower bounds, we assume an abstract time-out device which
detects communication deadlocks and initiates the system upon their occurrence.
Consequently, the lower bounds we present take into account only executions in which
no communication deadlock occurs. Our upper bounds assume that in every initial
configuration, there is at least one message on some link. This assumption is much
weaker than the assumption on a general time-out mechanism.

A specific task which we study in details is token passing. Informally, the token-
passing task is to pass a single token fairly among the system’s processors. Usually, it
is assumed that in the system’s predefined initial configuration, there exists a single
token. In self-stabilizing system in which there is no predefined initial configuration,
each execution should reach a configuration in which exactly one token is present in
the entire system. Token passing is a very basic task in fault-tolerant systems; among
other works, it was studied in [12] for some fault-tolerant message-passing systems
and in [14] for self-stabilizing shared-memory systems. The token-passing task can
be looked at as a special case of mutual exclusion since possession of the single token
can be interpreted as a permission to enter the critical section.

In the first part of the presentation we prove a lower bound on the configuration
size for protocols for a large class of tasks called weak exclusion. The weak-exclusion
class contains all nontrivial tasks which require continuous changes in the system’s
configuration; in particular, this class includes both `-exclusion and token passing.
We show that the configuration size of any self-stabilizing protocol which realizes any

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 275

weak-exclusion task is at least logarithmic in the number of steps executed by the
protocol. The lower bound holds for message-driven protocols for any weak-exclusion
task, including protocols for systems equipped with time-out mechanism. This result
should be compared with a result of [13] where it is shown that any message-driven
self-stabilizing protocol (not necessarily for weak-exclusion tasks) must have infinitely
many safe system configurations, but it is not shown that each specific execution must
contain infinitely many distinct configurations, as implied by our results. Our lower
bound does not specify which part of the system grows; is it the size of the memory
used by the state machines, the size of messages stored on the links, the number of
messages stored on the links, or all of these together?

We then present three self-stabilizing message-driven protocols for token passing.
The communication-deadlock problem is avoided by the assumption that at least a
single message is present on some communication link. Using this assumption, we
present three token-passing protocols for two processors each. The rate of growth of
configuration size for all three protocols matches the aforementioned lower bound. All
protocols are presented for systems with two processors but can be easily adapted to
work on rings of arbitrary size without increasing their asymptotic complexity. This
is done by considering the ring as a single virtual link.

In the first protocol, the sizes of both processors’ memory and messages grow
unboundedly with time; this protocol uses ideas similar to the ideas of the sliding-
window protocol of [13]. The second protocol is an improvement on the first protocol
in which the size of the memory of the processors grows (in logarithmic rate) while
the size of the link content is bounded. The second protocol is an improvement of the
deterministic alternating-bit protocol of [1]. The third protocol is a self-stabilizing
token-passing protocol in which processors are deterministic finite-state machines and
messages are of fixed size. The only growing part of the system is the number of
messages on the links; the rate of growth matches the lower bound mentioned above.

Our results can also be described in terms of automata theory, as follows. Let
Σ be an alphabet. Define a queue machine Q to be a finite-state machine which is
equipped with a queue, which initially contains an arbitrary nonempty word from Σ+.
Initially, Q is in an arbitrary state, and in each step it performs the following: (a)
reads and deletes a letter from the head of the queue, (b) adds one or more letters
from Σ to the tail of the queue, and (c) moves to a new state. The computational
power of a queue machine is severely limited by the fact that its input alphabet and
its work alphabet are identical. In particular, a queue machine cannot perform simple
tasks like computing the length of the input word or even deciding whether the input
word contains a specific letter.

Assume that the alphabet contains a specified subset τ of token letters. A queue
machine is a token controller if, starting with a nonempty queue of arbitrary content,
the queue eventually contains exactly one occurrence of a letter from τ forever. Our
lower-bound result implies that if a token controller exists, then in every computation,
the size of the queue must grow at least logarithmically in the number of moves of
the machine. Our third protocol implies that a token controller whose configuration
size growth matches the lower bound exists. In view of the fact that a queue machine
cannot compute any estimation of the number of occurrences of letters from τ in the
input word, this latter result appears to be somewhat counterintuitive.

2. Self-stabilizing message-driven systems.

2.1. Asynchronous message-driven systems. An asynchronous, distributed,
message-passing system contains n processors, where each processor is a state machine.

276 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

Processors communicate using message passing along links . An edge e = (i, j) of G
stands for two directed links, one from Pi to Pj and the other from Pj to Pi. A
message sent from Pi to Pj can be delayed for an unbounded amount of time on the
connecting link. Messages which did not yet reach their destination are stored on the
link and transferred in first-in first-out (FIFO) order.

A processor is uniquely defined by the set of its atomic steps . Whenever a pro-
cessor is active, it executes one of its atomic steps. In a message-driven protocol, an
atomic step of any processor P begins with a receive operation in which P receives a
message from one of its incoming links. The atomic step ends with zero or more send
operations in which P sends messages along some of its outgoing links. An atomic step
a of Pi is defined by a = (i, si1 , (e,msg), (e1,msg1), (e2,msg2), . . . , (e`,msg`), si2),
meaning that Pi is in state si1 , e is the link through which Pi receives the message
msg, e1, e2, . . . , e` are the outgoing links along which Pi sends msg1,msg2, . . . ,msg`,
respectively, and si2 is the state of Pi following the execution of this atomic step.

Let n and m be the number of processors and links, respectively, in the sys-
tem. For 1 ≤ i ≤ n, denote the set of states of Pi by Si. A configuration of
the system is a vector of states of all processors together with m lists—a list for
every link—of messages stored on that link. A configuration is denoted by c =
(s1, s2, . . . , sn,Me1 ,Me2 , . . . ,Mej , . . . ,Mem), where si ∈ Si, 1 ≤ i ≤ n, and Mej is a
list of the messages stored on ej for 1 ≤ j ≤ m. Let c be a configuration as above, and
let a = (i, si1 , (e,msg), (e1,msg1), (e2,msg2), . . . , (e`,msg`), si2) be an atomic step. a
is applicable to (Pi in) c if Pi is in state si1 in c and msg is the first message stored
on e in c.

Application of a to c yields the result configuration c′. We denote this fact by
c
a→ c′. A sequence of atomic steps, A = (a1, a2, . . .), is applicable to configuration c0

if the first atomic step in the sequence, a1, is applicable to c0, the second atomic step
is applicable to c1, where c0

a1→ c1, and so on. An execution E = (c0, a1, c1, a2, . . .) is
a (finite or infinite) sequence which starts with some arbitrary configuration c0 and

for every i > 0, ci−1
ai→ ci; that is, the sequence of atomic steps A = (a1, a2, . . .) is

applicable to c0. Note: Since we deal with self-stabilizing systems, we do not assume
any particular initial configuration; every configuration is a valid initial configuration.
Execution E is fair if every atomic step that is applicable infinitely often is executed
infinitely often.

Each execution E defines a partial order on the atomic steps of E by the relation
happened before of Lamport in [18]:

1. If ai and aj are atomic steps executed by the same processor in E and ai
appears before aj in E, then ai happened before aj .

2. If during ai the message msg is sent and during aj the same message msg is
received, then ai happened before aj .

3. If ai happened before aj and aj happened before ak, then ai happened before
ak.

We also adopt the definition of concurrent atomic steps from [18]: atomic steps
a1, . . . , ak are said to be concurrent in an execution E if for 1 ≤ i < j ≤ k, ai does not
happen before aj and aj does not happen before ai in E. The following proposition
gives a sufficient condition for a set of steps to be concurrent in some execution.

Proposition 2.1. Let Pi1 , . . . , Pik be k distinct processors and let {a1, . . . , ak} be
a set of atomic steps where aj is applicable to Pij , 1 ≤ j ≤ k, in some configuration c.
Then there exists an execution in which the atomic steps a1, . . . , ak are concurrent.

Proof. Observe that once step a is applicable to processor P in configuration

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 277

c, step a remains applicable to P in all subsequent configurations. The execution
E is defined as the execution that starts from c in which processors Pi1 , . . . , Pik are
activated one after the other and each processor Pij executes aj . The proof follows
since the processors are distinct and since in E, no message that was sent during aj ,
1 ≤ j ≤ k, is received before ak is executed. Note that the proposition holds for any
system in which once some step is applicable, it remains applicable as long as it is not
executed.

An asynchronous protocol PR is defined by a set of n processors. By the above
definitions, an asynchronous protocol defines a set of executions that satisfy the fol-
lowing:

1. Let E = (c0, a1, c1, a2, . . .) be an arbitrary execution of PR. Then every
prefix of E is also an execution of PR.

2. Let E = (c0, a1, c1, a2, . . . , ar, cr) be arbitrary finite execution of PR. Then

for every atomic step a and configuration c satisfying cr
a→ c PR has an execution

E ◦ (a, c).1

2.2. Self-stabilizing message-driven protocols. A self-stabilizing system de-
monstrates a legitimate behavior some time after it is started from an arbitrary con-
figuration. A natural way to specify a behavior in an abstract way is by a set of
sequences of configurations. We define tasks as sets of legitimate sequences. The se-
mantics of any specific task is expressed by requirements on its sequences. Intuitively,
each legitimate sequence can be thought of as an execution of a protocol, but we do
not require this formally. For instance, the mutual-exclusion task is defined as the
set of sequences of configurations which satisfy the following: Each processor has a
subset of its states called critical section; in each configuration, at most one processor
is in its critical section, and every processor is in its critical section in infinitely many
configurations. To formally define a task T , one should specify for each possible sys-
tem ST a set of legitimate sequences for ST . The task T is defined as the union of
the legitimate sequence set over all possible systems. A configuration c of a system is
safe with respect to a task T and a protocol PR if any fair execution of PR starting
from c belongs to T .

In proving lower-bound results on self-stabilizing message-driven protocols, we
assume that the system can recover from a communication deadlock (called deadlock
from now on). In other words, when we prove our lower bounds, we assume only that
the protocol stabilizes in executions in which no deadlock occurs. For this purpose,
we distinguish between two types of deadlocks: global and local. A configuration c is
a global deadlock configuration if no atomic step is applicable to c. Our first lower
bound holds for asynchronous systems that can recover from global deadlocks by
applying a global time-out mechanism. This abstract mechanism initiates a system in a
global deadlock configuration to a default initial configuration, after which no deadlock
occurs. Below we present the requirement for self-stabilizing systems equipped with
a global time-out mechanism. In this definition, the system is required to reach a safe
configuration in every infinite fair execution. Note that by our definition, an infinite
fair execution does not have a deadlock configuration.

Self-stabilization (assuming global time-out mechanism). Let PR and LE be a
message-driven protocol and set of legitimate sequences, respectively. Protocol PR is
self-stabilizing relative to LE if for every c, there is an execution of PR that starts
with c and every such infinite fair execution reaches a safe configuration with respect

1 For sequences S1 and S2, S1 ◦ S2 denotes the concatenation of S1 and S2.

278 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

to LE and PR.
Later on, we prove a lower bound that holds for systems immune to a stronger

type of communication deadlock called local deadlock. Processor P is in a local
deadlock during execution E if P is activated (i.e., executes an atomic step) only
finitely many times during E. The second lower bound holds for systems equipped
with an abstract local time-out mechanism which prevents such executions (e.g., by
enabling each processor which is idle for a sufficiently long time to initiate the system
to some default configuration after which no deadlock is possible). Note that a local
time-out mechanism is strictly stronger than a global time-out mechanism.

Self-stabilization (assuming local time-out mechanism). Let PR and LE be a
message-driven protocol and set of legitimate sequences, respectively. Protocol PR is
sellf-stabilizing relative to LE if for every c, there is an execution of PR that starts
with c, and every such infinite fair execution, in which each processor is activated
infinitely often, reaches a safe configuration with respect to LE and PR.

3. Lower bound. In this section, we prove a lower bound on the rate in which
the configuration size grows along every execution of any protocol for a large class
of tasks called weak exclusion. This class contains all nontrivial tasks which require
continuous changes in the system’s configuration; in particular, this class includes
both `-exclusion and token passing. For an execution E, denote by Ai(E) the set
of distinct atomic steps executed by Pi during E. A task belongs to the class weak
exclusion if its set of legitimate sequences, LE, satisfies the following:

WE. For any E ∈ LE, there exists a set of two or more atomic steps B = {ai1 , . . . ,
aik}, k ≤ n, where aj ∈ Aij (E), such that the atomic steps in B are never concurrent
during E.

We first consider self-stabilizing protocols for systems equipped with a global
time-out mechanism. For these protocols, we prove that in every execution (in which
no communication deadlock occurs), all configurations are distinct. From this we
conclude that the configuration size of every self-stabilizing protocol which realizes
any weak-exclusion task is at least logarithmic in the number of steps executed by
the protocol. Throughout the proof, we assume that PR is a self-stabilizing message-
driven protocol for an arbitrary weak-exclusion task in a system with a global time-out
mechanism. At the end of this section, we present a slightly weaker lower bound for
systems with a local time-out mechanism.

For any configuration c and any link e, denote by M c
e the sequence of messages

present on e in c. For any execution E, denote byME
e,s (ME

e,r) the sequence of messages
sent (received) along e during E.

Proposition 3.1. For every execution E = (c0, a1, . . . , ar, cr) and for every link
e, M c0

e ◦ME
e,s = ME

e,r ◦M cr
e .

Proof. The left-hand side of the equation contains the messages present on e in
c0 concatenated with the messages sent during E through e. The right-hand side of
the equation contains the messages received during E through e concatenated with
the messages left on e in cr. It is not hard to verify that both sides of the equation
represent the same sequence of messages.

An execution E = (c0, a1, . . . , c`−1, a`, c`) whose result configuration c` is equal
to its initial configuration c0 is called a circular execution. A link e is active in a
circular execution E if some messages are received (and hence, by the circularity of
E, some messages are sent) along e in E. Repeating a circular execution E forever
yields an infinite execution E∞ which is not necessarily fair—the original execution
may have an applicable step a which is never executed during E. The step a is

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 279

applicable throughout E∞, but it is never executed. To avoid this problem, the
original circular execution is changed by removing all messages from links that are not
active throughout E. The resulting execution, which is still called E, is still circular,
and its infinite repetition E∞ is a fair infinite execution. Observe that an execution
in which a certain configuration appears more than once has a circular subexecution,
E = (ci, ai+1, . . . , ai+`, ci+`) ≡ (c0, a1, . . . , a`, c`), where ci = ci+` = c0 = c`. Thus
to show that in every execution of PR, all the configurations are distinct, we assume
that PR has a circular subexecution E and reach a contradiction by showing that
PR is not self-stabilizing.

Using E, we now construct an initial configuration cinit by changing the list of
messages in transit on the system’s links. For each link e, the list of messages in
transit on e at cinit is obtained by concatenating the list of messages in transit on e
at c0 with the list of all messages sent on e during E. Roughly speaking, the effect of
this change is creating an additional “layer” of messages that helps to decouple each
send from its counterpart receive and achieve an additional flexibility in the system
which enables the proof of the lower bound. Formally, cinit is obtained from c0 as
follows:

• The state of each processor in cinit is equal to its state in c0.

• For any active link in E, M cinit
e = M c0

e ◦ME
e,s, and for any nonactive link in

E, M cinit
e is empty.

Let A(i) be the sequence of atomic steps executed by Pi during E. Define
merge(A) to be the set of sequences obtained by all possible mergings of all sequences
A(i), 1 ≤ i ≤ n, while keeping the internal order in each A(i). Note that all of the
sequences in merge(A) have the same finite length and contain the same atomic steps
in different orders.

Lemma 3.2. Every A ∈ merge(A) is applicable to cinit, and the resulting execu-
tion, EA = (cinit) ◦A, is a circular execution of PR.

Proof. Let A be an arbitrary sequence in merge(A) and let Pi be an arbitrary
processor of the system. Then we have the following: (i) The initial state of Pi in cinit

is equal to its initial state in c0. (ii) In cinit, all messages which Pi receives during
E are stored on Pi’s appropriate incoming links in the right order. (iii) The atomic
steps of Pi appear in A in the same order in which they appear in A(i). (i)–(iii) imply
that the sequence A is applicable to cinit, and the application of A to cinit yields an
execution EA with resulting configuration cres, whose state vector is equal to the state

vector of cinit and in which for every active link, MEA
e,s = ME

e,s and MEA
e,r = ME

e,r.

To prove that the execution obtained is circular, it remains to be shown that the
content of every link in the resulting configuration cres is equal to its content in cinit,
i.e., M cinit

e = M cres
e . For any arbitrary link e it holds that

1. M cinit
e ◦ME

e,s = ME
e,r ◦M cres

e (by Proposition 3.1 and by the fact that MEA
e,s =

ME
e,s and MEA

e,r = ME
e,r) and

2. M c0
e ◦ME

e,s = ME
e,r ◦M c0

e (by Proposition 3.1 and the circularity of E).

Replacing M cinit
e in equation 1 with its explicit contents yields

3. M c0
e ◦ME

e,s ◦ME
e,s = ME

e,r ◦M cres
e .

Using equation 2 to replace M c0
e ◦ME

e,s by ME
e,r ◦M c0

e in equation 3 gives

4. ME
e,r ◦M c0

e ◦ME
e,s = ME

e,r ◦M cres
e .

Dropping ME
e,r from the two sides of equation 4 yields the desired result: M cinit

e =

M c0
e ◦ME

e,s = M cres
e , which proves the lemma.

280 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

Define blowup(E) to be the set of executions whose initial sate is cinit and whose
sequence of atomic steps belongs tomerge(A). Notice that for every circular execution
E and for every execution E ∈ blowup(E), it holds that Ai(E) = Ai(E).

Lemma 3.3. For any set of atomic steps B = {a1, . . . , ak}, k ≤ n, where aj ∈
Aij (E), there is an execution E ∈ blowup(E) that contains a configuration for which
all the atomic steps in B are concurrent.

Proof. For notational simplicity, assume that k = n and that B = {a1, a2, . . . , an}.
Let A ∈ merge(A) be the sequence constructed as follows: first take all the steps in
A(1) that precede a1, then take all the steps in A(2) that precede a2, . . . , then take
all the steps in A(n) that precede an. Applying the sequence constructed so far to
cinit results in a configuration in which all of the ai’s are applicable. This sequence is
completed to a sequence A in merge(A) by taking the remaining atomic steps in an
arbitrary order, which keeps the internal order of each Ai.

Lemma 3.4. Let PR be a self-stabilizing message-driven protocol for an arbitrary
weak-exclusion task T in a system with a global time-out mechanism. If PR has
a circular execution E, then PR has an infinite fair execution E∞ none of whose
configurations are safe for T .

Proof. Let E be an arbitrary execution in blowup(E). Define E∞ to be the
infinite execution obtained by repeating E forever. By the definition of blowup(E),
E∞ is fair. Thus it remains to show that no configuration in E∞ is safe.

Assume by way of contradiction that some configuration c0 in E∞ is safe. Now we
construct a finite circular execution E′ whose sequence of atomic steps A′ is obtained
by concatenating sequences from merge(A), that is, Ai(E′) = Ai(E). Since PR is
a protocol for some weak-exclusion task, E′ should have some set of atomic steps
B = {a1, . . . , ak}, where aj ∈ Aij , that are never applicable for a single configuration
c during E′. We reach a contradiction by refuting this statement for E′. For this
we choose some arbitrary enumeration B = B1, . . . , Bs, of all the sets containing n
atomic steps of n distinct processors. Execution E′ is constructed by first continuing
the computation from c0 as in E until configuration cinit is reached. Then apply
Lemma 3.3 to extend E′ by s consecutive executions E1, . . . , Es, where Ek, 1 ≤ k ≤ s,
contains a configuration in which all the steps in Bk are applicable and that ends with
cinit. The proof follows. Note: Execution E′ can be repeated forever to obtain an
infinite execution which does not have any suffix in LE; thus the protocol PR is not
even pseudo-self-stabilizing (see [3]).

The proof for the lower bound is completed by the following theorem.

Theorem 3.5. Let PR be a self-stabilizing message-driven protocol for an arbi-
trary weak-exclusion task in a system with a global time-out mechanism. For every
execution E of PR, all the configurations of E are distinct. Hence for every t > 0,
the size of at least one of the first t configurations in E is at least dlog2(t)e.

Proof. Assume by way of contradiction that there exists an execution E of PR in
which not all the configurations are distinct; then E contains a circular subexecution
E. By Lemma 3.4, there exists an infinite execution E′ of PR which is obtained by
an infinite repetition of some execution from blowup(E) and which never reaches a
safe configuration—a contradiction.

To prove a similar lower bound for systems with a local time-out mechanism,
the definition of a circular execution must be modified. Removing messages from
nonactive links to construct an infinite execution from E as in the proof of Theorem
3.5 may yield an infinite execution in which some processor is enabled only finitely
many times. In order to allow repetitions of finite executions to form an infinite fair

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 281

execution, in which every processor is active infinitely often, we require that each
such finite execution contains an atomic step of each processor in the system. For
this we need the concept of a round of an execution. Let E′ be a minimal prefix of
an execution E in which every processor receives a message; E′ is the first round of
E. Let E′′ be the suffix of E which satisfies E = E′ ◦ E′′. The second round of E is
the first round of E′′, and so on. Let Ei be the prefix that contains the first i atomic
steps of E. Let ti = R(Ei) be the number of rounds in Ei. The next theorem presents
a lower bound for systems equipped with a local time-out mechanism. The proof is
similar to the proof of Theorem 3.5.

Theorem 3.6. Let PR be a self-stabilizing message-driven protocol for an ar-
bitrary weak-exclusion task in a system with a local time-out mechanism. For every
execution E of PR, E does not contain a circular subexecution which contains a com-
plete round. From this we conclude that in each execution of PR, E, the first t rounds
contain at least t distinct configurations. Hence for every t > 0, the size of at least
one configuration in Ei at least dlog2(ti)e. In particular, in any fair execution, the
configuration size is unbounded.

4. Upper bound. The token-passing task is defined informally as a set of ex-
ecutions in which a single token is present in the entire system and is passed fairly
among the system’s processors. Token passing is a special case of mutual exclusion
since possession of the single token can be interpreted as permission to enter the crit-
ical section. For this reason, token passing also satisfies the weak-exclusion property,
and hence the lower bound of section 3 holds for it. In particular, it means that
any self-stabilizing message-driven protocol PR for token passing must use some un-
bounded resource since in any infinite execution, the system size grows beyond any
bound. In this section, we present three self-stabilizing token-passing protocols for
systems of two processors. In each protocol, the configuration size grows during every
execution at a rate that matches the lower bound. Each of these protocols can be
easily adapted to work on rings of arbitrary size without increasing its asymptotic
complexity by considering the ring as a single virtual link. Similar ideas can be used
for adapting the protocols to arbitrary rooted tree systems.

By a standard symmetry argument, there exists no self-stabilizing, deterministic,
token-passing protocol if the processors are identical. Hence in this section, we as-
sume that the system consists of two distinct processors, called sender and receiver,
connected by two links. The first link carries messages from the sender to the receiver
while the second link carries messages from the receiver back to the sender. The
receiver processor is identical in all three protocols and it is probably the simplest
possible finite-state machine. Its program is to copy each message it receives from
its incoming link to its outgoing link without any alteration. To the outside world,
the combined behavior of the receiver and the two links looks like the behavior of a
single queue whose head and tail are used by the receiver. In our analysis, we ignore
the receiver and consider systems with a single processor, the sender, communicating
with itself using a single link on which messages are kept in FIFO order. In each
step, the sender consumes a message from the head of the link and puts one (or more)
messages back at the tail of the link. Tokens are represented by a special symbol,
T , which is appended to some of the messages. Our protocols specify the messages
that carry a token, but they do not explicitly use the token symbol T . The protocol
should guarantee that there is eventually a unique message in the system to which T
is appended. All of our protocols assume that there is initially at least one message on
the link (this assumption is weaker than both the global and the local versions of the

282 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

time-out mechanism). With this last assumption, the requirement that the link never
becomes empty is equivalent to the requirement that whenever a message is received,
at least one message is sent. Hence in every step of the protocol, the sender receives
the message on the head of the (single) link and then puts one or more messages at
the link’s end. The three protocols we present are as follows:

Protocol 1. In this protocol, the sender is an infinite-state machine, and in every
execution, the link capacity is unbounded.

Protocol 2. In this protocol, the sender is an infinite-state machine, but in each
infinite execution, the link capacity is bounded (the bound for each specific execution
depends on its initial configuration).

Protocol 3. In this protocol, both processors are finite-state machines.

1 do forever
2 receive(msg counter)
3 if msg counter ≥ counter then (* token arrives *)
4 begin (* send new token *)
5 counter := msg counter +1
6 send(counter, T)
7 end
8 else send(counter)
9 end

Fig. 1. Protocol 1.

Protocol 1 (of the sender) appears in Figure 1. The sender uses a variable called
counter. Each message consists of the present value of counter, possibly with the token
symbol T . Whenever the sender receives a message whose counter value, msg counter,
is not smaller than counter, it sets counter := msg counter + 1 and sends this new
value of counter together with the token T ; otherwise, the sender just sends the
current value of counter (without the token T). The token letter T is not used by the
protocol itself. The correctness of the protocol is based on the fact that eventually
the value of counter will be larger than all the values that appear in the messages
present on the link in the initial configuration. The asymptotic size of counter in each
execution is Ω(log t), where t is the number of messages sent. The details of the proof
are omitted.

4.1. Aperiodic sequences. Protocols 2 and 3 use the following method: each
message is associated with some ternary number which is called color. The protocol
considers any message whose color is different from the color of the previous message
as carrying a token. The sender has a local variable called token color. At any given
configuration the sender is sending a sequence of messages whose color is equal to
(the value of) token color, at the same time, the sender waits for a message whose
color is equal to token color. As long as the sender receives messages of different
colors, it sends messages whose color is equal to token color. Once the sender receives
a message whose color is equal to token color, it chooses a new token color and
initiates a new sequence of messages whose color is the new token color by sending
the first message in this new sequence. This first message is carrying a (virtual)
token. Then the sender continues sending messages of the new token color (without
tokens), until it receives a message of the new token color, and so on. Our goal is
to reach a configuration after which the link always holds at most two consecutive
sequences of messages where the colors of all messages in each sequence are equal.

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 283

In every step, the sender consumes a single message from the first sequence whose
color is the previous token color and produces one or more messages whose color is
equal to the present token color. After the last message whose color is the previous
token color is consumed, the link contains a single sequence of messages whose color
is token color. In the next step, the sender receives the (single) token carried by this
sequence and sends it once again by initiating a new sequence of messages whose color
is the new token color. In each of the configurations described, there exists a single
token which is carried by the first message of the sequence whose color is token color.
The correctness of the protocols follows from the fact that the sequences of token
colors sent by the receiver is aperiodic, as defined below.

Definition. A sequence A = (a1, a2, . . .) is periodic if for some positive integer
k and for all i ≥ 1, ai = ai+k. The sequence A is eventually periodic if it has a suffix
which is periodic. A is aperiodic if it is not eventually periodic.

Aperiodic sequences over the integers {0, 1, 2} were used in [1] in order to ob-
tain self-stabilizing data-link protocols. Such sequences are created there by either
a random-number generator or an infinite-state machine (in the first case, the algo-
rithm is randomized). The elements of this sequence are used by the protocol of [1]
whenever it has to decide on the ternary number to be sent with a new message. In
this paper, aperiodic sequences are generated by using a counter and the sequence
xor defined below.

Definition. For an integer i, xor(i) is the sum of the bits (mod 2) in the
binary representation of i (e.g., xor(1) = xor(2) = 1, xor(3) = 0). The sequence
(xor(1), xor(2), . . .) is denoted by xor.

As we show later, the sequence xor is aperiodic.

1 do forever
2 receive(color)
3 if color = token color then (* token arrives *)
4 begin (* send new token *)
5 token color := (color +xor(counter) + 1) (mod 3)
6 counter := counter +1
7 end
8 send(token color)
9 end

Fig. 2. Protocol 2.

Protocol 2 (of the sender), which appears in Figure 2, is an improvement of the
protocol that appears in [1] in the sense that it achieves the lower bound of the previous
section. (The amount of memory used for producing the aperiodic sequence is neither
addressed nor specified in [1].) In Protocol 2, the sender keeps a counter in its local
memory; whenever a message with a new color is sent, the counter is incremented.
The new color ∈ {0, 1, 2} is determined by the previous color and by applying xor to
the counter. Roughly speaking, the correctness of the protocol is implied by the fact
that since xor is aperiodic, the sequence of colors generated by the sender is aperiodic
as well. The nature of the variables and the correctness proof of Protocol 2 are easily
derived from the description of Protocol 3 and from its correctness proof; hence they
are omitted.

4.2. Informal description of Protocol 3. We now present Protocol 3, in
which both processors are finite-state machines. It is easily observed that when an

284 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

aperiodic sequence is supplied by some external device, a finite-state machine can use
this sequence to perform the protocol in [1]. Our construction uses the fact that the
finite-state machine augmented with the previously described FIFO link can generate
an aperiodic sequence. The finite-state machine uses the link both for message passing
and for generating the aperiodic sequence, while its size is kept within the optimal
bound. Protocol 3 can be easily transformed to a self-stabilizing data-link protocol
in which both processors are finite-state machines.

Protocol 3 appears in Figure 3. In this protocol, each message is a pair (color, bit),
where color ∈ {0, 1, 2} and bit ∈ {0, 1}. The local variables color and token color
are ternary variables while the local variables counter bit, counter xor, carry, and
new counter bit are binary. The binary xor operation is denoted by ⊕. For a sequence
s = ((color1, bit1), . . . , (colork, bitk)) of such messages, N(s) denotes the integer whose
binary representation is bitk, bitk−1, . . . , bit1 (bit1 is the least significant bit). A
maximal sequence of consecutive messages of the same color sent by the sender is
called a block. For each block b, N(b) denotes the integer described above and |b|
denotes the number of messages in b. The first message in each block is viewed as a
token. To show that the protocol is self-stabilizing, we have to prove that eventually
the link contains exactly one message which is the first message in a block. This goal
is achieved by making the sequence of the colors of the blocks aperiodic.

The sender uses a local variable called token color, which denotes the color of
the block it is now sending. It continues to send messages of this color as long as
the colors of the messages it receives are different from token color. Once the sender
receives a message whose color is equal to token color (which eventually means that
all messages on the link belong to the same block), it (a) possibly sends one last
message of the current block, (b) changes the value of token color, and (c) sends the
first message of a new block with this new color.

1 do forever
2 receive(color,counter bit)
3 if color = token color then (* token arrives *)
4 begin
5 if carry = 1 then send (color, 1)

(* new token *)
6 token color := (color + counter xor + 1) (mod 3)
7 counter xor := 0
8 carry := 1
9 end
10 counter xor := counter xor ⊕ counter bit
11 new counter bit := carry ⊕ counter bit
12 carry := carry ∧ counter bit
13 send (token color,new counter bit)
14 end

Fig. 3. Protocol 3.

In Lemma 4.1, we show that in every execution, the sender initiates infinitely
many blocks. Let b1, b2, . . . be the sequence of blocks initiated by the sender, where
the color of bi is color(bi) and the integer it represents is N(bi), as defined above. The
protocol is designed so that the following properties are kept:

(p1) The sequence (color(b1), color(b2), . . .) is aperiodic.

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 285

(p2) For every large enough i, N(bi+1) = N(bi) + 1, and the bit field in the
last message of bi is 1; that is, N(bi) = i + const for some constant const, and the
representation of N(bi) by bi has no leading zeroes, implying that |bi| = dlog2N(bi)e.

We will prove that (p1) implies that there is eventually only one token in the
system, while (p2) guarantees that the size of the system is logarithmic in the number
of steps. We now show that the protocol indeed satisfies (p1) and (p2). For this we
describe the two rules by which the sender computes the bits and the colors it sends.
We need the following definition.

Definition. Let k ≥ 1. Denote by sk the sequence of messages whose colors are
different from color(bk) which are received by the sender while it sends the block bk,
and denote by N(sk) the integer represented by sk. Note that sk consists of one or
more complete blocks.

Rule 1 (rule for computing counter bits). The counter bit sent with each message
is sent so that for each k, N(bk) = N(sk)+1, and |bk| = max{|sk|, dlog2(N(bk))e}. In
other words, the counter bits sent in block bk are obtained by adding 1 to the binary
number represented by the messages received while this block is sent.

Rule 2 (rule for computing token color). When receiving a message whose color is
equal to the value of token color, the new value of token color, which is the color of the
next block, bk+1, is determined as follows: color(bk+1) = color(bk) + xor(N(sk)) + 1
(mod 3).

Note that Rule 1 can be implemented by a binary adder which is set to zero at
the initiation of each new block, and Rule 2 can be implemented by a counter (mod
2). Thus both rules are easily implemented by a finite-state machine.

4.3. Correctness and complexity proofs of Protocol 3.
Lemma 4.1. In every fair execution E, the sender initiates an infinite number

of blocks.
Proof. The sender initiates a new block whenever it receives a message whose

color is equal to the current value of token color. In every atomic step in which the
sender receives a message whose color is not equal to token color, it sends a message—
say M ′—whose color is token color. Since the link carries messages in FIFO order,
the message M is eventually received by the sender and it initiates a new block not
later than upon receipt of M . The lemma follows.

A configuration in an execution is called a limit configuration if in the next step
of the sender, a new token color is computed; that is, the color of the next arriving
message is equal to the present value of token color. Observe that at a limit config-
uration c, the link contains a finite (possibly zero) number of complete blocks and
one possibly incomplete block at the tail of the link. (This block may be incomplete
since upon receipt of the next message, the sender may send one more message in this
block by executing line 5 of the code.) The first block has the same color as the last
(possibly incomplete) block. For an execution E, we denote by ik the index of the
kth limit configuration in E. In other words, cik is the limit configuration just before
bk is initiated.

Next, we prove that the number of blocks in consecutive limit configurations does
not increase.

Lemma 4.2. Let `k be the number of blocks in the limit configuration cik (includ-
ing the possibly incomplete block). Then `k ≥ `k+1 with equality only if sk is a single
block.

Proof. Let mk ≥ 1 be the number of blocks in sk. In the subexecution starting
with cik and ending with cik+1

, one block is added to the link (namely bk), and mk

286 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

blocks of sk are removed from it. Therefore, `k+1 = `k + 1−mk ≤ `k.

Next, we show that the number of blocks in the limit configurations must even-
tually get down to one. First, we need a technical lemma.

Lemma 4.3.

(a) The sequence xor is aperiodic.

(b) Let (a1, a2, . . .) be an eventually periodic sequence, and let bi = ai+1 − ai.
Then the sequence B = (b1, b2, . . .) is also eventually periodic.

(c) Let (a1, a2, . . .) be an eventually periodic sequence. Then for each i, p > 0, the
sequence A(i, p) = (ai, ai+p, ai+2p, . . .) is also eventually periodic.

Proof. (a) Assume in contradiction that the sequence xor = (xor(1), xor(2), . . .)
is eventually periodic. Then there exist i and ` such that xor(j) = xor(j + `) for
every j ≥ i. Let q be a nonnegative integer such that 2q ≤ ` < 2q+1 and let d be an
integer satisfying d ≥ q + 2 and 2d ≥ i. Consider the following cases:

• xor(`) = 1: By the definition of d, it holds that xor(2d + `) = 0. Thus
1 = xor(2d) 6= xor(2d + `) = 0.

• xor(`) = 0: Then xor(`) = xor(2q + `) = 0, and 2q + ` < 2d. Hence
xor(2d + 2q + `) = 1. Thus 0 = xor(2d + 2q) 6= xor(2d + 2q + `) = 1.

Thus there exist a and b such that (1) a > i and b > i, (2) a − b = `, and (3)
xor(a) 6= xor(b)—a contradiction.

(b) This claim is trivial.

(c) Let j and ` be such that xor(k) = xor(k + `) for every k ≥ j. Then for every
p > 1 and k ≥ j, it holds that ak = ak+`p. Thus the sequence A(i, p) is eventually
periodic with period length ≤ `.

Lemma 4.4. In every fair execution E, there exists a suffix in which the number
of blocks in the limit configurations is always one.

Proof. By Lemma 4.2, this number never increases, and hence it eventually re-
mains L for some constant L > 0 forever. We shall assume that L > 1 and derive a
contradiction.

Call a limit configuration cik ultimate if `k, the number of blocks in cik is L. If
cik is ultimate, then `k+1 = `k and hence by Lemma 4.2, sk is a single block, which
must be bk−L. Thus the first block that follows sk is bk−L+1. By the protocol, bk
is terminated when the sender receives a message whose color is equal to the color
of bk. Therefore, we have that the color of (the messages in) the block bk−L+1 is
equal to the color of the messages in bk, i.e., color(bk−L+1) = color(bk). Hence
the sequence COLORS = (color(b1), color(b2), . . .) is eventually periodic with period
length L− 1 > 0. Let BXOR = (xor(N(b1)), xor(N(b2)), . . .). By the way in which
color(bk+1) is computed, we have that for an ultimate configuration cik , xor(N(bk −
L)) − [color(bk+1) − color(bk)] (mod 3) − 1. Hence by Lemma 4.3(b), if COLORS
is eventually periodic, so is BXOR. We shall derive a contradiction by showing that
the sequence BXOR is aperiodic.

Lemma 4.3(c) implies that in order to show that BXOR is aperiodic, it is suffi-
cient to show that for some positive i and p, the sequence BXOR(i, p) = (xor(N(bi)),
xor(N(bi+p)), xor((N(bi+2p)), . . .) is aperiodic. For this observe that for an ulti-
mate configuration cik , it must hold that N(bk) = N(sk) + 1 = N(bk−L) + 1.
Hence for any integer i, we have that BXOR(i, L) = (xor(N(bi)), xor(N(bi+L)),
xor((N(bi+2L)), . . .) = (xor(N), xor(N+1), xor(N+2), . . .), where N = N(bi). Thus
BXOR(i, L) is a suffix of the sequence xor, which is aperiodic by Lemma 4.3(a).
Hence BXOR(i, L) is also aperiodic. This yields the desired contradiction.

Lemma 4.4 and its proof imply that properties (p1) and (p2) hold. Property (p1)

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 287

holds since the proof of Lemma 4.4 shows that the sequence COLORS is aperiodic.
Property (p2) is proved as follows: Let E′ be a suffix of E satisfying Lemma 4.4, and
let cik be any limit configuration in E′. Then by Rule 1, N(bk+1) = N(sk+1) + 1
= N(bk) + 1, which easily implies (p2).

We now show that the space complexity of Protocol 3 indeed matches the lower
bound of the previous section. Since both the number of states of a processor and the
number of distinct messages in our protocol are constants, the size of a configuration
is proportional to the number of messages in it. Therefore, to bound the size of a
configuration from above, it is enough to bound the number of messages in it. In
the next lemma we show that for each execution E = (c0, a1, c1, . . .) of the protocol,
the size of the ith configuration of E, ci, is O(log2(i)). Let cik denote the kth limit
configuration of E, and let bk be the corresponding block. We shall prove that |bk| =
O(log k).

Lemma 4.5. For every large enough k, the number of messages in the limit
configuration cik is dlog2N(bk−1)e.

Proof. By Lemma 4.4, there exists a suffix E′ of E such that every limit config-
uration in E′ contains one block. Clearly, it is suffices to prove the lemma for E′.
As observed above, property (p2) eventually holds for every limit configuration in E′.
The lemma follows.

Corollary 4.6. The number of messages in c`, the `th configuration of E, is
O(log2(`)).

Proof. Let E′ be a suffix of E as in Lemma 4.5, and assume that ` is large enough
so that c` belongs to E′. Then the number of messages in c` is equal to the number
of messages in the next limit configuration, cik , which is O(log2 k) (for some k). The
proof is completed by the observation that since ij ≥ j for all j and since configuration
cik−1

precedes c` in E, we have that ` ≥ ik−1 + 1 ≥ (k − 1) + 1 = k.

4.4. Larger systems. We now describe how to use our protocols in directed
rings with more than two processors. The processors of the ring are denoted by
P1, . . . , Pn, where P1 is a sender while P2, . . . , Pn are receivers. Whenever a processor
Pi, 1 < i < n, receives a message M from Pi−1, Pi sends M to Pi+1. Similarly,
whenever Pn receives a message M from Pn−1, it sends M to P1. Thus the ring
behaves like a virtual link from the sender P1 to itself. It is not hard to see that the
existence of a single message on the entire ring prevents communication deadlocks;
thus we assume that there is a time-out mechanism that guarantees this condition
(this time-out mechanism is invoked only once to recover from the initial deadlock
configuration). It can be proved in a way similar to our previous proofs that our
protocols guarantee that there is eventually exactly one token that encircles the ring
from the sender to itself. Actually, our protocols can be used in any connected system
by hardwiring a directed ring that spans the entire system.

4.5. Construction of a token controller. In this subsection, we define queue
machines and token controllers and interpret our results in these terms.

A queue machine Q is a finite-state machine which is equipped with a queue,
which initially contains a nonempty word from Σ+ for some (finite) alphabet Σ. In
each step of its computation Q performs the following: (a) reads and deletes a letter
from the head of the queue, (b) adds zero or more letters from Σ to the tail of the
queue, and (c) moves to a new state. The computation terminates when Q halts or
when its queue becomes empty, which prevents Q from performing any further steps.

The main difference between queue machines and various types of Turing machines
is that the input alphabet and the work alphabet of a queue machine are identical.

288 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

For this reason, a queue machine cannot perform simple tasks like deciding the length
of the input word or even deciding whether the input word contains a specific letter.2

We now define a token controller, which is a special type of queue machine. As-
sume that the alphabet Σ contains a specified subset τ of token letters. A queue
machine is a token controller if, starting with a nonempty queue of arbitrary content,
the queue eventually contains exactly one occurrence of a letter from τ forever.

A priori, it is not clear that a token controller exists. Observe that if a token
controller exists, then its queue never becomes empty (since once the queue is empty,
it remains so forever). More importantly, a token controller (if it exists) can never
halt since it cannot guarantee that upon halting, the queue contains exactly one
occurrence of a token letter. The last two observations imply that a token controller
can be viewed as a special case of a token-passing system in which Σ is the set of
messages sent by the protocol and τ is the set of messages that carry the token. We
show below how to transform the sender from Protocol 3 to a token controller.

Define the alphabet Σ to be a set of triplets (color, bit, t), where color and bit are
as in Protocol 3 and t is either T in case the message carries a token (i.e., it is the
first message of some block) or nil in case it does not. The set τ is defined as the
set of all possible triplets whose third component is T . The two antiparallel FIFO
links between the sender and the receiver are considered as a single queue. Receiving
a message is regarded as deleting a letter from the head of the queue, while sending
a message is regarded as appending a message to the end of the queue.

Since Protocol 3 guarantees that eventually exactly one message in every config-
uration is carrying a token, the queue machine described above is a token controller.
Moreover, our lower bound results imply that this token controller is optimal with
respect to the rate in which the size of the queue grows.

5. Self-stabilizing simulation of shared memory. In this section, we present
a method for simulating self-stabilizing shared-memory protocols by self-stabilizing
message-driven protocols. The simulated protocols are assumed to be in the shared-
memory model defined in [9]. In this model, communication between neighbors Pi
and Pj is carried out using a two-way link. The link is implemented by two shared
registers which support read and write atomic operations. Processor Pi reads from
one register and writes in the other while these functions are reversed for Pj . In
the implementing system, every link is simulated by two directed links: one from Pi
to Pj and the other from Pj to Pi. The heart of the simulation is a self-stabilizing
implementation of the read and write operations.

The proposed simulation implements these operations by using a self-stabilizing
token-passing protocol. For any pair of neighbors, we run the protocol on the two links
connecting them. In order to implement our self-stabilizing token-passing protocol,
we need to define for each link which of the processors acts as the sender and which
of the processors acts as the receiver. We assume that the processors have distinct
identifiers. Every message sent by each of the processors carries the identifier of that
processor. Eventually, each processor knows the identifier of all its neighbors. In
each link, the processor with the larger identifier acts as the sender while the other
processor acts as the receiver. Since each pair of neighbors uses a different instance of
the protocol, a separate time-out mechanism is needed for every such pair. In other
words, a correct operation of the simulation requires that for any pair of neighbors,

2 A variant of queue machine which can use arbitrary work alphabet is, in fact, an oblivious
Turing machine, which is as powerful as a standard Turing machine.

RESOURCE BOUNDS FOR SELF-STABILIZING PROTOCOLS 289

there exists at least a single message on one of the two links connecting the neighbors.

We now describe the simulation of some arbitrary link e connecting Pi and Pj : In
the shared-memory model, e is implemented by a register Ri,j in which Pi writes and
from which Pj reads and by a register Rj,i for which the roles are reversed. In the
simulating protocol, processor Pi (Pj) keeps a local variable called ri,j (rj,i), which
keeps the values of Ri,j (respectively, Rj,i). Every token has an additional field called
VALUE. Every time Pi receives a token from Pj , Pi writes the current value of ri,j
in the VALUE field of that token. A write operation of Pi into Ri,j is implemented
simply by locally writing into ri,j . A read operation of Pi from Rj,i is implemented
by the following steps:

1. Pi receives a token from Pj and then
2. Pi receives another token from Pj . The value read is the VALUE attached

to the second token.

The correctness of the simulation is proved by showing that for every execution E
whose initial configuration contains at least one message on each link, it is possible to
linearize all the simulated read and write operations executed in E so that eventually
every simulated read operation from Ri,j returns the last value that was written to
it (i.e., that the protocol simulates executions in the shared-memory model in which
the registers are eventually atomic; see [20]). Define the time of a simulated write
operation to Ri,j to be the time in which the local write operation to ri,j is executed.
Define the time of a simulated read operation of Pj from Ri,j to be the time in which
Pi sends the value of its local variable ri,j attached to the token that later reaches
Pj in step 2 of the simulated read. Once each link holds a single token, all of the
operations to register ri,j are linearized, and every read operation from ri,j returns
the last value written to ri,j .

Acknowledgment. We thank Alan Fekete for helpful remarks.

REFERENCES

[1] Y. Afek and G. M. Brown, Self-stabilization of the alternating-bit protocol, Distrib. Comput.,
7 (1993), pp. 27–34.

[2] G. M. Brown, M. G. Gouda, and C. L. Wu, A self-stabilizing token system, IEEE Trans.
Comput., 38 (1989), pp. 845–852.

[3] J. Burns, M. G. Gouda, and R. E. Miller, Stabilization and pseudo stabilization, Distrib.
Comput., 7 (1993), pp. 35–42.

[4] J. E. Burns and J. Pachl, Uniform self-stabilizing rings, ACM Trans. Programing Lang. Sys-
tems, 11 (1989), pp. 330–344.

[5] K. A. Bartlet, R. A. Scantlebury, and P. T. Wilkinson, A note on reliable full-duplex
transmission over half-duplex links, Comm. Assoc. Comput. Mach., 12 (1969), pp. 260–261.

[6] J. E. Burns, Self-stabilizing rings without demons, Technical report GIT-ICS-87/36, Georgia
Institute of Technology, Atlanta, 1987.

[7] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Comm. Assoc. Comput.
Mach., 17 (1974), pp. 643–644.

[8] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control (EWD391), reprinted in
Selected Writing on Computing: A Personal Perspective, Springer-Verlag, Berlin, 1982, pp.
41–46.

[9] S. Dolev, A. Israeli, and S. Moran, Self stabilization of dynamic systems assuming only
read/write atomicity, Distrib. Comput., 7 (1993), pp. 3–16.

[10] S. Dolev, A. Israeli, and S. Moran, Resource bounds for self stabilization message driven
protocols, in Proc. 10th Annual ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1991, pp. 281–294.

[11] S. Dolev, A. Israeli, and S. Moran, Uniform dynamic self-stabilizing leader election, in Proc.
5th International Workshop on Distributed Algorithms, Springer-Verlag, Berlin, 1991, pp.
167–179; IEEE Trans. Parallel Distrib. Systems, to appear.

290 SHLOMI DOLEV, AMOS ISRAELI, AND SHLOMO MORAN

[12] D. Dolev and D. Koller, Token survival, preprint, 1986.
[13] M. G. Gouda and N. J. Multari, Stabilizing communication protocols, IEEE Trans. Comput.,

40 (1991), pp. 448–458.
[14] A. Israeli and M. Jalfon, Token management schemes and random walks yield self stabilizing

mutual exclusion, in Proc. 9th ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1990, pp. 119–131.

[15] A. Israeli and M. Jalfon, Self-stabilizing ring orientation, in Proc. 4th International Work-
shop on Distributed Algorithms, Springer-Verlag, Berlin, 1990, pp. 1–14; Inform. and Com-
put., 104 (1993), pp. 175–196.

[16] S. Katz and K. J. Perry, Self-stabilizing extensions for message-passing systems, Distrib.
Comput., 7 (1993), pp. 17–26.

[17] H. S. M. Kruijer, Self-stabilization (in spite of distributed control) in tree-structured systems,
Inform. Process. Lett., 8 (1979), pp. 91–95.

[18] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. Assoc.
Comput. Mach., 21 (1978), pp. 558–565.

[19] L. Lamport, Solved problems, unsolved problems, and nonproblems in concurrency, in Proc.
3rd ACM Symposium on Principles of Distributed Computing, ACM, New York, 1984, pp.
1–11.

[20] L. Lamport, On interprocess communication, part I: Basic formalism, Distrib. Comput. 1
(1986), pp. 77–85.

[21] M. Multari, Toward a theory for self-stabilizing protocols, Ph.D. dissertation, Department of
Computer Science, University of Texas at Austin, Austin, TX, 1989.

[22] M. Tchuente, Sur l’auto-stabilisation dans un réseau d’ordinateurs, RAIRO Inform. Théor.,
15 (1981), pp. 47–66.

FAIL-STOP SIGNATURES∗

TORBEN PRYDS PEDERSEN† AND BIRGIT PFITZMANN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 291–330, April 1997 001

Abstract. Fail-stop signatures can briefly be characterized as digital signatures that allow
the signer to prove that a given forged signature is indeed a forgery. After such a proof has been
published, the system can be stopped. This type of security is strictly stronger than that achievable
with ordinary digital signatures as introduced by Diffie and Hellman in 1976 and formally defined
by Goldwasser, Micali, and Rivest in 1988, which was widely regarded as the strongest possible
definition.

This paper formally defines fail-stop signatures and shows their relation to ordinary digital sig-
natures. A general construction and actual schemes derived from it follow. They are efficient enough
to be used in practice. Next, we prove lower bounds on the efficiency of any fail-stop signature
scheme. In particular, we show that the number of secret random bits needed by the signer, the only
parameter where the complexity of all our constructions deviates from ordinary digital signatures by
more than a small constant factor, cannot be reduced significantly.

Key words. cryptography, authentication, digital signatures, fail-stop, discrete logarithm, fac-
torization, randomization, computational security, information-theoretic security

AMS subject classification. 94A60

PII. S009753979324557X

1. Introduction and overview of results. Traditional digital signatures, as
introduced in [12] and formally defined in [20], allow a person, A (for Alice), to make
signatures that everyone who knows A’s public key can test. Such signatures are
only computationally secure for the signer because they can be forged by persons
with sufficiently large computing power. A person able to factor large integers can,
for example, very easily forge RSA (Rivest–Shamir–Adleman) signatures (see [38]).
Hence the security of these schemes relies on a computational assumption. Moreover,
if a signature should be forged, it will be difficult for A to convince the bearer of the
signed document or a third party that she did not make that signature.

Fail-stop signatures solve this problem by offering the signer a method for proving
that a forgery has taken place. More precisely, even if a forger with unlimited com-

∗Received by the editors March 11, 1993; accepted for publication (in revised form) April 3, 1995.
This paper is the full version of the extended abstracts [E. van Heyst and T. P. Pedersen, “How
to make efficient fail-stop signatures,” in Proc. 1992 Eurocrypt, Lecture Notes in Comput. Sci. 658,
Springer-Verlag, Berlin, 1993, pp. 366–377] and [E. van Heijst, T. P. Pedersen, and B. Pfitzmann,
“New constructions of fail-stop signatures and lower bounds,” in Proc. 1992 Crypto, Lecture Notes
in Comput. Sci. 740, Springer-Verlag, Berlin, 1993, pp. 15–30] together with the definitions of fail-
stop signatures, including their relations to ordinary digital signatures. A preliminary version of the
definitions was only available in “grey” literature as parts of [B. Pfitzmann, “Für den Unterzeichner
unbedingt sichere digitale Signaturen und ihre Anwendung,” Diploma thesis, Institut für Rechner-
entwurf und Fehlertoleranz, Universität Karlsruhe, Karlsruhe, Germany, 1989] and [B. Pfitzmann
and M. Waidner, “Formal aspects of fail-stop signatures,” Technical Report 22/90, Fakultät für
Informatik, Universität Karlsruhe, Karlsruhe, Germany, 1990]. Several intermediate papers with
previous, less efficient constructions and discussions of applications are only referred to.

http://www.siam.org/journals/
†Cryptomathic, Århus Science Park, DK-8000 Århus, Denmark (tpp@cryptomathic.aau.dk). The

research of this author was performed while at the Department of Computer Science of Århus Uni-
versity and supported by the Carlsberg Fondet.
‡Institut für Informatik, Universität Hildesheim, Samelsonplatz 1, D-31141 Hildesheim, Germany,

(pfitzb@informatik.uni-hildesheim.de). Future address: Informatik VI, Universität Dortmund, D-
44221 Dortmund, Germany. The Isaac Newton Institute in Cambridge, UK hosted this author
during the final updates to this paper.

291

292 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

puting power makes an “optimal” forgery, a polynomially bounded signer can prove
that the underlying computational assumption has been broken when she sees the
forgery (except with negligible probability). Thus the signer can be protected from
an arbitrarily powerful forger. Moreover, after the first forgery, all participants, or
the system operator, know that the signature scheme has been broken, so that it can
be stopped. Hence the name “fail-stop.”

1.1. More about ordinary digital signatures. Digital signatures were in-
troduced in [12] and became popular with the RSA scheme [38]. However, it was
subsequently discovered that the security requirements made in [12] were too weak,
and the structure of signature schemes described there did not allow the desired
stronger security. A satisfactory definition was finally published in [20], together with
a construction that is secure in this sense (see [20] for the intermediate history). We
call such signature schemes “ordinary.”

However, the notion of security was always only computational. For signature
schemes of the original structure, [12] already showed that this is unavoidable: The
signer has a secret key, which she uses to make signatures, and the signatures can
be tested by everyone who knows her corresponding public key. Since signing and
testing are polynomial-time, one can forge signatures, i.e., find values that pass the
test, in nondeterministic polynomial time simply by guessing among all values up to
a certain length. Additionally, nonpolynomial lower bounds for problems within NP
are not known; hence to prove the security of any ordinary digital signature scheme,
one has to make a computational assumption. The same argument also applies to
the more general construction in [20]. Hence the effort in the theoretical treatment
of signature schemes after [20] concentrated on weakening the necessary assumptions
[1, 30, 39].

Note, additionally, that with ordinary digital signatures, it is always the signer
whose security relies on the computational assumption. If the signer were allowed
to disavow forged signatures, she could also disavow her real signatures (because
there is no difference between them), even if the assumption was not broken at all.
The recipient’s security is unconditional, i.e., all signatures that he has accepted will
definitely also be accepted by any third party asked to settle a dispute.

1.2. More about the fail-stop property. The fail-stop property can best be
described by considering a judge in a dispute between the signer and a recipient of a
digital signature. Usually, the judge will test if the signature is correct and give his
verdict—“ok” or “not ok”—accordingly. Fail-stop signatures supply the judge with a
third possibility: If the signer can prove that the signature is forged, the judge may
say “forgery proved,” which can be interpreted as saying that the basic assumption
of the system has been broken. Naturally, this possibility of distinguishing forged
signatures from authentic signatures only exists as long as the forger has not stolen
the signer’s key.

The definition of fail-stop signatures does not specify for how much of a system a
particular proof of forgery is valid. As long as forging a single signature is provably as
hard as breaking a particular computational assumption, it is wise to stop the whole
system after any forgery because if one signature could be forged, one must expect
that the same forger can make more forgeries. Therefore, the constructions usually
assume that there is only one type of proof of forgery. However, it is no problem
to make proofs of forgery specific to the keys of individual signers or even (although
currently with some loss in efficiency) to each particular signature.

FAIL-STOP SIGNATURES 293

Furthermore, it is not a matter of the definition how one acts after the output
“forgery proved.” In particular, one obtains exactly the properties of ordinary digi-
tal signatures again if the technical verdict “forgery proved” is interpreted just like
“signature correct” by the judge and everybody else. On the other hand, if it is
agreed that all signatures for which forgery can be proved are rejected, one obtains
a signature scheme in which the signer is unconditionally protected against forgeries,
whereas the recipient is only computationally protected, i.e., an unrestricted adver-
sary may achieve that a signature accepted by the recipient is later rejected by an
honest judge. We call such a signature scheme a “dual signature scheme” because
it is dual to ordinary digital signatures with respect to the security for the signer
and recipients. Hence fail-stop signatures constitute the first (published) examples of
dual signature schemes. Since fail-stop signatures furthermore allow the system to be
stopped as soon as the basic assumption has been broken, they are a strictly stronger
notion than each of these types of signatures.

As an example where fail-stop signatures, in their special role as dual signatures,
may be advantageous, consider an electronic payment system where a customer signs
her requests to the bank digitally. Since the bank most likely has much more com-
puting power than the customer and since it can select the system and choose the
security parameters, it is reasonable to protect the customer unconditionally, whereas
the bank can rely on the customer not having sufficient computing power to repudi-
ate her signatures. Thus the customer should sign with dual signatures and the bank
with ordinary digital signatures. For more details about possible benefits of fail-stop
signatures and possible advantages for the acceptability of digital signatures in law,
see [36, 32].

1.3. Construction idea. Fail-stop signatures work very much like ordinary dig-
ital signatures. The signer has a secret key, which she uses to make signatures, and
the signatures can be tested by everyone who knows her corresponding public key.
A signature that passes this test is called acceptable. Now, the basic idea of the ex-
isting constructions of fail-stop signatures is that every message has many different
acceptable signatures, of which the signer can only construct one (unless she breaks
the underlying assumption); this one is called the correct signature. However, even
an arbitrarily powerful forger does not have sufficient (Shannon) information to de-
termine which of the many acceptable signatures is the correct signature on a new
message. Consequently, with very high probability, a forged signature is different from
the correct signature. Given a forged signature, the signer can exploit the knowledge
of two different signatures on the same message (the forged signature and the correct
one) to compute a proof of forgery.

Note that this construction allows an unrestricted signer to disavow her real sig-
natures. However, since this can only occur if the computational assumption has in
fact been broken, this is no problem. A proof of forgery does not indicate by whom
the assumption has been broken, and hence it may have been the signer; but in any
case, if this has happened, the system should be stopped.

1.4. Previous results. Fail-stop signatures were first mentioned in [43], and
in the reports [31, 35], it was proved that such signatures exist if claw-free pairs of
permutations exist; this is a computational assumption known from [20] (see also
[4, 36] for descriptions). In particular, this shows that fail-stop signatures exist if
factoring large integers or computing discrete logarithms is hard. The construction
uses one-time signatures, similar to [25], i.e., messages are basically signed bit by bit.

294 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Therefore, although messages can be hashed before signing and tree authentication is
used (similar to [26]), this general construction is not very efficient.

In [32], an efficient variant especially suited for making customers uncondition-
ally secure in on-line payment systems was presented. However, in this scheme, all
signatures by one customer with the same key must have the same recipient (e.g., the
bank in a payment system), and it is only a dual signature scheme, not a fail-stop
signature scheme. Furthermore, signing is a three-round protocol between the signer
and the recipient.

1.5. Related types of schemes. In [8], a dual undeniable signature scheme
was presented. Undeniable signatures, introduced in [7], are a type of signature in
which there is no public predicate that everyone can use to test signatures. Instead,
signatures are verified and disavowed using interactive protocols that must be carried
out with the signer. This construction was the first signature scheme to achieve
unconditional security for signers without bit-by-bit signing. However, it is not as
efficient as the following schemes. Although the signatures themselves are efficient, the
verification protocol requires quite a lot of computation because it needs σ challenges
(similar to signatures) to achieve an error probability of 2−σ. A similar scheme, but
with so-called convertible undeniable signatures (cf. [5]), is contained in [22].

In [9], unconditionally secure signatures were introduced, i.e., signature-like
schemes where both the signer and the recipients are unconditionally secure. In
[37], a transferable version was presented, i.e., signatures can be passed on from one
recipient to another. With this extension, unconditionally secure signatures could in
principle replace other signatures in many applications. However, these constructions
are too inefficient to be used in practice because they require a complicated interactive
key-generation protocol and the signatures are very long. We showed in [23] (proofs in
[34]) that the latter is unavoidable: to achieve an error probability of 2−σ, the length
of unconditionally secure signatures that can be tested by M participants, including
those that only have to settle disputes, is at least M · σ.

1.6. Results in this paper. This paper presents fail-stop signatures in a uni-
fied way by giving definitions, efficient constructions, and lower bounds. Preliminary
versions of the definitions appeared in [31, 35], and preliminary versions of the con-
structions and lower bounds appeared in [22, 23].

Definition (see section 3). The formal definition of fail-stop signatures is some-
what more general than that in the report [35] because it allows a more general
method for key generation and more memory in the signing algorithm. This increases
the scope of validity of the lower bounds.

Constructions (see sections 4 and 5). The first step in our constructions of fail-
stop signatures is a general construction based on the concept of bundling homomor-
phisms, which allows only one message to be signed. This construction has as special
cases the two schemes from the extended abstracts [22, 23], which we describe. Sign-
ing in the first of these two schemes requires two modular multiplications, whereas
signing in the second requires approximately one exponentiation. In both schemes,
testing a signature requires approximately two exponentiations. Thus these signatures
compare very well with the currently proposed ordinary digital signatures. We then
show extensions for signing an arbitrary number N of messages. In special cases, no
efficiency is lost; in the general case, the length of signatures and the time needed for
testing signatures on short messages grow by a factor of log(N).

Lower bounds (see section 6). Based on the definition of fail-stop signatures, we
prove lower bounds on the size of the keys and the size of fail-stop signatures. For

FAIL-STOP SIGNATURES 295

these bounds, we assume that the probability that a forgery cannot be repudiated is
smaller than 2−σ for some security parameter σ and that the recipients have a similar
level of security against very simple brute-force algorithms. Then the most important
result is as follows:
• If N messages are to be signed, the signer needs at least (N +1)(σ−1) secretly

chosen random bits.
Thus the secret key in fail-stop signature schemes is basically a one-time key.

However, this does not prevent efficient fail-stop signatures where many messages can
be signed: We present an efficient construction where the size of the secret storage
space is logarithmic in the number of messages to be signed, and an otherwise less
efficient variant where this size is constant. This does not contradict the lower bounds
because many secret bits can be deleted soon after they have been generated and used,
i.e., the stored secret key varies with time. These constructions with small secret
storage are important because secret storage is quite hard to realize since one needs
a tamper-resistant device.

Additionally, we show the following:
• The entropy, and hence the length, of a signature is at least 2σ − 1, and the

entropy of the public key is at least σ.
These bounds are not much larger than similar bounds for ordinary digital signa-

tures because they concern parameters where the difference between fail-stop signa-
tures and ordinary digital signatures is quite small.

A comparison of the efficient constructions of fail-stop signatures with the lower
bounds on unconditionally secure signatures mentioned in section 1.5 shows that fail-
stop signatures provide the most viable way of protecting the signer unconditionally.

2. Notation. For a given probability space S (which will always be clear from
the context), P(E) denotes the probability of the event E, and [S] denotes the set
of elements with positive probability. Choosing a value from S and assigning it to a
variable, x, is denoted by x← S.

If a is a probabilistic algorithm, a(i) denotes the probability space defined by
running a on input i. If a1, . . . , an are n probabilistic algorithms and p is an n-ary
predicate (n ∈ N), then P(p(x1, . . . , xn) :: x1 ← a1(i1); . . . ;xn ← an(in)) denotes the
probability that the predicate p(x1, . . . , xn) is true after the result of running aj on
input ij has been assigned to xj , for j := 1, 2, . . . , n (in this order). We also allow
assignments from other probability spaces, like xj ← Sj , in such a formula.

The notion “for k sufficiently large” means “∃k0∀k ≥ k0.” The characteristic
function of a predicate pred is denoted by 1pred and the length of a string by | · |. The
length of a number is the length of the binary representation of that number. This is
denoted by | · |2.

The ring of integers modulo a number n is denoted by Zn, and its multiplicative
group, which contains only the integers relatively prime to n, by Z∗n.

3. Definition of fail-stop signatures. Briefly, a digital signature scheme is
defined by three algorithms (see [20]),

1. a key generator,
2. a method for signing, and
3. a method for testing signatures,

such that if the keys are generated correctly using the key generator, then we have
the following:
• If the signer signs a message correctly, everyone who knows the signer’s public

key accepts the signature.

296 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

• A polynomially bounded forger cannot make any signature that passes the
signature test.

In a fail-stop signature scheme, a protocol is added that allows the (polynomially
bounded) signer to prove to third parties that a forged signature is indeed a forgery.
It consists of two more algorithms:

4. a method for constructing proofs of forgery, and
5. a method for verifying proofs of forgery (which everyone who knows the public

key can carry out).
A proof of forgery is always noninteractive so that it can subsequently be shown

to others, and the system can be stopped in consensus. The proof must satisfy two
new security requirements:
• The ability to prove forgeries must work independently of the computing power

of potential forgers.
• It must be infeasible for the signer to construct signatures that she can later

prove to be forgeries.
It can be shown that these two properties imply security against forgery (see

section 3.2); hence this security is omitted in the formal definitions.
Until now, nothing has been said about the generation of the secret and public

key. In an ordinary digital signature scheme, the primary purpose of the secret key is
to enable the signer to make signatures that nobody else can construct, and this key
is therefore chosen by either the signer herself or a key-authentication center trusted
by the signer. Since it is equally important that fail-stop signatures cannot be forged,
the signer still has to take part in choosing the keys. However, since the signer in
these schemes is allowed to repudiate (forged) signatures despite the fact that they
pass the public signature test, the recipients of signatures must be sure that the signer
cannot disavow her own signatures. It is therefore necessary that the recipients or a
center trusted by the recipients also participate in the key generation. In particular,
such a center is needed if the recipients are not known at the time of choosing the
keys. When the signer’s public key has been selected, it will usually be stored in a
public directory with accepted integrity.

In the following, we first formalize the definition for the case where the signer
and a center generate the keys (section 3.1). Section 3.2 shows that every scheme
satisfying this definition is secure against forgery, and section 3.3 discusses how the
recipients can participate in the key generation.

3.1. Definition. In this section, we consider the situation where the signer and
an entity trusted by the recipients generate the keys. This entity is called the center
and denoted by C.

It should be noted that we use uniform complexity. In particular, the computa-
tional assumptions in the next section are described uniformly. It is not difficult to
modify the definitions in order to cope with nonuniform complexity, and reductions
in the uniform model are automatically valid in the nonuniform model as well.

The security of a cryptographic scheme is usually determined by a security pa-
rameter, which specifies the size of the instances of the hard problem used. A fail-stop
signature scheme can be broken by either the signer, if she succeeds in constructing a
signature that she can later prove to be a forgery, or a forger, if he succeeds in con-
structing a false signature that the signer cannot repudiate. Since these two attacks
have completely different consequences for the participants, it is natural to define the
security parameter of a fail-stop signature scheme as a pair (k, σ) of positive integers,
where k measures the (computational) security for the recipients and σ determines

FAIL-STOP SIGNATURES 297

Fig. 1. Notation used for a correct execution of the key generation G.

the (unconditional) security for the signer. As is common practice, we shall implicitly
assume that these security parameters are represented in unary whenever they are
input to an algorithm or protocol.

We allow signing and proving forgeries to be probabilistic and to depend on the
history of previously given signatures. Actually, the signatures in our constructions
depend only on the number of previous signatures. However, the general definition
ensures that the lower bounds in section 6 are valid for everything that might rea-
sonably be called a fail-stop signature scheme. We cover all these cases by regarding
the random bits as part of the secret key and signing as a deterministic function of
the secret key and the sequence of all (previous) messages. This will simplify the
notation.

The number of the current message is usually denoted by i ∈ N.
In addition to σ and k, a fail-stop signature scheme has a parameter N ∈ N,

which is the maximal number of signatures that the signer is willing to construct
using the same secret key (hence 1 ≤ i ≤ N). As with the security parameters, it is
assumed that N is always represented in unary. We often write par := (k, σ,N) as
an abbreviation of these three parameters.

Definition 3.1. A fail-stop signature scheme (abbreviated FSS scheme) with
message space M ⊆ {0, 1}+ is a 5-tuple (G, sign, test, prove, verify), where we have
the following:
• G is a polynomial-time two-party protocol for generating the keys. The pro-

tocol is executed by the signer, A, and C, who both get par as input. Furthermore,
each party has a secret random string, rA and rC , respectively. The participants each
have a private output channel and there is a (broadcast) channel for common out-
puts; see Figure 1. The common output is (acc, pk), where acc ∈ {accept, reject}
and pk is the public key (only well defined if acc = accept). The common broadcast
channel can be realized with a usual broadcast channel if one participant outputs pk
and the other outputs acc. We generally denote the outputs on the private output
channels of the two participants by auxA and auxC , respectively, and we say that G
outputs (acc, pk, auxA, auxC). If A is executed correctly, auxA is simply the secret
key, denoted by sk. If C is executed correctly, auxC is the empty string, ε.
• sign is a polynomial-time algorithm that on input the secret key, a message

number i, and a message sequence m = (m1, . . . ,mi) from M constructs a signature
on mi. Thus sign(sk, i, m) denotes the signature on mi if the previously signed
messages were m1, . . . ,mi−1, and all random bits used are regarded as part of sk (and
thus originally of rA). It is called the correct signature.
• test is a polynomial-time algorithm that on input the public key, a message

m ∈M , and a possible signature s on m outputs either ok or notok. If test(pk,m, s) =
ok, we say that s is an acceptable signature on m.

298 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

• prove is a polynomial-time algorithm that on input the secret key, a message
m ∈ M , a possible1 signature s on m, and the history hist of previously signed mes-
sages (plus their signatures) either outputs the string “not a forgery” or a bit string
proof ∈ {0, 1}∗.
• verify is a polynomial-time algorithm that on input the public key, a message

m ∈M , a possible signature s on m and a string proof outputs either accept or reject.
If the result is accept, the string proof is called a valid proof of forgery.

This 5-tuple must satisfy the following basic correctness property (security is de-
fined separately). For all k, σ,N ∈ N, if A and C follow the computations prescribed by
G, each output (acc, pk, sk, ε) of G satisfies acc = accept and for all message numbers
i ∈ {1, . . . , N} and message sequences m = (m1, . . . ,mi) from M ,
• if s = sign(sk, i,m), then test(pk,mi, s) = ok, i.e., correct signatures are

acceptable.
The output “not a forgery” of prove signals that prove is not able to construct a

valid proof of forgery.
Note that test and verify are not as general as sign and prove because we have

not allowed them to depend on the history of previous signatures: In general, all
signatures may go to different recipients. Hence one cannot assume that a recipient
(or a verifier) knows anything about the history. Everything he has to know must
therefore be included in the signature. One can make an exception only in applications
where all signatures of one signer have a fixed recipient or very few recipients.

Before continuing, we introduce some notation to be used with the key-generation
protocol. A signer or center who does not necessarily follow the prescribed protocol
is denoted by Ã or C̃, respectively. GÃ,C and GA,C̃ denote the resulting protocols,
and auxÃ and auxC̃ the private outputs. A cheating participant can also use the
input par. We denote by GÃ,C(par) the distribution of the outcome of GÃ,C over the

random bits rC of C and rÃ of Ã if the common input is par. Similarly, GA,C̃(par)
denotes the distribution of the outcome of GA,C̃ .

Definition 3.2. An FSS scheme is secure for the recipients iff the following
holds for all probabilistic polynomial-time algorithms Ã and Ã∗ (representing the two
steps of an attacking signer): If C follows the prescribed protocol in an execution
of G with Ã and if Ã∗, on input the private output auxÃ of Ã, constructs a triple
(m, s, proof), then the probability that proof is a valid proof of forgery tends to zero
faster than the inverse of any polynomial in k. This probability is over the random
(uniformly distributed) choices of rC , rÃ and the random choices used in Ã∗.

More formally, ∀Ã and Ã∗ (probabilistic polynomial-time), ∀σ, N , and c, and for
k sufficiently large,

P(acc = accept ∧ verify(pk,m, s, proof) = accept ::

(acc, pk, auxÃ, ε)← GÃ,C(par); (m, s, proof)← Ã∗(auxÃ)) < k−c.

(Remember: par = (k, σ,N).)
We now turn to the definition of the security for the signer. Since we have not

required that the signer trusts the center, she should be protected no matter what the
center does in the key-generation protocol as long as she follows the protocol herself.
Furthermore, the purpose of fail-stop signatures is that the signer should be secure

1The algorithm is primarily intended to be used on acceptable signatures. However, it is more
convenient for the notation to define it more generally. If s is not an acceptable signature, the output
will usually be “not a forgery.”

FAIL-STOP SIGNATURES 299

even against arbitrarily powerful forgers. We therefore consider arbitrarily powerful
centers C̃. Remember that [GA,C̃(par)] denotes the set of possible outcomes of the
protocol if par is given.

Definition 3.3. Let an FSS scheme with message space M ⊆ {0, 1}+ and
parameters par = (k, σ,N) be given, and consider an arbitrarily powerful center C̃. If
A and C̃ have executed G and the outcome was (acc, pk, sk, auxC̃) with acc = accept,
we define the following:

(a) The set of possible histories is

Hist(sk) := {((m1, . . . ,mj), (s1, . . . , sj))|1 ≤ j ≤ N

∧ (mi ∈M ∧ si = sign(sk, i, (m1, . . . ,mi)) for i = 1, . . . , j)}.

For a given history hist, let M(hist) denote the set of sign messages in hist.
(b) The set of possible secret keys (from the point of view of an unrestricted

forger) given pk, auxC̃ , and a history hist is

SKC̃(pk, hist , auxC̃)

:= {sk|(accept, pk, sk, auxC̃) ∈ [GA,C̃(par)] ∧ hist ∈ Hist(sk)}.

SKC̃(pk, hist, auxC̃) is equipped with a distribution induced by the random bits of the
signer and corresponds to the remaining uncertainty that an attacker has about the
real secret key when he tries to choose an “optimal” forgery.

(c) The set of successful forgeries given pk and a history hist is

Forg(pk, hist) := {f = (m, s)|m ∈M\M(hist) ∧ test(pk,m, s) = ok},

i.e., the set of acceptable signatures on messages not contained in the history.
(d) A value f = (m, s) ∈ Forg(pk, hist) is a provable forgery after a history hist,

abbreviated provable(sk, pk, hist, f), iff

verify(pk,m, s, prove(sk,m, s, hist)) = accept,

i.e., if applying prove to it yields a valid proof of forgery.
Intuitively, the following definition says that no matter what an arbitrarily pow-

erful center does during the key generation, no matter what messages A signs, and
no matter what message and signature the forger selects as a forgery given all this
knowledge, A can repudiate the forged signature with high probability. The probabil-
ity is over the possible secret keys (among which, roughly speaking, the forger must
guess which one A really has). For the first similar definition of security against an
unrestricted adversary, see [42].

There are two possible sources for a small error probability: One is during key
generation, where A might be tricked into accepting a bad key pair; the other is that
a forger happens to find exactly A’s correct signature.

Definition 3.4. Let an FSS scheme be given.
(a) For any given parameters k, σ,N ∈ N and any arbitrarily powerful center C̃,

define a set GoodC̃ of “good” outcomes of the key generation as follows:

(sk, pk, auxC̃) ∈ GoodC̃ :⇔ ∀hist ∈ Hist(sk), ∀f ∈ Forg(pk, hist) :

P(provable(sk′, pk, hist, f) :: sk′ ← SKC̃(pk, hist, auxC̃)) ≥ 1− 2−σ.

300 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Thus an outcome is called good if it guarantees that after any history, an unrestricted
forger still has so much uncertainty about the secret key that his forgery will be provable
with very high probability.

(b) The FSS scheme is secure for the signer iff ∀σ, ∀par = (k, σ,N), and for
any arbitrarily powerful center C̃,

P((sk, pk, auxC̃) 6∈ GoodC̃ ∧ acc = accept :: (acc, pk, sk, auxC̃)← GA,C̃(par)) ≤ 2−σ.

(c) If both A and C follow G, each output is good, i.e., (sk, pk, ε) ∈ GoodC .
Definition 3.5. A secure FSS scheme is an FSS scheme that is secure for both

the signer and the recipients.

3.2. Relation to ordinary digital signatures: Security against forgery.
In the above definition of secure fail-stop signatures, we have not explicitly demanded
that it be difficult for a forger to construct acceptable signatures. Clearly, a signature
scheme is useless if it is easy to make forgeries, even if they can be repudiated. We
now show that Definition 3.5 actually implies that forging is hard for polynomially
bounded enemies. More precisely, we show that existential forgery is infeasible even
after an adaptive chosen-message attack (see [20]).

In an adaptive chosen-message attack against a signature scheme with security
parameter l (which is used as an input in key generation) a forger F does the following,
given the public key as an input:

1. Repeat a polynomial number of times (in l): Generate (in some way) a message
m and receive the correct signature on m from the signer.

2. Output a pair (m′, s′). (This should be a new message–signature pair.)
Definition 3.6. A signature scheme with security parameter l is secure against

an adaptive chosen-message attack iff for all c > 0 and for all probabilistic polynomial-
time forgers F as above, the probability that F outputs a pair (m′, s′) such that m′ is
different from all messages chosen in step 1 and s′ is an acceptable signature on m′

is less than l−c for l sufficiently large.
The probability is over the random bits used in the key generation, the random

bits of F , and the random choices of the signatures, if the signing algorithm is prob-
abilistic.

We now consider the security of fail-stop signatures against a forger who has not
participated in the key generation.

Theorem 3.1. A secure FSS scheme is secure against an adaptive chosen-
message attack by forgers who do not participate in G, i.e., who have only par and
the result pk of a correct execution of G as inputs; the parameter k of the FSS scheme
plays the role of the parameter l in Definition 3.6.

Proof. Let a secure FSS scheme be given as in Definitions 3.1 and 3.5. Assume
further that there exists a probabilistic polynomial-time forger F as above that on
input (par, pk) outputs a pair of a new message and an acceptable signature (m′, s′)
with probability p(par). This probability is over all the random bits used in key
generation and in F . Since F runs in polynomial time, a signer who tries to cheat a
recipient can use the same algorithm:

1. Execute G correctly with C. This yields a key pair (sk, pk).
2. Execute F alternating with the real signing algorithm to obtain a history hist

and a pair (m′, s′).
3. Use prove to compute a proof of forgery for (m′, s′), given sk and hist.
Roughly, the argument is as follows: On one hand, the security for the signer

against a forger with algorithm F implies that step 3 leads to a valid proof of forgery

FAIL-STOP SIGNATURES 301

with nonnegligible probability. On the other hand, this means that when the signer
alone carries out the whole algorithm (i.e., step 1 as Ã and steps 2 and 3 as Ã∗), it
contradicts the security for the recipients.

We now proceed more formally. The history and message–signature pair generated
in step 2 have exactly the same distribution as those that the forger would have
constructed (i.e., the distribution used in Definition 3.6). This implies two things:
First, (m′, s′) is a successful forgery with probability p(par). Second, whenever this
is the case, the signer can repudiate the forgery, i.e., step 3 yields a valid proof
of forgery with probability at least q := 1 − 2−σ, because (sk, pk, ε) ∈ Good (see
Definition 3.4(a, c)). Here q is the a posteriori probability over the possible secret
keys, given any history. We omit the tedious details needed to combine these different
types of probabilities formally before one obtains the expected result:

With probability at least p(par)(1 − 2−σ) ≥ p(par)/2, a signer executing steps
1, 2, and 3 obtains an acceptable signature together with a valid proof of forgery for
it. Since the FSS scheme is secure for the recipients, this implies that p(par) must be
negligible as a function of k. This proves the theorem.

This theorem can be interpreted as saying that fail-stop signatures are a stronger
notion of signatures than that defined in [20] in two ways. The first way is described
in the following theorem.

Theorem 3.2. Every secure fail-stop signature scheme can be used to construct
an (equally efficient) secure digital signature scheme in the sense of [20].

Proof. The main reason that a fail-stop signature scheme itself does not fulfill the
definition in [20] is the interactive key generation. However, one can construct such
a scheme as follows: On input (k,N), the signer executes both A and C in the key
generation with σ := 1. The algorithms sign and test remain the same, and prove
and verify are omitted. Theorem 3.1 implies that this is a secure signature scheme in
the sense of [20].

As the second way, section 3.3 shows how Theorem 3.1 can be strengthened for
the fail-stop signature scheme itself so that unconditional security for the signer is
combined with security against an adaptive chosen-message attack by anyone, i.e.,
without even trusting a center.

3.3. Fail-stop signatures with known recipients. In the definitions in sec-
tion 3.1, the keys were generated by the signer and a center trusted by the recipients.
This section briefly discusses how fail-stop signature schemes work if the recipients
themselves participate in the key generation. More precisely, one should distinguish
recipients and risk bearers. Risk bearers are those who have a disadvantage if a proof
of forgery is accepted and thus a signature becomes invalid. For instance, a recipient
might have an insurance that covers his losses if signatures that he had accepted are
proved to be forgeries. Then the insurance company—and not the recipient—is the
risk bearer and has to trust the key generation process. We continue to say recipient
for simplicity.

One recipient. In this case, we can simply replace the trusted center by the
recipient. Note that a fail-stop signature scheme with only one recipient is not useless
because everyone who knows the public key can still test the signatures and verify
the proofs of forgery. The only restriction is that only the intended recipient is
guaranteed that the signer cannot repudiate her own signatures. Such a scheme can,
e.g., be applied in electronic payment systems for signing the customers’ requests to
the bank.

302 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Many recipients. The definition of FSS schemes with many known recipients
also follows the previous definitions very closely. In such a scheme, all the recipients
participate in a key-generation protocol with the signer. Each participant has the
input par and a secret random string, and the common output is either reject or
(accept, pk). (We assume that all recipients are satisfied with the same parameter
k for their computational security.) The signer gets the secret key corresponding to
pk as private output. The security for the signer can be defined as before, and the
security for the recipients is essentially defined by requiring Definition 3.2 for each of
them. In other words, if a recipient follows the key-generation protocol correctly, he
is assured that a (polynomially bounded) signer cannot repudiate her own signatures,
even if the signer and the remaining recipients cooperate.

We now show how FSS schemes with many known recipients can be constructed
from FSS schemes in the sense of section 3.1. In some FSS schemes, the only task
of the center in the key-generation protocol is to select a random string. In these
schemes, it is quite easy to replace the center by many recipients because they only
have to perform a multiparty coin-flipping protocol.

In the general case, one can apply a protocol for general secure multiparty compu-
tations in a certain way. For some details, see [35, 34]. However, in the present state of
cryptography, the following simpler method is much more efficient. Its disadvantage
is that the keys are long and thus signing and testing are relatively inefficient.

Construction 3.1 (many keys). Let R be the number of recipients. Each recipient
executes protocolG with the signer once. This results inR key pairs, (skj , pkj)j=1,...,R.
The secret key of the signer is defined as (sk1, . . . , skR) and the public key as
(pk1, . . . , pkR). All signatures as well as proofs of forgery consist of R parts, one
for each of the R key pairs. Note that everyone can test all parts of each signature or
proof of forgery. �

The security for the jth recipient is guaranteed because if he carries out his
execution of G correctly, it is computationally infeasible to compute valid proofs of
forgery for pkj . The security for the signer is guaranteed because given a successful
forgery, she can compute proofs of forgery for it for each key pair with high probability.

As an immediate consequence of Theorem 3.1, this scheme is secure against an
adaptive chosen-message attack if at least one of the recipients executes G correctly
with the signer—even if the forger cooperates with the remaining R − 1 recipients.
We can even achieve security if the forger may cooperate with all recipients by letting
the signer take part in the key generation in the role of a recipient as well, i.e., she
generates an additional key pair (skR+1, pkR+1) all on her own, which is then treated
like any other key pair.

4. Constructions of fail-stop signature schemes. This section first presents
a general construction of a fail-stop signature scheme, which is subsequently used in
actual instantiations. We describe two such instantiations based on the assumptions
that it is hard to compute discrete logarithms and to factor integers, respectively.
These are the two best-known concrete computational assumptions used in crypto-
graphy, and they are therefore well investigated and fairly trustworthy.

The constructions as described in this section allow only one message to be signed;
hence they are called one-time signature schemes. Section 5 presents extensions for
signing an arbitrary number of messages.

4.1. Bundling homomorphisms. In order to present our general construction
of fail-stop signatures, we first define bundling homomorphisms. They are a special
type of cryptographic hash functions and may have other uses in cryptography. Briefly,

FAIL-STOP SIGNATURES 303

a bundling homomorphism h is a homomorphism h : G → H between two Abelian
groups (G,+, 0) and (H, ·, 1) that satisfies the following:
• Every image h(x) has at least 2τ preimages. (The bundling homomorphism is

said to be of degree 2τ .)
• It is infeasible to find collisions, i.e., two different elements that are mapped to

the same value by h.
In order to make the second of these requirements precise, we have to consider

a family of such functions. The individual functions of this family are indexed
by a key K. The key is chosen depending on two security parameters: τ , which
determines the bundling degree, and k, which measures the computational secu-
rity against collision-finding. The parameters τ and k are part of the index to
this function, but we only write K instead of (K, τ, k). This leads to the following
definition.

Definition 4.1. A family of bundling homomorphisms is a quadruple (g, h,G,H),
where we have the following:
• g, the key generator, is a probabilistic polynomial-time algorithm that on input

parameters k, τ ∈ N outputs a value K. Let K be the set of all possible keys, i.e., the
union of the sets [g(k, τ)] for all k, τ ∈ N.
• G and H are families of Abelian groups, one for each key. More formally,

G = (GK ,+, 0)K∈K and H = (HK , ·, 1)K∈K.
• h is a polynomial-time algorithm that on input K ∈ K and x ∈ GK outputs a

value z ∈ HK . The restriction of h to a particular key K is abbreviated as hK .
This quadruple must satisfy the following properties:
(a) Each hK is a group homomorphism from (GK ,+, 0) to (HK , ·, 1).
(b) For all k, τ ∈ N, K ∈ [g(k, τ)], each z ∈ hK(GK) has at least 2τ preimages

under hK .
(c) The family is collision-resistant: For every c > 0 and for every probabilistic

polynomial-time algorithm Ã, the probability that Ã on input K ∈ [g(k, τ)] outputs a
pair (x, x′) such that x 6= x′ and hK(x) = hK(x′) is less than k−c for k sufficiently
large. More precisely, ∀τ∀c ∃k0∀k ≥ k0,

P(hK(x) = hK(x′) ∧ x 6= x′ :: K ← g(k, τ); (x, x′)← Ã(K)) < k−c.

(A more common name for collision-resistant is collision-free, but collision-resistant
emphasizes the computational aspect better.)

Additionally, there must be polynomial-time algorithms (which do not need explicit
names in the following) that on input K
• compute the operations in the two groups (GK ,+, 0) and (HK , ·, 1),
• select elements of GK uniformly at random, and
• test membership in HK and GK .
Note that k0 depends on τ in the definition of collision resistance. Actually, all

of our constructions satisfy the stronger requirement where k0 is independent of τ ,
as long as τ is polynomial in k (because an arbitrarily long input τ would give the
collision finder time more than polynomial in k).

4.2. The general construction. The general construction yields a rather spe-
cial case of the definition of fail-stop signature schemes. First, only one message is
signed. Second, the key generation of this scheme (like all previous constructions in
the literature) is quite simple. These two properties are now defined formally because
the constructions to sign many messages in section 5 can be based on any FSS scheme
with these properties.

304 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Definition 4.2. A one-time fail-stop signature scheme with prekey is defined
like a general FSS scheme in Definition 3.1, except that the parameter N is 1 and the
key-generation protocol G is of a special, simpler form: It is constructed from a triple
(genC , (P, V), genA), where we have the following:

• genC is a probabilistic polynomial-time algorithm that on input par generates
values prek (the prekey) and w (called witness).

• (P, V), the prekey verification protocol, is a polynomial-time two-party protocol
where P gets the input (par, prek, w) and V only gets (par, prek). As a result, V
outputs accept or reject. Correct outputs of the prekey generation should always be
accepted, i.e., if (prek, w) ∈ [genC(par)], the output of V should be accept. The most
efficient special case is where P does not do anything, i.e., V decides locally whether
or not to accept prek.

• genA is a probabilistic polynomial-time algorithm that on input a prekey prek
outputs a key pair (sk, pk). It is called the main key-generation algorithm.

The protocol G is constructed from these subprotocols as follows: First, the center
C executes genC and publishes the resulting prekey. Next, (P, V) is executed for this
prekey by the center (P) and the signer (V), where the center has w as an additional
input. (The purpose of this step is to prove some desired property of prek to the signer.)
Finally, the signer A carries out genA on input prek. We say that she generates a
key pair based on the prekey prek. The public key in the sense of Definition 3.1 is the
pair (prek, pk). However, we often omit prek in the notation because it is clear from
the context.

The signer, using V , may also accept if prek is not a possible outcome of the
correct prekey generation; we only use (P, V) to prove those properties of prek to the
signer that are necessary for the signer’s security. This is often much more efficient
than proving correct generation. Note that (P, V) is similar to an interactive proof
system [19], but our prover is polynomial-time and needs the witness w.

Schemes with prekey have the following advantage if there are several signers. The
center can publish the prekey without knowing which signers will take part. Every
signer carries out the interactive proof with the center once and can then base many
successive secret keys on this prekey without further interaction with the center. This
is exploited in section 5. The security is not weakened if many signers base their key
pairs on the same prekey because of the following:

• If this led to signers being able to repudiate their own signatures, one cheating
signer alone could generate many key pairs based on that prekey and experiment with
them locally until she could repudiate a signature, and only then would she publish
the corresponding public key.

• If this allowed forgers to make unprovable forgeries with nonnegligible proba-
bility (over the choice of the key pairs of all the signers), the probability for each key
pair would also be nonnegligible because all key pairs are identically distributed.

We now describe a framework for constructing a one-time FSS scheme with prekey
from a family of bundling homomorphisms. A few parameters are left open; they de-
pend on the choice of the family of bundling homomorphisms. We then present two
theorems that reduce the security of the scheme to one property of the bundling ho-
momorphisms and those parameters. This property will be proved and the parameters
specified in the instantiations in sections 4.3 and 4.4.

Since the message number i is always 1, it will be omitted in the notation, and
instead of a message sequence m of length 1, a message m is written.

Construction 4.1 (general construction). Let a family of bundling homomor-

FAIL-STOP SIGNATURES 305

phisms with a key generator g be given. Then the various components of a one-time
fail-stop signature scheme with prekey are defined as follows:
• Key generation: Let security parameters k and σ be given. The parameter

τ for the degree of the bundling homomorphisms is a function of σ, which will be
specified later.

• Prekey generation genC : The center computes K ← g(k, τ) and publishes
it, i.e., prek := K. This corresponds to choosing one homomorphism hK of the family.
Henceforth, let h := hK , G := GK , and H := HK . Instead of g, an algorithm g′ may
be used that outputs K with the same probability distribution as g but also outputs
a witness w.

• Prekey verification (P, V): The signer must be assured that K is a possible
outcome of g(k, τ), or at least that h is a homomorphism and satisfies Definition
4.1(b). The choice of a predicate between these two extremes that can be proved
most efficiently depends on the choice of the family of bundling homomorphisms. A
prekey K is called good if it fulfills this predicate; otherwise, it is called bad. If possible,
this protocol is a local test by the signer. Otherwise, it is a zero-knowledge proof from
the center to the signer (see [19, 18]—except we require P to be polynomial-time and
to use a witness w). The probability that the signer accepts the proof for a bad prekey
K must be at most 2−σ for each K.2

• Main key generation genA: The signer generates her secret key sk :=
(sk1, sk2) by choosing sk1 and sk2 randomly in G, and she computes her public key
pk := (pk1, pk2), where pki := h(ski) for i = 1, 2.
• The message space M is a subset of Z depending on the choice of the prekey.
• Signing: The correct signature on a message m in the message space is

sign(sk,m) := sk1 +msk2.

(Multiplication with elements of Z is, as usual, defined by repeated addition.)
• Test: The algorithm test, which determines whether a signature s ∈ G is

acceptable, is defined so that test(pk,m, s) = ok iff pk1 · pkm2 = h(s).
• Proof of forgery: Given an acceptable signature s′ ∈ G on m such that s′ 6=

sign(sk,m), the signer computes s := sign(sk,m) and proof := (s, s′).
• Verification of proof of forgery: Given a pair (x, x′), verify that x and x′ are

elements of G, that x 6= x′, and that h(x) = h(x′). �
This concludes the description of the general construction. The following theorem

shows that any instantiation of this construction works and that it is secure for the
recipients.

Theorem 4.1. For any family of bundling homomorphisms, and with any choice
of the parameters that have been left open, the general construction has the following
properties:

(a) Correct signatures pass the test (i.e., Definition 3.1 is fulfilled).
(b) A polynomially bounded signer cannot construct a signature and a valid proof

that it is a forgery (i.e., Definition 3.2 is fulfilled).
(c) If s∗ is an acceptable signature on m∗ and s∗ 6= sign(sk,m∗), the signer

obtains a valid proof of forgery (this is a step towards fulfilling Definition 3.4).
(d) If all values (sk, (K, pk), auxC̃) where K is good are contained in GoodC̃ , the

scheme is secure for the signer (another step towards fulfilling Definition 3.4).

2Note that the definition of zero-knowledge proofs from [19] only requires that the probability
that a bad value is accepted decreases faster than the inverse of any polynomial, but the actual
proofs in [18] have the strictly exponential decrease that we need.

306 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Proof. Part (a) follows from the fact that h is a homomorphism:

h(s) = h(sk1 +msk2) = h(sk1) · h(sk2)m = pk1 · pkm2 .

Part (c) is a trivial consequence of the fact that both s and s∗ pass the test. Part (d)
follows immediately from the requirement that we have made on the error probability
of the prekey verification. For part (b), note that a proof of forgery is exactly a
collision of the bundling homomorphism hK , where K is chosen by the center in genC
with the correct probability distribution. Hence part (b) follows immediately from
the collision resistance of the bundling homomorphisms, except that we have to show
that the zero-knowledge proof does not make it easier for the signer to find collisions,
which is intuitively clear (although a formal proof is lengthy; see [34]).

This theorem shows that the general construction is secure for the recipients and
that it is also secure for the signer if an arbitrarily powerful forger cannot guess a
correct signature sign(sk,m∗), except with a very small probability, whenever the
prekey is good. In order to estimate the probability with which a forger can find such
a signature, we first note that given a public key, at least 22τ secret keys are possible.
Given a correct signature on another message m, the forger has more information
about sk, but Theorem 4.2 gives a condition under which this information is not
sufficient to guess the correct signature on m∗ with too high a probability.

Theorem 4.2. Consider Construction 4.1. Let parameters k and σ, a good
prekey K, and two messages m 6= m∗ from the corresponding message space be given.
Let

T := {d ∈ G|h(d) = 1 ∧ (m∗ −m)d = 0}.

Then for all key pairs (sk, pk) ∈ [genA(K)] and all values s∗ ∈ G (a forgery) satisfying
test(pk,m∗, s∗) = ok, the probability that s∗ = sign(sk,m∗), given s := sign(sk,m),
is at most |T |/2τ , i.e., for any center C̃,

P(s∗ = sign(sk′,m∗) :: sk′ ← SKC̃(pk, (m, s), auxC̃)) ≤ |T |/2τ .

Note that the probability in this theorem resembles Definition 3.4(a).
Proof. Since K is good, h is at least a homomorphism and satisfies Definition

4.1(b). Note that auxC̃ can contain additional information about K but that the only
information that the signer divulges about sk is pk and a correct signature s on one
message m. The set of possible keys given this information is

SKC̃ = {(sk′1, sk′2) ∈ G×G|h(sk′1) = pk1 ∧ h(sk′2) = pk2 ∧ sk′1 +msk′2 = s}

= {(s−msk′2, sk
′
2)|h(sk′2) = pk2}

because h is a homomorphism and s = sk1 +msk2. The size of SKC̃ is therefore at
least 2τ . We must now find out how many of these keys satisfy s∗ = sign(sk′,m∗),
i.e.,

(∗) sk′1 +m∗ sk′2 = s∗.

Since we only consider keys in SKC̃ , we can replace sk′1 by s −msk′2. Hence (∗) is
equivalent to

(m∗ −m)sk′2 = s∗ − s.

FAIL-STOP SIGNATURES 307

This equation might be unsolvable, but if there is any solution sk′′2 , the set of all
solutions in SKC̃ is

{(s−msk′2, sk
′
2)|h(sk′2) = h(sk′′2) ∧ (m∗ −m)(sk′2 − sk′′2) = 0}.

Hence the number of solutions is |T | (where d corresponds to the difference sk′2−sk′′2).
Since sk is uniformly distributed in Construction 4.1, all elements of SKC̃ are equally
probable, and the attacker is successful with probability at most |T |/|SKC̃ | ≤ |T |/2τ ,
as claimed.

COROLLARY. Theorem 4.2, together with Theorem 4.1(c, d), shows that the gen-
eral construction is secure for the signer (as in Definition 3.4) if τ is chosen so that
|T |/2τ ≤ 2−σ, i.e., τ ≥ σ log2(|T |).

Consequently, we must find the maximal size of

Tm′ := {d ∈ G|h(d) = 1 ∧ ordG(d)|m′}

over all possible differences m′ of two messages. The size of this set depends on the
chosen family of bundling homomorphisms.

Note that the collision resistance of h was only needed in Theorem 4.1(b), i.e.,
to ensure the security for the recipients. This is the reason why the center need not
prove to the signer that h has this property.

4.3. A scheme based on discrete logarithms. We now construct a family
of bundling homomorphisms for which finding collisions is equivalent to computing
discrete logarithms.

Let p and q be large primes such that q divides p − 1, and let Hq be the unique
subgroup of Z∗p of order q. (Recall the theorem that all groups Z∗p are cyclic and of
order p − 1.) Remember that all elements of Hq except 1 are generators. We shall
assume that it is hard to compute discrete logarithms in Hq (as already sketched in
[12]). For elements a and b of Hq, where a 6= 1, the discrete logarithm loga(b) is
defined as the number e ∈ {0, . . . , q − 1} with ae = b.

Assumption DL. For all probabilistic polynomial-time algorithmsD, for all c ∈ N,
and for k sufficiently large, the probability that D, on input two primes p and q, where
q is a k-bit prime dividing p− 1 and q > (p− 1)/q, and two generators a and b of Hq,
outputs loga(b) is less than k−c. The probability is over the random bits used by D
and the uniform random choices of p, q, a, and b with the given constraints. �

The scheme presented below actually works for any groups of prime order, but
for the sake of concreteness, we shall assume the above setup.

Construction 4.2 (discrete logarithm homomorphisms).
• Key generator g: On input k and τ , it chooses primes p and q as above with

|q|2 = max(k, τ) and two random generators a and b of Hq. It outputs the key
K := (p, q, a, b).
• Families of groups: Define

Gq := Zq × Zq

with pairwise addition (modulo q). With a slight misuse of the notation, we abbreviate
G(p,q,a,b) =: Gq and H(p,q,a,b) =: Hq.
• The homomorphisms are defined as

h(p,q,a,b): Gq → Hq; h(p,q,a,b)(x, y) := axby.

308 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

The corresponding algorithm h is clear. �
Similar constructions were first used in [6].
Theorem 4.3. Under Assumption DL, Construction 4.2 is a family of bundling

homomorphisms.
Proof. It is easy to see that all necessary operations are efficiently computable.

In particular, g generates q first and then searches for a prime p among the numbers
of the form tq + 1. Now the properties from Definition 4.1(a–c) must be verified.

(a) Obviously, each h(p,q,a,b) is a group homomorphism. (Recall that the order
of Hq is q.)

(b) For every z ∈ Hq, there are exactly q elements (x, y) of Gq that h maps to z:
For each x, there is exactly one y with by = za−x because b is a generator.

(c) Assume that a probabilistic polynomial-time algorithm Ã could compute
collisions of h with nonnegligible probability. We then construct an algorithm D that
on input (p, q, a, b) computes the discrete logarithm of b with respect to a as follows:
First, D runs Ã, and if Ã outputs a collision, i.e., (x, y) 6= (x′, y′) with axby = ax

′
by
′
,

then D computes loga(b) as (x′−x)(y−y′)−1 mod q. (Note that y = y′ is impossible.)
D is successful with the same probability as Ã and almost equally efficient. Hence it
contradicts Assumption DL.

This theorem implies that we can construct an FSS scheme that is secure for the
recipients under the discrete logarithm assumption. Before we go into the details of
the security for the signer, the resulting scheme is described, and the parameters that
were left open in the general construction are fixed.

Construction 4.3 (the Discrete Logarithm Scheme).
• Key generation: On input k and σ, the parameter τ for the degree of the

bundling homomorphisms is set to σ.
• Prekey generation: The center selects primes p and q and generators a and

b (with the algorithm g) and publishes them.
• Prekey verification: The signer can verify by herself that p and q are primes

and that a and b are generators of Hq by verifying that their order is q. Hence key
generation is extremely simple in this scheme.

• Main key generation: The secret key consists of four numbers x1, y1, x2, and
y2 between 0 and q− 1 (more precisely (x1, y1), (x2, y2) ∈ Gq), and the corresponding
public key is the pair (pk1, pk2) with

pk1 := ax1by1 and pk2 := ax2by2 .

• The message space is defined as {0, 1, . . . , q − 1}.
• Signing: The correct signature on a message m from this space is

(x, y) := (x1, y1) +m(x2, y2) = (x1 +m x2, y1 +m y2).

• Test: A pair (x, y) is an acceptable signature on the message m iff

axby = pk1pk
m
2 .

• Proofs of forgery and their verification: According to the general construction,
a proof of forgery is a collision of h. Hence such a proof consists of four numbers.
However, the signer can just as well show e := loga(b) as a proof of forgery because this
is equivalent to the other proof but shorter and easier to verify. (e yields a collision
aeb0 = a0b1.)

We now return to proving that this scheme is also secure for the signer.

FAIL-STOP SIGNATURES 309

Theorem 4.4. The Discrete Logarithm Scheme is secure for the signer.
Proof. According to the end of section 4.2, we have to find the maximal size of

the set

Tm′ = {d ∈ Gq|h(d) = 1 ∧ ord(d)|m′}

for all values of m′ between 1 and q−1 (m′ is the difference between two different legal
messages; negative values need not be considered separately), given that the prekey
is good. Thus q is prime, and the order of all nonzero elements of Gq is q. Hence
(0, 0) is the only element of Tm′ .

Together with the corollary to Theorem 4.2, this implies that it suffices to choose
τ := σ in the proposed scheme, as we did in Construction 4.3.

The choice of τ := σ means that |q|2 is chosen as max(k, σ). For reasonable
parameters k and σ, this means |q|2 = k.

We conclude this section with a short evaluation of the efficiency of the proposed
scheme:
• Signing requires two multiplications modulo q.
• Testing a signature requires less than two exponentiations modulo p. This is

because the recipient can test the signature (x, y) by computing axby pk−m2 and verify-
ing that it equals pk1. This corresponds to between k and 2k modular multiplications,
depending on the message, with a suitable exponentiation algorithm.
• The length of the secret key (for one message) is 4k.
• The length of the public key is 2|p|2 bits.
• The length of a signature on a k-bit message is 2k.

4.4. A scheme based on factoring. This section shows how the general con-
struction can be used to construct fail-stop signatures where the security for the
recipients relies on the intractability of factoring. The family of bundling homomor-
phisms was defined in [4], using ideas from [20, 17]. A similar homomorphism was
already used in [2]. We denote the group of quadratic residues modulo an integer n
by QRn := {x ∈ Z∗n | ∃w: w2 ≡ x mod n}. The basic assumption of this scheme is
that it is hard to factor large integers.

Assumption F (see [20]). For all probabilistic polynomial-time algorithms F , for
all c ∈ N, and for k sufficiently large, the probability that F , on input a k-bit integer
n which is the product of two primes p and q of equal length and with p ≡ 3 and q ≡ 7
mod 8, outputs one of the factors is less than k−c. The probability is over the random
bits used by F and the uniform random choice of n with the given constraints. �

Construction 4.4 (factoring homomorphisms).
• Key generator g: On input k and τ , it chooses a k-bit integer n = pq such that

p and q are primes with p ≡ 3 and q ≡ 7 mod 8. It outputs K := (τ, n).
• Families of groups: We slightly abbreviate the groups for a key K = (τ, n) as

Hn := (±QRn)/{1,−1} and Gτ,n := Z2τ ×Hn.

The group operation in Hn is induced by multiplication modulo n. Each element of
Hn, which is a coset {x,−x}, will be identified with its smaller member, i.e., a number
between 0 and n/2. The reason for using the factor group Hn instead of QRn is that
membership in Hn can be tested efficiently: A number between 0 and n/2 belongs to
Hn iff its Jacobi symbol is +1. (Hence it is also easy to test membership in Gτ,n.)
The operation in Gτ,n is defined by

(a, x) ◦ (b, y) := ((a+ b) mod 2τ , xy4(a+b)div2τ),

310 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

and the unit element of Gτ,n is (0, 1).

• The homomorphism hτ,n mapping Gτ,n to Hn is defined by

hτ,n((a, x)) := ±(4ax2τ),

i.e., either 4ax2τ or −4ax2τ , depending on which of them is smaller than n/2. The
corresponding (unoptimized) probabilistic polynomial-time algorithm h is clear. �

Theorem 4.5.

(a) Under Assumption F, Construction 4.4 is a family of bundling homomor-
phisms.

(b) For any τ ∈ N and any odd n ∈ N (i.e., not only for those chosen according
to Construction 4.4), hτ,n is a homomorphism satisfying Definition 4.1(b).

(c) If n = prqs, where p and q are primes with p ≡ 3 and q ≡ 7 mod 8 and r and
s are odd, then for any a ∈ Z2τ and z ∈ Hn, there exists exactly one x ∈ Hn so that
hτ,n((a, x)) = z. (The reason we consider numbers n of this more general form is that
we want to use the fairly efficient zero-knowledge protocol from [21]; see below.)

Proof. See [4]. The last claim is only proved for r = s = 1, but the same proof
also works in the more general case.

Given this family of bundling homomorphisms, we can construct a fail-stop signa-
ture scheme called the Factoring Scheme. We only have to fill in the three parameters
that were left open in Construction 4.1:

• The message space is {0, . . . , 2ρ − 1} for any ρ ∈ N.

• The parameter τ for the bundling degree is computed as τ := σ + ρ.

• A prekey n is good if it is of the form defined in Theorem 4.5(c). By Theorem
4.5(b, c), such prekeys fulfill the conditions required in Construction 4.1. The zero-
knowledge proof for this predicate is as follows:

1. The center, who has chosen n and therefore knows p and q, uses the zero-
knowledge protocol from [21] to prove to the signer that n = prqs, where p and q
are primes and congruent to 3 modulo 4 and r and s are odd. This proof must be
executed such that the probability of cheating the signer into accepting an incorrect
n is at most 2−σ.

2. The signer verifies on her own that n ≡ 5 mod 8 to exclude the case p ≡ q
mod 8.

Given all this, it is straightforward to write down the details of the Factoring
Scheme in the same manner as in Construction 4.3. The following theorem completes
the security considerations.

Theorem 4.6. The Factoring Scheme is secure for the signer.

Proof. According to the corollary to Theorem 4.2, it only remains to show |Tm′ | ≤
2ρ for all m′ whenever the prekey is good because then

|Tm′ |/2τ ≤ 2−σ.

Note that in Gτ,n,

(a, x)m
′

= (0, 1)⇒ m′a mod 2τ = 0⇒ ord(a)|m′.

Hence

Tm′ ⊆ {(a, x) ∈ Gτ,n|hτ,n((a, x)) = 1 ∧ ord(a)|m′}.

FAIL-STOP SIGNATURES 311

According to Theorem 4.5(c), for each a, there is exactly one x such that hτ,n((a, x)) =
1. Thus

|Tm′ | ≤ |{a ∈ Z2τ |ord(a)|m′}| = gcd(2τ ,m′).

By the choice of the message space, m′ is between 1 and 2ρ − 1 (m′ is the differ-
ence between two different legal messages; negative values need not be considered
separately), and therefore gcd(2τ ,m′) < 2ρ.

As for the efficiency, first note that a multiplication by 4 modulo n can be replaced
by two shifts and at most two subtractions and is therefore negligible compared with
a general multiplication modulo n. A group operation in Gτ,n is therefore essentially
one modular multiplication because the exponent of 4 is 0 or 1. This yields the
following:
• Signing: The term msk2 with sk2 ∈ Gτ,n can be evaluated with any expo-

nentiation algorithm. Since we just saw that a group operation in Gτ,n is essentially
a modular multiplication, this corresponds to an exponentiation modulo n with the
exponent m. In other words, it needs between ρ and (3/2)ρ modular multiplications
with a suitable exponentiation algorithm.
• Test: A signature s = (a, x) on the message m is acceptable iff

pk1 pk
m
2 = hτ,n((a, x))⇔ pk1 = ±4ax2τ pk−m2 .

Since the message is ρ bits long and τ = ρ+ σ, we see that a signature can be tested
using at most τ + ρ = 2ρ + σ modular multiplications. With a good exponentiation
algorithm, one can get close to ρ+ σ modular multiplications.
• The length of the secret key (for one message) is 2(k + τ) = 2(k + ρ+ σ) bits.
• The length of the public key is 2k.
• The signature length (for a ρ-bit message) is k + τ = k + ρ+ σ bits.
Thus the two schemes require almost the same amount of computation and storage

for keys and signatures. The main difference is that the key generation in the first
scheme is simpler. A variant of the Factoring Scheme that does not need a zero-
knowledge proof, at the cost of an additional summand k in most of the lengths and
numbers of multiplications, is given in [34]. Table 1 compares the two schemes for
k = ρ = |q|2 ≈ |p|2; remember that k is also the length of the message.

Table 1

Complexity of the two instantiations of the general construction.

Discrete logarithm Factoring

sign 2 multiplications ≈ k multiplications

test < 2k multiplications < 2k + σ multiplications

Length of sk 4k 4k + 2σ

Length of pk 2k 2k

Length of a signature 2k 2k + σ

5. Signing many long messages. In section 4, constructions of fail-stop signa-
ture schemes for one short message were presented. We now extend these constructions
so that an arbitrary number of messages of arbitrary length can be signed.

5.1. Overview. The easiest way to sign more than one message is to use a
scheme from section 4 and to prepare as many keys as one intends to sign messages.

312 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

However, this is not very practical. In particular, the distribution of public keys
assumes that each signer has access to a reliable broadcast channel (which may be
realized by a certification hierarchy or a kind of phone book in practice). The use of
such a channel should be minimized. In fact, some authors even require of ordinary
digital signature schemes that after the initial key generation of fixed length, signing
can go on “polynomially forever” [1, 30]. Hence one important result of the next two
constructions is that they guarantee very short public keys.

The basic idea behind these constructions is tree authentication. The same ideas
underlie all published provably secure ordinary digital signature schemes; however,
some variations necessitate a new proof each time. Actually, there are two types of
tree authentication, that of [29, 26, 27] and that of [28, 20], which we call bottom-
up and top-down, respectively, corresponding to how the tree is constructed. The
former leads to shorter signatures; the latter is more flexible. We sketch their fail-
stop versions in sections 5.3 and 5.4, respectively.

In both of these constructions, the length of the secret key is linear in the number
of messages to be signed. We prove in section 6 that this cannot be avoided if one
defines “secret key” as in Definition 3.1, i.e., including all of the secret random bits
that the signer will ever need. However, we show that this secret key never needs to
exist completely at the same time: In section 5.4, we modify the top-down construction
so that only a small amount of secret storage is needed.

In addition, we show in section 5.2 how long messages can be hashed before
signing so that the length of signatures and keys is independent of the message length.
In section 5.5, we present a special variant of the constructions based on discrete
logarithms that shortens the secret key by approximately a factor of 2. This will be
interesting in comparison with the lower bounds; see section 6. In section 5.6, we
sketch more efficient constructions for the case where all the signatures by one signer
have the same recipient.

5.2. Collision-resistant hash functions and message hashing. Message
hashing means that a hash function is applied to each message before it is signed,
which reduces messages of arbitrary length to a fixed length. At first sight, it could
seem impossible to do this with fail-stop signatures. Given a correct signature s on a
message m, an arbitrarily powerful forger can find another message m′ that is mapped
to the same string by the hash function. Hence this forger knows that s is also the
correct signature on m′. Thus the signer cannot use the idea described in section 1.3
to repudiate the successful forgery (m′, s). Fortunately, this is not a problem because
such a forgery gives the signer a collision of the hash function, which she can present as
a proof of forgery. Under the assumption that the hash function is collision-resistant,
the signer cannot construct such a collision by herself.

Collision-resistant hash functions have been formally defined in [10]. Under As-
sumptions DL and F, efficient collision-resistant hash functions exist that need about
one multiplication per message bit and where the length of the output is the length of
the modulus used in the hash function [10, 8]. In practice, one may decide to use much
faster hash functions whose security cannot be proved under well-known assumptions
(or cannot even be defined, e.g., if they have no keys), such as RIPEMD-160 [13]
(follow the references for more such functions and known attacks).

If a hash function is used in a fail-stop signature scheme, the key for the hash
function, i.e., the particular instance of the hash function, must be chosen by the
center (or the recipients according to section 3.3), i.e., in our constructions, it is part
of the prekey. The parameters must be chosen so that the output of the hash function

FAIL-STOP SIGNATURES 313

Fig. 2. Fail-stop signature scheme with bottom-up tree authentication. Thin black arrows denote
the relation between a one-time secret key and the corresponding one-time “public” key, broad grey
arrows denote one-time signatures, and the tree is constructed by repeatedly hashing pairs of values.
For instance, the complete signature on m3 consists of the encircled nodes. To test it, the recipient
reconstructs the nodes in squares.

fits into the message length of the underlying fail-stop signature scheme. Then it is
easy to prove that such a combination of a secure collision-resistant hash function and
a secure fail-stop signature scheme is a secure fail-stop signature scheme for messages
of arbitrary length.

5.3. Bottom-up tree authentication. The construction of bottom-up tree
authentication is sketched in Figure 2. It is based on any collision-resistant hash
function and any one-time fail-stop signature scheme with prekey (all constructions
in section 4 are of this form). We distinguish signatures and keys in the underlying
one-time FSS scheme and the scheme now to be constructed by calling them one-time
and complete, respectively, and put one-time “public” keys in quotes because they are
no longer public.

A prekey and an instance of the hash function are chosen once and for all (by the
center or the recipients). The signer generates N one-time key pairs (skj , pkj) based
on this prekey. She hashes them pairwise in the form of a binary tree. Only the final
hash value, i.e., the root of the tree, is published as the complete public key pk of the
new scheme.

The complete signature on the jth message, mj , starts with the one-time signature
sj on mj using skj . Secondly, it contains the corresponding value pkj . Moreover,
to authenticate pkj , the branch from pkj to the root is needed; thus the complete
signature also contains the other children of the nodes on this branch (see Figure 2).
Hence its length is logarithmic in N .

The recipient tests the one-time signature sj using pkj , reconstructs the values
on the path to the root, and tests if this path ends at the correct public key pk.

314 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

A proof of forgery in the new scheme is either a proof of forgery in the one-time
scheme or a collision of the hash function.

A complete formal description and a proof can be found in [35]. Here we concen-
trate on top-down tree authentication instead.

5.4. Top-down tree authentication and a construction with a small
amount of secret storage. In this section, we proceed in two steps:

1. We present a natural fail-stop version of top-down tree authentication. It can
be based on any one-time FSS scheme with prekey where arbitrarily long messages
can be signed and thus, in particular, on the schemes from section 4 together with
message hashing. In this construction, the public key is short and only a small amount
of secret storage is needed immediately after the keys are chosen. However, a long
secret key accumulates as more and more messages are signed.

2. We add measures so that the amount of secret storage is also small all the time.
These measures are constructed specifically for the general construction described in
section 4.2, i.e., for the efficient schemes based on factoring and discrete logarithms.

As in section 5.3, we use one-time and complete to distinguish signatures and
keys in the underlying scheme and in the scheme to be constructed.

Construction 5.1 (top-down tree authentication). Let a one-time FSS scheme
with prekey for the message space {0, 1}+ be given (see Definition 4.2). We construct
a scheme for signing N messages as follows (see Figure 3).
• Key generation:
• A prekey prek for the one-time FSS scheme is chosen and the protocol (P, V)

is carried out for it.
• The signer generates one one-time key pair (sk, pk) based on prek and pub-

lishes pk (and N , if it is not globally fixed) as the complete public key of the new
scheme.
• Signing: Signing takes place in a binary tree with N leaves. The nodes are

denoted by bit strings j and labeled with one-time key pairs (skj , pkj). The root is
Node ε and labeled with (sk, pk). The children of Node j are Node j0 and Node
j1. All one-time key pairs are randomly generated by the signer based on the same
prekey prek. A one-time secret key at an inner node is used to sign the pair of one-
time “public” keys of its two children; a one-time secret key at a leaf is used to sign
a real message. A complete signature s in the new scheme is one branch of these
one-time signatures. To sign the first real message m0...0, only the one-time keys on
the leftmost branch and their immediate other children have to be generated. Figure
3 shows the situation after m0...0 has been signed. Generally, a complete signature
on mj consists of the one-time signature on mj using skj and the sequence of pairs
of one-time “public” keys with their one-time signatures on the path from mj to the
root (see Figure 3). Thus the tree is gradually constructed from left to right.
• Test: Given a complete signature s, i.e., a branch of a tree, the recipient tests

all the one-time signatures in it and checks that the path ends at the correct public
key pk.
• Proof of forgery: Given a successfully forged complete signature s∗, i.e., a

branch that ends at pk, the signer finds a node j where it “links in” to the correct
tree, i.e., the same pkj is used in s∗ and in her current tree, but the message m∗j signed
at this node in s∗ has not been signed by her. (Depending on the position of Node j,
m∗j may be a real message or a pair of one-time “public” keys.) She computes a proof
of forgery, proofj , for this forged one-time signature s∗j in the one-time scheme. The
complete proof of forgery, proof, consists of proofj , pkj , m

∗
j , and s∗j .

FAIL-STOP SIGNATURES 315

Fig. 3. Fail-stop signature scheme with top-down tree authentication. Thin black arrows denote
the relation between a one-time secret key and the corresponding one-time “public” key, broad grey
arrows denote one-time signatures, and dotted lines only indicate a tree but are not related to a
computation. For instance, the complete signature on m0...0 consists of the encircled nodes.

• Verification of a proof of forgery: Given a value proof = (proofj , pkj ,m
∗
j , s
∗
j),

verify that it is a valid proof of forgery in the one-time scheme, i.e., compute
verify(pkj ,m

∗
j , s
∗
j , proofj). �

Theorem 5.1. If the underlying one-time FSS scheme is secure, Construction
5.1 describes a secure FSS scheme for N messages.

Proof. The requirement from Definition 3.1 is obviously fulfilled. The security
for the recipients, i.e., the fact that a polynomially bounded signer cannot construct
signatures that she can later prove to be forgeries, follows immediately from that of
the one-time scheme because any valid proof of forgery in the complete scheme is also
a valid proof of forgery in the one-time scheme. (Remember that repeated use of the
same prekey does not weaken the security; see the remarks after Definition 4.2.)

As to the security for the signer, first note that the probability that the signer
accepts a bad prekey is the same in the one-time and the complete scheme. We show
that all outcomes of the key generation based on a good prekey are in GoodC̃ . For
any successful forgery, the forger must select at least one node j where his complete
signature links in to the correct tree, i.e., where he must forge a one-time signature.
Given the forgery, the signer will find such a node (with probability 1) and can prove

316 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

the forgery at that node with the same probability as in the one-time scheme.

A large amount of secret storage is still needed in Construction 5.1 because all
the values skj must be stored secretly so that forgeries at any node can be proved.
The basic idea used to reduce secret storage in Construction 5.2 is to store those
skj ’s that are no longer used for signing in encrypted form (reliably, but not secretly)
and to store only the encryption key secretly. However, information-theoretically
secure encryption is needed, and a one-time pad (which is the only absolutely secure
encryption scheme) is of no use because the key would be just as long as the encrypted
message [42]. Hence special care must be taken that each individual skj remains secret,
although information about the ensemble of skj ’s may become known.

We show how this can be done for the general Construction 4.1, taking into
account that a forger has a priori information about the encrypted skj ’s because he
may know the corresponding one-time “public” keys and signatures.

Construction 5.2 (scheme with small amount of secret storage). Let a one-time
FSS scheme according to Construction 4.1 together with message hashing be given,
and apply top-down tree authentication (Construction 5.1) to it with the following
modifications:

• In key generation, the signer additionally chooses a value e ∈ G randomly as
an encryption key. She keeps e secret all the time.

• In signing: Whenever the signer has used up a one-time secret key skj =
(skj,1, skj,2) by signing a message mj (which may be a real message or a pair of
one-time “public” keys), she proceeds as follows:

• She encrypts skj,2 as cj := skj,2 + e.

• She stores mj , the one-time signature sj , and the ciphertext cj reliably but
not necessarily secretly.

• For a proof of forgery: If the signer needs a one-time secret key skj to prove
a forgery, she reconstructs it as follows: She decrypts skj,2 = cj − e and recomputes
skj,1 = sj −mskj,2, where m := hash(mj). �

Theorem 5.2. If the underlying one-time FSS scheme is secure, Construction
5.2 describes a secure FSS scheme for N messages. At any time, only the encryption
key e and the one-time secret keys that have been generated but not yet used for signing
(marked “use later” in Figure 3), i.e., at most one per level of the tree, must be stored
secretly.

Proof. In addition to Theorem 5.1, we only have to show that the extra infor-
mation stored nonsecretly, i.e., the ciphertexts cj , does not help a forger to produce
unprovable forgeries.

In every successfully forged complete signature, the signer still finds at least one
successfully forged one-time signature s∗j on a message m∗j . If m∗j and a message
mj that the signer has signed at this node are a collision of the hash function, this
collision is already a proof of forgery. Otherwise, Theorem 4.1(c) guarantees that the
forgery can be proved if s∗j is different from the correct one-time signature that the
signer would have produced for m∗j at Node j. Thus it remains to be shown that
the additional information does not help a forger to find exactly this signature. This
signature depends only on skj , i.e., not on the values skl at other nodes. We consider
the worst case, where the signer has already signed a message mj at Node j. Let
m := hash(mj). In the one-time scheme, the set of possible values skj from the point
of view of a forger was SKC̃,j = {(sj −msk′j,2, sk

′
j,2)|h(sk′j,2) = pkj,2} with uniform

distribution (see the proof of Theorem 4.2). Hence it suffices to show that all of these
values are still possible if the forger has seen cj and all the other ciphertexts cl.

FAIL-STOP SIGNATURES 317

Let such a value sk′j,2 be given. It corresponds to exactly one encryption key
e′ := cj − sk′j,2. This implies that the other one-time secret keys must be given by

sk′l,2 := cl − e′ = sk′j,2 + cl − cj .

The only question is whether these are possible secret keys, i.e., whether h(sk′l,2) =
pkl,2. On one hand,

h(sk′l,2) = h(sk′j,2) · h(cl)/h(cj) = pkj,2 · h(cl)/h(cj),

and on the other hand,

h(cl) = h(skl,2) · h(e) = pkl,2 · h(e) and h(cj) = pkj,2 · h(e).

Hence h(sk′l,2) = pkl,2.
If this construction is applied to a usual complete tree, the amount of information

that must be stored secretly is logarithmic in N (see Table 2 in section 6.5 for an
example).

If we use a list-shaped tree, i.e., the left child of each node is a real message, at
any time only two skj ’s have been generated but not yet used for signing. Thus the
amount of secret storage is constant (as a function of N). However, later signatures
are very long. Thus list-shaped trees should only be used with a single recipient; see
section 5.6.

One can also use trees of other shapes, e.g., ternary trees or trees where one
decides dynamically whether the message mj signed at a node is a real message or a
pair of one-time “public” keys and specifies this by one additional bit in mj .

5.5. Improvement for the discrete logarithm constructions. In this sec-
tion, we present a fail-stop signature scheme for signing N messages where the total
length of the secret key is (2N + 2)k. The smallest upper bound in the previous
sections was 4Nk, achieved by pure repetition of the one-time Discrete Logarithm
Scheme and also in bottom-up tree authentication based on it.

The scheme is a variant of pure repetition of the Discrete Logarithm Scheme
where half of each one-time secret key is reused in the next signature.

Construction 5.3.
• Key generation:
• As in Construction 4.3, a prekey (p, q, a, b) is chosen and verified, where p

and q are primes with q|(p−1) and a and b are generators of the group Hq, the unique
subgroup of Z∗p of order q.

• The signer chooses a secret key

sk := ((x1, y1), (x2, y2), . . . , (xN+1, yN+1))

consisting of numbers between 0 and q − 1. The corresponding public key is

pk := (pk1, . . . , pkN+1) := (ax1by1 , . . . , axN+1byN+1).

• The message space is restricted to Z∗q .
• Signing: The correct signature on the jth message, mj , is the triple

s := (j, xj +mjxj+1, yj +mjyj+1).

318 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

• Test: A triple (j, x, y) is an acceptable signature on the jth message, mj , iff

axby = pkjpk
mj
j+1.

• Proofs of forgery are constructed and verified as in Construction 4.3. �
Theorem 5.3. Under Assumption DL, Construction 5.3 describes a secure FSS

scheme.
Proof. It is clear that correct signatures pass the test because individual sig-

natures are identical to those in Construction 4.3. Similarly, the security for the
recipients is fulfilled because proofs of forgery are identical to those in Construction
4.3. Furthermore, every successful forgery f that is not the correct signature, i.e.,
f = (m∗j , (j, x, y)) with (j, x, y) 6= sign(sk, j,m∗j), can be proved as before. It remains
to show that the reuse of halves of the one-time secret keys does not make it too easy
for a forger to guess correct signatures.

It suffices to show this for the worst case, where the signer has already issued
N signatures on messages m1, . . . ,mN , possibly chosen by the forger, and the forger
therefore has maximum information. We first determine the size of the set SKC̃ of
possible secret keys given these signatures and the public key. SKC̃ is the set of
solutions to the equations defining the public key and the signatures. With e :=
loga(b), all of these equations can be written as linear equations over GF(q). They
are described by the following (3N+1)×(2N+2) matrix A. The columns correspond
to the elements of sk in the order as above, the first 2N rows to the signatures, and
the last N + 1 rows to the components of the public key.

A =

1 0 m1

1 0 m1

0
1 0 m2

1 0 m2

. . .

0
1 0 mN

1 0 mN

· ·
1 e

1 e 0
. . .

0
1 e

.

We now show that the rank of A is 2N +1. For this, consider the following submatrix
of A:

1 0 mj 0

0 1 0 mj

1 e 0 0

0 0 1 e

.

FAIL-STOP SIGNATURES 319

One can easily see that this submatrix has rank 3 and that the third row can be
removed. By repeating this step for j := 1, . . . , N , we delete all rows (0 . . . 01e0 . . . 0)
except for the last one. The resulting matrix clearly has rank 2N + 1.

Hence |SKC̃ | = q. We now show that each of these q possible secret keys yields
a different correct signature on the new message m∗j . For this it suffices to show that
any additional signature determines the secret key uniquely. The additional signature
introduces two new equations corresponding to the rows

0 . . . 0 1 0 m∗j 0 0 . . . 0

0 . . . 0 0 1 0 m∗j 0 . . . 0
.

One can easily see that the rank of the new matrix is 2N+2. (Remember that mj 6= 0
for all j.) Hence an additional, forged signature is correct only for one out of the q
possible secret keys. This completes the proof.

Construction 5.3 can be combined with bottom-up tree authentication; this yields
public keys as short as in section 5.3 and secret keys as short as in Construc-
tion 5.3.

5.6. The case of a single recipient. In some important applications, all sig-
natures of a signer have the same recipient, while any third party is able to settle a
dispute (otherwise, one would not need a signature scheme). In this case, significant
efficiency improvements are possible because the recipient can store information from
previously received signatures. Now the most efficient construction is top-down tree
authentication with a list-shaped tree so that only one new node of the tree must be
produced, sent, and tested each time. Thus signing and testing are reduced to the
following procedures:

• Signing: Assume that the current one-time secret key is skj . The signer
generates a new one-time key pair (skj+1, pkj+1); this can be done off-line before the
new message mj is known. The complete signature on mj consists of the new one-time
“public” key pkj+1 and a one-time signature with skj on the pair (mj , pkj+1).

• Test: The recipient tests the new one-time signature with his current one-time
“public” key pkj and then sets pkj+1 as his current one-time “public” key.

The old one-time secret and “public” keys can be stored as in Construction 5.2.
If a third party has to settle a dispute, it must test the signature with respect to the
original public key pk. This can be done with overhead logarithmic in the length of
the list: With logarithmic search, one first finds an index j′ ≤ j where the signer and
the recipient agree on pkj′ but not on the pair (mj′ , pkj′+1) signed with respect to it.
Then it suffices to solve the dispute regarding this one-time signature.

6. Lower bounds on the efficiency of fail-stop signatures. In this section,
we try to answer the following two questions:

1. How close to the optimum are the existing constructions?

2. Is there a certain price in efficiency to pay for information-theoretic security
instead of computational security?

We do this by giving lower bounds on the length (more precisely, the entropy) of
keys and signatures. In practice, these parameters correspond to the communication
and storage complexity of both key generation and the transmission of signed mes-
sages. Similar lower bounds have been investigated for other cryptographic schemes
with information-theoretic security requirements, e.g., encryption schemes [42], au-

320 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

thentication codes (starting with [16]; see, e.g., [40]), and unconditionally secure sig-
nature schemes [23].3

Section 6.1 sketches the information-theoretic background, section 6.2 introduces
the random variables, section 6.3 investigates the length of the secret key, section
6.4 investigates the length of signatures and public keys, and section 6.5 answers the
questions posed above, i.e., it compares the lower bounds to the known upper bounds
and to ordinary digital signature schemes.

6.1. Information-theoretic background. Since a random variable with en-
tropy σ cannot be coded with less than σ bits on average, it is sufficient to prove
lower bounds on the entropy of random variables in order to have lower bounds on
the length of the values of these random variables.

For the formal theorems and proofs, we assume that the reader is familiar with
elementary information theory (see [41] and [15, sections 2.2 and 2.3]). We briefly
repeat the most important notions in the notation of [15]. Assume that a common
probability space is given. Capital letters denote random variables and small letters
their corresponding values, and P(X = x) is abbreviated as P(x), etc. The joint
random variable of X and Y is written as X,Y . The entropy of a random variable X
is

H(X) := −
∑
x

P(x) log P(x).

H(X | Y) denotes the conditional entropy of X if Y is known, and I(X;Y) denotes
the mutual information between X and Y . They are defined as follows:

H(X | Y) : = −
∑
x,y

P(x, y) log P(x | y),

I(X;Y) := H(X)−H(X | Y).

Furthermore, the conditional mutual information is defined as

I(X;Y | Z) := H(X | Z)−H(X | Y, Z).

The following important rules will often be used:

H(X) ≥ 0, H(X | Y) ≥ 0,(6.1)

H(Y, Z | X) = H(Y | X) + H(Z | Y,X),(6.2)

I(X;Y) = I(Y ;X).(6.3)

Additionally, we often need Jensen’s inequality for the special case of the logarithm
[14]: If pi ≥ 0 and xi > 0 for all i and the sum of the pi’s is 1, then

log

(∑
i

pixi

)
≥
∑
i

pi log(xi).

3However, the lower bounds in the following cannot be derived entirely from information-theoretic
security requirements; this makes some new proof techniques necessary.

FAIL-STOP SIGNATURES 321

6.2. The random variables. The common probability space for all of the ran-
dom variables arising in a fail-stop signature scheme is given by the random bits used
in key generation; here we made use of the fact that we could define all of the other
algorithms as deterministic by regarding all random bits as part of the secret key.

For the lower bounds, we only need the case where all parties execute G honestly,
and we always consider a fixed triple of parameters par = (k, σ,N). Then the prob-
abilities of sk and pk are uniquely determined. Hence we can define the following
random variables:
• SK and PK are the random variables of the secret and public key, respectively.
• If a message sequence m = (m1, . . . ,mj) with j ≤ N has been fixed, random

variables Si for i = 1, . . . , j are defined as the correct signature on mi in this context,
i.e.,

Si := sign(SK, i, (m1, . . . ,mi)).

Since the signature is a deterministic function of the secret key and the message
sequence, we have

H(Si | SK) = 0.

• Similarly, for the given message sequence m = (m1, . . . ,mj), the random
variable of the history up to the ith signature (for i ≤ j) is defined as

Hist i := ((m1, . . .mi), (S1, . . . , Si)).

6.3. Lower bound on the number of secret random bits needed. As
mentioned in section 5, the largest difference between fail-stop signatures and ordinary
digital signatures is the length of the secret key. We have shown in Theorem 5.2 that
the signer need not store a lot of secret information at the same time; however, the
overall number of secret random bits chosen was still linear in the number of messages
to be signed. We now show that this cannot be avoided.

If all fail-stop signature schemes followed the construction idea in section 1.3, this
would be quite easy to see:

1. Even an arbitrarily powerful forger must not be able to guess the signer’s
correct signature.

2. Hence the entropy of the correct signature is large.
3. Since this holds for each additional signature, even if some signatures are

already known, the entropies of the signatures can be added, and therefore the overall
entropy of the signer’s secrets is large.

Our proof follows this outline; however, only a weaker average version of statement
1 can be derived from the definitions. If we required that applying prove to the signer’s
correct signature never yielded a valid proof of forgery, a formal proof would be easy
and would yield

H(SK | PK) ≥ (N + 1)σ.

However, e.g., in fail-stop signature schemes with message hashing, an arbitrarily
powerful forger sometimes does know correct signatures on new messages (those with
the same hash value as the original message), and the signer can prove them to be
forgeries.

Furthermore, note that the desired lower bound cannot possibly be proved from
the signer’s security alone. As a counterexample, suppose that the signer were allowed

322 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

to disavow all signatures in an ordinary digital signature scheme; then she would be
unconditionally secure without using many random bits (but the recipient would not
be secure at all). This is a problem because Definition 3.2, like all computational
cryptographic definitions, is asymptotic, i.e., security is only guaranteed for “k suffi-
ciently large.” Thus in a certain sense, we can only derive lower bounds for k ≥ k0

for an unknown k0. This may seem unsatisfactory: No one would have doubted that
we need arbitrarily long keys if we made k sufficiently large.

However, the real purpose of lower bounds is to say “whenever we have certain
requirements on the security, we have to pay the following price in terms of efficiency.”
In this section, this means, more precisely, “if the signer wants the probability of
unprovable forgery to be at most 2−σ, and the recipients want some security, too,
then at least the following number of random bits is needed (as a function of σ and
the security for the recipients).”

To quantify the security for the recipients, it suffices for our purpose to consider
the probability that the signer can prove that her own signatures are “forgeries” simply
by applying the algorithm prove. In practice, one will require this probability to be
at most, say, 2−100, or, more generally, 2−σ

∗
for some σ∗. We will prove the lower

bounds as a function of this parameter σ∗ (in addition to σ). Now we can proceed
formally.

Definition 6.1. Let a fail-stop signature scheme and parameters σ and N be
given. For every message sequence m = (m1, . . . ,mN+1), we define a polynomial-
time algorithm Ãm that describes how a dishonest signer could try to disavow her own
correct signatures. (This algorithm should be rather useless!)

1. Execute G correctly (with the center) to obtain sk and pk.

2. Compute the signatures s1, . . . , sN on m1, . . . ,mN and the histories hist1, . . . ,
histN correctly. Then because mN+1 is one message too much, compute its signature
sN+1 as if mN had not been signed, i.e., sN+1 := sign(sk,N, (m1, . . . ,mN−1,mN+1)).

3. If provable(sk, pk, histi−1, (mi, si)) for an i ∈ {1, . . . , N + 1}, then output the
proof prove(sk,mi, si, histi−1).

We say that k is large enough to provide security level σ∗ for the recipients against
Ãm if the success probability of Ãm is at most 2−σ

∗
.4 This probability is over the

random bits of Ãm and the random bits of the center in step 1.

Theorem 6.1. Let a fail-stop signature scheme with actual parameters σ and N
and a security level σ∗ be given. Let σ′ := min(σ, σ∗). Then for all k large enough to
provide security level σ∗ for the recipients against the algorithm Ãm for at least one
sequence m of N + 1 pairwise-distinct messages,5

H(SK | PK) ≥ (N + 1)(σ′ − 1).

4The formal definition of the recipient’s security immediately implies the existence of k0 such
that Ãm has this property for all k ≥ k0. We have now bypassed the problem that we do not know
how large k0 is because we simply know that it must be large enough in a practical application.

Note that it would be impossible to require k to be large enough to provide the same level of
security against all polynomial-time algorithms instead of only Ãm because for a fixed k, we have
a finite problem, and all finite problems can be solved perfectly by some constant-time algorithm.
However, our Ãm is not only asymptotically polynomial-time but definitely feasible at the given k
because it is of the same complexity as sign and prove. Requirements of the same type are well
known in practice, e.g., when one requires k to be large enough to make the success probability of
all known factoring algorithms small.

5Note that this is a very weak condition on k. The contrary is that the signer can sign an
arbitrary message sequence m and disavow it with significant probability using Ãm.

FAIL-STOP SIGNATURES 323

Since m is fixed throughout the proof, we can omit it in the notation, i.e., all
random variables Si and Hist i are implicitly assumed to belong to this message se-
quence. We also omit m in the histories, i.e., we abbreviate Hist i := (S1, . . . , Si) for
i = 1, . . . , N + 1. The first lemma formalizes statement 1 above, i.e., that it is hard
to guess correct signatures.

Lemma 6.1. With the notation of Theorem 6.1, for each i ≤ N + 1 and each pair
(pk, histi−1), fix an optimal guess s∗(pk, histi−1) at the correct signature on mi if pk
and histi−1 are known, i.e., for all values s,

P(Si = s∗(pk, histi−1) | pk, histi−1) ≥ P(Si = s | pk, histi−1).

Then this guess is still not very good on average:

P(Si = s∗(PK,Hist i−1)) ≤ 2−σ
′+1.

Proof. Let i and (pk, histi−1) be given. We have

P(Si = s∗(PK,Hist i−1))

= P(Si = s∗(PK,Hist i−1) ∧ provable(SK,PK,Hist i−1, (mi, Si)))

+ P(Si = s∗(PK,Hist i−1)

∧ ¬provable(SK,PK,Hist i−1, (mi, s
∗(PK,Hist i−1))))

≤ P(provable(SK,PK,Hist i−1, (mi, Si)))

+ P(¬provable(SK,PK,Hist i−1, (mi, s
∗(PK,Hist i−1)))).

The first term is bounded by the success probability of Ãm and therefore by 2−σ
∗
.

The second term can be bounded using the security for the signer (Definition 3.4):

P(¬provable(SK,PK,Hist i−1, (mi, s
∗(PK,Hist i−1))))

=
∑

pk,histi−1

P(pk, histi−1)P(¬provable(SK,PK,Hist i−1, (mi, s
∗(PK,Hist i−1)))

| PK = pk,Hist i−1 = histi−1)

≤
∑

pk,histi−1

P(pk, histi−1)2−σ

= 2−σ.

Together, these two bounds yield the lemma.

Lemma 6.2 uses Lemma 6.1 to give a lower bound corresponding to statement 2
of the informal proof sketch.

Lemma 6.2. With the notation of Theorem 6.1, for each i ≤ N + 1,

H(Si | PK,Hist i−1) ≥ σ′ − 1.

324 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Proof. We can write the conditional entropy as

H(Si | PK,Hist i−1) = −
∑

si,pk,histi−1

P(si, pk, histi−1) log(P(si | pk, histi−1))

≥ − log

 ∑
si,pk,histi−1

P(si, pk, histi−1)P(si | pk, histi−1)

using Jensen’s inequality. (Note that one cannot prove that the individual values
log(P(si | pk, histi−1)) are at least σ.) Now it suffices to show that the sum in the
logarithm is at most 2−σ

′+1. In fact, with Lemma 6.1,∑
si,pk,histi−1

P(si, pk, histi−1)P(si | pk, histi−1)

≤
∑

si,pk,histi−1

P(si, pk, histi−1)P(Si = s∗(pk, histi−1) | pk, histi−1)

=
∑

pk,histi−1

(
P(Si = s∗(pk, histi−1) | pk, histi−1)

∑
si

P(si, pk, histi−1)

)

= P(Si = s∗(PK,Hist i−1))

≤ 2−σ
′+1.

Proof of Theorem 6.1. Theorem 6.1 can be proved from Lemma 6.2 using rule (2)
from section 6.1. Recall the abbreviation Hist i = (S1, . . . , Si) for i ≤ N + 1. First, we
show by induction over i that the entropy of all of these signatures together is large,
i.e., for all i ≤ N + 1,

(4) H(Hist i | PK) ≥ i(σ′ − 1).

For i = 1, (4) is Lemma 6.2. If (4) has already been proved for i − 1, it holds for i
because

H(Hist i | PK) = H(Hist i−1 | PK) + H(Si | PK,Hist i−1)

≥ (i− 1)(σ′ − 1) + (σ′ − 1)

= i(σ′ − 1).

We now use the fact that signing is deterministic, i.e., SK uniquely determines
HistN+1. This implies H(HistN+1 | PK,SK) = 0, and therefore

H(SK | PK) = H(SK,HistN+1 | PK)−H(HistN+1 | PK,SK)

= H(SK,HistN+1 | PK)

≥ H(HistN+1 | PK)

≥ (N + 1)(σ′ − 1).

FAIL-STOP SIGNATURES 325

6.4. Length of signatures and public keys. Signatures and public keys are
not much longer in current fail-stop signature schemes than in ordinary digital sig-
nature schemes. Hence the lower bounds are also very small. The basic idea why
fail-stop signatures might be longer at all is as follows:

1. First, there must be at least 2σ acceptable signatures; otherwise, the correct
signature could be guessed too easily.

2. Second, it must be hard for a forger to guess acceptable signatures at all. Thus
the density of the set of acceptable signatures within the signature space should be
small, e.g., at most 2−σ

∗
for some σ∗.

Hence we expect the size of the signature space to be at least 2σ+σ∗ . We will
prove a slightly lower bound but more generally on the entropy of each signature.

We deal with the asymptotic character of the security against forgery in the same
way as in section 6.3, i.e., we fix one simple algorithm that a forger might use to guess
acceptable signatures.

Definition 6.2. Let a fail-stop signature scheme and parameters σ and N be
given. For every message sequence m = (m1, . . . ,mi) with i ≤ N , we define a (very
efficient and stupid) polynomial-time forging algorithm F̃m. On input pk, do the
following:

1. Choose a new key pair (sk∗, pk∗) by carrying out both roles of G correctly.

2. Compute a signature si := sign(sk∗, i,m) with the new key and output (mi, si)
as a proposed forgery for the given key pk.

We say that k is large enough to provide security level σ∗ against forgery by F̃m
if the probability that F̃m outputs an acceptable signature on mi is at most 2−σ

∗
.6

Theorem 6.2. Let a fail-stop signature scheme with actual parameters σ and N
and a security level σ∗ be given. Let σ′ := min(σ, σ∗). Then for all k large enough to
provide security level σ∗ both against forgery by F̃m and against Ãm for at least one
sequence m of i ≤ N pairwise-distinct messages,

H(Si) ≥ σ′ + σ∗ − 1

and

H(PK) ≥ σ∗.

The following lemma formalizes step 2 of the informal proof sketch. The fact that
the number of acceptable signatures, given the public key, is much smaller than the
complete signature space is generalized as follows: The public key contains a lot of
information about the correct signature.

Lemma 6.3. With the notation of Theorem 6.2,

I(Si;PK) ≥ σ∗.

6The security against forgery, Theorem 3.1, implies the existence of k0 such that all k ≥ k0 have
this property.

326 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

Proof. By the definitions and Jensen’s inequality,

I(Si;PK) = −
∑

si,pk:P(si,pk)6=0

P(si, pk) log(P(si)P(pk)/P(si, pk))

≥ − log

 ∑
si,pk:P(si,pk)6=0

P(pk, si)P(si)P(pk)/P(si, pk)

= − log

 ∑
si,pk:P(si,pk)6=0

P(si)P(pk)

 .

It suffices to show that the argument of the logarithm is bounded above by 2−σ
∗
.

First, the fact that all correct signatures pass the test, i.e.,

P(si, pk) 6= 0⇒ test(pk,mi, si) = ok,

yields ∑
si,pk:P(si,pk)6=0

P(si)P(pk) =
∑
si,pk

P(si)P(pk)1P(si,pk)6=0

≤
∑
si,pk

P(pk)P(si)1test(pk,mi,si)=ok.

Now we use the security against F̃m, which can be written formally as

P(test(pk,mi, si) = ok :: (acc, pk, sk, ε)← G; (acc∗, pk∗, sk∗, ε)← G;

si := sign(sk∗, i,m)) ≤ 2−σ
∗
.

This means that if a public key pk is chosen according to the distribution of PK and,
independently of this, a signature is chosen according to the distribution of Si, this
signature is acceptable with respect to pk with probability at most 2−σ

∗
. Hence∑

si,pk

P(pk)P(si)1test(pk,mi,si)=ok ≤ 2−σ
∗
.

This is exactly what remained to be shown.
Proof of Theorem 6.2. Lemma 6.3 implies H(Si)−H(Si | PK) ≥ σ∗, and a special

case of Lemma 6.2 implies H(Si | PK) ≥ σ′−1. (Here we exploit the security against
Ãm.) As a consequence, H(Si) ≥ H(Si | PK) + σ∗ ≥ σ′ + σ∗ − 1. Furthermore,
H(PK) ≥ I(Si;PK).

For the case with a prekey (see section 4.2), we obtain slightly stronger results by
using a forging algorithm F̃ ∗m that generates its new key pair (sk∗, pk∗) based on the
same prekey prek. In this case, the same proof yields

H(Si | Prek) ≥ σ′ + σ∗ − 1 and H(PK | Prek) ≥ σ∗.

If, as usual in such schemes, pk is a function of sk and prek, we obtain one more
result about the secret key.

FAIL-STOP SIGNATURES 327

Table 2

Comparison of constructions and lower bounds for fail-stop signatures.

Length Construc- Construc- Construc- Bottom-up Single Lower
of tion 5.1 tion 5.2 tion 5.3 recipient bound

sk 8Nk 8Nk (2N + 2)k 4Nk 4Nk (N + 2)(σ′ − 1)

secret 8Nk 4klog(N) (2N + 2)k 4Nk 10k ?
storage

pk 2k 2k (N + 1)k 2σ∗ 2k σ∗

signature 6klog(N) 6klog(N) 2k + log(N) 6k+ 4k σ′ + σ∗ − 1
2σ∗log(N)

Theorem 6.3. In a fail-stop signature scheme with prekey and where the public
key is a function of the secret key and the prekey, with the notation of Theorems 6.1
and 6.2,

H(SK | Prek) ≥ (N + 2)(σ′ − 1).

Proof. By rule (2), we get

H(SK | Prek) = H(SK,PK | Prek)−H(PK | SK,Prek)

= H(PK | Prek) + H(SK | PK,Prek)− 0

= H(PK | Prek) + H(SK | PK).

In the last line, we used the fact that the prekey is part of the public key. Hence

H(SK | Prek) ≥ σ∗ + (N + 1)(σ′ − 1) ≥ (N + 2)(σ′ − 1).

6.5. Comparison. This section answers the two questions raised at the begin-
ning of this section by evaluating how well our constructions meet the lower bounds
and by comparing the lower bounds with similar bounds on ordinary digital signature
schemes.

Table 2 approximately shows the length of the secret key (including all of the
random bits needed later), the maximal amount of secret storage needed, the length
of the public key and the length of a signature for Constructions 5.1, 5.2, and 5.3,
bottom-up tree authentication, and the case of a single recipient. The table also
shows the corresponding lower bounds; remember that all schemes use a prekey. All
constructions are assumed to be based on the Discrete Logarithm Scheme from Con-
struction 4.3 with parameters as in Table 1. Remember that 2k bits are needed to
represent an element of the group G, k bits are needed for an element of H, and the
total number of one-time secret keys in the tree in Figure 3 is 2N −1. The bottom-up
construction is shown for the case where the recipients trust a fast hash function with
output length 2σ∗.

It should be mentioned that [22] also presents a scheme for signing N messages
where the signature length is only 2k, and the key lengths and secret storage are the
same as in Construction 5.3. However, the complexity of signing then grows linearly
in N , and log(N) will be dominated by k anyway.

The difference between k in the upper bounds and σ and σ∗, and thus σ′ =
min(σ, σ∗), in the lower bounds is as follows: Usually, σ and σ∗ would be chosen of
equal size, say 100, whereas k must be at least 500 to give sufficient computational

328 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

security. If one believes that variants of the discrete logarithm problem exist that
cannot be solved in subexponential time, e.g., on nonsupersingular elliptic curves (cf.
[24]), one can choose k very close to σ∗, and then the lower bounds are met by the
upper bounds except for small factors.

By disregarding the difference between k, σ, and σ∗, the current upper bound on
the length of the secret key is (2N+2)σ in contrast to the lower bound (N+2)(σ−1).
For the signature length, both bounds are 2σ, and for the public key, the upper bound
is 2σ and the lower bound σ. However, having both public keys and signatures of
length independent of N was only achieved if the signatures of each signer have a
single recipient (or very few recipients). If every new signature may have a new
recipient, there is a tradeoff: If the public key is of constant length, the signatures
grow logarithmically in N because of the tree authentication. It is an interesting open
question whether this can be avoided.

If we compare fail-stop signatures with ordinary digital signatures, the most obvi-
ous difference in terms of complexity is that the number of secret random bits needed
for fail-stop signatures is linear in the number of messages to be signed. The lower
bound on the length of fail-stop signatures is σ′+σ∗−1; for ordinary digital signatures,
σ∗ is a lower bound. Hence the two types of schemes differ by a factor of about 2. For
public keys, the same lower bound σ∗ holds for ordinary digital signature schemes,
and in fact, even in the constructions, public keys of fail-stop signature schemes are
not longer than in ordinary digital signature schemes.

7. Conclusion and outlook. We have defined fail-stop signature schemes for-
mally and shown that their security is in fact stronger than that of ordinary digital
signature schemes. In particular, one can use fail-stop signatures either as ordinary
digital signatures or as signatures with dual security, where the signers instead of the
recipients are secure in an information-theoretic sense. Based on the definition, we
proved general lower bounds on the length of the keys and signatures in these schemes.

We presented a general construction of fail-stop signature schemes and showed
how to instantiate this construction under either of the well-known assumptions that
factoring large integers or computing discrete logarithms is hard. These constructions
come quite close to the lower bounds; see Table 2.

There are some recent additional results about fail-stop signature schemes. In
[11], it was shown that fail-stop signature schemes exist if statistically hiding bit-
commitment schemes of a certain type exist. This implies that they exist if one-way
permutations exist, which is a potentially weaker assumption than the existence of
claw-free pairs of permutations (see section 1.4). Furthermore, a practical construction
from arbitrary collision-resistant hash functions was given, and the existence of certain
types of fail-stop signature schemes and bit-commitment schemes was shown to be
equivalent. In [33], the open question from section 6.5, whether a fail-stop signature
scheme exists where the length of both public keys and signatures is independent
of the number N of messages to be signed, was answered positively under a strong
computational assumption (with a construction based on the one-way accumulators
from [3]).

In conjunction with a theorem from [23] which shows that the length of uncon-
ditionally secure signatures (see section 1.5) is linear in the number of participants
who can test them (whereas the length of fail-stop signatures and ordinary digital
signatures does not depend on this number), our constructions show that fail-stop
signatures provide the most viable way of protecting signers unconditionally.

FAIL-STOP SIGNATURES 329

Acknowledgments. It is a pleasure to thank many people for their contribu-
tions, primarily, Eugène van Heijst, who was a coauthor of preliminary versions of
parts of this paper and would have been a coauthor again if he were still working
in this field, and Michael Waidner, who allowed us to use some material from joint
publications here. We also thank Ivan Damg̊ard and Andreas Pfitzmann for several
good ideas and Joachim Biskup, Gerrit Bleumer, David Chaum, and the anonymous
referees for interesting comments.

REFERENCES

[1] M. Bellare and S. Micali, How to sign given any trapdoor permutation, J. Assoc. Comput.
Mach., 39 (1992), pp. 214–233.

[2] J. Benaloh, Verifiable secret-ballot elections, Ph.D. thesis, Yale University, New Haven, CT,
1987.

[3] J. Benaloh and M. de Mare, One-way accumulators: A decentralized alternative to digital
signatures, in Proc. 1993 Eurocrypt, Lecture Notes in Comput. Sci. 765, Springer-Verlag,
Berlin, 1994, pp. 274–285.

[4] G. Bleumer, B. Pfitzmann, and M. Waidner, A remark on a signature scheme where forgery
can be proved, in Proc. 1990 Eurocrypt, Lecture Notes in Comput. Sci. 473, Springer-Verlag,
Berlin, 1991, pp. 441–445.

[5] J. Boyar, D. Chaum, I. Damg̊ard, and T. Pedersen, Convertible undeniable signatures, in
Proc. 1990 Crypto, Lecture Notes in Comput. Sci. 537, Springer-Verlag, Berlin, 1991,
pp. 189–205.

[6] J. Bos, D. Chaum, and G. Purdy, A voting scheme, unpublished manuscript, presented at the
rump session of 1988 Crypto, Santa Barbara, CA, 1988.

[7] D. Chaum and H. van Antwerpen, Undeniable signatures, in Proc. 1989 Crypto, Lecture
Notes in Comput Sci. 435, Springer-Verlag, Berlin, 1990, pp. 212–216.

[8] D. Chaum, E. van Heijst, and B. Pfitzmann, Cryptographically strong undeniable signatures,
unconditionally secure for the signer, in Proc. 1991 Crypto, Lecture Notes in Comput. Sci.
576, Springer-Verlag, Berlin, 1992, pp. 470–484.

[9] D. Chaum and S. Roijakkers, Unconditionally secure digital signatures, in Proc. 1990 Crypto,
Lecture Notes in Comput. Sci. 537, Springer-Verlag, Berlin, 1991, pp. 206–214.

[10] I. B. Damg̊ard, Collision free hash functions and public key signature schemes, in Proc. 1987
Eurocrypt, Lecture Notes in Comput. Sci. 304, Springer-Verlag, Berlin, 1988, pp. 203–216.

[11] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, On the existence of statistically hiding
bit commitment schemes and fail-stop signatures, in Proc. 1993 Crypto, Lecture Notes in
Comput. Sci. 773, Springer-Verlag, Berlin, 1994, pp. 250–265.

[12] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, 22
(1976), pp. 644–654.

[13] H. Dobbertin, A. Bosselaers, and B. Preneel, RIPEMD-160: A strengthened version of
RIPEMD, in Proc. 3rd Fast Software Encryption Workshop, Lecture Notes in Comput.
Sci. 1039, Springer-Verlag, Berlin, 1996, pp. 71–82.

[14] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., John
Wiley, New York, 1971.

[15] R. Gallager, Information Theory and Reliable Communication, John Wiley, New York, 1968.
[16] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, Codes which detect deception, Bell

System Technical J., 53 (1974), pp. 405–424.
[17] O. Goldreich, Two remarks concerning the Goldwasser–Micali–Rivest signature scheme, in

Proc. 1986 Crypto, Lecture Notes in Comput. Sci. 263, Springer-Verlag, Berlin, 1987,
pp. 104–110.

[18] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems, J. Assoc. Comput. Mach., 38
(1991), pp. 691–729.

[19] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–207.

[20] S. Goldwasser, S. Micali, and R. L. Rivest, A digital signature scheme secure against adap-
tive chosen-message attacks, SIAM J. Comput., 17 (1988), pp. 281–308.

[21] J. van de Graaf and R. Peralta, A simple and secure way to show the validity of your public
key, in Proc. 1987 Crypto, Lecture Notes in Comput. Sci. 293, Springer-Verlag, Berlin,
1988, pp. 128–134.

330 TORBEN PRYDS PEDERSEN AND BIRGIT PFITZMANN

[22] E. van Heyst and T. P. Pedersen, How to make efficient fail-stop signatures, in Proc. 1992
Eurocrypt, Lecture Notes in Comput. Sci. 658, Springer-Verlag, Berlin, 1993, pp. 366–377.

[23] E. van Heijst, T. P. Pedersen, and B. Pfitzmann, New constructions of fail-stop signatures
and lower bounds, in Proc. 1992 Crypto, Lecture Notes in Comput. Sci. 740, Springer-
Verlag, Berlin, 1993, pp. 15–30.

[24] N. Koblitz, Elliptic curve implementation of zero-knowledge blobs, J. Cryptology, 4 (1991),
pp. 207–213.

[25] L. Lamport, Constructing digital signatures from a one-way function, Report CSL-98, SRI
International, Menlo Park, CA, 1979.

[26] R. C. Merkle, Protocols for public key cryptosystems, in Proc. 1980 IEEE Symposium on
Security and Privacy, IEEE Computer Society Press, Los Alamitos, CA, 1980, pp. 122–
134.

[27] R. C. Merkle, Protocols for public key cryptosystems, in Secure Communications and Asym-
metric Cryptosystems, G. J. Simmons, ed., AAAS Selected Symposium 69, Westview Press,
Boulder, CO, 1982, pp. 73–104.

[28] R. C. Merkle, A digital signature based on a conventional encryption function, in Proc. 1987
Crypto, Lecture Notes in Comput. Sci. 293, Springer-Verlag, Berlin, 1988, pp. 369–378.

[29] R. C. Merkle, A certified digital signature (That antique paper from 1979), in Proc. 1989
Crypto, Lecture Notes in Comput. Sci. 435, Springer-Verlag, Berlin, 1990, pp. 218–238.

[30] M. Naor and M. Yung, Universal one-way hash functions and their cryptographic applications,
in Proc. 21st Symposium on Theory of Computing (1989 STOC), ACM, New York, 1989,
pp. 33–43.

[31] B. Pfitzmann, Für den Unterzeichner unbedingt sichere digitale Signaturen und ihre Anwen-
dung, Diploma thesis, Institut für Rechnerentwurf und Fehlertoleranz, Universität Karls-
ruhe, Karlsruhe, Germany, 1989 (in German; summarized in English in [35]).

[32] B. Pfitzmann, Fail-stop signatures: Principles and applications, in Proc. 8th World Conference
on Computer Security, Audit, and Control (1991 Compsec), Elsevier, Oxford, UK, 1991,
pp. 125–134.

[33] B. Pfitzmann, Fail-stop signatures without trees, Hildesheimer Informatik-Berichte 16/94
(ISSN 0941-3014), Institut für Informatik, Universität Hildesheim, Hildesheim, Germany,
1994.

[34] B. Pfitzmann, Digital Signature Schemes: General Framework and Fail-Stop Signatures, Lec-
ture Notes in Comput. Sci. 1100, Springer-Verlag, Berlin, 1996.

[35] B. Pfitzmann and M. Waidner, Formal aspects of fail-stop signatures, Technical Report
22/90, Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany, 1990.

[36] B. Pfitzmann and M. Waidner, Fail-stop signatures and their application, in Proc. 9th World-
wide Congress on Computer and Communications Security and Protection (1991 Securi-
com), Paris, 1991, pp. 145–160.

[37] B. Pfitzmann and M. Waidner, Unconditional Byzantine agreement for any number of faulty
processors, in Proc. 9th Annual Symposium on Theoretical Aspects of Computer Science
(1992 STACS), Lecture Notes in Comput. Sci. 577, Springer-Verlag, Berlin, 1992, pp. 339–
350.

[38] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Comm. Assoc. Comput. Mach., 21 (1978), pp. 120–126; reprinted
in Comm. Assoc. Comput. Mach., 26 (1983), pp. 96–99.

[39] J. Rompel, One-way functions are necessary and sufficient for secure signatures, in Proc. 22nd
Symposium on Theory of Computing (1990 STOC), ACM, New York, 1990, pp. 387–394.

[40] R. Safavi-Naini and L. Tombak, Optimal authentication systems, in Proc. 1993 Eurocrypt,
Lecture Notes in Comput. Sci. 765, Springer-Verlag, Berlin, 1994, pp. 12–27.

[41] C. E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Engineers,
37 (1949), pp. 10–21.

[42] C. E. Shannon, Communication theory of secrecy systems, Bell System Technical J.,
28 (1949), pp. 656–715.

[43] M. Waidner and B. Pfitzmann, The dining cryptographers in the disco: Unconditional sender
and recipient untraceability with computationally secure serviceability, in Proc. 1989 Eu-
rocrypt, Lecture Notes in Comput. Sci. 434, Springer-Verlag, Berlin, 1990, p. 690.

THE VERTEX-DISJOINT MENGER PROBLEM IN PLANAR
GRAPHS∗

HEIKE RIPPHAUSEN-LIPA† , DOROTHEA WAGNER‡ , AND KARSTEN WEIHE‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 331–349, April 1997 002

Abstract. We consider the problem of finding a maximum collection of vertex-disjoint paths in
undirected, planar graphs from a vertex s to a vertex t. This problem is usually solved using flow
techniques, which lead to O(nk) and O(n

√
n) running times, respectively, where n is the number

of vertices and k the maximum number of vertex-disjoint (s, t)-paths. The best previously known
algorithm is based on a divide-and-conquer approach and has running time O(n logn). The approach
presented here is completely different from these methods and yields a linear-time algorithm.

Key words. graph algorithms, disjoint paths, planar graphs

AMS subject classifications. 08C85, 68Q20, 05C38, 68R10, 90C35

PII. S0097539793253565

1. Introduction. The general Menger problem is a classical problem in both
structural and algorithmic graph theory [2, 9, 15]. In general, it consists in finding
the maximum number of vertex-disjoint or edge-disjoint paths in a graph from some
designated vertex to another one. This problem has many practical applications, for
example, in the design of reliable communication networks and the design of integrated
circuits. Because of this practical background, the special case where the underlying
graph is undirected and planar is particularly interesting.

In this paper, we consider the vertex-disjoint Menger problem in undirected,
planar graphs. This means the following. Let G = (V,E) be an undirected, planar
graph, and let s, t ∈ V, s 6= t. A vertex v ∈ V is called an inner vertex of path p if
p contains v and v is neither of the end vertices of p. Two (s, t)-paths are said to be
internally vertex-disjoint, or simply vertex-disjoint, if neither path contains an inner
vertex of the other path. The problem is to find as many pairwise vertex-disjoint
(s, t)-paths as possible.

The general vertex-disjoint Menger problem, directed or undirected, can be solved
by reduction to a bipartite maximum-flow problem with unit capacities [3, 5]. When
using the famous labeling algorithm [1, 4], this approach yields an O(km) algorithm,
where k is the maximum number of (s, t)-paths and m is the number of edges. When
the algorithm of Malhotra, Kumar, and Maheshwari is used instead, O(n1/2m) is
achieved, where n is the number of vertices [10, 11].

For planar graphs, these upper bounds reduce toO(kn) and O(n3/2), respectively,
since m ∈ O(n). The best previously known algorithm for the special case of undi-
rected, planar graphs was introduced by Suzuki, Akama, and Nishizeki and requires
O(n logn) time [16]. This algorithm is based on divide-and-conquer techniques that
were originally developed in [13] and [6] for the maximum-flow problem in undirected
planar graphs.

∗ Received by the editors August 12, 1993; accepted for publication (in revised form) May 4, 1995.
This research was supported by Deutsche Forschungsgemeinschaft grant Mö 446/1–3.

http://www.siam.org/journals/sicomp/26-2/25356.html
† Technische Universität Berlin, Sekr. MA 6–1, Strasse des 17.Juni 136, 10623 Berlin, Germany

(ripphaus@math.tu-berlin.de).
‡ Fakultät für Mathematik und Informatik, Universität Konstanz, Postfach 5560/D188, 78434

Konstanz, Germany ({dorothea.wagner, karsten.weihe}@uni-konstanz.de, http://www.informatik.
uni-konstanz.de/˜{wagner, weihe}). (Any communication should be addressed to the third author.)

331

332 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

In this paper, we present an asymptotically optimum algorithm for the vertex-
disjoint Menger problem, that is, with running time O(n). Moreover, we shall state
that the algorithm is not too hard to implement and that the constant factor for the
linear-time bound is reasonably small.

Besides the practical background mentioned above, our result can be applied
to design a linear-time algorithm for a special case of the problem of finding vertex-
disjoint Steiner trees for several sets of vertices. Namely, the underlying graph is undi-
rected and planar and each terminal is incident to either of two designated faces. This
special case was investigated by Suzuki, Akama, and Nishizeki [16]. They proposed
an O(n logn) algorithm, where the solution of an auxiliary vertex-disjoint Menger
problem is the bottleneck task. In [14], a linear-time algorithm for this particular
Steiner tree problem was introduced which uses the new linear-time algorithm for the
vertex-disjoint Menger problem as a subroutine.

When the number of (s, t)-paths, say k, can be fixed in advance, the vertex-
disjoint Menger problem in planar graphs can trivially be solved in linear time using
the flow-theoretic approach. (Even vertex-disjoint paths between k different pairs of
vertices, k fixed, can be found in linear time [12].)

On the other hand, the problem is straightforwardly solvable in linear time when-
ever an instance is (s, t)-planar, which means that s and t have a face of G in common.
In fact, in this case, we may apply the following simple algorithm: For convenience,
G is embedded such that s is the lowest and t the highest vertex, respectively. In the
beginning, the solution is empty. Then while there is a path from s to t in G, add the
“rightmost” one to the solution and (temporarily) drop all vertices and edges on this
path and on its right side.

In contrast, in this paper, k is unbounded and s and t may be in general position.
The straightforward algorithm for the (s, t)-planar case demonstrates a special

technique for routing and flow problems in planar graphs, which is the basis of our
algorithm as well. Throughout the paper, we will call this technique right-first search.
(In previous work, it is also called the uppermost path algorithm [7].) This is a depth-
first search where in each search step, all arcs leaving the current vertex are searched
“from right to left.” More precisely, in each step, the next candidate arc for going
forward, if any, is the counterclockwise next arc after the leading arc in the incidence
list of the leading vertex. Clearly, the straightforward algorithm for the (s, t)-planar
case amounts to a repeated application of right-first search, where each search starts
with s and disregards all vertices and arcs hit in previous searches.

Very recently, the edge-disjoint version of the problem considered here could be
solved in linear time as well [17]. A generalization of the vertex-disjoint Menger
problem, where each vertex may belong to more than one path but each vertex has a
fixed capacity, was also considered by Khuller and Naor [8].

The paper is organized as follows. In section 2, the new algorithm to solve the
planar, vertex-disjoint Menger problem in linear time is introduced. Then in section 3,
we will prove its correctness. In section 4, we will prove some properties of the results
of our algorithm, which are useful for applications to vertex-disjoint Steiner trees such
as those mentioned above.

2. The algorithm. We will now introduce a linear-time algorithm for the vertex-
disjoint Menger problem. A formal description of the algorithm is given in Fig. 2, and
an example is illustrated in Figs. 3–6. For technical reasons, we will consider a certain
directed version of the Menger problem instead of the undirected problem itself. In
contrast to undirected edges, which we denote by {v, w}, we denote the arc directed

PLANAR VERTEX-DISJOINT MENGER 333

from v to w by (v, w).

Directed version. We transform the input graph G = (V,E) into a directed
graph G0 = (V,A0): we replace each edge {v, w} ∈ E with v, w ∈ V \ {s, t} by the
arcs (v, w) and (w, v), each edge {s, v} ∈ E by (s, v) only, and each edge {v, t} by
(v, t) only. The problem is now to find as many vertex-disjoint (s, t)-paths as possible,
that is, paths directed from s to t.

Obviously, there is a linear-time algorithm for the original Menger problem if
there is a linear-time algorithm for this directed version.

Overall assumptions. Without loss of generality, we assume that t is on the
outer face boundary, that G is connected, and that G is embedded in the plane (at least
combinatorially, which means that all edges are sorted according to the same fixed,
geometric embedding in the plane).

Let a1, . . . , ak denote the arcs leaving s, in arbitrary order. The core of our algo-
rithm for the directed version is a loop over 1, . . . , k. In the ith iteration, we try to
draw a cycle-free (s, t)-path. This is done by a right-first search which starts with ai.
(The final path resulting from the ith iteration, if any, need not start with ai.) The
ith iteration is finished when we either reach t or return to s. Obviously, in the latter
case, this is done by a backtrack step since by construction of G0, no arc enters s.

During such a right-first search, we have to consider conflicts of the search path
with itself and with paths drawn in previous searches. That is, the search meets a
vertex which already belongs to some path. In other words, a conflict is a situation
where one vertex has two in-going arcs. We resolve each conflict through a backtrack
step with one of these in-going arcs. The main idea is to handle all conflicts in a way
that enables us to remove each arc from G0 once we perform a backtrack step on it.
Since any step of such a right-first search is a forward step or a backtrack step, the
number of search steps in total is thus linear in the size of the instance. Moreover,
we will show how to realize these search steps in constant time, which immediately
yields the overall worst-case bound. In principle, the following conflicts may occur
(see Fig. 1):

1. The search path hits another path from the left side.
2. The search path hits itself from the left side.
3. The search path hits another path from the right side.
4. The search path hits itself from the right side.

The second and fourth cases mean that the leading vertices and arcs of the search
path form a cycle. In the second case, this is a clockwise cycle if and only if s is
enclosed in the cycle, and vice versa in the fourth case.

In the first two cases, we simply perform a backtrack step with the search path,
where we remove the leading arc not only from the search path but also from A0.
After that, we continue our right-first search with the remainder of the search path.
In particular, we need not distinguish between the first and second types of conflict
in our algorithm.

In the third case, we resolve the conflict in the following way (see Fig. 1, part (3)).
Let r denote the search path and let p denote the path hit by r at, say, vertex v.
Moreover, let p1 be the subpath of p from s to v and p2 be the subpath of p from
v to t. We now concatenate r with p2 and let p1 be the “new” search path. After
that, the situation is the same as in the first case, and we resolve the conflict in the
same manner. That is, we then perform a backtrack step with the new search path
p1, remove the leading arc of p1 from G0, and continue our search with the remainder
of p1.

334 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

(1)

s

t

(2)a

t

s

(2)b

t

s

1
p

(3)

t

2
p

r

v

s

(4)a

s

t

(4)b

t

s

Fig. 1. The four different cases of conflicts. The search path is dashed, and the other path
involved in the conflict, if any, is solid.

We are not able to cope with conflicts of the fourth type. Therefore, we want to
avoid those conflicts in advance. In particular, we need not distinguish between the
third and fourth types of conflict in our algorithm as well. To avoid all conflicts of
the fourth type in advance, we maintain a global time counter and, for each vertex, a
local time stamp. The global time counter is increased by 1 whenever the search path
changes, that is, when either a new iteration of the overall loop starts or a conflict
of the third type occurs. The time stamp of a vertex is set to the current value of
the global time counter whenever this vertex becomes the leading vertex of the search
path (in fact, before doing anything else with this vertex).

By the following modification, we prevent all conflicts of the fourth type. Consider
a single forward step of the algorithm, let v be the leading vertex of the search path,
and let (v, w) be the arc chosen to leave v. First, we compare the time stamps of v
and w and make a case distinction. If the time stamps of v and w are different, we
actually use (v, w) for going forward. On the other hand, if the time stamps of v and
w are equal, we do not use (v, w) for going forward in our search, but we remove this
arc immediately. In this case, we proceed with the arc leaving v that appears next
after (v, w) in right-first order (if any).

In our correctness proof, we will show in particular the following two facts to
justify this procedure (see Figs. 7 and 8):

1. If a conflict of the fourth type were to occur, it would be preceded and thus
“announced” by a conflict of the second type where the same cycle is involved, but

PLANAR VERTEX-DISJOINT MENGER 335

Procedure 2.1. make single step (VAR v ∈ V);
time stamp [v] := time counter;
IF the search path hits some path at v from the left side
THEN (* conflict types 1 and 2 *) remove the last arc, say (w, v), from the

search path and set v := w;
ELSEIF the search path hits some path at v from the right side
THEN (* conflict type 3 *)

let p1 be the subpath of this path from s to v and let p2 be the remaining
subpath;
concatenate the search path with p2;
make p1 the new search path;
remove the last arc, say (w, v), from p1 and set v := w;
time counter := time counter + 1;

ELSEIF at least one arc leaving v is not yet searched (except of the reverse
of the in-going arc)

THEN let (v, w) be the counterclockwise first such arc after the in-going arc
around v;
IF time stamp [v] = time stamp [w]

THEN remove (v, w)
ELSE append (v, w) to the search path and set v := w;

ELSE remove the last arc, say (w, v), from the search path and set v := w;

Procedure 2.2. right first search ((s, u) ∈ A);
time counter := time counter + 1;
let s→ u be the new search path;
v := u;
REPEAT
make single step (v);

UNTIL v ∈ {s, t};
Algorithm 2.3.

time counter := 0;
time stamp [s] := 1;
FOR v ∈ V \ {s} DO time stamp [v] := 0;
FOR i := 1 TO k DO right first search(ai);

Fig. 2. Formal description of the algorithm.

in the reverse direction. Let (w, v) be the arc removed to resolve this announcing
conflict.

2. When we later select (v, w) for going forward from v, the global time counter
has not changed in the meantime.

Hence (v, w) is removed at the latter stage and not used for going forward from
v. Clearly, this makes the “announced” conflict of the fourth type impossible because
(v, w) is an arc of the cycle involved.

The reader might wonder why (v, w) is not removed at the former stage when
(w, v) is removed. For this, however, we must know whether the conflict at the
former stage is of the first or the second type because, of course, we must not remove
(v, w) in a conflict of the first type. This means that we had to maintain additional
information to distinguish the individual paths from each other. However, updating

336 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

t
s

Fig. 3. The directed, symmetric graph G0 = (V,A0) after the first iteration, along with the
path p drawn in the first iteration (solid). Two opposite arrows indicate the presence of two opposite
arcs. The orientation of p from s to t is indicated by emphasized arrows. Note that there is no
longer an arc leaving p on the right side because all of these arcs have been searched—and hence
removed—in the first iteration.

t

u

s

Fig. 4. After one step of the second iteration. The search path, that is, s → u (dotted), hits
the path drawn in the first iteration from the right side at vertex u.

t

u

s

Fig. 5. The subpath of p from s to u becomes the new search path (dotted), and the previous
search path is concatenated with the subpath of p from u to t (solid).

this information after each conflict of the third type takes too much time. In contrast,
the time stamps can be maintained efficiently enough.

The principle of announcing conflicts is the reason why the algorithm does not
apply to directed planar graphs in general. In fact, we need as a prerequisite that for
each clockwise cycle in the graph, the reverse counterclockwise cycle exists as well.

The following theorem summarizes the discussion.

PLANAR VERTEX-DISJOINT MENGER 337

t

w

v

u

s

Fig. 6. All further conflicts in the second iteration are conflicts where the search path hits the
other path from the left side: twice at v and, later, once at w.

s

v
w

u

t

Fig. 7. Another instance, where a conflict of the second type occurs (cycle v → u → w → v)
which “announces” a conflict of the fourth type with the reverse cycle involved.

x

v
w

u

t

s

Fig. 8. After three backtrack steps. Now (v, w) is the next arc to be considered. Note that the
time stamps of v and w are equal at this stage, which means that (v, w) is not chosen for going
forward but is removed from G0 immediately, and (v, x) is chosen instead. If the algorithm were
to choose (v, w) and proceed as usual, the search would now run into the cycle v → w → u → v.
This would be a disaster because resolving this conflict by removing (u, v) decreases the cardinality
of an optimum solution. On the other hand, removing the other in-going arc of v would leave a
cycle (namely v → w → u → v) in the solution. This cycle must be cracked later on because we
need (u, v) for any optimum solution. However, detecting and cracking cycles like this throughout
the rest of the algorithm seems hopeless.

338 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

Theorem 2.4. Algorithm 2.3 can be implemented such that it requires linear time
in the worst case.

Proof. For each vertex v, we manage a cyclic incidence list, where each item
corresponds to an arc leaving this vertex and its reverse arc. Of course, there are
pointers between corresponding items in the incidence lists of adjacent vertices. This
enables us to perform each forward and backtrack/remove step in constant time. It
remains to show how to perform two further tasks in constant time: finding the next
arc for going forward and determining whether a conflict is from the left side (type
1 or 2) or the right side (type 3 or 4). Remember that we must distinguish neither
type 1 from type 2 nor type 3 from type 4.

To see how to find the next possibility for going forward from v ∈ V \ {s, t} in
constant time, we note that at any stage, the set of all arcs leaving v that have not
yet been dropped forms a connected interval of the original incidence list of v and
the next arc to be considered is always the counterclockwise first arc in this interval.
Clearly, maintaining a variable pointer to this arc does the job.

Now we show how to decide in constant time whether a conflict is from the left
or the right side. To this end, in the overall initialization phase, we number the
arcs incident to vertex v ∈ V \ {s, t} clockwise, starting anywhere. Additionally, we
store the number, say, iv of the current in-going arc and the number, say, jv of the
current out-going arc. Suppose a conflict occurs at v, and let l be the number of the
leading arc of the search path with respect to the numbering around v. If iv < jv,
this is a conflict from the left side if and only if iv < l < jv, and if iv > jv, it is a
conflict from the right side if and only if iv > l > jv. Altogether, this proves Theorem
2.4.

3. Correctness. Essentially, the correctness proof consists of three parts, which
are handled separately in three subsections. Before going into the details, we first
outline the ideas behind our proof.

Let a1, . . . , am be the arcs that are removed in this order during the algorithm.
Further, let Ai := Ai−1 \ {ai} for i = 1, . . . ,m. (Recall that G0 = (V,A0) is the
initial directed graph constructed from G in the beginning of section 2.) Finally, let
Gi := (V,Ai), i = 1, . . . ,m, that is, Gi is the rest of G0 after a1, . . . , ai are removed.

Notice that the final set of paths provided by the algorithm is maximum for Gm
because any arc of G0 that leaves s and still belongs to Gm is occupied by one of
the final paths. However, we have to show that our solution is optimum for G0, not
for Gm. For this, we prove the following invariant facts by induction on the forward
and backtrack/remove steps of the algorithm. The second fact immediately yields the
claim.

Invariant 3.1. The following two facts are maintained as invariants by Algo-
rithm 2.3.

1. No conflict of the fourth type occurs.
2. Optimum solutions in G0, G1, G2, . . . , Gm, respectively, have the same car-

dinality. In other words, for each i = 1, . . . ,m, there is an optimum solution for Gi−1

that does not contain ai.
In section 3.1, we show that Invariant 3.1(1) is maintained at least as long as

Invariant 3.1(2) is. Of course, Invariant 3.1(2) is trivially maintained when ai is a
dead end, that is, no arc leaves the head of ai in Gi−1. Therefore, it suffices to show
maintenance of Invariant 3.1(2) for the case where ai is removed either because of a
conflict or because of equal time stamps.

However, our case distinction is slightly different, mainly for proof-technical rea-

PLANAR VERTEX-DISJOINT MENGER 339

sons. Note that often an arc (v, w) that is removed because time stamp [v] =
time stamp [w] would be removed anyway in the very next search step, namely be-
cause of a conflict at w or because w is a dead end. An arc (v, w) is called unusual
if it is removed because time stamp [v] = time stamp [w] at some stage of the algo-
rithm but would not have been removed anyway in the very next search step. In any
other case, it is called usual. Maintenance of Invariant 3.1(2) is proved separately for
unusual arcs in section 3.2 and for usual arcs in section 3.3. The former proof relies
on the assumption that Invariant 3.1(1) is valid.

Sections 3.1 and 3.2 are necessary to prove that our procedure for avoiding con-
flicts of the fourth type works well. The heart of the proof is section 3.3. To get
an idea of this, remember the simple algorithm for the (s, t)-planar case given in the
introduction. This algorithm works because it always “packs” the paths as tightly
to the right boundary as possible. That is, no path can be drawn more to the right
unless another path is removed. The key insight for the non-(s, t)-planar case is that,
in principle, we may use a very similar argument, although there is no such bound-
ary to lean on at all. In fact, in some sense, such boundaries are “constructed” by
Algorithm 2.3 during its execution. This is formalized in the following lemma.

Lemma 3.2. At any stage of Algorithm 2.3, no arc leaves any path on the right
side.

Proof. All of those arcs have been searched and hence removed at previous
stages.

3.1. Proof of Invariant 3.1(1). In this section, we will show by contradiction
that no conflict of the fourth type occurs during the execution of Algorithm 2.3 as
long as Invariant 3.1(2) is valid. Therefore, throughout this section we assume that
at least one conflict of the fourth type does occur. Let C be the cycle formed by the
leading part of the search path.

Note that by construction of G0, neither s nor t belongs to C because no arc
enters s and no arc leaves t. Moreover, since t is without loss of generality assumed
to be incident to the outer face, t is outside C.

Lemma 3.3. The source s cannot be inside C as long as Invariant 3.1(1) is valid.
(Fig. 1, part 4(b)).

Proof. Suppose s is inside C (see Fig. 9).
Lemma 3.2 implies that at this stage, there is no longer an arc pointing from

C to the exterior of C. Since t belongs to the exterior of C, there is no longer an
(s, t)-path at this stage. This means that the cardinality of an optimum situation
is zero for the current graph. However, since G0 is connected, the cardinality of an
optimum solution for G0 is positive, but this contradicts Invariant 3.1(2) for the stage
immediately before the assumed conflict occurs.

In the rest of this section, we prove that the case where s is outside C (see
Fig. 1, part 4(a)) is also impossible. Therefore, for a contradiction, let Sfirst denote
the first stage where a conflict of the fourth type occurs with s outside the cycle C
involved. Let vertex w0 be the leading vertex of the search path at that stage and
let C = (w0 → w1 → w2 → · · · → wl−1 → wl = w0). We will investigate the “past
history” of the conflict at stage Sfirst.

Lemma 3.4. For all i = 1, . . . , l − 1, occupying arc (wi−1, wi) did not cause a
conflict.

Proof. Let S be the stage where (wi−1, wi) is occupied. Suppose this causes a
conflict at wi. This is no conflict of the first or the second type because otherwise the
arc occupied last, namely (wi−1, wi), would be removed at S to resolve the conflict,

340 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

t

s

Fig. 9. The situation in the proof of Lemma 3.3. No arc points from the cycle C to its exterior,
only possibly the other way round.

and this would contradict the assumed conflict at stage Sfirst. Moreover, this is not
a conflict of the fourth type either, for the following reason: the assumption that s is
inside the cycle formed by the leading arcs of the search path contradicts Lemma 3.3,
and the assumption that s is outside this cycle contradicts the specific choice of Sfirst

to be the first stage where such a conflict occurs. In summary, this is a conflict of the
third type.

Let p denote the (s, t)-path hit by the search path at stage S, and let a be the
arc of p leaving wi. Then either a belongs to the exterior of C or the interior of C or
is just (wi, wi+1). We consider all three cases separately (see Fig. 10).

Case 1. The arc a belongs to the exterior of C (see Fig. 10, part (1)).

Since this is a conflict of the third type, (wi−1, wi) appears counterclockwise
around wi after the in-going arc and before the out-going arc of wi with respect to
p. Since a is this out-going arc, (wi, wi+1) leaves p on the right side. By Lemma 3.2,
(wi, wi+1) has already been removed at stage S, which contradicts the assumed situ-
ation at the later stage Sfirst.

Case 2. The arc a belongs to the interior of C (see Fig. 10, parts (2) and (3)).

Note that p must leave C and enter the exterior of C at least once after wi in
order to reach t. (Recall that t belongs to the exterior of any directed cycle of G0.) In
particular, let wj be the first vertex after wi on p where this happens. Then the in-
going arc of wj with respect to p either belongs to the interior of C or is just (wj−1, wj)
or (wj+1, wj) (see Fig. 10, part (2) for the first case and Fig. 10, part (3) for the third
case). In the first two cases, (wj , wj+1) has already been removed until stage S because
of Lemma 3.2. Clearly, this is again a contradiction. Therefore, consider the last
case. Then there is µ ∈ {1, . . . , l} such that (wµ, wµ−1), (wµ−1, wµ−2), . . . , (wj+1, wj)
belong to p but (wµ+1, wµ) does not. By the specific choice of wj , the in-going arc
of wµ with respect to p does not belong to the exterior but to the interior of C.
Therefore, (wµ, wµ+1) has already been removed because of Lemma 3.2. This is the
same contradiction as in the first case.

Case 3. a = (wi, wi+1) (see Fig. 10, part (4)).

Then there is ν ∈ {1, . . . , l} such that all of (wi, wi+1), (wi+1, wi+2), . . . , (wν−1, wν)

PLANAR VERTEX-DISJOINT MENGER 341

i

w
i-1

w

(1)

C
p

aw
i+1

w

wj

w
i-1

w
i

j+1

(2)

p
a

C

w
i-1

w
i

wj

C

p

a

(3)

wj+1

w wµ
µ+1

ν

w
i

w
i-1

w

(4)

C

p

a

wν+1

Fig. 10. Typical situations in the different cases considered in the proof of Lemma 3.4 for
conflicts of the third type: Case 1: (1); Case 2: (2) and (3); Case 3: (4).

belong to p but (wν , wν+1) does not. Thus the out-going arc of wν with respect to
p belongs to either the exterior of C or the interior of C. If this arc belongs to the
exterior of C, then (wν , wν+1) has already been removed by Lemma 3.2. On the other
hand, if this arc belongs to the interior of C, the proof is literally the same as for
Case 2 (just replace i by ν).

To continue, we need a more general, technical lemma, which will also be used
later. A vertex is called released at some stage if it was occupied by some path
immediately before this stage and is not occupied anymore (because of a backtrack
step in fact).

Lemma 3.5. When a vertex v is released at some stage S, all arcs leaving v have
been removed even before, except possibly the reverse of the current in-going arc. If
the in-going arc has changed at least once before S, all arcs have been removed.

Proof. When vertex v is released, all of the arcs that we could use for going
forward from v have already been searched and hence removed. This means all arcs
leaving v except possibly the reverse of the in-going arc. This proves the first claim.
Therefore, consider the second claim. Because of the first claim, we only have to show
that the reverse of the in-going arc is removed as well. Let a denote the in-going arc
of v at stage S. Suppose the in-going arc of v has changed at least once at some stage
S′ preceding stage S. Then either v is released at S′ or a conflict of the third type
occurs at this stage. In particular, let S′ be the last such stage before S and let a′ be
the arc entering v that was the in-going arc of v at stage S′.

342 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

If v was released at this stage, the first claim implies that all arcs leaving v except
the reverse of a′ have been removed before S′. In particular, the reverse of a has also
been removed, which implies the second claim. Now assume there was a conflict of
the third type at S′. Then there is already an (s, t)-path p occupying v, and a points
to p at v from the right side. Now Lemma 3.2 implies that the reverse of a has been
removed as well.

Lemma 3.6. All arcs (wi, wi−1), i = 1, . . . , l, are removed before stage Sfirst.

Proof. The proof is by induction on i = l, l − 1, . . . , 1. Because of Lemma 3.2,
arc (wl, wl−1) is removed before stage Sfirst since this arc leaves the search path of
stage Sfirst on the right side. Therefore, assume that arc (wi, wi−1), i > 1, is removed
at some stage Si preceding Sfirst. It suffices to show that Si−1 precedes Si, that
is, (wi−1, wi−2) is removed even before (wi, wi−1). To this end, we distinguish the
different possible reasons for removing (wi, wi−1) from each other.

First, suppose (wi, wi−1) is removed as an unusual arc. Since wi has a positive
time stamp at Si, the time stamp of wi−1 at Si must also be positive. Hence there
is a stage S preceding Si where wi−1 was the leading vertex of the search path.
In particular, let S be the last such stage. Since (wi, wi−1) is removed at Si as an
unusual arc, wi−1 is not occupied at stage Si. Therefore, wi−1 was released at stage S.
Clearly, (wi, wi−1) cannot be the leading arc of the search path at stage S because
otherwise (wi, wi−1) would be removed even at S, not at Si. Thus by the first part of
Lemma 3.5, (wi−1, wi) has already been removed at S, which contradicts the assumed
conflict at Sfirst.

Now suppose that (wi, wi−1) is removed because of a conflict (or, completely
analogously, we have time stamp [wi] = time stamp [wi−1], but (wi, wi−1) would be
removed anyway in the very next step because of a conflict). Then wi−1 is occupied
by some path at stage Si and, by Lemma 3.4, wi−1 is released at some intermediate
stage S between Si and Sfirst. Since (wi, wi−1) no longer exists at stage S, the leading
arc of the search path must be another arc entering wi−1 at that stage. Consequently,
the first part of Lemma 3.5 implies that (wi−1, wi) has already been removed at S,
which is again a contradiction to the assumed situation at Sfirst.

Finally, if removing (wi, wi−1) releases wi−1 (or, analogously, the time stamps are
equal but wi−1 had been released anyway in the very next step), the claim that Si−1

precedes Si is immediate from the first part of Lemma 3.5.

This completes the case distinction and the proof of Lemma 3.6.

Now we are able to prove that any conflict of the fourth type is “announced” by
the reverse conflict of the second type.

Lemma 3.7. Arc (w1, w0) is removed before stage Sfirst because of a conflict of
the second type at w0, with the reverse of C being the cycle involved.

Proof. Consider the stage S1 where (w1, w0) is removed. By Lemma 3.6, S1

precedes Sfirst. Suppose (w1, w0) is not removed because of a conflict of the second
type at w0 with the reverse of C involved. Then at stage S1, there must be a vertex
wi, i ∈ {1, . . . , l − 1}, such that all of (wi, wi−1), (wi−1, wi−2), . . . , (w1, w0) belong to
the search path but (wi+1, wi) does not. Because of Lemma 3.4, vertex wi is released
at some intermediate stage between S1 and Sfirst. Lemma 3.5 implies that (wi, wi+1)
has already been removed before Sfirst, for the following reason. If the in-going arc
of wi has never changed, all arcs leaving wi except the reverse of the in-going arc are
removed, and by assumption, the in-going arc of wi at S1 is not (wi+1, wi). On the
other hand, if the in-going arc of wi did change, the second claim of Lemma 3.5 implies
that all arcs leaving wi, and (wi, wi+1) in particular, have been removed. Clearly, the

PLANAR VERTEX-DISJOINT MENGER 343

0w

s

C

t

w1

Fig. 11. The situation in the proof of Lemma 3.8. By Lemma 3.2, no arc points from C to the
exterior of C (except possibly arcs leaving w0 as indicated). Hence the search does not reenter the
exterior of C before (w0, w1) is seen.

fact that (wi, wi+1) is removed before Sfirst is a contradiction.

Lemma 3.7 now enables us to prove that no conflict of the fourth type occurs at
all.

Lemma 3.8. While Invariant 3.1(2) is valid, no conflict of the fourth type occurs.
Proof. Suppose a conflict of the fourth type does occur. Let C again be the cycle

involved. Then s is outside C by Lemma 3.3 (see Fig. 11). Because of our right-first
strategy, Lemma 3.2 implies that after (w1, w0) is removed, the search cannot enter
the exterior of C before (w0, w1) is seen. Therefore, we consider (w0, w1) before we
reach t or any path different from the search path. Hence the global time counter
cannot change in the meantime unless a conflict of the fourth type has occurred before
Sfirst. (Clearly, the global time counter would change if a conflict of the fourth types
occurred because the algorithm does not distinguish between the third and fourth
types of conflict.) However, this contradicts the definition of Sfirst. Consequently,
(w0, w1) is removed because time stamp [w0] = time stamp [w1], which makes the
assumed situation at Sfirst impossible.

3.2. Unusual arcs. We will now prove that for i = 1, . . . ,m, there is an op-
timum solution for Gi−1 that does not contain ai = (v, w), where ai is an unusual
arc. More precisely, we will show that there is no cycle-free (s, t)-path in Gi−1 that
contains ai. Clearly, this suffices.

Throughout this section, we need some additional terminology. Let S2 be the
stage where ai = (v, w) is removed. Since v clearly has a positive time stamp at stage
S2 and since (v, w) is unusual, w also has a positive time stamp at S2. Therefore, w
was at least once the leading vertex of the search path before S2. Let S1 be the last
stage before S2 where w was the leading vertex of the search path. Moreover, since
(v, w) is unusual, w was released at stage S1. Thus Lemma 3.5 implies that (w, v) has
been removed even before S1 because (v, w) was never before the in-going arc of w.
Let S0 be the stage immediately after (w, v) is removed. In summary, S0 precedes or
equals S1 and S1 strictly precedes S2.

Consider the search paths r0, r1, and r2, at stages S0, S1, and S2, respectively.
All three paths start with s, r0 and r1 end with w, and r2 ends with v. The paths r1

and r2 coincide up to, say, vertex u. Notice that u 6= s because otherwise the global

344 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

r’1

(1)

s
r

w

v=u C

2r’

(2)

u

v

w

C

r’1

s
r

(3)

w
r’

C

u
r

s

r’1

2

v

Fig. 12. The situations in Lemmas 3.10 (part (1)) and 3.11 (part (2)). Lemma 3.9 states that
the situation in part (3) is impossible.

time counter would change between stages S1 and S2 and hence (v, w) would not be
unusual. Let r be the common subpath from s to u, let r′1 be the remainder of r1,
and let r′2 be the remainder of r2. Finally, let C be the cycle formed by r′1, r

′
2, and

ai (see Fig. 12). Lemma 3.5 implies that r′1 and r′2 are vertex-disjoint except for u,
which means that C is actually a single, simple cycle.

Lemma 3.9. Vertex s belongs to the exterior of cycle C.

Proof. Assume that s is not in the exterior of C. Then s either lies on C or
is in the interior of C. The former case implies u = s, which contradicts the above
remarks. Therefore, focus on the latter case. In the latter case, any (s, t)-path must
contain an arc a that leaves C and points to the exterior of C because t is in the
exterior of C. However, any such arc is considered for going forward between stages
S1 and S2 unless it is removed even before S1, for the following reasons. For an arc
leaving r2 on the right side, this follows from Lemma 3.2, and for an arc leaving r′1
on the left side, it follows from Lemma 3.5. Therefore, all of those arcs are removed
before S2. Hence the cardinality of an optimum solution for Gi−1 is zero, whereas
it is positive for G0 since G is connected. This contradicts the induction hypothesis,
namely that Invariant 3.1(2) is valid before ai = (v, w) is removed.

Now we make a case distinction. First, we consider the case where r′2 is trivial,
that is, r′2 consists solely of u or, equivalently, u = v. We will show that in this case,
there is no cycle-free (s, t)-path containing ai in Gi−1 (Lemma 3.10). After that, we
will show that otherwise no (s, t)-path in Gi−1 contains ai at all (Lemma 3.11).

Lemma 3.10. If r′2 is trivial, no cycle-free (s, t)-path in Gi−1 contains ai (see
Fig. 12, part (1)).

Proof. Lemma 3.2 implies that at stage S1, there is no longer an arc leaving C
and pointing to its exterior except possibly arcs leaving v because all other arcs leave
r′1 on the right side. Therefore, any (s, t)-path that contains ai = (v, w) must finally
return to v in order to reach t. Consequently, such a path is not cycle-free.

Lemma 3.11. If r′2 is not trivial, no (s, t)-path in Gi−1 contains ai (see Fig. 12,
part (2)).

Proof. Let a and a′ denote the in-going arcs of w with respect to r0 and r1,
respectively. We make a case distinction. We show that the claim is true in the
second case and that the other two cases do not occur.

Case 1. The global time counter does not change between stages S0 and S1.

Since (v, w) is unusual, the global time counter does not change between stages
S1 and S2 either. Therefore, the global time counter does not change at all between
stages S0 and S2. This means that vertex v and the last inner vertex of r2, say v′,

PLANAR VERTEX-DISJOINT MENGER 345

have equal time stamps when the last arc, that is, (v′, v), is added to r2. In this
case, however, arc (v′, v) would immediately be removed and not added to r2. This
contradicts the assumed situation at stage S2.

Case 2. a 6= a′.
In particular, the in-going arc of w has changed at least once before stage S1,

where w is released. Hence the second claim of Lemma 3.5 implies that there is no
longer an arc leaving w at stage S1, which means that no (s, t)–path contains (v, w)
at all.

Case 3. a = a′ and the global time counter does change between stages S0 and S1.
Since a is occupied at S0 and at S1, a is occupied all the time between S0 and S1.

In particular, a is occupied at, say, any intermediate stage S where the global time
counter changes.

First, we show that at this stage S, a belongs to some (s, t)-path p in the current
graph which solely consists of occupied arcs. To this end, we make a case distinction.
If the global time counter changes at S because a new search phase starts, the current
solution at S decomposes into (s, t)-paths. In particular, a belongs to such a path. On
the other hand, if the global time counter changes at S because of a conflict, it must
be a conflict of the third type because by the induction hypothesis, the fourth type has
not occurred so far. In this case, the current solution consists of some vertex-disjoint
(s, t)-paths and the search path. We assume that a belongs to the search path because
otherwise the same argument as in the former case applies. Therefore, let x denote
the vertex where the conflict occurs. Then we define p to be the concatenation of the
search path with the subpath from x to t of the (s, t)-path involved in the conflict.
Obviously, p is an (s, t)-path, contains a, and consists solely of occupied arcs.

In any case, the path p must leave C somewhere so as to enter the exterior of C
and to reach t. Let y be the first vertex of p after w where this happens, that is, y
belongs to C, but the out-going arc a′′ of y with respect to p belongs to the exterior
of C. By Lemma 3.2, a′′ does not leave C on the right side of r1. Hence a′′ leaves C
on the left side of the concatenation r2 + (v, w), and y belongs to r′2 (see Fig. 13).

Since y is the first vertex after w where p enters the exterior of C, p must cross
the interior of C from w to y at least once. Let z be the last vertex before y where
p leaves the interior of C and enters C. If p runs clockwise (resp., counterclockwise)
along C from z to y, the out-going arc of y (resp., z) with respect to r′2 + (v, w) leaves
p on the right side. Hence Lemma 3.2 implies that this arc has already been removed
before stage S, which contradicts the assumed situation at stage S2. If p runs neither
clockwise nor counterclockwise along C from z to y, we have y = z, and of course, we
obtain the same contradiction for the out-going arc of y = z with respect to r′2.

3.3. Usual arcs. We are now going to prove that for i = 1, . . . ,m, there is an
optimum solution for Gi−1 that does not contain ai, if, say, ai = (v, w) is a usual arc.

Lemma 3.12. If ai = (v, w) is a usual arc, there is an optimum solution for Gi−1

that does not contain ai.
Proof. Since, (v, w) is usual, the removal of this arc either releases w or resolves

a conflict at w (or we have time stamp [v] = time stamp [w], and either of these
situations would otherwise occur). Clearly, if w is released by removing ai, we are
immediately done since w is a dead end and no (s, t)-path contains ai at all. Thus
we focus our attention on the case of a conflict. Let S be an optimum solution for
Gi−1. We assume that ai = (v, w) is contained in some path p belonging to S because
otherwise there is nothing to show. Let p1 denote the subpath of p from s to w.

Consider the situation immediately before (v, w) is removed. In this situation,

346 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

p y=z

a

r

r’

r’

1

2

z

a

p
y

r’1

r’2

a

y zp

r

r’

r’

1

2

r

v

w

v
v

w w

Fig. 13. The situation in Case 3 in the proof of Lemma 3.11. Compare this with Fig. 12, part
(2). The three cases of how z and y may be related are distinguished from each other.

q
1

q
2

1
p

s

t

wv

(1)

u

q
2

q
1

1
p

s

t

(2)

u

wv

C

1
p

s

w

(3)

C

v=u

Fig. 14. The different possible situations in the proof of Lemma 3.12: (1) u belongs to q1; (2)
u belongs to q2; (3) conflict of the second type.

there is a unique path q in the current set of paths that contains w as an inner vertex.
For example, in a conflict of the second type, q is the search path itself. However,
in any case, the arc (v, w) points to q from the left side. Let q1 and q2 denote the
subpath of q from s to w and the remaining subpath, respectively.

There are two different possibilities of how p1 may be related to q (see Fig. 14).

1. The last vertex of p1 before w, say u, that is also occupied by q belongs to q1.
2. The last vertex of p1 before w, say u, that is also occupied by q belongs to q2.

Note that all conflicts of the second type belong to the latter class because then
u = v is shared by p1 and q2. We will now consider both cases separately.

1. The last vertex of p1 before w, say u, that is also occupied by q belongs to q1

PLANAR VERTEX-DISJOINT MENGER 347

(see Fig. 14, part (1)).
Let q̃1 denote the subpath of q1 between u and w. Assume that some path p′ 6= p

belonging to S shares some vertex with q̃1. Since p1 contains (v, w), p1 separates the
left side of q̃1 from t, which implies that p′ must leave q1 somewhere on the right side
of q1. This contradicts Lemma 3.2. Therefore, no other path belonging to S hits q̃1,
and we obtain an optimum solution again when we replace the subpath of p1 from u
to w by q̃1 in S and, since the new path may not be cycle-free, remove all cycles from
the new path. The resulting solution does not contain ai.

2. The last vertex of p1 before w, say u, that is also occupied by q belongs to q2

(see Fig. 14, parts (2) and (3)).
Let q̃2 be the subpath of q2 between w and u. We simply replace the subpath of

p1 between u and w by the reverse of q̃2 (and remove cycles if necessary). For this we
only have to show that all arcs on this reverse path still exist. Note that q̃2 and the
subpath of p1 from u to w together form a counterclockwise cycle which excludes s.
Hence we may apply the following lemma to the reverse cycle and obtain that if any
arc of the reverse path of q̃2 is removed, at least one arc of p1 or q̃2 is removed as well.
Clearly, this contradicts the assumed situation.

Lemma 3.13. Let C = (w0 → w1 → · · · → wl = w0) be a clockwise cycle of
G0 which excludes s. If some arc contained in C is removed at some stage of the
algorithm, at least one of the reverse arcs of C has been removed previously.

Proof. Let, say, arc (wi, wi+1) be removed at some stage. At this moment,
(wi, wi+1) is the leading arc of the search path. This path must enter C at some
vertex. Let wj be the last of all vertices where the search path enters C from outside.
(This happens at least once since C excludes s.) If the path is not continued with
(wj , wj−1), the claim follows from Lemma 3.2 because then (wj , wj−1) has already
been removed. Otherwise, the search path runs along C in the counterclockwise
direction and must hence leave C once more at some vertex wµ so as to enter C again
and then run along C in the clockwise direction through (wi, wi+1). Since wj was
the last vertex where the search path entered C from the outside, it must enter the
interior of C at wµ. Then, however, (wµ, wµ−1) has already been removed, which
again follows from Lemma 3.2.

Summarizing this section, we obtain the following result.
Theorem 3.14. Algorithm 2.3 is correct.

4. Useful insight. As already mentioned in the introduction, this section is
devoted to certain properties of the result of our algorithm which have turned out to
be very useful in some applications. These properties reflect our idea to always draw
paths as far to the right as possible. In fact, we will show that the solutions provided
by our algorithm are in some sense “rightmost.” For a formal description, however,
we first need some terminology.

Let p be a cycle-free (s, t)-path in the undirected input graph G. An elementary
transformation of p is done as follows. Let F be a face of G such that p contains
at least one edge of F and all vertices and edges of F that are contained in p form
a connected interval I of the boundary of F . In the elementary transformation, all
edges of I are removed from p and all other edges of the boundary of F are inserted
in p instead. In other words, if the interior of F is immediately on the right side of p
before transforming p in this way, it is on the left side from then on and vice versa.
The result is again a cycle-free (s, t)-path; we have simply routed p along F the other
way round.

An elementary transformation is called a homotopic transformation, if neither s

348 H. RIPPHAUSEN-LIPA, D. WAGNER, AND K. WEIHE

nor t is incident to F . An elementary transformation is called right-turning if t is
incident to F and F appears (before the transformation) on the right side of p as p is
seen from s to t.

Two (s, t)-paths are homotopic if one path can be constructed from the other
path by homotopic transformations only. An (s, t)-path p is said to be more right than
another (s, t)-path q if p can be constructed from q using a sequence of homotopic and
right-turning transformations with at least one right-turning transformation. Clearly,
“homotopic” defines an equivalence relation on all (s, t)-paths and “more right” defines
a strict partial ordering. An (s, t)-path p is called rightmost if there is no path more
to the right than p, that is, p is a minimal element in that partial ordering.

An undirected input instance (G, s, t) is called complete if the cardinality of an
optimum solution equals the number of arcs incident to s. In other words, the vertices
adjacent to s form a minimum (s, t)-separator and all arcs leaving s are occupied.

Two maximum solutions (p1, . . . , pk) and (p′1, . . . , p
′
k) for a complete instance are

called homotopic if pi is homotopic to p′i for i = 1, . . . , k. Finally, a maximum solution
(p1, . . . , pk) for a complete instance is rightmost if for i = 1, . . . , k, there is no solution
(p′1, . . . , p

′
k) such that p′i is more to the right than pi. Note that the rightmost solution

is in general not unique (if it exists at all); any solution homotopic to a rightmost
solution is rightmost as well. Now we are able to state our result.

Theorem 4.1. The solution determined by Algorithm 2.3 for a complete instance
is a rightmost solution. (In particular, a rightmost solution is actually guaranteed to
exist.)

Proof. We first define elementary, homotopic, and right-turning transformations
for directed graphs in a similar manner. Therefore, let ~G = (~V , ~A) be a directed graph

and s, t ∈ ~V , s 6= t. For any pair (v, w) and (w, v) of corresponding arcs in ~G, we
assume for convenience that there is an additional face separating (v, w) from (w, v).

Let p be a cycle-free (s, t)-path in ~G that possibly contains not only forward arcs but
also backward arcs. Then an elementary transformation is again done as described
above, that is, by routing p along an incident face F the other way around. This
yields another (s, t)-path, which may again contain forward and backward arcs. An
(s, t)-path p containing only forward arcs is called rightmost directed if there is no
other path that contains only forward arcs and is more to the right than p.

Now it is obvious that a rightmost path in G immediately induces a rightmost
directed path in G0 and vice versa. Also, by Lemma 3.2, any of the paths p1, . . . , pk
is rightmost directed in the final graph Gm. In other words, the resulting solution is
rightmost in Gm. Therefore, it suffices to show that for any cycle-free solution S for
Gi−1, there is a homotopic solution that does not contain ai. This implies that at
least one rightmost solution of G0 will “survive” throughout Algorithm 2.3.

Consider the situation where arc ai is removed. Let p ∈ S be a path in Gi−1

containing ai. First, note that ai cannot be unusual because otherwise p cannot
be cycle-free by Lemmas 3.10 and 3.11. On the other hand, if ai is usual, we may
construct from p a path that is feasible in Gi by applying the construction used in the
proof of Lemma 3.12 (see Fig. 14). Now it is easy to see that in each of the distinct
cases in that proof, the resulting solution is homotopic to S.

REFERENCES

[1] P. Elias, A. Feinstein, and C. Shannon, Note on maximum flow through a network, IRE
Trans. Inform. Theory, IT-2 (1956), pp. 117–119.

[2] S. Even, Graph Algorithms, Pitman, Boston, 1979.

PLANAR VERTEX-DISJOINT MENGER 349

[3] S. Even and R. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput., 4
(1975), pp. 507–518.

[4] L. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math., 8 (1956),
pp. 399–404.

[5] L. Ford and D. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ,
1962.

[6] R. Hassin and D. Johnson, An O(n log2 n) algorithm for maximum flows in undirected planar
networks, SIAM J. Comput., 14 (1985), pp. 612–624.

[7] A. Itai and Y. Shiloach, Maximum flows in planar networks, SIAM J. Comput., 8 (1979),
pp. 135–150.

[8] S. Khuller and J. Naor, Flow in planar graphs with vertex capacities, Algorithmica, 11
(1994), pp. 200–225.

[9] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley, New York,
1990.

[10] V. Malhotra, M. Kumar, and S. Maheshwari, An O(|V 3|) algorithm for finding maximum
flows in networks, Inform. Process. Lett., 7 (1978), pp. 277–278.

[11] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity, Prentice–Hall, Englewood Cliffs, NJ, 1982.

[12] B. Reed, N. Robertson, A. Schrijver, and P. Seymour, Finding disjoint trees in graphs
on surfaces, in Graph Structure Theory: Proc. AMS–IMS–SIAM Joint Summer Research
Conference on Graph Minors, AMS, Providence, RI, 1993, pp. 295–301.

[13] J. Reif, Minimum s-t-cut of a planar undirected network in O(n log2 n) time, SIAM J. Com-
put., 12 (1981), pp. 71–81.

[14] H. Ripphausen-Lipa, D. Wagner, and K. Weihe, Linear time algorithm for disjoint two–
face paths problems in planar graphs, in Algorithms and Computation, 4th International
Symposium (ISAAC ’93), K. Ng, P. Raghavan, N. Balasubramanian, and F. Chin, eds.,
Lecture Notes in Comput. Sci. 762, Springer-Verlag, Berlin, 1993, pp. 343–352.

[15] H. Ripphausen-Lipa, D. Wagner, and K. Weihe, Efficient algorithms for disjoint paths in
planar graphs, in DIMACS Series in Discrete Mathematics and Computer Science, Vol. 20,
W. Cook, L. Lovász, and P. Seymour, eds., Springer-Verlag, Berlin, pp. 295–354.

[16] H. Suzuki, T. Akama, and T. Nishizeki, Finding Steiner forests in planar graphs, in Proc. 1st
ACM–SIAM Symposium on Discrete Algorithms (SODA ’90), SIAM, Philadelphia, 1990,
pp. 444–453.

[17] K. Weihe, Edge-disjoint (s, t)-paths in undirected planar graphs in linear time, in Proc. 2nd
European Symposium on Algorithms (ESA ’94), J. Leeuwen, ed., Lecture Notes in Comput.
Sci. 855, Springer-Verlag, Berlin, 1994, pp. 130–140.

RANDOMIZED DISTRIBUTED EDGE COLORING VIA AN
EXTENSION OF THE CHERNOFF–HOEFFDING BOUNDS∗

ALESSANDRO PANCONESI† AND ARAVIND SRINIVASAN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 350–368, April 1997 003

Abstract. Certain types of routing, scheduling, and resource-allocation problems in a dis-
tributed setting can be modeled as edge-coloring problems. We present fast and simple randomized
algorithms for edge coloring a graph in the synchronous distributed point-to-point model of compu-
tation. Our algorithms compute an edge coloring of a graph G with n nodes and maximum degree
∆ with at most 1.6∆ +O(log1+δ n) colors with high probability (arbitrarily close to 1) for any fixed
δ > 0; they run in polylogarithmic time. The upper bound on the number of colors improves upon
the (2∆− 1)-coloring achievable by a simple reduction to vertex coloring.

To analyze the performance of our algorithms, we introduce new techniques for proving upper
bounds on the tail probabilities of certain random variables. The Chernoff–Hoeffding bounds are
fundamental tools that are used very frequently in estimating tail probabilities. However, they
assume stochastic independence among certain random variables, which may not always hold. Our
results extend the Chernoff–Hoeffding bounds to certain types of random variables which are not
stochastically independent. We believe that these results are of independent interest and merit
further study.

Key words. edge coloring, distributed algorithms, parallel algorithms, probabilistic algorithms,
Chernoff–Hoeffding bounds, stochastic dependence, λ-correlation, correlation inequalities, large de-
viations

AMS subject classifications. 05C85, 60C05, 60F10, 60G50, 68Q22, 68Q25, 68R10

PII. S0097539793250767

1. Introduction. An important limitation for a distributed network without
global memory is locality of computation: since sending messages to faraway nodes
is expensive, communication should only take place between nearby nodes. Models
of parallel computation like the PRAM abstract this problem of locality away by
assuming the existence of a global shared memory with fast concurrent access. We
are interested in studying how fast individual processors can compute their portion
of the output in a message-passing distributed system with such “local” information
alone. The model we consider is the synchronous distributed point-to-point model,
in which the processors are arranged as the vertices of an n-vertex graph G = (V,E)
and where all communication is via the edges of G alone. In this model, we study
the edge-coloring problem, a basic combinatorial problem with many applications
to distributed computing. Edge colorings can be used to model certain types of
jobshop-scheduling, packet-routing, and resource-allocation problems in a distributed
setting. For example, the problem of scheduling I/O operations in a certain parallel
architecture can be modeled as follows (see Jain et al. [9]). We are given a set of
processes P and a set of resources R such that each process p ∈ P needs a subset

∗ Received by the editors June 23, 1993; accepted for publication (in revised form) May 10,
1995. A preliminary version of this work appears as “Fast randomized algorithms for distributed
edge coloring” in Proc. ACM Symposium on Principles of Distributed Computing, ACM, New York,
1992, pp. 251–262. This research was conducted while the authors were with the Department of
Computer Science, Cornell University, Ithaca, NY 14853 and was supported in part by NSF PYI
award CCR-89-96272 with matching support from UPS and Sun Microsystems.

http://www.siam.org/journals/sicomp/26-2/25076.html
† Informatik, Freie Universität Berlin, Takustrasse 9, 14195 Berlin, Germany (ale@inf.fu-

berlin.de). The research of this author was supported by an Alexander von Humboldt research
fellowship.
‡ Department of Information Systems and Computer Science, National University of Singapore,

Singapore 119260, Republic of Singapore (aravind@iscs.nus.sg).

350

DISTRIBUTED EDGE COLORING 351

f(p) ⊆ R of the resources where (i) each process p needs every resource in f(p) for
a unit of time each and (ii) p can use the resources in f(p) in any order. From this
we can construct a bipartite graph GP,R = (P,R, EP,R), where EP,R = {(p, r)| p ∈
P ∧ r ∈ f(p)}. An edge coloring of GP,R with c colors yields a schedule for the
processes to use the resources within c time units. Optimal colorings correspond to
optimal schedules.

Edge coloring can also be used in distributed models in situations where broad-
casts are infeasible or undesirable: an edge coloring of the network results in a schedule
for each processor to communicate with at most one neighbor at every step; at time
step i, processors communicate via the edges colored i only. Using a “small” number
of colors reduces the wastage of time in this schedule.

1.1. Related work. Note that ∆ colors are necessary to edge color a graph
with maximum degree ∆. Vizing showed that it is always possible to edge color a
graph with ∆ + 1 colors and gave a polynomial-time algorithm to compute such a
coloring [22] (see, for instance, Bollobás [3]). Efforts to parallelize Vizing’s theorem
have failed so far. The best known algorithm is an RNC algorithm of Karloff and
Shmoys using ∆ + O(∆1/2+ε) colors for any fixed ε > 0; this algorithm has been
derandomized in NC (see Berger and Rompel [2] and Motwani, Naor, and Naor [15]).
In the distributed model, the best edge-coloring algorithm known prior to this work
was to apply a vertex-coloring algorithm to the line graph L(G) of G. There are
fast (polylogarithmic) randomized vertex-coloring algorithms that use (∆ + 1) and ∆
colors, which translate to (2∆−1)- and (2∆−2)-edge-coloring algorithms, respectively
(see Luby [13] and Panconesi and Srinivasan [17]). In the deterministic case, there
are no known (2∆− 1)-edge-coloring algorithms of polylogarithmic running time; the

best running time is 2O(
√

log n), which is asymptotically better than any fixed root of
n but which grows faster than any polylogarithmic function of n [17]. Interestingly,
distributed ∆-edge coloring for bipartite graphs requires Ω(diameter(G)) time even
with randomization [17], whereas this can be done in O(logn) time deterministically
in the PRAM model [11].

1.2. Our contributions. In this paper, we present fast and simple random-
ized algorithms to edge color G with at most 1.6∆ + O(log1+δ n) colors with high
probability for any fixed δ > 0, where ∆ is the maximum degree of the vertices of G.
At the heart of our analysis is an extension of the Chernoff–Hoeffding bounds, which
are key tools in bounding the tail probabilities of the sums of independent random
variables (see Chernoff [4], Hoeffding [8], and Raghavan [18]).

Our edge-coloring algorithm is based on a very simple randomized algorithm to
color bipartite graphs, which can be explained in a few lines. Given a bipartite graph
G = (A,B,E) with maximum degree ∆, each vertex in B picks distinct colors from
{1, 2, . . . ,∆} at random for its edges without replacement, i.e., edges incident to the
same vertex in B get different colors. Then each vertex v ∈ A checks for each color
α if more than one of its incident edges has color α and, if so, chooses one of them
at random as the winner, and all the other edges of color α which are incident to v
are decolored. The key claim is that for every vertex, the number of decolored edges
incident to it is at most ∆(1 + ε)/e with high probability for any fixed ε > 0, where e
is the base of natural logarithms. Assuming that this holds, we can repeat the above
iteration with a set of ∆(1 + ε)/e fresh colors, and so on. In spite of its simplicity,
the algorithm requires an interesting probabilistic analysis; this is based upon an
extension of the Chernoff–Hoeffding bounds to a certain case of dependence among
the random variables, which we call λ-correlation. We believe that these results have

352 A. PANCONESI AND A. SRINIVASAN

the potential for further applications and merit further study.
A preliminary version of this work appeared in [16], where we showed how to edge

color using at most 1.6∆ +O(log2+δ n) colors. By presenting a tighter analysis of the
tail probabilities, we improve this to 1.6∆ +O(log1+δ n) colors here.

In section 2, we define the basic notation used, and in section 3, we describe
our main analytical tool—the extension of the Chernoff–Hoeffding bounds. Section 4
presents our algorithm, whose performance is analyzed in section 5. Some extensions
and applications of this work are described in section 6.

2. Notation. A message-passing distributed network is an undirected graph G =
(V,E) where vertices, or nodes, correspond to processors and edges correspond to bi-
directional communication links. Each node has its unique ID. There is no shared
memory and processors can communicate only by sending messages through the net-
work. The network is synchronous, i.e., computation takes places in a sequence of
rounds; in each round, each node does any amount of local computation, sends mes-
sages to its neighbors in the graph, and reads messages sent to it by its neighbors.
The time complexity of a distributed algorithm, or protocol, is given by the number
of rounds needed to compute a given function.

Though each node has no knowledge about the topology of the entire network,
it knows upper bounds n and ∆ on the total number of nodes and maximum degree
of the network, respectively. We also sketch an alternative algorithm if ∆ and n are
unknown, but the constant factor in the O(log1+δ n) term in the number of colors
used is higher in this case.

Notice that in this model the cost of sending a message from one vertex to another
is proportional to the length of a shortest path between the two vertices. Hence if
we want a protocol to run for t rounds, then each vertex can communicate only with
vertices at distance at most t from it. This is not so in the PRAM model, where the
shared memory allows any two processors to communicate in one unit of time. Lower
bounds for distributed computation imposed by this locality have been presented by
Linial [12]. Also, as mentioned before, distributed ∆-edge coloring for bipartite graphs
requires Ω(diameter(G)) time, even with randomization [17]. In particular, we cannot
two-color the vertices of a bipartite graph G distributively in o(diameter(G)) time.

Given an undirected graph G = (V,E), we denote by ∆ its maximum degree, i.e.,
the maximum number of edges incident with any node; by du we denote the degree
of vertex u, by N(u) we denote the set of neighbors of u, and by δ(u) we denote the
set of edges incident with u.

Given a positive integer n, [n] denotes the set {1, 2, . . . , n}. The permanent of a
(possibly nonsquare) matrix M with c columns and r rows, where c ≤ r, is defined as
the natural extension of the permanent of square matrices. Let P = {π | π : [c] →
[r], π is one–to–one}. Then

perm(M)
.
=
∑
π∈P

n∏
i=1

Mπ(i),i.

An event A is said to happen with high probability (w.h.p.) if Pr(A) ≥ 1− 1/f(n)
for some superpolynomial function f(n) (i.e., nc = o(f(n)) for all fixed c > 0).

In our algorithms, we will use Luby’s vertex-coloring algorithm [13] as a subrou-
tine. When applied to the line graph of G, the algorithm computes a (2∆(G)−1)-edge
coloring of G, with its running time being O(logn) w.h.p. The algorithm only needs
local information—a vertex only needs to know its own degree. Another property

DISTRIBUTED EDGE COLORING 353

of the algorithm that we will use is that vertices can be added dynamically to the
graph, each vertex u with its own palette of deg(u) + 1 colors, and the algorithm still
works as claimed (the running time is O(logn) from the time of the last insertion).
Other algorithms could be used as well, but we refer to this algorithm of Luby for
conciseness.

3. The Chernoff–Hoeffding bounds extension. In this section, we introduce
our extension of the Chernoff–Hoeffding bounds, which are important tools used in
estimating the tail probabilities of random variables. Given n independent random
variables X1, X2, . . . , Xn, these bounds are used in deriving an upper bound on the
upper tail probability Pr(X ≥ (1 + ε)µ), where X =

∑n
i=1Xi, µ = E[X], and ε > 0.

We extend these bounds to a certain case of dependency among the Xi’s, which we
call λ-correlation.

Let us review Chernoff’s approach to upper bound the upper tail probability of
a random variable X when X is the sum of independent binary random variables
X1, X2, . . . , Xn [4]. (This idea is apparently originally due to Bernstein [8].) The idea
is to use Markov’s inequality on the random variable etX for an arbitrary t > 0 and
minimize with respect to t, that is, to use the fact that

Pr(X > (1 + ε)µ) = Pr(etX > et(1+ε)µ)

≤ E[etX]

et(1+ε)µ

and minimize the last ratio for t > 0. This is achieved by finding a good upper bound
for the numerator E[etX] by using the fact that X is the sum of independent random
variables. It is standard (see, e.g., Raghavan [18]) to use this to show that in this
case, if Xi ∈ {0, 1} for each i, then

min
t>0

E[etX]

et(1+ε)µ
≤ F (µ, ε)

.
=

[
eε

(1 + ε)1+ε

]µ
.(1)

Hoeffding [8] considered a more general case where X is the sum of n independent
and bounded random variables Xi ∈ [ai, bi], and he used the above approach to show
that if E[X] = µ, then for ε > 0,

min
t>0

E[etX]

et(1+ε)µ
≤ G(µ, ε,~a,~b)

.
= exp

[
− 2 µ2ε2∑

i∈[n](bi − ai)2

]
.(2)

The bounds (1) and (2) will be used in our proofs. Henceforth, we refer to these
bounds of Chernoff and Hoeffding as the CH bounds. If ε is a fixed positive quantity
no greater than 1 (which will be true in all of our applications), then F (µ, ε) ≤ e−ε2µ/3.
Hence if µ = Ω(log1+δ n), then F (µ, ε) is the inverse of a superpolynomial function

of n, for any fixed δ > 0. (Similar considerations apply to G(µ, ε,~a,~b).) This fact
makes the CH bounds a powerful tool for deriving strong performance guarantees for
randomized algorithms and will be used repeatedly in this paper.

3.1. The general case. We now introduce λ-correlation and prove the general
extension of the CH bounds. In section 3.2, we will then discuss an important special
case of the results of this section.

Our proof is based on the observation that if we can upper bound each termE[Xk]
of the Maclaurin expansion of E[etX] by λ E[X̂k], where X̂ is the sum of independent

354 A. PANCONESI AND A. SRINIVASAN

random variables, and if E[etX̂] ≤ B, then E[etX] ≤ λB. We start with the following
definition.

Definition 3.1. Let X1, X2, . . . , Xn be bounded random variables such that Xi ∈
[ai, bi] and let X =

∑
i∈[n]Xi. The Xi’s are λ-correlated if there exists a collection

of independent twin random variables X̂i ∈ [ai, bi] such that
(i) E[X] ≤ E[X̂], where X̂ =

∑
i∈[n] X̂i, and

(ii) for all I ⊆ [n] and positive integers si, i ∈ I,

E

[∏
i∈I

Xsi
i

]
≤ λ

∏
i∈I

E[X̂si
i].

Our main theorem is now the following.
Theorem 3.2. Let X be the sum of λ-correlated random variables X1, X2, . . . , Xn,

where Xi ∈ [ai, bi], and let X̂ be the sum of the n twin variables X̂i. Then

Pr(X > (1 + ε) E[X̂]) ≤ λG(E[X̂], ε,~a,~b).

Proof. Let µ = E[X̂]. As in the classical proof, we start by introducing a positive
parameter t and by applying Markov’s inequality to the variable etX :

Pr(X > (1 + ε)µ) = Pr(etX > et(1+ε)µ)

≤ E[etX]

et(1+ε)µ
.

By the hypotheses of the boundedness of X, we may apply linearity of expectation to
an infinite series:

E[etX] = E

[∞∑
k=0

tkXk

k!

]
=
∞∑
k=0

tkE[Xk]

k!
.

Now Xk = (
∑n
i=1Xi)

k is a sum of terms of the form
∏
i∈I X

si
i for some I ⊆ [n]

and positive integers si. Hence by linearity of expectation and the assumption of
λ-correlation,

E[Xk] ≤ λE[X̂k].

Thus

E[etX] ≤ λ
∞∑
k=0

tkE[X̂k]

k!
= λE[etX̂].

By the already discussed result of Hoeffding [8], when X̂ is the sum of n independent
bounded random variables X̂i ∈ [ai, bi],

min
t>0

E[etX̂]

et(1+ε)µ
≤ G(µ, ε,~a,~b).

In this paper, we will use the special case of Theorem 3.2 where Xi ∈ [0, 1], i ∈ [n].
In this case, F (µ, ε) is also an upper bound for the upper tail of X.

Corollary 3.3. Let X be the sum of n λ-correlated random variables Xi ∈ [0, 1].
Then

Pr(X > (1 + ε)E[X̂]) ≤ λF (µ, ε).

DISTRIBUTED EDGE COLORING 355

Proof. Let E[X̂] = µ. When X̂ is the sum of n independent random variables
X̂i ∈ [0, 1], Hoeffding (cf. Theorem 1 of [8]) shows that if t ∈ (0, 1−µ/n) and ε = nt/µ,
then

Pr

(
X̂ − µ
n

≥ t
)
≤ min

s>0

E[esX̂]

es(1+ε)µ
≤
(

µ

µ+ nt

)µ+nt(
1 +

n t

n− µ− nt

)n−µ−nt
.

By the proof of Theorem 3.2, we see that E[esX] ≤ λE[esX̂] for any s > 0. Thus by
applying the standard approximation 1 + x ≤ ex for x = nt/(n− µ− nt), we get

Pr(X ≥ (1 + ε)µ) ≤ λ
(

eε

(1 + ε)(1+ε)

)µ
= λF (µ, ε).

3.2. Binary random variables. An important special case of Definition 3.1 is
when Xi ∈ {0, 1}. In this case, the condition on the expectations simplifies consider-
ably to become

Pr

(∧
i∈I

Xi = 1

)
≤ λ

∏
i∈I

Pr(X̂i = 1)

for all I ⊆ [n].1 This special case is interesting in its own right and hence we record
it as the following theorem.

Theorem 3.4. Let X1, X2, . . . , Xn be given 0–1 random variables with X =∑
iXi. If there exist independent random variables X̂1, X̂2, . . . , X̂n with X̂ =

∑
i X̂i

and E[X] ≤ E[X̂] such that for all I ⊆ [n],

Pr

(∧
i∈I

Xi = 1

)
≤ λ

∏
i∈I

Pr(X̂i = 1),

then

Pr(X > (1 + ε)E[X̂]) ≤ λF (E[X̂], ε).

The statement follows immediately from Corollary 3.3. Notice that λ-correlation
follows if the Xi’s are “negatively correlated” in the following sense:

Pr

(∧
i∈I

Xi = 1

)
≤
∏
i∈I

Pr(Xi = 1)

for all I ⊆ [n]. We now present an example where precisely this kind of situation
arises and which will also be used later in this paper.

Suppose we have n balls that are thrown uniformly and independently at random
into n bins, and we want to estimate the number B of empty (missed) bins. Let Bi
be an indicator random variable that is 1 if bin i is empty and 0 otherwise. For any
i ∈ [n],

Pr(Bi = 1) =

(
1− 1

n

)n
≤ 1

e
.

1 This was defined as “self-weakening with parameter λ” in [16].

356 A. PANCONESI AND A. SRINIVASAN

It follows that E[B] = E[
∑
iBi] ≤ n/e. The Bi’s are 1-correlated. To see this,

consider a subset J ⊆ [n] and any i ∈ [n]− J . Then

Pr

Bi = 1 |
∧
j∈J

Bj = 1

 =

(
1− 1

n− |J |

)n
≤
(

1− 1

n

)n
= Pr(Bi = 1).

By straightforward induction, this implies that for all I ⊆ [n],

Pr

(∧
i∈I

Bi = 1

)
≤
∏
i∈I

Pr(Bi = 1).

Thus the Bi’s are 1-correlated, where we may take the twin variables B̂i to be
i.i.d. 0–1 random variables with Pr(Bi = 1) = 1/e for each i. Hence not only is
E[B] ≤ n/e, but by Theorem 3.4,

Pr

(
B >

(1 + ε)n

e

)
≤ F

(n
e
, ε
)
.

Remarks. The above fact can also be given a completely different (and simple)
proof via the theory of martingales using Azuma’s inequality (see, for example, Alon,
Spencer, and Erdős [1] or McDiarmid [14].) We have presented this proof to illustrate
our techniques. Also, Jain has proved the following lemma [19].

Let a1, a2, . . . , an be n random trials (not necessarily independent) such that the
probability that trial ai “succeeds” is bounded above by p regardless of the outcomes
of the other trials. Then if X is the random variable that represents the number of
“successes” in these n trials and Y is a binomial variable with parameters (n, p), then
Pr[X ≥ k] ≤ Pr[Y ≥ k], 0 ≤ k ≤ n.

The assumptions of Jain’s lemma are strictly stronger than those of 1-correlation.
For instance, in the balls and bins example,

Pr

Bn = 1|
∧

i∈[n−1]

B1 = 0

 =
n− 1

n+ 1
,

which for n ≥ 3 is greater than Pr(Bn = 1) (≈ 1/e). Note, however, that our result
does not subsume Jain’s lemma since his result upper bounds Pr(X ≥ k) by the true
binomial upper bound, while we only upper bound it by the CH bound.

4. The edge-coloring algorithm. We now present our randomized distributed
edge-coloring algorithm. The algorithm uses an idea of Karloff and Shmoys to reduce
the problem of edge coloring general graphs to that of edge coloring a special class of
bipartite graphs [10]. The Karloff–Shmoys scheme uses the fact that bipartite graphs
can be edge colored optimally in the PRAM model of computation, which is provably
impossible in our distributed model [17]. Instead, we use a distributed subroutine that
computes a “good” coloring. Also different is the handling of the “leftover” graphs
at the end of the recursion, which we color by making use of Luby’s vertex-coloring
algorithm.

DISTRIBUTED EDGE COLORING 357

The input to the algorithm is a distributed network G = (V,E) and some fixed
ε, δ > 0. In addition, each node knows upper bounds n and ∆ on |V | and the maximum
degree ∆(G) of G, respectively. This information is not necessary but yields better
multiplicative constants. The case where ∆ and n are unknown is sketched towards
the end of section 5.1.

The algorithm is recursive and computes an edge coloring of G using at most
1.6∆+O(log1+δ n) colors and runs in O(logn) time; both of these bounds hold w.h.p.

Let threshold = log1+δ n, and new(∆) = ∆/2 +

√
∆ log1+δ/2 n; the algorithm is as

follows.
If ∆ ≤ 16threshold, then edge color G with 2∆− 1 colors using Luby’s algo-

rithm and exit;2 else execute the following:
1. Compute a random partition of V (G) into black and white vertices. (All

vertices flip a fair coin independently and in parallel.) Let G[B] be the subgraph
induced by the black vertices, G[W] be the subgraph induced by the white vertices,
and G[B,W] be the bipartite subgraph formed by the edges having endpoints of
different colors.

2. Edge color G[B,W] using our bipartite edge-coloring algorithm described
below with the parameters new(∆), ε, and δ.

3. Set ∆ := new(∆) and recurse on G[B] and G[W] using the same set of fresh
new colors on both graphs with the same parameters ε and δ as before. (Remark.
Though the bipartite algorithm modifies its first parameter new(∆) in the course of
its execution, we assume that it is passed “by value,” i.e., that the value of new(∆)
referred to here and in step 2 above is the same.)

Remark. new(∆) is meant to be an upper bound on G[B], G[W], and G[B,W]. It
is easily seen via the standard CH bounds that it is indeed so w.h.p. if ∆ ≥ threshold

and hence if ∆ ≥ 16threshold [10].
We now present our main algorithm—a distributed algorithm to color the bipar-

tite graphs produced above.

4.1. Distributed edge coloring of bipartite graphs. Given a bipartite graph
G = (A,B,E), we assume that each vertex knows whether it belongs to A or B.
This is an important assumption because such information cannot be computed fast
distributively as mentioned in section 2, but it is verified for the bipartite graphs
generated by the Karloff–Shmoys scheme. Henceforth, we will refer to vertices in A
as the top vertices and to the vertices in B as the bottom vertices.

Given parameters ∆C , ε, and δ such that ∆C is an upper bound on the degree of
G, the algorithm takes O(logn) time and colors the bipartite graph G with at most
1.6∆C + O(log1+δ n) colors w.h.p., as long as δ > 0 is any constant (ε is used in the
algorithm). During any iteration of the algorithm, ∆C is meant to be an upper bound
on the degree of the current graph; we will prove later that this holds w.h.p. as long
as ∆C ≥ log1+δ n = threshold. From the remark in section 4, we can assume that
this is valid when the bipartite algorithm is called first. As we will briefly discuss in
section 5.1, this is not needed but gives better constants. The algorithm is as follows.

1. Part I. While ∆C ≥ threshold, do the following:
Let GC be the current graph. Pick a set χ of ∆C fresh new colors.
(i) (random proposal of bottom vertices) In parallel and independently of the

other vertices in B, each vertex v ∈ B assigns a temporary color to each edge in δ(v)

2 When ∆ = O(polylog(n)), we can compute a 2∆−1 coloring deterministically in O(polylog(n))
time using an algorithm based on the idea of removing maximal matchings. We prefer to use Luby’s
algorithm here for conciseness.

358 A. PANCONESI AND A. SRINIVASAN

with uniform probability without replacement, i.e., edge e1 is assigned color α ∈ χ
with probability 1/∆C , e2 is assigned β ∈ χ− {α} with probability 1/(∆C − 1), and
so on.

(ii) (lottery of top vertices) (Remark. The coloring so far is consistent around
any vertex v ∈ B but can be inconsistent around a vertex u ∈ A.) For each u ∈ A, let
Cu(α) be the set of edges in δ(u) with temporary color α. Each vertex u ∈ A selects
a winner uniformly at random in Cu(α) for each nonempty Cu(α). All other edges,
the losers, are decolored and assigned ⊥.

(iii) Set ∆C := ∆C(1+ ε)/e. G⊥, the subgraph of GC induced by the losers (i.e.,
by the ⊥-edges), becomes the new current graph.

2. Part II. Let Gr be the remaining graph. Edge colorGr with at most 2∆(Gr)−
1 colors by executing Luby’s vertex coloring algorithm on the line graph of Gr.

Since we use new colors in each iteration, it is clear that when the algorithm
terminates, G has been edge colored legally. It is also apparent that the algorithm
works based on local information alone. We now turn to placing bounds on the number
of colors used and the running time.

5. Analysis of the algorithm. Since the analysis is fairly involved, we first
present a higher-level description of it.

5.1. The basic structure of the analysis. Our key claim will be that in every
iteration of Part I of the bipartite edge-coloring algorithm, the maximum degree of
the graph shrinks by a factor of at least (1+ε)/e w.h.p., as long as ∆C ≥ threshold.
That is,

∆(G⊥) ≤ (1 + ε)
∆(GC)

e

w.h.p. for any fixed ε > 0. The condition ∆C ≥ threshold ensures that the failure
probability given by the extension of the CH bounds is the inverse of a superpolyno-
mial function. Hence w.h.p., no vertex will violate the degree condition. The reason
for setting threshold = log1+δ n will be apparent from the probabilistic analysis.

Once the key claim is established, we can bound both the total number of colors
used, and the running time of the algorithm. To bound the number of colors used,
observe that if the degree of the graph shrinks at every iteration by at least a (1+ε)/e
factor w.h.p., then the maximum degree of Gr is at most log1+δ n w.h.p.

Hence if ∆C ≥ threshold, then w.h.p., the number of colors used by the bipar-
tite algorithm is at most

BC(∆C) ≤ ∆C +
∆C

e
(1 + ε) + · · ·+ ∆C

ek
(1 + ε)k + 2 log1+δ n,

where k is the smallest integer such that ∆C(1+ε)k/ek ≤ log1+δ n. Thus for a suitable
ε′ > 0 which depends on ε and which can be made arbitrarily small, BC(∆C) is at
most

BC(∆C) ≤
(

e

e− 1
+ ε′

)
∆C +

(
2− e

e− 1
− ε′

)
log1+δ n

< 1.585∆C + 0.4 log1+δ n

< 1.59∆C

when ∆C > 8 log1+δ n. The running time of the algorithm is O(logn) because Part I
takes O(log ∆C) time and Part II, i.e., Luby’s algorithm, takes O(logn) time.

DISTRIBUTED EDGE COLORING 359

Note that if ∆ ≥ 16threshold in the main algorithm, then ∆C > 8 log1+δ n is
true for the bipartite algorithm and hence the above analysis is valid; also note that
if ∆ ≤ 16 log1+δ n, then we use Luby’s subroutine directly in our main algorithm.

Thus if ∆ ≥ 16threshold in the main algorithm, then the recurrence for the
total number of colors used is

TC(∆) ≤ BC
(

∆

2
+

√
∆ log1+δ/2 n

)
+ TC

(
∆

2
+

√
∆ log1+δ/2 n

)
< 1.59∆ + o(∆)

< 1.6∆.

If ∆ ≤ 16 log1+δ n, then the main algorithm uses Luby’s subroutine directly to get
a 2∆− 1 ≤ 32 log1+δ n edge coloring. Hence the total number of colors to color any
graph is at most 1.6 ∆ + 32 log1+δ n for any fixed δ > 0 w.h.p.

5.1.1. A truly distributed algorithm. We now sketch the modifications needed
to handle the case when both ∆ and n are unknown. Each node u initially computes
the value ∆u = maxv∈N(u) deg(v). The recursion of the Karloff–Shmoys scheme and
the loop of Part I of the bipartite subroutine are then repeated for c log ∆u times for a
constant c > 0 chosen large enough. A vertex u is said to be active as long as no more
than c log ∆u rounds have elapsed; it is inactive otherwise. An edge incident on an
inactive node is inactive. It is convenient to think of Luby’s algorithm as run directly
by the edges. An inactive and yet uncolored edge f will wait until all of its neighboring
edges are either colored or inactive, at which point it starts running Luby’s algorithm
with a palette of deg(f) + 1 fresh colors, where deg(f) denotes the number of inactive
edges incident upon f . There are two main observations to prove the correctness of
and the bounds on the number of colors used by this modified algorithm. First, all of
the neighbors of a vertex u will stay active for at least c log deg(u) rounds. Hence all
vertices such that deg(u) = Ω(log1+δ n) will be able (w.h.p.) to color enough edges
to reduce their degree until it drops to O(log1+δ n). Second, as discussed in section
2, Luby’s algorithm still works correctly when vertices (in our case, edges) are added
dynamically.

The high-probability analysis carries through with these modifications. Simple
calculations show that with these modifications, the total number of colors used in-
creases to at most 1.6∆ + 160 log1+δ n. We omit the calculations for this modified
algorithm, which are similar to those presented here for the case where n and ∆ are
known.

We now return to the case where n and ∆ are known, and we turn to the task
of proving the key claim. We wish to show that given a graph G and ∆ such that
∆ ≥ ∆(G) and ∆ ≥ threshold, then after one iteration of Part I of the bipartite
algorithm, the maximum degree of the new graph, ∆(G⊥), is at most (1 + ε)∆/e
w.h.p. for any fixed ε > 0. It turns out that the analysis is considerably easier for the
top vertices than for the bottom vertices. We begin with the easy part.

5.2. Analysis of the top vertices. Let u be a generic top vertex with incident
edges i = (u, vi). Recall that a loser is an edge which, after having gotten a tentative
color in the random proposal, lost the lottery and got decolored. Therefore, the new
degree of u is given by the number of losers incident with it.

From the point of view of a top vertex, the random proposal and the lottery are
equivalent to the following random experiment. For each edge i incident on u, we
introduce a ball i, and for each color k, we introduce a bin k; the assignment of a

360 A. PANCONESI AND A. SRINIVASAN

tentative color to an edge by the algorithm is equivalent to throwing each ball into
one of the ∆ bins independently and uniformly at random since the bottom vertices
assign tentative colors with uniform probability and independently of the other bottom
vertices. Recalling that we have at most ∆ balls and exactly ∆ bins,

]losers =]balls−]winners

≤]bins−]nonempty bins

=]empty bins.

Let X be a random variable denoting the number of losers. To estimate X and its tail
distribution, we will study the random variable B =]empty bins. For this purpose,
we introduce ∆ many indicator random variables Bi, where Bi = 1 if bin i is empty
and 0 otherwise; hence B =

∑
i∈[∆]Bi. Notice that X ≤ B always. The variable B

was studied in section 3, where it was shown that E[B] ≤ ∆/e and that the Bi’s are
1-correlated, which implies that Pr(B > (1+ε)∆/e) ≤ F (∆/e, ε). Since E[X] ≤ E[B]
and Pr(X > (1 + ε)∆/e) ≤ Pr(B > (1 + ε)∆/e), we get the following result.

Theorem 5.1. Let u be a top vertex and X be the random variable denoting the
number of losers incident on it. Then E[X] ≤ ∆/e and

Pr

(
X >

(1 + ε)∆

e

)
≤ F

(
∆

e
, ε

)
.

5.3. Analysis of the bottom vertices. In this section, we analyze what hap-
pens to the new degree of a generic bottom vertex vb. This case is considerably harder
to handle than the previous one because of the way in which the random variables
describing the process are correlated. For a top vertex, the dependency among the
variables was playing for us; given that some edges incident on a top vertex are losers,
the probability of having another loser decreases. For a bottom vertex, the situation
is reversed: having some edges lose the lottery might even make the probability of
having another loser increase. The problem can be seen in the following situation.
Let x1 = vb and x2 be bottom vertices, and let y1 and y2 be top vertices which induce
a four-cycle, i.e., there is an edge ei,j = (xi, yj) for i, j = 1, 2. Suppose we are given
that e1,1 got tentative color α and lost the lottery and that e1,2 got tentative color β;
we will argue intuitively that given this, the probability of e1,2 losing the lottery has
increased. Since e1,1 lost, the probability of e2,1 getting tentative color α increases,
which implies that the probability of e2,2 getting tentative color β also increases, and
this increases the probability of e1,2 losing the lottery.

For the sake of the analysis, we modify the algorithm as follows: instead of per-
forming all random proposals in parallel, suppose that the bottom vertices perform
their random proposals sequentially, in some order. This does not modify the proba-
bility distributions because the choices are still done independently. We want to focus
our attention on the last vertex vb performing the random proposal. We will use the
fact that when vb performs its random proposal, all edges not incident on vb already
have a tentative color. By symmetry, any upper bound on the probabilities we can
find for vb will hold for all bottom vertices.

Let i ∈ [dvb] denote an edge incident with the bottom vertex vb, with the other
endpoint of i being ui. We introduce the indicator random variables

Xi =

{
1, i loses the lottery,
0 otherwise,

DISTRIBUTED EDGE COLORING 361

and we want to study the expectation and tail probability distribution of X =∑
i∈[dvb]Xi. Computing the expectation is easy.

Lemma 5.2. E[X] ≤ ∆/e.
Proof. Let vb be the bottom vertex. It is sufficient to show that Pr(Xi = 1) ≤ 1/e

for all i ∈ [dvb]. From the analysis of the top vertices, we know that the expected
number of losers incident with ui is at most ∆/e and hence that

∑
j∈δ(ui) Pr(j loses) ≤

∆/e. By symmetry, Pr(j loses) ≤ 1/e for all j ∈ δ(ui), and hence Pr(Xi = 1) ≤
1/e.

We now study the tail probability distribution of X. Our goal is to show that
X ≤ (1 + ε)∆/e w.h.p. for any fixed ε > 0. Establishing this claim will take several
lemmas.

We use a method different from the preliminary version of this work [16] to present
stronger results. We first invoke a result of Schmidt, Siegel, and Srinivasan [20], which
was in fact motivated in part by [16] and in particular by the notion of λ-correlation.

For z = (z1, z2, . . . , zn) ∈ <n, define a family of symmetric polynomials qj(z),
0 ≤ j ≤ n, where q0(z) ≡ 1 and for 1 ≤ j ≤ n,

qj(z)
.
=

∑
1≤i1<i2···<ij≤n

zi1zi2 · · · zij .

Theorem 5.3 (see [20]). Let Y1, Y2, . . . , Yn be arbitrary (not necessarily indepen-
dent) 0–1 random variables with Y =

∑n
i=1 Yi. Then for any a > 0 and any positive

probability event Z,

Pr(Y ≥ a|Z) ≤ min
`=1,...,a

E[q`(Y1, Y2, . . . , Yn)|Z](
a

`

) .

Proof. The actual theorem of [20] is stated unconditionally without reference to
Z, but the above conditional extension is easily derivable from its proof as follows.
Since the Yi’s are binary, it is easily seen that for any ` ≤ a, given that Z occured,
(Y ≥ a) implies (q`(Y1, Y2, . . . , Yn) ≥ (a`)). Thus by Markov’s inequality,

Pr(Y ≥ a|Z) ≤ E[q`(Y1, Y2, . . . , Yn)|Z](
a

`

) .

To bound the upper tail of X, we will define an event A such that A happens
w.h.p. and such that for a suitably chosen k,

E[qk(X1, . . . , Xdvb
)|A](

∆(1 + ε)e−1

k

) = e−Ω(∆ε2).(3)

In combination with Theorem 5.3, this will show that Pr(X ≤ (1+ ε)∆/e) almost
surely because

Pr

(
X >

(1 + ε)∆

e

)
= Pr

(
X >

(1 + ε)∆

e
| A
)

Pr(A)(4)

+ Pr

(
X >

(1 + ε)∆

e
| Ac

)
Pr(Ac)

362 A. PANCONESI AND A. SRINIVASAN

≤ Pr

(
X >

(1 + ε)∆

e
| A
)

+ Pr(Ac)

≤ min
i∈[dvb]

E[qi(X1, . . . , Xdvb
)|A](

∆(1 + ε)e−1

i

) + Pr(Ac)

≤
E[qk(X1, . . . , Xdvb

)|A](
∆(1 + ε)e−1

k

) + Pr(Ac),

which is small by assumption. (Note that A happens w.h.p.) To prove the upper
bound (3), we will focus on a generic term Pr(

∧
i∈I Xi = 1|A) in

E[qk(X1, . . . , Xdvb
)|A] =

∑
I⊆[dvb],|I|=k

E

[∏
i∈I

Xi|A
]

=
∑

I⊆[dvb],|I|=k
Pr

(∧
i∈I

Xi = 1|A
)
,

which will also suggest to us a suitable choice for the event A.
Consider then a generic subset I = {w1, w2, . . . , wk} ⊆ [dvb] of edges incident on

the bottom vertex vb (corresponding to the neighbors {uwi} of vb), and let us see
how to compute Pr(

∧
i∈I Xi = 1). Without loss of generality, we assume I = [k].

Recall that we are analyzing the situation where vb is the last vertex to perform its
random proposal. This means that prior to the assignment of a tentative color to
edge i = (vb, ui), all other edges incident on ui already have their tentative color.
Using the balls-and-bins language, we can say that prior to throwing ball i at random
into one of the bins at vertex ui, all balls coming from the other neighbors of ui
have been thrown. We will think of i as a red ball and of the other edges at ui as
white balls. Once the red ball is thrown in, say, bin ` ∈ [∆], a winner is selected
uniformly at random among all (i.e., red and white) balls in bin `. All other balls, the
losers, are discarded. Notice that the probability of discarding the red ball is itself a
random variable which depends on the particular placement of the white balls prior
to throwing the red ball. (Hence we will study the conditional probability that the
red ball loses the lottery, given a placement of white balls.)

Given any placement of white balls at ui, we construct a vector of probabilities
Ci as follows. Let a`,i denote the number of white balls in bin ` ∈ [∆] of vertex ui,
and let p`,i = a`,i/(1 + a`,i) denote the probability that the red ball loses the lottery
given that it was thrown in bin `. (Equivalently, p`,i is the probability that edge i
loses given that it got tentative color `.) For each neighbor ui of our bottom vertex vb,
we construct the corresponding vector Ci = (p1,i, p2,i, . . . , p∆,i). We then construct a
∆ × k matrix MI whose ith column is the vector Ci. The next lemma explains why
this matrix is relevant to us. Henceforth, let p(m, `)

.
= m(m− 1) · · · (m− `+ 1).

Lemma 5.4.

Pr

(∧
i∈I

Xi = 1

)
=

perm(MI)

p(∆, k)
.

Proof. The random proposal of vb restricted to I is equivalent to choosing a
one-to-one function π : I → [∆] uniformly at random among the set P of all such
functions. Recall that the entry Mi,j of MI is the probability pi,j that edge wj loses
given that it is given color i. Hence

Pr(∧i∈IXi = 1) =
∑
π∈P

Pr(∧i∈IXi = 1 | π is selected) Pr(π is selected)

DISTRIBUTED EDGE COLORING 363

=
∑
π∈P

(
Mπ(1),1Mπ(2),2 · · ·Mπ(k),k

) k−1∏
i=0

1

∆− i

=
perm(MI)

p(∆, k)
.

We now want to find a good upper bound for perm(MI). The following lemma
gives a simple upper bound that is sufficient for our purposes.

Lemma 5.5. Let M be a matrix with c columns and r rows (c ≤ r) and non-
negative entries. Let Si denote the sum of the entries of the ith column of M . Then
perm(M) ≤

∏
i∈[c] Si.

Proof. Let P = {π | π : [c]→ [r], π is one-to-one}. Then

perm(M) =
∑
π∈P

Mπ(1),1Mπ(2),2 · · ·Mπ(c),c

≤ (M1,1 + · · ·+Mr,1)(M1,2 + · · ·+Mr,2) · · · (M1,c + · · ·+Mr,c)

=
∏
i∈[c]

Si.

The next lemma relates the value of Si to that of 1/e ≥ Pr(i loses), i ∈ δ(vb).
It is an application of the general definition of λ-correlation. Before the proof of the
lemma, we establish the following result.

Proposition 5.6. If 0 ≤ p ≤ 1, q = 1− p, and m is a positive integer, then

m∑
r=1

(
m
r

)
prqm−r

r

r + 1
= 1− (1− qm+1)

p(m+ 1)
.

Proof. Let

f(p) =
m∑
r=1

(
m
r

)
prqm−r

k

k + 1

= 1− qm −
m∑
r=1

(
m
r

)
prqm−r

1

k + 1
.

Integrating both sides of the binomial expansion

(x+ q)m =
m∑
r=0

(
m
r

)
xrqm−r

between 0 and p, we get

1− qm+1

m+ 1
= p (1− f(p)),

from which the proposition follows.
We now return to our scenario where vb is the last bottom vertex to pick tentative

colors for its edges. Recall that we are focusing on a set I = {w1, w2, . . . , wk} of edges
incident on vb and that we want a good upper bound on Pr(

∧
i∈I Xi = 1); we had

also assumed that I = [k] without loss of generality. Combining Lemmas 5.4 and 5.5,
we get

Pr

(∧
i∈I

Xi = 1

)
≤ perm(MI)

p(∆, k)
≤ Πk

i=1Si
p(∆, k)

,

364 A. PANCONESI AND A. SRINIVASAN

where for each i ∈ [dvb], Si is defined to be the sum of the entries in Ci. Therefore, a
good upper bound on Si for each i will hopefully translate into a good upper bound
for Pr(

∧
i∈I Xi = 1). The next lemma says that Si ≤ ∆(1 + ε1)/e w.h.p. for any fixed

ε1 > 0 and for each i. Thus a good choice for A is

A : “Si ≤ ∆(1 + ε1)/e for each i ∈ [dvb]”

where ε1 will be fixed later. The next lemma is an application of the general definition
of λ-correlation.

Lemma 5.7. Let i = (vb, ui) be any edge in [dvb], and let Si be the sum of the
entries of Ci. Then E[Si] ≤ ∆/e = µ and

∀ε1 > 0, Pr(Si > (1 + ε1)µ) ≤ F (µ, ε1).

Proof. Let Z` be the random variable denoting the number of white balls in bin
` of ui, and let Y` = Z`/(Z` + 1) be the random variable denoting the probability
that the red ball loses the lottery given that it lands in bin `. Then Si = Y

.
=
∑
` Y`.

Note that the Y`’s are bounded random variables with values in [0, 1]. We will show
that E[Y] ≤ ∆/e and that the Y`’s are 1-correlated (under the general definition of
λ–correlation), which will give our claim.

We may assume that the total number d of white balls equals ∆ − 1 (i.e., that
the degree of ui is ∆): Pr(Y > (1 + ε1)∆/e) is maximized at d = ∆− 1 since d varies
from 1 to ∆ − 1. (To see this, assume d = ∆ − 1 − ` < ∆ − 1. Add ` yellow balls
to the white balls and run two experiments. In one experiment, throw the white and
red balls and compute the probability that the red ball loses the lottery. In the other
experiment, throw white, yellow, and red balls and again compute the probability
that the red ball loses. In both experiments, let us look at the bin where the red ball
fell. The probability that the red ball loses is b/(b + 1) for the first experiment and
(b+y)/(b+y+1) for the second, where b and y are, respectively, the number of white
and yellow balls in the bin. Since y ≥ 0, b/(b + 1) ≤ (b + y)/(b + y + 1). If Yi(d)
indicates the variable Yi when ui has degree d, then Yi(d) ≤ Yi(∆) for all i ∈ [∆] and
d ∈ [∆].)

First, we will show that for all i, E[Yi] ≤ 1/e, and then we will show that for any
set of ` indices J ⊆ [∆] and strictly positive integers si,

E

[∏
i∈J

Y sii

]
≤ 1

e`
.(5)

Given this we can apply Corollary 3.3 by introducing n independent twin 0–1
random variables Ŷi such that E[Ŷi] = Pr(Ŷi = 1) = 1/e. Since the Ŷi’s are binary,
inequality (5) is the same as

E

[∏
i∈J

Y sii

]
≤
∏
i∈J

E[Ŷi] =
∏
i∈J

E[Ŷi
si

],

which is to say that the Yi’s are 1-correlated. Noting that 0 ≤ Yi ≤ 1, it suffices to
show that

E

[∏
i∈J

Yi

]
≤ 1

e`
.(6)

DISTRIBUTED EDGE COLORING 365

Without loss of generality, we can assume J = [`]. We will prove inequality (6)
by induction on ` ≥ 1; when ` = 1,

E[Y1] =
∆−1∑
r=0

(
∆− 1
r

)(
1

∆

)r (
1− 1

∆

)∆−1−r
r

r + 1

=

(
1− 1

∆

)∆

≤ 1

e
,

where the second equality follows from Proposition 5.6. Notice that for all j ∈ [∆],
E[Yj] = E[Y1] ≤ 1/e. When ` > 1, the law of conditional probabilities gives

E

∏
i∈[`]

Yi

 = E[Y1Y2 · · ·Y`−1E[Y` | Y1Y2 · · ·Y`−1]](7)

Suppose we show that for all nonzero ci ∈ [0, 1] with i ∈ [`− 1],

E

[
Y` |

`−1∧
i=1

Yi = ci

]
≤ 1

e
;(8)

then since the product Y1Y2 · · ·Y`−1 in equation (7) is zero when any ci is zero, we
see by induction on ` that

E

[∏̀
i=1

Yi

]
= E[Y1Y2 · · ·Y`−1E[Y` | Y1Y2 · · ·Y`−1]]

≤ 1

e
E

[
`−1∏
i=1

Yi

]

≤ 1

e`
.

Hence the claim follows if we can show that inequality (8) holds.
If ai denotes the number of white balls that fell into bin i, then ci = ai/(ai + 1).

Let a =
∑`−1
i=1 ai ≥ `− 1, p = 1/(∆− `+ 1), and q = 1− p. Then

E

[
Y`|

`−1∧
i=1

Yi = ci

]
= E

[
Y`|

`−1∧
i=1

Zi = ai

]

=
∆−1−a∑
r=1

t(r, a),

where

t(r, a)
.
=

(
∆− 1− a

r

)
prq∆−1−a−r r

r + 1
.

It is easy to check that t(r, a) ≥ t(r, a+1). As a consequence, the maximum value

of E[Y`|
∧`−1
i=1 Yi = ci] is attained at a = `− 1, in which case we have

∆−1−a∑
r=1

t(r, a) =
∆−∑̀
r=1

t(r, `− 1)

366 A. PANCONESI AND A. SRINIVASAN

=
∆−∑̀
r=1

(
∆− `
r

)
prq∆−`−r r

r + 1

= q∆−`+1 ≤ 1

e

by Proposition 5.6.

We remark that a short proof of Lemma 5.7 can be derived using the elegant work
of [7].

Define ε1
.
= ε/10. Thus defining the event A as “Si ≤ ∆(1 + ε1)/e for each

i ∈ [dvb]”, Lemma 5.7 gives the bound

Pr(Ac) ≤ ∆F

(
∆

e
, ε1

)
.(9)

Now given that A holds, Lemma 5.5 shows that perm(MI) ≤ (∆(1 + ε1)/e)k and thus
from Lemma 5.4,

Pr

(∧
i∈I

Xi = 1|A
)
≤

(
∆(1 + ε1)

e

)k
p(∆, k)

.(10)

We now turn to defining k suitably to get a good tail bound. Invoking Theorem 5.3
for

X =
∑
i∈[dvb]

Xi

in conjunction with (10), we see that if a = ∆(1 + ε)/e, then

Pr(X > a|A) ≤
E[qi(X1, . . . , Xdvb

)|A](
a

k

)

≤

(
dvb
k

)(
∆(1 + ε1)

e

)k
p(∆, k)

(
a

k

)

≤

(
∆

k

)(
∆(1 + ε1)

e

)k
p(∆, k)

(
a

k

)

=

(
∆(1 + ε1)

e

)k
p

(
∆(1 + ε)

e
, k

) .(11)

To lower bound p(∆(1 + ε)/e, k), we need the following result.

Lemma 5.8. For positive integers t and `, t`/p(t, `) ≤ e`2/t if ` ≤ t/2.

DISTRIBUTED EDGE COLORING 367

Proof. We first note that ln(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2. This is true since if
we define f(x)

.
= ln(1 − x) + 2x, then f(0) = 0 and f ′(x) = (1 − 2x)/(1 − x), which

is nonnegative for 0 ≤ x ≤ 1/2. Now

p(t, `)

t`
=
`−1∏
i=1

(t− i)
t

= exp

(
`−1∑
i=1

ln

(
1− i

t

))

≥ exp

(
−
`−1∑
i=1

2i

t

) (
since ` ≤ t

2

)
= exp

(
− (`− 1)`

t

)
≥ e−`2/t.

We now set k = b∆ε/3ec. Using Lemma 5.8 and the facts ε1 = ε/10, 1 + ε ≥ eε/2,
and 1 + ε1 ≤ eε1 , we see from (11) that

Pr(X ≥ ∆(1 + ε)/e|A) ≤ e−Ω(∆ε2).(12)

Applying bounds (9) and (12) to (4), we finally arrive at

Pr(X ≥ ∆(1 + ε)/e) ≤ e−Ω(∆ε2).(13)

We can now see why the parameter threshold must be Ω(log1+δ n): the failure
probability (13) goes to zero superpolynomially fast if ∆ = Ω(log1+δ n) for any fixed
δ > 0. Using (13), we conclude our analysis with the following result.

Theorem 5.9. The new degree of the graph after one iteration of Part I of the
bipartite algorithm is at most (1 + ε)∆/e w.h.p. for any fixed ε > 0.

6. Extensions and applications of the algorithm. Recently, Panconesi and
Dubhashi have improved our bounds by presenting a randomized distributed edge-
coloring algorithm that runs in polylogarithmic time and uses at most ∆(1 + o(1)) +
O(logn) colors w.h.p. [6]. However, we feel that this work has independent interest
owing to the tools developed to analyze the algorithm. We now describe some recent
applications of this work.

Our results on λ-correlation have been used to prove the performance of a ran-
domized rounding technique for multicommodity flow (Young [23]) and to provide an
elementary method to bound the upper tail of the number of prime factors of ran-
dom integers (Srinivasan [21]). As mentioned in section 5.3, the work of [20], which
expands the applicability of CH-type bounds to more nonindependent scenarios, was
inspired in part by this work. Our results on upper tail bounds for sums of bounded
λ-correlated random variables have been generalized in [20].

Our algorithm has also been used and extended in the context of emulating PRAM
algorithms using a limited number of processors [5].

Acknowledgments. Our sincere thanks go to David Shmoys for his continued
guidance and support. We are grateful to Éva Tardos for an important idea about
analyzing the algorithm and to Suresh Chari, Devdatt Dubhashi, David Pearson, Desh
Ranjan, Pankaj Rohatgi, and Stephen Vavasis for useful discussions. We also thank
the referees for their several valuable comments.

368 A. PANCONESI AND A. SRINIVASAN

REFERENCES

[1] N. Alon, J. Spencer, and P. Erdős, The Probabilistic Method, Wiley–Interscience Series,
John Wiley, New York, 1992.

[2] B. Berger and J. Rompel, Simulating (logc n)-wise independence in NC, J. Assoc. Com-
put. Mach., 38 (1991), pp. 1026–1046.

[3] B. Bollobás, Graph Theory, Springer-Verlag, New York, 1979.
[4] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations, Ann. Math. Statist., 23 (1952), pp. 493–509.
[5] X. Deng and P. Dymond, Minimizing communication phases in optimal parallel algorithms,

Technical Report 94-04, Department of Computer Science, York University, North York,
ON, Canada, 1994.

[6] D. Dubhashi and A. Panconesi, Near-optimal distributed edge coloring, in Proc. 3rd An-
nual European Symposium on Algorithms (ESA ’95), Lecture Notes in Comput. Sci. 979,
Springer-Verlag, Berlin, 1995, pp. 448–459.

[7] D. Dubhashi and D. Ranjan, Balls and bins: A study in correlations, Technical Report RS-96-
25, Basic Research in Computer Science (BRICS), University of Århus, Århus, Denmark,
submitted.

[8] W. Hoeffding, Probability inequalities for sums of bounded random variables, Amer. Statist.
Assoc. J., 58 (1963), pp. 13–30.

[9] R. Jain, K. Somalwar, J. Werth, and J. C. Browne, Scheduling parallel I/O operations in
multiple bus systems, J. Parallel Distrib. Comput., 16 (1992), pp. 352–362.

[10] H. J. Karloff and D. B. Shmoys, Efficient parallel algorithms for edge coloring problems,
J. Algorithms, 8 (1987), pp. 39–52.

[11] G. F. Lev, N. Pippenger, and L. G. Valiant, A fast parallel algorithm for routing in per-
mutation networks, IEEE Trans. Comput., 30 (1981), pp. 93–100.

[12] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193–201.
[13] M. Luby, Removing randomness in parallel computation without a processor penalty, J. Com-

put. System Sci., 47 (1993), pp. 250–286.
[14] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, London

Math. Soc. Lecture Notes Ser. 141, Cambridge University Press, Cambridge, UK, 1989,
pp. 148–188.

[15] R. Motwani, J. Naor, and M. Naor, The probabilistic method yields deterministic parallel
algorithms, J. Comput. System Sci., 49 (1994), pp. 478–516.

[16] A. Panconesi and A. Srinivasan, Fast randomized algorithms for distributed edge coloring, in
Proc. ACM Symposium on Principles of Distributed Computing, ACM, New York, 1992,
pp. 251–262.

[17] A. Panconesi and A. Srinivasan, Improved distributed algorithms for coloring and network
decomposition problems, in Proc. ACM Symposium on Theory of Computing, ACM, New
York, 1992, pp. 581–592.

[18] P. Raghavan, Lecture notes on randomized algorithms, Technical Report RC 15340 (#68237),
IBM T. J. Watson Research Center, Yorktown Heights, NY, 1990.

[19] R. Raman, The power of collision: Randomized parallel algorithms for chaining and inte-
ger sorting, in Proc. 10th Annual Conference on the Foundations of Software Technology
and Theoretical Computer Science, Lecture Notes in Comput. Sci. 472, Springer-Verlag,
Berlin, 1990, pp. 161–175; also available as Technical Report 336, Department of Computer
Science, University of Rochester, Rochester, NY, 1990 (revised 1991).

[20] J. P. Schmidt, A. Siegel, and A. Srinivasan, Chernoff–Hoeffding bounds for applications
with limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223–250.

[21] A. Srinivasan, On the distribution of the number of prime factors of integers, manuscript,
1993.

[22] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal., 3 (1964),
pp. 25–30 (in Russian).

[23] N. Young, Randomized rounding without solving the linear program, in Proc. ACM–SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, 1995, pp. 170–178.

RANDOM DEBATERS AND THE HARDNESS OF
APPROXIMATING STOCHASTIC FUNCTIONS∗

ANNE CONDON† , JOAN FEIGENBAUM‡ , CARSTEN LUND§ , AND PETER SHOR¶

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 369–400, April 1997 004

Abstract. A probabilistically checkable debate system (PCDS) for a language L consists of a
probabilistic polynomial-time verifier V and a debate between Player 1, who claims that the input x
is in L, and Player 0, who claims that the input x is not in L. It is known that there is a PCDS for
L in which V flips O(logn) coins and reads O(1) bits of the debate if and only if L is in PSPACE
[A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Chicago J. Theoret. Comput. Sci., 1995, No. 4].
In this paper, we restrict attention to RPCDSs, which are PCDSs in which Player 0 follows a very
simple strategy: On each turn, Player 0 chooses uniformly at random from the set of legal moves.
We prove the following result.

Theorem. L has an RPCDS in which the verifier flips O(logn) coins and reads O(1) bits of the
debate if and only if L is in PSPACE.

This new characterization of PSPACE is used to show that certain stochastic PSPACE-hard
functions are as hard to approximate closely as they are to compute exactly. Examples of such
functions include optimization versions of Dynamic Graph Reliability, Stochastic Satisfiability, Mah-
Jongg, Stochastic Generalized Geography, and other “games against nature” of the type introduced
in [C. Papadimitriou, J. Comput. System Sci., 31 (1985), pp. 288–301].

Key words. approximation algorithms, complexity theory, probabilistic games, proof systems,
PSPACE

AMS subject classification. 68Q15

PII. S0097539793260738

1. Introduction. Recently, there has been great progress in understanding the
precision with which one can approximate solutions to NP-hard problems efficiently.
Feige et al. [13], Arora et al. [2, 3], and others proved strong negative results for
several fundamental problems such as Clique and Satisfiability. This progress has led
to renewed study of approximation algorithms for PSPACE-hard problems.

Not surprisingly, PSPACE-hard problems also display a wide variation in the
precision with which they can be approximated efficiently. The following results in
the literature show that, with respect to a particular performance guarantee, some
PSPACE-hard problems have efficient approximation algorithms, others have such
algorithms if and only if NP = P, and still others have such algorithms if and only if
PSPACE = P. One interesting class of results concern problems on hierarchically de-
fined structures, such as graphs. Problems on these structures, and on a related class

∗ Received by the editors December 1, 1993; accepted for publication (in revised form) May 12,
1995. These results first appeared in “Random debaters and the hardness of approximating stochastic
functions (extended abstract)”, Technical Memorandum, AT&T Bell Laboratories, Murray Hill, NJ,
1993 [11]. They were presented in preliminary form at the 9th Annual IEEE Conference on Structure
in Complexity Theory, Amsterdam, The Netherlands, June 1994.

http://www.siam.org/journals/sicomp/26-2/26073.html
† Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison,

WI 57306 (condon@cs.wisc.edu). The research of this author was supported in part by NSF grants
CCR-9100886 and CCR-9257241.
‡ AT&T Laboratories, Room 2C473, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

(jf@research.att.com).
§ AT&T Laboratories, Room 2C324, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

(lund@research.att.com).
¶ AT&T Laboratories, Room 2D149, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

(shor@research.att.com).

369

370 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

of periodic structures, arise in many VLSI and scheduling applications (see, for exam-
ple, [18] for references to these and other applications). Because such representations
can implicitly describe a structure of exponential size, using just polynomial space,
the associated problems are often PSPACE-hard. As early as 1981, Orlin [20] claimed
a negative result on approximating a PSPACE-hard periodic version of the Knapsack
problem, namely that a fully polynomial approximation scheme exists for this problem
only if NP = P. Orlin did not address whether in fact it might be PSPACE-hard to
approximate this function. On the positive side, Marathe et al. [18] recently developed
constant-factor approximation algorithms for PSPACE-hard problems, including the
Max Cut and Vertex Cover problems for certain restricted classes of hierarchically
represented graphs. In related work, Marathe et al. [19] applied results of Arora et al.
[2] to show that these same problems have polynomial-time approximation schemes if
and only if NP = P.

In [10], we considered optimization versions of several other problems in PSPACE,
including Quantified Satisfiability, Generalized Geography, and Finite Automata In-
tersection. Building on the techniques of [2, 3, 13], we showed that it is in fact
PSPACE-hard to approximate these problems closely (where “closely” depends on
the problem). Using direct reduction arguments, Hunt et al. [14] showed that some
generalized quantified satisfiability problems (for example, satisfiability of quanti-
fied formulas in which “clauses” are not restricted to be disjunctions of literals) are
PSPACE-hard to approximate.

An important class of PSPACE-hard problems not previously addressed in this
literature is a class of stochastic problems that involve decision-making under un-
certainty, as in the games against nature of Papadimitriou [21]. In this paper, we
develop a new technique for showing that these stochastic PSPACE-hard problems
are hard to approximate. Informally, these are problems in which the instances in-
volve probabilities in some essential way. The probabilities may describe failures of
arcs in a digraph or moves of one of the players in a game. Examples of functions
that we prove are hard to approximate include optimization versions of Stochastic
Satisfiability (SSAT) [21], Stochastic Generalized Geography (SGGEOG), Dynamic
Graph Reliability (DGR) [21], and Mah-Jongg. We describe two of these problems in
more detail below. Precise definitions of all of the functions of interest can be found
in section 3.

Our technique for proving that these problems are hard to approximate is based
on a new characterization of PSPACE in terms of debates between one powerful
and one random player that are checked by a resource-limited verifier. Just as the
“games against nature” model is a powerful tool in obtaining hardness results for
stochastic problems such as those mentioned above, our new model of PSPACE proves
to be a very useful and natural tool in obtaining nonapproximability results for these
problems.

We also use the identity IP = PSPACE [16, 23] to derive nonapproximability
results for other stochastic PSPACE-hard functions. Examples of the functions that
yield to this technique include optimization versions of Dynamic Markov Process
(DMP) [21] and Stochastic Coloring, as well as a different optimization version of
Stochastic Satisfiability.

We now give two examples that illustrate the kind of problems to which our
new technique applies. The first is a variant of Graph Reliability, a #P-complete
problem studied by Valiant [25]: Given a directed, acyclic graph G, source and sink
vertices s and t, and a failure probability p(v, w) for each arc (v, w), what is the

RANDOM DEBATERS 371

probability that there is a path from s to t consisting exclusively of arcs that have not
failed? Papadimitriou [21] defines Dynamic Graph Reliability as follows: The goal of
a strategy is still to traverse the digraph from s to t. Now, however, for each vertex
x and arc (v, w), there is a failure probability p((v, w), x); the interpretation is that,
if the current vertex is x, the probability that the arc (v, w) will fail before the next
move is p((v, w), x). DGR consists of those digraphs for which there exists a strategy
for getting from s to t with probability at least 1/2. A natural optimization problem
is MAX-PROB DGR: Given a graph, vertices s and t, and a set {p((v, w), x)} of
failure probabilities, what is the probability of reaching t from s under an optimal
strategy? We show in section 3.3 below that there is a constant c > 0 such that it
is PSPACE-hard to approximate MAX-PROB DGR within ratio 2−n

c

. This implies,
for example, that if there is a polynomial-time algorithm that, on input x, outputs
a number in the range [2−n

c

MAX-PROB DGR(x), 2n
c

MAX-PROB DGR(x)], then
PSPACE = P.

Our second example is a solitaire version of Mah-Jongg that is widely available
as a computer game. Mah-Jongg tiles are divided into sets of four matching tiles;
we assume that there are an arbitrarily large number of tiles. Initially, the tiles are
organized in a preset arrangement of rows, and the rows may be stacked on top of
each other. As a result, some tiles are hidden under other tiles. A tile that is not
hidden and is at the end of a row is said to be available. In a legal move, any pair
of available matching tiles may be removed. The player wins the game if all tiles are
removed by a sequence of legal moves. An instance of the Mah-Jongg game describes
the arrangement of the rows and, in addition, the tiles that are not hidden. We
let MAH-JONGG(x) be the maximum probability of winning the Mah-Jongg game
with initial arrangement x of the tiles, assuming that the hidden tiles are randomly
and uniformly permuted. We show that approximating the function MAH-JONGG
within ratio n−c is PSPACE-hard, where c < 1 is some constant. Thus, if there
is a polynomial-time algorithm that, on input x, outputs a number in the range
[n−cMAH-JONGG(x), ncMAH-JONGG(x)], then PSPACE = P.

Our new characterization of PSPACE, which is used in proving nonapproximabil-
ity results for these problems, builds on techniques developed in our previous work on
probabilistically checkable debate systems (PCDSs) [10], which in turn builds on tech-
niques of Arora et al. [2], Lund et al. [16], and Shamir [23]. In a PCDS for L, there are
two computationally powerful players, 1 and 0, and a probabilistic polynomial-time
verifier V . Players 1 and 0 play a game in which they alternate writing strings on
a debate tape π. Player 1’s goal is to convince V that an input x ∈ L, and Player
0’s goal is to convince V that x 6∈ L. When the debate is over, V looks at x and π
and decides whether x ∈ L (Player 1 wins the debate) or x 6∈ L (Player 0 wins the
debate). Suppose V flips O(r(n)) coins and reads O(q(n)) bits of π. If, under the best
strategies of Players 1 and 0, V ’s decision is correct with high probability, then we
say that L is in PCD(r(n), q(n)). We showed in [10] that PCD(logn, 1) = PSPACE.
That is, any language in PSPACE can be recognized by a PCDS in which the verifier
uses O(logn) coin flips and queries only a constant number of bits of the debate.

We now restrict attention to PCDSs in which Player 0 follows a very simple
strategy—that of tossing coins. Specifically, whenever Player 0 writes a string of
length f(n) on the debate tape π, the string is chosen uniformly at random from
{0, 1}f(n). We call such a debate system an RPCDS and denote by RPCD(r(n), q(n))
the class of languages recognized by RPCDSs in which the verifier flips O(r(n)) coins
and reads O(q(n)) bits of π. We note that an Arthur–Merlin game [4] is an RPCDS

372 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

in which the verifier is deterministic and q(n) is an arbitrary polynomial; that is,
V reads the entire debate between Arthur (Player 0) and Merlin (Player 1) before
deciding whether the input is in the language. Thus the class of languages accepted
by Arthur–Merlin games is by definition RPCD(0, poly(n)) and is commonly denoted
by IP. It is known that RPCD(0, poly(n)) = PSPACE [16, 23]. In this paper, we prove
the following result.

Theorem. RPCD(logn, 1) = PSPACE.
This theorem shows that a verifier that tosses O(logn) coins does not have to read

the entire debate between Arthur and Merlin. In fact, only a constant number of bits
of the debate are needed. Our result is another in a sequence of results on polynomial-
time interactive complexity classes, starting with the result that IP = PSPACE, that
show that “universal quantification” can be replaced by “random quantification with
bounded error” without changing the complexity class.

In the rest of this section, we first define precisely the PCDS and RPCDS models.
We then describe previous work on related complexity classes.

1.1. Preliminaries. In this section, we define both the PCDS model of [10] and
the new RPDCS model. We conclude with some definitions relating to the approx-
imability of PSPACE-hard functions.

A probabilistically checkable debate system, or PCDS, consists of a verifier V and
a debate format D. The verifier is a probablistic polynomial-time Turing machine
that takes as input a pair x, π, where π ∈ {0, 1}∗, and outputs 1 or 0. We interpret
these outputs to mean “Player 1 won the debate” and “Player 0 won the debate,”
respectively.

A debate format is a pair of polynomial-time computable functions f(n), g(n).
Informally, for a fixed n, a debate between two players, 0 and 1, consistent with
format f(n), g(n), contains g(n) rounds. At round i ≥ 1, Player i mod 2 chooses a
string of length f(n).

For each x of length n, corresponding to the debate format D is a debate tree.
This is a complete binary tree of depth f(n)g(n) such that, from any vertex, one
edge is labeled 0 and the other is labeled 1. A debate is any binary string of length
f(n)g(n). Thus there is a one-to-one correspondence between debates and the paths
in the debate tree. Moreover, a debate is the concatenation of g(n) substrings of
length f(n). Each substring is called a round of the debate, and each debate of this
debate tree has g(n) rounds.

Again for a fixed x of length n, a debate subtree is a subtree of the debate tree
of depth f(n)g(n) such that each vertex at level i (the root is at level 0) has 1 child
if i div f(n) is even, and it has two children if i div f(n) is odd. Informally, the
debate subtree corresponds to a list of “responses” of Player 1 against all possible
“arguments” of Player 0 in the debate, or, more succinctly, a “strategy” of Player 1.

A language L has a PCDS with error probability ε if there is a pair (D =
(f(n), g(n)), V) with the following properties.

1. For all x in L, there is a debate subtree on which, for all debates π labeling
a path of this subtree, V outputs 1 with probability 1 on input x, π. In this case, we
say that x is accepted by (D,V).

2. For all x not in L, on all debate subtrees, there exists a debate π labeling
some path of the subtree such that V outputs 1 with probability at most ε on input
x, π. In this case, we say that x is rejected by (D,V).

This definition allows “one-sided error,” analogous to the type of errors that are
allowed in the complexity class co-RP. (See, for example, Johnson [15] for a definition.)

RANDOM DEBATERS 373

The main result of [10] also holds for a “zero-sided error” definition, with three possible
outputs, 1, 0, and Λ, for “Player 1 won,” “Player 0 won,” and “I don’t know who
won,” respectively. In this case, the verifier must never declare the losing player to
be a winner, but it may, in both the case that x ∈ L and the case that x 6∈ L, say
that it doesn’t know who won.

We say that the verifier makes q(n) queries if the number of bits of π read by
the verifier is at most q(n) when the input x is of size n. The verifier V in a PCDS
is required to be nonadaptive, by which we mean that the bits of π read by V de-
pend solely on the input and the coin flips. If L has a PCDS with error probability
1/3 in which V flips O(r(n)) coins and reads O(q(n)) bits of π, we say that L ∈
PCD(r(n), q(n)). The classical result of Chandra et al. [9] that PSPACE is equal to
Alternating Polynomial Time can be restated as PCD(0, poly(n)) = PSPACE. In [10],
we showed that PSPACE is also equal to PCD(log(n), 1).

We now focus on PCDSs in which Player 0 follows a very simple strategy—that
of tossing coins. Informally, an RPCDS with debate format D = (f(n), g(n)) is a
PCDS in which, at each even-numbered round, Player 0 moves by choosing a string
in {0, 1}f(n) uniformly at random and writing it on the debate tape. Formally, for
a given a debate subtree (i.e., strategy of Player 1), we define the overall probability
that V outputs 1 to be the average over all debates π in the subtree of the probability
that V outputs 1 on debate π. A language L has an RPCDS with error probability ε
if the following hold.

1′. For all x in L, there is a debate subtree for which the overall probability that
V outputs 1 is 1. Again, we say that x is accepted by (D,V).

2′. For all x not in L, on all debate subtrees, the overall probability that V
outputs 1 is at most ε. In this case, we say that x is rejected by (D,V).

Note that item 1′ is equivalent to item 1 above. If L has an RPCDS with error
probability 1/3 in which V flips O(r(n)) coins and reads O(q(n)) bits of π, we say
that L ∈ RPCD(r(n), q(n)).

To conclude this section, we review some definitions relating to approximability of
PSPACE-hard functions. Let f be any real-valued function with domain D ⊆ {0, 1}∗.
Let A be an algorithm that, on input x ∈ {0, 1}∗, produces an output A(x). We say
that A approximates f within ratio ε(n), 0 < ε(n) < 1, if for all x ∈ D, ε(|x|) ≤
A(x)/f(x) ≤ 1/ε(|x|). If algorithm A computes the function g, we also say that g
approximates f within ratio ε.

We say that a function g is PSPACE-hard if PSPACE ⊆ Pg, i.e., if every language
in PSPACE is polynomial-time reducible to g. By “approximating f within ratio ε(n)
is PSPACE-hard,” we mean that, if g approximates f within ratio ε(n), then g is
PSPACE-hard.

1.2. Related work. The theory of probabilistically checkable debate systems
developed here and in [10] plays the role for PSPACE that the theory of probabilis-
tically checkable proof systems (PCPSs) plays for NP. A PCPS is simply a PCDS
with just one player, Player 1, in which case the “debate” corresponds to a “proof.”
(See Arora et al. [2, 3] or Sudan [24] for an overview of PCPSs.) If the verifier is
deterministic and reads all bits of the proof, the model is equivalent in power to a
nondeterministic Turing machine, where the proof corresponds to the nondeterminis-
tic moves. Thus, by definition, NP = PCP(0, poly(n)). Arora et al. [2] showed that
PCP(logn, 1) = NP. Their result shows that there is a dramatic tradeoff between the
number of random bits available to the verifier of such a proof and the number of bits
of the proof that the verifier has to read. The techniques used to prove this result are

374 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

used heavily in our results on PCDSs and RPCDSs. In the next two paragraphs, we
discuss these results and the relationships between the proofs.

In [10], we developed the PCDS in order to extend the work of Arora et al. to
PSPACE. The PCDS model is related to the alternating Turing machine model of
Chandra et al. [9], just as the PCP model is related to the nondeterministic Turing
machine model. Chandra et al. showed that PSPACE is precisely the set of languages
recognized by two-player, perfect-information games, in which the referee is a de-
terministic polynomial-time machine that examines the entire game before deciding
who wins. The alternating Turing machine model formalizes their notion of such a
game. The PCDS model generalizes this game model of Chandra et al. by allowing
the referee to flip coins; this generality allows one to study the tradeoff between the
number of coins used and the number of bits of the game, or debate, that are exam-
ined by the referee. In current notation, the result of Chandra et al. is that PSPACE
= PCD(0, poly(n)). In [10], we showed that PCD(logn, 1) = PSPACE. Thus we get
the same tradeoff between random bits and queries as was previously shown for proof
systems. The proof that PSPACE ⊆ PCD(logn, 1) is done in two parts. One part
shows that PSPACE is contained in the class of languages accepted by PCDSs in
which the verifier reads only a constant number of rounds of the debate. The second
part then shows how the constant number of rounds in this result can be replaced by
a constant number of bits. This second part is proved by extending the work of Arora
et al. on PCPSs.

The result IP = PSPACE [16, 23] shows that Chandra et al.’s characterization
of PSPACE is true even if one of the two players uses the unsophisticated strategy
of simply selecting a move at random. That is, polynomial-time alternating Turing
machines and polynomial-round Arthur–Merlin games accept the same class of lan-
guages. The main result of this paper shows that this assumption that one player
plays randomly does not destroy the tradeoff between the referee’s use of random-
ness and the number of bits of the game that the referee reads. Namely, we prove
that RPCD(logn, 1) = PSPACE. Again, the proof that PSPACE ⊆ RPCD(logn, 1) is
done in two parts. The first shows that PSPACE is contained in the class of languages
accepted by PCDS’s in which the verifier reads only a constant number of rounds of
Player 1 and a constant number of bits of Player 0. The second part, just as in [10],
shows how the constant number of rounds in this result can be replaced by a constant
number of bits.

All of these results on PCPSs, PCDSs, and RPCDSs can be used in different
ways to prove nonapproximability results for hard problems. The result of Arora et
al. that NP = PCP(logn, 1) has been applied to prove that several NP-hard problems
are hard to approximate closely. These problems include optimization versions of
Satisfiability, Independent Set [2, 3], Clique [13], and Colorability [17]. For example,
the MAX SAT function maps a Boolean formula in 3-conjunctive normal form to the
maximum number of clauses of that formula that are simultaneously satisfied by some
assignment to the variables. Bellare et al. [5] showed that there is no polynomial-time
algorithm that can approximate MAX SAT within ratio 112/113, unless NP = P. More
recently, Bellare and Sudan [6] improved 112/113 to 64/65, but their assumption is
weaker than NP = P.

Similarly, the result that PCD(logn, 1) = PSPACE yields nonapproximability
results for optimization versions of PSPACE-hard problems, including Quantified
Satisfiability, Generalized Geography, and Finite Automata Intersection [10]. For
example, the optimization version of Quantified Satisfiability is defined as follows.

RANDOM DEBATERS 375

Suppose that the variables of the formula are assigned values, in order of quantifica-
tion, by two players, 0 and 1. Players 0 and 1 assign values to the universally and
existentially quantified variables, respectively. If Player 1 can guarantee that k clauses
of the formula will be satisfied, regardless of what Player 0 chooses, we say that k
clauses of the formula are simultaneously satisfiable. The function MAX QSAT maps
a quantified formula to its maximum number of simultaneously satisfiable clauses. In
[10], we show that approximating MAX QSAT within some constant factor c < 1 is
PSPACE-hard.

The tools developed in [10] are useful in proving nonapproximability results for
PSPACE-hard problems that can be cast as two-person games between two powerful
players. However, these tools do not seem to lead to similar proofs for the stochas-
tic PSPACE-hard problems that are considered in this paper. Our new results on
RPCDSs are used to obtain such proofs in section 3.

There has been other very recent work, both on approximation algorithms and on
nonapproximability results for PSPACE-hard problems. Using direct reductions from
variations of the Quantified Satisfiability problem, Hunt et al. [14] and Marathe et
al. [18] showed that several PSPACE-hard problems are hard to approximate, unless
PSPACE = P. These include algebraic problems and graph problems on hierarchically
defined graphs. Marathe et al. [19] proved that several graph problems such as vertex
cover and independent set, when restricted to planar, hierarchically defined graphs,
are PSPACE-hard and yet do have polynomial-time approximation schemes. They
also developed approximation algorithms for restricted optimization problems on pe-
riodically defined graphs. Such problems were proved to be PSPACE-hard by Orlin
[20].

The rest of this paper is organized as follows. Our main result that RPCD(logn, 1)
= PSPACE is proven in section 2. In section 3, we prove several nonapproximability
results for stochastic functions, using this characterization of PSPACE. Finally, in
section 4, we prove additional nonapproximability results, using the result that IP =
PSPACE.

2. Language-recognition power. In this section, we prove our main result,
that RPCD(logn, 1) = PSPACE. To prove the (harder) direction that PSPACE ⊆
RPCD(logn, 1), we build on several techniques of Lund et al. [16], Shamir [23], Arora
et al. [3, 2], and Condon et al. [10]. We first describe these results, and, in Lemma
2.3, we put them together to prove PSPACE ⊆ RPCD(logn, 1).

The first result we need, Lemma 2.1, shows that in order to prove that PSPACE
⊆ RPCD(logn, 1), it is sufficient to show that any language in PSPACE can be
recognized by a RPCDS in which the verifier uses O(logn) random bits, reads a
constant number of rounds of Player 1, and reads a constant number of bits of Player
0.

Lemma 2.1. Suppose L is accepted by an RPCDS (D,V) in which the verifier
uses O(logn) random bits, reads a constant number of rounds of Player 1, and reads
a constant number of bits of Player 0. Then L is accepted by an RPCDS (D′, V ′)
in which the verifier uses O(logn) random bits, reads a constant number of bits of
Player 1, and reads a constant number of bits of Player 0.

Proof (sketch). We showed in [10, Theorem 3.2] that any language recognized
by a PCDS in which V flips O(logn) coins and reads O(1) rounds of the debate is
also recognized by a PCDS in which V flips O(logn) coins and reads O(1) bits of
the debate. The lemma follows by a straightforward modification of the proof of [10,
Theorem 3.2].

376 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

Briefly, if D has N rounds on a given input, then D′ has N + 1 rounds. Let the
players of (D,V) be 0 and 1 and the players of (D′, V ′) be 0′ and 1′. Roughly, the
idea is that, in rounds 1 through N , Player 1′ plays as Player 1 does in debate D,
except that each move is encoded using a special encoding function, known as the
low-degree polynomial code [2]. The string written by 1′ in round N + 1 contains
a proof, πR, for each random string R of V . The proof πR shows that V outputs 1
given random string R and the decoded debate of rounds 1, . . . , N . Moreover, V ′ can
check this proof while examining only a constant number of bits.

The verifier V ′ chooses a random seed R and computes the indices i1, i2, . . . , iq
of rounds that V queries using the random seed R. Using a protocol of Arora et
al. [2, 3], V ′ need only examine a constant number of bits of each round i1, i2, . . . , iq
and a constant number of bits of round N + 1 in order to verify that V outputs 1 on
random string R and the decoded debate of rounds 1, . . . , N .

The correctness of this protocol follows from Arora et al. [2, 3]. For details, see
[10].

The next lemma is implicit in the proof that IP = PSPACE [16, 23].
Lemma 2.2. Let L be a language in PSPACE and x = x1x2 . . . xn be an input.

Then there is a sequence of multivariate polynomials

g1(y1,1, . . . , y1,n1
) (where n1 = n), g2(y2,1, . . . , y2,n2

), . . . , gm(ym,1, . . . , ym,nm)

with the following properties.
1. If x ∈ L, then g1(x1, . . . , xn) = 1, and, if x 6∈ L, then g1(x1, . . . , xn) = 0.

(Thus membership in L can be reduced to a g1-question.)
2. There exist polynomial-time computable functions h1,i, h2,i, and fi such that

gi(y) = fi(gi+1(h1,i(y)), gi+1(h2,i(y))) for all y. (That is, one gi-question reduces to
two gi+1-questions.)

3. Finally, gm is a polynomial-time computable function, and the degree of all
the polynomials is bounded by d = poly(n).

In [16, 23], each gi is a polynomial that can be explicitly written as a formula
of polynomial length in terms of sums and products but may result in a formula of
exponential length when these sums and products are expanded.

Finally, we describe a technique, called the polynomial verification technique, that
was proposed by Babai as a generalization of a technique first used by Lund et al. [16].
Roughly, this method “reduces” a set of questions of the form “Is the value of multi-
variate polynomial g at point a equal to v?” to one such question.

To describe this technique precisely, we need the following definitions. Given a
(multivariate) polynomial g over a finite field F , a g-question is a pair (a, v), where
a is an assignment of values in F to the indeterminates in g and v is a value in F .
Let {(a1, v1), (a2, v2), . . . , (al, vl)} be a set of g-questions. Let L(t) be the interpolated
polynomial of degree l−1 such that L(j) = aj for every j = 1, 2, . . . , l. (In “L(j),” the
symbol “j” is used as an abbreviation for “the jth element of the finite field F .”) Let
p be the (univariate) polynomial g(L(t)). Note that p(j) = g(aj) for j = 1, 2, . . . , l.

The polynomial verification technique receives as input the set of g-questions and
a polynomial p′. The technique outputs one g-question (L(r), p′(r)), where r is chosen
uniformly at random from F . Suppose that p′(j) = vj for all j. Then the output has
the following property. If all input g-questions are good, that is, g(aj) = vj , 1 ≤ j ≤ l,
and p′ = p, the output g-question is also good. Otherwise, with probability at least
1 − d(l − 1)/|F |, the output g-question is not good. Correctness in the latter case
follows from the fact that two distinct polynomials of degree d(l − 1) can agree on

RANDOM DEBATERS 377

at most d(l − 1) points. Note that, since p′(j) = vj and p(j) = g(aj) for all j, then
p′ 6= p because at least one question is not good. Thus the probability that a random
point on p′ agrees with p is low (at most d(l−1)/|F |). This completes the description
of the polynomial verification technique.

To motivate our proof that PSPACE ⊆ RPCD(logn,1), it is useful to review the
proof that PSPACE ⊆ IP. In that proof, an RPCDS for a language L in PSPACE is ob-
tained by combining the polynomial verification technique and Lemma 2.2. Roughly,
in each odd-numbered round 2k − 1 of the debate, Player 1 writes a gk-question,
where gk is defined as in Lemma 2.2. In the first round, the g1-question should
be ((x1, . . . , xn), 1), which is equivalent to claiming that x ∈ L. In round 2k + 1,
where k ≥ 1, the gk+1-question written by Player 1 should be obtained from the
gk-question written by Player 1 in round 2k − 1 by first reducing the gk-question
to two gk+1-questions, as in part 2 of Lemma 2.2, and then by randomly reducing
these two questions to one gk+1-question, using the polynomial verification technique.
The random number r needed in this reduction is provided by Player 0 in round 2k
and the polynomial p′ is provided by Player 1 in round 2k − 1 (in addition to the
gk-question). To verify that x is indeed in L, the verifier does three things. First, the
verifier checks that the g1-question written by Player 1 is ((x1, . . . , xn), 1). Second,
the verifier checks that, for each k ≥ 1, the gk+1-question in round 2k+ 1 is correctly
computed from the gk-question in round 2k − 1, according to the above description.
Finally, the verifier checks that the gm-question written in the last round of the debate
is good; by property 3 of Lemma 2.2, this can be done in polynomial time. If all three
checks are passed, the verifier accepts; otherwise, the verifier rejects. For details, see
[16, 23].

Unfortunately, this protocol requires that the verifier read all rounds of the debate
system. In Lemma 2.3, building on the ideas of the above protocol, we describe a new
protocol in which the verifier need only read a constant number of rounds of Player
1 and a constant number of bits of Player 0. The key idea of the new protocol is to
add much “redundancy” in the rounds of Player 1 in order to enable the verifier to
check correctness while looking at only a constant number of rounds. Roughly, this
is achieved by requiring that Player 1 write in each odd-numbered round not just a
single gk-question but also all the questions written in previous rounds.

In each odd-numbered round k and for each i = 1, 2, . . . ,m, Player 1 actually
writes a (possibly empty) set of gi-questions, all from some finite field F . In the first
round, the only question that Player 1 writes should be ((x1, . . . , xn), 1), which is a
g1-question, equivalent to claiming that x ∈ L. Player 1 claims that all gi-questions
written are good. In order to enable the verifier to verify this, Player 1 furthermore
writes a univariate polynomial pi for each i such that the set of gi-questions is not
empty in round k. Player 1 claims that, for every i, the polynomial pi is the polynomial
gi(Li(t)), where Li is the polynomial interpolating the domains of the gi-questions,
as in the polynomial verification technique.

Player 0’s random move at round k + 1 supplies the random point r ∈ F on the
curve L to be used in the polynomial verification technique for each i. By first using
the polynomial verification technique and then reducing the resulting gi-question to
two gi+1-questions, as in Lemma 2.2, any polynomial number of gi-questions can
be probabilistically reduced to two gi+1-questions in one round. The list of gi+1-
questions at round k+ 2 is the list of gi+1-questions at round k, plus these additional
two questions. Since at most two new gi-questions are introduced in each odd round,
the total number of gi-questions in any round is polynomial. The main technical

378 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

contribution of our proof shows that the resulting “redundancy” is sufficient to enable
the verifier to check the debate while examining O(1) rounds.

Also, in round 4m + 1, Player 1 writes a sequence of strings (r2, r4, . . . , r4m).
Player 1 claims that these are the random moves of Player 0 in the even-numbered
rounds. This enables the verifier to read any of the random strings of Player 0 by
examining only one round (of Player 1). The verifier can verify with high probability
that Player 1 writes the correct strings by reading just a constant number of bits of
the rounds of Player 0.

Lemma 2.3. PSPACE ⊆ RPCD(logn, 1).
Proof. Let L be a language in PSPACE. Lemma 2.1 shows that it is sufficient to

construct an RPCDS for L in which the verifier uses O(logn) random bits, reads a
constant number of rounds of Player 1, and reads a constant number of bits of Player
0.

The RPCDS is constructed as follows. The debate system has 4m + 1 rounds.
In each odd-numbered round, for every i = 1, 2, . . . ,m, Player 1 writes a set of gi-
questions

{(ai,1, vi,1), (ai,2, vi,2), . . . , (ai,li , vi,li)},

where ai,j ∈ Fni and vi,j ∈ F for some finite field F whose size will be determined
later. Here l1 = 1; that is, there is only one g1-question (a1,1, v1,1). Also, for i > 1,
li = 0 if the round number k ≤ 2i − 3 and otherwise li increases by 2 in each
subsequent odd-numbered round. That is, if k > 2i − 3, the number of gi-questions
in odd-numbered round k is 2 more than the number of gi-questions in round k − 2.
Furthermore, for each i such that li > 0, Player 1 writes a univariate polynomial pi(t)
of degree at most d(li − 1). Finally, in round 4m+ 1, Player 1 also writes a sequence
of strings (r2, r4, . . . , r4m). This completes the description of the debate.

Before describing the verifier, we need one definition. Let {(a′i,j , v′i,j), 1 ≤ i ≤ m,
1 ≤ j ≤ l′i} be the gi-questions and {p′i} be the polynomials in odd-numbered round
k − 2, and let {(ai,j , vi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ li} be the gi-questions and {pi} be the
polynomials in round k, where 1 < k ≤ 4m+1. Let L′i be the polynomial interpolating
the points {a′i,j} in round k− 2, as in the polynomial verification technique. For odd
k > 1, we say that round k is locally consistent with respect to r if the following holds.
First, for all i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ li, pi(j) = vi,j . Also, for all i, 1 ≤ i ≤ m, if
l′i−1 = 0 then li = 0, and if l′i−1 > 0 then

(ai,1, . . . , ai,li) = (a′i,1, . . . , a
′
i,l′
i
, h1,i−1(L′i−1(r)), h2,i−1(L′i−1(r))),

and

(vi,1, . . . , vi,li) = (v′i,1, . . . , v
′
i,l′
i
, wi,1, wi,2),

where p′i−1(r) = fi−1(wi,1, wi,2). Note that (L′i−1(r), p′i−1(r)) is the single gi−1-
question obtained by applying the polynomial verification technique to the set of
gi−1-questions in round k − 1. Applying property 2 of Lemma 2.2, one can check
whether this single gi−1-question is good by checking that p′i−1(r) = fi−1(wi,1, wi,2)
and that the two gi-questions

(h1,i−1(L′i−1(r)), wi,1) and (h2,i−1(L′i−1(r)), wi,2)

are good. Thus round k is locally consistent with respect to r if, for each i, 1 ≤ i ≤ m,
the list of gi-questions at round k consists of the list of gi-questions at round k − 2,

RANDOM DEBATERS 379

plus two additional questions that can used to verify that the gi−1-questions at round
k − 2 are good.

We now describe the protocol of the verifier V . V first reads the final round
4m + 1. V checks that, for all pairs (am,j , vm,j) in round 4m + 1, gm(am,j) = vm,j
and also that (a1,1, v1,1) = ((x1, . . . , xn), 1). If not, V rejects. Otherwise, V reads a
random odd-numbered round k > 1 and checks that (i) round k is consistent with the
final round 4m+ 1—that is, every pair (ai,j , vi,j) written in round k is also written in
round 4m + 1—and that (ii) round k is locally consistent with respect to the string
rk−1 written by Player 1 in round 4m + 1. Finally, V reads a random bit of round
k−1 of Player 0 and checks that it is equal to the corresponding bit of the string rk−1

written by Player 1 in round 4m + 1. If all of these checks are satisfied, V accepts;
otherwise, V rejects.

It is straightforward to show that if x ∈ L, then Player 1 has a strategy that
causes V to accept with probability 1. Hence suppose that x 6∈ L. For a given run of
the RPCDS, if, in the final round of the debate, (a1,1, v1,1) 6= ((x1, . . . , xn), 1), then
V rejects; hence suppose that, in the final round, (a1,1, v1,1) = ((x1, . . . , xn), 1). Let
S be the set of odd-numbered rounds k > 1 that are locally consistent with respect
to the string rk−1 written by Player 1 in the final round, are consistent with the final
round, and have ∆(rk−1, sk−1) < 1/3, where sk−1 is the move of Player 0 in round
k − 1 and ∆(r, s) is the fraction of bits that differ in r and s. We say that such a
run is S-consistent. We will show that, if Player 1 is S-consistent for some S with
|S| ≥ m, then, with very high probability, Player 1’s move in round 4m+ 1 contains
a pair (am,j , vm,j) for which gm(am,j) 6= vm,j . This follows from the next claim and
the fact that the run is S-consistent.

Claim. Let S contain the elements i1 < i2 < · · · < im. If Player 1 is S-
consistent and g1(x1, . . . , xn) = 0, then, for every k = 1, 2, . . . ,m, with probability at
least 1 − 4mkd/|F |1/18 (computed over Player 0’s coin tosses), there exists some j
such that gk(ak,j) 6= vk,j, where (ak,j , vk,j) are played in the ikth round.

Proof. The claim is proven by induction on k. For k = 1, the claim holds: Because
Player 1 is S-consistent, the pair ((x1, . . . , xn), 1) is written by Player 1, whereas by
assumption g1(x1, . . . , xn) = 0.

Thus assume that, for some pair (ak−1,j , vk−1,j) in round ik−1, gk−1(ak−1,j) 6=
vk−1,j . This happens with probability at least 1 − 4m(k − 1)d/|F |1/18 by the in-
ductive hypothesis. Because the run is S-consistent, this pair is also written in
round ik − 2. This implies that the polynomial p′k−1 played in round ik − 2 is not
the polynomial gk−1(L′k−1(t)). Thus if r = rik−1 is not a root of the polynomial
p′k−1(t)− gk−1(L′k−1(t)), then p′k−1(r) 6= gk−1(L′k−1(r)), implying that either

gk(h1,k−1(L′k−1(r))) 6= wk,1 or gk(h2,k−1(L′k−1(r))) 6= wk,2.

Otherwise, p′k−1(r) 6= fk−1(wk,1, wk,2), which contradicts the fact that round ik is
locally consistent with respect to r.

The claim now follows because the polynomial p′k−1(t) − gk−1(L′k−1(t)) has at
most 4md roots (since l′k−1 is always at most 4m), and the number of s’s such that

∆(s, r) < 1/3 for some root r is less than |F |17/18 (using Chernov bounds).
The above claim shows that, if Player 1 plays S-consistently for any fixed S

with |S| ≥ m, then with probability at most poly(n)/|F |1/18, the verifier V accepts.
Thus to bound the probability that V accepts, on a run in which Player 1 plays S-
consistent rounds for some S, where |S| ≥ m, sum over all possible S to obtain a
bound of 22m poly(n)/|F |1/18. The error is thus less than 1/3 for sufficiently large F .

380 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

If Player 1 does not play S-consistently for any S of size greater than m, the
verifier rejects with probability at least 1/6. This is because, with probability at least
1/2, V checks a round k that is not S-consistent, and then, with probability at least
1/3, V detects that this round is not S-consistent.

Our main result on the complexity class RPCD(logn, 1) now follows easily.

Theorem 2.4. RPCD(logn, 1) = PSPACE.

Proof. Lemma 2.3 proves one direction, that PSPACE ⊆ RPCD(logn, 1). In
order to prove the other direction, first note that RPCD(poly(n), poly(n)) ⊆ RPCD(0,
poly(n)) because, in the last round of the debate, Player 0 can supply the verifier of
an RPCDS with random bits; hence the verifier needs no random bits as long as it
can read all bits in the debate. Combining this with the result that RPCD(0, poly(n))
= IP = PSPACE [16, 23] gives Theorem 2.4.

3. Nonapproximability results based on RPCD(logn, 1). In this section,
we prove that several PSPACE-hard problems are hard to approximate. The PSPACE-
complete language SSAT (or “Stochastic Satisfiability”), introduced by Papadimitriou
[21], plays an important role in the proofs in this section. In section 3.1, we define the
language SSAT and, using our result that PSPACE = RPCD(logn, 1), show that the
corresponding optimization problem is hard to approximate. In the following three
sections, we prove that optimization versions of Stochastic Generalized Geography,
Dynamic Graph Reliability, and Mah-Jongg are all hard to approximate.

3.1. Stochastic Satisfiability (SSAT). An SSAT instance is a Boolean for-
mula φ over the set of variables {x1, . . . , xn} in conjunctive normal form (CNF) with
three literals per clause. The instance is in the language if there is a choice of Boolean
value for x1 such that for a random choice (with true and false each chosen with prob-
ability 1/2) of x2, there is a choice for x3, etc., so the probability that φ is satisfied is
greater than 1/2. Think of an instance as a game between an existential player and
a random player. For each odd value of i, the existential player chooses an optimal
Boolean value for xi, where “optimal” means “maximizes the number of clauses of φ
that are satisfied.” For each even value of i, the random player flips a fair coin to get a
Boolean value for xi. The odd-numbered variables are called existential variables, and
the even-numbered variables are called random variables. The players choose boolean
values in order, by increasing value of i. We define the function MAX-CLAUSE SSAT,
whose value on a given instance φ is the expected number of clauses that are satisfied
if the existential player follows an optimal strategy.

Theorem 3.1. There is a constant 0 < c < 1 such that approximating MAX-
CLAUSE SSAT within ratio c is PSPACE-hard.

Proof. Let L be a language in PSPACE. From section 2, there is an RPCDS (D,V)
for L, where V is polynomial-time bounded and uses r(n) = O(logn) random bits and
O(1) queries. Let D = (f(n), g(n)). Without loss of generality, we can assume that
f(n) is even for all n. We reduce the problem of deciding whether a string x is accepted
by (D,V) to the problem of approximating the expected number of simultaneously
satisfiable assignments of a quantified 3CNF formula within a constant factor.

To do this, it is sufficient to construct a formula from x and (D,V) such that if
x ∈ L, then all clauses are simultaneously satisfiable, but, if x 6∈ L, then the expected
number of simultaneously satisfiable clauses is a constant fraction < 1 of the total
number of clauses. Let |x| = n. The formula has f(n)g(n) variables, corresponding to
the bits of a debate between Players 0 and 1, ordered as they appear in the debate. By
adding extra variables (which will not appear in the clauses), we can ensure that the

RANDOM DEBATERS 381

variables corresponding to rounds of Player 1 are existential (odd-numbered) variables
and those corresponding to rounds of Player 0 are random (even-numbered) variables.

For each sequence of random bits R of length r(n), there is a subformula with
s = O(1) clauses. The subformula is satisfied by a truth assignment to the variables
if and only if V outputs 1, when the query bits are as in the truth assignment. Such
a subformula can be constructed using those variables corresponding to the bits of
a debate that are queried on random sequence R. A constant number of additional
existential variables are needed so that the subformula is in 3CNF form; these should
be ordered after all variables corresponding to bits of the debate.

If x is accepted by (D,V), then there is a debate subtree for which the overall
probability that V outputs 1 is 1. This implies that the expected fraction of simul-
taneously satisfiable clauses of the formula is 1 if the existential player assigns values
to the existential variables according to this debate subtree. If x is not accepted by
(D,V), then, for any debate subtree, the overall probability that V outputs 1 is at
most 1/3. Thus, no matter how the existential variables are chosen, the expected
fraction of subformulas satisfied is at most 1/3. Since each subformula contains O(1)
clauses, it follows that the expected fraction of clauses that can be simultaneously
satisfied is a constant fraction < 1.

3.2. Stochastic Generalized Geography (SGGEOG). In this section, we
derive a nonapproximability result for a stochastic version of Generalized Geography.
Generalized Geography, as defined by Schaefer [22], is a game played on a directed
graph G with a distinguished vertex s. A marker is initially placed on s, and two
players, 1 and 0, alternately move the marker along arcs of the graph, with the
constraints that Player 1 moves first and that each arc can be used at most once. The
first player unable to move loses. The language GGEOG is the set of pairs (G, s) on
which Player 1 has a winning strategy.

In previous work [10], we defined the function MAX GGEOG that maps a pair
(G, s) to the largest integer k such that Player 1 can force the game to be played for k
moves. (Note that Player 1’s objective is to keep the game going as long as possible,
whether or not Player 1 ultimately wins.) Here we consider a variation, Stochastic
Generalized Geography, in which Player 0 plays randomly. At each even-numbered
move of the game, Player 0 simply chooses an arc uniformly at random among all of
the unused arcs out of the vertex at which the marker currently sits. The objective of
Player 1 is to maximize the length of the game. The function MAX SGGEOG maps a
pair (G, s) to the expected length of the game that is achieved when Player 1 follows
an optimal strategy.

Theorem 3.2. For any constant 0 < c < 1/2, it is PSPACE-hard to approximate
MAX SGGEOG within ratio n−c, where n is the number of vertices of the graph.

Proof. We present an approximability-preserving reduction from MAX-CLAUSE
SSAT. A key part of our construction is a gadget (directed graph) with the following
properties, where ε > 0 is some constant. Let φ be an instance of SSAT with n
variables and m clauses. The gadget constructed from φ has a source vertex and a
destination vertex. If φ ∈ SSAT, then Player 1 has a strategy that guarantees that
the destination is reached from the source, with the last move being by Player 0, if the
geography game is played from the source vertex, starting with Player 0. However, if
φ 6∈ SSAT, then on each strategy of Player 1, one of two facts hold: (i) the destination
is reached from the source, with probability at most 1−ε, with the last move being by
Player 0, or (ii) the destination is reached from the source, with probability at most
(1− ε)n, with the last move being by Player 1.

382 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

Let the size of this gadget be bounded by p(|φ|) for some polynomial p of degree
> 1. Given this gadget, the reduction builds an instance ((V,A), s) of MAX SGGEOG
as follows. The directed graph (V,A) contains n independent copies of the gadget,
say g1, . . . , gn. The distinguished vertex s is an additional vertex, with a single arc to
the source vertex of g1. In addition, A contains a directed edge from the destination
vertex of of gadget gi to the source vertex of gadget gi+1, for 1 ≤ i < n. Finally,
(V,A) contains a “tail” starting at the destination vertex of gn. The length of the
tail is (np(|φ|))K , where K is some constant that we will determine later. That is,
the tail consists of (np(|φ|))K ordered vertices, with an edge between the ith and the
(i+ 1)st and one additional edge between the destination vertex of the nth gadget gn
and the first vertex of the tail.

Then if φ ∈ SSAT, Player 1 has a strategy that guarantees that the tail is reached
from s. Namely, Player 1 first moves to the source vertex of g1, and then uses the
strategy that guarantees that the destination vertex of g1 is reached on a move of
Player 0. From there, Player 1 follows the single arc to the source vertex of g2, and
so on, until the destination vertex of gn is finally reached. At that point, the tail is
traversed, and so the length of the game is at least (np(|φ|))K , that is, the length of
the tail. However, if φ 6∈ SSAT, then the properties of the gadgets above guarantee
that on all strategies of Player 1, the probability that the tail is reached is at most
(1− ε)n. Hence the expected length of the game is at most np(|φ|) (that is, the size of
the graph (V,A), excluding the tail) + (1− ε)n(np(|φ|))K . Thus for sufficiently large
φ, a multiplicative factor of approximately (np(|φ|))K−1/2 separates the expected
length of the game in the cases φ ∈ SSAT, and φ 6∈ SSAT, respectively. The size
(i.e., the number of nodes) of the new instance is N = np(|φ|) + (np(|φ|))K . Thus an
approximation within a factor of N−(K−2)/2K = N−(1/2−1/K) would distinguish the
two cases. This immediately yields the theorem.

It remains to explain how the gadget is constructed. Assume without loss of
generality that n (the number of variables of φ) is odd and that MAX-CLAUSE
SSAT(φ) ≥ 1. In the gadget (Vg, Ag), the vertex set Vg consists of V1, the “variable-
assignment vertices,” V2, the “clause vertices,” V3, the “staircase vertices,” and in
addition, a source vertex sg and a destination vertex dg.

V1 =

(n⋃
i=1

{ui, qi, qi, wi, wi, zi, z′i}
)
∪ {un+1}.

V2 consists of {y1, . . . , ym}. V3 contains 2n sets of vertices, each of size 3t, where t
will be chosen later; we denote them by

{wi,1, w′i,1, w′′i,1, . . . , wi,t, w′i,t, w′′i,t} and {wi,1, w′i,1, w′′i,1, . . . , wi,t, w′i,t, w′′i,t},

for 1 ≤ i ≤ n.
The arc set Ag also consists of four parts, A1, A2, A3, and A4, that serve the

following functions. A1 connects the vertices of V1 into a sequence of hexagons: for
each odd value of i, 1 ≤ i ≤ n, the digraph contains the arcs (ui, qi), (ui, qi), (qi, wi),
(qi, wi), (wi, zi), (wi, zi), (zi, z

′
i), (z′i, ui+1); for each even value of i, 1 ≤ i ≤ n− 1, it

contains the arcs (ui, wi), (ui, wi), (wi, qi), (wi, qi), (qi, zi), (qi, zi), (zi, z
′
i), (z′i, ui+1).

A2 connects the vertex un+1 to the clause vertices and the clause vertices back to the
hexagons as follows. For 1 ≤ j ≤ m, there is an arc (un+1, yj). For each literal in the
jth clause of φ, there is an arc (yj , v), where v is the “w-vertex” corresponding to this
literal. For example, if the 17th clause of φ is x2∨x7∨x12, the arcs (y17, w2), (y17, w7),

RANDOM DEBATERS 383

- z′2

�

�

R

R

-

z′1

-

-
�

�

R

R

-

-

-- u2

w2

w2 q2

q2

z2u1

q1

q1 w1

z1

w1

Fig. 1. The start of the variable assignment (hexagon) section.

�

*

un+1
z

R

?

66

w2

w7

w12

y1

y2

y17

ym

Fig. 2. The arcs (un+, yj) and those from y17 back to the hexagons, where c17 = x2 ∨ x7 ∨ x12.

and (y17, w12) are present. A3 creates 2n “staircases” hanging off the vertices wi and
wi: for 1 ≤ i ≤ n, the arcs (wi, wi,1), (wi,1, w

′
i,1), and (wi,1, w

′′
i,1) are present, as are the

arcs (w′′i,j , wi,j+1), (wi,j+1, w
′
i,j+1), and (wi,j+1, w

′′
i,j+1), for 1 ≤ j ≤ t − 1; analogous

arcs form staircases emanating from the wi’s. Finally, A4 contains the arc (sg, u1),
which connects the source vertex sg to the first variable-assignment vertex u1, and

also arcs (w′′i,t, dg) and (w′′i,t, dg), 1 ≤ i ≤ n, which connect the end of each staircase
to the destination vertex dg. Figures 1–3 give examples of hexagons, clause-arcs, and
staircases.

Within a gadget (Vg, Ag), the Stochastic Generalized Geography game plays out
as follows. We assume that Player 0 initially moves from the source vertex sg along
the single arc to vertex u1. Player 1 (the existential player) assigns (optimally) either
true or false to x1. If Player 1 assigns true, the next two moves of the game are
(u1, q1), played by 1, and (q1, w1), played by 0. Note that 0 has no choice but to move
the marker along (q1, w1). Then Player 1 plays (w1, z1), 0 plays (z1, z

′
1), and 1 plays

(z′1, u2). We will consider later the case where Player 1 chooses the arc (w1, w1,1). If
Player 1 assigns false to x1, then the analogous moves are made using the vertices w1,
q1, etc. After (z′1, u2) has been traversed, Player 0 (the random player) assigns (with
equal probability) true or false to x2. If Player 0 assigns true, the next move of the
game is (u2, w2), played by 0. Play continues along the arcs (w2, q2), (q2, z2), (z2, z

′
2),

(z′2, u3), played by 1, 0, 1, 0. As before, if Player 0 assigns false to x2, analogous
moves are made using the vertices w2, q2, etc. From u3, play continues in this fashion
until Player 1 moves along either (z′n, un+1) or (z′n, un+1), depending on the Boolean
value chosen for xn. This ends the “variable assignment” phase of the game.

384 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

?

?

?

w′′i,2

?

?

-

-

wi

wi,1

w′i,2

w′i,1

w′′i,1

wi,2

Fig. 3. The start of the staircase emanating from wi.

Player 0 now chooses uniformly at random among the arcs (un+1, y1), (un+1, y2),
. . . , (un+1, ym). Suppose Player 0 chooses (un+1, yj). If the jth clause of φ is satisfied
by the assignment chosen in the first phase of the game, then Player 1 chooses an arc
(yj , wi) (resp. (yj , wi)) corresponding to a true literal xi (resp. xi) that appears in
the jth clause. The game then takes 2t more steps because it follows the “spine” of
the staircase emanating from wi (resp. wi); Player 0 will have no choice but to take a
step down the spine, and Player 1 will always choose to go one step further down the
spine instead of off onto a “stair” because the game ends as soon as a stair is chosen.
The end of the spine is reached on a move of Player 1, and finally Player 0 follows the
single arc to the destination dg. If the jth clause is not satisfied, then Player 1 must
choose an arc (yj , wi) (resp. (yj , wi)) corresponding to a false literal xi (resp. xi). For
concreteness, suppose that Player 1 chooses the arc (yj , wi). Both of the arcs from
wi are unused in this case; in the previous case, when xi was a true literal, only the
arc (wi, wi,1) was unused. Player 0 chooses each unused arc with probability 1/2. If
Player 0 chooses (wi, wi,1), the game continues for 2t moves as before to destination
dg; otherwise, the game ends in O(1) moves and dg is not reached.

The probability of reaching dg is thus equal to 1 if φ ∈ SSAT since in this case
Player 1 can guarantee that all clauses are satisfied by the variable assignment. How-
ever, if φ 6∈ SSAT, then the probability that a given clause is satisfied by the variable
assignment chosen in the first phase of the gadget game is at most k/m, where k =
MAX-CLAUSE SSAT(φ). If in the second phase of the game, Player 0 chooses a
clause that is not satisfied, then with probability 1/2, the destination is not reached.
Hence the probability of reaching dg is at most k/m+ (1− k/m)/2 ≤ 1− ε, for some
ε > 0, by Theorem 3.1. Thus, if φ 6∈ SSAT, then on a strategy of Player 1 that never
goes off into a staircase, fact (i) of the first paragraph of the proof holds. It remains to

RANDOM DEBATERS 385

consider those strategies of Player 1 that go off into a staircase instead of continuing
down the string of hexagons. If Player 1 chooses, say, the arc (wi, wi,1) on the first
move from wi, then Player 0 chooses between the stair arc (wi,1, w

′
i,1) and the spine

arc (wi,1, w
′′
i,1). With probability 1/2, the stair arc would be chosen, and the game

would end after one more step. If the spine arc were chosen, the same choice would
confront Player 0 after one more step. Thus the probability of reaching the end of
the spine is 2−t, where t is the number of stairs. We choose t so that 2−t < (1− ε)n
to ensure that in this case fact (ii) holds.

We note that the result of Theorem 3.2 could also be proved using a reduction
from the MAX-PROB SSAT function, defined in section 4.

3.3. Dynamic Graph Reliability (DGR). Graph Reliability is a #P-com-
plete problem studied by Valiant [25]: Given a directed, acyclic graph G, source and
sink vertices s and t, and a failure probability p(v, w) for each arc (v, w), what is the
probability that there is a path from s to t consisting exclusively of arcs that have not
failed? Papadimitriou [21] defines Dynamic Graph Reliability as follows: The goal of
a strategy is still to traverse the digraph from s to t. Now, however, for each vertex
x and each arc (v, w), there is a failure probability p((v, w), x); the interpretation is
that if the current vertex is x, the probability that the arc (v, w) will fail before the
next move is p((v, w), x). The language DGR consists of those digraphs for which
there exists a strategy for getting from s to t with probability at least 1/2. A natural
optimization problem is MAX-PROB DGR: Given a graph, vertices s and t, and a
set {p((v, w), x)} of failure probabilities, what is the probability of reaching t from s
under an optimal strategy?

To obtain a nonapproximability result for MAX-PROB DGR, we need the fol-
lowing variant of Theorem 3.1.

Theorem 3.3. Consider the restriction of SSAT to instances in which the random
variables appear only nonnegated and there is at most one random variable per clause.
There are constants 0 < c1 < c2 < 1 such that, given such a restricted instance with
m clauses, it is PSPACE-hard to decide whether on average at least c2m clauses are
satisfiable or whether at most c1m clauses are satisfiable.

Proof. From the proof of Theorem 3.1, we can conclude that, given a formula
φ, it is PSPACE-hard to distinguish between the cases that the expected number of
simultaneously satisfiable clauses is at most c1m or at least c2m, for some constants
c1 and c2 such that 0 < c1 < c2 < 1. It also follows from this proof, together with the
proof of Theorem 2.4, that this is true for instances with only one random variable
per clause. To see this, note that in the proof of Theorem 2.4, the verifier queries
only one of Player 0’s bits; thus each clause of any subformula in the construction of
Theorem 3.1 has only one random variable.

We now show how to modify that construction so that no random variable is
negated in the resulting formula. To do this, we use the identity

x̄yz = x̄+ yz + xyz̄ + xȳz + xȳz̄ − 3,

where concatenation means “or” and “+” and “−” mean addition and subtraction
over Z. Suppose φ contains n variables and m clauses, of which r contain a negated
random variable. We replace any clause x̄yz containing a negated random variable x
and literals y and z by the four clauses yz, xyz̄, xȳz, and xȳz̄. We now have a formula
φ′ containing n variables and m+ 3r clauses. We claim that

MAX-CLAUSE SSAT(φ′) = MAX-CLAUSE SSAT(φ) + 5r/2.

386 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

--
-

-

-

-

x̄n

�

�R

R

-

-

-

-

-

-

U~

�

�

>

^

� �

�R �

R R

R

]
�

.......................

?

.......................y

k

?

s

x1 x2 xn

am bm cm dm

d2c2b2a2

a1 b1 c1 d1

s′ t

x̄1 x̄2

Fig. 4. The graph constructed in reducing MAX-CLAUSE SSAT to DGR. Note that all edges
are directed from left to right except those incident to r, which go from right to left.

This formula is derived from the above identity; the term x̄ is satisfied exactly half
the time, and after subtracting 3, we find that we expect 5/2 additional clauses to be
satisfied in φ′ for each of the r substitutions that we made.

Theorem 3.4. There is a constant c > 0 such that approximating MAX-PROB
DGR within ratio 2−n

c

is PSPACE-hard.

Proof. We show how to reduce the problem of approximating the MAX-CLAUSE
SSAT function on an instance of the form given in Theorem 3.3 to the problem of
approximating the Dynamic Graph Reliability function. The target DGR instance is
composed of two parts, a variable-setting component and a set of clause-testing com-
ponents. The construction is illustrated in Figure 4. The variable-setting component
consists of the n “diamonds” in this figure, and the ith clause-testing component lies
between vertices ai and di. There are four edges between each pair ci and di. Three
of these correspond to the three literals in the clause, and the fourth is a “bypass
edge.”

Each path from s through the variable-setting component corresponds to an as-
signment of the variables in order. If xi is an existential variable, both of the edges
into vertices xi and x̄i are available, so the strategy determines which vertex is in
the path. If the vertex xi is chosen, all of the edges in the clause-testing components
corresponding to x̄i fail with probability 1, and similarly, if x̄i is chosen, all of the
edges corresponding to xi in the clause-testing components fail. If xi is a random
variable, upon reaching the vertex immediately before xi, with probability 1/2 the
edge to xi fails. If it does, the path must go through x̄i, in which case all of the edges
corresponding to xi in the clause-testing components fail. Otherwise, the path may
go through x̄i or xi. Since x̄i never appears in any clauses, it can only help to go
through the xi node, so we may assume that the strategy is consistent with this.

From vertex s′, the path leaves the variable-setting component and enters one of
m clause-testing components. When s′ is reached, each edge (bi, ci), 1 ≤ i ≤ m, fails
with probability 1− 1/m. If all edges (bi, ci) fail, clearly t cannot be reached from s′.
We next show that if if two or more of these edges survive, t is always reachable, and
if exactly one of these edges survives, t is reachable only if the corresponding clause is
satisfied. Thus t is reachable with probability approximately 1− 2/e+k/(me), where
k is the number of satisfied clauses and e is 2.71828.... From Theorem 3.3, it now
follows that for some constants c1 < c2, it is PSPACE-hard to distinguish between

RANDOM DEBATERS 387

the cases MAX-PROB DGR(x) < c1 and MAX-PROB DGR(x) > c2.
Recall that three of the four edges between nodes ci and di correspond to the three

literals in the clause, and each will be present when s′ is reached if the corresponding
literal is true. If ai is visited, then the bypass edge for clause i fails. If exactly
one edge (bi, ci) survives, clearly t can be reached only if the corresponding clause is
satisfied, in which case the path contains s′, ai, bi, ci, di, t. Finally, if two edges (bi, ci)
and (bj , cj) survive, then the path s′, ai, bi, ci, r, bj , cj , dj , t reaches t. Note that in this
case the bypass edge between cj and dj is available because node aj is never visited.

Finally, we strengthen our result by making several copies of this construction
and repeating it in series and in parallel. To show this, we use a result of Ajtai and
Ben-Or [1] (see Theorem 3.14 in [8]): For every probabilistic circuit C of size s that
accepts a language L with error probability ε < 1/2, there is a probabilistic circuit C ′

of size s poly(N) that accepts L with error probability < 2−N . In fact, the circuit C ′

has the following structure:

2 logN∨ 2N2 logN∧ N3∨(
N∧
C

) .

To apply this result to our construction, we replace ∧ by repeating the construc-
tion in series (i.e., taking two copies and connecting the sink in the first copy with
the source in the second) and replace ∨ by repeating the construction in parallel (i.e.,
taking two copies and connecting s′ in the first copy with the source in the second
and the sink in the first copy with the sink in the second). The number of edges of
the resulting construction is then O(sN6+ε) for any ε > 0, where s is the size of the
construction above. From this, the theorem follows, where c is any constant less than
1/6 (assuming that the instance is encoded such that the length is O(sN6+ε log(sN)),
which can easily be done).

3.4. A solitaire game using Mah-Jongg tiles (MAH-JONGG). Solitaire
Mah-Jongg, widely available as a computer game, is played roughly as follows. The
game uses Mah-Jongg tiles, which are divided into sets of two or four matching tiles.
We generalize the standard game simply by assuming that there are an arbitrarily
large number of tiles. Initially, the tiles are organized in a preset arrangement of
rows, and the rows may be stacked on top of each other. As a result, some tiles are
hidden under other tiles; it is assumed that each possible arrangement of the hidden
tiles is equally likely. A tile that is not hidden and is at the end of a row is said to
be available. In a legal move, any pair of available matching tiles may be removed,
resulting in a new configuration of the tiles in which up to two previously hidden tiles
are uncovered. The player wins the game if all tiles are removed by a sequence of legal
moves. MAH-JONGG(x) is defined to be the maximum probability of winning the
generalized Mah-Jongg game from initial arrangement x of the tiles, assuming that
the hidden tiles are randomly and uniformly permuted.

To define the game precisely, we define a set of Mah-Jongg tiles to be T = ∪iTi,
where T1, . . . , Tt are disjoint sets of tiles, each set being of size 2 or 4. We say tiles
T1 and T2 match if and only if for some i, T1, T2 ∈ Ti. A configuration C is a set
of positions (i, j, k), where each of i, j, and k is a nonnegative integer, satisfying the
following constraints.

1. If (i, j, k) ∈ C and (i, j′, k) ∈ C, where j < j′, then for every j′′ in the range
[j, j′], (i, j′′, k) ∈ C.

2. If (i, j, k) ∈ C, where k > 0, then (i, j, k − 1) ∈ C.

388 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

Intuitively, this captures the fact that tiles are arranged in three dimensions. Tiles
can be stacked on up of each other; all tiles with common k are at the same height.
Tiles at the same height with common i index form a row. The first condition ensures
that there cannot be “gaps” in a row; the second ensures that a tile at height k > 0
must have a tile underneath it.)

With respect to a given configuration, a position (i, j, k) is hidden if (i, j, k + 1)
is also in the configuration. An arrangement consists of a set of Mah-Jongg tiles T , a
configuration C of size |T |, and a 1–1 function from the positions of C that are not
hidden into T . If this function maps position (i, j, k) to tile T , we say that T is in
position (i, j, k). With respect to a given arrangement, we say that a position (i, j, k)
is available if it is not hidden and either position (i, j − 1, k) or (i, j + 1, k) is not in
the configuration. An arrangement is empty if T is empty.

Let x = (T , C, f) be an arrangement. Each pair {(i1, j1, k1), (i2, j2, k2)} of avail-
able positions at which there are matching tiles T1 and T2 defines a match of x. We
say that arrangement x′ is obtainable from x via match {(i1, j1, k1), (i2, j2, k2)} if
x′ = (T ′, C ′, f ′), where T ′ = T − {T1, T2}, C ′ = C − {(i1, j1, k1), (i2, j2, k2)}, and
finally, f ′ and f agree on the set of positions which are not hidden in both C and C ′.
(Note that f ′ is not defined on positions (i1, j1, k1) and (i2, j2, k2), and f ′ is defined
on position (i1, j1, k1−1) if k1 > 0 and on position (i2, j2, k2−1) if k2 > 0 since these
are no longer hidden.) Corresponding to each match {(i1, j1, k1), (i2, j2, k2)} of x is a
move, which results in an arrangement x′, chosen uniformly and randomly from the
set of arrangements obtainable from x via match {(i1, j1, k1), (i2, j2, k2)}. A sequence
of moves from arrangement x leads to a win if it results in the empty arrangement. A
strategy on x associates a match (if any) with each possible arrangement obtainable
from x via any sequence of moves.

An instance of the Mah-Jongg game is an arrangement x. MAH-JONGG(x) is the
maximum probability of a win from x, where the maximum is taken over all strategies
on x.

In Theorem 3.6, we show that it is PSPACE-hard to approximate the MAH-
JONGG function within ratio n−c for some constant c < 1. Our result holds for
instances x in which tiles are never stacked more than two deep (see Figure 5). We
use the following lemma in our reduction.

Lemma 3.5. Let q(n) be any polynomial, and let ε > 0 be any constant. Let φ′

be an instance of SSAT with no negated random variables. Then there is an instance
SSAT φ with no negated random variables that can be efficiently constructed from φ′,
with the following properties.

(a) If the expected fraction of simultaneously satisfiable clauses of φ′ is at most
c1− ε(≥ 0), then on any strategy for assigning values to the existential variables of φ,
with probability at least 1 − 1/q(|φ′|), the fraction of satisfied clauses of φ is at most
c1.

(b) If the expected fraction of simultaneously satisfiable clauses of φ′ is at least
c2 + ε(≤ 1), then there is a strategy for assigning values to the existential variables of
φ such that with probability at least 1− 1/q(|φ′|), the fraction of satisfied clauses of φ
is at least c2.

Proof. φ is simply composed of many independent copies of φ′, as follows. If

φ′ = ∃x1∀x2 . . . ∃xn′f(x1, . . . , xn′),

then for some p = p(|φ|) to be chosen later,

φ = ∃x11∀x12 . . . ∃x1n′ . . . ∃xp1∀xp2 . . . ∃xpn′f(x11, . . . , x1n′) ∧ · · · ∧ f(xp1, . . . , xpn′).

RANDOM DEBATERS 389

Fig. 5. The arrangement of tiles part way through a game of Xmahjongg. Possible moves
include removing the six of dots in the third row and the six of dots in the sixth row, removing the
pair of twos of bamboo in the fourth row, and removing any two of the three available north tiles
(in the first, sixth, and seventh rows). Xmahjongg is copyright 1989 by Jeff S. Young, and the tile
designs are copyright 1988 by Mark A. Holm (used with permission).

Fix any strategy for assigning values to the existential variables of φ. Let random
variable Xi, 1 ≤ i ≤ p, be the fraction of clauses that are satisfied in the subformula
f(xi1, . . . , xin′). Let random variable Y be the fraction of satisfied clauses of φ. Then
Y = (1/p)

∑p
i=1Xi. If Var(Xi) is the variance of Xi, then the variance of Y is

Var(Y) =

p∑
i=1

Var(Xi/p) ≤ 1/p.

To prove part (a), suppose that φ′ is such that the expected fraction of si-
multaneously satisfiable clauses is at most c1 − ε. Then the expected value of Xi,
and hence of Y , is at most c1 − ε for all i. Thus, from Chebyshev’s inequality,
Prob[Y ≥ c1] ≤ 1/(ε2p). If p(|φ′|) ≥ (1/ε2)q(|φ′|), then with probability at least
1− 1/q(|φ|), Y ≤ c1. The proof of part (b) is similar.

Theorem 3.6. There is a constant 0 < c < 1 such that approximating MAH-
JONGG within ratio n−c is PSPACE-hard.

Proof. To prove this result, we show how to reduce the problem of approximating
the MAX-CLAUSE SSAT function on an instance φ′ of one of the two types given in
Theorem 3.3 to the problem of approximating the MAH-JONGG function on some
instance. We first convert φ′ into formula φ of Lemma 3.5 and then apply the following
reduction to φ. We assume without loss of generality that the number of literals in
each of the m clauses of φ is exactly three and that the number of variables, n, is
even. Given such an instance φ, the main structures of the corresponding Mah-Jongg

390 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

Dm B∗D2V1 V2 V3 Vn D1

Fig. 6. The regulating row.

game are roughly as follows.

Corresponding to each variable is a set of variable-setting rows. Removing a
particular tile from one of these rows corresponds to “setting” the variable. Corre-
sponding to each clause is a set of clause rows. Most of the hidden tiles are in the
clause rows. The treasure chest consists of a single row. On the left end of this row
is a special treasure-key tile; the game can be won only by removing this tile. The
matching treasure-key tile can only be accessed by uncovering a “good” subset of
guard tiles, which are initially hidden. Thus the goal of a good strategy is to maxi-
mize the number of hidden tiles uncovered so as to maximize the chances of finding a
good subset of guard tiles and hence of removing the treasure-key tile. This strategy
corresponds to “setting” the existential variables so as to maximize the number of
hidden tiles in the clause rows that are uncovered. (We will see that the random
variables are “set” randomly.)

A regulating row of tiles is used to ensure that variables are set in the correct
order and that no tiles can be removed from a clause row until all variables are
set. Furthermore, the regulating row, together with the variable-setting rows, ensures
that the only tiles in the clause rows that can legally be removed are those tiles in
rows of clauses that have been satisfied during the variable-setting phase. Thus the
probability of winning the game depends on the number of clauses that are satisfied
by the variable assignment chosen in the variable-setting phase.

We now describe the tiles and their arrangement in detail. For each existential
variable xi, there are four tiles labeled Vi (one of which is in the treasure chest), and
for each random variable xi, there are two tiles labeled Vi. For each clause cj , there
are four tiles Cj and two tiles Dj . There are also b pairs of blocking tiles; again, b will
be specified later. The kth pair of blocking tiles is labeled Bk. One of each pair is in
the treasure chest.

Figure 6 describes the regulating row. Here and in what follows, we represent
a blocking tile by B∗; the subscript is assumed to be different in each occurrence of
B∗, and the position of a particular subscript is arbitrary. If the treasure chest is not
open, in order to remove all tiles in regulating row, the Vi must first be matched in
order, followed by the Di in order.

We next describe the variable-setting structures. In addition to the tiles defined
above, the variable-setting structures contain for each variable xi a pair of tiles labeled
Mi,k, where k ranges between 1 and the number of clauses in which either xi or x̄i
occurs.

If xi is existential, the ith variable-setting structure is described in Figure 7. If
at some point in the game the treasure chest is not open and Vi is the leftmost tile
in the regulating row, then this tile must be matched to the Vi in either the first
or the second row of this structure. If it is matched to the Vi in the first row, this
is equivalent to setting xi to true. By removing the M -tiles in this row, the player
can make available the tiles Cj in this structure for which clause cj contains literal
xi. Similarly, setting xi to false makes available the tiles Cj for which cj contains x̄i.

RANDOM DEBATERS 391

Cjsi+s′i

Mi,1

Mi,si+s′i
B∗

Vi Mi,1 Mi,2 Mi,si B∗

Vi Mi,si+1Mi,si+2

Mi,2

Mi,si+s′i

B∗

B∗

Cj1 B∗

Cj2

Fig. 7. The variable-setting structure for existential variable i, where j1, j2, . . . , jsi are the
clauses containing xi and jsi+1, . . . , jsi+s′i

are the clauses containing x̄i.

Hh

H1

H2

Fig. 8. The remaining tiles.

Since the fourth Vi tile is in the treasure chest, the Vi that is not matched cannot be
removed until the treasure chest is opened.

If the variable xi is a random variable, the variable-setting structure is quite
similar, except that hidden tiles are used to ensure that the setting of xi is randomly
chosen. Each pair of hidden tiles is labeled Hk or H ′k, for k in the range 1 to h (where
h will be specified later). One tile from each pair is hidden. Each remaining tile H ′k is
in the treasure chest and each remaining tile Hk forms a singleton row (see Figure 8).
Then if xi is random, the ith variable-setting structure is described in Figure 9. If
the hidden tile under Vi is H∗, then it can be matched to a tile in a singleton row.
We will see that this happens with probability approximately 1/2. As before, if xi is
contained in clause cj , then tile Cj in this structure can be made available. Recall
that x̄i never appears if xi is a random variable.

392 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

Mi,1

Mi,1

B∗

Mi,2

Mi,si

B∗

B∗

Cj1 B∗

Cj2

Vi

Cjsi

Mi,siMi,2

Fig. 9. The variable-setting structure for random variable i, where j1, j2, . . . , jsi are the clauses
in which xi appears.

M ′j,2

B∗CjDj M ′j,t

M ′j,t

M ′j,2M ′j,1

M ′j,1

Fig. 10. The clause row for the ith clause.

We next describe the clause rows (see Figure 10). Again, we need additional tiles.
For each clause j, there is a pair of tiles labeled M ′j,k, where k ranges between 1
and t (where t will be chosen later). There is a tile hidden under each M ′-tile. This
arrangement ensures that, if the jth clause is true, then all t of the hidden tiles under
all M ′j,k can be removed.

Before describing the treasure chest and the arrangement of guard tiles, we state
some properties of the game structures constructed so far. In what follows, by “with
high probability,” we mean with probability at least 1 − 1/p(|φ′|), for some large
polynomial p. First, if the number t = t(|φ′|) of tiles hidden in each clause component
is sufficiently large, we can ensure that, with high probability, only tiles of type Hk or
H ′k are uncovered in the variable-setting phase. Second, assuming that the random
variables are true and false with probability 1/2, it follows from Lemma 3.5 that,

RANDOM DEBATERS 393

V1K L B1 Vn H ′1 LH ′hBl

Fig. 11. The treasure chest, where l = 4m+ (3n/2) + 1 + (3v − 1)/2.

if q(|φ′|) is sufficiently large, then with high probability, the fraction of hidden tiles
uncovered in the clause components is either ≥ c1 or ≤ c2, depending on the type
of φ′. The difficulty here is that after several hidden tiles have been revealed, the
probability of a random variable being true or false is no longer 1/2 but depends
on the relative numbers of Hi and H ′i already revealed. However, if t is sufficiently
large, say t ≥ rk, the chance of any particular variable being true will change by
a factor of at most 1 ± k!/rk−1. Thus the probability of any particular assignment
of trues and falses to the random variables will be changed by a factor of at most
(1 ± k!/rk−1)r ≈ 1 ± k!/rk−2, which won’t affect the probabilities enough to change
the result. (This is the reason for the tiles Di: they ensure that the hidden tiles
associated with true clauses cannot be revealed, thus changing the probability of a
variable being true, until after the variables have been set.)

The treasure chest is described in Figure 11. On the left end is the treasure-
key K. Rows called guard rows control access to the single key K that matches the
treasure-key in the following way. There are v guard rows (where v is a power of 3
and will be chosen later). Associated with the kth guard row are w pairs of guard tiles
Gkj , 1 ≤ j ≤ w, one of which is initially hidden. The other guard tile from each pair
is in the guard row. By finding all guard tiles for one guard row, the treasure-key can
be accessed and the treasure chest opened. We describe the structure that enforces
this later; we first show how such a structure, with appropriate choice of v and w, can
guarantee that the reduction is “approximation preserving.”

First, suppose that the expected fraction of simultaneously satisfiable clauses of
φ′ is at most c1 − ε so that by Lemma 3.5, on any strategy for assigning values to
the existential variables of φ, with probability at least 1 − 1/q(|φ′|), the fraction of
satisfied clauses of φ is at most c1. Then, with high probability (at least 1−1/p(|φ′|)),
on any play of the Mah-Jongg game, at most a fraction c1 of the hidden tiles in the
clause components are uncovered. To remove all guard tiles from a given guard row,
all w guard tiles must be uncovered. If at most a fraction c1 of the hidden tiles in the
clause components are uncovered, the probability of finding these tiles in the clause
components is at most cw1 . Hence the probability that the treasure chest is not opened
is at least the probability that no guard tiles are found during the variable-setting
phase, times the probability that at most a fraction c1 of the hidden tiles in the
clause components are uncovered, times the probability that for all guard rows, it is
not the case that all guard-keys in that guard row are uncovered. This is at least
(1− 1/p(|φ′|)2(1− cw1)v).

In the case that the expected fraction of simultaneously satisfiable clauses of φ′

is at least c2 + ε, a slightly different argument shows that the probability that the
treasure chest is opened is at least (1− 1/p(|φ′|)2(1− (1− cw2)v). We need to choose
w and v so that (1− cw1)v is large and (1− cw2)v is small. We let w = log1/c1 |φ′| and

let v = |φ′|. Then (1 − cw1)v = (1 − 1/|φ′|)|φ′| ≈ 1/e and (1 − cw2)v ≤ n−c, for some
c > 0. This completes the proof that the reduction is approximation preserving.

It remains to describe the structure that ensures that the treasure-key can only
be accessed by finding all guard tiles for one guard row. One way to ensure this in

394 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

G6w

B∗

B∗

B∗

B∗

B∗

B∗

B∗

B∗K01

B∗G1w K01G11

G21

G31

G41

G51

G61

G2w

K02

K02

K02

Gv−2,1

Gv−1,1

Gv1

Gv−2,w

Gv−1,w

Gvw

K0i

K0i

K0i

K01G3w

G4w

G5w

Fig. 12. The guard rows.

our construction would be to put a key K matching the treasure-key in each guard
row, which could be accessed once all the guard tiles of the guard row are removed.
However, this requires an unbounded number of treasure-keys. The following scheme
achieves the same goal while ensuring that the number of tiles of any one type is at
most 4 (see Figures 12 and 13).

The guard rows are arranged in groups of three; each row in the ith group has a
tile K0i to the right of all of its guard tiles; this is followed by a blocking tile B∗. For
each group i, a fourth tile K0i appears as the leftmost tile in a row with two other
tiles. Again, these “first-level” rows are grouped in threes. Each row in the i′th group
has a tile K1i′ as its middle tile and a blocking B∗-tile as its rightmost tile. Again for
each i′, the fourth K1i′ tile appears as the leftmost tile in a “second-level” row with
two other tiles, and these rows are grouped in threes. Each row in the i′′th group has
a tile K2i′′ as its middle tile and a blocking B∗-tile as its rightmost tile. Further levels
of rows are constructed in this way; the number of rows at each level of this structure
decreases by a factor of three until there is only one row left. This row again has
three tiles, but the middle one matches the treasure-key K. By opening any one of

RANDOM DEBATERS 395

K1,i/3

K01 K11 B∗

B∗

B∗

B∗

K11 B∗K02

K11 K21

KKj1

B∗K0i K1,i/3

K2,i/9

Fig. 13. Levels of rows which guard access to the treasure chest. If all guard tiles from one
guard row are removed, the key K0j in that row can be used to remove keys at successive levels of
this structure until the treasure-key K is removed at the last level.

the guard rows, a row at each level can successively be opened until the treasure-key
is finally accessed.

To account for the number of pairs of blocking tiles needed, note that (3v − 1)/2
are needed for the guard rows, as well as 4m+3n/2 for the clause and variable-setting
rows and 1 for the regulating row. Therefore, the total number of blocking tiles needed
is 4m+3n/2+1+(3v−1)/2. Also, once t, v, and w are selected to ensure correctness
of the reduction, h, the number of pairs of initially hidden tiles of the form Hk or H ′k,
for some k, can be determined as follows. The total number of hidden tiles is 2h+vw,
that is, one tile from each pair of the form Hk or H ′k, and one of each of the vw
pairs of guard tiles. Also, the number of locations in which tiles are hidden initially
is r + mt, that is, one in each variable-setting structure for the r random variables
and t in each of the m clause structures. Hence h is chosen so that 2h + vw =
r +mt.

4. Nonapproximability results using IP. The proofs of all of the nonapprox-
imability results in the previous section were based on the characterization
RPCD(logn, 1) = PSPACE. In this section, we prove nonapproximability results for
different PSPACE-hard functions based on the characterization IP = PSPACE ob-
tained in [16, 22].

The first problem we consider here is also based on the language SSAT. Once
again, an instance of SSAT can be thought of as a game between an existential
player and a random player, but this time the objective of the existential player
is to maximize the probability that φ is satisfied. The value of MAX-PROB SSAT on
a given instance is the probability that φ is satisfied if the existential player follows
an optimal strategy. The language SSAT, as defined in [21], consists of all instances
φ for which MAX-PROB SSAT(φ) > 1/2.

The reductions in this section are based on the following fact, which is a direct
consequence of the proof that IP = PSPACE.

Fact 4.1. For any language L in PSPACE and any ε < 1, there is a polynomial-

396 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

time reduction f from L to SSAT such that

x ∈ L⇒ MAX-PROB SSAT(f(x)) = 1 and
x 6∈ L⇒ MAX-PROB SSAT(f(x)) < 1/2n

ε

,

where n is the number of variables in f(x).
The next theorem is a direct consequence of Fact 4.1.
Theorem 4.2. There is a constant c > 0 such that approximating MAX-PROB

SSAT within ratio 2−n
c

is PSPACE-hard.
Papadimitriou [21] defines the language Dynamic Markov Process (DMP). An

instance is a set S of states and an n × n stochastic matrix P , where n = |S|.
Associated with each state si is a set Di of decisions, and each d ∈ Di is assigned a
cost c(d) and a matrix Rd. Each row of Rd must sum to 0, and each entry of P +Rd
must be nonnegative. The result of making decision d when the process is in state
si is that a cost of c(d) is incurred, and the probability of moving to state sj is the
(i, j)th entry of P + Rd. A strategy determines which decisions are made over time;
an optimal strategy is one that minimizes the expected cost of getting from state s1 to
state sn. The language DMP consists of tuples (S, P, {Di}, c, {Rd}, B) for which there
is a strategy with expected cost at most B. A natural optimization problem is MIN
DMP, the function that maps (S, P, {Di}, c, {Rd}) to the expected cost of an optimal
strategy. Papadimitriou [21] proves that DMP is PSPACE-complete by providing a
reduction from SSAT. In fact, the reduction has the property that if SSAT instance
φ is mapped to DMP instance (S, P, {Di}, c, {Rd}, B) and MAX-PROB SSAT(φ)
= p, then MIN DMP(S, P, {Di}, c, {Rd}) = p/4. The next result thus follows from
Theorem 4.2.

Theorem 4.3. There is a constant c > 0 such that approximating MIN DMP
within ratio 2−n

c

is PSPACE-hard.
The complexity of coloring games was studied by Bodlaender [7], motivated by

scheduling problems. An instance of a coloring game consists of a graph G = (V,E),
an ownership function o that specifies which of two players, 0 and 1, owns each vertex,
a linear ordering f on the vertices, and a finite set C of colors. This instance specifies
a game in which the players color the vertices in the order specified by the linear
ordering. When vertex i is colored, its owner chooses a color from the set of legal
colors, i.e., those in set C that are not colors of the colored neighbors of i. The game
ends either when all vertices are colored or when a player cannot color the next vertex
in the linear ordering f because there are no legal colors. Player 1 wins if and only if
all vertices are colored at the end of the game. The length of the game is the number
of colored vertices at the end of the game.

We consider a stochastic coloring game (SCG) in which one player, say 0, ran-
domly chooses a color from the set of legal colors at each stage. Two correspond-
ing optimization problems are to maximize the following functions: MAX-PROB
SCG(G, o, f, C), which is the maximum probability that Player 1 wins the game
(G, o, f, C), and MAX-LENGTH SCG(G, o, f, C), which is the maximum expected
length of the game. (Both maxima are taken over all strategies of Player 1.)

We show that MAX-PROB SCG is PSPACE-hard to approximate within ratio
2−n

c

, for some constant c > 0, and that MAX-LENGTH SCG is PSPACE-hard to
approximate within ratio n−c

′
, for some constant c′ > 0.

Theorem 4.4. There is a constant c > 0 such that approximating MAX-PROB
SCG within ratio 2−n

c

is PSPACE-hard.
Proof. We describe a reduction from MAX-PROB SSAT to MAX-PROB SCG

that adapts the original construction [7]. By Fact 4.1, we can restrict our attention

RANDOM DEBATERS 397

to instances φ such that either MAX-PROB SSAT(φ) = 1 or MAX-PROB SSAT(φ)
< 1/2n

ε

, for some ε > 0. We construct an instance G = (V,E) of MAX-PROB SCG
as follows:

V = {true, false, X} ∪ {xi, x̄i | 1 ≤ i ≤ n}

∪ {cj,k | 1 ≤ j ≤ m, 1 ≤ k ≤ n} ∪ {d}.

The linear ordering f of the vertices is as follows:

true, false, X, x1, x̄1, x2, x̄2, . . . , xnx̄n, c1,1, c1,2, . . . , cm,n, d.

The ownership function is specified as follows. Player 1 owns the vertices true, false,
and X and also the vertices xi and x̄i, where xi is existentially quantified in the
formula φ. Player 0 owns the remaining vertices. The set of colors C is {true, false,
X}.

It remains to specify the set of edges.

E = {{true, false}, {true, X}, {false, X}}(1)

∪ {{xi, x̄i}, {X,xi}, {X, x̄i} | 1 ≤ i ≤ n}(2)

∪ {{li, cj,k}, {false, cj,k} | li is a literal in cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n}(3)

∪ {{cj,k, d} | 1 ≤ j ≤ m, 1 ≤ k ≤ n} ∪ {{d, false}, {d,X}}.(4)

The set of edges (1) ensures that vertices true, false, and X are colored with three
distinct colors. Without loss of generality, suppose that they are colored true, false,
and X, respectively.

The set of edges (2) ensures that for each pair xi, x̄i, one is colored true and the
other false. Thus each coloring of these vertices corresponds to a truth assignment of
the variables x1, . . . , xn.

The set of edges (3) ensures that if clause cj is true with respect to the truth
assignment corresponding to the coloring of vertices x1, . . . , xn, then each vertex cj,k
is colored X. If cj is false, then each vertex cj,k is independently colored X or true,
each with probability 1/2.

The set of edges (4) ensures that d can be colored only if all the cj,k are colored
X.

We claim that deciding whether MAX-PROB SAT(φ) is equal to 1 or is at most
1/2n

ε

can be reduced in polynomial time to approximating MAX-PROB SCG(G, o,
f, C) within ratio 2−n

c

, where c is a positive constant that depends on ε. To see
this, note that if MAX-PROB SSAT(φ) = 1, then there is a way to choose a truth
assignment to the existentially quantified variables that ensures that all clauses of φ
are true. Hence by definition of the ownership function, Player 1 has a strategy for
coloring vertices such that for every choice of colors of Player 0, the corresponding
truth assignment to x1, . . . , xn satisfies all clauses. Hence all vertices cj,k are colored
X, and so vertex d can be colored. Thus Player 1 has a strategy that wins with
probability 1.

398 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

On the other hand, if MAX-PROB SSAT(φ) < 1/2n
ε

, then on any strategy of
Player 1, d can be colored with only exponentially small probability. This is because,
on all strategies of Player 1, with probability at least 1− 1/2n

ε

, the truth assignment
corresponding to the variable coloring fails to satisfy f(x). Suppose that clause cj is
false. Then with probability at least 1− 1/2n, one of the vertices cj,k, 1 ≤ k ≤ n, is
colored true. As a result, d can be colored with probability at most 1− (1−1/2n)(1−
1/2n

ε

).
The proof of Theorem 4.4 can easily be modified to show the following.
Theorem 4.5. There is a constant c′ > 0 such that approximating MAX-

LENGTH SCG within ratio n−c
′

is PSPACE-hard.
Proof. Simply modify the construction of Theorem 4.4 so that the vertex set is

V ′, consisting of the vertices of V plus |V |n2c′ additional vertices d1, . . . , d|V |n2c′ . The
ownership of these vertices can be specified arbitrarily, and they are ordered after the
vertices in V . No additional edges are needed.

The expected length of the game is now either |V | − 1 + |V |n2c′ or |V | − 1 + (1−
(1− 1/2n)(1− 1/2n

ε

))(|V |n2c′), depending on the two possibilities for the probability
that φ is satisfied.

5. Open problems. There are many other two-player games that can be made
into stochastic functions by letting Player 0 play randomly. Examples include the
following.

1. In the Node Kayles game of Schaefer [22], the input is a graph. A move
consists of putting a marker on an unoccupied vertex that is not adjacent to any
occupied vertex. The first player unable to move loses. We can define Stochastic
Node Kayles (SNK) in the same way, except that Player 0, rather than choosing
optimally among all unoccupied vertices that are not adjacent to occupied vertices,
instead chooses uniformly at random from the same set. Player 1’s objective is to
keep the game going as long as possible. MAX SNK is the expected length of the
game under an optimal strategy of Player 1.

2. In the Generalized Hex game of Even and Tarjan [12], the input is a graph
with two distinguished nodes n1 and n2. A move for Player 1 (0) consists of putting
a white (black) marker on a vertex; the player is free to choose any unoccupied vertex
except n1 or n2. After all vertices have been chosen, Player 1 wins if and only if there
is a path from n1 to n2 along only white-occupied vertices. Stochastic Generalized
Hex (SGH) is, as usual, the same game in which Player 0 places a black marker on
a random unoccupied vertex rather than an optimal unoccupied vertex. A natural
stochastic function is MAX-PROB SGH, which maps a graph to the probability, under
an optimal strategy of Player 1, that there will be a white path from n1 to n2.

Superficially, these games differ from games like Generalized Geography and
Stochastic Coloring in that there is no “locality” requirement on the moves of the
random player. In Stochastic Generalized Geography, the random player must choose
from among the arcs out of the current vertex, and in SCG the random player must
color the vertex specified by the ownership function. The reductions that we use to
prove MAX SGGEOG, MAX-PROB SCG, and MAX-LENGTH SCG hard to approx-
imate make essential use of this locality. In Node Kayles, say, the random player may
choose to mark a vertex that is very far away from the vertex just marked by the
existential player.

We have not proven nonapproximability results for any functions without locality.
Are they easy to approximate within some constant ratio? Are they in fact easy to
compute exactly? It would be interesting to settle the difficulty of approximating

RANDOM DEBATERS 399

these functions and, more generally, to characterize precisely those PSPACE-complete
languages that give rise to stochastic functions that are hard to approximate.

Acknowledgments. We thank the anonymous referees for their very helpful
comments, in particular, for pointing out that our bounds on the nonapproximability
of SSGEOG and MAH-JONGG could be improved.

REFERENCES

[1] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth circuits, in Proc. 16th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 471–474.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, in Proc. 33rd Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–23.

[3] S. Arora and M. Safra, Probabilistic checking of proofs, in Proc. 33rd Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 2–13; final version, J. Assoc. Comput. Mach., to appear.

[4] L. Babai and S. Moran, Arthur–Merlin games: A randomized proof system and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[5] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistic checkable
proofs and applications to approximation, in Proc. 25th Symposium on Theory of Com-
puting, ACM, New York, 1993, pp. 286–293.

[6] M. Bellare and M. Sudan, Improved non-approximability results, in Proc. 26th Symposium
on Theory of Computing, ACM, New York, 1994, pp. 184–193.

[7] H. L. Bodlaender, On the complexity of some coloring games, Internat. J. Found. Com-
put. Sci., 2 (1991), pp. 133–147.

[8] R. B. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen, ed., MIT
Press/Elsevier, Cambridge, MA, New York, 1990, pp. 757–800.

[9] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach.,
28 (1981), pp. 114–133.

[10] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Probabilistically checkable debate systems
and nonapproximability of PSPACE-hard functions, Chicago J. Theoret. Comput. Sci.,
1995, No. 4; extended abstract, Probabilistically checkable debate systems and approxi-
mation algorithms for PSPACE-hard functions, in Proc. 25th Symposium on Theory of
Computing, ACM, New York, 1993, pp. 305–314.

[11] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Random debaters and the hardness of
approximating stochastic functions (extended abstract), Technical Memorandum, AT&T
Bell Laboratories, Murray Hill, NJ, 1993.

[12] S. Even and R. Tarjan, A combinatorial problem which is complete in polynomial space,
J. Assoc. Comput. Mach., 23 (1976), pp. 710–719.

[13] U. Feige, S. Goldwasser, L. Lovász, M. Safra, and M. Szegedy, Interactive proofs and
the hardness of approximating cliques, J. Assoc. Comput. Mach., 43 (1996), pp. 268–292.

[14] H. Hunt III, M. Marathe, and R. Stearns, Generalized CNF satisfiability problems and
non-efficient approximability, in Proc. 9th Conference on Structure in Complexity Theory,
IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 356–366.

[15] D. S. Johnson, A catalog of complexity classes, in Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity, J. van Leeuwen, ed., MIT Press/Elsevier,
Cambridge, MA, New York, 1990, pp. 67–162.

[16] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. Assoc. Comput. Mach., 39 (1992), pp. 859–868.

[17] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,
J. Assoc. Comput. Mach., 41 (1994), pp. 960–981.

[18] M. Marathe, H. Hunt III, and S. Ravi, The complexity of approximating PSPACE-complete
problems for hierarchical specifications, Nordic J. Comput., 1 (1994), pp. 275–316.

[19] M. Marathe, H. Hunt III, R. Stearns, and V. Radhakrishnan, Hierarchical specifica-
tions and polynomial-time approximation schemes for PSPACE-complete problems, in
Proc. 26th Symposium on Theory of Computing, ACM, New York, 1994, pp. 468–477;
final version, Approximation algorithms for PSPACE-hard hierarchically and periodically
specified problems, SIAM J. Comput., to appear.

400 A. CONDON, J. FEIGENBAUM, C. LUND, AND P. SHOR

[20] J. Orlin, The complexity of dynamic languages and dynamic optimization problems, Proc. 13th
Symposium on Theory of Computing, ACM, New York, 1981, pp. 218–227.

[21] C. Papadimitriou, Games against nature, J. Comput. System Sci., 31 (1985), pp. 288–301.
[22] T. J. Schaefer, On the complexity of some two-person perfect-information games, J. Com-

put. System Sci., 16 (1978), pp. 185–225.
[23] A. Shamir, IP = PSPACE, J. Assoc. Comput. Mach., 39 (1992), pp. 869–877.
[24] M. Sudan, Efficient checking of polynomials and proofs and the hardness of approximation

problems, Ph.D. thesis, Computer Science Division, University of California at Berkeley,
Berkeley, CA, 1992.

[25] L. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8
(1979), pp. 410–421.

A STRIP-PACKING ALGORITHM WITH ABSOLUTE
PERFORMANCE BOUND 2∗

A. STEINBERG†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 401–409, April 1997 005

Abstract. This paper proposes a new approximation algorithm M for packing rectangles into a
strip with unit width and unbounded height so as to minimize the total height of the packing. It is
shown that for any list L of rectangles, M(L) ≤ 2 ·OPT(L), where M(L) is the strip height actually
used by the algorithm M when applied to L and OPT(L) is the minimum possible height within
which the rectangles in L can be packed.

Key words. two-dimensional bin packing, strip packing, packing rectangles, absolute perfor-
mance bound

AMS subject classifications. 68Q25, 90C27

PII. S0097539793255801

1. Introduction. We consider the following two-dimensional packing problem
first proposed in [1]: Given a vertical strip of width 1, bounded below but not above,
and a list L of rectangular pieces R1, R2, . . . , R`, pack the pieces into the strip so
that the height to which the strip is filled is as small as possible. The pieces are not
allowed to overlap. We also assume that each piece Ri in L is defined by its width
ai and height bi and must be packed in such a way that the edges corresponding to
width (i.e., edges of length ai) are parallel to the horizontal bottom edge of the strip
(see Fig. 1). This type of packing is called orthogonal oriented.

Since the problem of finding an optimal packing is NP-hard [1], polynomial-
time approximation algorithms which generate near-optimal packings are studied, in
particular, from a performance-guarantee point of view [1], [2], [3], [4], [5], [6], [7].

For an arbitrary list L = {R1, R2, . . . , R`} of rectangular pieces all having width
no more than 1, let OPT(L) denote the minimum possible strip height within which
the pieces R1, R2, . . . , R` can be packed and let A(L) denote the height actually used
by a particular packing algorithm A when applied to L. If α is a constant such that
for every L,

A(L) ≤ α · OPT(L),(1.1)

then α is called an absolute performance bound for A. Various algorithms satisfying
inequalities of such a type were described in [1], [3], [5] (α = 3) and [3] (α = 2.7).
In [6], an algorithm was found for which (1) holds with α = 2.5. In this paper, we
present a new algorithm with an absolute performance bound of α = 2 which packs
the pieces into the strip in an almost linear (up to a logarithmic factor) time.

In fact, this algorithm, denoted byM , is intended for packing piecesR1, R2, . . . , R`
from L into a bounded rectangleQ. (We always assume that all rectangles are oriented
in such a way that their edges corresponding to width are horizontal).

∗Received by the editors September 20, 1993; accepted for publication (in revised form) May
15, 1995. This research was supported by the Center for Absorption in Science, Israel Ministry of
Absorption, and by the Israel Ministry of Science and Technology.

http://www.siam.org/journals/sicomp/26-2/25580.html
†Department of Mathematics, Technion, Haifa 32000, Israel (orad@netvision.net.il).

401

402 A. STEINBERG

Fig. 1. An orthogonal oriented strip packing of rectangular pieces R1 (a1 = 0.6, b1 = 0.4),
R2 (a2 = 0.3, b2 = 0.7), and R3 (a1 = 0.8, b1 = 0.2).

Denote the width and the height of Q by u and v, respectively, and let

aL = max
1≤i≤`

ai, bL = max
1≤i≤`

bi,

si = aibi (1 ≤ i ≤ `),

SL =
∑̀
i=1

si.

Our main result is the following.
Theorem 1.1. If the following inequalities hold,

aL ≤ u, bL ≤ v, 2SL ≤ uv − (2aL − u)+(2bL − v)+(1.2)

then it is possible to pack the rectangles R1, R2, . . . , R` into the rectangle Q by the
algorithm M . (As usual, x+ = max(x, 0).)

Let us denote the problem of packing all the pieces of L into Q by (Q,L). We
will say that (Q,L) is a tractable problem if L is nonempty and (2) is fulfilled.

Our plan is to show how every tractable problem can be reduced to tractable
problems with a smaller list of pieces.

2. Reduction procedures. In this section, we define seven reduction proce-
dures Pµ, −3 ≤ µ ≤ 3. (For µ 6= 0, the procedure P−µ is obtained from the procedure
Pµ by interchanging horizontal and vertical directions.) Each Pµ can be applied
only to tractable problems satisfying some additional condition Cµ. We combine the
description of the procedures Pµ with the proof of the following lemma.

Lemma 2.1. Let a tractable problem (Q,L) satisfy Cµ. If |µ| ≤ 2, then Pµ either
solves (Q,L) or packs a proper part of L into Q, and for the remaining part L′ of L,
it constructs a tractable problem (Q′, L′) with Q′ lying within the unoccupied area of
Q. If |µ| = 3, then Pµ divides L into two proper sublists L′ and L′′ and divides Q into
two nonoverlapping rectangles Q′ and Q′′ in such a way that the problems (Q′, L′)
and (Q′′, L′′) are tractable.

Of course, we also need the following result.

A STRIP-PACKING ALGORITHM 403

Fig. 2. Vertices R∗, R∗, ∗R, and ∗R of a rectangle R.

Lemma 2.2. Every tractable problem satisfies at least one of the conditions Cµ,
|µ| ≤ 3.

Notation. We will mark the vertices of any rectangle R by R∗, R
∗, ∗R, and ∗R

as shown in Fig. 2.
Let (Q,L) be a tractable problem. As before, u and v denote the width and the

height of Q. In order to define Procedures P1 and P3, it is convenient to assume that
the list L = {R1, R2, . . . , R`} is ordered by decreasing width: a1 ≥ a2 ≥ · · · ≥ a`.

PROCEDURE P1. This procedure can be applied to the problem (Q,L) if the
following condition holds:

(C1) aL ≥
1

2
u.

Let m be the maximal index (1 ≤ m ≤ `) such that am ≥ 1
2u. Place the pieces

R1, R2, . . . , Rm so that

∗[R1] = ∗Q, ∗[Ri] = ∗[Ri−1] (2 ≤ i ≤ m)

(see Fig. 3). The third inequality in (2) implies that SL ≤ 1
2uv. Hence

∑m
i=1 bi ≤ v

and the pieces R1, R2, . . . , Rm lie inside Q. In particular, Procedure P1 solves the
problem (Q,L) if m = `.

Suppose that m < `. Denote v −
∑m
i=1 bi by v′. It is clear that v′ > 0. Let

Rt1 , Rt2 , . . . , Rt`−m be the list Rm+1, Rm+2, . . . , R` ordered by decreasing height:

bt1 ≥ bt2 ≥ · · · ≥ bt`−m .

If bt1 ≤ v′, we form a problem (Q′, L′), where

L′ = {Rm+1, Rm+2, . . . , R`}

and the rectangle Q′ is defined by

∗[Q
′] = ∗[Rm], [Q′]∗ = Q∗.

Since

2SL′ = 2SL − 2
m∑
i=1

si ≤ uv − 2 · 1

2
u(v − v′) = uv′

and aL′ <
1
2 , we conclude that the new problem (Q′, L′) is tractable.

404 A. STEINBERG

Fig. 3. Illustration for Procedure P1 (m = 3, n = 2).

In the case where bt1 > v′, denote by n the maximal index (1 ≤ n ≤ ` −m) for
which btn > v′ and place Rt1 , Rt2 , . . . , Rtn in the following way:

[Rt1]∗ = Q∗, [Rtj]
∗ = ∗[Rtj−1

] (2 ≤ j ≤ n)

(see Fig. 3). We claim that the pieces Ri and Rtj do not overlap for 1 ≤ i ≤ m and
1 ≤ j ≤ n. Indeed if Ri and Rtj overlap, then the pieces R1, R2, . . . , Rm and Rt1 ,
Rt2 , . . . , Rtn cover the rectangles Q1 and Q2 defined by

∗[Q1] = ∗Q, [Q1]∗ = [Ri]
∗ = ∗[Q2], [Q2]∗ = Q∗.

Therefore the area of Q1 ∪Q2 is less than SL, i.e.,

ai(v − d) + (u− ai)d < SL,

where d = v− b1− b2− · · · − bi. This inequality can be written in the following form:

uv − (2ai − u)(2d− v) < 2SL.

Since 0 ≤ 2ai − u ≤ 2aL − u = (2aL − u)+ and d ≤ btj ≤ bL, we obtain

uv − (2aL − u)+(2bL − v)+ < 2SL,

contradicting the fact that (Q,L) is a tractable problem. Note that the inequalities
bt1 ≥ bt2 ≥ · · · ≥ btn > v′ imply that all of the pieces Rt1 , Rt2 , . . . , Rtn lie inside Q.
Hence Procedure P1 solves (Q,L) if n = `−m.

In the case where n < `−m, we form a new problem (Q′, L′), where

L′ =
{
Rtn+1

, Rtn+2
, . . . , Rt`−m

}
and Q′ is the rectangle satisfying

∗[Q
′] = ∗[Rm], [Q′]∗ = ∗[Rtn].

A STRIP-PACKING ALGORITHM 405

Finally, the problem (Q′, L′) is tractable because aL′ ≤ am+1 <
1
2u ≤ am ≤ u′, bL′ =

btn+1
≤ v′, and

2SL′ = 2SL − 2
m∑
i=1

si − 2
n∑
j=1

stj

≤ uv − 2 · 1

2
u(v − v′)− 2(u− u′)v′ = u′v′ − (u− u′)v′

≤ u′v′ − (2aL′ − u′)+ (2bL′ − v′)+ .

Here u′ and v′ are the width and the height of Q′.
PROCEDURE P3. This procedure can be applied to the problem (Q,L) if the

following condition holds:

(C3) aL ≤
1

2
u, bL ≤

1

2
v, ` > 1,

and

SL −
1

4
uv ≤

m∑
i=1

si ≤
3

8
uv, am+1 ≤

1

4
u

for some index m, 1 ≤ m < `.
Set

Z =
m∑
i=1

si, u′ = max

(
1

2
u,

2Z

v

)
, u′′ = min

(
1

2
u, u− 2Z

v

)
.

Bearing in mind that u′ + u′′ = u, we cut Q into two rectangles Q′ and Q′′

with widths u′ and u′′ and the same height v and we form two problems (Q′, L′)
and (Q′′, L′′) with L′ = {R1, R2, . . . , Rm} and L′′ = {Rm+1, Rm+2, . . . , R`}. Since
u′ ≥ 1

2u, u′′ ≥ 1
4u, and SL − 1

2u
′′v ≤ Z ≤ 1

2u
′v, these problems are tractable.

PROCEDURE P2. This procedure can be applied to the problem (Q,L) if the
following condition holds:

(C2) aL ≤
1

2
u, bL ≤

1

2
v,

and there exist two different indices i and k(1 ≤ i, k ≤ `) such that

ai ≥
1

4
u, ak ≥

1

4
u, bi ≥

1

4
v, bk ≥

1

4
v,

2(SL − si − sk) ≤ (u−max(ai, ak))v.

Assuming that ai ≥ ak, we place Ri and Rk so that

∗[Ri] = ∗[Q], ∗[Rk] = ∗[Ri].

Evidently, Ri and Rk lie inside Q. If ` = 2, the problem (Q,L) is solved. If ` > 2, we
form a new problem (Q′, L′), where L′ is obtained from L by deleting Ri and Rk and
Q′ is the rectangle such that

∗[Q
′] = [Ri]∗, [Q′]∗ = Q∗.

406 A. STEINBERG

It is easy to check that (Q′, L′) is a tractable problem.
In Procedures Pµ (µ = 1, 2, 3), the horizontal and vertical directions play a non-

symmetrical role. Obviously, we can interchange these directions and obtain “trans-
posed” procedures, denoted by P−µ. Procedure P−µ can be applied to tractable
problems satisfying condition (C−µ), “transposed” to (Cµ).

PROCEDURE P0. This procedure can be applied to the problem (Q,L) if the
following condition holds:

(C0) aL ≤
1

2
u, bL ≤

1

2
v, and SL −

1

4
uv ≤ si

for some i, 1 ≤ i ≤ `.
In this case, we place the piece Ri so that

∗[Ri] = ∗Q.

If ` = 1, the problem (Q,L) is solved. If ` > 1, we form a new problem (Q′, L′), where
the rectangle Q′ is defined by

∗[Q
′] = [Ri]∗, [Q′]∗ = Q∗

and L′ is obtained from L by deleting Ri. A trivial verification shows that (Q′, L′) is
a tractable problem.

The proof of Lemma 1 is complete. Our next step is to prove Lemma 2.
Suppose that a tractable problem (Q,L) does not satisfy any of the conditions

(Cµ), |µ| ≤ 3. Since it does not satisfy (C1) and (C−1), it follows that

aL ≤
1

2
u, bL ≤

1

2
v.

We retain the assumption that the list L is ordered by decreasing width:

a1 ≥ a2 ≥ · · · ≥ a`.

Denote by m the minimal index (1 ≤ m ≤ `) such that

m∑
i=1

si > SL −
1

8
uv.(2.1)

Obviously, m > 1 since otherwise (Q,L) satisfies (C0). Note that

m−1∑
i=1

si ≤ SL −
1

8
uv ≤ 1

2
uv − 1

8
uv =

3

8
uv.

The assumption am ≤ 1
4u yields

m−1∑
i=1

si > SL −
1

8
uv − sm ≥ SL −

1

8
uv − 1

4
u · 1

2
v = SL −

1

4
uv

and hence implies that (Q,L) satisfies (C3). Therefore, we proved that (3) holds
together with

am >
1

4
u.

A STRIP-PACKING ALGORITHM 407

Now order list L by decreasing height:

L = {Rt1 , Rt2 , . . . , Rt`} , bt1 ≥ bt2 ≥ · · · ≥ bt` .

By using the “transposed” argument, we see that

n∑
j=1

stj > SL −
1

8
uv, btn >

1

4
v

for some n, 1 ≤ n ≤ `. Let I = {1, 2, . . . ,m} and J = {t1, t2, . . . , tn}. We have

∑
k∈I∩J

sk =
m∑
i=1

si +
n∑
j=1

stj −
∑
k∈I∪J

sk > 2

(
SL −

1

8
uv

)
− SL = SL −

1

4
uv.

The intersection I ∩ J cannot contain a single index because (Q,L) does not satisfy
(C0). Therefore, there exist two different indices i and k belonging to I ∩ J . Since

ai, ak ≥ am >
1

4
u, bi, bk ≥ btn >

1

4
v,

and (Q,L) does not satisfy conditions (C2) and (C−2), we have

2(SL − si − sk) > (u−max(ai, ak))v,

2(SL − si − sk) > u(v −max(bi, bk)).

These inequalities together with the inequality 2SL ≤ uv imply

si + sk <
v

2
max(ai, ak), si + sk <

u

2
max(bi, bk);

hence

si + sk <
v

4
max(ai, ak) +

u

4
max(bi, bk).

On the other hand, we have

si + sk = aibi + akbk ≥ max(ai, ak) ·min(bi, bk)

+ min(ai, ak) ·max(bi, bk) >
v

4
max(ai, ak) +

u

4
max(bi, bk).

This contradiction completes the proof of Lemma 2.
Lemmas 1 and 2 suggest the following recursive algorithm M . For every tractable

problem (Q,L), M uses an appropriate Procedure Pµ. The algorithm then stops if
(Q,L) is solved; otherwise, M is applied to one or two tractable problems constructed
by Pµ.

The algorithm M can be implemented to run in time O
(
(` · log2 `)/ log log `

)
,

where ` is the number of pieces in L. To see this, we equip L with the structure of
three linked lists corresponding to decreasing order of width, height, and area, and
we keep this structure for all sublists of L created by Pµ (|µ| ≤ 3). Since for |µ| ≤ 2,
the checking of (Cµ) has a constant cost, and since Pµ packs pieces into Q and deletes
them from L in linear time, it suffices to show that the total time T (`) used by P3

and P−3 when M is applied to (Q,L) has the O((` · log2 `)/ log log `) bound. We may

408 A. STEINBERG

assume without loss of generality that M uses P3 and P−3 if and only if it cannot use
any other reduction procedure. Note that every tractable problem (Q,L) satisfying
(C3) or (C−3) can be decomposed into two subproblems (Q′, L′) and (Q′′, L′′) (as in
Lemma 1) in O(min{`′ log `′, `′′ log `′′, `}) time, where `′ and `′′ are the number of
pieces in L′ and L′′ (`′ + `′′ = `, `′ > 0, `′′ > 0). Therefore,

T (`) ≤ T (`′) + T (`′′) +O(min{`′ log `′, `′′ log `′′, `}).

This allows us to prove the desired bound by induction.
Let us considerM as an algorithm for the strip-packing problem. For this purpose,

we cut from the strip the rectangle Qh that has the bottom of the strip as a lowest
edge and a minimal height h, for which (Qh, L) is a tractable problem. This height h
is determined by

h = inf {v : bL ≤ v and 2SL ≤ v − (2aL − 1)+(2bL − v)+} .

It is easy to check that

h = max

{
bL, 2SL +

(
2− 1

aL

)
+

(bL − SL)+

}
.

Thus we proved the following result.
Theorem 2.3. Let L be a list of rectangular pieces such that aL ≤ 1. Then

M(L) ≤ max

{
bL, 2SL +

(
2− 1

aL

)
+

(bL − SL)+

}
.(2.2)

In particular,

M(L) ≤ SL + max{bL, SL}(2.3)

and

M(L) ≤ 2 · OPT(L).

The last inequality follows from (5) because SL ≤ OPT(L) and bL ≤ OPT(L).
The examples given in Fig. 4 show that estimate (5) is the best possible in the

following sense: for every b > 0 and S > 0, the optimal packing height OPT(L) of a
list L with bL = b and SL = S can be made as close as desired to S + max{b, S}. In
particular, as a corollary of Theorem 2, we have that

sup{OPT(L) : aL ≤ 1, bL = b, SL = S} = S + max{b, S}.

This suggests the following problem: for every 0 < a ≤ 1, b > 0, and S > 0, find
the supremum of OPT(L) over all lists L of rectangles for which aL = a, bL = b, and
SL = S. One can check that if 1

2 < a ≤ 1 or S ≤ b, then this supremum coincides
with the right side of (4). In general, however, the problem is still open.

Acknowledgments. I would like to thank A. Lipovetsky for many helpful dis-
cussions. I also thank the referees for suggestions on the organization of this paper.

A STRIP-PACKING ALGORITHM 409

Fig. 4. Examples of lists L with bL = b, SL = S, and OPT(L) = S + (1− ε) max{b, S} (ε > 0
is sufficiently small). (i) The case where b < S : L = {R1, R2, . . . , R`}, ` ≥ (2 − ε)S/b. The pieces
R2, R3, . . . , R` have the same height ((2−ε)S−b)/(`−1). (ii) The case where b ≥ S : L = {R1, R2}.

REFERENCES

[1] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest, Orthogonal packings in two dimensions,
SIAM J. Comput., 9 (1980), pp. 846–855.

[2] B. S. Baker, D. J. Brown, Jr., and H. P. Katseff, A 5/4 algorithm for two-dimensional
packing, J. Algorithms, 2 (1981), pp. 348–368.

[3] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan, Performance
bounds for level-oriented two-dimensional packing algorithms, SIAM J. Comput., 9 (1980),
pp. 808–826.

[4] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin
packing: An updated survey, in Algorithm Design for Computer System Design, G. Ausiello,
M. Lucertini, and P. Serafini, eds., Springer-Verlag, Berlin, New York, 1984, pp. 49–106.

[5] I. Golan, Performance bounds for orthogonal oriented two-dimensional packing algorithms,
SIAM J. Comput., 10 (1981), pp. 571–582.

[6] D. Sleator, A 2.5 times optimal algorithm for packing in two dimensions, Inform. Process.
Lett., 10 (1980), pp. 37–40.

[7] D. Coppersmith and P. Raghavan, Multidimensional on-line bin packing: Algorithms and
worst-case analysis, Oper. Res. Lett., 8 (1989), pp. 17–20.

APPROXIMATING SHORTEST SUPERSTRINGS∗

SHANG-HUA TENG† AND FRANCES F. YAO‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 410–417, April 1997 006

Abstract. The shortest-superstring problem is to find a shortest possible string that contains
every string in a given set as substrings. This problem has applications to data compression and
DNA sequencing. Since the problem is NP-hard and MAX SNP-hard, approximation algorithms are
of interest. We present a new algorithm which always finds a superstring that is at most 2.89 times
as long as the shortest superstring. Our result improves the 3-approximation result of Blum et al.

Key words. approximation algorithms, combinatorial optimization, DNA sequencing, data
compression, optimal assignments, the shortest-superstring problem

AMS subject classifications. 05C50, 68R10

PII. S0097539794286125

1. Introduction. Let S = {s1, . . . , sn} be a set of strings over an alphabet Σ. A
superstring of S is a string α which contains each si as a substring, i.e., there exist ui
and vi such that α can be written as uisivi. The shortest-superstring problem (SSP)
is to find a minimum-length superstring for any given set S.

One obvious application for the shortest-superstring problem is data compression.
Storer and Szymanski [14, 15], for example, considered a fairly general model of data
compression which includes the SSP as an important special case. See also Mayne
and James [9]. Another application is to DNA sequencing. The SSP is one of the
simplest models for the problem of recovering DNA sequencing information from
experimental data, and some heuristic algorithms have been in routine use for this
task [2, 6, 7, 8, 12, 13].

Since the shortest-superstring problem is known to be NP-hard [4, 5], it is of
interest to find approximation algorithms with good performance guarantees. Some
heuristics have been considered by Tarhio and Ukkonen [16], Turner [18], and Blum
et al. [2]. The simplest one is the algorithm Greedy: repeatedly merge a pair of
strings with maximum overlap until only one string remains. It was shown that with
respect to the compression (or overlap) measure, that is, the sum of the overlaps
between consecutive strings in the candidate superstring, Greedy achieves at least
1/2 the compression of an optimal superstring [16, 18]. However, although a shortest
superstring also achieves maximum compression, in general, a performance guaran-
tee with respect to compression implies no performance guarantee with respect to
length (see section 2). Indeed, it seemed quite hard to establish any linear approx-
imation in the length measure. The first breakthrough was made by Blum et al. in
[2], where they gave an intricate proof that Greedy achieves an approximation ratio
of 4. Furthermore, a modified algorithm, called TGreedy, has an approximation ratio
of 3. They also showed that the superstring problem is MAX SNP-hard [11]. In
conjunction with the recent result of Arora et al. [1] that MAX SNP-hard problems
do not have polynomial-time approximation schemes unless P = NP, it implies that

∗ Received by the editors August 25, 1994; accepted for publication (in revised form) May 17,
1995.

http://www.siam.org/journals/sicomp/26-6/28612.html
† Department of Mathematics and Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139 (steng@math.mit.edu). The research of this author was supported
in part by AFOSR grant F49620-92-J-0125 and DARPA grant N00014-92-J-1799. Part of this work
was done while the author was at the Xerox Palo Alto Research Center.
‡ Xerox Corporation, Palo Alto Research Center, Palo Alto, CA 94304 (yao@parc.xerox.com).

410

APPROXIMATING SHORTEST SUPERSTRINGS 411

a polynomial-time approximation scheme for this problem is unlikely. It was left as
an open question in [2] whether there exist polynomial-time algorithms that achieve
approximation ratios better than 3.

In this paper, we present a new polynomial-time approximation algorithm for
this problem. The algorithm always finds a superstring whose length is at most 2.89
times the length of the shortest superstring. Thus it affirmatively answers the open
question raised in [2].

Our construction makes use of some new structural properties of superstrings.
These properties are interesting in their own right and may have other applications
to problems on string matching. In section 2, we give an overview of our approach.
Section 3 reviews some basic concepts of the superstring problem and the underlying
graph representation. In section 4, we describe a new superstring algorithm and prove
that it achieves an approximation ratio of 2.89.

2. Overview of our approach. We first give an informal description of the
ideas behind our approximation algorithm. These ideas will be worked out analytically
in sections 3 and 4. Precise definitions of the terminology used here can be found in
the next section.

For any superstring α of S, let lengthα and overlapα denote the length and the
overlap (compression) achieved by α, respectively. Then lengthα + overlapα = |S|,
the total length of strings in S. Comparing α with the optimal superstring gives

lengthα − lengthopt = overlapopt − overlapα.

In general, overlapopt may grow quadratically in lengthopt (in the case that the input
strings can be packed densely into a superstring). Hence a guarantee that α achieves,
say, 50% of optimal compression does not translate into a constant-factor guarantee for
its length. Therefore, a key to designing algorithms with linear length approximation
is to construct suitable subproblems for which overlapopt is only linear in lengthopt

(cf. Lemmas 3.5 and 4.4). We now outline our method below.
Since the shortest-superstring (or maximum-compression) problem corresponds

to the maximum-Hamiltonian-path problem in a certain weighted digraph, our ap-
proximation scheme starts by computing, as in [2] and [18], an optimal assignment
(or cycle cover) C in this graph. The remaining task, then, is to find a suitable linear
extension of C, i.e., to merge the cycles into one long path P . Our approach for gen-
erating P is to first construct a “backbone” of P by taking one vertex from each cycle
of C and finding a suitable path P ′ for this vertex set V ′. We then design a procedure
that inserts the remaining parts of C into the backbone structure P ′ without losing
much of their original weights.

To achieve an approximation ratio of 3, one can simply construct P ′ from an
optimal cycle cover C ′ for V ′ (or by the Greedy algorithm). To obtain further im-
provement, we take the above process one step further and build P ′ via a recursive
construction, again making use of optimal cycle covers. However, the key here is to
design a different procedure for insertion when it comes to 2-cycles in order to get
better performance guarantees.

The complete algorithm, which admits a short description, is given in section
4.3. The design and analysis of our algorithm are accompanied by an investigation of
the combinatorial structures of the SSP as well as the periodic properties of strings.
Further discussions of our method are given in section 5.

3. Definitions and lemmas. As in previous studies, we may assume without
loss of generality that S is substring free, i.e., no string si ∈ S is a substring of sj ∈ S

412 S.-H. TENG AND F. F. YAO

for j 6= i. Let |s| denote the length of a string s, and let |S| =
∑
s∈S |s|. We use

opt(S) to denote the length of the shortest superstring of S.

For two strings s and t, let v be the longest string such that s = uv and t = vw for
some nonempty strings u and w. We call |v| the overlap between s and t, denoted by
ov(s, t). String u is called the prefix of s with respect to t and is written as pref (s, t).
The value |pref (s, t)| is called the (prefix) distance from s to t, denoted by d(s, t).
The string uvw = pref (s, t)t of length d(s, t) + |t| = |s| + |t| − ov(st) is the shortest
superstring of s and t in which s appears before t, and is called the merge of s and
t. We will abbreviate pref (si, sj), d(si, sj), and ov(si, sj) to simply pref (i, j), d(i, j),
and ov(i, j), respectively.

Given a list of strings s1, s2, . . . , sr, we define the superstring 〈s1, s2, . . . , sr〉 to be
the string pref (1, 2)pref (2, 3) . . . pref (r − 1, r)sr. Thus it is the shortest superstring
in which s1, s2, . . . , sr appear in order. For any permutation π of {1, 2, . . . , n}, let
Sπ = 〈sπ(1), sπ(2), . . . , sπ(n)〉. It is easy to see that the shortest superstring α for S
must equal Sπ for some π.

3.1. Distance graph and overlap graph. The shortest-superstring problem
can be formulated either as a minimization problem with respect to prefix distance
or as a maximization problem with respect to overlap. We will have occasion to
refer to both of these measures in our discussions. First, define a graph GS for
S = {s1, . . . , sn} to be the complete digraph on the vertex set {1, 2, . . . , n}. The
distance graph (GS , d) of S is the weighted digraph where the weight of an edge (i, j)
is d(i, j) for i 6= j. The overlap graph (GS , ov) of S is also a weighted digraph with
edge weights ov(i, j) for i 6= j. We use d(E) and ov(E) to denote the total weight of
an edge set E in (GS , d) and in (GS , ov), respectively. Note that if E is a cycle, then
the sum d(E) + ov(E) is equal to the total length of the strings in E.

Notice that HMP = |S| − opt(S), where HMP is the cost of a maximum Hamil-
tonian path in (GS , ov). On the other hand, TSP(GS) ≤ opt(S), where TSP(GS) is
the cost of a minimum Hamiltonian cycle in (GS , d). (See also [2, 18].) Since finding
optimal Hamiltonian paths is a hard problem, both Turner and Blum et al. considered
approximation schemes that are based on solving the related assignment problem, as
we will discuss below.

Remark. We have defined GS to be without self-loops, which is different from
the definition adopted in [2]. By doing so, we have sacrificed the “Monge condition”
which the graph (GS , ov) would otherwise satisfy. This slows down the running time
of our algorithm, but it enables us to design a more effective approximation.

3.2. Optimal assignment. An assignment (or cycle cover) of a digraph G is a
collection of cycles such that every vertex of G is in exactly one cycle. An optimal
assignment is an assignment whose total weight is minimized (or maximized). Since
d(C) = |S| − ov(C) for any assignment C on GS , a minimum assignment for (GS , d)
corresponds to a maximum assignment for (GS , ov). We will use the convention that
minimum assignments are for (GS , d) and maximum assignments are for (GS , ov). The
optimal-assignment problem can be solved in O(n3) time by the Hungarian method
(see, e.g., [10] and [17]).

For a cycle c in an assignment C, we refer to d(c) as the weight of c. For a vertex
(string) si ∈ c, we also say that d(c) is the weight of si. The total weight of all cycles
in assignment C is d(C), and the total overlap is ov(C).

Lemma 3.1. Let C be an optimal assignment for S. Then d(C) ≤ TSP(GS) ≤
opt(S), and ov(C) ≥ |S| − opt(S).

APPROXIMATING SHORTEST SUPERSTRINGS 413

Lemma 3.2. Let ov2, ov3, and ov4 denote, respectively, the amount of overlap in
all 2-cycles, 3-cycles, and cycles of size 4 or larger in an optimal assignment C for S.
Let C ′ be a subset of C obtained by discarding the minimum-weight edge (with respect
to ov) from each cycle in C; then ov(C ′) ≥ ov2/2 + 2ov3/3 + 3ov4/4.

It follows that ov(C ′) ≥ ov(C)/2. Thus the superstring corresponding to C ′

achieves at least half the overlap of an optimal superstring. The same can be said
about the superstring produced by the Greedy algorithm, although the proof is not
as straightforward (see [18]). We state this result for later use.

Lemma 3.3. The total overlap achieved by the Greedy algorithm is at least 1/2
of the overlap achieved by an optimal superstring.

The structure of the optimal assignment for a string set S is closely related to
the periodicity structure of the strings. These relations can be exploited in designing
approximate-superstring algorithms. We will look at some of these relations.

3.3. Periodicity of strings. We say a string t is irreducible if all cyclic shifts
of t yield distinct strings. It is easy to show that (see, e.g., [3]) every string s has
a unique prefix t such that t is irreducible and s = tk for some k ≥ 1. String
t is called the period of s. Clearly, in a minimum assignment C for S, the string
t = pref (i1, i2)pref (i2, i3) . . . pref (ir, i1) associated with a cycle c = (i1, . . . , ir) ∈ C
must be an irreducible string. We refer to t (or any of its cyclic shifts) as the period of
c, denoted by period(c); thus |period(c)| = d(c). The next lemma follows immediately
from the definition of a cycle.

Lemma 3.4. Each string s in c is a substring of (period(c))k for sufficiently large
k.

The following lemma from [2] is central to the analysis of various superstring
algorithms based on minimum assignments. (A strengthened version, given in Lemma
4.4, will be used to analyze our algorithm.)

Lemma 3.5. Let c1 and c2 be two cycles in a minimum-weight assignment C with
s1 ∈ c1 and s2 ∈ c2. Then the overlap between s1 and s2 is less than d(c1) + d(c2).

We use the shorthand 〈sj , c〉 for the superstring 〈sj , sj+1, . . . , sr, s1 . . . , sj〉. That
is, 〈sj , c〉 is the result of merging the strings in order around cycle c, beginning and
ending with sj . Let C be an assignment for GS . Suppose we pick an arbitrary string
ri from each cycle ci to form a representative set R and construct a superstring α for
R, say α = 〈r1, . . . , rt〉. Now let ᾱ be the string derived from α by “extending” each
ri by its period, i.e., by letting ᾱ = 〈〈r1, c1〉, . . . , 〈rt, ct〉〉. Note that ᾱ is a superstring
of S, and we will call ᾱ the extended string of α (with respect to C).

Lemma 3.6. Let R be a representative set of an assignment C, and let α be a
superstring of R. Then the extended string ᾱ of α is a superstring of S and |ᾱ| =
|α|+ d(C).

4. A new approximation algorithm. In this section, we present an algorithm
for the superstring problem that has an approximation ratio of 2.89. There are several
new ingredients in this approximation scheme. The first idea is to select, among all
optimal assignments of GS , a canonical one, as we shall define. This enables us to
prove a strengthened version of Lemma 3.5. Another crucial step in our algorithm is
to find an economical way to merge the 2-cycles in an optimal assignment. In this
case, our method gives a better guarantee than retaining only half of the overlap, as
stated in Lemmas 3.2 and 3.3.

4.1. Canonical optimal assignments. Let C be an minimum assignment of a
string set S. For a string s ∈ S and a cycle c ∈ C, if there exists a (sufficiently large)

414 S.-H. TENG AND F. F. YAO

positive integer k such that s is a substring of (period(c))k, then we say that s fits c.
Clearly, if s ∈ c, then s fits c (Lemma 3.4). We can restate Lemma 3.5 as follows.

Lemma 4.1. Let c1 and c2 be two cycles in C. If s ∈ S fits both c1 and c2, then
|s| ≤ d(c1) + d(c2).

We say that s fits c uniquely if s fits c and any two occurrences of s as substrings
in (period(c))k must be offset by one or more periods.

Lemma 4.2. Let c be a cycle in a minimum assignment of S. If s ∈ S fits c and
|s| ≥ d(c), then s fits c uniquely.

Proof. The result follows immediately from the fact that period(c) is an irreducible
string.

Let c and c′ be two cycles of C. Suppose that string s belongs to c and that s
also fits c′. Since removing s from c and reassigning s to c′ does not increase the
overall weight, it still yields a minimum assignment. We call a minimum assignment
canonical if each string s is assigned to a cycle whose weight is the smallest among
all cycles that s fits.

Lemma 4.3 (canonical assignment). Given a minimum assignment C for S, we
can transform C into a canonical minimum assignment C ′ for S in O(n|S|) time.

Proof. Note that s fits c if and only if s is a prefix of (period(c))k for k =
d|s|/|d(c)|e+ 1. Thus in O(n|S|) time, we can find for each s ∈ S the set of all cycles
that s fits and assign s to the one with the smallest weight.

Thus a canonical minimum assignment of a string set can be found in polynomial
time. For canonical minimum assignments, we can establish an extension of Lemma
3.5 by bounding the sum of a pair of symmetric overlaps ov(r1, r2) and ov(r2, r1).
This lemma is useful for designing linear embeddings of 2-cycles.

Lemma 4.4. Let c1 and c2 be two cycles in a canonical minimum assignment C
with r1 ∈ c1 and r2 ∈ c2. Then ov(r1, r2) + ov(r2, r1) < max(|r1|, |r2|) + min(d(c1),
d(c2)).

Proof. Denote the sum ov(r1, r2) + ov(r2, r1) by L. Let h1 be the amount of
overlap between the two copies of r1 in 〈r1, r2, r1〉. Similarly, let h2 be the amount of
overlap between the two copies of r2 in 〈r2, r1, r2〉.

We have the following two cases:
1. Suppose that h1 < d(c1) and h2 < d(c2). Then we have L = |r1| + h2 <

|r1|+ d(c2), and similarly L = |r2|+ h1 < |r2|+ d(c1); the lemma is true.
2. Suppose that either h1 ≥ d(c1) or h2 ≥ d(c2). Without loss of generality,

assume that h1 ≥ d(c1). By Lemma 4.2, in the superstring 〈r1, r2, r1〉, the two
occurrences of r1 must be offset by a multiple of d(c1); hence h1 ≤ |r1|−d(c1). It also
follows that r2, being sandwiched between these r1’s, must fit c1. Hence d(c1) ≥ d(c2)
since C is a canonical optimal assignment. Also, |r2| < d(c1) + d(c2) by Lemma
3.5. Therefore, L = |r2| + h1 < (d(c1) + d(c2)) + (|r1| − d(c1)) ≤ |r1| + d(c2) ≤
max(|r1|, |r2|) + min(d(c1), d(c2)).

Remark. It is worthwhile to point out that the notion of canonical optimal assign-
ment is essential in the sense that Lemma 4.4 does not hold for all optimal assignments.
In fact, the left-hand side of the inequality can be much larger than the right-hand
side in general.

4.2. Long paths through 2-cycles. Let F = {f1, . . . , fm} andG = {g1, . . . , gm}
be two lists of m strings. Form m 2-cycles CF,G by matching fi with gi, that is, let
CF,G = {〈fi, gi, fi〉, 1 ≤ i ≤ m}. Let ov(F,G) be the total overlap in the resulting
2-cycles 〈fi, gi, fi〉. Let η be a superstring of G; without loss of generality, assume
that η = 〈g1, g2, . . . , gm〉. Let ov(η) be the total overlap in η.

APPROXIMATING SHORTEST SUPERSTRINGS 415

We now describe an algorithm Insert(F , η) which generates a superstring of F ∪G
by inserting F into η. This is the process we alluded to in section 2 for building a
path on F ∪G from a backbone structure η on G.

Algorithm Insert(F , η)
1. Define

QO = {〈fi, gi, gi+1, fi+1〉 : i is odd},
QE = {〈fi, gi, gi+1, fi+1〉 : i is even}.

2. Let qO and qE be the concatenation of strings from QO and QE , respec-
tively.

3. Let q be the shorter of qO and qE ; output q.

Clearly, q is a superstring of F ∪G. Moreover, we have the following lemma.
Lemma 4.5. The amount of overlap in q constructed above is at least ov(F,G)/2+

ov(η)/2.
Proof. It follows from the fact that QO ∪ QE and CF,G ∪ η correspond to two

decompositions of the same edge set in GS (see Figure 1).
Given F and G, we will apply the above procedure Insert(F , η) to the string η

obtained by first running the Greedy algorithm on G. (It would work equally well
if we obtained η via an optimal assignment, as described in Lemma 3.2.) Call the
combined procedure Greedy-Insert(F , G). It produces a superstring of F ∪ G with
guaranteed overlap because of Lemmas 3.3 and 4.5.

Lemma 4.6 (Greedy-Insert). The amount of overlap in the superstring generated
by Greedy-Insert(F , G) is at least ov(F,G)/2 + max{0, (|G| − opt(G))/4}.

4.3. The algorithm. We now present our new approximation algorithm.

Algorithm (superstring approximation)
Input: S = {s1, . . . , sn}.

1. Find an optimal assignment C of S, and make C canonical.
2. Take an arbitrary string from each cycle of C to form a set R, and find

an optimal assignment CC for R.
3. Let F be the set that contains the shorter string from each 2-cycle in
CC, and let G be the set containing the longer string from each 2-cycle
in CC; run Greedy-Insert(F , G) to obtain q.

4. Open each non-2-cycle in CC by deleting the edge with the smallest
overlap; concatenate the resulting strings together with q to obtain α;
let ᾱ be the extended string of α and return ᾱ.

4.4. Analysis. Clearly, the algorithm runs in polynomial time. To analyze its
performance ratio, we first introduce some notation.
• Let d2, d3, and d4 be, respectively, the total weight (in C) of the strings that

appear in 2-cycles, 3-cycles, and all i-cycles for i ≥ 4 in assignment CC. Thus
d2 + d3 + d4 = d(C).
• Let ov2, ov3, and ov4 be, respectively, the total overlap present in the 2-cycles,

3-cycles, and all i-cycles for i ≥ 4 in assignment CC. Thus ov2 +ov3 +ov4 = ov(CC).
Also from Lemma 3.1, we have d(C) ≤ opt(S) and |R| − ov(CC) ≤ opt(R) ≤ opt(S).

Recall that G is the set containing the longer string from each 2-cycle in CC.
Summing over all 2-cycles (using Lemma 4.4), we obtain the following lemma.

416 S.-H. TENG AND F. F. YAO

f
1

f
2

f
3

f
4

f
5

f
6

g
1 g

2
g
3

g
4

g
5

g
6

QO = 〈f1, g1, g2, f2, f3, g3, g4, f4, f5, g5, g6, f6〉,
QE = 〈g1, f1, f2, g2, g3, f3, f4, g4, g5, f5, f6, g6〉.

Fig. 1. The decompositions induced by QO and QE are indicated by bold and dashed edges,
respectively.

Lemma 4.7. ov2 ≤ |G|+ d2/2.
Lemma 4.8. |α| ≤ (1 + 8/9)opt(S).
Proof. By Lemmas 3.2 and 4.6, the amount of overlap in α, ov(α), is at least

max(a,b), where

a = ov2/2 + 2ov3/3 + 3ov4/4,

b = ov2/2 + (|G| − opt(G))/4 + 2ov3/3 + 3ov4/4.

Recall that ovi ≤ 2di for i = 2, 3, 4 by Lemma 3.5. Therefore,

|α| ≤ |R| − a
≤ opt(S) + ov2/2 + ov3/3 + ov4/4

≤ opt(S) + d2 + (2/3)d3 + (1/2)d4,(1)

where we have made use of the fact that |R| ≤ opt(S) + ov(CC).
Since |G| ≥ ov2 − d2/2 by Lemma 4.7 and since opt(G) ≤ opt(S), we have b ≥

ov2/2 + (ov2 − d2/2 − opt(S))/4 + 2ov3/3 + 3ov4/4 = 3ov2/4 + 2ov3/3 + 3ov4/4 −
d2/8 − opt(S)/4. Therefore,

|α| ≤ |R| − b
≤ 5opt(S)/4 + ov2/4 + ov3/3 + ov4/4 + d2/8

= 5opt(S)/4 + ov(CC)/4 + ov3/12 + d2/8

≤ (2− 1/4)opt(S) + d3/6 + d2/8.(2)

We complete the analysis by considering two cases.
Case 1. If d2 ≤ (2/3)d(C), then the right-hand side of (1) is maximized when

d2 = (2/3)d(C) and d3 = (1/3)d(C), giving

|α| ≤ opt(S) + (2/3)d(C) + (2/3)(1/3)d(C)

≤ (1 + 8/9)opt(S).

Case 2. If d2 > (2/3)d(C), then d3 ≤ d(C)/3. By inequality (2),

|α| = (2− 1/4)opt(S) + (d2 + d3)/8 + d3/24

≤ (2− 1/4)opt(S) + d(C)/8 + d(C)/72

≤ (1 + 8/9)opt(S).

APPROXIMATING SHORTEST SUPERSTRINGS 417

Now the result follows immediately from Lemma 3.6.
Theorem 4.9. There exists an O(n3 + n|S|)-time algorithm for constructing

superstrings that achieves an approximation ratio of 2.89.

5. Conclusion. The shortest-superstring problem is a fundamental problem about
strings with some natural applications. We have established a better approximation
bound than what was previously available. Given the possible large sizes of |S| and
opt(S), a small percentage improvement in superstring approximation might still be
viewed as significant. We do not know any examples for which our algorithm’s ap-
proximation ratio is worse than 2; thus it is possible that the analysis can be further
improved. We close by raising two open problems:
• Give further improvement to the 2.89 upper bound or the 1 + ε lower bound (as

provided by [1]) for superstring approximation.
• Find an algorithm that achieves better than 50% of the optimal compression.

Such an algorithm, when used as a subroutine, will immediately lead to improvement
in length approximation as well.

REFERENCES

[1] A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and
hardness of approximation problems, in Proc. 33rd IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–23.

[2] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of shortest
superstrings, in Proc. 23rd ACM Symposium on the Theory of Computing, ACM, New
York, 1991, pp. 328–336.

[3] N. Fine and H. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc.,
16 (1965), pp. 109–114.

[4] J. Gallant, D. Maier, and J. Storer, On finding minimal length superstrings, J. Comput.
System Sci., 20 (1980), pp. 50–58.

[5] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman, New York, 1979.

[6] T. R. Gingeras, J. P. Milao, P. Sciaky, and R. J. Roberts, Computer programs for the
assembly of DNA sequences, Nucleic Acid Res., 7 (1979), pp. 529–545.

[7] A. Lesk, ed., Computational Molecular Biology: Sources and Methods for Sequence Analysis,
Oxford University Press, Oxford, UK, 1988.

[8] M. Li, Towards a DNA sequencing theory, in Proc. 31st IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 125–134.

[9] A. Mayne and E. B. James, Information compression by factorising common superstrings,
Comput. J., 18 (1975), pp. 157–160.

[10] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity, Prentice–Hall, Englewood Cliffs, NJ, 1982.

[11] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes,
in Proc. 20th ACM Symposium on the Theory of Computing, ACM, New York, 1988, pp.
229–234.

[12] H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen, Algorithms for some string match-
ing problems arising in molecular genetics, in Information Processing: Proc. IFIP World
Computer Congress, Elsevier, New York, 1983, pp. 53–64.

[13] M. B. Shapiro, An algorithm for reconstructing protein and RNA sequences, J. Assoc. Com-
put. Mach., 4 (1967), pp. 720–731.

[14] J. Storer and T. Szymanski, Data compression via textual substitution, J. Assoc. Comput.
Mach., 29 (1982), pp. 928–951.

[15] J. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD,
1988.

[16] J. Tarhio and E. Ukkonen, A greedy approximation algorithm for constructing shortest
common superstrings, Theoret. Comput. Sci., 57 (1988), pp. 131–145.

[17] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983.
[18] J. Turner, Approximation algorithms for the shortest common superstring problem, Inform.

and Comput., 83 (1989), pp. 1–20.

BOUNDED CONCURRENT TIME-STAMPING∗

DANNY DOLEV† AND NIR SHAVIT‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 418–455, April 1997 007

Abstract. We introduce concurrent time-stamping, a paradigm that allows processes to tem-
porally order concurrent events in an asynchronous shared-memory system. Concurrent time-stamp
systems are powerful tools for concurrency control, serving as the basis for solutions to coordination
problems such as mutual exclusion, `-exclusion, randomized consensus, and multiwriter multireader
atomic registers. Unfortunately, all previously known methods for implementing concurrent time-
stamp systems have been theoretically unsatisfying since they require unbounded-size time-stamps—
in other words, unbounded-size memory.

This work presents the first bounded implementation of a concurrent time-stamp system, provid-
ing a modular unbounded-to-bounded transformation of the simple unbounded solutions to problems
such as those mentioned above. It allows solutions to two formerly open problems, the bounded-
probabilistic-consensus problem of Abrahamson and the fifo-`-exclusion problem of Fischer, Lynch,
Burns and Borodin, and a more efficient construction of multireader multiwriter atomic registers.

Key words. atomic registers, serialization, concurrency, time-stamping, distributed computing,
parallel computing

AMS subject classifications. 68Q22, 05C90, 05C99

PII. S0097539790192647

1. Introduction. A time-stamp system is like a ticket machine at an ice cream
parlor. People’s requests to buy the ice cream are time-stamped based on a num-
bered ticket (label) taken from the machine. In order to know the order in which
requests will be served, a person need only scan through all the numbers and observe
the order among them. A concurrent time-stamp system (CTSS) is a time-stamp
system in which any process can either take a new ticket or scan the existing tickets
simultaneously with other processes. A CTSS is required to be wait-free, which means
that a process is guaranteed to finish any of the two above-mentioned label-taking or
scanning tasks in a finite number of steps, even if other processes experience stop-
ping failures. Wait-free algorithms are highly suited for fault-tolerant and real-time
applications (see Herlihy [Her91]).

Concurrent time-stamping is the basis for simple solutions to a wide variety of
problems in concurrency control. Examples of such algorithms include Lamport’s first-
come first-served mutual exclusion [Lam74], Vitanyi and Awerbuch’s construction of a
multireader multiwriter (MRMW) atomic register [VA86], Abrahamson’s randomized
consensus [Abr88], and Fischer, Lynch, Burns, and Borodin’s fifo-`-exclusion problem
[FLBB79, FLBB89] (also see [AD*94]).

∗ Received by the editors December 10, 1990; accepted for publication (in revised form) May
18, 1995. A preliminary version of this paper appeared in Proc. 21st Annual ACM Symposium on
Theory of Computing, ACM, New York, 1989, pp. 454–465.

http://www.siam.org/journals/sicomp/26-2/19264.html
† IBM Almaden Research Center, K53/802, 650 Harry Road, San Jose, CA 95120-6099

(dolev@almaden.ibm.com) and Institute of Mathematics and Computer Science, Hebrew University,
Givat-Ram, Jerusalem 91906, Israel (dolev@cs.huji.ac.il).
‡ Department of Computer Science, Hebrew University, Givat-Ram, Jerusalem 91906, Israel.

Current address: Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
(shanir@cs.tau.ac.il). The research of this author was supported by a Libnitz Foundation Schol-
arship, the Israeli Communications Ministry Award, NSF contract CCR-8611442, ONR contract
N0014-85-K-0168, DARPA contract N00014-83-K-0125, and a special grant from IBM. Parts of this
research were also conducted while this author was visiting the Theory of Distributed Systems group
at MIT, AT&T Bell Laboratories, and the IBM Almaden Research Center.

418

BOUNDED CONCURRENT TIME-STAMPING 419

Unfortunately, the only formerly known implementation of the CTSS paradigm
using read/write registers was a version of Lamport’s “bakery algorithm,” which uses
labels of unbounded size [Lam74]. Researchers were thus led to devise complicated
problem-specific solutions to show that the above problems are solvable in a bounded
way.1

In [IL93], Israeli and Li were the first to isolate the notion of bounded time-
stamping (time-stamping using bounded-size memory) as an independent concept,
developing an elegant theory of bounded sequential time-stamp systems. Sequential
time-stamp systems prohibit concurrent operations. This work was continued in sev-
eral interesting papers on sequential systems with weaker ordering requirements by
Li and Vitanyi [LV87], Cori and Sopena [CS93], and Saks and Zaharoglou [SZ91].

This paper introduces the concurrent time-stamping paradigm and provides the
first bounded construction of a concurrent time-stamp system. It provides a modu-
lar unbounded-to-bounded transformation, enabling the design of simple unbounded
concurrent-time-stamp-based algorithms to problems such as those mentioned above,
with the knowledge that each unbounded solution immediately implies a bounded
one. Our work allows solutions of the above flavor to two formerly open problems,
the bounded-randomized-consensus problem of [Abr88] (which requires one to solve
the randomized-consensus problem of [CIL87] without using an atomic coin-flip opera-
tion) and the fifo-`-exclusion problem of [FLBB79, FLBB89] (see [AD*94] for details).
A bounded CTSS solution to the former problem is given in [Sha90], and in [AD*94],
Afek et al. use a CTSS to provide the first bounded solution to the latter problem.2

Though one might think that the price of introducing a modular unbounded-to-
bounded transformation would be a blowup in memory size or number of operations,
this is hardly the case. For an n-process system, the construction presented in this
paper requires only n registers of O(n) bits each, meeting the lower bound of [IL93] for
sequential-time-stamp-system construction. The time complexity is O(n) operations
for an update and O(n2 logn) for a scan. (Like the unbounded algorithm, the scan
consists only of read operations, i.e., no writes.)

One example of the efficiency of the CTSS solutions is given by the famous prob-
lem of multireader multiwriter atomic register construction. A simple solution based
on transforming the unbounded protocol of Vitanyi and Awerbuch [VA86] using our
construction (see [Sha90, G92]) has the same space complexity of the [PB87, Sch88]
algorithm, yet it has a better time complexity—O(n) memory accesses for a write,
O(n logn) for a read, as compared with O(n2) for either in the former solutions. Our
implementation is the only known bounded construction of an MRMW atomic register
from single-writer multireader (SWMR) atomic registers where the implementation
of the MRMW read operation does not require a process to perform an SWMR write.
The importance of the readers-do-not-write property was first raised by Lamport in
[Lam86a], where he showed the impossibility of a bounded construction where readers
do not write of a single-writer single-reader (SWSR) atomic register from SWSR regu-
lar ones. Moreover, as explained in [AD*94], this property is important when defining
liveness conditions such as first-come first-enabled for problems like `-exclusion.

The structure of our presentation is as follows. We begin by describing concurrent
time-stamping (sections 2 and 3), first formally using Lamport’s axiomatic approach

1 See [And89a, Blo88, BP87, CIL87, Dij65, DGS88, FLBB79, FLBB89, Kat78, Lam74, Lam77,
Lam86b, LH89, LV87, ?, Ray86, Pet81, Pet83, PB87, VA86].

2 The only prior known solutions to the fifo-`-exclusion problem [DGS88, Pet88] achieve weaker
forms of fairness than the original test-and-set-based solution of [FLBB79].

420 DANNY DOLEV AND NIR SHAVIT

[Lam86c, Lam86a] and then informally through a simple unbounded-memory imple-
mentation. In sections 4.3 and 4.4, the bounded wait-free CTSS implementation
is described. Section 5 provides the final details of the formal specification and the
main parts of the proof of the bounded CTSS implementation are presented. Section 6
describes the implications of a bounded CTSS construction on various interprocess-
communication problems and gives a summary of research following our work. For
berevity, some of the more tedious parts of the correctness proof have been omitted
and can be found in [Sha90].

2. A concurrent time-stamp system. The following is a formal definition of a
CTSS for a system of processes numbered 1, . . . , n. It uses the axiomatic specification
formalism of Lamport [Lam86c, Lam86a]. The reader may benefit by checking how
the formal properties described below are met by the unbounded implementation
described in the next section.

A CTSS is a problem specification with an operational interface. A CTSS that
permits n concurrent operations has 2n operation types, specifically, labelingi(`i) and
scani(¯̀,≺) for i ∈ {1, . . . , n}. A labelingi operation associates an input value, `i, taken
from any domain D with a label.3 We call `i the labeled-value of operation labelingi. In
an application such as an atomic-register construction, the labeled-value would be the
value written to the register, while in a mutual-exclusion-type application, where the
input values are unimportant, it would be null. A scani operation returns as output
a pair (¯̀,≺), where the view ¯̀= {`1, . . . , `n} is an indexed set of labeled-values (one
per process) and ≺ is a total order on these indexes.

Assume that each process’ program consists of these two operations, whose ex-
ecution generates a sequence of elementary operation executions, totally ordered by
the precedes relation (of [Lam86c, Lam86a], denoted “ -”) and where any number of
scan operation executions are allowed between any two labeling operation executions.
The following,

L
[1]
i
- S

[1]
i
- L

[2]
i
- L

[3]
i
- S

[2]
i
- S

[3]
i
- S

[4]
i
- · · · ,

is an example of such a sequence by process i, where L
[k]
i denotes process i’s kth

execution of a labeling operation and S
[k]
i is the kth execution of a scan operation.

(The superscript [k] is used for notation and is not visible to the processes.) The

labeled-value input in each labeling operation execution L
[k]
i is denoted by `

[k]
i .4 A

global-time model of operation executions is assumed, implying that for any two op-
eration executions, a - b or b - a. (For more details, see section 5.1.)

The elementary operation executions of a CTSS must have following set of prop-
erties.

P1: ordering. There exists an irreflexive total order =⇒ on the set of all labeling
operation executions such that we have the following:

a: precedence. For any pair of labeling operation executions L[a]
p and L

[b]
q

(where p and q are possibly the same process), if L[a]
p
- L

[b]
q , then L[a]

p =⇒L
[b]
q .

b: consistency. For any scan operation execution S
[k]
i that returns (¯̀,≺),

p ≺ q if and only if L
[a]
p =⇒L

[b]
q .

3 In order correctly handle initial conditions, the value domain D must specify some initial value.
4 In order for a unique labeled-value `

[k]
i to be associated with each label operation execution

L
[k]
i , the reader can think of `

[k]
i as a triplet 〈`[k]

i , i, k〉, where the second and third fields are dummy
indexes used only for purposes of the specification.

BOUNDED CONCURRENT TIME-STAMPING 421

S
[b]

j

L
[a+1]

iL
[a]

i L
[a+5]

iL
[a+2]

L
[a+3]

L
[a+4]

i i i

Fig. 1. Regularity.

Property P1 formalizes the idea that a CTSS can be envisioned as a black box,
inside of which hides a mechanism (a logical clock) associating causally ordered time
stamps—from an infinite totally ordered range—with each of the labeled-values en-
tered in labeling operations, and where scanning is like peeping into this black box,
each scan returning a view of a part of this hidden ordering.5 The black box metaphor
is used to stress that it suffices to know of the existence of such a total ordering =⇒,
while the ordering itself need not be known.

One should bear in mind that the asynchronous nature of the operations allows
situations where a scan operation execution overlaps many consecutive labeling oper-
ation executions of other processes. Also, several consecutive scans could possibly be
overlapped by a single labeling operation execution. It is therefore important that a

requirement be made that the view ¯̀ returned by S
[k]
i be a meaningful one, namely,

that it reflect the ordering among labeling operation executions immediately before
or concurrent with the scan, and not just any possible set of labeled-values. (In the

example of Figure 1, any of the labeled-values `
[a+1]
x through `

[a+4]
x can be returned

by S
[k]
i , but not those preceding or following them.) This will eliminate uninteresting

trivial solutions and introduce a measure of liveness into the system. This require-
ment is formalized in the following definition, where - is the can affect relation of
[Lam86c, Lam86a].

P2: regularity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , L

[a]
p

- S
[k]
i , and there is

no L
[b]
p such that L

[a]
p

- L
[b]
p
- S

[k]
i .

Although such a regular concurrent time-stamp system as P1–P2 would suffice
for some applications (as in Lamport’s “bakery algorithm” [Lam74]), a more powerful
monotonic concurrent time-stamp system will be needed in applications such as the
multireader multiwriter atomic register construction (as in [LV87, VA86]). zTo this
end, the following third property is added.

P3: monotonicity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , there does not exist an

S
[k′]
j with a labeled-value `

[b]
p in its view ¯̀′, such that S

[k]
i

- S
[k′]
j and L

[b]
p
- L

[a]
p

(possibly i = j).
Monotonicity is the property that in the unbounded natural-number CTSS can

be described by saying that the labels of any one process, as read by increasingly
later scans, are “monotonically nondecreasing.” In other words, later scans cannot
read labels smaller than those read by earlier ones. It is important to note, however,
that P3 does not imply that labeling and scan operation executions of all processes
are serializable, that is, appear to happen atomically. (Figure 2 shows two scan
operations that meet property P3 that cannot be serialized.) It does, however, imply
the serializability of the scan operation executions of all processes relative to the
labeling operation executions of any one process.

5 Notice that there is no requirement that labeled-values returned by different scans must be
comparable.

422 DANNY DOLEV AND NIR SHAVIT

S
[d]
l

L
[b]

jL
[a]

i

S
[c]

m

L
[a+1]

i L
[b+1]

j

read read

read read

Fig. 2. Monotonicity does not imply atomicity.

Property P4 is an extension of part of the regularity property to the =⇒ order.6

Properties P3 and P4 together imply that all scan operations that consider only the
“largest” value, where “largest” is based on the ≺ ordering, can be serialized with
respect to all labeling operations.

P4: order regularity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , S

[k]
i

- L
[b]
q implies

that L
[a]
p =⇒ L

[b]
q .

3. Unbounded concurrent time-stamping. The basic communication prim-
itive used in our implementations is a single writer multireader atomic register. Our
goal is to design an implementation that is wait-free [Her91, AG90]: each process’ scan
or label operation execution consists of a bounded number of SWMR register opera-
tions independently of the pace or type of operations carried out by other processes.
Wait-free constructions of SWMR atomic registers from weaker primitives have been
shown in [BP87, IL93, Lam86d, SAG94, New87].

We begin with the following simple implementation of a CTSS using SWMR
registers of unbounded size. The concurrent time stamp system will consist of n
SWMR atomic registers vi, i ∈ {1..n}. Each vi is written by process i and read by
all. Each labelingi operation writes `i to register vi. In our implementation, `i is a
data type consisting of two fields, a labeled-value, denoted value(`i), and its associated
label, denoted label(`i). Each label(`i) is a pair of the form (numberi, i), where numberi
is a natural number and i ∈ {1..n} is the id of the process writing `i.

A process i collects the labels and values of other processes by performing a collect
operation, a reading of all the registers vj , j ∈ {1..n}, once each, in some arbitrary
order. The collect operation returns an indexed set ` = {`1, . . . , `n}, that is, one value
and associated label per process. The collected elements in ` are ordered by ord (`),
an ordering on their indexes in {1..n}, such that i is smaller than j if and only if the
label (numberi, i) is lexicographically smaller than the label (numberj , j). Figure 3
provides the pseudocode of the labeling and scan operations for a process i.

To understand how property P1 is met, consider that if the labeling operation
execution of `i by a process i completely preceded the labeling operation execution of
`j by j, then it must be that j chose a label with numberj > numberi since j collected
`i. If they are concurrent, at worst they might both collect the same maximal label
and choose numberi = numberj , in which case they are ordered by their ids. Thus

6 The need for property P4 in applications such as the multireader multiwriter atomic register
construction of [LV87, VA86] was discovered by Gawlick [G92].

BOUNDED CONCURRENT TIME-STAMPING 423

procedure labeling (val);
begin
` := collect;
vi := (val, (maxj∈{1..n}numberj + 1, i));

end;
function scan;

begin
` := collect;
return ({value(`1) . . . value(`n)}, ord (`));

end;

Fig. 3. The unbounded natural-number-based implementation.

the lexicographic order on the labels defines a linearization order [HW88] on the
concurrent labeling operation executions, that is, an order =⇒ by which they can
be thought of as happening sequentially in time. The reader can convince herself
that properties P2–P4 follow directly from the use of SWMR atomic registers in the
implementation.

It is important to note that the actual label (`1) . . . label (`n) used in computing
ord (`) are hidden from the user (scan operations do not return them), and there is
thus no way to compare the order among a pair of values returned by different scans.

4. A bounded concurrent time-stamp system.

4.1. Labels and precedence. The bounded implementation presented will be
of the exact same form as the unbounded natural-number-based one. The concurrent
time-stamp system will consist of n SWMR atomic registers vi, i ∈ {1..n}, each vi
written by process i and read by all. Each value `i written to register vi consists,
just as in the unbounded case, of two fields, a labeled-value, to which the input of a
labeling operation is written, and an associated label.

Note. In what follows, almost all of the discussion involves only the label field of
vi and not its labeled-value field. In order to simplify the exposition, we choose, with
few exceptions, to ignore the existence of the labeled-value field and deal only with

the associated label field. Thus, for example, the notation `
[k]
i will represent only the

label field written in a labeling operation execution L
[k]
i . We trust that the interested

reader will be able to add the relevant operations regarding the labeled-value, as in
the unbounded implementation in section 3.

Let V denote the range of possible labels and V≺ denote an irreflexive and anti-
symmetric relation among them. In the unbounded natural-number implementation
of a CTSS, V is just the unbounded size set of pairs of natural numbers and integers
in {1..n} and V≺ is the lexicographic total ordering among them. In the following
sections, the set of possible label values V of the implementation, together with a
relation V≺ among them, are defined in terms of a precedence graph7 (V, V≺). Each
possible label is a node in this graph. The order among the labels in any two registers
is the order V≺ established by the edges of the precedence graph. A tournament is a
complete directed graph. The precedence graph representing labels of the natural-
number-based implementation is an acyclic tournament of unbounded size, i.e., a total

7 The elegant idea of defining the labels and ordering as a tournament graph was introduced by
Israeli and Li in [IL93].

424 DANNY DOLEV AND NIR SHAVIT

order. The definition of the precedence graph will provide the basis for describing the
implementation of the labeling and scan operations.

4.2. A bounded precedence graph. The following is the description of the
precedence graph Tn (see Figure 4). Unlike the unbounded precedence graph defined
by the natural numbers, Tn contains cycles.

Define “A dominates B in G,” where A and B are two subgraphs of a graph G
(possibly single nodes), to mean that every node of A has edges directed to every
node of B. Define the following generalization of the composition operator of [IL93].
The α-composition, G ◦αH, of two graphs G and H, where α is a subset of the nodes
of G, is the following noncommutative operation:

Replace every node v ∈ α of G by a copy of H (denoted Hv), and let
Hv (or v) dominate Hu in G ◦α H if v dominates u in G.

Define the graph T 2 to be the following graph of five nodes: a cycle of three nodes
{3, 4, 5}, where 3 dominates 5, which dominates 4, which in turn dominates 3, all
dominating the nodes {2, 1}, and where node 2, in turn, dominates node 1.

Define the graph T k (a tournament) inductively as follows:
1. T 1 is a single node.
2. T k = T 2 ◦α T k−1, where α = {5, 4, 3, 1} and k > 1.

The graph Tn = (V, V≺) is the precedence graph to be used in the implementation
of the labeling and scan algorithms of a concurrent time-stamp system for n processes.
For any process i , each node in Tn corresponds to a uniquely defined label value `i.
The label can be viewed as a string `i[n..1] of n digits, where each `i[k] ∈ {1, . . . , 5}
is the digit of the corresponding node in T 2, replaced by a T k subgraph during the
kth step of the inductive construction above. The digit `i[n] is always 1, representing
the complete Tn graph, and if in `i, `i[k] = 2, then `i[j] = 1 for all j ∈ {k−1..1}
(since node 2 is never expanded in the induction step). Therefore, given any label `i,
the T k subgraph of Tn in which its corresponding node is located is identified by the
corresponding prefix `i[n..k].

To assure that based on the graph Tn a total ordering among the label values
returned by a scan can be established, we need to break symmetry among processes
having the same label. Thus the label `i is assumed to be concatenated with the id
of process i , where label and id are lexicographically ordered. (In terms of the graph
Tn, this amounts to no more than assuming that each T 1 graph consists of a total
order tournament of n nodes, each process i always choosing the ith node in the order.
For simplicity, this point is not further elaborated upon in what follows.)

4.3. The labeling operation. Recall that the collect operation by any process
i is a reading of all the registers vj , j ∈ {1..n}, once each, in an arbitrary order,
returning a set ` of labels. The labeling operation of a process i is of the form described
in Figure 5, where L : V n × {1..n} 7→ V is a labeling function, returning a label value
`i “greater than” all other label values.8 This is the same form as the natural number
CTSS, where the labeling function L returns (maxj∈{1..n}numberj + 1, i). However,
the interpretation of being “greater than” is not as straightforward as in the natural-
number case.

The definition of the labeling function L(`, i) presented below is based on a re-
cursively defined function Lk(G, `, `max), which, given a T k subgraph G of Tn, a set
of labels `, and a “maximal” label `max ∈ ` in T k, returns the label of a node in G

8 Initially, all labels are on node 111..11, the node dominated by all others in Tn.

BOUNDED CONCURRENT TIME-STAMPING 425

1 3

5

4

2

2 3

5

1
43

2

4

5
1

4

1 32

5

3

2

1

4

3 2
1

5

4
5

2

3Graph T

Graph TGraph T1

Fig. 4. The precedence graph.

procedure labeling(val);
begin
` := collect;
vi := (val,L(`, i));

end;

Fig. 5. The labeling operation.

that is “greater than” the other labels. The reader may benefit by going through
Examples 4.1, 4.2, and 4.3 before or during the reading of the code in Figure 6. For
simplicity, and since the collected set of labels ` remains unchanged in L(`, i) once
it is collected (similarly for the variable `max once it is computed), it is treated as a
global variable and is not passed as a parameter in all of the utility functions used by
L(`, i). The following functions are used in defining L:

num labels(G)—a function that, for the given label set `, returns how many of
the labels are in subgraph G;

426 DANNY DOLEV AND NIR SHAVIT

function L (`, i);
function Lk(G);
begin
1: if k= 1 then return G;
2: if `max[n..k] 6= G

then return Lk−1(G.1);
3: if `max[n..k−1] = G.2

then return Lk−1(G.3);
4: if k > 2 then

if `max[k−2] ∈ {2, 3, 4, 5} and
(`i[n..k−1] 6= `max[n..k−1])

then return Lk−1(G.dom(`max[k−1]));
5: if (num labels(`max[n..k−1]) < k−1) or

((num labels(`max[n..k−1]) = k−1) and
(`i[n..k−1] = `max[n..k−1]))
then return Lk−1(G.`max[k−1])
else return Lk−1(G.dom(`max[k−1]));

end Lk;
begin

`max := max(dominating set(`, `i));
return Ln(Tn);

end L;

Fig. 6. The labeling function.

dom(x)—a function that, for a given digit x ∈ {1..5} representing a node in
the graph T 2, returns the next dominating node, namely, dom(1) = 2, dom(2) = 3,
dom(3) = 4, dom(4) = 5, and dom(5) = 3;

dominating set(ˆ̀, `i)—a function that, for a set of labels ˆ̀⊆ ` and a label `i ∈ ˆ̀,

returns a subset of labels {`j ∈ ˆ̀| `i V≺ `j} ∪ {`i}; and

max(ˆ̀)—a function that, for a set of labels ˆ̀⊆ `, returns a label

(`x ∈ ˆ̀ : |dominating set(ˆ̀, `x)| ≤ |dominating set(ˆ̀, `j)|, ∀`j ∈ ˆ̀),

the maximal label, i.e., the one least dominated within this set.
Define G.x to be the concatenation of string G and digit x. Figure 6 is thus

the definition of the labeling function L(`, i), where the parameter subgraphs G are
identified with the relative label prefixes and Tn is identified with the label 1. To
give the reader some intuition about the properties of the labeling operation, let it be
assumed that one can talk about the values of the labels of all processes at “points
in time.” To show how the labeling operation executions allow us to define the order
=⇒, we will first argue informally that they meet a much simpler requirement, namely,
that at any point in time, the following hold:

R1. The labels reflect the precedence among nonconcurrent labeling operation
executions.

R2. The subgraph of the precedence graph Tn induced by the labeled nodes
(those whose corresponding label is written in some vi) contains no cycle.

Since Tn is a tournament, R2 implies that at any point in time, all labels are
totally ordered. One should notice that these two requirements are easily met by
the unbounded implementation since for any n − 1 nodes, one can always choose a

BOUNDED CONCURRENT TIME-STAMPING 427

4

3

5

x
y

z

a
b

c

Fig. 7. Starting state for the examples.

dominating node in an unbounded total order graph in order to maintain R1, and
this will never impair R2 because the graph does not contain cycles.

Let us begin by showing that the labeling operation executions maintain the
following two “invariants” at any point in time:

(1) There are labels on at most two of the three nodes in any cycle of any subgraph
T k. (The cycle consists of “supernodes” {3, 4, 5}, called supernodes since they are
actually T k−1 subgraphs.)

(2) There are no more than k labels in the cycle of any subgraph T k.
Maintaining the second invariant is the key to maintaining the first, and the first
implies R2.

The manner by which the invariance of (1) and (2) is preserved is explained via
several examples. In these examples, T 3 is a precedence graph for a system of three
processes x, y, and z. As shown in Figure 7, all of the examples start at a point in

time where `
[b]
y = 134, `

[a]
x = 135, and `

[c]
z = 141, that is, all labels are totally ordered

by V≺. In the figure, a label such as `
[a]
x = 135 is denoted by shading node 135 and

denoting it with the mark xa.
Example 4.1. Assume that the following sequence of labeling operation executions

occur sequentially. Process y performs L
[b+1]
y , reading `

[a]
x , `

[b]
y , and `

[c]
z and moving

based on L (`, y) to `
[b+1]
y = 142. Process z performs L

[c+1]
z , reading the new label

`
[b+1]
y . It thus moves to the T 2 subgraph 14, following the rule that the node chosen

should be the “lowest node dominating all other nodes with labels.” This is actually
the most basic rule implied by the definition of L. The move to a dominating node is
intended to meet R1.

Processes y and z can continue forever to choose `
[b+2]
y = 144, `

[c+2]
z = 145,

`
[b+3]
y = 143, . . . (that is, move in the cycle of 14), maintaining the above invariants,

because the T 2 graph is a precedence graph for two processes. If at some point x

moves, in L
[a+1]
x it will read the labels of both z and y as being in the T 2 subgraph 14.

A T 2 subgraph is a precedence graph able to accommodate two labels and no more.

428 DANNY DOLEV AND NIR SHAVIT

Since num labels (′14′) = 2 in L
[a+1]
x , that is, there are already two labels in the T 2

subgraph, by line 5 of L (`, i), x will move to `
[a+1]
x = 151, and so on.

The reader can convince herself that following any labeling operation execution

L
[c]
z by some process z, the above invariants hold. Furthermore, for the set of labels

of processes y (y 6= z) that were read in L
[c]
z ’s collect operation (denoted read(L

[c]
z)),

it is the case that

(3) (∀` [b]
y ∈ read(L [c]

z)) (` [b]
y

V≺ ` [c]
z).

This invariant—that the new label chosen is greater than all those read—is the
basis for meeting requirement R1.

As seen in the following example, in the concurrent case, more than k labels may
move into the same T k subgraph at the same time. It is thus not immediately clear
why the second invariant holds.

Example 4.2. Assume that the following sequence of labeling operation executions

occur concurrently. Processes x and y begin performing L
[a+1]
x and L

[b+1]
y concur-

rently, reading `
[a]
x , `

[b]
y , and `

[c]
z and computing L such that `

[a+1]
x = `

[b+1]
y = 142. If

they then continue to complete their operations by writing their labels, though they
choose the same node, they were concurrent and can be ordered by relative id. If any of
them were to continue to perform a new labeling operation, since num labels(′14′) > 2,
it would choose label 151, not entering the cycle. However, let us suppose that they

do not both complete writing their labels, that is, x stops just before writing `
[a+1]
x

to vx, while y writes `
[b+1]
y = 142. Process z then performs L

[c+1]
z , reading the new

label `
[b+1]
y and the old label `

[a]
x , thus moving to `

[c+1]
z = 143. Processes y and z

continue to move into and in the cycle of the T 2 subgraph 14 since they continue to

read x’s old label. Then at some point, x completes L
[a+1]
x , and there are three labels

in 14 (two of them in the cycle). However, if x now performs a new labeling L
[a+2]
x ,

it will read the labels of both x and y as being in 14. Since num labels(′14′) > 2, by

line 5 of L (`, i), x will move to `
[a+2]
x = 151, not entering the cycle.

If nodes 1 and 2 did not exist in a T 2 subgraph (that is, each T 2 subgraph was a
cycle of three nodes), a process’ first move into T k would be onto a node of the cycle.
The reader can verify that the sequence of operations in Example 4.2, given that T 2

is just a cycle, would cause the labels of x, y, and z to end up each on a different node
of the cycle, contradicting the first invariant. Based on the existence of nodes 1 and
2, this does not occur.

The following is intended to explain to the reader why for a given level k (k = 2 in
the example), even if more than k processes move into a T k subgraph without reading
one another’s labels, at most k of them will enter the cycle in T k. The reason is the
following well-known flag principle 9:

If there are k + 1 people, each of which first raises a flag and then
counts the number of raised flags, at least one person must see k+ 1
flags raised.

By the definition of the labeling function L, each process moving into the cycle of a
T k subgraph must first move to either supernode 1 or 2 in T k, and only then can it
perform a labeling into the cycle. The move to 1 or 2 is the raising of the flag, and
the move into the cycle is the counting of all flags.

9 The proof follows since the last person to start counting flags must have seen k+ 1 flags raised.

BOUNDED CONCURRENT TIME-STAMPING 429

4

3

5

x
y

z

a
b

c

x a+1

y b+1

y b+2

Fig. 8. A collect returning a cycle.

Example 4.3 below, which is depicted in Figure 8, shows that even though by the
above there are at most k labels at a time in any T k subgraph, the sets of labels read
in a labeling operation execution may contain cycles.

Example 4.3. Process z begins performing L
[c+1]
z , reading `

[a]
x = 135. Process y

then performs L
[b+1]
y , reading `

[a]
x , `

[b]
y , and `

[c]
z and moving to `

[b+1]
y = 142. Process

x performs L
[a+1]
x , reading the new label `

[b+1]
y and `

[c]
z and thus, by line 5 of L,

moving to `
[a+1]
x = 151. Process y then performs L

[b+2]
y , reading `

[a+1]
x and moving

to `
[b+2]
y = 152. Finally, process z reads `

[b+2]
y . It thus read `

[a]
x = 135, `

[b+2]
y = 152,

and `
[c]
z = 141, three labels on a cycle.

In order to select a label that dominates all others, z must establish where the
“maximal label” among them is. To overcome the problem that the labels read form
cycles (as in the example above), the labeling function L (`, z) does not take into

account “old values” such as `
[a]
x ; it considers only the labels that dominate the

current label `
[c]
z .

In order to maintain the first invariant, z should move to `
[c+1]
z = 131 to dominate

the current labels of both x and y without moving directly into the cycle. However,

there is seemingly a problem since z did not read the label `
[a+1]
x = 151; so how can

it know that there are already two labels in the T 2 subgraph 15? The solution is

based on the fact that z can indirectly deduce the existence of `
[a+1]
x = 151. By the

first invariant, in all of the cycle of T 3, there are at most three labels. In order to

move to `
[b+1]
y = 152, y must have read some label in node 151 of the T 2 subgraph

15. By simple elimination, this must be a label of x. This rule is maintained by the
application of line 4 in Lk.

If the above scenario had occurred in the cycle of a T k graph, where k > 3, then
in order to allow the same reasoning as above, it would have to be that z’s reading

`
[b+2]
y = 152 (or `

[b+2]
y ∈ {153, 154, 155}) would imply that there are k−2 labels apart

from that of y in the T k−1 subgraph 15. It would thus have to be that if `
[b+2]
y is

430 DANNY DOLEV AND NIR SHAVIT

L
[b+2]

y

L
[c+1]
z

L
[b+1]

yL
[b]

y

L
[a+1]

xL
[a]

x

read

read

read

Fig. 9. The observed relation.

on supernode 2 in 15, it already established the existence of k − 2 (and not just one)
other labels in supernode 1.

It is for this purpose that supernode 1 of any T k graph, where k > 2, is not a
single node but a T k−1 subgraph. This creates a situation whereby as long as there
are k − 1 or fewer labels in T k, all labels enter and move around in supernode 1.

Supernode 2 can be chosen in L
[b+2]
y only if k − 1 labels were established by it as

being in supernode 1 (i.e., supernode 1 is full). Since supernode 2 is a “bridge” that
some process must “cross” (choose) before any process can move into the cycle, the

above reasoning for z holds in case it read `
[b+2]
y ∈ {152, 153, 154, 155}.

Although the above invariants hold, it follows from Example 4.3 that the property
that the chosen new label is greater than all those read, true for sequential labeling
operation executions, does not hold in the concurrent case. Fortunately, there is a
similar property that does hold, a property that will prove important in the imple-

mentation of the scan. Recall that read (L
[b]
y) denotes the set of label values read

in the collect of L
[b]
y . Let us define the following observed relation among labeling

operation executions to be the transitive closure of the read relation.

Definition 4.1. A labeling operation execution L
[a]
x is observed by L

[b]
y (denoted

L
[a]
x

-obs L
[b]
y) if `

[a]
x ∈ read(L

[b]
y) or there exists an L

[c]
z such that `

[c]
z ∈ read (L

[b]
y)

and L
[a]
x

-obs L
[c]
z .

Definition 4.2. Let the maximal observed set max obs(L
[a]
x) be defined as

{L [b]
y | y ∈ {1..n}, y 6= x, L [b]

y
-obs L [a]

x and

(∀L [b′]
y) (if L [b]

y
- L [b′]

y , then L [b′]
y 6-obs L [a]

x)}.

It thus consists of the “latest” of labeling operation executions observed for each
process. In a concurrent execution, instead of invariant (3) stating that the new label
chosen is greater than all the labels read, it is the case that

(3′) (∀` [b]
y ∈ max obs (L [a]

x)) (` [b]
y

V≺ ` [a]
x).

The new label chosen is greater than the latest of those observed for each process. As

shown in Figure 9, for the labeling L
[c+1]
z of Example 4.3, although z read `

[a]
x = 143

and `
[c+1]
z

V≺ ` [a]
x , it is the case that its maximal observed label is `

[a+1]
x , and `

[a+1]
x

V≺
`

[c+1]
z .

Finally, the following is the irreflexive total order =⇒ on the labeling operation
executions as required by property P1.

BOUNDED CONCURRENT TIME-STAMPING 431

1label j = 2label i
=

read(i) read(j)

label j 1=

read(i) read(j)

S1:

S2 :

L L :ji ,

Fig. 10. Ambiguity given bounded labels.

Definition 4.3. Given any two distinct labeling operation executions L
[a]
x and

L
[b]
y , L

[a]
x =⇒ L

[b]
y if either

1. L
[a]
x

-obs L
[b]
y or

2. L
[a]
x 6-obs L

[b]
y , L

[b]
y 6-obs L

[a]
x , and `

[a]
x

V≺ ` [b]
y .

Since with every L
[a]
x there is an associated label `

[a]
x , =⇒ can be seen as a

“lexicographical” order on pairs (L
[a]
x , `

[a]
x). The first element in the pair is ordered

by -obs , a partial order that is consistent with the ordering - . (If L
[a]
x

- L
[b]
y ,

then in L
[b]
y , y read `

[a]
x or a later label.) The second element is ordered by V≺, an

irreflexive and antisymmetric relation. Parts of the rather involved reasoning as to
why the “static” relation V≺ on the labels completes the “dynamic” partial order -obs

to a total order on all labeling operation executions are provided in section 5.9. The
main difficulty is in establishing transitivity. The intuition as to why =⇒ is transitive
is based on the fact that “at any point in time,” the current labels of all processes are
totally ordered, that is, no three labels are on three different supernodes of a cycle in
any T k subgraph. The reader is encouraged to try to bring about a scenario where
there are three labeling operation executions such that

L [a]
x =⇒ L [b]

y =⇒ L [c]
z =⇒ L [a]

x

while keeping in mind that -obs is transitive. It will become clear that this requires
that at some point in time, there will be three labels of x, y, and z on three different
supernodes of a cycle in some T k subgraph, a contradiction.

4.4. The scan operation. The scan operation returns a pair (¯̀,≺). In the
scan operation of the unbounded label implementation, the linearization order among
the labeling operation executions can be determined just by reading the labels since
the order among any two operations is just the order among their associated labels.
However, as Example 4.4 shows, if labels are taken from a bounded range (and there-
fore the same labels are repeatedly used), a process scanning the labels concurrently
with ongoing labeling operations cannot deduce the order =⇒ from the order of the
labels alone.

Example 4.4. In Figure 10, segments represent operation-execution intervals,
where time runs from left to right. Two processes i and j perform labeling operations
sequentially, j followed by i, followed by many labelings, until eventually the labels are
used, and j, for example, uses the same label as before. A third process z performs
a scan concurrently with the labelings, reading labeli and then labelj . S1 and S2

432 DANNY DOLEV AND NIR SHAVIT

represent possible executions of this same scan, the only difference being that many
labeling operations of other processes occurred between the reads in S2. In both the
case where the scan is of the form S1 and the case where it is of the form S2, the
values collected are labeli = 2 and labelj = 1, where the order among the labels is, say,
1 < 2. However, in the case of S1, j’s labeling preceded i’s, while in S2, i’s labeling
preceded j’s. Thus the order of the labels is not the order among the labeling opera-
tions.

However, we do wish to provide the exact form of solution as in the unbounded
case, where just by reading the labels, the scanning process can return a set of labels
and the order among them. From Example 4.4, it should be clear that the order ≺
returned by the scan cannot be the order =⇒ among the associated labels of labeled-
values in ¯̀. Nevertheless, the requirement of property P1b is that ≺ be consistent
with =⇒ for the set of labeling operation executions of labeled-values in ¯̀. The key to
the solution is to perform many collections of labels and then, based on the properties
proven in what follows, return n of them for which ≺ can be determined.

The scan algorithm thus consists of two main steps, a sequence of 8n logn collect
operations10 and an analysis phase of the collected labels to select a set ¯̀and an order
≺.

The 8n logn collect operations are logically divided into n phases, where each
phase consists of log n levels, each of eight collects. We use the notation ` c,m,k, c ∈
{1..8}, m ∈ {1..dlogne}, and k ∈ {1..n}, to denote variables, each holding a set of

labels {` c,m,k1 , . . . , ` c,m,kn } collected in the cth collect operation execution of the mth
level of the kth phase. Let half (r) and other half (r) be complementary functions that,
for a given set r, return two disjoint subsets r1 and r2 such that r1 ∪ r2 = r and
−1 ≤ ||r1|| − ||r2|| ≤ 1.

The scan algorithm, presented in Figure 11, returns the indexed set of labeled-
values ¯̀, one of each process, and an ordering ≺ on their indexes. This order is
represented by the vector O[1..n], holding a permutation of the indexes in {1..n}, the

number in the ith position representing the ith largest element in the order. The scan
algorithm begins with a sequence of 8ndlogne collect operation executions, for which
the returned labels are all saved in the variables `c,m,k, c ∈ {1..8}, m ∈ {1..dlogne},
and k ∈ {1..n}. The remainder of the algorithm defines how to choose n of these
labels, one per process, for which ≺ (i.e., =⇒) can be established. The following is an
outline of how this selection process is performed. A formal proof of its correctness
can be found in section 5.

By the order of label collection, the labels read in phase k = 1 are the earliest
to have been collected and those for k = n the last. Notice that from the 8dlogne
collected label sets of each phase, the algorithm selects one label. The selected label
in the kth phase will be the k largest in the order ≺. As it turns out, in order to be
able to show that it is the kth largest, it suffices that the following condition holds
(slightly abusing notation in the definition).

Condition 1. For the label `
8,dlog ne,k
s , collected in the dlogneth level of the kth

phase, and any label ` 8,1,k
y of a process y ∈ R, collected in the first level of the kth

phase, it is the case that L 8,1,k
y =⇒ L

8,dlog ne,k
s .

To prove that this condition suffices, let it be shown that if it is maintained, the
labeling operation execution of a label returned in a phase k′ < k precedes (in the

10 Note that, as mentioned in section 1, the scan algorithm requires a scanning process only to
read other’s labels and does not require it to write.

BOUNDED CONCURRENT TIME-STAMPING 433

function scan;
function select(m,k,r);
begin

if ||r|| = 1 then return (x : x ∈ r);
else

x := select(m−1, k, half (r));
y := select(m−1, k, other half (r));
if (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx

V≺ ` c2,m,ky)
then return y
else return x

fi fi;
end select;

begin
R := {1..n};
¯̀ := ∅;
for k := 1 to n do

for m := 1 to dlogne do
for c := 1 to 8 do

` c,m,k := collect
od od od;
for k := n downto 1 do

s := select(dlogne, k, R);
¯̀ := ¯̀∪ {value(`

8,dlog ne,k
s)};

O[s] := k;
R := R − {s};

od;
return (¯̀, O);

end scan;

Fig. 11. The scan algorithm.

ordering =⇒) that of the label returned in phase k. The following shows that this is

the case for the labels `
8,dlog ne,k
x , `

8,dlog ne,k−1
y , and `

8,dlog ne,k−2
z returned in phases k,

k−1, and k−2, respectively. The same line of proof can be extended inductively to
all k′ < k.

By Condition 1, L 8,1,k
y =⇒ L

8,dlog ne,k
x . Since the read of ` 8,1,k

y was performed

after that of `
8,dlog ne,k−1
y , either the label of the same labeling operation execu-

tion was read in both cases or L
8,dlog ne,k−1
y =⇒ L

8,dlog ne,k
x . By similar reasoning,

L
8,dlog ne,k−2
z =⇒ L

8,dlog ne,k−1
y , which by the transitivity of =⇒ establishes L

8,dlog ne,k−2
z

=⇒ L
8,dlog ne,k
x .

It remains to be shown that the label returned in any phase, determined by
the select function, meets Condition 1. The select function is a recursively defined
“winner-take-all”-type algorithm among the processes in R. In any given phase, R
is the set of processes for which a label has not been selected in earlier phases. The
select function returns the id of the “winner,” a process s that meets Condition 1. At
any level m of the application of select(m, k, r), the winners of the selections at level
m−1 are paired up, and from each pair one “winner” process is selected to be passed

434 DANNY DOLEV AND NIR SHAVIT

on to the (m+1)th level of selection. After at most dlog ||R||e levels, s, the winner of
all selections, is returned.

Based on the definition of the select function, maintaining the following condi-
tion two suffices to assure that the label of the process s returned by select(m, k, r)
meets Condition 1.

Condition 2. Of the two processes x and y in the application of select at level m
of phase k, the one returned, say x, is such that L 1,m,k

y =⇒ L 8,m,k
x , where ` 1,m,k

y and

` 8,m,k
x , respectively, are the labels associated with these labeling operation executions.

Maintaining Condition 2 suffices for the following reason. If at level m process
x was selected between x and y and at level m− 1 process y was selected between y
and z, by the same line of proof as above, from L 1,m,k

y =⇒ L 8,m,k
x and L 1,m−1,k

z =⇒
L 8,m−1,k
y , it follows that L 8,m−2,k

z =⇒ L 8,m,k
x . By induction, this implies Condition 1.

It remains to be shown that Condition 2 can be met. Recall Example 4.4, which
implies that it is impossible to establish the order =⇒ among two labeling opera-
tion executions from the order among their associated labels alone. To overcome
this problem, instead of attempting to decide the order between two given labeling
operation executions, the algorithm will choose a pair out of several given labeling
operation executions for which the order =⇒ can be determined. Thus to allow the
select operation at level m of phase k to choose a “winner” process, say x, for which
L1,m,k
y =⇒ L8,m,k

x , labels of x and y from eight consecutive collects will be analyzed.
Let it first be shown that if the following condition holds for y, namely, if it is the

case that

[Condition 3.] (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky),

then L c1,m,kx =⇒ L c2,m,ky . (Because of the order of label collecting, this will imply

L 1,m,k
x =⇒ L 8,m,k

y .) Assume by way of contradiction that L c1,m,kx =⇒ L c2,m,ky . Since

` c1,m,kx
V≺ ` c2,m,ky , it must be by the definition of =⇒ that L c2,m,ky

-obs L c1,m,kx . It

cannot be that ` c2,m,ky ∈ max obs(L c1,m,kx) since by the properties of the labeling

scheme, for the label `
[b]
y ∈ max obs(L c1,m,kx), `

[b]
y

V≺ ` c1,m,kx . Thus there must be a

different labeling operation execution `
[b]
y ∈ max obs(L c1,m,kx), L c2,m,ky

- L
[b]
y . This

label `
[b]
y was already observed (i.e., must have been written) before the end of the

read of ` c1,m,kx . Thus `
[b]
y or a label later than it must have been read instead of

` c2,m,ky in the collect c2 of level m in phase k, a contradiction.
It remains to be shown that if Condition 3 does not hold for y, it is the case that

L 1,m,k
y =⇒ L 8,m,k

x , and x can be correctly returned. Assume by way of contradiction
that Condition 3 does not hold for y. By the same arguments as above, it cannot
be that Condition 3 holds for x, that is, (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,ky

V≺
` c2,m,kx). Therefore, it must be that there are four nonconsecutive collects of ` c1,m,k,
c1 ∈ {1, 3, 5, 7}, and four nonconsecutive collects of ` c2,m,k, c2 ∈ {2, 4, 6, 8}, such that
the labels ` c1,m,ky , c1 ∈ {1, 3, 5, 7}, are all different from one another and the labels

` c2,m,kx , c2 ∈ {2, 4, 6, 8}, are all different from one another. The reason is that if any
two of them, say ` 3,m,k

y and ` 5,m,k
y , are the same, then in order for Condition 3 not to

hold for x c1 = 4 and c2 = 3, it must be that ` 4,m,k
x

V≺ ` 3,m,k
y . However, since ` 3,m,k

y

and ` 5,m,k
y are the same, it would follow that ` 4,m,k

x
V≺ ` 5,m,k

y , and Condition 3 would
hold for y, a contradiction.

To complete the proof, it remains to be shown that if the labels ` c1,m,ky , c1 ∈
{1, 3, 5, 7}, are all different from one another and the labels ` c2,m,kx , c2 ∈ {2, 4, 6, 8},

BOUNDED CONCURRENT TIME-STAMPING 435

are all different from one another, then L 1,m,k
y =⇒ L 8,m,k

x . The situation above is
such that during the eight collect operations, each of the processes x and y executed
a new labeling operation at least three times. It can be formally shown11 that after x
and y moved at least three times, the third new labeling operation execution L 8,m,k

x

occurred completely after the initial labeling of y, that is, after L 1,m,k
y

- L 8,m,k
x

(see Figure 13 in section 5.8). The scan thus takes O(n2 logn) read operations.
As a final comment, note that for algorithms where only the maximum label is

required and not a complete order among all returned labels (as in the construction
of an MRMW atomic register or solutions to the mutual exclusion problem), only one
phase of label collection is required, that is, only 8 log n collects.12

5. Correctness proof.

5.1. A short review of Lamport’s formal theory. This is a minimal outline
(due to Ben-David [Ben88]) of Lamport’s formalism, on which the correctness proof in
this chapter is based. The reader is encouraged to consult [Lam86c, Lam86d, Lam86a,
Lam86b] for an elaborate presentation and discussion.

Lamport bases his formal theory on two abstract relations over operation execu-
tions. For operation executions A and B, “A - B” stands for “A precedes B” and
“A - B” stands for “A can causally affect B.”

A system execution is a triple 〈ϕ, -, -〉, where ϕ is a set of operation executions
and - and - are binary relations over ϕ. Lamport offers the following axioms:

A1. - is an irreflexive transitive relation.
A2. If A - B, then A - B and B 6- A.
A3. If (A - B and B - C) or (A - B and B - C), then A - C.
A4. If A - B - C - D, then A - D.
A5. For any A, the set of B such that A 6- B is finite.
An intuition for these axioms can be gained by considering the following model

for it. Let E be a partially ordered set of events and let ϕ be a collection of nonempty
subsets of E . For A andB in ϕ, define A - B if and only if (∀a ∈ A) (∀b ∈ B) (a < b)
(in the sense of E) and A - B if and only if (∃a ∈ A) (∃b ∈ B) (a < b). A
straightforward checking shows that such models satisfy axioms A1–A4 and also the
following axiom:

A4∗. If A - B - C - D, then A - D.
This last axiom was suggested by Abraham13 in [AB87], where a completeness

theorem was proven for the above-mentioned class of models with respect to axioms
{A1, A2, A3, A4, A4∗}. An important class of models is obtained when E is a linear
(total) ordering. In such a case, the system satisfies an additional axiom:

Global time. For all A and B, it is the case that either A - B or B - A but
not both.

The above axioms can be extended to nonterminating operation executions as
described in [Lam86c]. Added on top of these axioms are the communication axioms,
in our case axioms B0–B5 of [Lam86d], for communication via shared registers. These
axioms formalize the behavior of a single-writer multireader atomic register. In a few
words, axioms B0–B4 define what constitutes regular register behavior, namely, that
reads can return only values that

11 This claim is not true if fewer than three new labelings took place.
12 The number of collects in each phase can be lowered to 5 log n if one gives up the property that

the order of reads in a collect be arbitrary.
13 Ben-David was later informed that this result was obtained independently by Anger.

436 DANNY DOLEV AND NIR SHAVIT

• were actually written,
• were written before the end of the read, and
• were not overwritten before the beginning of read.

Axiom B5 is added to these, which restricts the allowed behavior of the register by
requiring that reads and writes be linearizable. Such a register that abides by axioms
B0–B5 is called atomic since, in effect, its behavior is equivalent to one in which all
reads and writes are “atomic,” that is, occur in nonoverlapping intervals of time.

5.2. Proof outline. The proof will follow Definition 8 of [Lam86a], namely, that
a system S implements a system H if there is a mapping m : S 7→ H such that for
every system execution 〈ϕ, -, -〉 in S, 〈ϕ, -, -〉 implements m(〈ϕ, -, -〉).
The definition of a system execution used in what follows is that of [Lam86a] under
the assumption of global time. Theorem 5.1 below establishes the correctness of the
implementation.

Theorem 5.1. The system defined by the labeling and scan procedures implements
a concurrent time-stamp system.

In order to prove the theorem correct, the systems involved need to be formally
defined and a mapping between them must be established.

5.3. System definitions. The labeling and scan procedures of the previous sec-
tions define a system S, the set of all system executions that consist of reads and
writes of the single-writer multireader atomic registers v1, . . . , vn, such that the only
operations on these registers are the ones indicated by the scan and labeling algo-
rithms. Formally, S contains all system executions 〈ϕ, -, -〉 such that we have
the following:

1. ϕ consists of reads and writes of single-writer multireader atomic registers
v1, . . . , vn (with register axioms B0–B5 restricting such read and write operations
[Lam86b]).

2. Each vx is written by process x and read by all processes in {1..n}, where r
[k]
x (y)

(w
[k]
x (x)) denote the kth read (respectively, write) of vx by process y (respectively, x).

3. The read and write operation executions of a process x are totally ordered by
-.

4. For any process z and any x and y:

(a) If the read operation r
[k]
x (z) occurs, then r

[k]
y (z) occurs, r

[k−1]
x (z) -

r
[k]
y (z), and if for some w

[k′]
z (z), r

[k]
x (z) - w

[k′]
z (z), then r

[k]
y (z) - w

[k′]
z (z).

(b) For any two writes w
[k]
z (z) and w

[k+1]
z (z), there exists a set of read

operation executions

Rk+1 = {r [α]
x (z) |w [k]

z (z) - r [α]
x (z) - w [k+1]

z (z), α ∈ {0, 1, . . .}},

of reads of vx such that ||Rk+1||mod (8ndlogne) = 1.

(c) For every r
[k]
x (z), r

[k]
x (z) ∈ Rr, for some r.

This fourth condition formalizes some of the semantics of labeling and scan pro-
cedures. It states that every read is part of a collect operation consisting of a sequence
of reads, one of each register, each collection ending before the next begins, and that
reads and writes are bunched in groups of either 8n logn collects or a collect followed
immediately by a write.

The following is a formal definition of H, a concurrent time-stamp system.
Definition 5.1. A concurrent time-stamp system is a set of system executions

〈ψ, -, -〉 that have properties P0–P4.

BOUNDED CONCURRENT TIME-STAMPING 437

Properties P1–P4 are as defined earlier, and the following is the definition of P0.

P0. The set of operation executions on the CTSS is the set ψ =
⋃
iψi, where each

ψi, the set of operation executions by process i, is as follows:

• A finite or infinite set of labeling operation executions {L [1]
i , L

[2]
i , . . .}: A

unique labeled-value `
[k]
i is associated with each L

[k]
i . The set of possible labeled-

values can be from any range. For example, if an atomic register is to be implemented,

the labeled-value can be the value written to the register. Given that the value `
[k]
i

may repeatedly appear, in order that a unique labeled-value be associated with each

L
[k]
i , let `

[k]
i be the triplet 〈` [k]

i , i, k〉, where i and k are dummy fields and only `
[k]
i is

visible to the user. There is thus a one-to-one mapping from labeled-values to labeling
operations.

• A finite or infinite set of scan operation executions {S [1]
i , S

[2]
i , . . .}: A view

¯̀= {` [k1]
1 , . . . , `

[kn]
n } is returned by each scan, with different labeled-values associated

with labeling operation executions of different processes.

• An initial labeling operation execution L
[0]
i with labeled-value `

[0]
i .

The initial labeling L
[0]
i

- S
[k]
j for any i, j, and k. (This is the same as assuming

that there is some initial labeled-value for any process i that a scan will obtain if
it preceded any labeling operation of i.) All operation executions in ψi are totally
ordered by -, that is, they occur sequentially.

5.4. The mapping. By Definition 8 of [Lam86a], to show that the labeling and
scan procedures implement a CTSS, a mapping m from S to H must be defined. In the
definition of the labeling and scan procedures, for each system execution 〈ϕ, -, -〉
of S, the set of operation executions m(ϕ) of m(〈ϕ, -, -〉) is the following higher-
level view of 〈ϕ, -, -〉:

1. Each labeling operation execution L
[k]
i consists of a set r

[k′]
1 (i), . . . , r

[k′]
n (i) of

reads followed by a write w
[k]
i (i), where k′ = max {α | r [α]

j (i) - w
[k]
i (i)}.

2. Each scan operation execution by process i is a set of reads

{r [α]
j (i) | j = 1..n, α = k..k + 8ndlogne and

(¬∃w [k′]
i (i), r

[α]
j (i) - w

[k′]
i (i) - r

[α+1]
j (i))},

all in ϕ and no element of which is part of another scan or labeling.

The set m(ϕ) meets conditions H1 and H2 of Definition 4 of [Lam86a], that
is, each of its elements is a finite and nonempty set of elements of ϕ and each el-
ement of ϕ belongs to a finite, nonzero number of elements of m(ϕ). It is thus a
higher-level view of ϕ. (In fact, this implies that the labeling and scan operations
as implemented are wait-free since waiting means that a higher-level operation takes
an infinite number of lower-level ones.) To complete the description of the mapping
m, the precedence relations -H and -H must be defined so that m(〈ϕ, -, -〉) is
defined as 〈m(ϕ), -H , -H 〉.

By choosing -H and -H to be the induced relations -* and -* as defined by
equation 2 of [Lam86a] (by equation 2, choosing the induced precedence relations -*

and -* for -H and -H simply means that the ordering among the higher-level scan
and labeling operation executions is that of the reads and writes implementing them),
axioms A1–A5 are met, implying that 〈m(ϕ), -H , -H 〉 is indeed a system execution.
Since condition H3 of Definition 5 of [Lam86a] is satisfied by the induced precedence

438 DANNY DOLEV AND NIR SHAVIT

relations,14 〈ϕ, -, -〉 implements 〈m(ϕ), -H , -H 〉.
Having defined the system 〈m(ϕ), -H , -H 〉, it remains to be shown that it is

indeed a CTSS, that is, is in H. This amounts to showing that 〈m(ϕ), -* , -* 〉
satisfies properties P0–P4.

5.5. Properties P0 and P2–P4. The proof that 〈m(ϕ), -* , -* 〉 meets prop-
erty P0 follows by applying equation 2 of [Lam86a] to 〈ϕ, -, -〉 (again, this
amounts to defining the high-level order among scan and labeling operation execu-
tions to be that among the reads and writes implementing them) and observing the
following:

1. The labeled-value `
[k]
i associated with each labeling operation L

[k]
i is just the

labeled-value part written to vi by the write w
[k]
i (i) of process i. (Recall that there

is also a label part of vi.)

2. Any labeled-value returned by a scan is the result of some write w
[k]
i (i).

3. The initial labeling L
[0]
i is the write of some initial labeled-value and label

11..1 to register vi.
The proof that ¯̀ and � are a view and an irreflexive total order on its elements

follows from the definition of the scan procedure. Since vi, i ∈ {1..n} are SWMR
atomic registers, applying equation 2 of [Lam86a] together with register axioms B0–
B5 to 〈ϕ, -, -〉 yields the proof that 〈m(ϕ), -* , -* 〉 satisfies properties P2, P3,
and P4. The details are left to the reader.

To simplify the presentation, for the remainder of this section, we use the notation

`
[k]
i to denote the label part of the value written to register vi in the labeling operation

execution L
[k]
i . We will use the notation value (`

[k]
i) to refer to the labeled-value part.

5.6. Properties of the observed relation. As part of the notation used in

what follows, rj(L
[k]
i) and w(L

[k]
i) will denote, respectively, the reading of vj and

writing of vi during a labeling operation execution L
[k]
i . Also, let m(ϕ)

L ⊆ m(ϕ)
denote the set of all labeling operation executions in m(ϕ). To prove that 〈m(ϕ), -*

, -* 〉 meets property P1, the relation =⇒ on the labeling operation executions in
m(ϕ) should be shown to be an irreflexive total order. The definition of this relation
(Definition 4.3) is based on that of the relation -obs (Definition 4.1).

The following lemma establishes the properties of -obs , later used to establish the
properties of =⇒.

Lemma 5.1. The relation -obs is an irreflexive partial order on the labeling oper-

ation executions in m(ϕ), such that for any two labeling operations L
[a]
i and L

[b]
j , if

L
[a]
i

-* L
[b]
j , then L

[a]
i

-obs L
[b]
j .

Proof. Since rj(L
[a]
i) - wi(L

[a]
i) for any j, it follows that -obs is irreflexive. The

rest of the proof is based on the three claims below.

Claim 5.1.1 (transitive). For any three labeling operation executions L
[a]
i , L

[b]
j ,

and L
[c]
k , if L

[a]
i

-obs L
[b]
j
-obs L

[c]
k , then L

[a]
i

-obs L
[c]
k .

Proof. The proof is by induction on the length of the minimal production se-

quence of the production of L
[b]
j

-obs L
[c]
k . If ||L [b]

j
-obs L

[c]
k || = 1, then by defini-

tion rj(L
[c]
k) = `

[b]
j and L

[a]
i

-obs L
[b]
j , which by the definition of -obs implies that

14 Definition 5 of [Lam86a] states that a lower-level system execution 〈ϕ, -, -〉 implements
a higher-level one 〈ψ, -H , -H 〉 if ψ is a higher-level view of ϕ and condition H3 holds, that is, for
any G, H ∈ ψ, if G -* H, then G -H H.

BOUNDED CONCURRENT TIME-STAMPING 439

L
[a]
i

-obs L
[c]
k . Assume that the induction hypothesis holds for every r′ < r. Let

||L [b]
j
-obs L

[c]
k || = r. By definition, there exists an L

[b′]
j such that L

[a]
i

-obs L
[b]
j
-obs

L
[b′]
j , where ||L [b]

j
-obs L

[b′]
j || = r−1 and rj(L

[c]
k) = `

[b′]
j . By the induction hypothesis,

L
[a]
i

-obs L
[b′]
j , which by definition implies that L

[a]
i

-obs L
[c]
k .

Corollary 5.1. If L
[a]
i

-obs L
[b]
j , then there exists a read ri(L

[β]
α) = `

[a]
i such

that w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) for some α and β (possibly α = j and β = b).

Proof. The proof is by induction on the length of the minimal production of the

observation sequence, as in the previous claim. If ||L [a]
i

-obs L
[b]
j || = 1, then by

definition α = j and β = b. Assume that the induction hypothesis holds for every

r′ < r. By the minimality of the production sequence, there must exist an L
[β]
α ,

ri(L
[β]
α) = `

[a]
i , such that ||L [β]

α
-obs L

[b]
j || = r− 1. By the induction hypothesis, there

exist α′ and β′ such that

w(L [β]
α) - rα(L

[β′]
α′) - w(L

[b]
j),

where possibly α′ = j and β′ = b. By the definition of the labeling operation,

ri(L
[β]
α) - w(L

[β]
α), and so

ri(L
[β]
α) - w(L [β]

α) - rα(L
[β′]
α′) - w(L

[b]
j),

which by axiom A4 implies ri(L
[β]
α) - w(L

[b]
j). Since ri(L

[β]
α) = `

[a]
i , it follows by

atomic register axiom B5 that w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j).

Claim 5.1.2 (antisymmetric). For any two distinct labeling operation executions

L
[a]
i and L

[b]
j , if L

[a]
i

-obs L
[b]
j , then L

[b]
j 6-obs L

[a]
i .

Proof. Assume by way of contradiction that L
[a]
i

-obs L
[b]
j and L

[b]
j

-obs L
[a]
i .

Thus by Corollary 5.1, for some α, β, γ, and δ (possibly α = j, β = b, γ = i, or
δ = a),

w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) and

w(L
[b]
j) - rj(L

[δ]
γ) - w(L

[a]
i).

Since this implies

w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) - rj(L

[δ]
γ),

by axiom A4∗, w(L
[a]
i) - rj(L

[δ]
γ). By w(L

[a]
i) - rj(L

[δ]
γ) and rj(L

[δ]
γ) -

w(L
[a]
i), a contradiction to the axiom of global time is derived.

Claim 5.1.3 (consistent). If L
[a]
x

-* L
[b]
y , then L

[a]
x

-obs L
[b]
y .

Proof. If x = y, then rx(L
[a+1]
y) = `

[a]
x , and by induction, for b > a, L

[a]
x

-obs

L
[b]
y . If x 6= y, then by register axioms B0–B4, since w(L

[a]
x) - rx(L

[b]
y), either

rx(L
[b]
y) = `

[a]
x (implying L

[a]
x

-obs L
[b]
y) or there exists an L

[a′]
x , L

[a]
x

-* L
[a′]
x , where

rx(L
[b]
y) = `

[a′]
x , which by the transitivity of -obs (Claim 5.1.1) implies L

[a]
x

-obs L
[b]
y .

This completes the proof of Lemma 5.1.

The following lemma formalizes the property that whenever a new label `
[a]
x is

selected, it is greater (by the ordering V≺) then the latest label observed in L
[a]
x for

any process y 6= x.

440 DANNY DOLEV AND NIR SHAVIT

Lemma 5.2. For any labeling operation execution L
[a]
x , it is the case that

(∀` [b]
y ∈ max obs(L [a]

x)) (` [b]
y

V≺ ` [a]
x).

To simplify the exposition, the the proof is differed to section 5.9, where it is
joined with the proof of Claim 5.3.2.

5.7. Property P1a. The following lemma asserts that =⇒meets part a of prop-
erty P1.

Lemma 5.3. The relation =⇒ is an irreflexive total order on the labeling operation

executions in m(ϕ) such that for any two labeling operations L
[a]
i and L

[b]
j , if L

[a]
i

-*

L
[b]
j , then L

[a]
i =⇒ L

[b]
j .

Proof. By Definition 4.3, the relation =⇒ is irreflexive and total, and is consistent
with the ordering -* among the labeling operation executions in m(ϕ). The following
two claims complete the proof by showing that it is also antisymmetric and transitive.

Claim 5.3.1 (antisymmetric). For any two distinct labeling operation executions

L
[a]
i and L

[b]
j , if L

[a]
i =⇒ L

[b]
j , then L

[a]
i 6⇐= L

[b]
j .

Proof. Assume by way of contradiction that for two distinct labeling operation

executions, L
[a]
i =⇒ L

[b]
j and L

[a]
i ⇐= L

[b]
j . Since -obs is antisymmetric, it is not

the case that both L
[a]
i

-obs L
[b]
j and L

[b]
j

-obs L
[a]
i hold. Thus if L

[a]
i

-obs L
[b]
j ,

L
[b]
j 6=⇒ L

[a]
i even if `

[b]
j

V≺ `
[a]
i , a contradiction. Thus it must be the case that

`
[b]
j

V≺ `
[a]
i and `

[a]
i

V≺ `
[b]
j , which contradicts the definition of the ordering V≺ of the

labels.
Claim 5.3.2 (transitive). For any three labeling operation executions L

[a]
i , L

[b]
j ,

and L
[c]
k , L

[a]
i =⇒ L

[b]
j =⇒ L

[c]
k implies L

[a]
i =⇒ L

[c]
k .

Due to its extreme length and to simplify the presentation, the proof is deferred
to section 5.9.

This completes the proof of Lemma 5.3.

5.8. Property P1b. It remains to be proven that 〈m(ϕ), -* , -* 〉 meets part

b of property P1, that is, for any scan operation execution S
[k]
i that returns (¯̀,≺),

where

value(` [a]
x), value(` [b]

y) ∈ ¯̀,

it is the case that x ≺ y if and only if L
[a]
x =⇒ L

[b]
y . Since both ≺ and =⇒ are

irreflexive total orders, it suffices to show the “only if” direction. By the definition of
the scan implementation, the returned order ≺ among the indexes of labeled-values in
¯̀ is just the ordering among the collection phases in which they were selected. Thus

it suffices to prove that in any scan operation execution S
[k]
i that returns (¯̀,≺), if

value(`
[a]
x) was returned in phase k′ and value (`

[b]
y) was returned in phase k, where

k′ < k, then L
[a]
x =⇒ L

[b]
y . This is captured by the following lemma (slightly abusing

notation).
Lemma 5.4. In any scan operation execution, for any i such that O[i] < O[j],

where value(`
8,dlog ne,O[i]
i), value(`

8,dlog ne,O[j]
j) ∈ ¯̀, it is the case that L

8,dlog ne,O[i]
i =⇒

L
8,dlog ne,O[j]
j .

Proof. The general outline of the proof is as follows. Recall that a phase of the
scan execution consists of 8 log n collect operation executions, where each consecutive

BOUNDED CONCURRENT TIME-STAMPING 441

eight of them are called a level in the phase. The “first” level is the earliest collected
and the “lognth” is the latest. The proof begins with Claim 5.4.1, which states that
the relation between two labels in any two collects can be extended to the collects
preceding and following them. Then in Claims 5.4.3, 5.4.4, and 5.4.5, it is shown that
among the labels of any eight collects in a level of the scan, two labels can be chosen
for which the order =⇒ is known. Based on Claim 5.4.1 and the transitivity of =⇒,
the results of comparing labels of x and y in one level and y and z in a lower level
are extended to relate those of x and z, allowing us to show (Claim 5.4.6) that for

any k and R, if s is returned by select(dlogne, k, R), then L 1,1,k
i =⇒ L

8,dlog ne,k
s for

all i ∈ R − {s}. Finally, transitivity is used again to prove Lemma 5.4, that is, that
the results of different phases (select executions) are comparable and that the order
=⇒ among the labels returned is the order of the phases.

To simplify the presentation, in what follows, indexes will be dropped when it is
clear from the context what they should be. This will include the index of the process

i performing the scan or collect operation. The notation Cw will denote C
[w]
i , the

wth collect operation execution performed during a given scan. A label associated

with L
[a]
x , read in any Cw, will be denoted by `

[a]
x,w or `wx , and the labeling operation

execution L
[a]
x itself will be similarly denoted by L

[a]
x,w or Lwx .

The following claim will be used to assert that the relation between two labels in
any two collects can be extended to the collects preceding and following them. More
specifically, this claim asserts that if the label of x is ordered before that of y, where
x’s label was collected in a collect Cw+1, earlier than Cw+2 in which y’s was collected,
then any label of x collected in collect Cw that precedes collect Cw+1 must be ordered
before that of y and, similarly, any label of y from collect Cw+3 must be ordered after
that of x.

Claim 5.4.1. If Cw -* Cw+1
-* Cw+2 (or Cw+1

-* Cw+2
-* Cw+3) and if

for some `
[a]
x,w+1 and `

[b]
y,w+2, L

[a]
x =⇒ L

[b]
y , then for any `

[c]
x,w (similarly, `

[d]
y,w+3), it is

the case that L
[c]
x =⇒ L

[b]
y (similarly, L

[a]
x =⇒ L

[d]
y).

Proof. For any x, if a 6= c, that is, if they are of different labeling operations, then

it must be the case that L
[c]
x
-* L

[a]
x . The reason is that if this were not the case,

then since `
[c]
x,w was read in Cw and L

[a]
x

-* L
[c]
x , by atomic register axiom B5, it

could not be the case that `
[a]
x,w+1 was read in the later collect Cw+1, a contradiction.

By Definition 4.3, it is thus the case that L
[c]
x =⇒ L

[a]
x =⇒ L

[b]
y , which by transitivity

(Claim 5.3.2) implies L
[c]
x =⇒ L

[b]
y . By a similar proof, L

[a]
x =⇒ L

[d]
y .

Claim 5.4.2. For any eight collect operation executions of level m of phase k in
a given scan operation execution, if the condition

(∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky),

holds, then L 1,m,k
x =⇒ L 8,m,k

y , and otherwise L 1,m,k
y =⇒ L 8,m,k

x .
Proof. The following claim (Claim 5.4.3) establishes that there are three comple-

mentary conditions (one of the three must always hold) on the labels in the eight
collects:

1. There are a label of y and a label of x where the label of y was collected in
a later collect than that in which x was collected and where the label of y is greater
(by ≺) than the label of x.

2. This is the first condition with the roles of x and y reversed.
3. The labels of x and y have each changed at least three times during these

eight collect operation executions.

442 DANNY DOLEV AND NIR SHAVIT

The claims that follow show that if the first condition holds, L 1,m,k
x =⇒ L 8,m,k

y ,

and if one of the other two holds, then L 1,m,k
y =⇒ L 8,m,k

x . More formally, we have
the following.

Claim 5.4.3. For the 16 labels ` c1,m,kx and ` c2,m,ky , c1, c2 ∈ {1..8}, collected in
level m of phase k of a scan operation execution, one of the following three conditions
must hold:

1. (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky).

2. (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,ky
V≺ ` c2,m,kx).

3. The four labels ` 2,m,k
x , ` 4,m,k

x , ` 6,m,k
x , and ` 8,m,k

x differ from one another
according to ≺, and the four labels ` 1,m,k

y , ` 3,m,k
y , ` 5,m,k

y , and ` 7,m,k
y also differ from

one another according to ≺.
Proof. Let it be shown that if condition 3 does not hold, then either condition 1

or 2 holds. If condition 3 does not hold, then either

(∃c1, c2 ∈ {1..8}) (c1 + 1 < c2) ∧ (` c1,m,kx = ` c2,m,kx)

or

(∃c1, c2 ∈ {1..8}) (c1 + 1 < c2) ∧ (` c1,m,ky = ` c2,m,ky)

Note that labels of the same process can be the same, as denoted by the equivalence
sign, though by definition those of different processes always differ by V≺. Without
loss of generality, assume that the first condition holds. Then by definition, there
must exist a label ` c,m,ky , c1 < c < c2. If ` c1,m,kx

V≺ ` c,m,ky , then condition 1 holds and

the claim is proven. Thus it must be the case that ` c,m,ky
V≺ ` c1,m,kx . However, since

` c1,m,kx = ` c2,m,kx , it is the case that ` c,m,ky
V≺ ` c2,m,kx , and condition 2 holds.

By direct application of Claim 5.4.1, the following claim (Claim 5.4.4) implies that
if condition 1 of Claim 5.4.3 holds, then L 1,m,k

x
V≺ L 8,m,k

y , and similarly, if condition

2 holds, then L 1,m,k
y

V≺ L 8,m,k
x . (This follows by exchanging the roles of x and y in

Claim 5.4.4 below.)
Claim 5.4.4. If ` c1,m,kx

V≺ ` c2,m,ky , then L c1,m,kx =⇒ L c2,m,ky .

[b']
L yL

[b]
y

L
[a]
x

xr (C)w w+1r (C)y

read

obs

read

Fig. 12. Greater and later implies precedence.

Proof. For simplicity, let (c1,m, k) = w (the label ` c1,m,kx read is `
[a]
x,w, that is, of

labeling operation execution L
[a]
x) and (c2,m, k) = w+1 (similarly, ` c2,m,ky is `

[b]
y,w+1).

The outline of the proof appears in Figure 12. Assume by way of contradiction that

`
[a]
x,w

V≺ `
[b]
y,w+1 and L

[b]
y =⇒ L

[a]
x . By Definition 4.3, it must be that L

[b]
y
-obs L

[a]
x . By

BOUNDED CONCURRENT TIME-STAMPING 443

y
r (C)3,m,k x

r (C)4,m,k

L
1,m,k
y L

3,m,k
y

L
8,m,k
xw ()L

6,m,k
xr , r , ... r ()L

6,m,k
x1 2 n

y
r (C)1,m,k x

r (C)2,m,k

L
2,m,k
x L

4,m,k
x

Fig. 13. Three labeling “moves” are necessary.

Lemma 5.2, it cannot be that L
[b]
y ∈ max obs(L

[a]
x). Thus there must exist an L

[b′]
y ,

b < b′, such that L
[b′]
y ∈ max obs(L

[a]
x). By Corollary 5.1, since L

[b′]
y

-obs L
[a]
x , there

must exist some ry(L
[β]
α) = `

[b′]
y such that

w(L [b′]
y) - ry(L [β]

α) - w(L [a]
x),

where possibly α = x and β = a. Since ry(Cw+1) = `
[b]
y and ry(L

[β]
α) = `

[b′]
y , b < b′,

by atomic register axiom B5, it must be that ry(Cw+1) - ry(L
[β]
α). Similarly, since

`
[a]
x was read in Cw, it must be by axiom B5 that w(L

[a]
x) - rx(Cw). Thus

ry(Cw+1) - ry(L [β]
α) - w(L [a]

x) - rx(Cw),

which by axiom A4∗ of [AB87] implies that ry(Cw+1) - rx(Cw), a contradiction to
Cw -* Cw+1.

To complete the proof, it remains to be shown that if the first two conditions
of Claim 5.4.3 do not hold (in which case the third one does), it is the case that
L1,m,k
y =⇒ L8,m,k

x . One can intuitively think of this claim as stating that if each of
the processes x and y “moved” (chose a new label) three times, the original labeling
operation of y—before the three new ones—must have been completely before the
latest labeling operation of x and so precedes it by =⇒. The reason that one needs
three “moves” to assure this property becomes clear from the proof. The example in
Figure 13 shows why if fewer “moves” are made by each, the property does not hold.

Claim 5.4.5. If the four labels ` 2,m,k
x , ` 4,m,k

x , ` 6,m,k
x , and ` 8,m,k

x differ from one
another according to ≺ and the four labels ` 1,m,k

y , ` 3,m,k
y , ` 5,m,k

y , and ` 7,m,k
y also differ

from one another according to ≺, then L1,m,k
y =⇒ L8,m,k

x .
Proof. By serialization axiom B5 of reads and writes from the atomic registers vx

and vy, it must be the case that

L 1,m,k
y

-* w(L 3,m,k
y) - ry(C3,m,k) - rx(C4,m,k) - w(L 6,m,k

x) -* L 8,m,k
x .

By applying axiom A4 twice, it follows that L 1,m,k
y

-* L 8.m,k
x , which by Definition 4.3

implies that L 1,m,k
y =⇒ L 8.m,k

x .
This completes the proof of Claim 5.4.2.
The following claim proves the correctness of the recursive procedure select.
Claim 5.4.6. For any k and R, if s is returned by select (dlogne, k, R), then

L 1,1,k
i =⇒ L

8,dlog ne,k
s for all i ∈ R− {s}.

444 DANNY DOLEV AND NIR SHAVIT

Proof. First, observe that for ||r||, the size of the input set of select (m, k, r), it
follows by simple induction (given that initially ||r|| ≤ n) that m ≥ dlog ||r||e. The
proof of the claim will thus be by induction on ||r|| ∈ {1..dRe}.

For ||r|| = 1, the claim follows vacuously. For ||r|| = 2, since m ≥ dlog ||r||e = 1,
the claim follows from Claim 5.4.2. Assume that the claim holds for ||r|| < t, and
let the claim be proven for ||r|| = t. Since ||half (r)||, ||other half (r)|| ≤ t/2, by
the induction hypothesis applied to select (dlog te−1, k, half (r)) and select (dlog te−
1, k, other half (r)), it follows that

(∀i ∈ half (r)) (L 1,1,k
i =⇒ L 8,dlog te−1,k

x) and

(∀i ∈ other half (r)) (L 1,1,k
i =⇒ L 8,dlog te−1,k

y).

By Claim 5.4.2, without loss of generality, it can be assumed that L
1,dlog te,k
y =⇒

L
8,dlog te,k
x in select (dlog te, k, r). Thus since C8,dlog te−1,k -* C1,dlog te,k, by Claim 5.4.1

and the above,

L 1,1,k
i =⇒ L 8,dlog te−1,k

y =⇒ L 1,dlog te,k
y =⇒ L 8,dlog te,k

x

for every i ∈ other half (r). By transitivity (Claim 5.3.2), it is the case that L 1,1,k
i =⇒

L
8,dlog te,k
x for every i ∈ other half (r). Similarly, by Claim 5.4.1 and the above, given

that C8,dlog te−1,k -* C1,dlog te,k, it follows that

L 1,1,k
i =⇒ L 8,dlog te−1,k

x =⇒ L 8,dlog te,k
x

for every i ∈ half (r). Again by transitivity, it is the case that L 1,1,k
i =⇒ L

8,dlog te,k
x

for every i ∈ half (r), and the claim follows.
Based on the above claims, the proof can be completed by showing that in any

scan operation execution, for any i such that O[i] < O[j], where value(`
8,dlog ne,O[i]
i),

value(`
8,dlog ne,O[j]
j) ∈ ¯̀, it is the case that L

8,dlog ne,O[i]
i =⇒ L

8,dlog ne,O[j]
j . The proof

is by induction on k, where O[i] := k in phase k of a scan operation execution. For
k = n, since there exists no k′, k < k′, there is no O[i] < O[j], and the claim holds
vacuously. Assume that for some k < n, the claim holds for all k′, k < k′ ≤ n. Let it
be proven for k.

Since k < n, there is an O[α] = k + 1 for some α ∈ {1..n} − {i} (possibly α = j),

where value(`
8,dlog ne,k+1
α) ∈ ¯̀ of the scan operation execution, that is, the returned

labeled-value for process α. By Claim 5.4.6,

L 1,1,k+1
i =⇒ L 8,dlog ne,k+1

α

for i ∈ R. By Claim 5.4.1, since C8,dlog ne,k -* C1,1,k+1, it is the case that

L
8,dlog ne,k
i =⇒ L 8,dlog ne,k+1

α .

If α = j the lemma follows. If not, by the induction hypothesis, it follows that for
any O[j], k+1 < O[j],

L
8,dlog ne,k
i =⇒ L 8,dlog ne,k+1

α =⇒ L 8,dlog ne,O[j]
α .

By the transitivity of =⇒ (Claim 5.3.2), it then follows that L
8,dlog ne,O[i]
i =⇒

L
8,dlog ne,O[j]
j .

BOUNDED CONCURRENT TIME-STAMPING 445

5.9. Proof of precedence and transitivity. To complete the proof of Theo-
rem 5.1, it remains to be proven that Lemma 5.2 and Claim 5.3.2 hold.

5.9.1. Preliminaries. Given that the definitions of both the graph Tn and the
labeling function L are inductive on k, the first two parts of the following definition
simply define the notation to be used in relating labels. The third part is the notion
of inside(X). X identifies a specific labeling operation execution. In this labeling
operation execution, the label chosen was in a certain T k subgraph on level k. X
also identifies this T k subgraph. The set of labeling operation executions in inside
are those performed inside T k from the latest time the process moved into T k and up
to its labeling operation execution X. The min is simply the earliest in a sequence
of labeling operation executions. For example, min(inside(X)) is the first among the
moves since the process performing X entered T k.

Definition 5.2. For k ∈ {1..n} and -* , the ordering on labeling operation
execution, we have the following notation:

• Let `
[b]
y

k= `
[a]
x denote that `

[b]
y [n..k−1] = `

[a]
x [n..k−1] for k ≥ 2.

• Let `
[b]
y

k

6= `
[a]
x (similarly, `

[b]
y

k≺ `
[a]
x) denote that `

[b]
y [n..k]

k+1
= `

[a]
x [n..k] and

`
[b]
y [k−1] 6= `

[a]
x [k−1] (similarly, `

[b]
y [k−1] is dominated by `

[a]
x [k−1]).

• Let inside(`
[a]
x [n..k]) be a set of operation executions

{L [α]
x |α = a or L

[α]
x

-* L
[a]
x and `

[α]
x

k+1
= `

[a]
x and

(∀L [a′]
x) (if L

[α]
x

-* L
[a′]
x

-* L
[a]
x , then `

[a′]
x

k+1
= `

[a]
x)}.

• Let the min of a set of labeling operation executions totally ordered by -*

be the least element in the ordering.

If `
[a−1]
x

k= `
[a]
x , k = 2 (the same label by the same process), then let the convention

be that `
[a−1]
x

k

6= `
[a]
x , where k = 1 (and similarly for any two equal labels of different

labelings by the same process).

5.9.2. The order of induction. The proof of Claim 5.3.2 and Lemma 5.2
will proceed by induction on the system execution 〈m(ϕ)

L
, -* , -* 〉 consisting of

all labeling operation executions in m(ϕ)L. (Recall that m(ϕ)L is the set of label-
ing operation executions in m(ϕ).) The induction base will be the subexecution

m(ϕ)L
′

= {L [0]
1 , . . . , L

[0]
n } of m(ϕ)L. The induction will proceed to larger subex-

ecutions m(ϕ)L
′
, where m(ϕ)L

′ ⊆ m(ϕ)L. The subexecution in each step of the

induction will include one L
[a]
i ∈ m(ϕ)L more than its preceding one. The induc-

tion order on 〈m(ϕ)
L
, -* , -* 〉 is thus that m(ϕ)

L′ ∪ {L [a]
i } follows m(ϕ)

L′
, where

L
[a]
i ∈ m(ϕ)L −m(ϕ)L

′
, if for any L

[b]
j ∈ m(ϕ)

L −m(ϕ)
L′

, it is the case that either

• L [a]
i

-obs L
[b]
j or

• L [b]
j 6�-obs L

[a]
i and for `

[a−1]
i

k≺ ` [a]
i and `

[b−1]
j

k′≺ ` [b]
j , it is the case that k′ > k

or that k′ = k and j > i.
The order is thus to add the labeling operation executions that observed a greater part
of the execution later, and if no such labeling operation execution can be identified,
settle on choosing the one that was a move (a change in the label) on the lowest-level
k.

To see that the above defines a total order of induction, note that -obs is a partial
order, and if two labels are not related by -obs , they are ordered by the order < on
the level in the graph in which they made their last move and by the id if they have

446 DANNY DOLEV AND NIR SHAVIT

the same level. Since < together with the id forms a total order that is independent
of the partial order -obs , the above order of induction is total.

5.9.3. The induction hypothesis. The induction hypothesis consists of I1 ∧
I2 ∧ I3 ∧ I4, where I1–I4 are as follows:

I1. For any L
[b]
y ∈ max obs(L

[a]
x), it is the case that `

[b]
y

V≺ ` [a]
x .

I2. The relation =⇒ is transitive.
I3. For any L

[a]
x and L

[b]
y , where

• ` [b]
y [k − 1], `

[a]
x [k − 1] ∈ {3, 4, 5} and

• ` [b]
y

k

6= `
[a]
x , k ≥ 2,

if there exist labeling operation executions `
[a−1]
x and `

[b−1]
y , where

• ` [a−1]
x

k

6= `
[a]
x and

• ` [b−1]
y

k

6= `
[b]
y ,

then either L
[a]
x

-obs L
[b]
y or L

[b]
y
-obs L

[a]
x .

I4. 1. If `
[a]
x [k − 1] ∈ {2, 3, 4, 5}, k > 2, then there are at least k − 1 labels

L
[b]
y ∈ max obs(L

[a]
x) such that `

[b]
y

k+1
= `

[a]
x ;

2. if there exists an L
[a1]
x ∈ inside(`

[a]
x [n..k]), `

[a1]
x [k−1] ∈ {4, 5} (possibly

a = a1), then there are exactly k−1 labels L
[b]
y ∈ max obs(L

[a]
x) such that `

[b]
y

k+1
= `

[a]
x

and `
[b]
y [k−1] ∈ {3, 4, 5}; and

3. if `
[a]
x

k≺ `
[a−1]
x (`

[a]
x [k−1], `

[a−1]
x [k−1] ∈ {3, 4, 5}), then for any L

[b]
y ∈

max obs(L
[a]
x), where `

[b]
y

k+1

6= `
[a−1]
x and `

[b]
y [k−1] ∈ {3, 4, 5}, it is the case that

`
[a−1]
x

k≺ ` [b]
y

k≺ ` [a]
x .

The induction hypothesis includes four main parts. I1 and I2 are simply Lemma 5.2
and Claim 5.3.2, which are to be proven. However, the proof of these properties is
based on several “structural” properties of the labeling operation executions, and
these are added in order to strengthen the induction hypothesis.

Property I3 is a weak formulation for the case of any T k subgraph, k ≥ 2, of a
powerful property that holds in the case of a T 2 subgraph. For k = 2, that is, two
labels in the cycle of a T 2 subgraph, it is the case that

among any two labeling operation executions in the cycle, there must
be one that observed the other.

Unfortunately, this is not true for any pair of labeling operation executions in a
cycle on level k > 2. For example, the reader can verify that it is possible that
while one process x moves among supernodes 3 and 4 on level k, another process
y can concurrently move many times inside supernode 3 (that is, on a level lower
than k) with neither x nor y observing a labeling operation execution of the other.
However, the property that does hold is that the process x must have observed at
least one labeling operation execution by y among those that y executed since it last
started choosing labels in supernode 3. (Thus the first move into 3 was definitely
observed.) The generalization of this example is formalized by property I3 of the
inductive hypothesis.

Property I4 is a collection of three properties that were informally mentioned in
section 4.3:

• I4.1 is based on the fact that supernode 1 in any T k subgraph is a sink in
which at least k−1 labels must accumulate before a label may be placed on the bridge
supernode 2. Because of this accumulation property, any process that performs a

BOUNDED CONCURRENT TIME-STAMPING 447

labeling operation execution on supernodes {2, 3, 4, 5} must have maximally observed
at least k − 1 other labels in the subgraph with him. The maximally observed set of

operations of a labeling operation execution L
[a]
x (max obs(L

[a]
x)) is actually the set

of labeling operation executions whose labels, in a sequential execution, could have

existed together with L
[a]
x at some point in time. Thus I4.1 can be thought of as

establishing that if a process completes a labeling operation execution on one of the
supernodes {2, 3, 4, 5}, there are at that point in time at least k − 1 other labels in
the subgraph with him.

• I4.2 is a continuation of the behavior described in I4.1. Again, given that the

maximally observed set of operations of a labeling operation execution L
[a]
x represents

the set of labeling operation executions whose labels, in a sequential execution, could

have existed together with L
[a]
x at some point in time, I4.2 formalizes the “invariant”

that
at any given time, there cannot be more than k labels in a cycle of a T k

structure.

In addition, not only is it true that there are not more than k, but if any one of these
k labels moves inside the cycle, it must maximally observe exactly k − 1 other labels
in the cycle with it.

• Finally, I4.3 strengthens I1 for the particular case in which the new label
chosen is dominated by the older label (such as a move from supernode 3 to 5 in the
cycle). Based on I1, it could still be that some of the labels maximally observed by
the process, though dominated by the new label, are on node 5 together with it. I4.3
establishes that this cannot be the case, that is, all other labels maximally observed
in the cycle must be on supernode 4. Property I1 together with I4.3 capture the the
“invariant” that

at any given time, there are never labels on three different nodes of a cycle
of a T k subgraph.

In the next two sections, the induction base and the inductive step are presented.

5.9.4. The induction base.
Lemma 5.5. The hypothesis I1 ∧ I2 ∧ I3 ∧ I4 holds for m(ϕ)

L′
= {L [0]

1 , . . . , L
[0]
n }.

Proof. By definition, initially max obs(L
[a]
x) = ∅, and I1 and I4 hold vacuously.

Since for any L
[a]
x , a = 0, there does not by definition exist an L

[a−1]
x , I3 holds

vacuously. Also, by definition, for any two labels `
[0]
x and `

[0]
y , `

[0]
x

k1

6= `
[0]
y , where

k1 = 1, and L
[0]
x 6�-obs L

[0]
y . Since k1≺ is a total order for level k1 = 1, it follows that

=⇒ is transitive in m(ϕ)L
′
.

5.9.5. The induction step.
Lemma 5.6. Given that the induction hypothesis I1 ∧ I2 ∧ I3 ∧ I4 holds for the

system execution 〈m(ϕ)
L′
, -* , -* 〉, m(ϕ)

L′ ⊆ m(ϕ)
L

, it holds also for 〈m(ϕ)
L′ ∪

{L [a]
x }, -* , -* 〉, where L

[a]
i ∈ m(ϕ)L −m(ϕ)L

′
is such that for any L

[b]
j ∈ m(ϕ)

L −
m(ϕ)

L′
, either

• L [a]
i

-obs L
[b]
j or

• L [b]
j 6�-obs L

[a]
i and for `

[a−1]
i

k≺ ` [a]
i and `

[b−1]
j

k′≺ ` [b]
j , it is the case that k′ > k

or that k′ = k and j > i.
The proof of Lemma 5.6 will be separated into several sections. In the following

section, several lemmas that will become useful in later sections of the proof are

448 DANNY DOLEV AND NIR SHAVIT

presented and proven. The proof will then proceed by showing that the maximally
observed set of labeling operation executions by a process x is a good representation
of the possible label values that other processes can have given the location of x.
In other words, later unobserved labeling operation executions cannot be “far away”
from the maximally observed labels, and could definitely not have “cycled around”
the current location of x. Based on these established properties, I1, I4, I3, and finally
I2 will be proven for the inductive case. The order of presentation of the different
lemmas will follow the order of dependency among them.

We make a final important comment: Throughout the proof, unless specifically

stated otherwise, L
[a]
x will denote the labeling operation execution added in the in-

duction step to form 〈m(ϕ)
L′ ∪ {L [a]

x }, -* , -* 〉,
5.9.6. At most k labels in the cycle of a T k subgraph. In this section,

several lemmas are presented, proving a lemma that captures the informal invariant
that at any point in time, there can be at most k different labels in the cycle of a
T k subgraph (supernodes {3, 4, 5}. The following lemma formalizes the notion that
“before it can choose a label in the cycle of any T k subgraph, a process must first
raise a flag, that is, choose a label on supernodes 1 or 2 on level k in T k.”

Lemma 5.7. For any labeling operation execution L
[a]
x , if `

[a]
x [k−1] ∈ {3, 4, 5},

k ≥ 2, then there exists an L
[a1]
x ∈ inside(` [a]

x [n..k]) such that L
[a1]
x [k−1] ∈ {1, 2}.

Proof. Assume by way of contradiction that the claim does not hold. It must thus

be that for L
[a2]
x = min(inside(`

[a]
x [n..k])), `

[a2]
x [k − 1] ∈ {3, 4, 5}. This implies that

there is a labeling operation execution `
[a2−1]
x

k+1

6= `
[a2]
x . By the definition of L, in

order for `
[a2]
x [k − 1] to be in {3, 4, 5}, it must be that for `max, the maximal label in

the dominating set read by L
[a2]
x , we have the following:

• `max
k+1
= `

[a2]
x (as a reminder, this means `max[n..k] = `

[a2]
x [n..k]),

• `max[k − 1] ∈ {2, 3, 4, 5}, and
• Lk(G) (the kth level of the recursion in L) was executed for G = `max[n..k]

and returned the value `
[a2]
x [k− 1] = 3 (as in line 3) or `

[a2]
x [k− 1] = dom(`max[k− 1])

(as in line 4 or 5).
But this implies that when executing Lk+1, it must have been line 4 that was executed
because from the above the conditions of lines 1–3 are not met and because

• `max[k − 1] ∈ {2, 3, 4, 5}, k ≥ 2, and

• `max[n..k] = `
[a2]
x [n..k] 6= `

[a2−1]
x [n..k] (`

[a2−1]
x is `i in line 4).

But this implies that `
[a2]
x [k] = dom(`max[k]), that is, x would not execute Lk(G) for

G = `max[n..k] in the first place, a contradiction.
The following lemma establishes that if in an earlier labeling operation execution

a label `
[b]
y was observed, the current labeling operation execution must read that

label for y or a label later than it.

Lemma 5.8. If L
[b]
y
-obs L

[a−1]
x , it cannot be that ry(L

[a]
x) = `

[b1]
y , where b1 < b.

Proof. By Corollary 5.1, it follows that if L
[b]
y
-obs L

[a−1]
x , then there exists a read

ry(L
[β]
α) = `

[b]
y such that

w(L [b]
y) - ry(L [β]

α) - w(L [a−1]
x),

where possibly α = x and β = a − 1. Since w(L
[a−1]
x) - ry(L

[a]
x), it follows that

ry(L
[β]
α) - ry(L

[a]
x). Since, in addition, w(L

[b1]
y) - w(L

[b]
y), by register axiom B5,

it cannot be that ry(L
[a]
x) = `

[b]
y .

BOUNDED CONCURRENT TIME-STAMPING 449

The following lemma states that there cannot be a label read by L
[a]
x that domi-

nates `
[a−1]
x on level k1 > k, where k is the level such that `

[a−1]
x

k

6= `
[a]
x .

Lemma 5.9. For `
[a]
x

k

6= `
[a−1]
x , it cannot be that there is an L

[b]
y such that

• ry(L
[a]
x) = `

[b]
y and

• ` [a−1]
x

k1≺ ` [b]
y , where k1 > k.

Proof. By the definition of V≺, it must be that `
[a]
x

k1≺ `
[b]
y , where k1 ≥ k. By

the definition of L, either `max
V≺ `

[a]
x or `max is equal to `

[a]
x (in which case by

definition `max is just `
[a−1]
x). The reason is that when executing Lk3 for some level

k3, `max[k3] = `
[a]
x [k3] or `max[k3] = dom(`

[a]
x [k3]). It thus must be that max 6= y. It

can either be the case that `
[b]
y

V≺ `max or not.

If indeed `
[b]
y

V≺ `max, by the definition of V≺, in order for `
[a]
x

V≺ `
[b]
y , `

[b]
y

V≺ `max,

and either `max
V≺ ` [a]

x or `max = `
[a]
x , it must be that

` [a]
x

V≺ ` [b]
y

V≺ `max
V≺ ` [a]

x ,

that is, the three labels are also on a cycle. Since by the definition of

max(dominating set(`, ` [a−1]
x)),

either `
[a−1]
x

V≺ `max or `max = `
[a−1]
x , it follows that k ≥ k1, a contradiction.

However, if `max
V≺ `

[b]
y , by the definition of max(dominating set(`, `

[a−1]
x)), it

could be only if the labels of y and max were on a cycle on a level k2, where 2 ≤
k2 ≤ k1 (k1 is the level such that `

[a−1]
x

k1≺ `
[b]
y).15 In order for `max

V≺ `
[a]
x or

`max = `
[a]
x , together with `

[a]
x

V≺ `
[b]
y , it must be that `

[a]
x is in the cycle with these

two labels. However, this implies k ≥ k1, a contradiction.
The following lemma captures the informal invariant that at any point in time,

there can be at most k different labels in the cycle of any T k subgraph. More precisely,
it states that for any set of more than k labeling operation executions whose labels are
in the cycle of the same T k subgraph, all could not have been there at the same point
in time since at least one of them must have already been observed by the others in
a later location outside the cycle.

Lemma 5.10. Let Sk = {L [a1]
i1

, L
[a2]
i2

, . . . , L
[am]
im
}, i1, . . . , im ∈ {1..n}, and iα 6= iβ

for any α, β ∈ {1..m} be the set of labeling operation executions such that for any

L
[a]
i , L

[b]
j ∈ Sk,

• ` [a]
i

k+1
= `

[b]
j and `

[a]
i [k − 1], `

[b]
j [k − 1] ∈ {3, 4, 5}, and

• for L
[b1]
j ∈ max obs(L

[a]
i) and L

[a1]
i ∈ max obs(L

[b]
j), it is the case that b1 ≤ b

and a1 ≤ a.
It must be that ||Sk|| ≤ k.
Proof. Assume by way of contradiction that ||Sk|| > k. By Lemma 5.7, for

each L
[a]
i ∈ Sk, ||inside(L

[a]
i [n..k])|| ≥ 2, that is, it is included at least two labeling

operation executions inside the T k subgraph that L
[a]
i is in. Let us define the relation

not read by between labeling operation executions L
[a]
i , L

[b]
j ∈ Sk to be as follows.

Definition 5.3. L
[a]
i not read by L

[b]
j if ri(L

[b]
j) 6= `

[a1]
i , a1 ∈ {a− 1, a}.

15 The reason for this is that if the two labels are on different supernodes of a cycle, there could
be a third label on the other supernode of the cycle, and any one of them could be selected as `max.

450 DANNY DOLEV AND NIR SHAVIT

That is, L
[b]
j did not read a label of a labeling operation execution L

[a]
i or its

preceding operation execution in the T k that it is in. The contradiction will be derived

by showing that there must be at least one labeling operation execution L
[a]
i ∈ Sk

that read at least k + 1 labels (including its own) in the T k subgraph that L
[a]
i and

L
[a−1]
i are in. This is the flag principal mentioned in section 4.3. Since for each

L
[a]
i ∈ Sk, `

[a]
i

k= `
[a−1]
i , that is, a move at level k, it must be that when executing

Lk+1 in L
[a]
i , line 5 was executed and that num labels < (k + 1) − 1 (at most k − 1

labels not including its own, or k including it, were read in the T k subgraph `
[a]
i [n..k]),

a contradiction.
Since it was assumed by way of contradiction that there are more than k labeling

operation executions in Sk, it must be that each labeling operation execution did not
read (not read by) at least one of the others. Let it first be shown that the relation
not read by is antisymmetric.

Claim 5.10.1. For any L
[a]
i and L

[b]
j in Sk, if L

[a]
i not read by L

[b]
j , then it

cannot be that L
[b]
j not read by L

[a]
i .

Proof. For any two labeling operation executions L
[a]
i and L

[b]
j in Sk, by definition

(for L
[b1]
j ∈ max obs(L

[a]
i) and L

[a1]
i ∈ max obs(L

[b]
j), it is the case that b1 ≤ b and

a1 ≤ a,) neither ri(L
[b]
j) = `

[a1]
i , a1 > a, nor rj(L

[a]
i) = `

[b1]
j , b1 > b. Given

L
[a]
i not read by L

[b]
j , it thus follows by atomic register axiom B5 that ri(L

[b]
j) -

w(L
[a−1]
i). However, this implies

w(L
[b−1]
j) - ri(L

[b]
j) - w(L

[a−1]
i) - rj(L

[a]
i).

By axiom A4, it follows that w(L
[b−1]
j) - rj(L

[a]
i), implying that it cannot be that

L
[b]
j not read by L

[a]
i .

Think of the relation not read by as the set of edges of a directed graph whose

nodes are labeling operation executions, where an edge is directed from L
[a]
i to L

[b]
j if

L
[a]
i not read by L

[b]
j . Each labeling operation execution in S ∪ {L [a]

x } did not read
at least one of the others; each node has at least one incoming edge. By known
graph-theoretic arguments, this implies that

• there are two nodes that have edges directed one at the other or

• there is at least one node L
[c]
s that has a directed path leading from it to

every other node in the graph.
By Claim 5.10.1 (antisymmetry of not read by), the former is impossible.16 The fol-
lowing claim establishes that the labeling operation execution associated with the

node L
[c]
s from which all other nodes are reachable (note that by assumption, this

node has at least one incoming edge and is not a “root”) must have read all of them.

Claim 5.10.2. For any subset {L [a1]
i1

, L
[a2]
i2

, . . . , L
[am]
im
} of m labeling operation

executions in Sk, where

L
[a1]
i1

not read by L
[a2]
i2

not read by · · · not read by L
[am]
im

,

it is the case that rim(L
[a1]
i1

) = L
[am]
im

.

16 Note that if the former does not hold, there is a cycle in the graph. If the relation not read by
were transitive, a cycle would be impossible, and the proof would be complete. However, the reader
can verify that this is not the case.

BOUNDED CONCURRENT TIME-STAMPING 451

Proof. For any two labeling operation executions L
[a]
i , L

[b]
j ∈ Sk, it follows by

definition that neither ri(L
[b]
j) = `

[a1]
i , a1 > a, nor rj(L

[a]
i) = `

[b1]
j , b1 > b.

Let it be proven by induction that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

). This will imply

w(L
[am−1]
im

) - rim−1(L
[am]
im

) - w(L
[a1−1]
i1

) - rim(L
[a1]
i1

),

from which by axiom A4 follows w(L
[am−1]
im

) - rim(L
[a1]
i1

), implying, rim(L
[a1]
i1

) =

L
[am]
im

, as desired.

The proof that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

) is by induction on m, the size of the
subset of labeling operation executions. For m = 2, it follows by definition. Assume
it holds for sequences of length m− 1, that is,

rim−2
(L

[am−1]
im−1

) - w(L
[a1−1]
i1

).

Since rim−1(L
[am]
im

) 6= `
[am−1]
im−1

, it follows that

rim−1(L
[am]
im

) - w(L
[am−1−1]
im−1

) - rim−2(L
[am−1]
im−1

) - w(L
[a1−1]
i1

).

By axiom A4∗, it follows that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

), implying the claim.

Thus the node L
[c]
s read at least k labels apart from its own in the T k subgraph

L
[c]
s [n..k], providing the desired contradiction.

Based on the above, the following lemma, which is part of the proof of I4.2 for
the inductive case, can be shown. As mentioned before, the maximally observed set

max obs(L
[a]
x) is actually the set of labeling operation executions whose labels, in a

sequential execution, could have existed together with L
[a]
x at some point in time.

The lemma thus captures the informal notion that if one could look at the cycle of a

T k subgraph at a given point in time in which x had a label `
[a]
x in it, there would be

at most k − 1 other labels in the cycle together with it.

Lemma 5.11. For `
[a]
x [k] ∈ {3, 4, 5}, there are at most k−1 labels L

[b]
y , where

L
[b]
y ∈ max obs(L

[a]
x), such that `

[b]
y

k+1
= `

[a]
x and `

[b]
y [k−1] ∈ {3, 4, 5}.

Proof. For any two labeling operation executions L
[b]
y , L

[c]
z ∈ max obs(L

[a]
x), by

the definition of max obs(L
[a]
x), neither ry(L

[c]
z) = `

[b1]
y , b1 > b, nor rz(L

[b]
y) = `

[c1]
z ,

c1 > c. Also, by definition, for L
[b]
y ∈ max obs(L

[a]
x), neither ry(L

[a]
x) = `

[b1]
y , b1 > b,

nor rx(L
[b]
y) = `

[a1]
x , a1 ≥ a. The claim follows from Lemma 5.10 by defining Sk to

be the set of labeling operation executions maximally observed by L
[a]
x together with

L
[a]
x itself.

The completion of the inductive argument involves a proof of properties I1–I4
through rather tedious case analysis. It is ommitted from this manuscript and can be
found in [Sha90].

6. Discussion. There are three main types of problems defined in the shared-
memory model:

• waiting problems, whose solution allows a process to take an infinite num-
ber of steps to complete an operation—that is, it could “busy-wait” for some other
processes indefinitely;

• wait-free problems, whose solution is such that each process is guaranteed to
complete an operation within a finite number of steps, independently of the pace of
other processes; and

452 DANNY DOLEV AND NIR SHAVIT

• expected-wait-free problems, whose solution is such that each process is ex-
pected (rather than guaranteed) to complete an operation within a finite number of
steps, independently of the pace of other processes.

These classes of problems are fundamentally different from one another. However,
they have the unifying theme that

if the requirement that memory size be bounded is dropped, the
problems have elegant and simple unbounded solutions based on the
use of a CTSS.

The main implication of bounded concurrent time-stamping is that this unifying
theme, true under the assumption that memory size can be unbounded, holds true
for the bounded-memory case as well.

Based on the use of a bounded CTSS implementation, simple unbounded solutions
can be given for what are considered to be core problems in each category and then
directly transformed into bounded ones. Examples of problems and algorithms in
the first category are the famous first-come first-served mutual-exclusion problem of
Lamport [Lam74] (see [Lam86b, Ray86] for complete details) and the fifo-`-exclusion
problem of [AD*94, FLBB79, FLBB89]. As mentioned earlier, a CTSS-based solution
due to Afek et al. can be found in [AD*94].

In the second category, we have Li and Vitanyi’s simple version [LV87] of the
elegant unbounded Vitanyi–Awerbuch algorithm [VA86] for solving the problem of
providing a wait-free construction of an MRMW atomic register from SWMR atomic
registers (see also [PB87, IL93, Sch88, ?]). This algorithm can be immediately trans-
formed into a bounded solution (see [G92]).

In the third category, a version (see [Sha90]) of the algorithm of Abrahamson
[Abr88] based on the use of a CTSS can be modularly transformed into a bounded
solution to the randomized consensus problem of [CIL87].

6.1. Further related research. The introduction of the concurrent time-stam-
ping paradigm in the conference version of this paper [DS89] has led researchers to
devising a series of alternative bounded CTSS algorithms. Israeli and Pinchasov
[IP91] have provided a linear-complexity version of our algorithm by dropping the re-
quirement that scan operations do not perform writes. In [DW92], Dwork and Waarts
present the most efficient read/write-register-based CTSS construction to date, taking
only O(n) time for either a scan or update. They model their bounded construction
after a new type of unbounded CTSS construction, where processes choose from “lo-
cal pools” of label values instead of the simple “global-pool”-based CTSS as in the
bakery algorithm [Lam74]. In order to bound the number of possible label values
in the local pool of the bounded implementation, they introduce a form of garbage
collection on “old” labels. They then prove that the linear-time bounded implemen-
tation meets the CTSS axioms of section 2. In [DPHW92], Dwork, Herlihy, Plotkin,
and Waarts introduce an alternative linear-complexity bounded CTSS construction
that combines a time-lapse snapshot with our bounded CTSS algorithm. The proof
of their algorithm leverages the axiomatic proof in this paper by arguing that the exe-
cutions of their algorithm are a subset of the executions of our algorithm. In [GLS92],
Gawlick, Lynch, and Shavit introduce a streamlined version of our CTSS algorithm
based on the use of an atomic snapshot primitive [AAD*89, And89a]. A snapshot
primitive allows a process Pi to update the ith memory location, or snap the memory,
that is, collect an “instantaneous” view of all n shared-memory locations. By using
a snapshot primitive, they limit the number of interleavings that can occur and are
able to introduce a considerably simplified version of our labeling algorithm (though

BOUNDED CONCURRENT TIME-STAMPING 453

a logarithmic factor less efficient) that is tailored to allow a forward-simulation proof
[LT87]. An advantage of their algorithm over other solutions is that it is no longer lim-
ited to read/write memory, providing a CTSS construction in any computation model
whose basic operations suffice to provide a wait-free snapshot implementation, be it
single-writer multireader registers [A93], multireader multiwriter registers [ICMT94],
consensus objects [CD93], or memory with hardware supported compare-and-swap
and fetch-and-add primitives.

Acknowledgments. We would like to thank Yehuda Afek, Hagit Attiya, Eli
Gafni, Rainer Gawlick, Maurice Herlihy, Nancy Lynch, and Mike Merritt for many
important conversations and comments. It was a subtle observation of Mike’s regard-
ing pairwise consistency among scans that led us to the current CTSS definitions. A
subsequent observation by Rainer led us to add property P4 to the CTSS specification.

Finally, the second author would like to thank Nancy Lynch, Baruch Awerbuch,
and the members of MIT’s Theory of Distributed Systems group for their warm
hospitality throughout the writing of this paper.

REFERENCES

[AAD*89] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic
snapshots of shared memory, J. Assoc. Comput. Mach., 40 (1993), pp. 873–890.

[AB87] U. Abraham and S. Ben-David, Informal and formal correctness proofs for programs
(for the critical section problem), unpublished manuscript, Technion, Haifa, Israel,
1987.

[Abr88] K. Abrahamson, On achieving consensus using a shared memory, in Proc. 7th
ACM Symposium on Principles of Distributed Computing, ACM, New York, 1988,
pp. 291–302.

[AD*94] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, A bounded first-in, first-
enabled solution to the `-exclusion problem, ACM Trans. Programming Lang. Sys-
tems, 16 (1994), pp. 939–953.

[A93] H. Attiya and O. Rachman, Atomic snapshots in O(n logn) operations, in Proc. 12th
ACM Symposium on Principles of Distributed Computing, ACM, New York, 1993,
pp. 29–40.

[AG90] J. Anderson and M. Gouda, The virtue of patience: Concurrent programming with
and without waiting, Technical Report TR-90-23, Department of Computer Sci-
ence, University of Texas at Austin, Austin, TX, 1990.

[And89a] J. H. Anderson, Multi-writer composite registers, Distrib. Comput., 7 (1994), pp. 175–
195.

[Ben88] S. Ben-David, The global time assumption and semantics for concurrent systems, in
Proc. 7th ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1988, pp. 223–231.

[Blo88] B. Bloom, Constructing two-writer atomic registers, in Proc. 6th ACM Symposium
on Principles of Distributed Computing, ACM, New York, 1987; revised version,
IEEE Trans. Commun., 37 (1988), pp. 1506–1514.

[BP87] J. Burns and G. Peterson, Constructing multi-reader atomic values from non-atomic
values, in Proc. 6th ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1987, pp. 221–231.

[CD93] T. D. Chandra and C. Dwork, Using consensus to solve atomic snapshots,
manuscript, 1993.

[CIL87] B. Chor, A. Israeli, and M. Li, Wait-free consensus using asynchronous hardware,
SIAM J. Comput., 23 (1994), pp. 701–712.

[CS93] R. Cori and E. Sopena, Some combinatorial aspects of timestamp systems, European
J. Combin., 14 (1993), pp. 95–102.

[DS89] D. Dolev and N. Shavit, Bounded concurrent time-stamp systems are constructible,
in Proc. 21st ACM Symposium on Theory of Computing, ACM, New York, 1989,
pp. 454–465.

[DW92] C. Dwork and O. Waarts, Simple and efficient bounded concurrent timestamping,
or, bounded concurrent timestamp systems are comprehensible!, in Proc. 24th

454 DANNY DOLEV AND NIR SHAVIT

ACM Symposium on Theory of Computing, ACM, New York, 1992, pp. 655–666.
[DPHW92] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts, Time lapse snapshots, in Proc.

Israel Symposium on the Theory of Computing and Systems, D. Dolev, Z. Galil,
and M. Rodeh, eds., Lecture Notes in Comput. Sci. 601, Springer-Verlag, Berlin,
1992, pp. 154–170.

[DGS88] D. Dolev, E. Gafni, and N. Shavit, Towards a non-atomic era: `-exclusion as a test
case, in Proc. 20th ACM Symposium on Theory of Computing, ACM SIGACT,
ACM, New York, 1988, pp. 78–92.

[Dij65] E. W. Dijkstra, Solution of a problem in concurrent programming control, Comm.
Assoc. Comput. Mach., 8 (1965), p. 569.

[FLBB79] M. Fischer, N. Lynch, J. Burns, and A. Borodin, Resource allocation with immunity
to limited process failure, in Proc. 20th Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1979, pp. 234–254.

[FLBB89] M. Fischer, N. Lynch, J. Burns, and A. Borodin, Distributed fifo allocation of
identical resources using small shared space, ACM Trans. Programming Lang.
Systems, 11 (1989), pp. 90–114.

[G92] R. Gawlick, Concurrent timestamping made simple, Masters thesis, Technical Report
MIT/LCS/TR-556, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 1992.

[GLS92] R. Gawlick, N. Lynch, and N. Shavit, Concurrent time-stamping made simple, in
Proc. Annual Israel Symposium on Theory of Computing and Systems, D. Dolev,
Z. Galil, and M. Rodeh, eds., Lecture Notes in Comput. Sci. 601, Springer-Verlag,
Berlin, 1992, pp. 171–185.

[Her91] M. P. Herlihy, Wait-free synchronization, ACM Trans. Programming Lang. Systems,
13 (1991), pp. 124–149.

[ICMT94] M. Inoue, W. Chen, T. Masuzawa and N. Tokura, Linear-time snapshot us-
ing multi-writer multi-reader registers, in Workshop on Distributed Algorithms,
Springer-Verlag, Berlin, 1994, pp. 130–140.

[HW88] M. P. Herlihy and J. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Programming Lang. Systems, 12 (1990), pp. 463–492.

[IL93] A. Israeli and M. Li, Bounded time stamps, Distrib. Comput., 6 (1993), pp. 205–209.
[IP91] A. Israeli and M. Pinchasov, A linear time bounded concurrent timestamp scheme,

Technical Report, Technion, Haifa, Israel, 1991.
[Kat78] H. Katseff, A new solution to the critical section problem, in Proc. 10th ACM

Symposium on Theory of Computing, ACM, New York, 1978, pp. 86–88.
[Lam74] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Comm.

Assoc. Comput. Mach., 17 (1974), pp. 453–455.
[Lam77] L. Lamport, Concurrent reading and writing, Comm. Assoc. Comput. Mach., 20

(1977), pp. 806–811.
[Lam86a] L. Lamport, The mutual exclusion problem part i: A theory of interprocess commu-

nication, J. Assoc. Comput. Mach., 33 (1986), pp. 313–326.
[Lam86b] L. Lamport, The mutual exclusion problem part ii: Statement and solutions, J. Assoc.

Comput Mach., 33 (1986), pp. 327–348.
[Lam86c] L. Lamport, On interprocess communication part i: Basic formalism, Distrib. Com-

put., 1 (1986), pp. 77–85.
[Lam86d] L. Lamport, On interprocess communication part ii: Algorithms, Distrib. Computing,

1 (1986), pp. 86–101.
[LH89] E. A. Lycklama and V. Hadzilacos, A first-come-first-served mutual exclusion al-

gorithm with small communication variables, ACM Trans. Programming Lang.
Systems, 13 (1991), pp. 558–576.

[LT87] N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms,
Tecnical Report MIT/LCS/TR-387, Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, MA, 1987.

[LTV96] M. Li, J. Tromp, and P. Vitanyi, How to share concurrent waitfree variables, J. As-
soc. Comput. Mach., 43 (1996), pp. 723–746 (journal version of [LV87]).

[LV87] M. Li and P. Vitanyi, A very simple construction for atomic multiwriter registers, Re-
port, Aiken Computation Laboratory, Harvard University, Cambridge, MA, 1987.

[New87] R. Newman-Wolfe, A protocol for waitfree atomic multi-reader shared variables, in
Proc. 6th ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1987, pp. 232–248.

[PB87] G. L. Peterson and J. Burns, Concurrent reading while writing ii: The multi-
writer case, in Proc. 28th Symposium on Foundations of Computer Science, IEEE

BOUNDED CONCURRENT TIME-STAMPING 455

Computer Society Press, Los Alamitos, CA, 1987, pp. 383–392.
[Pet81] G. L. Peterson, Myths about the mutual exclusion problem, Inform. Process. Lett.,

12 (1981), pp. 115–116.
[Pet83] G. Peterson, Concurrent reading while writing, ACM Trans. Programming Lang.

Systems, 1 (1983), pp. 46–55.
[Pet88] G. Peterson, personal communication, 1988.
[Ray86] M. Raynal, Algorithms for Mutual Exclusion, North Oxford Academic Publishing,

Oxford, UK and MIT Press, Cambridge, MA, 1986; originally published as Algo-
rithmique du Parallélisme, Dunod Informatique, Paris, 1984 (in French; translated
by D. Beeson).

[SAG94] A. Singh, J. Anderson, and M. Gouda, The elusive atomic register, J. Assoc. Com-
put. Mach., 41 (1994), pp. 311–339; original version in Proc. 6th ACM Symposium
on Principles of Distributed Computing, ACM, New York, 1987, pp. 206–221.

[Sch88] R. Schaffer, On the correctness of atomic multi-writer registers, Bachelor’s the-
sis, Technical Memo MIT/LCS/TM-364, Massachusetts Institute of Technology,
Cambridge, MA, 1988.

[Sha90] N. Shavit, Concurrent time-stamping, Ph.D. thesis, School of Mathematics and Com-
puter Science, Hebrew University, Jerusalem, 1990.

[SZ91] M. Saks and F. Zaharoglou, Optimal space distributed move-to-front lists, in Proc.
10th ACM Symposium on Principles of Distributed Computing, ACM, New York,
1991, pp. 65–73.

[VA86] P. Vitanyi and B. Awerbuch, Shared register access by asynchronous hardware,
in Proc. 27th Symposium on Foundations of Computer Science, IEEE Computer
Society Press, 1986, pp. 233–243.

PROBE ORDER BACKTRACKING∗

PAUL WALTON PURDOM, JR.† AND G. NEIL HAVEN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 456–483, March 1997 008

Abstract. The algorithm for constraint-satisfaction problems, Probe Order Backtracking, has
an average running time much faster than any previously analyzed algorithm under conditions where
solutions are common. The algorithm uses a probing assignment (a preselected test assignment to
unset variables) to help guide the search for a solution. If the problem is not satisfied when the unset
variables are temporarily set to the probing assignment, the algorithm selects one of the relations
which is not satisfied by the probing assignment and selects an unset variable which affects the
value of that relation. It then does a backtracking (splitting) step, where it generates subproblems
by setting the selected variable each possible way. Each subproblem is simplified and then solved
recursively. For random problems with v variables, t clauses, and probability p that a literal appears
in a clause, the average time for Probe Order Backtracking is no more than vn when p ≥ (ln t)/v plus
lower-order terms. The best previous result was p ≥

√
(ln t)/v. When the algorithm is combined with

an algorithm of Franco that makes selective use of resolution, the average time for solving random
problems is no more than vn for all values of p when t ≤ O(n1/3(v/ ln v)2/3). The best previous result
was t ≤ O(n1/3(v/ ln v)1/6). Probe Order Backtracking also runs in polynomial average time when
p ≤ 1/v, compared with the best previous result of p ≤ 1/(2v). With Probe Order Backtracking,
the range of p that leads to more than polynomial time is much smaller than that for previously
analyzed algorithms.

Key words. average time, backtracking, combinatorial search, NP-complete, satisfiability,
searching

AMS subject classifications. 03B05, 05A16, 68Q20, 68Q25, 68T15

PII. S0097539793256053

1. Backtracking. The constraint-satisfaction problem is to determine whether
a set of constraints over discrete variables can be satisfied. Each constraint must have
a form that is easy to evaluate, so any difficulty in solving such a problem comes from
the interaction between the constraints and the need to find a setting for the variables
that simultaneously satisfies all of the constraints.

Constraint-satisfaction problems are extremely common. Indeed, the proof that
a problem is NP-complete implies an efficient way to transform the problem into a
constraint-satisfaction problem. Most NP-complete problems are initially stated as
constraint-satisfaction problems. A few special forms of constraint-satisfaction prob-
lems have known algorithms that solve problem instances in polynomial worst-case
time. However, for the general constraint-satisfaction problem, no known algorithm
is fast for the worst case. Nonetheless, many instances of the problem can be solved
rapidly.

When no polynomial-time algorithm is known for a particular form of constraint-
satisfaction problem, it is common practice to solve problem instances with a search
algorithm. The basic idea of searching is to choose a variable and generate sub-
problems by assigning each possible value to the variable. In each subproblem, the
relations are simplified by plugging in the value of the selected variable. This step of
generating simplified subproblems is called splitting. If any subproblem has a solu-
tion, then the original problem has a solution. Otherwise, the original problem has no

∗ Received by the editors September 22, 1993; accepted for publication (in revised form) May 24,
1995. This research was partially supported by NSF grants CCR 92-03942 and CCR 94-02780.

http://www.siam.org/journals/sicomp/26-2/25605.html
† Computer Science Department, Indiana University, Lindley Hall, Bloominton, IN 47405-4101

(pwp@cs.indiana.edu).
‡ Autospect Inc., 4750 Venture Drive, Ann Arbor, MI 48108-9559.

456

PROBE ORDER BACKTRACKING 457

solution. Subproblems that are simple enough (such as those with no unset variables)
are solved directly. More complex subproblems are solved by applying the technique
recursively.

If a problem contains the always false relation, then the problem has no solution.
Simple Backtracking improves over plain search by immediately reporting no solution
for such problems. Backtracking often saves a huge amount of time.

2. Probe Order Backtracking. This research is concerned with an algorithm
that is an improvement over Simple Backtracking. A key idea in the algorithm is
probing : if a fixed assignment to the unset variables solves the problem, no additional
investigation is needed. An algorithm probes by setting each unset variable to some
preselected value and testing to see whether all relations simplify to true. For random
problems, one may as well use the value false for all variables. For practical problems,
one could use a randomly selected probe sequence.

The algorithm Backtracking with Probing uses backtracking, probing, and no ad-
ditional techniques. In particular, during splitting, it always picks the first unset
variable from a fixed ordering on the variables. This algorithm is only a slight im-
provement over Simple Backtracking, and so it is not discussed further in this paper.
The reader is referred to [19] for a detailed analysis.

A better algorithm, Probe Order Backtracking, is more sophisticated in its variable
selection. It has a fixed ordering on the variables and a fixed ordering on the relations.
First, it checks that there are no always false relations. If an always false relation
is encountered, the problem is not satisfiable and the algorithm backtracks. Next,
it checks to see if there is a currently selected relation. If there is no currently
selected relation, it selects the first relation that evaluates to false under the probing
assignment. (If all clauses evaluate to true, then the probing assignment solves the
problem.) Finally, the algorithm does splitting using the first unset variable of the
selected relation. The algorithm always finds a solution if there is one, it may find
several solutions, but it normally does not find all solutions.

This paper shows that Probe Order Backtracking is fast for random problems
drawn from the region of parameter space where solutions are common. It is also
fast for random problems drawn from the region where solutions are uncommon. The
algorithm probably uses exponential average time in a narrow region between those
two regions, but this paper has only an upper-bound analysis, so it does not address
that question.

3. Probability model. To measure the quality of a search algorithm, we use
the average number of nodes in the backtrack tree that is generated when the algo-
rithm solves a randomly generated problem. Our random problems are formed by
the conjunction of independently generated random clauses (the logical or of literals,
where a literal is a binary variable or the negation of a binary variable). A random
clause is generated by independently selecting each literal with a fixed probability p.
We use v for the number of variables and t for the number of clauses. (Some of the
clauses may happen to be tautological.) For the asymptotic analysis, both p and t
are functions of v.

Many algorithms have been analyzed with this random-clause-length model [3,
4, 7, 8, 9, 13, 15, 17, 18]. Most of these analyses and a few unpublished ones are
summarized in [14].

A second probability model that is in common use is the fixed-clause model, where
the significant difference is that all clauses have the same length. Much research has
been done with the fixed-clause model, but only a few authors have done average

458 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

Fig. 1. Probe Order Backtracking.

time analyses for algorithms using this model [1, 2, 11, 16]. This second model gen-
erates problems that are more difficult to satisfy but perhaps more like the problems
encountered in practice. It also leads to much more difficult analyses.

4. Summary of results. This section summarizes the performance of Probe
Order Backtracking and gives some intuition as to why Probe Order Backtracking is
fast.

Figure 1 is a contour plot showing the performance of Probe Order Backtracking
for random problems with 50 variables. The vertical axis shows p, the probability
that a given literal appears in a clause, running from 0.001 to 1 with ticks at 0.01
and 0.1. At p = 0.01, the average clause length for problems is 1. At p = 0.1, the
average clause length is 10 literals. The horizontal axis shows t, the number of clauses,
running from 2 to 250 with ticks at 10 and 100. When p is near 0 or 1, most problems
are trivial. When p is low, most problems are easy because they contain an empty
clause; empty clauses are trivially unsatisfiable. When p is high, most problems are
easy because any assignment of values to variables is a solution to most problems.
The region of hard problems lies in the middle.

The contours are shaped like elongated horseshoes. The area within a horseshoe
contour represents problems that are more difficult than the problems outside the
contour. The outermost contour shows where the average number of nodes required
to solve a problem is 50, the next inner one 502, and finally 503. Running near the

PROBE ORDER BACKTRACKING 459

centerline of the horseshoes is a line that shows for each t that value of p that results
in the hardest problems (those with the largest number of nodes).

Except for the small t region, these contours are much better than those of any
other algorithm for which such contours have been published. The improvement is
particularly noticeable along the upper contour.

The asymptotic analysis of Probe Order Backtracking shows that the average
number of nodes is no more than vn, for large v and n > 1, when any of the following
conditions hold:

p ≥ ln t+ 2 ln ln t− ln ln v − ln(n− 1)− ln 2

v
+ Θ

(
ln ln t

v ln t

)
,(1)

p ≤
[

ln(t/v) + ln ln(t/v) + 1− ln 2− ln ln 2

2v

]
(2)

×
[
1 +

2(n− 1) ln v − (ln 2)[ln(t/v) + ln ln(t/v) + 3− ln 2− ln ln 2]

4v ln 2

−Θ

(
(ln v) ln(t/v)

v2

)
−Θ

(
ln ln(t/v)

v ln(t/v)

)]
,

p ≤ 1

v
+
e[(n− 1) ln v − ln 2]

tv
,(3)

t ≤ (n− 1) ln v − ln 2

ln{1 + [(pv)2 − 1]e−pv/2} .(4)

The Θ term in bound (1) is valid only when t increases more rapidly than ln v. Bound
(4) is valid when the limit of pv is greater than 1 and finite.

By setting p to minimize the right side of (4), we see that for all p and large v,
the average number of nodes is no more than vn when

(5) t ≤ 5.1150(n− 1) ln v −Θ(1)

because in bound (4), the minimum value of the right side (when considered as a
function of pv) occurs at pv = 1 +

√
2.

The bound for large p, bound (1), is much better than that for any previously
analyzed algorithm. The best previous result was

(6) p ≥
√

ln t− lnn

v

for Iwama’s inclusion–exclusion algorithm [9]. In the region between bounds (1) and
(6), Probe Order Backtracking is the fastest algorithm with proven results on its
running time (as long as t is not small compared to v). Algorithms that repeatedly
adjust variable settings to satisfy as many clauses as possible [20] are even faster on
many problems. Those algorithms, however, have difficulty with problems which have
no solution. They have been difficult to correctly analyze, and it is not clear at this
time what their average running time is.

460 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

For the best previously analyzed algorithms, there was a large range of p where the
algorithms apparently required more than polynomial time. (The word “apparently”
is used because the analyses are all upper-bound analyses.) The ratio of the large
p boundary to the small p boundary was v1/2 times logarithmic factors. For Probe
Order Backtracking, only the logarithmic factors are left. In some cases, even the
logarithmic factors are gone and the ratio is constant (in the limit of large v). Bound
(2) for small p results from the fact that the average number of nodes for Probe
Order Backtracking is no larger than the average for Simple Backtracking. When
t = vα with α > 1, the ratio of the upper boundary (1) to the lower boundary (2) is
2α/(α − 1) plus lower-order terms. Thus, for large α only a very limited range of p
leads to problems with a large average time.

Perhaps the region of greatest interest is the one where t is proportional to v.
When t is below 3.22135v, bound (3) is better than (2). When t = βv, the ratio of the
upper bound (1) to the first lower bound (2) is (2 ln v)/(lnβ+ln lnβ+1− ln 2− ln ln 2)
plus lower-order terms. When t = βv, the ratio of the upper bound to the second
lower bound (3) is ln v plus lower-order terms.

Previously, for small t, the best algorithm was a combination of Franco’s limited-
resolution algorithm [8] for small p and Iwama’s inclusion–exclusion algorithm [9] for
large p. When p is unknown, the two algorithms can be run in parallel and stopped
as soon as an answer is found. This combined algorithm generates no more than than
vn nodes (regardless of p) when t = O(n1/3(v/ ln v)1/6). Combining Franco’s algo-
rithm with Probe Order Backtracking improves the bound to O(n1/3(v/ ln v)2/3). The
techniques of Franco’s algorithm can be combined with Probe Order Backtracking,
so there is no need to have two algorithms running in parallel. This is helpful when
designing practical algorithms.

4.1. Informal discussion. The basic idea behind probing is old. The idea re-
sembles that used by Newell and Simon in GPS [12]. Just as their program con-
centrates on differences between its current state and its goal state, Probe Order
Backtracking focuses on a set of troublesome relations that are standing in the way
of finding a solution. It is our impression that people who are good at solving puzzles
use related ideas all the time.

Franco observed that two extremely simple algorithms could quickly solve most
problems outside of a small range of p [6]. His algorithm for the region of high p does
a single probe and gives up if no solution is found. His algorithm for the region of low
p looks for an empty clause and gives up if there is none. Since Franco’s algorithms
sometimes give up, their average time is not well defined.

At the time of Franco’s work, it was already known that Simple Backtracking was
fast along the lower boundary (2), but it was not clear how to obtain an algorithm
with a fast average time along the upper boundary (1). Simple uses of probing did
not seem to lead to a good average time. Probe Order Backtracking was discovered
while considering Franco’s results [6] and considering the measurements of Sosič and
Gu [20] for algorithms that concentrate on adjusting values until a solution is found.
Both of those algorithms have difficulty with problems that have no solution.

Simple Backtracking improves over plain search by noticing when a problem has
no solution due to the presence of an empty clause. However, Simple Backtracking
is unfocused in its variable selection. As long as a problem does not have an empty
clause, Simple Backtracking always proceeds by selecting the next splitting variable
from a fixed ordering. The Clause Order Backtracking algorithm [3] improves over
Simple Backtracking by focusing on the variables in one clause of the problem at a

PROBE ORDER BACKTRACKING 461

time. This method of searching has the advantage that it performs splitting on just
those variables that actually appear in a problem.

The Clause Order Backtracking algorithm provides a framework for the construc-
tion of a probing algorithm that has good performance for a wide range of problems,
including those with no solution. Probe Order Backtracking, like Clause Order Back-
tracking, focuses on the variables in one clause at a time. However, Probe Order
Backtracking improves over Clause Order Backtracking by only selecting variables
from clauses which are not satisfied by the probing assignment. These are the clauses
standing in the way of finding a solution: the troublesome clauses. Because Probe
Order Backtracking probes by setting all unset variables to false, the troublesome
clauses for Probe Order Backtracking are the clauses containing no negated variables.

When solutions are common, the informal explanation of why the algorithm is
fast is that there will be only a few relations that are not satisfied by the probing
assignment. Indeed, for pv > ln t, the expected number of troublesome clauses for
any given probing sequence is less than 1− 1/t. (See section 7.1.1 below.) By setting
a variable so as to satisfy a troublesome clause, you definitely eliminate that clause.
If luck is with you, you do not create any new troublesome clauses. The analysis at
the end of the paper shows that, when solutions are common, setting variables so as
to satisfy troublesome clauses creates new troublesome clauses at a rate slow enough
that the algorithm is fast.

When solutions are uncommon, the algorithm is fast because it usually works
on clauses that are shorter than average. First, the algorithm keeps working on the
selected clause until it is satisfied—once the first variable has been set, the average
length of the selected clause is less than that of a random clause. Second, troublesome
clauses are smaller than average. The first reason is the same reason that Clause Order
Backtracking is fast when solutions are uncommon [3]. (That algorithm is essentially
Probe Order Backtracking without the probing.)

In the worst case, Probe Order Backtracking may need to try almost every combi-
nation of values for the variables. Thus the average-case performance of the algorithm
is extremely good, but its worst-case performance is probably not a significant im-
provement over previous algorithms.

The analysis of the simpler Backtracking with Probing algorithm, which uses
probing to test for a solution but not to select the variables to set [19], shows that a
näıve application of probing does not lead to fast average time for the region of high
p or for the region of low t. For good performance, it appears to be essential that an
algorithm use probing both to notice when there is a solution and to focus its effort
on the clauses which are interfering with solving the problem.

5. Practical algorithms. Probe Order Backtracking was studied in part be-
cause it is simple enough to analyze. In practice, one wants an algorithm that is fast
whether or not it is possible to analyze its running time. There are several improve-
ments that would clearly improve Probe Order Backtracking’s average speed even
though it is difficult to analyze their precise effectiveness:

1. Stop the search as soon as one solution is found. The analysis suggests that
this would greatly improve the speed near the upper boundary (1), but stopping at
the first solution leads to statistical dependencies that are difficult to analyze.

2. Carefully choose the probing sequence instead of just setting all variables to
a fixed value. Various greedy approaches where variables are set to satisfy as many
clauses as possible should be considered (see [10, 20]). This is particularly important
near the upper boundary (1).

462 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

3. Probe with several sequences at one time. See [5, p. 151] for an algorithm
that used two sequences. This is helpful along the upper boundary.

4. Carefully select which variable to set. The analysis suggests that this is
particularly important along the lower boundary. Variables in hard-to-satisfy relations
(short clauses) are more important than those in easy-to-satisfy relations. Variables
that appear in lots of relations are more important than those that appear in a
few relations. Apparently, when the relations are clauses, it is helpful to consider
the number of clauses containing a particular variable positively and the number
containing it negatively [5]. It appears that variable selection was a major factor in
determining the order of placement of winning entries in a recent SAT competition
[5].

5. Use resolution when it does not increase the problem size [8].

6. Algorithm statement. The precise form of Probe Order Backtracking that
is analyzed and the rules for charging time are given below. The algorithm is special-
ized to work on satisfiability problems presented in conjunctive normal form (CNF).
This version of the algorithm is specially tailored to accord with the mathematics of
the equations in section 7 below.

A literal is positive if it is not in the scope of a not sign. It is negative if it is in the
scope of a not sign. In the following algorithm, a variable can have the value true, false,
or unset. The positively augmented current assignment is the current assignment of
values to variables with the unset values changed to true. The negatively augmented
current assignment is the current assignment of values to variables with the unset
values changed to false.

The algorithm simplifies clauses by plugging in the values of the set variables so
that (except when simplifying) it is concerned with only those variables that have the
value unset. In this algorithm, the set of solutions is a global variable that is initially
the empty set. Any solutions that are found are added to the set. If the problem
has any solutions, at least one solution will be added to the set before the algorithm
terminates. The algorithm may find more than one solution, but it does not in general
find all solutions. If the problem has no solution, then the algorithm will terminate
with an empty set of solutions.

Probe Order Backtracking for CNF Problems. Given a CNF predicate,
perform a preprocessing step by determining whether the predicate has an empty
clause. If it does, charge one time unit and return with an empty solution set. The
following algorithm is never called on a predicate with an empty clause. Also, remove
all tautological clauses from the problem.

1. (probe) If there are no all-positive clauses (that is, every clause has at least
one negative literal), then return with the negatively augmented current assignment
added to the set of solutions and charge one time unit.

2. (partial probe) If every clause of the CNF problem has only positive literals,
then return with the positively augmented current assignment added to the set of
solutions and charge one unit of time.

3. (select) Choose the first clause that is all-positive. Step 1 ensures that there
is at least one such clause.

4. (splitting) Let k be the number of variables in the selected clause. (The lack
of empty clauses ensures that k ≥ 1, and step 3 ensures that each variable occurs in
at most one literal of the clause.) For j starting at 1 and increasing to at most k+ 1,
set the first j − 1 variables of the clause so that their literals are false and charge
one time unit. Use the assigned values to simplify the problem (remove each false

PROBE ORDER BACKTRACKING 463

literal from its clause and remove from the problem each clause with a true literal). If
setting the first j−1 literals of the selected clause to false results in some clause being
empty, then stop the loop. If setting the first j − 1 literals of the selected clause to
false results in all clauses of the CNF problem having only positive literals, then add
the positively augmented current assignment to the set of solutions and stop the loop.
Generate a new subproblem by taking the simplified predicate obtained by setting the
first j−1 literals of the selected clause to false and also setting the jth variable to true
and simplifying. (This assignment satisfies the selected clause.) If this subproblem
has an empty clause, charge one additional time unit. Otherwise, apply the algorithm
recursively to the subproblem.

The cost in time units has been defined to be the same as the number of nodes
in the backtrack tree generated by the algorithm. The actual running time of the
algorithm depends on how cleverly it is implemented, but a good implementation will
result in a time that is proportional to the number of nodes multiplied by a factor
that is between 1 and tv, where v is the number of variables and t is the number of
clauses.

The backtrack tree includes nodes for determining that the selected clause is
empty. The computation associated with those nodes can be done quickly, so one
might wish to have an upper limit of k on the time units for step 4. This would lead
to small, unimportant changes in the analysis.

7. Exact analysis. The remainder of this paper consists of the analysis of the
Probe Order Backtracking algorithm. The same analysis is presented in greater detail
in [19]. An exact analysis of the Backtracking with Probing algorithm is also contained
in [19].

We now derive recurrence equations which give exact values of the average number
of nodes generated by Probe Order Backtracking.

7.1. Basic probabilities. For the analysis of probing algorithms it is useful to
divide clauses into the following categories: empty (no literals), all-positive (1 or more
positive literals and no negative ones), tautological (a positive and negative literal for
the same variable, possibly with additional literals), and mixed (any clause that does
not fall into one of the preceding categories). The mixed clauses have at least one
negative literal and zero or more positive literals. Assigning values to some variables
and then simplifying the clause may change the category of a clause, or it may result in
the clause becoming satisfied. (Note that empty clauses remain empty and all-positive
clauses never become mixed clauses.)

The probability that a random clause formed from v variables is nontautological,
contains j positive literals, and contains k negative literals is

(7) P (v, j, k) =

(
v

j, k, v − j − k

)
pj+k(1− p)2v−j−k.

The probability that a random clause has no literals is

(8) P (v, 0, 0) = (1− p)2v.

Note that

(9)
∑
j,k

P (v, j, k) = (1− p2)v ≤ 1

because tautological clauses are not counted in the double sum.

464 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

Suppose a random clause is formed from v variables and then one of the variables
is selected at random. The probability that the clause has a particular value of j and
k (implying that it is not a tautology) and that the selected variable appears in the
indicated way is

(10) positive:
j

v
P (v, j, k), negative:

k

v
P (v, j, k), neither:

v − j − k
v

P (v, j, k).

7.1.1. All-positive clauses. The probability that a random clause is all-positive
is

(11)
∑
j≥1

P (v, j, 0) = (1− p)v[1− (1− p)v].

As p becomes large, all-positive clauses become rare. In particular, for pv > ln t, the
average number of all-positive clauses in a predicate is bounded by

t(1− p)v[1− (1− p)v] < t

(
1− ln t

v

)v [
1−

(
1− ln t

v

)v]
< 1− 1

t
.

Suppose clauses are generated at random until an all-positive clause is produced.
The probability that the all-positive clause contains j literals is

(12) A(v, j) =
P (v, j, 0)∑
j≥1 P (v, j, 0)

=

(
v

j

)
pj(1− p)v−j
1− (1− p)v .

If a random variable is assigned the value true, then an all-positive clause will
either become satisfied or remain all-positive. The probability that the clause becomes
satisfied is

(13)
∑
j

j

v
A(v, j) =

p

1− (1− p)v .

The probability that the clause has length j and that it remains all-positive is

(14)
v − j
v

A(v, j) =

(
v − 1

j

)
pj(1− p)v−j
1− (1− p)v =

P (v − 1, j, 0)

(1− p)v−2[1− (1− p)v] .

If a random variable is assigned the value false, then an all-positive clause will
either become empty or remain all-positive. The probability that the resulting clause
becomes empty is

(15)
1

v
A(v, 1) =

p(1− p)v−1

1− (1− p)v .

The probability that the resulting clause remains all-positive and that it has length
j ≥ 1 is

(16)
j + 1

v
A(v, j + 1) +

v − j
v

A(v, j) =
P (v − 1, j, 0)

(1− p)v−1[1− (1− p)v] .

The average length of a random all-positive clause is

(17)
∑
j

jA(v, j) =
pv

1− (1− p)v .

PROBE ORDER BACKTRACKING 465

7.1.2. Mixed clauses. The probability that a random clause is a mixed clause
is

(18)
∑
j≥0
k≥1

P (v, j, k) = (1− p)v[(1 + p)v − 1].

Suppose clauses are generated at random until a mixed clause is produced. The
probability that the mixed clause contains j positive literals and k ≥ 1 negative literals
is

(19) M(v, j, k) =
P (v, j, k)∑

j

∑
k≥1 P (v, j, k)

=

(
v

j, k, v − j − k

)
pj+k(1− p)v−j−k

(1 + p)v − 1
.

If a random variable is assigned the value true, a mixed clause may become empty,
become all-positive, become satisfied, or remain a mixed clause. The probability that
a mixed clause becomes an empty clause is

(20)
1

v
M(v, 0, 1) =

p(1− p)v−1

(1 + p)v − 1
.

The probability that it becomes an all-positive clause with length j is

(21)
1

v
M(v, j, 1) =

(
v − 1

j

)
pj+1(1− p)v−j−1

(1 + p)v − 1
=

pP (v − 1, j, 0)

(1− p)v−1[(1 + p)v − 1]
.

The probability that it is satisfied is

(22)
∑
j

∑
k≥1

j

v
M(v, j, k) =

p[(1 + p)v−1 − 1]

(1 + p)v − 1
.

The probability that the mixed clause remains a mixed clause and that it has j positive
literals and k ≥ 1 negative literals is

(23)
k + 1

v
M(v, j, k + 1) +

v − j − k
v

M(v, j, k) =
P (v − 1, j, k)

(1− p)v−1[(1 + p)v − 1]
.

If a random variable is assigned the value false, a mixed clause may become
satisfied or remain a mixed clause. The probability that a mixed clause is satisfied is

(24)
∑
j

∑
k≥1

k

v
M(v, j, k) =

p(1 + p)v−1

(1 + p)v − 1
.

The probability that the mixed clause becomes a mixed clause with j positive literals
and k ≥ 1 negative literals is

(25)
j + 1

v
M(v, j + 1, k) +

v − j − k
v

M(v, j, k) =
P (v − 1, j, k)

(1− p)v−1[(1 + p)v − 1]
.

Equations (14), (16), (21), (23), and (25) show that in all cases where a nonempty
clause results from setting a variable associated with a random nonempty clause gen-
erated from v variables, the resulting clause either is satisfied or has the same length
distribution as random clauses generated from v − 1 variables. Thus it is possible to
base an analysis on the number of all-positive clauses, the number of mixed clauses,
and the number of variables without having to contend with statistical dependencies.

466 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

7.1.3. Total number of nodes. Equation (8) implies that a random predicate
with t clauses contains an empty clause (and is therefore solved with one node) with
probability

(26) 1− [1− (1− p)2v]t.

Equations (8), (11), and (18) imply that the probability that a random predicate
contains zero empty clauses, m all-positive clauses, n mixed clauses, and t −m − n
tautological clauses is
(27)(

t

m, n, t−m− n

)
(1−p)(n+m)v[1−(1−p)v]m[(1+p)v−1]n[1−(1−p)v(1+p)v]t−m−n.

If we let T (v,m, n) be the average time required to solve a random problem with
v variables, m all-positive clauses, n mixed clauses, and no empty clauses then by
summing all of the cases we see that the expected number of nodes is

(28)
1 − [1− (1− p)2v]t +

∑
m,n

(
t

m, n, t−m− n

)
(1− p)(n+m)v

× [1− (1− p)v]m[(1 + p)v − 1]n[1− (1− p)v(1 + p)v]t−m−nT (v,m, n).

7.1.4. Heuristic analysis. Before continuing with the exact analysis, we give
a brief heuristic analysis, for the average time used by Probe Order Backtracking.

Ignore the fact that setting variables has an effect on clauses other than the
selected clause. In particular, ignore the fact that the nonselected clauses can become
empty or satisfied and ignore the fact that once the variables of one clause are set,
there could be fewer variables waiting to be set in the remaining clauses. Under this
radical assumption, the number of subproblems produced by splitting on the variables
of the selected clause is the same as the length of the selected clause. If each of m
clauses contains w variables, the total number of nonroot nodes in the implied search
tree satisfies the recurrence

N(m) = wN(m− 1) + 2w.

“2w” is the number of nodes arising from setting each variable in the clause (one node
for true and one for false) as specified in the Probe Order Backtracking algorithm.
There are w subproblems produced by splitting. Each subproblem has m− 1 clauses.
The solution to this recurrence is

2

[
wm+1 − 1

w − 1

]
− 2.

Add 1 for the root node and use equation (17) for w. Under these assumptions,
T (v,m, n) is given by

(29) 2

{[(
pv

1− (1− p)v

)m+1

− 1

]/[(
pv

1− (1− p)v

)
− 1

]}
− 1.

Plugging into (28) and summing over m and n gives an average number of nodes
of

(30) 1 +

(
2pv

pv − 1 + (1− p)v

)
{[1 + (pv − 1)(1− p)v]t − [1− (1− p)2v]t}.

PROBE ORDER BACKTRACKING 467

The heuristic analysis ignores three aspects of setting variables: 1. a clause other
than the selected clause can become empty, 2. a clause other than the selected clause
can be satisfied, and 3. a mixed clause can become an all-positive clause. The first
leads to a predicted answer that is too large—particularly for small p. The last two
effects come close to canceling, but for large p they can lead to the predicted value
being either too large or too small depending on the exact value of the parameters.
Curves for the heuristic analysis are given in [19].

This rough and not quite correct analysis is useful for obtaining a general under-
standing of the performance of the algorithm before completing a correct analysis.
In particular, the heuristic analysis given here is useful in guessing the form of the
dependence of the exact analysis on m, the number of all-positive clauses. See the
value selected for x(v) in section 8.3.

7.1.5. Transition probabilities. Suppose a predicate is produced by repeat-
edly generating random clauses from v variables. Suppose the resulting predicate
contains m all-positive clauses, n mixed clauses, and no empty clauses.

Let G(v, n) be the probability that setting a random variable to true results in
the predicate having one or more empty clauses. When a variable is set to true, mixed
clauses become empty with the probability given in equation (20) while all-positive
clauses do not become empty. Therefore,

(31) G(v, n) = 1−
(

1− p(1− p)v−1

(1 + p)v − 1

)n
.

Let F (v,m) be the probability that setting a random variable to false results in
a predicate with one or more empty clauses. Equation (15) implies

(32) F (v,m) = 1−
(

1− p(1− p)v−1

1− (1− p)v

)m
.

Let D(v, i, k,m, n) be the probability that setting i random variables to false
results in no clauses becoming empty and k mixed clauses becoming satisfied. If
i = 0, nothing happens, so

(33) D(v, 0, k,m, n) = δk0.

For i = 1, equations (15) and (24) imply
(34)

D(v, 1, k,m, n) =

(
n

k

)(
1− p(1− p)v−1

1− (1− p)v

)m(
p(1 + p)v−1

(1 + p)v − 1

)k (
1− p(1 + p)v−1

(1 + p)v − 1

)n−k
.

For i > 1, some of the mixed clauses (x of them) must be satisfied when the first i−1
variables are set and then the rest (k − x) must be satisfied when the last variable is
set, so D can be calculated from

(35) D(v, i, k,m, n) =
∑
x

D(v, i− 1, x,m, n)D(v − i+ 1, 1, k − x,m, n− x).

Since the m index is constant in this recurrence and

(36)
∏

0≤j<i

(
1− p(1− p)v−j−1

1− (1− p)v−j

)
=

1− (1− p)v−i
1− (1− p)v ,

468 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

we have

(37) D(v, i, k,m, n) =

(
1− (1− p)v−i
1− (1− p)v

)m
D(v, i, k, n),

where

(38) D(v, 1, k, n) =

(
n

k

)(
p(1 + p)v−1

(1 + p)v − 1

)k (
1− p(1 + p)v−1

(1 + p)v − 1

)n−k
and

(39) D(v, i, k, n) =
∑
x

D(v, i− 1, x, n)D(v − i+ 1, 1, k − x, n− x).

The solution to this recurrence is

(40) D(v, i, k, n) =

(
n

k

)
[(1 + p)v − (1 + p)v−i]k[(1 + p)v−i − 1]n−k

[(1 + p)v − 1]n
.

Let E(v, j, k, l,m, n) be the probability that setting one random variable to true
results in no clauses becoming empty, j mixed clauses becoming all-positive clauses,
k mixed clauses becoming satisfied, and l all-positive clauses becoming satisfied. (No-
tice that no other changes of clause category can occur.) From equation (21), the
probability that a mixed clause will become all-positive is

(41)
∑
j≥1

(
v − 1

j

)
pj+1(1− p)v−j−1

(1 + p)v − 1
=
p[1− (1− p)v−1]

(1 + p)v − 1
.

Using this with Equations (13), (20), and (22) gives
(42)

E(v, j, k, l,m, n)

=

(
m

l

)(
n

j, k, n− j − k

)(
p

1− (1− p)v

)l (
1− p

1− (1− p)v

)m−l

×
(
p[1− (1− p)v−1]

(1 + p)v − 1

)j (
p[(1 + p)v−1 − 1]

(1 + p)v − 1

)k

×
(

1− p(1− p)v−1

(1 + p)v − 1
− p[1− (1− p)v−1]

(1 + p)v − 1
− p[(1 + p)v−1 − 1]

(1 + p)v − 1

)n−j−k

=

(
m

l

)(
n

j, k, n− j − k

)(
p

1− (1− p)v

)l (
1− p

1− (1− p)v

)m−l

×
(
p[1− (1− p)v−1]

(1 + p)v − 1

)j (
p[(1 + p)v−1 − 1]

(1 + p)v − 1

)k (
1− p(1 + p)v−1

(1 + p)v − 1

)n−j−k
.

7.2. Recurrence. Probe Order Backtracking selects a clause and then sets the
variables that occur in the clause. If the selected clause has h variables, then there
is a root, a node from setting the first variable to false, a potential node from setting
the first two variables to false, and so on. This gives a root plus up to h additional

PROBE ORDER BACKTRACKING 469

nodes. In addition, there is a subtree for setting the first variable to true, potentially
a subtree for setting the first variable to false and the second to true, and so on. When
setting the first few variables, some of the mixed clauses may evaluate to false. Also,
setting the first few variables may result in the number of mixed clauses dropping to
zero. Either of these effects may prevent a potential node from occurring in the tree.

Define a(v, i) as the probability that the selected clause contains i or more literals
(thus potentially contributing an ith node to the backtrack tree). Then from equation
(12), we obtain

(43) a(v, i) =
∑
j≥i

A(v, j) =
∑
j≥i

(
v

j

)
pj(1− p)v−j
1− (1− p)v .

Let T (v,m, n) be the average number of nodes for a problem that has v variables,
m all-positive clauses, n mixed clauses, and no empty clauses. Then
(44)
T (v,m, n) = 1

+
∑

1≤i≤v
a(v, i)

∑
x<n

D(v, i− 1, x,m− 1, n)

[
1 +G(v − i+ 1, n− x)

+
∑
j,k,l

E(v − i+ 1, j, k, l,m− 1, n− x)T (v − i,m+ j − l − 1, n− j − k − x)

]
.

The initial 1 is for the root of the tree. The i index is for those nodes that occur as
a result of setting the first i variables from the clause. The factor a(v, i) gives the
probability that the selected clause has at least i variables. The index x is for the
number of mixed clauses that are satisfied when setting the first i − 1 variables to
false. The sum does not include x = n because no subproblems are generated when
the number of mixed clauses is reduced to zero. The factor D(v, i− 1, x,m− 1, n) is
the probability that x of the n mixed clauses become satisfied and no clauses become
empty as a result of setting the first i − 1 variables. The D factor multiplies the
sum of terms that relate to the various kinds of nodes that can result when the ith
variable is set. The 1 following the square bracket is for the node that results from
setting the ith variable to false. The G(v − i + 1, n − x) term gives the probability
that setting the ith variable to true produces an empty clause. When setting the ith
variable to true, the j index counts the number of mixed clauses that become all-
positive, the k index counts the number of mixed clauses that become satisfied, and
the l index counts the number of all-positive clauses that are satisfied. (The selected
clause is not included in this count.) The factor E(v− i+ 1, j, k, l,m− 1, n−x) is the
probability that setting the ith variable results in the values j, k, and l. The factor
T (v − i,m+ j − l − 1, n− j − k − x) is the expected number of nodes in the subtree
that results from setting the first i− 1 variables to false and the ith variable to true.

If m or n is zero, then the algorithm stops immediately, so there is only one node.
Thus

(45) T (v, 0, n) = T (v,m, 0) = 1.

We now do a number of transformations to convert equation (44) into a more
convenient form. Define

(46) Y (v, i) =
1− (1− p)v−i
1− (1− p)v .

470 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

Then equations (37) and (44) imply

T (v,m, n) = 1 +
∑

1≤i≤v
a(v, i)

∑
x<n

[Y (v, i− 1)]m−1D(v, i− 1, x, n)

×
[
1 +G(v − i+ 1, 1, n− x)

+
∑
j,k,l

E(v − i+ 1, j, k, l,m− 1, n− x)

×T (v − i,m+ j − l − 1, n− j − k − x)

]
.

Change indices with j′ = m + j − l − 1 and k′ = n − j − k − x (j = l + j′ −m + 1,
k = n+m− l − x− j′ − k′ − 1) and drop primes to obtain
(47)

T (v,m, n) = 1 +
∑

1≤i≤v
a(v, i)

∑
x<n

[Y (v, i− 1)]m−1D(v, i− 1, x, n)

×
[
1 +G(v − i+ 1, 1, n− x)

+
∑
j,k,l

E(v − i+ 1, l+ j −m+ 1, n+m− l − x− j − k − 1, l,m− 1, n− x)T (v − i, j, k)

]
.

Define
(48)

Z(v, i,m, n) =
∑
x<n

[Y (v, i− 1)]m−1D(v, i− 1, x, n)[1 +G(v − i+ 1, 1, n− x)]

= [Y (v, i− 1)]m−1

×
[
2−

(
(1 + p)v − (1 + p)v−i+1

(1 + p)v − 1

)n
−
(

(1 + p)v − 1− p(1− p)v−i
(1 + p)v − 1

)n]
and

H(v, i, j, k,m, n)

=
∑
x<n

[Y (v, i− 1)]m−1D(v, i− 1, x, n)

×
∑
l

E(v − i+ 1, l + j −m+ 1, n+m− l − x− j − k − 1, l,m− 1, n− x).

After doing the sum over x and canceling some factors (one page of algebra), one has
(49)

H(v, i, j, k,m, n) =

(
(1 + p)v−i − 1

(1 + p)v − 1

)k∑
l

(
m− 1

l

)(
n

l + j −m+ 1

)
×
(
n+m− l − j − 1

k

)(
p

1− (1− p)v

)l
×
(

1− (1− p)v−i+1 − p
1− (1− p)v

)m−l−1(
p[1− (1− p)v−i]

(1 + p)v − 1

)l+j−m+1

PROBE ORDER BACKTRACKING 471

×
(

(1 + p)v − (1 + p)v−i − p
(1 + p)v − 1

)n+m−l−j−k−1

− δk0

(
(1 + p)v − (1 + p)v−i+1

(1 + p)v − 1

)n
×
(
m− 1

j

)(
1− (1− p)v−i+1 − p

1− (1− p)v

)j (
p

1− (1− p)v

)m−1−j
.

With these definitions, equation (47) can be written as

(50) T (v,m, n) = 1+
∑

1≤i≤v
a(v, i)

(
Z(v, i,m, n)+

∑
j,k

H(v, i, j, k,m, n)T (v−i, j, k)

)
.

Equation (50) is suitable for the derivation of the asymptotic number of nodes,
but it requires time O(v2t4) to evaluate. In [19], an alternate four-index recurrence is
given which can be evaluated in time O(vt4 + v2t3).

7.3. Verification of the recurrences. Aside from being careful with the math-
ematics, we performed measurements to help insure the correctness of the analysis of
Probe Order Backtracking.

For t and v in the range 1 ≤ v ≤ 6, 1 ≤ t ≤ 6, 1 ≤ tv ≤ 12, we generated each of
the 22tv SAT problems and counted the number of nodes produced. A problem with
i literals has probability pi(1−p)2tv−i. Multiplying the node counts for each i by this
probability gives a polynomial in p with integer coefficients [3]. We used Maple V to
solve (50) algebraically and verified that the polynomials from the recurrence were
identical with the polynomials generated from the corresponding node counts.

8. Bounds. We are interested in values for t and p for which the running time
is polynomial in v. Thus we now compute a simple upper bound on the number of
nodes and compare this bound with vn as v becomes large.

Our approach is to eliminate indices from the recurrence until we obtain a linear
first-order recurrence. To eliminate an index, we assume that the unknown function
(T) has a particular dependence on the index being eliminated times a new unknown
function of the remaining indices. By plugging the assumed form into the initial
recurrence (and performing one or two summations), we obtain a bounding recurrence
for the new function.

To simplify the algebra, we now drop the term that starts with δk0 from the
definition of H (in equation (49)) and drop the first negative term from the definition
of Z (in equation (48)). These changes lead to a new T (v,m, n), which is an upper
bound on the number of nodes. The terms have no significant effect when v is large.
Dropping them now saves a lot of ink.

It is convenient to first shift the recurrence by using T ′(v,m, n) = T (v,m, n)− 1.
From equation (50), we obtain
(51)
T ′(v,m, n)

=
∑

1≤i≤v
a(v, i)

(
Z(v, i,m, n) +

∑
j

∑
k

H(v, i, j, k,m, n)[T ′(v − i, j, k) + 1]

)
=
∑

1≤i≤v
a(v, i)

[
Z(v, i,m, n) +

(
1− (1− p)v−i+1

1− (1− p)v

)m−1(
(1 + p)v − 1− p(1 + p)v−i

(1 + p)v − 1

)n
+
∑
j

∑
k

H(v, i, j, k,m, n)T ′(v − i, j, k)

]
,

472 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

which can be written as
(52)

T ′(v,m, n) =
∑

1≤i≤v
a(v, i)

(
Z ′(v, i,m, n) +

∑
j

∑
k

H(v, i, j, k,m, n)T ′(v − i, j, k)

)
,

where

(53) Z ′(v, i,m, n) = 2

(
1− (1− p)v−i+1

1− (1− p)v

)m−1

.

The boundary conditions for the shifted recurrence are

(54) T ′(v, 0, n) = T ′(v,m, 0) = 0,

and the average number of nodes is

(55)
1 +

∑
m,n

(
t

m, n, t−m− n

)
(1− p)(n+m)v

× [1− (1− p)v]m[(1 + p)v − 1]n[1− (1− p)v(1 + p)v]t−m−nT ′(v,m, n).

8.1. Two-index recurrence. For any x(v), define T (v, n) so that T ′(v,m, n) ≤
x(v)mT (v, n) for all m. (We could include an n dependence in x, but that does not
appear to be useful.) Rearrange the binomials to obtain

(56)

H(v, i, j, k,m, n) =

(
n

k

)(
(1 + p)v−i − 1

(1 + p)v − 1

)k∑
l

(
m− 1

l

)(
n− k

l + j −m+ 1

)

×
(

p

1− (1− p)v

)l (
1− (1− p)v−i+1 − p

1− (1− p)v

)m−l−1

×
(
p[1− (1− p)v−i]

(1 + p)v − 1

)l+j−m+1

×
(

(1 + p)v − (1 + p)v−i − p
(1 + p)v − 1

)n+m−l−j−k−1

.

Equation (52) implies that we can obtain our bound by requiring

x(v)mT (v, n)

≥
∑

1≤i≤v
a(v, i)

(
Z ′(v, i,m, n) +

∑
j

∑
k

x(v − i)jH(v, i, j, k,m, n)T (v − i, k)

)
,

T (v, 0) = 0, T (v, n) ≥ 0,

where the bounds must hold for all m of interest. Thus

(57)

T (v, n) = max
m

{
1

x(v)m

[∑
1≤i≤v

a(v, i)

(
Z ′(v, i,m, n)

+
∑
j

∑
k

x(v − i)jH(v, i, j, k,m, n)T (v − i, k)

)]}
,

PROBE ORDER BACKTRACKING 473

T (v, 0) = 0.

Summing xjH over j gives

(58)

∑
j

xjH(v, i, j, k,m, n)

=

(
x[1− (1− p)v−i+1] + (1− x)p

1− (1− p)v

)m−1(
n

k

)(
(1 + p)v−i − 1

(1 + p)v − 1

)k
×
(

(1 + p)v − (1 + p)v−i − (1− x)p− xp(1− p)v−i
(1 + p)v − 1

)n−k
.

Using this sum and the definition of Z ′ in equation (57) gives
(59)

T (v, n)

=
1

x(v)
max
m

{ ∑
1≤i≤v

a(v, i)

[
2

(
1− (1− p)v−i+1

x(v)[1− (1− p)v]

)m−1

+

(
x(v − i)[1− (1− p)v−i+1] + [1− x(v − i)]p

x(v)[1− (1− p)v]

)m−1

×
∑
k

(
n

k

)(
(1 + p)v−i − 1

(1 + p)v − 1

)k
×
(

(1 + p)v − (1 + p)v−i − [1− x(v − i)]p− x(v − i)p(1− p)v−i
(1 + p)v − 1

)n−k
× T (v − i, k)

]}
,

(60) T (v, 0) = 0, T (v, n) ≥ 0.

So that this recurrence will be favorable, we wish to avoid raising quantities that
are above 1 to the mth power. Thus we require

(61) [1− (1− p)v]x(v) ≥ 1− (1− p)v−i+1

and

(62) [1− (1− p)v]x(v) ≥ [1− (1− p)v−i+1]x(v − i) + [1− x(v − i)]p.

As long as x(v) is above 1, any increasing function of v can be chosen for [1 − (1 −
p)v]x(v).

If x(v) obeys the bounds (61) and (62), then we have
(63)

T (v, n) =
1

x(v)

[∑
1≤i≤v

a(v, i)

(
2 +

∑
k

(
n

k

)(
(1 + p)v−i − 1

(1 + p)v − 1

)k
×
(

(1 + p)v − (1 + p)v−i − [1− x(v − i)]p− x(v − i)p(1− p)v−i
(1 + p)v − 1

)n−k
T (v − i, k)

)]
.

474 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

(55) implies that the average number of nodes is bounded by
(64)

1+
∑
m,n

(
t

m, n, t−m− n

)
(1− p)(n+m)vx(v)m[1− (1− p)v]m

× [(1 + p)v − 1]n[1− (1− p)v(1 + p)v]t−m−nT (v, n)

= 1 +
∑
n

(
t

n

)
(1− p)nv[(1 + p)v − 1]n

× {1− (1− p)v(1 + p)v + x(v)(1− p)v[1− (1− p)v]}t−nT (v, n).

Equation (64) gives a good bound when x(v) is set to the average length of an
all-positive clause, equation (17). (See Figure 5 in [19].)

Note the division by x(v) in equation (63). This is critical to obtaining an analyt-
ical understanding of why Probe Order Backtracking is fast. We are free to set x(v)
large enough to cancel out the effect of summing over i (which is where the growth in
T (v, n) comes from) as long as the factor in equation (64) which is raised to the power
t − n is not above 1. This division by x(v) is related to the fact that selecting an
all-positive clause results in a reduction of one in the number of all-positive clauses.
(The setting of variables can augment or counteract this reduction.)

8.2. One-index recurrence. For any x(v) and y(v), define T (v) so that
T ′(v,m, n) ≤ x(v)my(v)nT (v) for all m and n. Summing xjykH over j and k gives∑

j,k

xjykH(v, i, j, k,m, n)

=
∑
k

yk
(
x[1− (1− p)v−i+1] + (1− x)p

1− (1− p)v

)m−1(
n

k

)(
(1 + p)v−i − 1

(1 + p)v − 1

)k

×
(

(1 + p)v − (1 + p)v−i − (1− x)p− xp(1− p)v−i
(1 + p)v − 1

)n−k
(65)

=

(
x[1− (1− p)v−i+1] + (1− x)p

1− (1− p)v

)m−1

×
(

(1 + p)v + (y − 1)(1 + p)v−i − y − (1− x)p− xp(1− p)v−i
(1 + p)v − 1

)n
.

Using this result in equation (59) implies that a suitable T (v) is any function at least
as large as the solution to
(66)

T (v) =
1

x(v)
max
m,n

{ ∑
1≤i≤v

a(v, i)

[
2

y(v)n

(
1− (1− p)v−i+1

x(v)[1− (1− p)v]

)m−1

+

(
x(v − i)[1− (1− p)v−i+1] + [1− x(v − i)]p

x(v)[1− (1− p)v]

)m−1

×
(

(1 + p)v + [y(v − i)− 1](1 + p)v−i

y(v)[(1 + p)v − 1]

− y(v − i)− [1− x(v − i)]p− x(v − i)p(1− p)v−i
y(v)[(1 + p)v − 1]

)n
T (v − i)

]}
.

PROBE ORDER BACKTRACKING 475

Again, we wish to avoid raising quantities above 1 to high powers. Thus we still
have the bounds (61) and (62) for x(v). In addition, we have

(67) y(v) ≥ 1

and

(68) [y(v)−1][(1+p)v−1]−[y(v−i)−1][(1+p)v−i−1] ≥ p{x(v−i)[1−(1−p)v−i]−1}.

These bounds for y are satisfied by

(69) [y(v)− 1][(1 + p)v − 1] = p
∑

1≤j≤v−1

max{0, {x(j)[1− (1− p)j]− 1}}.

If x(v) and y(v) obey the bounds, we have

(70) T (v) =
1

x(v)

∑
1≤i≤v

a(v, i)[2 + T (v − i)].

Equation (64) implies that the average number of nodes is bounded by
(71)

1 +
∑
n

(
t

n

)
y(v)n(1− p)nv[(1 + p)v − 1]n

×{1− (1− p)v(1 + p)v + x(v)(1− p)v[1− (1− p)v]}t−nT (v)

= 1 +

{1− (1− p)v(1 + p)v + y(v)(1− p)v[(1 + p)v − 1] + x(v)(1− p)v[1− (1− p)v]}tT (v).

If the value of y(v) is set by equation (69), then the number of nodes is bounded by
(72)

1+

[
1+(1−p)v

(
x(v)[1−(1−p)v]−1+p

∑
1≤j≤v−1

max{0, (x(j)[1−(1−p)j]−1)}
)]t

T (v).

(72) gives a good bound when x(v) is set to the average length of an all-positive
clause, equation (17). (See Figure 2 in [19].)

If one sets x(v) to the average clause size and y(v) = 1 (ignoring the requirement
that y(v) satisfy bounds (67, 68)), one obtains a result that is essentially the same as
that given by the heuristic analysis, eq. (30).

8.3. A simplification. Equation (70) has only one index, but it is still rather
complex due to the summation on the right side. Define U(0) = T (0) and

(73) U(v) =
2 + U(v − 1)

x(v)

∑
1≤i≤v

a(v, i).

When U(v) is nondecreasing, T (v) ≤ U(v). (In equation (70), we can obtain an upper
bound by replacing T (v− i) with an upper bound, i.e., with U(v−1).) A good choice
for x(v) is one that cancels the effect of the summation. For

(74) x(v) =
∑

1≤i≤v
a(v, i) =

pv

1− (1− p)v ,

476 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

we have

(75) U(v) = 2 + U(v − 1), U(0) = 0.

Thus

(76) T (v) ≤ 2v.

When x(v) is given by equation (74), we have
(77) ∑

1≤j≤v−1

max{x(j)[1− (1− p)j]− 1, 0} =
∑

1/p≤j≤v−1

(pj − 1)

≤ pv(v − 1)

2
− (1/p− 1)

2
−
(
v − 1

p

)
.

(The less than or equal comes from the fact that 1/p may be a noninteger.) Thus
equations (72) and (77) imply that the number of nodes is bounded by

(78) 1 + 2v

[
1 + (1− p)v

(
p2v(v − 1)

2
− 1− p

2

)]t
.

Figure 2 shows the bounds that result from (78). The contour for v1 nodes has
two branches, the upper one along the p = 1 axis and the lower one shown on the
figure. The remaining contours have about the same shape as the contours from the
exact analysis (Figure 1), but they are fatter. Also, the v4 contour is shown in Figure
2, whereas it occurs at too large of a t value to be shown in Figure 1.

In [19], we show that

(79) x(v) =
apv

1− (1− p)v

with

(80) a =
2 + (1− p)v[−1 + p+ 2(t− 1)pv + p2tv(v − 1)]

p(t− 1)v(1− p)v[p(v − 1) + 2]

gives a better bound, but we do not use that result here.

9. Asymptotics. For the asymptotic analysis, we require that the bound on the
number of nodes be no more than vn. That is,

(81) vn ≥ 1 + 2v

[
1 + (1− p)v

(
p2v(v − 1)

2
− 1− p

2

)]t
or

(82)
vn−1

2

(
1− 1

vn

)
≥
[
1 + (1− p)v

(
p2v(v − 1)

2
− 1− p

2

)]t
.

9.1. Small t. From (82), we have

(83) ln

[
vn−1

2

(
1− 1

vn

)]
≥ t ln

[
1 + (1− p)v

(
p2v(v − 1)

2
− 1− p

2

)]
.

PROBE ORDER BACKTRACKING 477

Fig. 2. Upper limit.

Simplifying and solving for t gives

(84) t ≤ (n− 1) ln v − ln 2−Θ(1/vn)

ln{1 + [p2v(v − 1)− 1 + p](1− p)v/2} .

For n > 1 and 1 < a ≤ pv ≤ b <∞, (84) can be simplified to

(85) t ≤ (n− 1) ln v − ln 2

ln{1 + [(pv)2 − 1]e−pv/2} ,

which is bound (4). (Since this is an upper bound, positive Θ terms were dropped.)

9.2. Small p. When p is small, it is useful to simplify (82) by taking the tth
root and using x = eln x:

(86) 1 + (1− p)v
(
p2v(v − 1)

2
− 1− p

2

)
≤ v(n−1)/t

21/t

[
1−Θ

(
1

vnt

)]
.

Expanding in power series and multiplying by 2 gives

(87) (1− p)v[p2v(v − 1)− 1 + p] ≤ 2[(n− 1) ln v − ln 2]

t

[
1 + Θ

(
ln v

t

)]
.

478 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

When pv > 1 and p2v is bounded, bound (87) can be written as

(88) [(pv)2 − 1]e−pv ≤ 2[(n− 1) ln v − ln 2]

t

[
1 + Θ

(
1

v

)
+ Θ(p2v) + Θ

(
ln v

t

)]
.

This can be written as

(89) p2v2 ≤ 1 + 2epv
(n− 1) ln v − ln 2

t

[
1 + Θ

(
1

v

)
+ Θ

(
ln v

t

)]
.

To find the solution near pv = 1, let pv = 1 + y, giving

(90) 2y + y2 ≤ 2e[1 + y + Θ(y2)]
(n− 1) ln v − ln 2

t

[
1 + Θ

(
1

v

)
+ Θ

(
ln v

t

)]
.

Thus

(91) y ≤ e[(n− 1) ln v − ln 2]

t

[
1 + Θ

(
1

v

)
+ Θ

(
ln v

t

)]
.

Drop positive Θ terms to obtain

(92) pv ≤ 1 +
e[(n− 1) ln v − ln 2]

t
,

which is equivalent to bound (3).

9.3. Large p. In the previous section, we found a solution to bound (82) that
has pv near 1. For large pv, (1−p)v decreases much more rapidly than (pv)2 increases.
Bound (88) has the form (x2 − 1)e−x ≤ y with small y. Define z by x = − ln y +
2 ln(− ln y) + z ln(− ln y)/(− ln y). Plugging into (x2 − 1)e−x ≤ y gives

(93)
[− ln y + 2 ln(− ln y) + z ln(− ln y)/(− ln y)]2 − 1

(− ln y)2+z/(− ln y)
y = y.

Dividing both sides by y and clearing fractions gives(
1 +

2 ln(− ln y)

− ln y
+
z ln(− ln y)

(− ln y)2

)2

− 1

(− ln y)2
= (− ln y)z/(− ln y).

Taking logarithms, expanding the logarithms, and retaining the important terms gives

4 ln(− ln y)

− ln y

[
1 + Θ

(
ln(− ln y)

− ln y

)]
=
z ln(− ln y)

− ln y
.

In the limit, the right side is bigger for z > 4 and the left side is bigger for z ≤ 4.
Thus

x = − ln y + 2 ln(− ln y) + Θ

(
ln(− ln y)

− ln y

)
is a solution to the bound (x2 − 1)e−x ≤ y. (Also, there is no solution with larger x.)

When t increases more rapidly than ln v, the solution to (88) is

(94) pv ≥ ln t+ 2 ln ln t− ln ln v − ln(n− 1)− ln 2 + Θ

(
ln ln t

ln t

)
.

This is bound (1).

PROBE ORDER BACKTRACKING 479

9.4. Comparison with Simple Backtracking. When t/v is large, the results
of the small-p analysis are not very good. A better result can be obtained by observing
that the average running time for Probe Order Backtracking is no larger than that
of Simple Backtracking. (The proof that the average running time of Clause Order
Backtracking is no larger than that of Simple Backtracking [3, Theorem 1] also applies
to Probe Order Backtracking.)

We require that A.18 from [18], the bound for Simple Backtracking, be no more
than vn. For this bound, we use M(v) = v and δ = 0 and let q = − ln(1−p) to obtain

(95) vn ≥ 1 + v exp

[
2(ln 2)v + ln 2− ln 2

q
ln

(
1 +

qt

ln 2

)
+ t ln

(
1− ln 2

ln 2 + qt

)]
.

This can be written as
(96)

qv− 1

2
ln(qv) ≤ 1

2
ln

(
t

v

)
+

1− ln ln 2

2
+

q

2 ln 2
[(n−1) ln v− ln 2]−Θ

(q
vn

)
+Θ

(
1

qt

)
.

When t/v > e, the solution to bound (96) is

(97)

qv ≤ 1

2
ln

(
t

v

)
+

1

2
ln ln

(
t

v

)
+

1− ln 2− ln ln 2

2
+

q

2 ln 2
[(n− 1) ln v − ln 2]

+ Θ

(
ln ln(t/v)

ln(t/v)

)
−Θ

(q
vn

)
.

Replacing q with its value in terms of p and solving for p in bound (97) gives

(98)

p ≤
[

ln(t/v) + ln ln(t/v) + 1− ln 2− ln ln 2

2v

]
×
[
1 +

2(n− 1) ln v − (ln 2)[ln(t/v) + ln ln(t/v) + 3− ln 2− ln ln 2]

4v ln 2

−Θ

(
(ln v) ln(t/v)

v2

)
−Θ

(
ln ln(t/v)

v ln(t/v)

)]
,

which is bound (2). For large v, this is an improvement over the small-p analysis
when t = βv and β > 3.22136. Note that β > e.

9.5. Comparison with solution boundary. The average number of solutions
to a random CNF satisfiability problem is

(99) 2v[1− (1− p)v]t

[18, equation A.1]. This is vn when

(100) p =
1

v

[
− ln

(
1− 1 + Θ(n(ln v)/t)

e(ln 2)v/t

)]
[1−Θ(p)] .

(Note that n = 0 corresponds to an average of one solution per problem.) When t/v
is large, this can be simplified to

(101)

pv = (ln t− ln v − ln ln 2)

[
1−Θ

(
ln t− ln v

v

)]
+ Θ

(v
t

)
+ Θ

(
n ln v

v

)
.

480 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

Note that for large t/v, the large-p boundary for Probe Order Backtracking being
fast (based on the upper bound analysis) is only slightly above the boundary for the
number of solutions per problem being above 1. That is, the leading terms in (94)
are bigger than those in (101) by only the amount ln v. When t/v is not large, the
relative distance between the two curves increases.

9.6. Intersection with Franco’s analysis. Franco gives an algorithm [8] which
makes selective use of resolution. This algorithm has the fastest proven average time
for small t as long as p is not too large. Combining Franco’s algorithm with Iwama’s
algorithm [9] gives an algorithm that is fast for all p when

(102) t ≤ O(n1/3(v/ ln v)1/6).

The number of nodes for Franco’s algorithm is no more than

(103) 3 + v + e−te
−2p(1+p)v+(ln 2)[8(pt)3v+1]

[8, pp. 1123–1124]. To find the intersection of this bound with the bound for Probe
Order Backtracking, it is useful to write (94) as

pv ≥ ln t+ 2 ln ln t− ln ln v −Θ(ln(n− 1)) = ln

[
t(ln t)2

Θ(n− 1) ln v

]
.

When pv is equal to this bound,

e−2p(1+p)v = e−(2+2p)pv =

[
(n− 1)Θ(1) ln v

t(ln t)2

]2+Θ(p)

.

When v and t are polynomially related (ln t = Θ(ln v)), we may write this as

e−2p(1+p)v =
1

t2+Θ(p)

[
(n− 1)Θ(1)

Θ(1) ln t

]2+Θ(p)

=
1

t2+Θ(1)

(
n− 1

ln t

)Θ(1)

.

Plugging these results into (103) gives a number of nodes (at the intersection of the
curves for the two algorithms) of

(104)

3 + v + exp

{
−
(
n− 1

t ln t

)Θ(1)

+
(8 ln 2)t3(ln t)3

v2

[
1 +

2 ln ln t

ln t
− ln ln v

ln t
−Θ

(
ln(n− 1)

ln t

)]3

+ ln 2

}
.

If we set this equal to vn and take logarithms, we have

n ln v −Θ

(
1

vn−1

)

= −
(
n− 1

t ln t

)Θ(1)

+
(8 ln 2)t3(ln t)3

v2

[
1 +

2 ln ln t

ln t
− ln ln v

ln t
−Θ

(
ln(n− 1)

ln t

)]3

+ ln 2,

8(ln 2)t3(ln t)3

v2

[
1 +

2 ln ln t

ln t
− ln ln v

ln t
−Θ

(
ln(n− 1)

ln t

)]3

= n ln v −Θ(1),

PROBE ORDER BACKTRACKING 481

t3(ln t)3 =
nv2 ln v

8 ln 2

[
1−Θ

(
1

ln v

)][
1 +

2 ln ln t

ln t
− ln ln v

ln t
−Θ

(
ln(n− 1)

ln t

)]−3

.

We may write

t ln t =
(n ln v)1/3v2/3

2(ln 2)1/3

[
1−Θ

(
1

ln v

)][
1 +

2 ln ln t

ln t
− ln ln v

ln t
−Θ

(
1

ln t

)]−1

=
(n ln v)1/3v2/3

2(ln 2)1/3

[
1−Θ

(
1

ln v

)][
1− 2 ln ln t

ln t
+

ln ln v

ln t
+ Θ

(
1

ln t

)]
=

(n ln v)1/3v2/3

2(ln 2)1/3

[
1− 2 ln ln t

ln t
+

ln ln v

ln t
+ Θ

(
1

ln t

)
−Θ

(
1

ln v

)]
.

Define

y =
(n ln v)1/3v2/3

2(ln 2)1/3

[
1− 2 ln ln t

ln t
+

ln ln v

ln t
+ Θ

(
1

ln t

)
−Θ

(
1

ln v

)]
and solve y = t ln t for t. Consider the test solution

t =
y

ln y

[
1 +

ln ln y

ln y
+ a

(
ln ln y

ln y

)2
]
.

Plugging this in gives

y =
y

ln y

[
1 +

ln ln y

ln y
+ a

(
ln ln y

ln y

)2
]

ln

{
y

ln y

[
1 +

ln ln y

ln y
+ a

(
ln ln y

ln y

)2
]}

= y

[
1 +

ln ln y

ln y
+ a

(
ln ln y

ln y

)2
]

×
[
1− ln ln y

ln y
+

ln ln y

(ln y)2
+ Θ

(
(a− 1/2)(ln ln y)2

(ln y)3

)]

= y

[
1 + (a− 1)

(
ln ln y

ln y

)2

+ Θ

(
ln ln y

(ln y)2

)]
.

In the limit, the left side is larger for a < 1 and the right side is larger for a > 1, so a
solution is

t =
y

ln y

[
1 +

ln ln y

ln y
+ Θ

(
(ln ln y)2

(ln y)2

)]
.

We have

ln y =
2 ln v

3
+

ln ln v

3
+ Θ(lnn) =

2 ln v

3

[
1 +

ln ln v

2 ln v
+ Θ

(
lnn

ln v

)]
and

ln ln y = ln ln v + Θ(1),

482 PAUL WALTON PURDOM, JR. AND G. NEIL HAVEN

so

t =
3(n ln v)1/3v2/3

4(ln 2)1/3 ln v

1− (2 ln ln t)/ ln t+ (ln ln v)/ ln t+ Θ(1/ ln t)−Θ(1/ ln v)

1 + (ln ln v)/(2 ln v) + Θ((lnn)/ ln v)

×
[
1 +

3 ln ln v + Θ(1)

2 ln v + Θ(ln ln v)
+ Θ

(
(ln ln v)2

(ln v)2

)]
=

3(n ln v)1/3v2/3

4(ln 2)1/3 ln v

[
1− 2 ln ln t

ln t
+

ln ln v

2 ln t
+ Θ

(
1

ln t

)
−Θ

(
1 + lnn

ln v

)]
×
[
1 +

3 ln ln v

2 ln v
+ Θ

(
1

ln v

)]
=

3(n ln v)1/3v2/3

4(ln 2)1/3 ln v

[
1− 2 ln ln t

ln t
+

ln ln v

2 ln t
+

3 ln ln v

2 ln v
+ Θ

(
1

ln t

)
−Θ

(
1 + lnn

ln v

)]
.

Since t is approximately v2/3,

−2 ln ln t

ln t
+

ln ln v

2 ln t
+

3 ln ln v

2 ln v

is approximately −(3/4)(ln ln v)/ ln v. Thus bound (104) is no more than vn when

(105) t =
3n1/3v2/3

4(ln 2)1/3(ln v)2/3

[
1−Θ

(
ln ln v

ln v

)]
.

Note added in proof. The idea of selecting from all positive clauses has been
used with good effect on quasigroup problems; see p. 546 of [H. Zhang, M. P. Bonacina,
and J. Hsiang, “PSATO: A distributed propositional prover and its application to
quasigroup problems,” J. Symbolic Comput., 21 (1996), pp. 543–560].

REFERENCES

[1] C. A. Brown and P. W. Purdom, An average time analysis of backtracking, SIAM J. Comput.,
10 (1981), pp. 583–593.

[2] K. M. Bugrara and C. A. Brown, The average case analysis of some satisfiability model
problems, Inform. Sci., 40 (1986), pp. 21–38.

[3] K. M. Bugrara and P. W. Purdom, Average time analysis of clause order backtracking,
SIAM J. Comput., 23 (1993), pp. 303–317.

[4] K. M. Bugrara, Y. F. Pan, and P. W. Purdom, Exponential average time for the pure literal
rule, SIAM J. Comput., 18 (1988), pp. 409–418.

[5] M. Buro and H. K. Büning, Report on a SAT competition, Bull. European Assoc. Theoret.
Comput. Sci., 49 (1993), pp. 143–151.

[6] J. V. Franco, On the probabilistic performance of algorithms for the satisfiability problem,
Inform. Process. Lett., 18 (1986), pp 103–106.

[7] J. V. Franco, On the occurrence of null clauses in random instances of satisfiability, Discrete
Appl. Math., 41 (1993), pp. 203–210.

[8] J. V. Franco, Elimination of infrequent variables improves average case performance of sat-
isfiability algorithms, SIAM J. Comput., 20 (1991), pp. 1119–1127.

[9] K. Iwama, CNF satisfiability test by counting and polynomial average time, SIAM J. Comput.,
18 (1989), pp. 385–391.

[10] K. J. Lieberherr and E. Specker, Complexity of partial satisfaction, J. Assoc. Comput.
Mach., 28 (1981), pp. 411–421.

[11] H. M. Méjean, H. Morel, G. Reynaud, A variational method for analysing unit clause
search, SIAM J. Comput., 24 (1995), pp. 621–649.

[12] A. Newell and H. A. Simon, GPS, a program that simulates human thought, in Computers
and Thought, E. A. Feigenbaum and J. Feldman, eds., McGraw–Hill, New York, 1963,
pp. 279–296.

PROBE ORDER BACKTRACKING 483

[13] P. W. Purdom, Search rearrangement backtracking and polynomial average time, Artif. Intell.,
21 (1983), pp. 117–133.

[14] P. W. Purdom, A survey of average time analyses of satisfiability algorithms, J. Inform. Pro-
cess., 13 (1990), pp. 449–455; an earlier version appeared as Random satisfiability problems,
in Proc. International Workshop on Discrete Algorithms and Complexity, Institute of Elec-
tronics, Information and Communication Engineers, Tokyo, 1989, pp. 253–259.

[15] P. W. Purdom, Average time for the full pure literal rule, Inform. Sci., 78 (1994), pp 269–291.
[16] P. W. Purdom and C. A. Brown, An analysis of backtracking with search rearrangement,

SIAM J. Comput., 12 (1983), pp. 717–733.
[17] P. W. Purdom and C. A. Brown, The pure literal rule and polynomial average time, SIAM

J. Comput., 14 (1985), pp. 943–953.
[18] P. W. Purdom and C. A. Brown, Polynomial-average-time satisfiability problems, Inform.

Sci., 41 (1987), pp. 23–42.
[19] P. W. Purdom and G. N. Haven, Backtracking and probing, Technical Report 387, Depart-

ment of Computer Science, Indiana University, Bloomington, IN, 1993.
[20] R. Sosič and J. Gu, Fast search algorithms for the n-queens problem, IEEE Trans. Systems

Man Cybernet., 21 (1991), pp. 1572–1576.

AMBIVALENT DATA STRUCTURES FOR DYNAMIC
2-EDGE-CONNECTIVITY AND k SMALLEST SPANNING TREES∗

GREG N. FREDERICKSON†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 484–538, April 1997 009

Abstract. Ambivalent data structures are presented for several problems on undirected graphs.
These data structures are used in finding the k smallest spanning trees of a weighted undirected
graph in O(m log β(m,n) + min{k3/2, km1/2}) time, where m is the number of edges and n the
number of vertices in the graph. The techniques are extended to find the k smallest spanning trees
in an embedded planar graph in O(n+ k(logn)3) time. Ambivalent data structures are also used to
dynamically maintain 2-edge-connectivity information. Edges and vertices can be inserted or deleted
in O(m1/2) time, and a query as to whether two vertices are in the same 2-edge-connected component
can be answered in O(logn) time, where m and n are understood to be the current number of edges
and vertices, respectively.

Key words. analysis of algorithms, data structures, embedded planar graph, fully persistent
data structures, k smallest spanning trees, minimum spanning tree, on-line updating, topology tree,
2-edge-connectivity

AMS subject classification. 68Q

PII. S0097539792226825

1. Introduction. Efficient handling of on-line requests requires that data be
stored flexibly. At each location in a data structure, it can be advantageous to keep
track of a small number of alternatives, only one of which can in fact be valid. An
example of such alternatives might be whether a path between vertices x and y in
a spanning tree of a graph goes through a vertex w or through a vertex w′. We
say that a data structure possesses ambivalence if at each of many locations in the
structure it keeps track of several alternatives, even when a global examination of
the data structure would identify for each location the alternative (or valence) that
is in fact valid. (A more formal definition of this property is given at the beginning
of section 7.) The structure necessarily organizes the data in such a way that the
correct alternative is known for some crucial case. We apply this technique in the
design of data structures for several graph problems related to connectivity. Our
data structures are ambivalent with regard to the structure of a spanning tree as that
spanning tree is being updated, and they yield algorithms faster than any previously
known.

Our first problem is that of finding the k smallest spanning trees of a weighted
undirected graph. Using data structures that are both ambivalent and fully persistent
[DSST], we give an algorithm that uses O(m log β(m,n) + min{k3/2, km1/2}) time,
where m is the number of edges and n is the number of vertices. Here β(·, ·) is a
very slowly growing function, as defined by Fredman and Tarjan [FT], and the first
term in our running time represents the best known time to find a minimum spanning
tree [GGST]. Where appropriate, we shall substitute this time when quoting previous
results. The amount of space used by our algorithm is O(m+ min{k3/2, km1/2}). For

∗ Received by the editors February 11, 1992; accepted for publication (in revised form) June 1,
1995. A preliminary version of this paper appeared in Proc. 32nd Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp.
632–641. This research was supported in part by National Science Foundation grants CCR-9001241
and CCR-9322501 and Office of Naval Research contract N00014-86-K-0689.

http://www.siam.org/journals/sicomp/26-2/22682.html
† Department of Computer Sciences, Purdue University, West Lafayette, IN 47907

(gnf@cs.purdue.edu).

484

AMBIVALENT DATA STRUCTURES 485

the case of a planar graph, we give fully persistent data structures that are then used
in an algorithm that takes O(n+ k(logn)3) time and O(n+ k(logn)2) space.

Our results compare with previous results on this problem as follows. The problem
of enumerating the k smallest combinatorial objects of some particular type has been
studied in a number of contexts, including the assignment problem [M], the shortest-
path problem [Y], [L1], and the minimum-spanning-tree problem [BH], [CFM], [G],
[KIM], [F1], [E]. Early algorithms for finding the k smallest minimum spanning trees
can be found in [BH] and [CFM]. Gabow has given an O(m logm+ kmα(m,n))-time
algorithm [G], Katoh, Ibaraki, and Mine have given an O(m log β(m,n) + km)-time
algorithm [KIM], Frederickson gave anO(m log β(m,n)+k2m1/2)-time algorithm [F1],
and Harel claimed an O(m logn + kn(logn)2)-time algorithm [Hl2]. Most recently,
in [E], Eppstein has given an elegant preprocessing step that allows him to achieve,
in conjunction with the algorithm of [KIM], a running time of O(m log β(m,n) +
min{k2, km}), using O(m + k) space. Our algorithm matches the running time of
Eppstein’s for k ≤ (m log β(m,n))1/2 and is faster for larger values of k. While our
algorithm uses more space than Eppstein’s for sufficiently large k, the space used by
our algorithm is O(k +m) whenever k ≤ m2/3.

For the case of a planar graph, there are two previous results. In [F1], Frederickson
gave an O(n+k2(logn)3)-time algorithm, and in [E], Eppstein has given an O(n+k2)-
time algorithm. Thus the time for our algorithm is never worse than that in [E], and
it is strictly better whenever k > n1/2. The space of our algorithm is O(n) whenever
k ≤ n/(logn)3.

Our second problem is that of maintaining a data structure for an undirected
graph under the operations of inserting and deleting edges and vertices, so as to
be able to answer queries about whether two given vertices are in the same 2-edge-
connected component. Using ambivalent data structures, we achieve an update time
of O(m1/2) and a query time of O(logn), where m and n are understood to be the
current number of edges and vertices, respectively.

The question of whether there are data structures with sublinear-time algorithms
for maintaining 2-edge-connectivity information under the operations of both insertion
and deletion of edges was posed by Westbrook and Tarjan [WT]. Galil and Italiano
[GI] describe a data structure that achieves O(m2/3) update and query times.

Recently, Eppstein, Galil, Italiano, and Nissenzweig [EGIN] and Eppstein, Galil,
and Italiano [EGI] have introduced a sparsification technique that creates a data
structure using multiple copies of other data structures. Their technique allows them
to use the data structures in this paper and thus replace the m by an n in the times
for updating 2-edge-connectivity information and for finding the k smallest spanning
trees in a general graph.

Our approach is based on variants of the topology tree and the 2-dimensional
topology tree structures presented in [F1]. To make the approach work, we present a
different, and in some sense simpler, multilevel partition of the vertices, on which the
topology tree and 2-dimensional topology tree are based. A version of our variant of
the topology tree that is designed for rooted trees [F3] is appropriate for implementing
dynamic trees. In addition to ambivalence, we introduce other novel ideas in our
solutions. These include an encoding scheme for vertex names, with the encoded
names changing as the topology of a spanning tree changes, and also a partition of
the spanning tree into paths based on the multilevel partition.

Our paper is organized as follows. In section 2, we describe the new multilevel
partition, and in section 3, we describe the data structures, including fully persistent

486 GREG N. FREDERICKSON

data structures, used for updating spanning trees. In section 4, we characterize the
adjacency of clusters in embedded planar graphs. In section 5, we describe the data
structures, including fully persistent data structures, that are use for updating span-
ning trees in embedded planar graphs. In section 6, we describe the basic algorithm
for finding the k smallest spanning trees, omitting the description of the key data
structure. In section 7, we define ambivalence formally and then describe this key
data structure for general graphs. In section 8, we describe this key data structure for
planar graphs. In section 9, we give a data structure to maintain 2-edge-connectivity
in general graphs.

2. Clustering vertices in spanning trees. In this section, we define basic
data structures similar to but simpler than those in [F1]. The main contribution of
the section is a new way to partition the vertices based on the topology of a spanning
tree. We first describe a graph transformation that we use throughout. We then define
vertex clusters and our new partition and discuss how the clusters change when an
edge is inserted or deleted. We then show that the partition can be applied recursively
for only Θ(logn) levels.

Throughout this paper, we shall wish to deal with graphs that have maximum
vertex degree 3. We first describe how to transform our graph into a graph in which
every vertex has degree no greater than three. A well-known transformation in graph
theory [Hy, p. 132] is used. By ∞ we designate a sufficiently large value, say equal
to the largest value that can be represented in a single word of memory. For each
vertex v of degree d > 3 and neighbors w0, w1, . . . , wd−1, replace v with new vertices
v0, v1, . . . , vd−1. Add edges {(vi, vi+1)|i = 0, . . . , d − 2}, each of cost −∞, and edge
(vd−1, v0) of cost ∞, and replace edges {(wi, v)|i = 0, 1, . . . , d − 1} with {(wi, vi)|i =
0, . . . , d − 1}, of corresponding costs. Note that a minimum spanning tree for the
transformed graph will be a minimum spanning tree for the original graph with every
edge of cost −∞ added. (The value −∞ is used to ensure that these edges are not
swapped out when identifying a best swap in section 6. For the purpose of identifying
the cost of the minimum spanning tree in the original graph, treat the −∞ as 0.)

We next define some terms that serve as the foundation for data structures from
[F1] that we wish to use. Let G = (V,E) be a connected undirected graph with
maximum vertex degree at most 3, and let T be a subgraph of G that is a tree.
A vertex cluster with respect to T is a set of vertices such that the subgraph of T
induced on the cluster is connected. A boundary vertex of a cluster is a vertex that
is adjacent in T to some vertex not in the cluster. The tree degree of a vertex cluster
is the number of tree edges with precisely one endpoint in the cluster. Two disjoint
vertex clusters are adjacent if there is a tree edge that contains one endpoint in each
of the clusters. We illustrate the above definitions using Fig. 1, in which a spanning
tree is shown with bold edges. The set of vertices {6, 7, 13} is not a cluster, since the
subset of edges of T incident on it is just {(6, 7)} so that the subgraph of T induced
on it is not connected. The set of vertices {4, 10} is a cluster since the subset of edges
of T incident on it is {(4, 10)}, which connects the vertices. The tree degree of cluster
{4, 10} is 4. Clusters {8, 9, 10, 11} and {12, 13, 14} are adjacent because there is a tree
edge (11, 12).

We define a partition of a set of vertices so that the resulting vertex clusters
possess certain nice properties. Let z be a positive integer. A restricted partition of
order z with respect to T is a partition of V such that:

1. Each set in the partition is a vertex cluster of tree degree at most 3.
2. Each cluster of tree degree 3 is of cardinality 1.

AMBIVALENT DATA STRUCTURES 487

Fig. 1. A weighted undirected graph with its minimum spanning tree in bold.

3. Each cluster of tree degree less than 3 is of cardinality at most z.
4. No two adjacent clusters can be combined and still satisfy the above.

As an example, consider the spanning tree from the graph in Fig. 1. A restricted
partition of order 2 is shown for this tree in Fig. 2. Note that vertices 10 and 11
cannot be clustered together due to the constraint on the cardinality of a cluster of
tree degree 3. Also note that vertex 2 could have been clustered with vertex 1 rather
than with vertex 3. In general, there are many different restricted partitions for a
given tree and parameter z.

It is not hard to show that the number of clusters in a restricted partition of order
z is Θ(m/z). We do this after the proof of the upcoming Lemma 2.2.

Given a tree described by adjacency lists, a restricted partition can be found
as follows. Root the tree at a vertex of tree degree 1. Call the procedure cluster
with the root as argument. Procedure cluster(v), defined below, does the following.
It finds all clusters of the subtree rooted at v and outputs all except the partial
cluster containing v, which it leaves as C(v). It also finds tdeg(v), the tree degree
of C(v), and size(v), the number of vertices in C(v). Upon the return of the call
to cluster(root), print out the set C(root) as the final cluster. Function cluster(v)
is defined as follows. It initializes C(v) to {v}, size(v) to 1, and tdeg(v) to the tree
degree of v. Then for each child w of v, it calls cluster(w) and then does the following.
If tdeg(v) + tdeg(w) − 2 ≤ 2 and size(v) + size(w) ≤ z, then it resets C(v) to be
C(v)∪C(w), tdeg(v) to be tdeg(v)+ tdeg(w)−2, and size(v) to be size(v)+size(w).
Otherwise, C(w) is output as a cluster. This completes the description of how each
child is handled, and with it the description of procedure cluster. Note that the
tree degree of any resulting partial cluster will be correctly computed since the tree
degree of two unioned partial clusters will be 2 less than the sum of their tree degrees.

488 GREG N. FREDERICKSON

Fig. 2. A restricted partition of the vertices of the spanning tree in Fig. 1.

Furthermore, the resulting tree degree will always be less than 3.
The above procedure takes O(n) time for a tree of n vertices. The procedure can

be modified in a straightforward fashion to identify the boundary vertices for each
cluster and for each vertex identify whether it is a boundary vertex and, if so, for
which cluster. Using this representation, the neighboring clusters of any given cluster
can be identified in constant time.

An operation that changes the structure of T may force a change in the clusters
of a restricted partition. Consider the operation of removing an edge from T , which
leaves two trees, T1 and T2. Given a restricted partition of order z with respect to T
and given an edge in T that is deleted, we discuss how to efficiently generate restricted
partitions with respect to the resulting trees T1 and T2. Trees T1 and T2 inherit the
clusters of T , with the following exceptions. Either the edge to be removed has both
endpoints contained in one cluster C, or it has one endpoint in a cluster C ′ and the
other in a cluster C ′′. If the edge to be removed has both endpoints contained in
one cluster C, then split C into two clusters, calling them C ′ and C ′′, so that the
edge has one endpoint in C ′ and the other in C ′′. Deleting the edge now causes the
tree degree of C ′ and C ′′ to change. We need to check if either cluster needs to be
combined with other clusters. We discuss how to handle C ′, with handling C ′′ being
completely analogous. Initialize vertex cluster A to be C ′. Repeat the following until
no change occurs to A on an iteration. If A has tree degree 1, then check to see if
the combined size of it and its neighboring cluster is no greater than z and, if so,
combine the neighboring cluster into A. If A has tree degree 2, check to see if there is
a neighboring cluster of tree degree no greater than 2 such that the combined size of A
and that neighboring cluster is no greater than z and, if so, combine that neighboring
cluster into A. This completes the description of how to handle C ′.

Next consider the inverse operation of combining two vertex disjoint trees T1 and

AMBIVALENT DATA STRUCTURES 489

T2 into one tree T by adding an edge with one endpoint in each of the trees. (Here we
assume that the edge was already in the graph, but just not in T .) Given restricted
partitions of order z with respect to T1 and T2 and given an edge to be inserted
that links the trees, we discuss how to efficiently generate a restricted partition with
respect to the resulting tree T . Tree T will inherit the clusters of the trees T1 and
T2, with the following exceptions. If the addition of the edge causes the tree degree
of a cluster containing more than 1 vertex to increase from 2 to 3, we must do the
following. Consider the three tree edges with exactly one endpoint in the cluster, and
let w, w′, and w′′ denote these endpoints, which are boundary vertices. (Note that
two or three of w, w′, and w′′ may be identical if two or all three of the edges share
an endpoint.) Identify the common vertex x on paths in the tree between w and w′,
between w′ and w′′, and between w′′ and w. Split the cluster by making the vertex
x into a cluster by itself and taking the remaining parts of the cluster as clusters.
For each cluster so formed, check if another cluster that is adjacent to it is of tree
degree at most 2 and if these two clusters together have at most z vertices. If so,
combine these clusters. This completes the description of how to handle a cluster
when its tree degree increases to 3. Note that these operations can be performed in
time proportional to the size of the cluster. If the addition of the edge causes the tree
degree of a cluster to increase from 0 to 1 or from 1 to 2, we must do the following.
Check to see if the cluster can be combined with the cluster newly adjacent to it. If
so, combine these clusters. This completes the description of how to handle a cluster
when its tree degree increases from 0 to 1 or from 1 to 2.

Lemma 2.1. At most a constant number of clusters are deleted or created when
an edge insertion or deletion is performed with respect to restricted partitions of z.
The time to perform the changes is O(z).

Proof. We first observe that only a constant number of clusters are deleted or
created when an edge insertion is performed. In the case that a cluster has its tree
degree increase from 2 to 3, each part of the split cluster except the part containing
only vertex x has tree degree 2. It can be combined with a neighbor B1 of tree degree
2 but not also combined with the other neighbor B2 of B1 since otherwise B1 and B2

would have already been combined. In the case of adding an edge that causes the tree
degree of a cluster to increase from 0 to 1 or from 1 to 2, a similar argument ensures
that only the two clusters containing the endpoints of the edge need to be considered
for merging.

We next consider how many clusters are deleted or created when an edge deletion
is performed. We perform a case analysis below for how C ′ can be combined with other
clusters. The analysis for C ′′ is essentially the same. We consider size constraints only
when they definitely rule out a case. Subcases are meant to inherit the conditions
satisfied by parent cases. Case 1: (C ′ is of tree degree 1.) Then C ′ can be combined
with a neighboring cluster B1 of tree degree 1, 2, or 3. Let the resulting cluster be B2.
Case 1.1: (B1 is of tree degree 1.) Then B2 has tree degree 0 and we are done. Case
1.2: (B1 is of tree degree 2.) Then B2 is of tree degree 1. Let the other neighbor of B1

be B3. Case 1.2.1: (B3 is of tree degree 1 or 2.) Then B2 cannot be combined with
B3 since otherwise B1 and B3 would have already been combined. Case 1.2.2: (B3 is
of tree degree 3.) Then B2 and B3 may be combined, and the resulting cluster B4 is
of tree degree 2. Let the neighbors of B3, besides B1, be B5 and B6. Case 1.2.2.1:
(B5 is of tree degree 1.) Then B5 cannot be combined with B4 since it would already
have been combined with B3. Case 1.2.2.2: (B5 is of tree degree 3.) Then B5 cannot
be combined with B4 because the resulting cluster would have tree degree 3. Case

490 GREG N. FREDERICKSON

1.2.2.3: (B5 is of tree degree 2.) Then B5 can be combined with B4, but the resulting
cluster B7 cannot be combined with the other neighbor B8 of B5 since otherwise B5

would already have been combined with B8. A similar discussion holds for cluster
B6, allowing that B7 could be used in place of B4 in the arguments. Case 1.3: (B1

is of tree degree 3.) The argument mimics that in Case 1.2.2 and its subcases, but
with B1 in the role of B3 and C ′ in the role of B2. Case 2: (C ′ is of tree degree 2.)
The argument mimics those in Cases 1.2.2.1, 1.2.2.2, and 1.2.2.3, with C ′ in the role
of B4 and with B5 and B6 being the neighbors of C ′. This completes an analysis of
the cases. It is clear that the above operation will examine just a constant number of
clusters.

We next consider the time to perform an edge insertion. In the case that a cluster
has its tree degree increase from 2 to 3, identifying w, w′, and w′′ takes constant
time, and finding x takes time proportional to the size of the cluster, which is O(z).
Splitting the cluster will take O(z) time. Checking neighboring clusters and merging
as necessary will take constant time. In the case that a cluster has its tree degree
increase to 1 or 2, the time to perform checking and merging is constant.

We next consider the time to perform an edge deletion. If the edge to be deleted
has both endpoints contained in one cluster, then the time to split the list of vertices of
the cluster into two lists is O(z). All checking and combining will then take constant
time.

We next define our restricted multilevel partition. A restricted multilevel partition
is a set of partitions of V that satisfy the following:

1. For each level l = 0, 1, . . . , q, the vertex clusters at level l form a partition of
V .

2. The clusters at level 0 form a restricted partition of order z.
3. The clusters at any level l > 0 constitute a restricted partition of order 2

with respect to the tree resulting from viewing each cluster at level l−1 as a
vertex.

4. There is precisely one vertex cluster at level q, which contains all vertices.

As an example, consider the spanning tree from the graph in Fig. 1. A restricted
multilevel partition for this tree is shown in Fig. 3. Here we assume that z = 1 so that
each basic vertex cluster contains precisely one vertex. The second level corresponds
to the restricted partition in Fig. 2. There are six levels in this multilevel partition.

We note that the restricted multilevel partition is somewhat similar to a structure
that may be inferred from applying the rake-and-compress paradigm to a rooted
binary tree [MR], [CV], [ADKP].

A vertex cluster at level 0 of a restricted multilevel partition is called a basic vertex
cluster. Since any basic vertex cluster of tree degree 3 consists of a single vertex and
any cluster resulting from the union of two clusters will have tree degree at most 2,
any nonbasic cluster of tree degree 3 will also consist of a single vertex. All three of
its incident edges will be tree edges. Note that there are no nontree edges with an
endpoint in a cluster of tree degree 3.

We next show that the restricted multilevel partition has other nice properties.
Consider any level l > 0 of a restricted multilevel partition. Call any vertex cluster of
level l−1 matched if it is unioned with another another cluster to give a vertex cluster
at level l. Call all other vertex clusters at level l−1 unmatched. Since a cluster of
tree degree 1 can be matched with a cluster of tree degree 1, 2, or 3, the only reason
that a cluster of tree degree 1 is not matched is that its adjacent cluster is already
matched with some other cluster. Since a cluster of tree degree 2 can be matched

AMBIVALENT DATA STRUCTURES 491

Fig. 3. A restricted multilevel partition of the vertices of the spanning tree in Fig. 1.

with an adjacent cluster of tree degree 2, the only reason that a cluster of tree degree
2 is not matched with an adjacent cluster of tree degree 2 is that that adjacent cluster
is already matched with another cluster.

Lemma 2.2. For any level l > 0 of a restricted multilevel partition, the number
of matched vertex clusters at level l−1 is at least 1/3 of the total number of vertex
clusters at level l−1.

Proof. Consider any level l > 0 of a restricted multilevel partition. Contract the
graph by contracting all tree edges both of whose endpoints are in the same cluster at
level l−1. Let each vertex resulting from a matched cluster by such a contraction be
called a matched vertex. Let the tree degree of a resulting vertex be the tree degree of
the corresponding cluster. If all vertices are matched, then clearly the lemma follows.
Otherwise, root the tree at an unmatched vertex of largest tree degree. We shall give
6 credits to each pair of vertices that have been matched together, and we will show
that these credits can be spread around so that, in the end, each vertex will receive
at least 1 credit. The lemma will then follow.

Consider any pair of vertices that have been matched together, and assume that
the pair has been allocated 6 credits. Since neither is the root, and since the num-
ber of unmatched neighbors of the pair is at most 2, the higher of the two has a
parent, which may be unmatched, and the second neighbor (if any) is a child, which
may be unmatched. If the higher vertex of the pair has an unmatched parent, let
the matched pair send 3 credits to this parent. If there is a second neighbor, let

492 GREG N. FREDERICKSON

the matched pair send 1 credit to this child. Let each matched vertex in the pair
retain at least 1 credit. Call any unmatched vertex of tree degree 2 that is the root
or has an unmatched parent of tree degree 3 sheltered. From the properties of un-
matched clusters discussed prior to the statement of this lemma, every unmatched
vertex of tree degree 1 and every unsheltered unmatched vertex of tree degree 2 must
have a neighbor that is matched. In particular, the parent of every such vertex will
be matched so that the vertex will receive from its parent 1 credit, which it will re-
tain.

The above credit-sharing rule guarantees that if an unmatched vertex has not
received a credit from either its children or its parent, then it must be either a vertex
of tree degree 3 or a sheltered vertex. We add the following two rules to handle
these cases. For any sheltered nonroot vertex, if it receives 3 credits from its child, it
should pass 2 credits to its parent and retain the other 1. For any unmatched nonroot
vertex of tree degree 3, if it receives at least 2 credits from each of its two children,
it should pass 3 credits to its parent and retain the other at least 1 credit. By a
simple induction, it can be shown that every sheltered nonroot vertex will receive 3
credits from its child and retain 1 of them, and every unmatched nonroot vertex of
tree degree 3 will receive at least 4 credits from its children and retain at least 1 of
them. It follows that at the end of all credit passing, each vertex will retain (at least) 1
credit. A root of tree degree 3 will receive at least 2 credits from each of its 3 children,
and a root of tree degree 2 will receive 3 credits from each of its 2 children. Since an
unmatched vertex of tree degree 1 must have a matched neighbor, an unmatched tree
root will receive 3 credits from its child.

We now show that the number of clusters in a restricted partition of order z is
Θ(m/z). Consider a restricted multilevel partition of order z. Level 0 of the multilevel
partition is a restricted partition of order z. Consider the vertex clusters at level 0
that are matched together to form vertex clusters at level 1. The total number of
vertices in a pair of matched vertex clusters must be greater than z since otherwise
the pair could have been merged in the partition at level 0. Thus there are fewer than
m/z such pairs of matched vertex clusters. By Lemma 2.2, the total number of these
pairs is at least 1/3 of the total number of vertex clusters at level 0. Thus there are
fewer than 3m/z clusters at level 0, i.e., in the restricted partition.

There is an infinite family of examples that match the bound of Lemma 2.2 in the
following way. Let nl−1 be the number of clusters at level l − 1. For nl−1 ≥ 13 and
nl−1 +5 a multiple of 6, the number of matched vertex clusters is at least (nl−1 +5)/3.
It has not escaped our attention that we could match more vertex clusters if rule 3 in
the restricted multilevel partition allowed unions whose resulting vertex cluster had
tree degree 3. However, it appears difficult and inefficient to update the corresponding
topology tree structures when changes occur. (Indeed, the difficulty encountered when
trying to make things work with tree degree 3 rather than tree degree 2 in rule 3 was
the reason that the multilevel partition was defined as it was in [F1].)

Theorem 2.3. The number of levels in a restricted multilevel partition is Θ(logn).
Proof. The number of vertex clusters at level 0 is O(n). By Lemma 2.2, for any

level l > 0, the number of matched vertex clusters at level l−1 is at least 1/3 of
the total number of vertex clusters at level l−1. Since each pair of matched vertex
clusters at level l−1 that are paired together are replaced by the union at level l, the
number of vertex clusters at level l is at most 5/6 the number of vertex clusters at
level l−1. Since the number of vertex clusters at level l is at least 1/2 the number of
vertex clusters at level l−1, it follows that the number of levels is Θ(logn).

AMBIVALENT DATA STRUCTURES 493

3. Data structures for maintaining spanning trees.
In this section, we define basic data structures similar to but simpler than those

in [F1]. Following [F1], we define a “topology tree” based on the partition and show
how to update the topology tree when an edge not in the spanning tree is swapped for
an edge in the spanning tree. We then define a “2-dimensional topology tree,” again
following [F1]. We show how to make 2-dimensional topology trees fully persistent.
Finally, we show how to update a 2-dimensional topology tree when edges and vertices
are inserted into or deleted from the underlying graph.

As in [F1],we define data structures that describe our partitions. Given a re-
stricted multilevel partition for a spanning tree T , a topology tree for T is a tree in
which each nonleaf node has at most two children and all leaves are at the same depth,
such that:

1. A node at level l in the topology tree represents a vertex cluster at level l in
the restricted multilevel partition.

2. A node at level l > 0 has children that represent the vertex clusters at level
l−1 whose union is the vertex cluster it represents.

We label a node in the topology tree by the indexed name of the vertex cluster that
the node represents.

A topology tree for the restricted multilevel partition of Fig. 3 is given in Fig. 4.
Each node in the topology tree is labeled with the index of the vertex cluster that
it represents. The children and parent pointers are represented by the straight, bold
edges. The adjacency between clusters is represented by the thin, curved edges.

Fig. 4. The topology tree corresponding to the restricted multilevel partition in Fig. 3.

A topology tree based on a restricted multilevel partition has the same nice prop-
erties as a topology tree based on the multilevel partition of [F1]. In particular, it can
be modified efficiently to show the result of inserting or deleting an edge or performing
a swap. A swap (e, f) in a spanning tree T replaces a tree edge e by a nontree edge

494 GREG N. FREDERICKSON

f , yielding another spanning tree. We next discuss how to modify the topology tree
when a swap is performed. First, reform the basic clusters to reflect the insertion
and deletion of edges, as discussed previously. The number of basic vertex clusters
that are changed, created, or deleted will be at most some constant. Then starting
with the lists of basic vertex clusters that are changed, created, or deleted, we rebuild
portions of the topology tree from the bottom up.

We describe this rebuilding carefully. We shall use three lists of nodes that need
to be examined: Let LD be a list of nodes that represent clusters that should be
deleted, LC a list of nodes that have parents and that represent clusters that have
been changed, and LA a list of nodes that represent clusters that have no parent,
either because they are new or because their parent is on a list of nodes to be deleted.
Note that we view a cluster as changing not only if its set of vertices changes, but also
if its set of tree edges to other clusters changes. (Here we assume that a tree edge to
another cluster has not changed if it is the same tree edge as before the swap, i.e.,
that it has the same vertices as endpoints in the underlying graph even though one
of the endpoints may be in a different cluster than before.)

We initialize LD, LC , and LA as follows. Insert into LD each node representing
a basic cluster that has been split or combined to form new basic clusters, and insert
into LA each node representing a new basic cluster. Let the adjacency information
of neighboring nodes refer to the nodes inserted into LA rather than LD, and let the
nodes on LD retain their parent information but have their adjacency information
set to null. For each node x representing a basic cluster whose set of vertices has
not changed but whose set of edges incident on it has changed, update its adjacency
information and insert it into LC .

While we have not reached the root of the resulting topology tree, we will recluster
the clusters represented by the nodes on these lists and reset the lists to contain the
nodes representing the corresponding parents. We perform this activity in such a
way that at any point in time, the total size of these lists does not exceed a fixed
constant. At each level in the topology tree, we do the following. Assume that the
adjacency information of the nodes on LD, LC , and LA reflects the result of the swap
but that the adjacency information of the parents of these nodes does not yet. We
shall create lists L′D, L′C , and L′A to hold the corresponding nodes at the next higher
level. Initialize lists L′D, L′C , and L′A to be empty.

First, we handle list LD. For every node x in LD, remove x from LD (and return
it to the available storage pool), remove x as a child from its parent y (if any), and
if y then has no children, insert y into L′D. If y had another child x′ and this child
is not already on LC or LD, then insert x′ into LC . Next, we scan LC for nodes
that have siblings. Let x be such a node on LC , with parent y and sibling x′. If the
cluster corresponding to node y remains a valid cluster, then remove x from LC (and
x′ too if it resides on LC) and insert y into L′C . By a cluster remaining valid, we
mean that there is actually an edge between the cluster representing x and the one
representing x′, and the tree degree of the cluster for y does not now exceed 2. If the
cluster corresponding to y does not remain a valid cluster, then remove x and x′ as
children of y, remove x from LC (and also x′ if it resides on it), insert x′ and x into
LA, and insert y into L′D.

Finally, we handle nodes on LA and the remaining nodes on LC . Let x be such
a node. Remove x from the appropriate list. We consider three cases. First, suppose
that node x represents a cluster of tree degree 3. If x is adjacent to a node x′

representing a cluster of tree degree 1, then do the following. Cluster x and x′ together,

AMBIVALENT DATA STRUCTURES 495

removing one or both from lists LA and LC as necessary. If neither had a parent,
then create a parent and insert it into L′A. If both had a parent, then use the parent
y of x, inserting y into L′C and inserting the old parent y′ of x′ into L′D. If just one of
x and x′ had a parent, use it and insert it into L′C . This completes the description of
how to handle x when it is adjacent to such a node x′. If x is not adjacent to such a
node x′, then do the following. Cluster node x by itself. If x has a parent, then insert
this parent onto L′C . If x has no parent, then create a parent and insert it onto L′A.
This completes the description of the first case.

The second and third cases are similar. Second, suppose node x represents a
cluster of tree degree 2. If x is adjacent to a node x′ representing a cluster of tree
degree 1 or 2 such that or x′ has no sibling (either because it is an only child or because
it has no parent), then cluster x and x′ together as discussed in the case above in
which x represents a cluster of tree degree 3. If node x is not adjacent to such a node
x′, then cluster x with itself and handle the parent (or lack of one) as discussed in the
case above for tree degree 3. Third, suppose node x represents a cluster of tree degree
1. If x is adjacent to a node x′ such that x′ has no sibling (either because it is an only
child or because it has no parent), then cluster x and x′ together as discussed in the
case above for tree degree 3. Note that if x′ represents a cluster of tree degree 1, the
resulting cluster must have tree degree 0 so that the corresponding node will be the
root of the topology tree. If node x is not adjacent to such a node x′, then cluster x
with itself and handle the parent (or lack of one) as discussed in the case above for
tree degree 3. Fourth, if x represents a node of tree degree 0, then it is the root of a
topology tree, and a pointer to it should be saved. This completes the discussion of
how to handle a node x on LA or on LC .

When all nodes have been removed from LD, LC , and LA, determine and adjust
the adjacency information for all nodes on L′D, L′C , and L′A and then reset LD to
be L′D, LC to be L′C , and LA to be L′A. This completes the description of how to
handle the lists LD, LC , and LA. When LC and LA together contain only one node,
then this node corresponds to the root of the topology tree. Any additional nodes in
LD should be removed. (These nodes and their ancestors should be returned to the
available storage pool.) This completes the description of the algorithm to handle a
swap, which we call algorithm basic swap.

Lemma 3.1. Consider a topology tree based on a restricted multilevel partition.
Algorithm basic swap performs a swap in O(z + logn) time.

Proof. We first consider the correctness of basic swap. The algorithm processes
the topology tree level by level in rounds. Before each round, we claim that the only
nodes that need to be considered are on LD, LA, and LC and that the adjacency
information is valid for the nodes on the level being processed. Furthermore, we
claim that for any level after the first that is being processed, clusters for all nodes
on that level except for the ones on LD correspond to a valid restricted partition of
the clusters on the next lower level. We prove the above claims by induction on the
number of rounds, with the final result being that the structure created is a valid
topology tree.

For the basis, note that before the first round, the lists LD, LA, and LC contain
precisely those nodes whose corresponding clusters are undergoing some change. Also,
the adjacency information for the nodes corresponding to basic clusters has been
changed to accurately reflect the changes in basic clusters caused by replacing one
edge by another. For the induction step, we consider the point in the execution of the
algorithm just before the rth round, r > 1. We assume that the claims are true at the

496 GREG N. FREDERICKSON

point in the execution of the algorithm just before the (r−1)st round. The algorithm
deletes each node x from LD and adjusts the information at its parent correctly. The
algorithm also examines nodes on LC that have siblings and splits any node from
its sibling if they do not now form a valid cluster. Finally, any nodes that are only
children and can be clustered together are clustered together. Any resulting node is
put on L′A if it is a new node and on L′C if it represents a changed cluster. Thus at
this point, the nodes at the next level minus those nodes on L′D represent the clusters
of a valid restricted partition. Nodes on L′D are those nodes at the next level that
should be deleted. Thus the only nodes that need to be considered at the next level
are on L′D, L′A, and L′C . Just before the end of the round, the adjacency information
is adjusted for all nodes on L′D, L′A, and L′C , and L′D, L′A, and L′C are reassigned to
be LD, LA, and LC , respectively. Thus at the beginning of the rth round, all three
claims hold.

We next consider the time complexity of basic swap. Since a constant number of
basic vertex clusters are changed, deleted, and created and each basic cluster that is
altered in some way can be handled in O(z) time, the total cost of handling the basic
vertex clusters is O(z). The time to perform this algorithm exclusive of changing the
basic clusters will be proportional to the number of nodes in the topology tree that
are deleted, examined, and created. We analyze how many nodes can be on the lists
LA, LC , and LD at the beginning of any round, and we show this to be bounded by
a constant. For a link, there are no more than some constant number of nodes on
LA and LC before the first round. A simple case analysis indicates that this number
of nodes can be at most eight before the first round begins. This is realized when
two vertices in clusters previously of tree degree 2 are linked together. Each of these
may be split into at most four clusters. For a cut, there are also no more than some
constant number of nodes on LA and LC before the first round.

Our analysis depends on the way in which the nodes on LA and LC relate to
each other within the structure of the tree induced on the level corresponding to a
round. If the operation is link, then the nodes on lists LA and LC form a subtree of
the resulting tree induced on that level. If the operation is cut, then the nodes on lists
LA and LC form a subtree of each of the two resulting trees induced on that level.

We first analyze the link operation. Before the first round, the subtree induced
on nodes in LA and LC consists of no more than eight nodes and seven edges. Let a
border edge be an edge in the tree but not in the subtree that is incident to a node of
the subtree. We claim that at any point while the topology tree is being rebuilt, there
are at most two border edges on each side of the linking edge in the tree. This is true
initially since each of the linked clusters previously had tree degree at most 2. During
a round, the subtree can be extended to include a larger portion of the tree in two
ways. First, a cluster represented by node y can be recognized to be invalid, where
the constituent clusters are represented by x and x′, x is on LC , and x′ is not on any
list. If the cluster is invalid because the tree degree would now be 3, then either of
two cases holds. If x now has tree degree 3 and x′ has tree degree 2, then including
x′ in the subtree does not increase the number of border edges. If x now has tree
degree 2 and x′ has tree degree 3, then including x′ in the subtree increases by one
the number of border edges. But in this case x must have previously had tree degree
1. It follows that the linking edge is incident on a vertex in the cluster represented by
x and that this node was the only one in the subtree on its side of the linking edge.
Thus there was just one border edge (the one incident on x) on its side of the linking
edge, and we are now increasing the number to two.

AMBIVALENT DATA STRUCTURES 497

If the cluster is invalid because the two constituent clusters are not adjacent, then
before the previous round, the cluster corresponding to node x included a cluster
adjacent to a constituent cluster of x′. If x′ has tree degree 2, then including x′ does
not increase the number of border edges. If x′ has tree degree 3, then including x′

increases the number of border edges by one. But in this case, the old version of x
previously had tree degree 1, and its cluster contained one endpoint of the linking
edge and thus was the only node in the subtree on one side of the linking edge. So
prior to including x′ in the subtree, the portion of the subtree on that side of the
linking edge had just one border edge. Thus that number is now increased to two.

The second way to extend the subtree is to union a cluster represented by a node
x on LA with a cluster represented by a node x′ not on LA or LC . If x′ has tree
degree 2, then including x′ does not increase the number of border edges. If x′ has
tree degree 3, then x must have tree degree 1. This means that the subtree consists
only of x. On all subsequent rounds, the subtree will consist of only a single node,
and the number of edges incident on it will be at most two. This completes our case
analysis. In all cases, the number of border edges will never exceed four.

We next consider how many nodes will be in the subtree at the end of a round,
when there are s nodes in the subtree at the beginning of the round. The only clusters
that can be determined to be invalid must contain the endpoints of the original link
operation. Thus at most two clusters will be determined to be invalid, yielding two
more nodes for the subtree. Other clusters may enter the subtree by unioning a cluster
in the subtree with one not in the subtree, but this results in no net gain in the number
of nodes. In the worst case, each node in the subtree that has a border edge incident
on it will not have its cluster unioned with one whose node is in the subtree. Of the
remaining s + 2 − 4 nodes, Lemma 2.2 establishes that at most 5/6 of that number,
or 5(s− 2)/6, will remain. An upper bound on the largest value possible for s is thus
determined by the inequality s ≤ 5(s − 2)/6 + 4. This implies that the total size of
LA and LC will never exceed 14. (A more careful analysis of the proof of Lemma 2.2,
considering the constant additive term, will reduce the bound substantially.)

To bound the number of nodes in LD, consider the original two topology trees
representing the two trees linked together. For each round, we consider the minimal
subtrees of the induced trees that connect nodes on LD. These subtrees are of the
same form as the subtree induced on nodes of LA and LC . By similar arguments,
it can be shown that the subtrees, and hence the length of LD, are bounded by a
constant. Thus the total size of lists LA, LC , and LD is bounded by a constant on
any round. Since the amount of work per list entry is constant, and by Theorem 2.3
the number of rounds is O(logn), the total time for a link is O(logn).

The analysis for a cut is similar. In each of the two subtrees, there will be at
most two border edges. The subtrees can be extended in a fashion similar to that for
a link. The analysis is essentially the same, yielding equivalent bounds for the lengths
of lists LA, LC , and LD. Thus the total time for a cut is also O(logn).

We trace through an example to illustrate algorithm basic swap. Consider the
graph in Fig. 2 and the spanning tree and multilevel partition in Fig. 3. We assume
that each node in Fig. 2 represents a basic cluster. Suppose that the edge between
V7 and V13 is swapped in to replace the edge between V4 and V10. For simplicity, we
shall assume that no basic cluster is changed as far as the set of vertices it contains.
(This would be true if clusters V3, V4, V9, and V11 have size exactly z, so V4 or V10

cannot be combined with their neighboring clusters, and the size of V7 plus the size
of V13 is greater than z and the size of V6 plus the size of V7 is greater than z, so that

498 GREG N. FREDERICKSON

neither V7 nor V13 can be combined with a neighboring cluster.) For convenience, we
use as the name of the node the index of its cluster. Initially, LD and LA are empty,
and LC comprises 4, 10, 7, and 13. When LC is examined on the first phase, node 13
and its sibling 12 no longer form a valid cluster. Thus node 12 is placed on LC and
node 23 is placed on L′D. We then proceed to handling the remainder of LC and LA.
Node 4 cannot be clustered with a neighbor, so its parent 17 is placed on L′C . Node 10
is clustered with 11, and the resulting parent 21 is placed on L′C , while the previous
parent 22 of 11 is placed on L′D. Nodes 7 and 13 get clustered, and the parent 19 is
placed on L′C . Node 12 can be clustered with 14, putting resulting parent 24 on L′C .
At this point, LD, LA, and LC are empty, and the next phase begins with setting LD,
LA, and LC to L′D, L′A, and L′C .

When LD is handled on the second phase, nodes 22 and 23 are deleted. Since
node 22 is an only child, its parent 29 is put on L′D. Node 24, the sibling of 23, is
already on LC . Node 28, the parent of 21, remains a valid cluster and is put on L′C .
Similarly, node 27, the parent of 19, remains a valid cluster and is put on L′C . We
then proceed to handling the remainder of LC and LA. Node 17 cannot be clustered
with a neighbor, so its parent 26 is placed on L′C . Node 24 cannot be clustered with
a neighbor, so its parent 30 is placed on L′C .

At this point, the second phase ends, and the third phase begins with recopying
the lists. Node 29 is removed from LD, and its sibling 28 is already on LC . Node 32,
the parent of nodes 26 and 27, remains a valid cluster and is put on L′C . We then
proceed to handling the remainder of LC and LA. Node 28 is clustered with 30, and
the resulting parent 33 is placed on L′C , while the previous parent 34 of 30 is placed
on L′D. At this point, the third phase ends, and the fourth phase begins. Node 34 is
removed from LD, and its sibling 33 is already on LC . Node 32 on LC has a sibling,
and its parent cluster 35 is still valid, so that 35 is placed on L′C . Node 33 cannot be
clustered with a neighbor, so its parent 36 is placed on L′C . At this point, the fourth
phase ends, and the fifth phase begins. List LD is empty. Nodes 35 and 36 each have
siblings (each other), and their parent 37 represents a valid cluster, so 37 is placed on
L′C . In the sixth phase, 37 is identified as having tree degree 0, so that it is the root of
the new topology tree. The algorithm then terminates. The resulting topology tree,
with the old vertices crossed out and the old edges dashed, is shown in Fig. 5. To
minimize the clutter in Fig. 5, the edges representing adjacency between clusters are
not shown.

A 2-dimensional topology tree for a given topology tree is a tree in which for every
ordered pair of nodes labeled Vj and Vr at the same level in the topology tree, there
is a node labeled Vj × Vr, and there is a child of node Vj × Vr, labeled Vj′ × Vr′ , for
each pair consisting of a child Vj′ of Vj and a child Vr′ of Vr in the topology tree.

A portion of the 2-dimensional topology tree for the topology tree of Fig. 4 is
given in Fig. 6. Specifically, all nodes and children of nodes on the path from the
root to the leaf 5× 14 are shown. For any node that is shown in the figure but whose
children are not shown, there is an edge for each child coming from the bottom of
that node.

For the size bound z on the number of vertices in a basic cluster, we choose
z = dm1/2e. When one modifies a topology tree as the result of performing a swap,
the 2-dimensional topology tree must be modified. This modification is essentially
the same as that discussed in [F1].

Lemma 3.2. Consider a 2-dimensional topology tree for a topology tree that is
based on a restricted multilevel partition. The space is O(m), the time to set up the

AMBIVALENT DATA STRUCTURES 499

Fig. 5. The changes to the topology tree in Fig. 4 after edge (7, 13) replaces edge (4, 10) in the
spanning tree.

2-dimensional topology tree given its topology tree is O(m), and the time required to
modify the 2-dimensional topology tree to show the result of performing a swap is
O(m1/2).

Proof. The space and times are derived in a fashion similar to that in [F1].

In section 7, we use a version of 2-dimensional topology trees that is fully per-
sistent [DSST]. Thus when we perform a swap, we want to retain the old version
of the 2-dimensional topology tree before the swap and also create a version of the
2-dimensional topology tree after the swap. This can be done efficiently by creating
new nodes when they are needed and by allowing a new node in the 2-dimensional
topology tree to have one or more children in the old 2-dimensional topology tree.
Thus certain subtrees of the old 2-dimensional topology tree are shared by both old
and new trees by virtue of having two pointers pointing at the root of any such sub-
tree. (After creating a number of versions via swaps, a node could have any number of
pointers less than or equal to the number of versions pointing to it.) To make such a
scheme work, the version of 2-dimensional topology tree that is made fully persistent
is not allowed to have any parent pointers in the nodes.

The discussion in [F1] regarding modifying a 2-dimensional topology tree implic-
itly supposes that there are parent pointers in the tree. We thus discuss how to
perform a swap when the 2-dimensional topology tree does not have these pointers.
We maintain a copy of the topology tree for each version of the 2-dimensional topology
tree, and since the nodes of these topology trees will not be shared, we allow the nodes
of the topology tree to have parent pointers. When we want to perform a swap (e, f)
in tree T with topology tree T1D(T) and a pointer to the 2-dimensional topology tree
T2D(T), we do the following. First, we make a copy of T1D(T) and run basic swap

500 GREG N. FREDERICKSON

Fig. 6. A portion of the 2-dimensional topology tree for the topology tree shown in Fig. 4.

on this copy, generating T1D(T ′). We actually use a modified version of basic swap
that marks each node in T1D(T) that has been deleted or whose corresponding node
in T1D(T ′) represents a cluster that has changed. These nodes are all the nodes that
have been inserted into LD, L′D, or L′C .

For example, consider the graph and spanning tree in Fig. 1, whose topology
tree is shown in Fig. 4, with edge (7, 13) swapped in to replace edge (4, 10), as
shown shown in Fig. 5. The vertices in the topology tree in Fig. 4 that should
be marked are 4, 7, 10, 13, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, and 36.
The subtrees shared by both the old 2-dimensional topology tree, as shown in Fig. 6,
and the new 2-dimensional topology tree are those rooted at the nodes V31 × V31,
V18 × V18, V20 × V20, V15 × V18, V18 × V15, V15 × V20, V20 × V15, V16 × V18, V18 × V16,
V16 × V20, V20 × V16, V18 × V20, and V20 × V18 and leaves Vj × Vr and Vr × Vj , for
j ∈ {1, 2, 3, 5, 6, 8, 9} and r ∈ {11, 12, 14} or for j, r ∈ {11, 12, 14}.

Having marked those nodes in T1D(T) whose corresponding nodes in the copy are
involved in the restructuring that generates T1D(T ′), we then set temporary parent
pointers in a portion of the shared data structure that represents T2D(T). The tem-
porary pointers, as well as the marks in the nodes of T1D(T), will be reset to a null
value once T2D(T ′) has been generated. The temporary pointers will be set for any
node Vj×Vr such that either Vj or Vr or both are marked in T1D(T). The procedure
set tpp(p1, p2) will do this, where p1 points to a marked node in T1D(T) representing
some cluster Vj and p2 points to a node in T2D(T) representing an ordered pair of
clusters Vj × Vr or Vr × Vj .

proc set tpp(p1, p2)
if p1 is a leaf
then Save (p1, p2) on a list.
else

AMBIVALENT DATA STRUCTURES 501

if p1 has just one child p1c
then

if p1c is marked
then

for each child p2c of p2 do
temp par(p2c)← p2
Call set tpp(p1c, p2c).

endfor
endif

else
if the left child p1L of p1 is marked
then

for each child p2L of p2 that corresponds to Vj × Vr
where Vj is a left child do

temp par(p2L)← p2
Call set tpp(p1L, p2L).

endfor
endif
if the right child p1R of p1 is marked
then

for each child p2R of p2 that corresponds to Vj × Vr
where Vj is a right child do

temp par(p2R)← p2
Call set tpp(p1R, p2R).

endfor
endif

endif
endif

Consider the list of pairs (p1, p2) corresponding to certain leaves that is created
by procedure set tpp. This list is then used to initialize a simultaneous bottom-
up traversal of the portion of T1D(T) whose nodes are marked and the portion of
T2D(T) whose nodes have temporary parent pointers. During the traversal, actions
are performed in T2D(T) that are analogous to those of basic swap on T1D(T), except
that no nodes in T2D(T) are deleted. Instead, new nodes are created and the child
pointers of these nodes are set to both new nodes and nodes in T2D(T). The new
nodes and their pointers are set up to be consistent with the structure of T1D(T ′). A
pointer to the root of the resulting 2-dimensional topology tree T2D(T ′) is returned.
Let the above approach be called algorithm persist swap.

Theorem 3.3. Algorithm persist swap maintains a fully persistent version of
2-dimensional topology trees, using O(m+ km1/2) space to store k versions and gen-
erating a new version reflecting the result of a swap in O(m1/2) time.

Proof. We first consider the correctness of algorithm persist swap. Algorithm
basic swap correctly marks each node in T1D(T) that has been deleted or whose
corresponding node in T1D(T ′) represents a cluster that has changed. Next, a proof
by induction can be used to establish that if a node in T1D(T) is marked, then all
ancestors of that node are marked. Now any subtree rooted at a node Vj × Vr in
T2D(T) such that Vj and Vr are not marked will remain the same in T2D(T ′). Thus
the only nodes that may get deleted or changed in modifying T2D(T) to get T2D(T ′)

502 GREG N. FREDERICKSON

are nodes Vj×Vr such that at least one of Vj and Vr are marked. A proof by induction
establishes that procedure set tpp correctly sets temporary parent pointers for all such
nodes. A bottom-up procedure for deleting and changing all such nodes then can then
simulate the effect of basic swap in T2T by following the temporary parent pointers.

We next consider the resource usage of persist swap. Given the choice of z, there
are Θ(m1/2) basic clusters, and each is of size O(m1/2). It follows from Lemma 2.2
that there are Θ(m1/2) vertices in the topology tree T1D(T). Thus a copy can be
made in O(m1/2) time. By Lemma 3.1 the modified version of basic swap will take
O(m1/2) time. By Lemma 3.2, the time used in modifying the 2-dimensional topology
tree T2D(T) is O(m1/2), and this is a bound also on the number of nodes examined.
The time of set tpp is proportional to the number of nodes examined, so that this
time is also O(m1/2). It follows that the total time to perform a swap is O(m1/2).
Since the number of new nodes is bounded by the time, each of k − 1 versions after
the first will use O(m1/2) additional space.

In section 9, we consider a problem in which the underlying graph can change by
inserting or deleting edges or vertices. Inserting edges into or deleting edges from the
original graph can be handled similarly to that discussed at the beginning of section 8
of [F1]. We supply some additional explanation since the discussion in [F1] is brief.
In particular, we discuss what happens when the insertion of an edge increases the
degree of a vertex above 3 or decreases the degree of a vertex that is above 3. In the
either case, the transformation that replaces a vertex by a ring of vertices of degree 3
must be modified. For simplicity of discussion, we assume that every vertex of degree
at least 2 is converted into a ring of degree-3 vertices. In the case of edge insertion,
we define an inflate operation as follows. For each endpoint v of the inserted edge,
do the following. If the degree of v was previously 1, then treat the existing v as
v0 and treat the endpoint of the new edge as v1. Generate the topology tree data
structures for the single edge. Then insert edges (v0, v1) and (v1, v0), rebuilding the
data structures in a fashion similar to that done in basic swap. If the previous degree
d of v was greater than 1, then treat the endpoint of the new edge as vd. Generate the
topology tree data structures for the single edge. If edge (v0, vd−1) is a tree edge, then
identify a nontree edge with which it can swap and perform the swap. Then delete
edge (v0, vd−1) and insert edges (vd−1, vd) and (vd, v0), rebuilding the data structures
in a fashion similar to that done in basic swap. Note that the vertices v0 through
vd−1 are identified by position rather than labeled as such. Identifying a nontree edge
which can participate in a swap can be accomplished by organizing the data structure
for maintaining a minimum spanning tree and changing the cost of the edge to be
deleted to ∞.

An operation deflate can be defined to perform essentially the reverse of inflate.
If an edge to be deleted is a tree edge, first determine if there is a nontree edge that
can be swapped for the edge to be deleted and, if so, then perform the swap.

It is not hard to cast the problems of edge and vertex insertion and deletion as
edge insertion or deletion. We allow a vertex to be inserted whenever it is an endpoint
of an edge that is being inserted and the other endpoint of the edge is already in the
graph. A vertex is deleted whenever it is an endpoint of degree 1 and its incident
edge is being deleted. (We thus force our graph to always be connected.)

Theorem 3.4. Consider a structure based on a restricted multilevel partition.
The time required to insert or delete an edge or vertex is O(m1/2), where m is the
current number of edges.

Proof. As in [F1], splitting and merging basic vertex sets will use O(z) time. The

AMBIVALENT DATA STRUCTURES 503

time to modify all affected nodes in the topology and 2-dimensional topology tree will
be O(m/z).

4. Adjacency in embedded planar graphs. For embedded planar graphs, we
characterize the adjacency relationships between clusters in the multilevel partition
presented in section 3. Nontree edges with precisely one endpoint in any given vertex
cluster will be grouped together and ordered according to the embedding. Our work
will follow the general idea in [F1] but will elaborate the details with more care than
in [F1].

We shall first choose a size for basic vertex clusters and then make a number
of simple observations about the consequences of this choice. We then define sets of
nontree edges, called “boundary sets,” with precisely one endpoint in any given vertex
cluster. We show how to generate a boundary set of a cluster that is the union of two
other clusters from their boundary sets. The situation is complicated by what we call
“separating edges,” which are not always easy to identify efficiently. Our approach
will first generate “pseudoboundary sets,” which can contain the separating edges,
and then later at opportune times it will remove the separating edges to give the
boundary sets.

First, we choose z = 1 in our restricted multilevel partition so that each basic
vertex cluster will be a vertex by itself. We carefully examine how to represent the
nontree edges. Recall that a cluster of tree degree 3 will consist of a single vertex and
will have no nontree edges incident on it. Next, consider a cluster Vj of tree degree
1. All nontree edges with exactly one endpoint in Vj can be ordered in clockwise
order around Vj , starting with the first edge in a clockwise direction from the tree
edge with one endpoint in Vj . This ordering will be entirely consistent with the
embedding. Next, consider a cluster Vj of tree degree 2. There will be a unique path
of tree edges between the two boundary vertices of Vj . We partition all nontree edges
with precisely one endpoint in Vj into two sets, depending on which “side” of the
path an edge is incident on. Each set can be ordered in a natural way corresponding
to the embedding and represented by a balanced tree. Call each such ordered set of
edges a boundary set. It is easy to identify the zero, one, or two boundary sets of a
basic cluster in constant time, given a list of edges incident on the single vertex in the
cluster, as well as an indication of which edges are tree edges.

Consider the embedded planar graph in Fig. 7. The spanning tree edges are in
bold, the nontree edges are dashed, and a multilevel partition is shown by the closed
curves. The vertex cluster {10, 11} has an associated path from vertex 10 to vertex
11. Cluster {10, 11} has edges (10, 9) and (11, 7) in the boundary set to the left of the
path and no edges in the boundary set to the right of the path. Cluster {4, 5, 6, 7} has
an associated path from vertex 4 to vertex 7. It has edge (5, 3) in one boundary set
and edge (7, 11) in the other boundary set. Note that edge (6, 4) has both endpoints
in this cluster and thus is not in either boundary set.

We next discuss how to determine the boundary sets of the clusters. Clearly, a
cluster that has just one cluster as its child has the same boundary sets as its child.
Given cluster Vj that is the result of the union of two clusters Vj′ and Vj′′ , we show
how to generate the boundary set of Vj from the boundary sets of Vj′ and Vj′′ . We
first discuss two simple cases. The first case is that Vj′ and Vj′′ are both of tree degree
1. Then Vj is the set of all vertices, and all edges in the boundary sets of Vj′ and Vj′′
will be interior with respect to Vj . Thus there will be no boundary set for Vj . The
second case is that Vj′ is of tree degree 1 and Vj′′ is of tree degree 3. In this case, Vj
will be of tree degree 2. Make the boundary set of Vj′ one of the two boundary sets

504 GREG N. FREDERICKSON

Fig. 7. An embedded planar graph, its spanning tree, and a multilevel partition.

of Vj . The other boundary set of Vj is empty.

The third case is that Vj′ and Vj′′ are both of tree degree 2. Each of Vj′ and
Vj′′ will have two boundary sets, one on each side of the path between the boundary
vertices of Vj . Consider a nontree edge with one endpoint in each of Vj′ and Vj′′ . If
every such edge is a member of two boundary sets that are on the same side of the
path, then things are easy: we shall describe in due course a simultaneous search of
two boundary sets to identify the subset of edges contained in both boundary sets.
However, suppose that there are nontree edges that are members of the boundary set
of Vj′ on one side of the path and are also members of the boundary set of Vj′′ on
the other side of the path. We call any such edge e a separating edge for Vj since
the cycle induced by e in the tree separates some pair of clusters that are different
from Vj . Let the separating set of edges for Vj be the separating edges with one
endpoint in Vj′ and the other endpoint in Vj′′ . Consider, for example, Fig. 7. The
cluster containing vertices 4 and 5 has a separating edge (4, 5). It separates the cluster
containing vertices 2 and 3 from the cluster containing vertices 6 and 7. The presence
of separating edges complicates matters considerably since there appears to be no
efficient way to identify this set by merely examining the boundary sets for Vj′ and
Vj′′ . Our solution will be to avoid identifying these edges when initially examining

AMBIVALENT DATA STRUCTURES 505

the union of two clusters of tree degree 2 and to identify only “pseudoboundary sets”
at that time.

A pseudoboundary set of a cluster Vj of tree degree 2 is defined as follows. If
Vj is a basic vertex cluster, then the pseudoboundary sets of Vj are identically the
boundary sets of Vj . If Vj has just one child cluster, then the pseudoboundary sets of
Vj are identically the pseudoboundary sets of the child cluster. If Vj is the union of
two clusters of tree degree 1 and 3, then the pseudoboundary sets of Vj are identically
the boundary sets of Vj . Otherwise, Vj is the union of two clusters Vj′ and Vj′′ of
tree degree 2. A simultaneous search of each pseudoboundary set of Vj′′ and the
pseudoboundary set of Vj′ that is on the same side of the path can be performed to
identify the subset of edges common to both sets. Split these subsets off from the
pseudoboundary sets of Vj′ and Vj′′ and concatenate the remaining portions to get
the two pseudoboundary sets of Vj . It follows that the edges in the pseudoboundary
sets of Vj that are not in the boundary sets of Vj are separating edges of either Vj or
certain clusters that are descendants of Vj . (In a multilevel partition, one cluster is a
descendant of another cluster if the former is contained in the latter.)

Fig. 8. An example that illustrates finding sets of separating edges.

Consider Fig. 8, in which the spanning tree edges are in bold, the nontree edges
are dashed, and a portion of a multilevel partition is shown by the closed curves.
There are two separating edges for cluster W ′, one seperating edge for cluster W ′′,
and two separating edges for cluster Vj′′ . Looking just at Vj′′ , there is no efficient way

506 GREG N. FREDERICKSON

to find the separating edges for Vj′′ because they are sandwiched between edges to
clusters that are not unioned yet (at this level) to Vj′′ . The left pseudoboundary set of
W ′′ contains six edges, and the right contains four edges. The left pseudoboundary set
of W ′ contains six edges, and the right contains five edges. The left pseudoboundary
set of Vj′′ contains eight edges, and the right contains nine edges.

The fourth and final case is that Vj′ is of tree degree 1 and Vj′′ is of tree degree 2.
Let the sides of the path between the boundary vertices of Vj′′ be designated as L for
left and R for right. We differentiate the directions “down” and “up,” with down being
closer to Vj′ and up being farther away from Vj′ . Perform a simultaneous search from
either end of the boundary set of Vj′ with the appropriate pseudoboundary set of Vj′′
to identify the two subsets of edges of set Vj′ that are in either of the pseudoboundary
sets of Vj′′ . Split these two subsets off from the boundary set of Vj′ and from the
pseudoboundary sets of Vj′′ . If any edges remain in the boundary set of Vj′ , then there
are no separating edges for Vj′′ . In this case, take the remaining portions of the two
pseudoboundary sets of Vj′′ and concatenate them with the remaining portion of the
boundary set of Vj′ to give the boundary set of Vj . If no edges remain in the boundary
set of Vj′ , then one can identify all separating edges of Vj (and also of certain of its
descendants) that are in the pseudoboundary set of Vj′′ . Perform a simultaneous
search from the lower end of the remaining portions of the two pseudoboundary sets
of Vj′′ to identify all edges that are in the remaining portions of both pseudoboundary
sets. Then split this subset off from the remaining pseudoboundary sets of Vj′′ . Take
the remaining portions of the two pseudoboundary sets of Vj′′ and concatenate them
together to give the boundary set of Vj .

We return to our example in Fig. 7. When clusters {8, 9} and {10, 11} are unioned
together, the edge (9, 10) is identified as staying on the same side of the path (from ver-
tex 8 to vertex 11). Thus it is not in the pseudoboundary sets for {8, 9, 10, 11}. When
clusters {4, 5} and {6, 7} are unioned together, edge (6, 4) is a separating edge, though
it would not in general be determined as such at that time. The pseudoboundary sets
of cluster {4, 5, 6, 7} are {(5, 3), (6, 4)} and {(4, 6), (7, 11)}. When cluster {1, 2, 3} of
tree degree 1 and cluster {4, 5, 6, 7} of tree degree 2 are unioned together, we detect
the separating edges as follows. First, cluster {1, 2, 3} has a boundary set containing
edge (3, 5), which is deleted from that set as well as from a pseudoboundary set for
{4, 5, 6, 7}. The separating edge (6, 4) is uncovered from each pseudoboundary set
of {4, 5, 6, 7}. Note that there are no separating edges to be discovered within either
cluster {4, 5} or {6, 7}. The boundary set for cluster {1, 2, . . . , 7} will then just contain
edge (7, 11).

Note that we have not yet completed our discussion of how to determine the
boundary sets of all clusters since the above only determines pseudoboundary sets for
the case of a cluster that is the union of tree degree 2. First, we make some additional
remarks about how to represent and manipulate these sets of edges. For each cluster,
keep track of the portions of pseudoboundary sets of the children that are not used
in building the pseudoboundary set of the cluster. We call the set of such edges on
each side to be the newly interior set of edges.

We next describe how to take the separating edges determined when clusters Vj′
of tree degree 1 and Vj′′ of tree degree 2 are unioned together, and we determine
the boundary sets and separating sets for the descendant clusters for which only
pseudoboundary sets were previously known. Let W be any descendant cluster of Vj′′

such that all ancestors of W that are also descendants of Vj′′ have tree degree 2. Call
such a cluster W a relevant descendant for Vj′′ . We introduce the following notation.

AMBIVALENT DATA STRUCTURES 507

Let pbsL(W) be the pseudoboundary set of W on the left side of the path, and let
pbsR(W) be the pseudoboundary set of W on the right side of the path. Let sT (W)
be the number of separating edges with both endpoints in W . Let dL(W) be the
number of edges in pbsL(W) with the other endpoint down from W , and let uL(W)
be the number of edges in pbsL(W) with the other endpoint up from W . Similarly,
let dR(W) be the number of edges in pbsR(W) with the other endpoint down from
W , and let uR(W) be the number of edges in pbsR(W) with the other endpoint up
from W .

To determine the boundary sets and separating sets for all relevant descendants
of Vj′′ , call the recursive procedure sep edge with arguments Vj′′ , sT (Vj′′), uL(Vj′′),
uR(Vj′′), dL(Vj′′), and dR(Vj′′). Procedure sep edge(W, sT (W), uL(W), uR(W), dL(W),
dR(W)) will take a relevant descendant W of tree degree 2 and construct representa-
tions of the boundary sets and separating sets of W and all of its relevant descendants.
We make the following notational simplifications. The argument (W) will be omitted,
using, for example, uL rather than uL(W). In the case that W has two children, W ′

will be down from W ′′. An argument such as (W ′′) will be replaced by a double prime,
so that u′′L represents uL(W ′′) and similarly for (W ′). The number of separating edges
of W , i.e., separating edges with one endpoint in W ′ and the other in W ′′, will be s.
The number of such separating edges with the left endpoint higher than the right will
be sL, and the number of such separating edges with the right endpoint higher than
the left will be sR. The number of edges that are in both pbsL(W ′′) and pbsL(W ′)
will be cL, and the number of edges that are in both pbsR(W ′′) and pbsR(W ′) will be
cR. Let bsL(W) and bsR(W) represent the left and right boundary sets, respectively,
of W , and let ss(W) represent the separating set of W .

proc sep edge(W, sT , uL, uR, dL, dR)
if the boundary sets of W are not defined
then

if W has a single child W ′

then
Call sep edge(W ′, sT , uL, uR, dL, dR).
bsL(W)← bsL(W ′); bsR(W)← bsR(W ′); ss(W)← ∅

else
Let W ′ and W ′′ be the children of W .
u′L ← uL; u′′L ← uL; d′L ← dL; d′′L ← dL
u′R ← uR; u′′R ← uR; d′R ← dR; d′′R ← dR
if sT = 0
then

bsL(W)← pbsL(W); bsR(W)← pbsR(W); ss(W)← ∅
Call sep edge(W ′, 0, u′L, u

′
R, d

′
L, d
′
R).

Call sep edge(W ′′, 0, u′′L, u
′′
R, d

′′
L, d
′′
R).

else
Determine cL by a simultaneous search from the top of pbsL(W ′)

and the bottom of pbsL(W ′′).
Determine cR similarly.
if the (uL + 1)st edge down in pbsL(W ′′)

is not the same as the (uR + 1)st edge down in pbsR(W ′′)
then s′′T ← 0
else

508 GREG N. FREDERICKSON

Determine s′′T by a search down in pbsL(W ′′) and pbsR(W ′′),
starting at positions specified in the if-expression, re-
spectively.

d′′L ← size(pbsL(W ′′))− uL − s′′T
d′′R ← size(pbsR(W ′′))− uR − s′′T

endif
if the (dL + 1)st edge up in pbsL(W ′)

is not the same as the (dR + 1)st edge up in pbsR(W ′)
then s′T ← 0
else

Determine s′T by a search up in pbsL(W ′) and pbsR(W ′),
starting at positions specified in the if-expression, re-
spectively.

u′L ← size(pbsL(W ′))− dL − s′T
u′R ← size(pbsR(W ′))− dR − s′T

endif
s← sT − s′T − s′′T
if (s > 0) and

[(s′′T > 0 and the (uL + s′′T + 1)st edge down in pbsL(W ′′)
is the same as the (cR + 1)st edge down in pbsR(W ′)) or

(s′T > 0 and the (dR + s′T + 1)st edge up in pbsR(W ′)
is the same as the (cL + 1)st edge up in pbsL(W ′′)) or

(s′T =0 and s′′T =0 and (uL + 1)st edge down in pbsL(W ′′)
is the same as the (dR + s)th edge up in pbsR(W ′))]

then sL ← s; sR ← 0
else sL ← 0; sR ← s
endif
Let ss(W) be the corresponding set of s edges.
Call sep edge(W ′, s′T , u

′
L, u

′
R, d

′
L, d
′
R).

Call sep edge(W ′′, s′′T , u
′′
L, u

′′
R, d

′′
L, d
′′
R).

Create bsL(W)
by deleting from bsL(W ′′) the bottom cL edges and the

(u′′L + 1)st through (u′′L + sL)th edges from the top,
deleting from bsL(W ′) the top cL edges and the

(d′′L + 1)st through (d′′L + sR)th edges from the bottom,
and concatenating what remains of bsL(W ′′) and bsL(W ′).

Create bsR(W) in a similar way.
endif

endif
endif

As an example, consider the portion of an embedded planar graph in Fig. 8.
The spanning tree edges are in bold, the nontree edges are dashed, and a portion
of a multilevel partition is shown by the closed curves. In particular, a cluster Vj
is shown that is the union of a cluster Vj′ of tree degree 1 and a cluster Vj′′ of tree
degree 2. As discussed above, the set of separating edges of Vj′′ , as well as the set of
separating edges of certain descendants of Vj′′ , can be determined. There are three
edges in the boundary set of Vj′ and eight and nine edges, respectively, in the left
and right pseudoboundary sets of Vj′′ . There are two edges in the newly interior set

AMBIVALENT DATA STRUCTURES 509

to the left of the path in Fig. 8 and none in the newly interior set to the right of
the path. There are one edge from the left pseudoboundary set and three from the
right pseudoboundary set that will be in the boundary set of Vj . For the sake of
discussion, let W be Vj′′ . Then sT = 5, uL = 1, uR = 3, dL = 2, and dR = 1. On the
recursive call sep edge(Vj′′ , 5, 1, 3, 2, 1), it is determined that W has two children W ′

and W ′′. It would then be determined that cL = 2, cR = 0, s′′T = 1, d′′L = 2, d′′R = 1,
s′T = 2, u′L = 2, u′R = 0, s = 2, sL = 2, and sR = 0. By initialization, u′′L = 1,
d′L = 2, u′′R = 3, and d′R = 1. Note that size(pbsL(W ′′)) = 6, size(pbsL(W ′)) = 6,
size(pbsR(W ′′)) = 4, and size(pbsR(W ′)) = 5. We have not shown the internal
structure of W ′ and W ′′, and so we will not discuss what happens during the recur-
sive calls sep edge(W ′, 2, 2, 0, 2, 1) and sep edge(W ′′, 1, 1, 3, 2, 0). Upon the returns,
bsL(W) would be created, containing three edges, and bsR(W) would be created,
containing four edges.

We designate as algorithm build sets the algorithm presented above to compute
the boundary sets, newly interior sets, and separating sets for the clusters in a multi-
level partition of a planar graph.

Lemma 4.1. Algorithm build sets correctly computes the boundary sets, newly
interior sets, and separating set for the clusters in a multilevel partition of a planar
graph.

Proof. We shall prove by induction that for any level l ≤ q, build sets correctly
computes pseudoboundary sets and newly interior sets for all clusters of tree degree
2 whose level is at most l and that have no ancestor of tree degree 1 whose level is at
most l, and it correctly computes boundary sets, newly interior sets, and separating
set for all other clusters whose level is at most l. Since every cluster except the one
containing all vertices has an ancestor of tree degree 1, the lemma will then follow.

The proof is by induction on level number. For the basis, l = 0. Any cluster at
level at most 0 is a basic cluster, and the identification of boundary sets is clearly
correct, as is the identification of pseudoboundary sets for clusters of tree degree 2.
For the induction step, l > 0. We assume as the induction hypothesis that the above
claim holds for clusters at any levels l′ < l. For the newly interior sets of a cluster
Vj , an examination of cases indicates that these are correctly computed from the
boundary or pseudoboundary sets of the children of Vj .

For the sets other than newly interior, we consider cases for a cluster Vj at level
l. Suppose cluster Vj at level l is of tree degree 0. It will have no boundary set since
all vertices are contained within it. Suppose cluster Vj at level l is of tree degree
2. If Vj has just one child cluster, then by the induction hypothesis, that child’s
pseudoboundary set is correct. Clearly, the pseudoboundary set of Vj will be the same
set. If Vj is the union of two clusters of tree degree 1 and 3, then its boundary sets and
pseudoboundary sets are formed from the boundary set for its child of tree degree 1,
which is correctly generated, by the induction hypothesis. Otherwise, Vj is the union
of two clusters of tree degree 2. By the induction hypothesis, the pseudoboundary
sets of the children are correctly computed. The only edges in those sets that are not
in the pseudoboundary set of Vj are the edges from one child to the other that stay on
the same side of the path between the boundary vertices of Vj . Algorithm build sets
correctly identifies these and removes them before concatenating the remaining lists
of edges.

Next, suppose cluster Vj at level l is of tree degree 1. If Vj has just one child
cluster, then by the induction hypothesis, that child’s boundary set is correct. Clearly,
the boundary set of Vj will be the same set. Otherwise, Vj is the union of two clusters

510 GREG N. FREDERICKSON

Vj′ and Vj′′ of tree degree 1 and 2, respectively. By the induction hypothesis, the
boundary set of Vj′ and the pseudoboundary set of Vj′′ are computed correctly. If
any edges in the boundary set of Vj′ have their other endpoint in a cluster up from
Vj′′ , then no edge in the pseudoboundary set of Vj′′ can be a separating edge. Thus
removing those edges from the pseudoboundary sets of Vj′′ that are in the boundary
set of Vj′ and then concatenating the remainder will give the boundary set of Vj .
Otherwise, there can be separating edges in the pseudoboundary sets of Vj′′ . A
pseudoboundary set will contain first the edges with the other endpoint down from
Vj′′ , then the separating edges for Vj′′ and its relevant descendants, and finally the
edges with the other endpoint up from Vj′′ . Thus, after removing edges from the
boundary set of Vj′ , the separating edges come next, in order, starting with the
lowest edge in the remaining portions of the pseudoboundary sets of Vj′′ . Once these
are identified and removed, the remaining portions of the pseudoboundary sets of Vj′′
will comprise the boundary set of Vj .

Finally, consider the relevant descendants of cluster Vj′′ . We argue that sep edge
correctly computes the boundary sets and separating sets of all such clusters that have
their boundary sets undefined. By the induction hypothesis, the pseudoboundary
sets have been computed correctly. The proof that sep edge correctly computes the
boundary sets and separating sets is by induction on the distance to the deepest
relevant descendant. For the basis, the distance is zero, and the cluster W has no
proper relevant descendant. Then W is either a basic cluster or the union of clusters of
tree degree 1 and 3. In both cases, the boundary sets of W will already be defined. For
the induction step, we have the following. If the boundary set of W is already defined,
then nothing need be done since all relevant descendants ofW will have their boundary
sets defined. Otherwise, if W has a single child W ′, then the recursive call for W ′

will, by the induction hypothesis for sep edge, correctly compute the boundary sets
of all relevant descendants of W ′. Then the boundary set of W will be the boundary
set of W ′, and there will be no separating set for W . Finally, if W has two children,
then we have the following. If there are no separating edges with endpoints in W ,
then the boundary sets of W are the same as the pseudoboundary sets of W . In this
case, there will be no separating edges with endpoints in either W ′ or W ′′, so that it
does not matter what the uL, uR, dL, and dR parameters are in the recursive calls on
W ′ and W ′′. Clearly, the number s of actual separating edges for W will equal the
total number of separating edges with both endpoints in W minus the total number
of separating edges with both endpoints in W ′ minus the total number of separating
edges with both endpoints in W ′′. If s > 0, then one of sL and sR is 0 and the other
is s. For sL > 0, we must have one of the following cases. If s′′T > 0, then there are no
edges from W ′ to a cluster up from W ′′, and thus the topmost separating edge out of
the right side of W ′ is the (cR + 1)st edge from the top in pbsR(W ′). If s′T > 0, then
there are no edges from W ′′ to a cluster down from W ′, and thus the bottommost
separating edge out of the left side of W ′′ is the (cL + 1)st edge from the bottom in
pbsL(W ′′). If s′T = 0 and s′′T = 0, then the (uL + 1)st edge down in pbsL(W ′′) is the
topmost separating edge for W , as is the (dR + s)th edge up in pbsR(W ′). Upon the
return from the recursive calls, the separating and nonseparating edges between W ′

and W ′′ are located and removed from the boundary sets of W ′ and W ′′, and the
results are concatenated to give the boundary sets of W . Note that if sL > 0, then
edges up from the left of W are necessarily precisely the edges up from the left of W ′′,
and if sL = 0, it does not matter whether u′′L is set correctly or not. Similar remarks
apply to the other cases.

AMBIVALENT DATA STRUCTURES 511

5. Data structures for embedded planar graphs. We describe the data
structures for representing embedded planar graphs and show how to update them
quickly when an update occurs. We use the topology tree of section 3 as a basis for our
update data structure. Edges in any boundary, pseudoboundary, or newly interior set
of a vertex cluster will be ordered according to the embedding and then represented
by a balanced tree structure called an “edge-ordering tree.” Next we define an “edge-
ordered topology tree,” which is a topology tree augmented by the edge-ordering
information. We discuss how to update the edge-ordered topology tree to show the
result of a swap. We then discuss how to update the edge-ordered topology tree to
show the effect of the insertion or deletion of an edge or vertex. Finally, we show
how to make edge-ordered topology trees fully persistent by introducing “internal
names” of vertices, which are based on a vertex’s position in the topology tree, and
by showing how to keep track of internal indices while performing operations that
change the structure of edge-ordering trees.

Let each set of nontree edges associated with a cluster, either a boundary, pseu-
doboundary, or newly interior set, be represented by a balanced tree called an edge-
ordering tree. Each leaf in the edge-ordering tree will represent an edge in the cor-
responding set. When the pseudoboundary set of a cluster Vj is formed from the
pseudoboundary sets of the children, do not change the edge-ordering trees for the
pseudoboundary sets of the children, but rather build a new edge-ordering tree by
introducing some new nodes and sharing subtrees with the already existing edge-
ordering trees. The same idea applies for generating a representation of the boundary
sets and the newly interior sets.

We define an edge-ordered topology tree for an embedded planar graph of maximum
degree 3 to be the topology tree, along with pointers from each node in the topology
tree to the edge-ordering trees for its one or two boundary sets, and its one or two
newly interior sets. It is understood that the root of the tree has a pointer to an
empty boundary set. We then note that the algorithm build sets from the last section
can be adapted to build an edge-ordered topology tree.

We now consider how to swap a nontree edge into the tree, replacing a tree
edge. We will perform an operation similar to basic swap of section 3, with the
following additional work. When a node in the topology tree is removed, its boundary,
pseudoboundary, and newly interior sets should be removed. Since subtrees are being
shared in the edge-ordering trees, we keep a reference count in each node in a balanced
tree indicating how many pointers have been set to point at it. When a node in an
edge-ordering tree is removed, the reference count in each of its two children should
be decremented. If a reference count goes to zero, then its node should be deleted.
(In the case that we wish to enforce a particular bound on the time per operation,
if some operation would cause a very large number of nodes to have their reference
counts go to zero, then these nodes are saved in a list that can be reduced in size of
the subsequent operations.) Thus edge-ordering trees will be removed as nodes are
removed from the topology tree. In rebuilding the topology tree, whenever a parent for
two nodes is created or changed, the boundary, pseudoboundary, and newly interior
sets are recomputed in the fashion discussed in algorithm build sets.

This approach is related to that in [F1], but we are specifying it carefully since
we believe there is an error in [F1] with regard to the analysis of the running time. In
particular, we believe that the time to search for the correct point to split boundary
sets is underestimated in [F1]. The reason is the following. Consider a cluster Vj
created by the union of two clusters Vj′ and Vj′′ , each of tree degree 2. We wish

512 GREG N. FREDERICKSON

to perform a simultaneous search in edge-ordering trees representing a boundary (or
pseudoboundary) set for Vj′ and a boundary (or pseudoboundary) set for Vj′′ to
identify the edges common to both sets. It is easy to produce in constant time a
suitable edge in one boundary set to test. The problem is determining whether that
edge is also in the other boundary set. It is easy to keep a pointer from the leaf
of one edge-ordering tree to the leaf in another edge-ordering tree representing the
same edge but with respect to its other endpoint. However, it does not seem possible
to deduce the name of the corresponding boundary set in constant time unless an
excessive amount of work is performed on each update.

Since subtrees of the edge-ordering trees are shared, we give a top-down procedure
to search within Vj′ and Vj′′ simultaneously. To make the above searches efficient,
we keep in each node of every edge-ordering tree the number of edges represented by
the subtree rooted at that node. Then the position of the edges to be deleted can
be computed quickly by keeping track of the positions of edges already deleted from
the boundary sets. We then binary search to find the number of shared edges. For
any test value, we search down through both trees to find the corresponding leaf in
each tree. If the pointers in the leaves point at each other, then there are at least
that many common edges; otherwise, there are fewer. Clearly, such a search will also
involve O(logn) tests at O(logn) time per test, or O((logn)2) time in total. Call the
above procedure plane swap.

Lemma 5.1. Procedure plane swap correctly rebuilds an edge-ordered topology tree
after a swap.

Proof. Lemma 3.1 establishes that the topology tree is rebuilt correctly after a
swap is performed. The simultaneous search of two boundary (or pseudoboundary)
sets determines for any given size whether there is a common subset of that size, and it
thus finds the size of the subset by binary search. Note that the search is indeed top-
down, so that it works when subtrees of the edge-ordering trees are shared. Finally,
the recomputing of the boundary, pseudoboundary, and newly interior sets is correct
by arguments similar to those in the proof of Lemma 4.1.

Lemma 5.2. The edge-ordered topology tree for an n-vertex embedded planar
graph of maximum degree 3 uses O(n) space, can be set up in O(n) time, and can be
updated to show the result of a swap in O((logn)3) time.

Proof. The topology tree itself uses O(n) space. Each nontree edge will appear
in two boundary sets (one for each endpoint) at the lowest level in the partition.
Thus edge-ordering trees at level 0 use O(n) space. We count the additional space
used by the edge-ordering trees as follows. It follows from Lemma 2.2 that at level i,
i = 0, 1, . . . , q, there are at most (5/6)in clusters. For a cluster Vj of size nj , there are
at most c log(2nj) new nodes created in building additional boundary trees, where c
is a constant. The sum of c log(2nj) over all clusters Vj at level i is maximized when
there are as many clusters as possible and each cluster is of roughly equal size. Thus
we bound the total additional space used by edge-ordering trees by

∑q
i=0(5/6)in(1 +

i log(6/5)). This quantity is clearly O(n). It follows that the total space is O(n).

We next discuss the setup time. Let Vj be a cluster of size nj , with Vj being the
union of clusters Vj′ and Vj′′ . If Vj′ is of tree degree 1 and Vj′′ is of tree degree 2,
then charge the work of identifying each separating set to the parent W of the pair of
clusters W ′ and W ′′ for which the separating set arose. This amounts to a charge of
the cost of one search in the pseudoboundary sets of W , which is proportional to the
square of the logarithm of the size of W . The time to remove the separating sets from
the affected clusters should be apportioned similarly and will be of cost proportional

AMBIVALENT DATA STRUCTURES 513

to the logarithm of the cluster size. Then the charge to generate the edge-ordering
tree for cluster Vj will be at most c(log(2nj))

2, where c is a constant. The sum of
c(log(2nj))

2 over all clusters Vj at level i is within a constant multiplicative factor of
maximum when there are as many clusters as possible and each cluster is of roughly
equal size. Thus we bound the setup time by

∑q
i=0(5/6)in(1 + i log(6/5))2. This

quantity is clearly O(n).

By Lemma 3.1, a topology tree can be updated in O(logn) time to show the result
of a swap, and thus O(logn) nodes are affected. As in setting up the edge-ordered
topology tree, first find the pseudoboundary sets, then identify separating edges at
higher nodes, and then correct the pseudoboundary sets to be boundary sets. As in
the analysis of the setup time, charge the time to identify the separating edges to the
lowest cluster to which both endpoints belong. Since there are O(logn) nodes that will
be created, there will be O(logn) separating sets created, at most 1 per node created.
Since each such node gets charged O((logn)2), the total charge is O((logn)3). In
addition, there are a constant number of concatenations or splits per node, and there
are at most O(logn) concatenations and splits that must be performed. Each such
concatenation or split uses at most one search, at O((logn)2) per search.

The edge-ordered topology tree for the embedded planar graph can also be up-
dated to reflect the insertion or deletion of an edge, as long as the insertion is consistent
with the current embedding. The approach is similar to what is described in the dis-
cussion preceding Lemma 3.2, except that there is no need to adjust the value of z
since z = 1 is independent of the number of vertices in the graph.

Lemma 5.3. The edge-ordered topology tree for an embedded planar graph of
maximum degree 3 can be updated to show the result of an edge or vertex insertion
or deletion that is consistent with the embedding in O((logn)3) time, where n is the
current number of vertices.

Proof. The number of inserted and deleted vertices and edges will be a small
constant. Thus by reasoning similar to that in the proof of Lemma 3.1, the number
of nodes in the topology tree that are changed will be O(logn). The time bound then
follows by the same argument as in Lemma 5.2.

As shown in Lemma 5.2, an edge-ordered topology tree can be updated to show
the result of a swap in O((logn)3) time. It would at first appear easy to modify this
representation in the same fashion as we did to the 2-dimensional topology tree in
section 2 to give a persistent data structure. The difficulty is that on each update in
the persistent structure, we made an unshared copy of a topology tree, at a cost of
O(m1/2) time. This was done because there appears to be no good way to both share
subtrees and still have a pointer from each node to its parent. If we wish to achieve
O((logn)3) time per update in a persistent structure for planar graphs, we must do it
without making complete copies of objects such as topology trees. Instead, we shall
present a scheme for encoding new internal names of vertices. These names will be
generated bottom-up and read top-down.

The names will be based on the structure of the topology tree and will thus change
as the topology of the tree it is representing changes. We first note that the topology
tree is a binary tree of height O(logn). We shall assume that any child of a node with
exactly one child will be designated as a left child. We shall also assume that a node
with two children will have the children designated as left or right in an arbitrary
but fixed fashion. We encode the level-l internal index of a vertex, for l = 0, 1, . . . , q,
as follows. Let al(v) be the ancestor at level l of the leaf in the topology tree that
represents the vertex v. The level-0 internal index of any vertex v is the empty string.

514 GREG N. FREDERICKSON

For any l, 0 < l ≤ q, the level-l internal index of v is formed as follows. Take the
level-l−1 internal index of v and concatenate onto its left a 0 if al−1(v) is a left child
of al(v) and a 1 otherwise. To differentiate the original names from these new names,
the original index of a vertex or vertex cluster will be called its external index.

Consider the graph in Fig. 1 along with the restricted multilevel partition of Fig. 3.
We give the internal indices of vertex 13, using the topology tree as shown in Fig. 4.
The level-l indices of vertex 13, for l = 1, 2, 3, 4, 5, respectively, are 1, 01, 001, 1001,
and 11001.

Each node Vj at level l in the topology tree will have its (at most two) boundary
vertices specified by both external index and level-l internal index and the (at most
three) tree edges with precisely one endpoint in the cluster specified by external
indices of the endpoints. In addition, each leaf in the topology tree will have the
external name of its only vertex. If node Vj has two children, then it will have the
level-l internal index for each endpoint of the tree edge that connects the two clusters
corresponding to the children.

To represent the internal names of the endpoints of edges referred to in an edge-
ordering tree, an additional mechanism is needed. Each value in an edge-ordering
tree associated with node Vj will have the endpoints of its corresponding edge or
pair of edges specified by a level-l′ internal index for some l′ ≤ l. There will be an
additional field substr in each node of the edge-ordering tree. The concatenation of
the substr fields on a path from the root down to any node in the edge-ordering tree,
when concatenated with a level-l′ index there, will give a level-l internal index for the
corresponding vertex. When two clusters are unioned, the substr fields at the roots
of the corresponding edge-ordering trees are appended with either a 0 or 1 before
the trees are concatenated. Clearly, these fields can be maintained as the trees are
split and concatenated. Indeed, we note that the edge-ordering trees will be balanced
naturally if every time we concatenate, we just add a new root above the current two
(or three) roots, rather than performing some complicated rebalancing. This follows
since there are only O(logn) levels in the topology tree.

We next discuss updating a persistent structure when it has been determined that
a swap should be performed. We assume that the external and internal indices of the
endpoints of the edges in the swap pair (e, f) will be provided. Using the internal
indices of these endpoints, we can search down in the topology tree to the leaves, using
constant time per level and setting temporary pointers as follows. For each node v on
a path from the root down to an endpoint of e or f , set the parent pointer of v, the
pointers between v and the nodes representing clusters adjacent to the cluster for v,
and the parent pointer for each node representing an adjacent cluster.

Then proceed as in algorithm plane swap, but doing the necessary work to main-
tain the following invariant with respect to nodes on the lists LD, LA, and LC :

1. For the ancestor of any node in the lists LD and LC , there are temporary
pointers to its parent.

2. For the ancestor of any node in the lists LD, LA, and LC , there are temporary
pointers to nodes representing adjacent clusters.

3. For any node representing a cluster adjacent to an ancestor of any node in
the lists LD, LA, and LC , there is a temporary parent pointer.

Whenever we insert a node y onto a list, where y was not previously an ancestor of a
member of some list, we do the following. Either node y is put on list LA and thus
has no parent, or it is put on list LC and it or a child of it must have been adjacent
to a node on a list. In the latter case, the temporary pointer to the parent of y is

AMBIVALENT DATA STRUCTURES 515

already set, as well as temporary parent pointers for all of its ancestors. We also know
the external names of the endpoints of tree edges with precisely one endpoint in the
cluster represented by node y. If such a tree edge does not have a temporary pointer
associated with it, search up through the ancestors of y until we find an ancestor
node x such that that edge is internal to x. We then use the internal indices for the
endpoint of that edge to search down to a node z that represents a cluster that is
adjacent to the cluster represented by node y. As the search goes back down, set
temporary parent pointers along this path, as well as pointers from each ancestor of
y to the node representing an adjacent cluster on the path up from z. When all such
tree edges from the cluster represented by node y have been handled, the invariant is
once again satisfied. We call this search from y an invariant-enforcing search.

Let the above approach be called algorithm plane persist swap.

Theorem 5.4. Algorithm plane persist swap maintains a fully persistent version
of edge-ordered topology trees, using O(n + k(logn)2) space to store k versions and
generating a new version reflecting the result of a swap in O((logn)3) time.

Proof. By Lemma 5.1, algorithm plane swap correctly updates an edge-ordered
topology tree when a swap is performed. We verify that plane persist swap maintains
the invariant stated above. The proof is by induction on the number of nodes that
have been placed on LD, LA, and LC . Initially, four nodes are placed on LD and
four nodes are placed on LA. The nodes on LD are the endpoints of edges e and f ,
and the ancestors of these nodes constitute the search paths along which temporary
pointers are set. The four nodes on LA are the replacements for the nodes on LD,
and copying the adjacency information of those nodes ensures that the ancestors
of all adjacent nodes have the appropriate temporary pointers set. Subsequently,
the following cases describe nodes placed on lists. These cases result from a close
examination of basic swap. For a node to be placed on LD, a child of it must have
been on LD or LC , or a child of it must have been adjacent to a node on LC or LA.
The invariant is satisfied in all but the latter case, in which the invariant-enforcing
search restores the invariant. For a node to be placed on LC , either it had a sibling
on LD, or it had a child on LC or LA, or a child of it must have been adjacent to a
node on LC or LA. The invariant is satisfied in all but the latter case, in which the
invariant-enforcing search restores the invariant. For a node to be placed on LA, either
it or an adjacent node is on LC , or a child is on LC or LA. The invariant-enforcing
search restores the invariant in the former case. Thus the invariant is maintained.
Given that the invariant is maintained, the algorithm is then able to access nodes to
test whether or not to combine clusters.

Furthermore, we assert that for any quantity in an edge-ordering tree that is
associated with an endpoint expressed by a level-l internal index, its level-l internal
index can be maintained and manipulated as the edge-ordering trees are split and
concatenated.

Finally, we establish the claimed resource bounds. From Lemma 5.1, the time used
by plane swap is O((logn)3). In setting up temporary parent and adjacency pointers,
the number of additional nodes examined is just a constant times the number of nodes
examined in plane swap. Furthermore, each node that is examined is examined just a
constant number of times. Thus setting up temporary parent and adjacency pointers
will take O((logn)3) time. Each operation using level-l internal indices will take just
constant time, so that the time to split and concatenate edge-ordering trees will be
proportional to what it was in plane swap. Thus the total time for one swap in a
fully persistent version of edge-ordered topology trees will be O((logn)3) time. By

516 GREG N. FREDERICKSON

Lemma 3.1, a topology tree can be updated in O(logn) time to show the result of
a swap, and thus O(logn) nodes in the topology tree are affected. Since a constant
number of boundary sets, newly interior sets, and separating sets are created for each
node, and each split or concatenation of edge-ordering trees will createO(logn) nodes,
O((logn)2) additional space is used whenever a swap is performed.

6. Basic approach for finding the k smallest spanning trees. In this sec-
tion, we discuss the overall structure of our algorithm for finding the k smallest span-
ning trees, leaving out the description of the particular data structure that we employ.
We shall assume that there are at least k distinct spanning trees of the graph. (It
is easy to modify the algorithm to detect the case in which there are fewer than k
distinct spanning trees.) We shall also assume that all edge weights are nonnegative.
(If not, we can add a positive value to each edge weight to give an equivalent problem
with all edge weights nonnegative.)

We first find a minimum spanning tree of our graph using the fast algorithm
of [GGST] for general graphs or [CT] for planar graphs. Then we use Eppstein’s
technique to reduce the problem to one in which there are O(k) vertices and edges
[E]. If k < m−n, this technique identifies and deletes m−n− k edges that will be in
none of the k smallest spanning trees, and if k < n, it identifies and contracts n − k
edges that will be in all of these trees. Identifying these edges uses an algorithm for the
sensitivity analysis of minimum spanning trees, either Tarjan’s algorithm [T1], [T2]
for general graphs or the algorithm of Booth and Westbrook [BW] for planar graphs.
Also used is the linear-time selection algorithm [BFPRT]. We call the resulting graph
the contracted graph. Note that the k smallest spanning trees of the contracted graph
are in one-to-one correspondence with the k smallest spanning trees of our original
graph.

Next, we transform the contracted graph into a graph in which every vertex
has degree no greater than 3 using the transformation discussed in section 2. Note
that each edge of cost −∞ will be in all of the k smallest spanning trees, and each
edge of cost ∞ will be in none. It follows that the k smallest spanning trees of the
transformed graph are in one-to-one correspondence with the k smallest spanning
trees of the contracted graph.

Let Ti denote the ith smallest spanning tree of the transformed graph. Thus T1

denotes the minimum spanning tree. Having already found T1, our algorithm will
generate the k − 1 spanning trees T2, . . . , Tk one at a time. Each tree Ti with i > 1
will be derived from some tree Tj , j < i, by a swap (ei, fi), in which a tree edge
ei is replaced by a nontree edge fi. To guarantee that no tree is derived more than
once, the trees will have certain restrictions placed on them of the form that any tree
derived from Tj must include certain edges and exclude certain other edges. This
inclusion–exclusion approach was presented by Lawler in [L1] and [L2, pp. 100–104].

Associated with each spanning tree Ti that is generated will be a best-swap struc-
ture Ri. We shall discuss the best-swap structure in greater detail later but mention a
few properties now. Structure Ri will represent all spanning trees derivable from Ti by
a sequence of swaps and will identify a swap for Ti of minimum cost. The algorithm
will maintain a heap on the costs of the trees obtainable via these minimum-cost
swaps. (When k is very large, our final version of the algorithm will manage the heap
somewhat differently; see the discussion at the end of this section.)

We now proceed with a description of the rest of the algorithm. Given the min-
imum spanning tree T1, we generate a best-swap structure for T1. We initialize the
heap with the value representing the cost of the spanning tree derived from T1 by

AMBIVALENT DATA STRUCTURES 517

applying the swap of minimum cost. We then repeat the following k − 1 times. Ex-
tract the minimum from the heap. The extracted value represents the cost of a tree Ti
produced by applying a swap (ei, fi) to spanning tree Tj . Generate a best-swap struc-
ture Ri from Rj using the fully persistent versions of the data structures discussed in
sections 3 and 5. The changes in generating Ri from Rj should reflect the effect of
two changes: replacing ei by fi in the spanning tree and resetting the cost of edge ei
to be the value∞ for the purpose of determining the best swap. Resetting the cost of
edge ei effectively keeps edge ei out of any of the spanning trees that are subsequently
derived (transitively) from Ti. Finally, modify Rj to reflect the resetting of the cost of
ei to be −∞ for the purpose of determining the best swap. Resetting the cost of edge
ei in this manner effectively forces edge ei to be in all of the spanning trees that are
subsequently derived (transitively) from Tj . The minimum costs identified by each of
Ri and Rj correspond to swaps to be applied to Ti and Tj , respectively. Compute the
costs of the trees generated by these trees and insert them into the heap. Note that
the original costs of edges should be used in computing these costs. This completes
the description of the repeat loop.

As we have described the algorithm, its output will be in the form of a minimum
spanning tree plus a sequence of triples (ei, fi, ji), i = 2, 3, . . . , k. Note that it is easy
to include the cost of tree Ti with the triple.

We can visualize the inclusion–exclusion using a binary tree B. Each node x in
B represents a modified version G(x) of the original graph G based on the inclusion
and exclusion conditions. Associated with each node is the minimum spanning tree
T (x) for G(x), along with a value that is the cost of T (x) with respect to the edge
weights in G. The root of B represents G, T (root) is the minimum spanning tree
T1 of G, and the value associated with the root is the cost of T1. For any node x in
B, we determine the children of x as follows. If there is a swap of finite cost that
can be applied to T (x), let (e(x), f(x)) be the minimum-cost such swap. Then x will
have right and left children. Graph G(right(x)) will be graph G(x) with the cost of
e(x) reset to ∞, and spanning tree T (right(x)) will be T (x) − e(x) + f(x). Graph
G(left(x)) will be graph G(x) with the cost of e(x) reset to −∞, and spanning tree
T (left(x)) will be T (x). This completes the definition of binary tree B.

As an example, we consider the spanning trees for the graph in Fig. 1. We shall
name edges by their weights. In Fig. 9, we give binary tree B for this graph. The
minimum spanning tree, as shown in Fig. 1, has a cost of 91 and is represented by
the root of the tree in Fig. 9. The best swap for this tree is (13, 14). The right
child of the root represents the resulting tree, with cost 92. Note that edge 13 is
excluded from being a member of any of the spanning trees represented by this node
or any of its descendants. Conversely, edge 13 is required to be included in any tree
represented by the left child of the root or any of its descendants. The minimum-cost
swap given that edge 13 must be included is (12, 14), yielding a tree with cost of 93.
In our representation, the edge to the right child is labeled with a tree edge that is
excluded, and the edge to the left child is labeled with a tree edge (the same edge)
that must be included. To make the representation less cluttered, we subsequently
put the included/excluded tree edge between the edges to the right and left children.
Note that we label a nonroot node with its cost only if its spanning tree differs from
that of its parent. Also, we do not draw the complete representation but only the
first four levels, noting that all nodes shown have children except the lower rightmost
one.

The time required by the algorithm will be the following. From [GGST], [E], [T1],

518 GREG N. FREDERICKSON

Fig. 9. The first four levels of inclusion/exclusion for Fig. 1, with spanning tree costs indicated.

[T2], [BFPRT], and [F1], finding the contracted graph and transforming it into one
with maximum degree 3 will take O(m log β(m,n)) time and O(m) space. From [CT],
[E], [BW], [BFPRT], and [F1], finding the contracted graph of a planar graph and
transforming it into one with maximum degree 3 will take O(n) time and space. In
addition to setting up R1, the algorithm will perform 2(k − 1) updates of best-swap
structures. With regard to the heap, k − 1 extractmins and 2(k − 1) inserts will be
performed. Thus the total time for all heap operations is O(k log k).

For very large values of k, the total time for maintaining the heap on the costs of
trees may dominate the total time for updating the best-swap structures. In such a
case, we may reduce the O(k log k) charge for maintaining the heap to O(k) as follows.
Note that when a best-swap structure is modified, the cost of the new spanning tree
induced by the new best swap is never smaller than the spanning tree from which it
was derived.

Suppose that these costs can be viewed as forming a min-heap. From [F4] it is
known that the kth smallest value in a min-heap can be selected in O(k) time. This
algorithm is then used in place of the simple heap mechanism. Given O(k) values
that include the costs of all k smallest spanning trees, it is then straightforward to
identify the costs of the k smallest spanning trees. Note, however, that these costs
will not necessarily be output in sorted order.

It remains to show that the costs in binary tree B can be viewed as forming
a min-heap. Since the spanning tree for each left child is the same as that of its
parent, we need to compress B to get our min-heap. Note that for any node x such
that right(left(x)) is defined, the value labeling right(x) is no larger than the value
labeling right(left(x)). This follows since a swap of smallest cost relative to T (x)
in G(x) is of cost no larger than a swap of smallest cost relative to T (left(x)) in
G(left(x)). Thus we generate our min-heap to contain nodes that correspond to a
subset of the nodes in B in the following way. The root of the min-heap corresponds
to the root of B. For any node y in the min-heap corresponding to node x in B, we
determine the children of y as follows. If right(x) is defined, then right(y) is defined

AMBIVALENT DATA STRUCTURES 519

Fig. 10. The min-heap induced by inclusion/exclusion on Fig. 1.

to be a node that corresponds to right(x). If node x has a parent, parent(x), and if
right(left(parent(x))) is defined, then left(y) is defined to be a node that corresponds
to right(left(parent(x))). Since the algorithm in [F4] first accesses an element in the
min-heap only after having accessed its parent, the portion of the min-heap actually
accessed by that algorithm can be constructed on the fly as we create and access
our replacement data structures. Thus only O(k) nodes in the min-heap need to be
created. The binary min-heap corresponding to binary tree B in Fig. 9 is shown in
Fig. 10.

7. Ambivalent data structures I: Best-swap structures. In this section,
we adapt the data structures from section 3 to give an efficient best-swap structure
for the case of general graphs. This will lead to an efficient algorithm for finding the
k smallest spanning trees of a graph. We first give a more formal definition of an
ambivalent data structure. Then we define what we call a “pseudoswap,” which will
allow us to design an ambivalent data structure. Using pseudoswaps, we next describe
the information maintained in the nodes of the 2-dimensional topology tree and show
how to generate this information for a node, given the information for its children. We
then specify the best-swap data structure and discuss how to update this structure.
We conclude with a claim of the time and space bounds on our algorithm for finding
the k smallest spanning trees.

We now give a more formal definition of an ambivalent data structure. An item or
set of items of data is said to be substantiated if that item or set of items represents an
actual state of affairs. If that item or set of items does not represent an actual state
of affairs but rather a hypothetical state of affairs that does not actually hold, then
it is said to be nonsubstantiated. Let an item or set of items be called an alternative
if examination of that item or set of items in isolation cannot determine whether
it is substantiated or nonsubstantiated, but examination of a larger context of data
will determine whether it is substantiated or nonsubstantiated. A substantiated set of
alternatives is a set of two or more alternatives, one of which will be substantiated and

520 GREG N. FREDERICKSON

the rest of which will be nonsubstantiated. A data structure is said to be ambivalent
if at many locations within itself it maintains substantiated sets of alternatives, and
the data structure as a whole contains sufficient data to determine which alternative
in every substantiated set of alternatives is substantiated. The ambivalence in our
particular data structures comes from considering two clusters of vertices in a spanning
tree and then attempting to represent how a nontree edge with one endpoint in each
cluster relates to tree edges in these clusters. Such a relation might be whether a tree
edge is in the cycle induced by the nontree edge. Determining whether a tree edge
is in the cycle induced by the nontree edge may require information not stored with
either cluster, i.e., it is information about the topology of the spanning tree. However,
this information will always be available in our data structure as a whole.

We seek to build a data structure in which we can maintain a large set of swaps
in a heap-like fashion so that a best swap can be identified quickly. We do this by
considering nontree edges that have both endpoints in the same cluster and nontree
edges that have their endpoints in different clusters. It is not hard to compute the
most advantageous swap involving edges both of whose endpoints are in the same
basic cluster. Thus the more challenging task is handling nontree edges that have
their endpoints in different clusters. We set up ambivalent information for each cluster
Vj of tree degree 2 as follows. Let Vr be a cluster at the same level as Vj . For any
boundary vertex w of Vj , a pseudoswap is a pair (e, f) of edges, where f is a nontree
edge having one endpoint in each of Vj and Vr and e is an edge on the path in the
tree from w to the endpoint of f in Vj . Let w and w′ be the boundary vertices of
Vj . Suppose (e, f) is a pseudoswap for w and (e′, f) is a pseudoswap for w′. Then
one of those pseudoswaps is actually a swap, depending on whether w or w′ is nearer
Vr in tree T . Thus the set of pseudoswaps {(e, f), (e′, f)} is a substantiated set of
alternatives.

Consider clusters Vj and Vr shown in Fig. 11. The spanning tree edges within
these clusters are shown in bold, and the only nontree edge with an endpoint in each
cluster is indicated by a dashed line. Some of the edges are labeled with their costs.
Since the whole spanning tree is not shown, it is not clear whether the path in the tree
between the endpoints of edge 18 goes through vertex w or vertex w′. Pseudoswap
(16, 18) is the best for clusters Vj and Vr and boundary vertex w. Pseudoswap (17, 18)
is the best for clusters Vj and Vr and boundary vertex w′.

We next discuss carefully the additional information that will be maintained in
the nodes of the 2-dimensional topology tree. This includes the cost of a maximum-
weight edge on the path between certain pairs of boundary vertices, the cost of a
minimum-cost nontree edge between given pairs of clusters, the cost of a minimum-
cost pseudoswap from a certain class of pseudoswaps, and the cost of a minimum-cost
swap from a certain class of swaps.

We first discuss the cost of a maximum-weight edge on the path between certain
pairs of boundary vertices. Let Vj be a vertex cluster with tree degree 2, and let
treemax(j) be the cost of a tree edge of maximum weight on the path between the
two boundary vertices. We store treemax(j) for a given j in node Vj × Vj in the
2-dimensional topology tree. If Vj is a basic vertex cluster, then treemax(j) can be
determined by inspection of Vj . If Vj is not a basic vertex cluster, then treemax(j) can
be computed in constant time given the treemax values of the children in the topology
tree and the cost of the tree edge between the children’s corresponding clusters. Note
that it is easy to keep track of the edge that yields the treemax(j) value.

We next discuss the cost of a minimum-cost nontree edge between a given pair of

AMBIVALENT DATA STRUCTURES 521

Fig. 11. Example for illustrating best pseudoswaps.

clusters. Let Vj and Vr be two distinct clusters at the same level. Let nontreemin(j, r)
be the cost of a nontree edge of minimum cost with an endpoint in each of Vj and
Vr. Store nontreemin(j, r) at node Vj × Vr. If Vj and Vr are basic vertex clusters,
then nontreemin(j, r) can be computed for any particular j and all r by inspection
of Vj . If Vj and Vr are not basic vertex clusters, then nontreemin(j, r) is the min-
imum of the values nontreemin(j′, r′), where Vj′ × Vr′ is a child of Vj × Vr in the
2-dimensional topology tree. Note that it is easy to keep track of the edge that yields
each nontreemin(j, r) value.

We next discuss the cost of a minimum-cost pseudoswap from a certain class of
pseudoswaps. Let Vj and Vr be two distinct clusters at the same level. For each
boundary vertex w of Vj , let pswapmin(j, r, w) be the minimum value from the set
of differences consisting of the cost of a nontree edge f with an endpoint in each of
Vj and Vr, minus the cost of an edge e of maximum cost on the path in T from w to
the endpoint of edge f that is in Vj . The values pswapmin(j, r, w) for any particular
value of j and r are stored in the node labeled Vj × Vr. If Vj and Vr are basic vertex
clusters, then pswapmin(j, r, w) can be computed for any particular j, all boundary
vertices w of Vj , and all r by inspection of Vj .

If Vj and Vr are not basic vertex clusters, then pswapmin(j, r, w) can be computed
in constant time given the treemax values for all children of Vj , and the nontreemin
and pswapmin values for all children of Vj × Vr in the 2-dimensional topology tree.
We specify this computation in detail. If the node for Vj in the topology tree has a
single child Vj′ , then pswapmin(j, r, w) is the minimum of pswapmin(j′, r′, w) taken
over the one or two clusters Vr′ that form Vr. Otherwise, Vj is formed from two
clusters Vj′ and Vj′′ , and we assume without loss of generality that w is contained in
Vj′ . Let w′ be the boundary vertex of Vj′ adjacent to Vj′′ , and let w′′ be the boundary
vertex of Vj′′ adjacent to Vj′ . Then pswapmin(j, r, w) is the minimum taken over the

522 GREG N. FREDERICKSON

one or two clusters Vr′ that form Vr of pswapmin(j′, r′, w), pswapmin(j′′, r′, w′′),
nontreemin(j′′, r′) − c(w′, w′′), and nontreemin(j′′, r′) − treemax(j′). Once again,
it is easy to keep track of the pair of edges that yield each pswapmin(j, r, w) value.

We finally discuss the cost of a minimum-cost swap from a certain class of swaps
Let Vj be a vertex cluster. Let swapmin(j) be the cost of the minimum-cost swap
such that the nontree edge has both endpoints in Vj . This value can be maintained in
node Vj × Vj of the 2-dimensional topology tree. If Vj is a basic vertex cluster, then
swapmin(j) can be computed by inspection of Vj . If Vj is not a basic vertex cluster,
then swapmin(j) can be computed in constant time given the swapmin, nontreemin,
and pswapmin values for children of Vj × Vj in the 2-dimensional topology tree. We
specify this computation in detail. If the node for Vj in the topology tree has a
single child Vj′ , then swapmin(j) = swapmin(j′). Otherwise, Vj is formed from two
clusters Vj′ and Vj′′ . Let w′ be the boundary vertex of Vj′ adjacent to Vj′′ , and let w′′

be the boundary vertex of Vj′′ adjacent to Vj′ . Then swapmin(j) is the minimum of
pswapmin(j′, j′′, w′), pswapmin(j′′, j′, w′′), and nontreemin(j′, j′′)−c(w′, w′′). Once
again, it is easy to keep track of the pair of edges that yield each swapmin(j) value.

Our best-swap structure will be based on the fully persistent data structure de-
scribed in section 3. A best-swap structure Ri will consist of a topology tree for tree
Ti, a pointer to a 2-dimensional topology tree, many of whose subtrees are shared
with other 2-dimensional topology trees, and pointers to representations of basic ver-
tex clusters, most of which are shared. Each node in the topology tree will have the
index of the corresponding cluster and a pointer to the node’s parent. Each node in
the 2-dimensional topology tree will have the indices of the corresponding clusters,
along with the following. If the node is of type Vj × Vj , it will have a treemax value
and a swapmin value, while if it is of type Vj×Vr, for r 6= j, it will have a nontreemin
value and pswapmin values. Note that each such treemax, nontreemin, pswapmin,
and swapmin value should also carry with it the index of the edge or edges involved
and the indices of its basic vertex clusters. The representation of a basic vertex cluster
Vj will consist of a list of vertices, a list of edges with both endpoints in the cluster
(both tree and nontree edges), and, for every other basic cluster Vr, a pointer to a list
of nontree edges with one endpoint in each of Vj and Vr. In addition, for each nontree
edge with both endpoints in the same basic cluster, there will be the largest-cost tree
edge with which it can swap.

We now discuss how to update a best-swap structure. If the swap causes a basic
vertex cluster to be split or combined, generate a description of each new basic cluster
Vj consisting of a list of vertices, a list of edges with both endpoints in Vj , and, for
every other basic cluster Vr, a list of nontree edges with one endpoint in each of Vj
and Vr. If the new basic cluster Vj is merged from old basic clusters V ′j and V ′′j ,
determine the best swap for each nontree edge with one endpoint in each of V ′j and
V ′′j as follows. Let tree edge (w′, w′′) connect V ′j to V ′′j with w′ in V ′j and w′′ in V ′′j .
Find the maximum-cost edge from each vertex in V ′j to w′ and from each vertex in
V ′′j to w′′. Given nontree edge (v′, v′′) with v′ in V ′j and v′′ in V ′′j , the best tree edge
that can swap with (v′, v′′) can then be found in constant time. A similar approach
can be used if a tree edge (w′, w′′) with both endpoints in basic cluster Vj has its cost
set to −∞ to find the new swaps that replace those involving edge (w′, w′′).

We next generate the new topology tree and the new 2-dimensional topology tree.
For each basic vertex cluster Vj that has changed, do the following. For each pair
of boundary vertices w and w′ in Vj , determine the value treemax(j, w,w′). Next,
determine the value swapmin(j) by finding the minimum-cost swap over all best

AMBIVALENT DATA STRUCTURES 523

swaps for nontree edges with both endpoints in Vj . For each set of nontree edges with
one endpoint in each of Vj and Vr, set the appropriate pointers in the descriptions of
Vj and Vr. Also, find the minimum-cost edge in the set, giving the nontreemin(j, r)
value. For each vertex v in Vj and each boundary vertex w of Vj , determine the
maximum-cost tree edge on the path from v to w. For every other basic cluster Vr,
examine every edge with one endpoint in each of Vj and Vr to find the best pseudo-
swap for each boundary vertex w of Vj . Thus we can determine the pswapmin(j, r, w)
values. Create a new copy of the topology tree, and then modify the structure of the
new topology tree and the 2-dimensional topology tree. As selected portions of the
2-dimensional topology tree are being rebuilt bottom-up, modify the information in
the treemax, nontreemin, pswapmin, and swapmin fields.

Theorem 7.1. Let G be a graph with m edges and n vertices for which we know
the minimum spanning tree T1 and the best swap for each nontree edge. The best-swap
structure R1 can be set up in O(m) time and space. A best-swap structure Ri can be
updated in O(m1/2) time, using O(m1/2) additional space.

Proof. The above algorithm indicates how to update basic clusters as a result
of a swap or resetting the cost of a tree edge to −∞. Once basic clusters have been
updated, for any basic cluster Vj that has changed, the fields associated with nodes
Vj × Vr must be recomputed. Then the fields for all ancestors of such nodes must be
recomputed. The above algorithm does this.

Basic vertex clusters can be found in O(m) time using procedure cluster from
section 2. Similar to that in [F1], a restricted multilevel partition, a topology tree,
and a 2-dimensional topology tree can be found in O(m) time. Generating all other
values can be done in time proportional to the number of them.

We next discuss the resources needed to update Ri. By Theorem 3.3, the time
and space to perform the structural changes to the data structure is O(m1/2). The
time to compute each value in a newly created node is constant if these values are
computed bottom-up. Thus the total time to update Ri is O(m1/2).

Theorem 7.2. The k smallest spanning trees of a weighted undirected graph can
be found in O(m log β(m,n) + min{k3/2, km1/2}) time and O(m+ min{k3/2, km1/2})
space.

Proof. The algorithm used is that described in section 6, with the best-swap
structure R1 just described. The algorithm uses the algorithm for finding the kth
smallest element in a min-heap, as discussed at the end of section 6. Correctness
follows from the discussion in section 6, plus Theorem 7.1.

As discussed in section 6, the time to find the minimum spanning tree and also
find a transformed graph with O(min{k,m}) edges will be O(m log β(m,n)). By the
discussion in section 6, there will be O(k) such updates. By the discussion at the end
of section 6, the cost of the kth smallest spanning tree can be found by performing
O(k) updates which produce O(k) values, from which one selects the kth smallest
in O(k) time. By Theorem 7.1, updating a best-swap structure for a graph with
O(min{k,m}) edges will take O((min{k,m})1/2) time. The time bound then follows.
By Theorem 7.1, each update will introduce O(min{k3/2, km1/2}) additional space.
The space bound then follows.

8. Best-swap data structures for embedded planar graphs. In this sec-
tion, we describe our ambivalent data structure to find a best swap for a spanning tree
of an embedded planar graph. We first discuss how to store in fully persistent edge-
ordering trees ambivalent information with respect to boundary sets, pseudoboundary
sets, newly interior sets, and separating sets. We then describe how to compute the

524 GREG N. FREDERICKSON

minimum-cost swap for a vertex cluster, given the appropriate information about the
cluster’s children. We next describe the best-swap structure and its updating. Fi-
nally, we claim the time and space bounds for our algorithm that finds the k smallest
spanning trees in a planar graph.

We first describe how to maintain ambivalent information in the edge-ordering
tree for each set of edges. Consider a cluster Vj of tree degree 2. Consider the path Pj
between the two boundary vertices of Vj . For any vertex u in Vj , we define proj(j, u),
the projection of u onto Pj , to be the vertex on Pj that is closest to u in the tree.
First, consider the left boundary set bsL(Vj). For each edge (u, v) in bsL(Vj) with
u in Vj , consider proj(j, u). For edges (u, v) in bsL(Vj), there may be some vertex
on Pj that has several vertices u projected onto it, and there may be some vertex
that has no vertices projected onto it. We consider the left modified path mL(Pj) in
which every vertex of mL(Pj) has exactly one vertex projected onto it except for the
endpoints, which have none. Between two consecutive vertices x and y of mL(Pj),
we shall have an edge whose cost is the cost of a maximum-cost edge on the subpath
between x and y in Pj . In the case that x and y represent the same vertex in Pj ,
this cost will be −∞. Note that mL(Pj) should be set up so as to be consistent with
the planar embedding. We define and represent the right modified path mR(Pj) in a
similar way. It is clear that a modified path is a generalization of a boundary set and
can be represented by an edge-ordering tree.

We represent information about a modified path within the edge-ordering tree as
follows.

• For each leaf, we keep
1. the cost of the edge in the boundary set,
2. the cost of the next edge in a given direction on the modified path,
3. the cost of the swap using this next edge,
4. the cost of the next edge in the other direction on the modified path,
5. the cost of the swap using that next edge.

• For each nonleaf node in the edge-ordering tree, we keep
1. the cost of the minimum-cost edge in the portion of the boundary set

represented in the subtree rooted at the nonleaf node,
2. the maximum of the costs of next edges in the given direction on the

modified path in the subtree,
3. the cost of the best swap if all edges in the portion of the boundary set

for the subtree were able to swap with their next edges in this given
direction,

4. the maximum of the costs of next edges in the other direction on the
modified path in the subtree,

5. the cost of the best swap if all edges in the portion of the boundary set
for the subtree can swap with their next edges in that other direction.

Given these values for any two siblings in the edge-ordering tree, the values for the
parent can be computed in constant time.

If cluster Vj has tree degree 1, then the information is represented in an especially
simple form. Since we know in which direction any nontree edge goes, we consider in
computing pswapmin the swap of any nontree edge with a tree edge in Vj . We let Pj
be the trivial path (of no edges) whose endpoints are both the single boundary vertex
of Vj . The endpoints of all edges in the boundary set of Vj then project onto this single
point in Pj , and all edges in m(Pj) will have cost −∞. For a cluster Vj of tree degree
2, the information corresponding to treemax, nontreemin, and pswapmin which we

AMBIVALENT DATA STRUCTURES 525

maintained in section 7 is now held within the edge-ordering trees for the modified
paths corresponding to the boundary sets, pseudoboundary sets, newly interior sets,
and separating set. For a cluster Vj of tree degree 1, the same is true, except that no
treemax is maintained.

As in section 7, we shall keep for each cluster Vj the cost swapmin(j) of the best
swap found within Vj . We discuss the additional changes that are necessary in the
handling of edge-ordering trees when two clusters Vj′ and Vj′′ are unioned to give
cluster Vj . This involves examining four cases. Suppose Vj′ is of tree degree 1 and
Vj′′ is of tree degree 3. We take swapmin(j) to be the minimum of swapmin(j′) and
c(f)− c(e), where e is the tree edge between Vj′ and Vj′′ and f is the edge of smallest
cost in the boundary set of Vj′ . In a fashion similar to that discussed before, the now
modified edge-ordering tree for the boundary set of Vj′ will represent the modified
edge-ordering tree for one of the two boundary sets of Vj .

Suppose Vj′ is of tree degree 1 and Vj′′ is of tree degree 2. We split and concatenate
boundary sets as in sections 4 and 5. For any remaining portions of these sets, we now
know in which direction the connection lies. For each newly interior set, we query
the corresponding edge-ordering tree to get the minimum swap in the appropriate
direction. (In particular, suppose Vj′ is “down” from Vj′′ . Then for the edge-ordering
tree that represents the portion of the left boundary set of Vj′′ that is newly interior,
identify the minimum-cost swap in a downward direction. Do the same for the portion
of the right boundary set of Vj′′ that is newly interior.) Also, we query the edge-
ordering tree for the remaining portion of each boundary set of Vj′′ to identify the
minimum-cost swap in an upward direction. We then take the minimum of the costs
of these swaps, along with the values swapmin(j′), swapmin(j′′), and c(f) − c(e),
where e is a maximum-weight tree edge on the path between the top of Vj′ and the
top of Vj′′ and f is the edge of smallest cost in the boundary set of Vj′ . Since Vj is
of tree degree 1, we must reset the cost of tree edges in the modified path to be −∞.
We do this symbolically by letting the cost of the maximum-cost edge in this be set
to −∞. In any subsequent splits that affect this node, we propagate this value down
as necessary in the edge-ordering tree. (This can be done by creating new nodes.)

When two boundary sets are concatenated together, values in the edge-ordering
trees must be changed. One important change is that on each side of the modified
path, we must find the maximum cost of a tree edge on the path between the nearest
pair of edges, one in the boundary set of Vj′ and the other in the boundary set of Vj′′ ,
that will be in boundary sets for Vj . This can be done by taking the maximum over
the tree edges in the edge-ordering trees representing newly interior edges on that
side, along with the tree edge between Vj′ and Vj′′ .

Suppose Vj′ and Vj′′ are both of tree degree 2. As discussed in sections 4 and 5,
we split and concatenate pseudoboundary and boundary sets and form newly interior
sets and a separating set. For each newly interior set, we query the corresponding
edge-ordering tree to find the minimum swap in the appropriate direction. (Suppose
Vj′ is “down” from Vj′′ . Then for the edge-ordering tree that represents the portion
of the left boundary set of Vj′′ that is newly interior, identify the minimum-cost swap
in a downward direction. Do the same for the portion of the right boundary set of Vj′′
that is newly interior. Then for the edge-ordering tree that represents the portion of
the left boundary set of Vj′ that is newly interior, identify the minimum-cost swap in
an upward direction. Do the same for the portion of the right boundary set of Vj′′ that
is newly interior.) For the separating set, we query the corresponding portions of the
edge-ordering trees for the boundary sets of Vj′ and Vj′′ to find the minimum swap in

526 GREG N. FREDERICKSON

the appropriate direction. (If the edges go from the left of Vj′′ to the right of Vj′ , then
for the edge-ordering tree that represents the portion of the separating set incident
on the left of Vj′′ , identify the minimum-cost swap in a downward direction, and for
the edge-ordering tree that represents the portion of the separating set incident on
the right of Vj′ , identify the minimum-cost swap in an upward direction. The mirror-
image case is similarly handled.) We then take the minimum of the cost of these
swaps, along with swapmin(j′), swapmin(j′′), and c(f) − c(e), where e is as before
and f is the minimum-cost edge over all the newly interior sets and the separating
set of Vj .

Finally, suppose Vj′ and Vj′′ are both of tree degree 1. We take the minimum
of swapmin(j′), swapmin(j′′), and c(f) − c(e), where e is as before and f is the
minimum-cost edge over all the newly interior sets of Vj . This concludes the exami-
nation of the four cases when two vertex clusters are unioned.

We next specify the swap structure. The best-swap structure Ri will consist of a
pointer to a persistent edge-ordered topology tree for tree Ti. Shared by all Ri will be
descriptions of the basic vertex clusters. The description of each basic vertex cluster
will be in the form of the original name of the vertex contained in it, along with each
edge incident on it, specified by the original names of the endpoints and the cost.
Each node Vj at level l in the topology tree will have the cost of the pair of edges
realizing its swapmin value, along with the level-l internal indices of the endpoints of
the edges. As discussed in section 5, each value in an edge-ordering tree associated
with node Vj will have its corresponding edge or pair of edges specified by a level-l′

internal index for some l′ ≤ l.
We discuss how to update a best-swap structure when a swap occurs. Perform the

procedure plane persist swap from section 5. Note that this procedure swaps nontree
edge f in for tree edge e. We also wish to reset edge e to have cost ∞, so we reset
the cost of this edge before rebuilding the edge-ordered topology tree. As we rebuild
these structures, we update the swapmin value and the values in the edge-ordering
trees of the affected nodes. As in section 7, a similar but simpler approach is used to
handle an update when no swap is performed but the cost of a tree edge is reset to
−∞.

The full algorithm for generating the k smallest spanning trees uses the algorithm
in section 6 and the persistent best-swap structure Ri.

Theorem 8.1. The k smallest spanning trees of a weighted undirected planar
graph can be found in O(n+ k(logn)3) time and O(n+ k(logn)2) space.

Proof. The algorithm used is that described in section 6, with the best-swap
structure R1 just described. The algorithm uses the algorithm for finding the kth
smallest element in a min-heap, as discussed at the end of section 6. Correctness
follows from the discussion in section 6, Theorem 5.4, plus the following. We first
verify that swapmin(j) is correctly computed when two clusters Vj′ and Vj′′ are
unioned to give cluster Vj . When Vj′ is of tree degree 1 and Vj′′ is of tree degree 3,
then no nontree edges are incident on Vj′′ , and swapmin(j) results either from within
Vj′ or from swapping the edge between Vj′ and Vj′′ with an edge in the boundary set
of Vj′ . When Vj′ is of tree degree 1 and Vj′′ is of tree degree 2, then swapmin(j)
results either from within Vj′ or within Vj′′ , or from swapping a tree edge between the
top of Vj′ and the top of Vj′′ with an edge contained in the boundary sets of both Vj′
and Vj , or from swapping a tree edge in Vj′′ with an edge in the boundary sets of both
Vj′′ and Vj , or from swapping an edge in a newly interior set with a tree edge. When
both Vj′ and Vj′′ are of tree degree 2, then swapmin(j) results either from within Vj′

AMBIVALENT DATA STRUCTURES 527

or within Vj′′ , or from swapping an edge in a newly interior set with a tree edge, or
from swapping an edge in the separating set with a tree edge. When both Vj′ and Vj′′
are of tree degree 1, the effect of all nontree edges in the boundary sets has already
been accounted for, except for swapping with the tree edge connecting Vj′ and Vj′′ .

The time claim in the theorem follows from Theorem 5.4, the discussion at the
end of section 6, and the following. We first consider setting up the trees for R1.
Clearly, the structure of the topology tree can be determined and set up in O(n) time.
The information in each leaf can be set up in constant time. Then the information
in nonleaf nodes can be determined in a bottom-up fashion, at a constant cost per
operation in setting up an edge-ordered topology tree as in section 5. To form the
value swapmin(j) for a cluster Vj , a constant number of operations must be performed
on edge-ordering trees. As discussed in Lemma 5.2 and Theorem 5.4, these operations
will take O((logn)2) time. The space follows from Theorem 5.4 and the observation
that a constant number of nodes per level are changed in the edge-ordered topology
tree for each update and that the edge-ordering trees at a node can be updated by
introducing O(logn) new nodes.

Note that for values of k < n, n + k(log k)3 would seem to be better than n +
k(logn)3. However, k(logn)3 < n for k < n/(logn)3, and for n/(logn)3 ≤ k ≤ n,
log k is Θ(logn).

9. Ambivalent data structures II: 2-edge-connectivity information. In
this section, we adapt the data structure from section 3 to give a data structure for
updating and querying 2-edge-connectivity information in the case of general graphs.
We first give two simple characterizations of 2-edge-connectivity and 2-edge-connected
components. We then discuss the set of “complete paths,” which are a partition of a
subset of the spanning tree, and “partial paths,” from which the complete paths are
formed. We show how to generate these paths for a cluster when the paths of the
children are known. We motivate how complete paths are used in answering a query.
We next define “pseudocovering edges,” which allow us to define an ambivalent data
structure. We discuss the additional information stored at a node in the 2-dimensional
topology tree and show how to generate it given the information of the children. We
then give a summary of the update structure, including the specification of information
associated with a basic cluster. We then describe how to perform queries and updates.
Finally, we establish the resource bounds of our approach.

Let G be an undirected graph. Graph G is 2-edge-connected if there is no edge
whose removal disconnects G. An edge whose removal disconnects G is called a bridge.
The 2-edge-connected components of G are the subgraphs that result when all bridges
are removed. We first present two propositions that characterize 2-edge-connectivity
and 2-edge-connected components. Let T be a spanning tree of graph G. For each
edge e in T , let cover(e) = 1 if there is a nontree edge f such that e is on the path in
T between the endpoints of f , and let cover(e) = 0 otherwise.

Proposition 9.1. Graph G is 2-edge-connected if and only if cover(e) = 1 for
each edge e in T .

Proposition 9.2. Vertices v′ and v′′ are in the same 2-edge-connected compo-
nent if and only if there is no edge e on the path from v′ to v′′ in T with cover(e) = 0.

We seek to build a data structure in which we can maintain cover values easily.
We partition the edges of the tree into two sets and maintain the cover information
about each set differently. We use the topology tree and 2-dimensional topology tree
to organize this information. Let the boundary tree be the set of all tree edges that
are on a path in the tree between any two boundary vertices. The first set of edges

528 GREG N. FREDERICKSON

consists of tree edges that are not in the boundary tree, and the second set consists of
all edges that are in the boundary tree. It is relatively easy to maintain information
about the first set, so we shall concentrate for the moment on the second set of tree
edges.

We next define partial and complete paths. We define a partition of the edges in
the boundary tree into paths, which we call complete paths. This partition is based
on the multilevel partition. The complete paths are built up from what we call partial
paths in a manner that we now describe. There will be a partial path associated with
each cluster, and there will be a complete path associated with each cluster that is
the union of two clusters of odd tree degree. For any multilevel partition with more
than one level, we have the following. No basic vertex cluster will have a complete
path associated with it. A basic vertex cluster of tree degree 1 will have a partial path
containing the path of zero length beginning and ending at its single boundary vertex.
A basic vertex cluster of tree degree 2 will have a partial path consisting of the path
in the tree between its two boundary vertices. A basic vertex cluster of tree degree
3 will have the partial path consisting of no edges and the single vertex contained in
the cluster.

Let PPj and CPj designate the partial path and complete path (if any) of vertex
cluster Vj . If the node in the topology tree for vertex cluster Vj has a single child
Vj′ , then PPj =PPj′ . When two vertex sets Vj′ and Vj′′ are unioned to form Vj ,
the partial paths are handled as follows. If Vj′ is of tree degree 1 or 2 and Vj′′ is of
tree degree 2, then the resulting vertex cluster will have a partial path that is the
concatenation of PPj′ and PPj′′ and the tree edge between them. If Vj′ is of tree
degree 1 and Vj′′ is of tree degree 3, then the resulting vertex cluster will have the
following two paths associated with it. First, it will have a complete path that is the
concatenation of PPj′ and the tree edge between the two clusters. Second, it will have
a partial path consisting of the single vertex of Vj′′ . If Vj′ is of tree degree 1 and Vj′′
is of tree degree 1, then the resulting vertex cluster will have a complete path that is
the concatenation of PPj′ and PPj′′ and the tree edge between them.

Three of the four cases discussed above are shown in Fig. 12. Each small circle
represents a single vertex. The top part of Fig. 12 shows two vertex clusters of tree
degree 2 being unioned together. Their partial paths are shown in bold, and the new
partial path for the unioned cluster is the path containing the bold edges and the
dashed edge. The middle part of Fig. 12 shows vertex clusters of tree degree 1 and 3
being unioned together. The partial path of the cluster of tree degree 1 is shown in
bold, and the new complete path for the unioned cluster is the path containing the
bold edges and the dashed edge. The bottom part of Fig. 12 shows two vertex clusters
of tree degree 1 being unioned together. Their partial paths are shown in bold, and
the new complete path for the unioned cluster is the path containing the bold edges
and the dashed edge. Note that the clusters shown are not basic clusters, which is
why the partial paths of clusters of tree degree 1 appear to start in the “middle” of
those clusters.

Note that a vertex cluster will have a complete path if and only if it is the union
of two clusters of odd tree degree. For any complete path generated when clusters
of tree degree 1 and 3 are unioned together, let the single vertex in the cluster of
tree degree 3 be called the top of the path. We say that complete path P ′ dominates
complete path P if and only if the top of path P is contained in P ′.

Consider the restricted multilevel partition shown in Fig. 3. The complete paths
are shown in Fig. 13. The complete path between vertices 12 and 13 will be associated

AMBIVALENT DATA STRUCTURES 529

Fig. 12. Combining partial paths.

with V23 of Fig. 3, the complete path between 8 and 10 will be associated with V28,
the complete path between 4 and 7 will be associated with V32, and the complete path
between 1 and 14 will be associated with V37. Each of the complete paths except the
last has a top, and these are 12, 10, and 4, respectively. The complete path from 1
to 14 dominates each of the other paths. Examples of partial paths are the following.
The partial path PP15 consists of the single vertex 11, PP16 is the path from 2 to 3,
PP25 and PP31 are both the path from 1 to 3, PP32 consists of the single vertex 4,
PP35 is the path from 1 to 4.

We describe how complete paths are used in answering a same-2-edge-component
query. When a same-2-edge-component query on vertices v′ and v′′ is made, the path
in the spanning tree T between v′ and v′′ is considered in the following way. Either
the path contains no edges in the boundary tree, or it contains at least one edge in
the boundary tree. In the former case, the path will be wholly contained in one basic
cluster, and information associated with the basic cluster will be examined to see if
there is a bridge between v′ and v′′. In the latter case, the path between v′ and v′′

will consist of three subpaths: the first and third subpaths will contain only edges not
in the boundary tree, while second subpath will contain only edges in the boundary
tree. First, information associated with the basic clusters containing v′ and v′′ will be
examined to see if there is a bridge on the first or third subpath. If no bridge is found
on these subpaths, then information associated with the complete paths containing
edges on the path from v′ to v′′ will be examined.

530 GREG N. FREDERICKSON

Fig. 13. Complete paths for the restricted multilevel partition in Fig. 3.

We maintain ambivalent information for Vj as follows. For boundary vertex w of
Vj and cluster Vr at the same level, a nontree edge f with one endpoint in each of
Vj and Vr is a pseudocovering edge for tree edge e if e is in PPj and e is on the path
in T from w to the endpoint of f in Vj . Pseudocovering edge f actually covers e if
w is on the path in T between the endpoints of f . For each boundary vertex w of
Vj and cluster Vr at the same level, we shall maintain a best pseudocovering edge in
the following sense. A best pseudocovering edge for Vj , Vr, and w is a pseudocovering
edge with respect to Vj , Vr, and w for the most tree edges in PPj . This set of tree
edges constitutes a subpath of PPj with one endpoint at w.

Consider the graph in Fig. 1, with a restricted multilevel partition in Fig. 3.
For cluster V18 and boundary vertex 6, edge 17 is a pseudocovering edge and also
a best pseudocovering edge (since it is the only one). However, edge 17 does not
actually cover any edges in V18. For cluster V27 and boundary vertex 5, edge 17 is a
pseudocovering edge. However, edge 17 is not a best pseudocovering edge for V27 and
boundary vertex 5 since it covers zero edges in the partial path of V27 up to vertex 5,
while edge 14 is a pseudocovering edge for V27 and vertex 5 that covers two edges in
the partial path of V27 up to vertex 5.

We next discuss carefully the additional information that will be maintained in
the nodes of the 2-dimensional topology tree. This includes pointers to partial and
complete paths associated with the node, the number of edges in the partial paths,
the number of edges from the top of a complete path to the first bridge (if any) in
that path, and the best pseudocovering edges.

We first discuss the length of various paths. Note that by distance we mean the

AMBIVALENT DATA STRUCTURES 531

number of edges in a path in the spanning tree. For the remainder of this section, we
shall use the term distance in this way. Let Vj be a vertex cluster of tree degree 1 or
2. Let length(j) be the length of the partial path in Vj . We store length(j) at the
node Vj × Vj in the 2-dimensional topology tree. If Vj is a basic vertex cluster, then
any value length(j) can be determined by inspection of Vj . If Vj is not a basic vertex
cluster, then any value length(j) can be computed in constant time given the lengths
of the partial paths of the children in the topology tree.

We next discuss the pseudocovering edges. Let Vj and Vr be two distinct clusters
at the same level, with Vj of tree degree 1 or 2. Let w be a boundary vertex of Vj ,
and let PPj be a partial path that contains w as an endpoint. For any vertex u in
Vj , recall from the previous section the definition of proj(j, u), which is the vertex on
PPj that is nearest to u in the tree. (Here we use a slight extension of the definition
from the last section, in that now we allow Vj to be also of tree degree 1.) For each
boundary vertex w of Vj , let maxcover(j, r, w) be the maximum of the distances from
w to proj(j, u) taken over the set of nontree edges (u, v) with u in Vj and v in Vr.
(If there is no edge with one endpoint in each of Vj and Vr, let maxcover(j, r, w) be
−∞.) A best pseudocovering edge is a pseudocovering edge that realizes a particular
maxcover(j, r, w) value. The values maxcover(j, r, w) for any particular value of j
and r are stored in node Vj × Vr of the 2-dimensional topology tree.

If Vj and Vr are basic vertex clusters, then maxcover(j, r, w) can be computed
for any particular j, all boundary vertices w of Vj , and all r by inspection of Vj .
Then maxcover(j, r, w) is the maximum distance d(w, proj(j, u)) taken over all edges
(u, v) with u in Vj and v in Vr. If Vj and Vr are not basic vertex clusters, then
maxcover(j, r, w) can be computed in constant time given the length values for all
children of Vj in the topology tree and the maxcover values for all children of Vj×Vr in
the 2-dimensional topology tree. We specify this computation in detail. If the node for
Vj in the topology tree has a single child Vj′ , then maxcover(j, r, w) is the maximum
of maxcover(j′, r′, w) taken over the one or two clusters Vr′ that form Vr. Otherwise,
Vj is formed from two clusters Vj′ and Vj′′ , and we assume without loss of generality
that w is in Vj′ . If Vj′′ is of tree degree 3, then the partial path of Vj is trivial and thus
for the single vertex w in Vj′′ , maxcover(j, r, w) is 0 if there is some nontree edge with
one endpoint in each of Vj and Vr and is −∞ otherwise. Such a nontree edge exists
if maxcover(j′, r′, w′) > −∞ for Vr′ a child of Vr and w′ the single boundary vertex
of Vj′ . Suppose that neither Vj′ nor Vj′′ are of tree degree 3. Let w′ be the boundary
vertex of Vj′ adjacent to Vj′′ , and let w′′ be the boundary vertex of Vj′′ adjacent to
Vj′ . Then maxcover(j, r, w) is the maximum taken over the one or two clusters Vr′
that form Vr of maxcover(j′, r′, w) and maxcover(j′′, r′, w′′) + 1 + length(j′). Note
that it is easy to keep track of an edge that yields each particular maxcover(j, r, w)
value. (This is needed when we consider deleting a tree edge.)

We next discuss partial and complete paths. Let Vj be a vertex cluster. We
maintain partial and complete paths in the following form. Each such path is repre-
sented by a balanced tree in which the leaves from left to right represent consecutive
edges on the path. Associated with each node in the tree is a value somecov such
that cover(e) = 1 for edge e on the path between boundary vertices if and only if
somecov(x) = 1 for some node x on the path from the root to the leaf representing
edge e. In addition, there is a value allcov such that allcov(x) is 1 if and only if
somecov(x) = 1 or allcov(y) = 1 for each child y of x. We assume that partial path
PPj and complete path CPj (if it exists) are specified as a pointer to a structure of
the above type.

532 GREG N. FREDERICKSON

We describe how to set up partial paths. If Vj is a basic vertex cluster, then the
partial path can be set up by inspection of Vj . If Vj is not a basic vertex cluster
and has just one child in the topology tree, then its partial path is the same as its
child. If Vj is the union of two clusters Vj′ and Vj′′ and is also not the set of all
vertices, then its partial path is formed by concatenating the relevant partial paths
of children, as discussed previously. The tree edge between Vj′ and Vj′′ is initially
assumed to have a cover value of 0. Certain somecov values are adjusted to reflect the
effect of the best pseudocovering edges between Vj′ and Vj′′ . For example, suppose
Vj , Vj′ , and Vj′′ are all of tree degree 2. Let w′ be the boundary vertex of Vj′ adjacent
to a vertex in Vj′′ , let w′′ the boundary vertex of Vj′′ adjacent to w′, and suppose
maxcover(j′, j′′, w′) 6= −∞. Then we modify the somecov values to reflect the fact
that a subpath of length maxcover(j′, j′′, w′) + 1, starting in Vj′ and ending at w′′,
is covered. This can be done by searching in the tree structure for the partial path to
find the extreme edges in the subpath. A set of O(logn) nodes in the tree cover all
and only the edges in the subpath, and the somecov values of these nodes should be
set to 1. The allcov values of these nodes and their ancestors should also be adjusted.
A similar operation would be performed with respect to maxcover(j′′, j′, w′′). Other
cases, in which Vj is of tree degree less than 2 (meaning that the sum of the tree
degrees of Vj′ and Vj′′ is less than 4), are handled similarly.

We next discuss complete paths. Let Vj be a vertex cluster. Suppose Vj is a cluster
that is the union of a cluster Vj′ of tree degree 1 and a cluster Vj′′ of tree degree 3.
Then the single vertex of Vj′′ is the top of the complete path at Vj . Complete path CPj
is the result of concatenating the edge between Vj′ and Vj′′ onto PPj′ . In addition,
the somecov and allcov values must be modified to show the effect of nontree edges
with precisely one endpoint in Vj′ . Let mcov(j) be one plus the maximum of the
values maxcover(j′, r, w), where r 6= j′ and w is the single boundary vertex in Vj′ .
Then modify the somecov values to reflect the fact that the first mcov(j) edges of
CPj from the top are covered. Let toptobr(j) be the distance from the top of the
complete path to the first bridge (if any) in the complete path. This can be found
by searching in the tree structure for the complete path. There will be a bridge in
the complete path if and only if the allcov value of the root of the tree structure is 0.
Search down from the root, always taking the child representing a subpath closer to
the top of the complete path when there are two children and both have allcov value
equal to 0. Note that if both Vj′ and Vj′′ are of tree degree 1, then Vj is the set of all
vertices, and there is no top of the complete path.

The operations performed on partial and complete paths are concatenation and
the update of allcov and somecov values. To make these operations efficient, we share
common subtrees in the tree representations of partial and complete paths. When
two paths are concatenated together, no nodes in the existing structures are changed
or deleted. Rather, new nodes are allocated to handle structural changes. When an
allcov or somecov value is changed, new copies are made of any node that has a value
change or has a descendant that has a value that changes. To prevent the space from
increasing without bound, a reference-count system should be used. The appropriate
pointers PPj and/or CPj are maintained in node Vj×Vj of the 2-dimensional topology
tree. Whenever a node Vj is identified as changing during an update, the appropriate
pointers PPj and/or CPj are set to null, and then any nodes whose reference counts
go to zero are deleted.

An update data structure Q will consist of a topology tree for a spanning tree T ,
a 2-dimensional topology tree, and representations of basic vertex clusters. Each node

AMBIVALENT DATA STRUCTURES 533

in the topology tree will have the index of the corresponding cluster and a pointer to
the node’s parent. Each node in the 2-dimensional topology tree will have the indices
of the corresponding clusters, along with the following. If the node is of type Vj ×Vj ,
it will have length, PP, CP, and toptobr values. If the node is of type Vj × Vr, it will
have maxcover values. The representation of a basic vertex cluster Vj will consist of a
list of vertices, a list of edges with both endpoints in the cluster (both tree and nontree
edges), and, for every other cluster Vr, a list of nontree edges with one endpoint in
each of Vj and Vr and the associated maxcover(j, r, w) values. In addition, we keep
information that will help to determine if there is a bridge between two vertices in
Vj , as discussed below.

We can find the cover values for edges not in the boundary tree as follows. Gener-
ate a reduced cluster for the basic cluster Vj as follows. The vertex set will be the same
in the reduced cluster as in the basic cluster. Any edge (tree or nontree) with both
endpoints in the basic cluster will be in the reduced cluster. For any nontree edge
(u, v) with u in the basic cluster, v not in it, and proj(j, u) 6= u, edge (u, proj(j, u))
will be in the reduced cluster. We then find the biconnected components of the re-
duced cluster. Any tree edge that is in a biconnected component consisting of more
than one edge will have nonzero cover value. To represent this information, we main-
tain the following. For each vertex u, keep the distance d(u, proj(j, u)), and also keep
the distance disttobr(u) to the bridge nearest to u on the path from u to proj(j, u).
(Let disttobr(u) be ∞ if there is no bridge between u and proj(j, u).) For each y on
a partial path in a basic cluster, keep the distance to both endpoints of the partial
path, and keep a data structure to find the lowest common ancestor [HT], [SV] with
respect to the tree rooted at y and induced on all vertices u such that proj(j, u) = y.

We are now ready to discuss how a same-2-edge-component(v′, v′′) query is han-
dled. Let v′ and v′′ be in basic clusters Vj′ and Vj′′ , respectively. If j′ = j′′ and
proj(j′, v′) = proj(j′, v′′), we do the following. Let y = proj(j′, v′) = proj(j′, v′′).
Find the lowest common ancestor z of v′ and v′′ in the tree rooted at y. It fol-
lows that v′ and v′′ are in the same bridge-component if and only if disttobr(v′) ≥
d(v′, y)− d(z, y) and disttobr(v′′) ≥ d(v′′, y)− d(z, y).

Suppose j′ 6= j′′ or proj(j′, v′) 6= proj(j′′, v′′). If disttobr(v′) < d(v′, proj(j′, v′))
or disttobr(v′′) < d(v′′, proj(j′′, v′′)), then v′ and v′′ are not in the same bridge-
component. Otherwise, we examine the set of complete paths containing edges in
the path from proj(j′, v′) to proj(j′′, v′′). We examine these paths as we search
up through the topology tree. At the top of each complete path in the sequence
except the highest one, we shall use the toptobr value to test if a bridge comes in the
relevant portion of the complete path. At the highest complete path, we examine the
appropriate allcov values to see if a bridge appears in the relevant portion.

We present the identification and the search of the complete paths in our algo-
rithm search cps. As input to our algorithm are the vertices v′ and v′′ and pointers
to the nodes representing Vj′ × Vj′ and Vj′′ × Vj′′ in the 2-dimensional topology tree,
where Vj′ and Vj′′ are the basic clusters containing v′ and v′′, respectively. The al-
gorithm sets variable isbridge to true if there is a bridge between proj(j′, v′) and
proj(j′′, v′′). The algorithm maintains two variables vert′ and vert′′, representing
vertices on the path from proj(j′, v′) to proj(j′′, v′′), to indicate that it has checked
for bridges between proj(j′, v′) and vert′ and between vert′ and proj(j′, v′). For the
partial path of a cluster containing v′ that it is examining, it maintains the distances
dist1′ and dist2′ from vert′ to the endpoints of the partial path, and similarly for v′′

and vert′′. It uses these distances when checking a complete path for a bridge in the

534 GREG N. FREDERICKSON

relevant portion of the complete path, then resets vert′ and vert′′ to reflect the ad-
ditional portions of the path from proj(j′, v′) to proj(j′′, v′′) that have been checked.
Note that it is not necessary to maintain both dist1′ and dist2′ if a preliminary search
is used to determine which direction to search in on a cluster of tree degree 2. We
have chosen not to employ such a preliminary search.

proc search cps(v′, v′′, j′, j′′)
isbridge← false
/* Initialize vert′, w1′, w2′, dist1′, dist2′, and r′ as follows: */
vert′ ← proj(j′, v′)
w1′ ← one endpoint of PPj′
w2′ ← other endpoint of PPj′
dist1′ ← distance from vert′ to w1′

dist2′ ← distance from vert′ to w2′

r′ ← j′

/* Initialize vert′′, w1′′, w2′′, dist1′′, dist2′′, and r′′ similarly. */
while Vr′ has tree degree greater than 0 and vert′ 6= vert′′ do

/* Handle Vr′ as follows: */
if Vr′ is of tree degree at most 2 and has a sibling
then

Vs′ ← sibling of Vr′
Let ws1′ and ws2′ be the endpoints of the PPs′
Without loss of generality, assume w2′ is adjacent to ws1′.
dist2′ ← dist2′ + 1 + length(s′)
w2′ ← ws2′

if Vs′ is of tree degree 3
then

if the toptobr value at the parent of Vr′ is less than dist2′

then isbridge← true
endif

endif
endif
Vr′ ← parent of Vr′
/* Handle Vr′′ similarly. */

endwhile
if vert′ 6= vert′′

then
Check the portion of CP (r′) between vert′ and vert′′.

if an allcov value along this portion of CP (r′) equals 0
then isbridge← true
endif

endif

This concludes the discussion of how to handle a same-2-edge-component query.
Let the above algorithm be called 2ec query.

Lemma 9.3. Algorithm 2ec query identifies a bridge between two given vertices
in O(logn) time.

Proof. We first consider correctness. If j′ = j′′ and proj(j′, v′) = proj(j′, v′′),
then no edge of the boundary tree is in the path in T from v′ to v′′. The path from

AMBIVALENT DATA STRUCTURES 535

v′ to v′′ will go from v′ to z to v′′, where z is the lowest common ancestor of v′ and
v′′ in the tree rooted at proj(j′, v′). Checking for a bridge in the two portions of this
path yields the correct result.

If j′ 6= j′′ or proj(j′, v′) 6= proj(j′, v′′), then the path from v′ to v′′ in T consists
of a subpath from v′ to proj(j′, v′) that is not in the boundary tree, followed by a
subpath from proj(j′, v′) to proj(j′′, v′′) in the boundary tree, followed by a subpath
from proj(j′′, v′′) to v′′ that is not in the boundary tree. A bridge in the first or
third subpath is identified by checking disttobr(v′) and disttobr(v′′). The second
subpath is checked correctly by search cps, as we now argue. Algorithm search cps
simultaneously searches up through the 2-dimensional topology tree from Vj′ and
Vj′′ . For each pair of ancestors Vr′ and Vr′′ of Vj′ and Vj′′ , respectively, the algorithm
maintains the distance of vert′ and vert′′ to the endpoints of the partial paths. In
particular (referring to Vr′ , with a similar argument for Vr′′), if Vr′ has no sibling,
then the same information will be maintained at its parent. If Vr′ is of tree degree
3, then it consists of a single vertex, which is necessarily vert′, so that the distances
to the endpoints of the partial path of the parent, even when Vr′ is unioned with a
sibling (of tree degree 1), will both remain 0. If Vr′ is of tree degree at most 2 and
has a sibling, then one of the two distances to endpoints of the partial path must be
updated. If the sibling is of tree degree 3, then the parent will contain a complete
path, in which case the portion of the complete path from vert′ to the vertex of Vs′
must be checked and vert′, dist1, and dist2′ must be reset. When the tree degree of
Vr′ is 0, then the complete path of Vr′ should be checked between vert′ and vert′′ in
the case that vert′ 6= vert′′.

We next consider the time. If v′ and v′′ are presented in terms of pointers, then
clusters Vj′ and Vj′′ can be identified in constant time; otherwise, O(logn) time can be
used to search a dictionary. The values proj(j′, v′) and proj(j′, v′′) can be looked up
in constant time. If j′ = j′′ and proj(j′, v′) = proj(j′, v′′), then the lowest common
ancestor z of v′ and v′′ can be found in constant time, and the values disttobr can
be accessed in constant time as well. If j′ 6= j′′ or proj(j′, v′) 6= proj(j′, v′′), then
checking the first and third subpaths takes constant time to access and compare
disttobr values. The second subpath can be checked in O(logn) time, as we now
argue. Each iteration of the while loop of search cps takes constant time. Searching
the complete path for the cluster of tree degree 0 will take O(logn) time since there
are O(logn) nodes in the complete path that cover exactly the portion of the path
between vert′ and vert′′, and it takes constant time to check the allcov value of each
node.

We consider our graph in Fig. 1, using the restricted multilevel partition of Fig. 3,
with its associated complete paths, as shown in Fig. 13. There is only one bridge in the
graph, edge (3, 4). The value toptobr value is 0 for each of the complete paths from 4
to 7, 8 to 10, and 12 to 14. Recall that each basic vertex cluster is a single vertex. The
query same-2-edge-component(6, 8) will determine that there are no bridges from 8 to
10 on that complete path, that there are no bridges from 6 to 4 on the corresponding
complete path, and that there are no bridges from 4 to 10 on the topmost complete
path. Thus 6 and 8 are in the same 2-edge-connected component. The query same-
2-edge-component(2, 7) would examine the complete path from 7 to 4 and then the
portion of the topmost complete path from 4 to 2, identifying a bridge, namely edge
(3, 4).

We next discuss how to insert or delete an edge. The approach builds on the way
an edge was inserted or deleted in section 3. If a tree edge is to be deleted, then we

536 GREG N. FREDERICKSON

first attempt to swap a nontree edge in to replace it. If there is no edge with which it
can swap, then deleting the edge splits the spanning tree and thus also the topology-
tree-based data structures. On each of the swap, insert, or delete operations specified
by the appropriate inflate or deflate, the following is done. First, all necessary changes
are made to the basic clusters, and all information local to the changed or new basic
clusters is computed. For a basic cluster, this information includes a description of
each new cluster Vj , consisting of a list of vertices, a list of edges with both endpoints
in Vj , and, for every other cluster Vr, a list of nontree edges with one endpoint in
each of Vj and Vr, as well as the partial path PPj , the values proj(j, u), length(j),
maxcover(j, r, w), and disttobr(u), and the lowest common ancestor structures for
each subtree of T rooted at a vertex on PPj . For any basic cluster Vr, regroup edges
with one endpoint in Vr and the other in a basic cluster Vj that has changed or is
new, and recompute maxcover(r, j, w) values.

After rebuilding certain basic clusters, rebuild portions of the 2-dimensional topol-
ogy tree bottom-up. At nodes that are examined, recompute the information in the
maxcover, PP, CP, length, and toptobr fields. Recall that rules were given earlier on
how to generate a partial path from the partial paths of the children, including the
maxcover values with an endpoint in each of two children. Also discussed is how to
generate the complete path, computing and using the mcov value.

We discuss a little more how partial and complete paths are handled, since sub-
trees in the tree structures representing these paths are shared, and there are thus no
parent pointers. Each vertex in a partial path will be identified by its distance from
the end of the path. Each internal node of the balanced tree representing the path
will contain a count of the number of edges in the subpath represented by that node.
Thus a vertex in a path can be located in the tree using this positional information.

Theorem 9.4. Let G be a graph with n vertices and m edges at the current
time. The update data structure Q can be set up in O(m) time and space. Structure
Q can be updated in O(m1/2) time, while still using O(m) space, and accommodates
same-2-edge-component queries in O(logn) time.

Proof. Given a spanning tree T for G, basic vertex clusters can be found in O(m)
using procedure cluster in section 2. Similar to that in [F1], a restricted multilevel
partition, a topology tree, and a 2-dimensional topology tree can be found in O(m)
time. Since there are O(m1/2) basic clusters, it follows from Lemma 2.2 that the
number of nodes in the topology tree is O(m1/2). Creating a partial path by con-
catenating the partial paths of the children will cost O(logn) for each node in the
topology tree, or O(m1/2 logn) overall. Generating all other values can be done in
time proportional to the number of them.

An edge insertion or edge deletion is handled by inflate or deflate, respectively.
Since all data regarding clusters that change is recomputed, the updating is per-
formed correctly. We next discuss the resources needed to update Q. The size of a
description of a basic vertex cluster is O(m1/2), and at most a constant number of
basic vertex clusters are changed by any update operation. The time to generate the
new information associated with a new basic cluster is O(m1/2) if we are given the
description of the basic cluster(s) from which it is formed. The number of nodes ex-
amined and created in generating the new 2-dimensional topology tree is O(m1/2) by
an argument similar to one in [F1]. The time to compute each value except mcov(j)
in a newly created node of the 2-dimensional topology tree is constant if these val-
ues are computed bottom-up. For mcov(j) values, these can be found by scanning
maxcover(j′, r, w) values. Each such maxcover value is from a node Vj′ × Vr that is

AMBIVALENT DATA STRUCTURES 537

examined as the 2-dimensional topology tree is rebuilt, so that each of O(m1/2) nodes
in the 2-dimensional topology tree can be charged a constant. There are O(logn)
nodes of the form Vj × Vj that change, so that O(logn) complete or partial paths
must be recomputed, at O(logn) time each. For the nearest bridge values, O(logn)
complete or partial paths can have their nearest bridges change. The new values can
be found in O(logn) time each. Thus the total time to update Q is O(m1/2). By
using a reference-count scheme, the form in the updated structure will be the same
as if the structure were recomputed from scratch. Thus the space usage will remain
O(m).

The correctness and time for queries are established by Lemma 9.3.

Acknowledgments. I am grateful to John Hershberger, Subhash Suri, Monika
Rauch, Pino Italiano, Carsten Bjerring, Haim Kaplan, Sean Ahern, Sean Vyain, and
Pok-yin Yu for especially helpful comments. I would also like to thank the referees
for their thorough reading of the manuscript and many helpful suggestions.

REFERENCES

[ADKP] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple
parallel tree contraction algorithm, J. Algorithms, 10 (1989), pp. 287–302.

[BFPRT] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds
for selection, J. Comput. System Sci., 7 (1972), pp. 448–461.

[BW] H. Booth and J. Westbrook, A linear algorithm for analysis of minimum spanning
and shortest-path trees of planar graphs, Algorithmica, 11 (1994), pp. 341–352.

[BH] R. N. Burns and C. E. Haff, A ranking problem in graphs, in Proc. 5th Southeast Con-
ference on Combinatorics, Graph Theory and Computing 19, Utilitas Mathematica
Publishing, Winnepeg, MB, Canada, 1974, pp. 461–470.

[CFM] P. M. Camerini, L. Fratta, and F. Maffioli, The k shortest spanning trees of a
graph, Technical Report Int. Rep. 73-10, IEE–LCE Politecnico di Milano, Milan,
Italy, 1974.

[CT] D. Cheriton and R. E. Tarjan, Finding minimum spanning trees, SIAM J. Comput.,
5 (1976), pp. 310–313.

[CV] R. Cole and U. Vishkin, The accelerated centroid decomposition technique for optimal
parallel tree evaluation in logarithmic time, Algorithmica, 3 (1988), pp. 329–346.

[DSST] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, Making data structures persis-
tent, J. Comput. System Sci., 38 (1989), pp. 86–124.

[E] D. Eppstein, Finding the k smallest spanning trees, BIT, 32 (1992), pp. 237–248.
[EGI] D. Eppstein, Z. Galil, and G. F. Italiano, Improved sparsification, Technical Report

93-20, Department of Information and Computer Science, University of California
at Irvine, Irvine, CA, 1993.

[EGIN] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification: A tech-
nique for speeding up dynamic graph algorithms, in Proc. 33rd IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 60–69.

[F1] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees,
with applications, SIAM J. Comput., 14 (1985), pp. 781–798.

[F2] G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and
k smallest spanning trees. in Proc. 32nd IEEE Symposium on Foundations of Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 632–641.

[F3] G. N. Frederickson, A data structure for dynamically maintaining rooted trees, in
Proc. 4th ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1993, pp. 175–184.

[F4] G. N. Frederickson, An optimal algorithm for selection in a min-heap, Inform. and
Comput., 104 (1993), pp. 197–214.

[FT] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596–615.

[G] H. N. Gabow, Two algorithms for generating weighted spanning trees in order, SIAM
J. Comput., 6 (1977), pp. 139–150.

538 GREG N. FREDERICKSON

[GGST] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, Efficient algorithms
for minimum spanning trees on directed and undirected graphs, Combinatorica, 6
(1986), pp. 109–122.

[GI] Z. Galil and G. F. Italiano, Fully dynamic algorithms for 2-edge-connectivity, SIAM
J. Comput., 21 (1992), pp. 1047–1069.

[Hy] F. Harary, Graph Theory, Addison–Wesley, Reading, MA, 1969.
[HT] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors,

SIAM J. Comput., 13 (1984), pp. 338–355.
[Hl2] D. Harel, private communication, 1983.
[KIM] N. Katoh, T. Ibaraki, and H. Mine, An algorithm for finding k minimum spanning

trees, SIAM J. on Comput., 10 (1981), pp. 247–255.
[L1] E. L. Lawler, A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem, Management Sci., 18
(1972), pp. 401–405.

[L2] E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,
and Winston, New York, 1976.

[MR] G. L. Miller and J. H. Reif, Parallel tree contraction part I: Fundamentals, in Ran-
domness and Computation, Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989,
pp. 47–72.

[M] K. G. Murty, An algorithm for ranking all the assignments in order of increasing cost,
Oper. Res., 16 (1968), pp. 682–687.

[SV] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and
parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[T1] R. E. Tarjan, Applications of path compression on balanced trees, J. Assoc. Comput.
Mach., 26 (1979), pp. 690–715.

[T2] R. E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path trees,
Inform. Process. Lett., 14 (1982), pp. 30–33.

[WT] J. Westbrook and R. E. Tarjan, Maintaining bridge-connected and biconnected com-
ponents on-line, Algorithmica, 7 (1992), pp. 433–464.

[Y] J. Y. Yen, Finding the k shortest loopless paths in a network, Management Sci., 17
(1971), pp. 712–716.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION∗

RAJEEV ALUR† , HAGIT ATTIYA‡ , AND GADI TAUBENFELD§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 539–556, April 1997 010

Abstract. We consider concurrent systems in which there is an unknown upper bound on
memory access time. Such a model is inherently different from the asynchronous model, where no
such bound exists, and also from timing-based models, where such a bound exists and is known a
priori. The appeal of our model lies in the fact that while it abstracts from implementation details,
it is a better approximation of real concurrent systems than the asynchronous model. Furthermore,
it is stronger than the asynchronous model, enabling us to design algorithms for problems that are
unsolvable in the asynchronous model.

Two basic synchronization problems, consensus and mutual exclusion, are investigated in a
shared-memory environment that supports atomic read/write registers. We show that Θ(∆ log ∆

log log ∆
)

is an upper and lower bound on the time complexity of consensus, where ∆ is the (unknown) upper
bound on memory access time. For the mutual exclusion problem, we design an efficient algorithm
that takes advantage of the fact that some upper bound on memory access time exists. The solu-
tions for both problems are even more efficient in the absence of contention, in which case their time
complexity is a constant.

Key words. distributed computing, consensus, mutual exclusion, timing-based algorithms

AMS subject classification. 68

PII. S0097539794265244

1. Introduction. The possibility and complexity of synchronization in a dis-
tributed environment depends heavily on timing assumptions. In the asynchronous
model, no timing assumptions are made about the relative speeds of the processes,
while a timing-based model assumes known bounds on the speeds of the processes.
Although the asynchronous model is weaker than the timing-based model, it pro-
vides a useful abstraction of the timing constraints, and algorithms designed for the
asynchronous model work correctly in all possible environments. However, sometimes
the assumption of asynchrony is too weak, and many problems have been shown to
be unsolvable in the asynchronous model. These impossibility results never seem to
bother practitioners, which brings up the question of whether such a model is the
correct abstraction for modeling real systems.

We focus on an intermediate model which provides an alternative abstraction
of the timing details of concurrent systems. We assume that there is an unknown
upper bound on memory access time. This assumption is inherently different from
the asynchronous model, where no such bound exists, and from timing-based systems,
where such a bound exists and is known a priori. The appeal of the model lies in the
fact that while it abstracts from implementation details, it is a better approximation of
the real concurrent systems than the asynchronous model. Furthermore, it is stronger
than the asynchronous model, enabling us to design algorithms for problems that are

∗ Received by the editors March 25, 1994; accepted for publication (in revised form) June 1,
1995. A preliminary version of this paper appeared in Proc. 26th Annual Symposium on Theory of
Computing (STOC), ACM, New York, 1994, pp. 800–809.

http://www.siam.org/journals/sicomp/26-2/26524.html
† Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974

(alur@research.bell-labs.com).
‡ Computer Science Department, Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il). The

research of this author was performed while visiting at AT&T Bell Laboratories and was partially
supported by United States–Israel Binational Science Foundation (BSF) grant 92-0233
§ The Open University, 16 Klausner Street, P.O. Box 39328, Tel-Aviv 61392, Israel and AT&T

Bell Laboratories, Murray Hill, NJ, 07974 (gadi@cs.openu.ac.il).

539

540 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

unsolvable in the asynchronous model. The importance of a timing-based model with
unknown bounds is also supported by an earlier work of Dwork et al. in the context
of message-passing systems [DLS88] (see also [ADLS91]).

We use a shared-memory model where processes communicate with each other
by reading and writing to shared registers. We assume that there is an upper bound,
denoted by ∆, on the time required for a single access to shared memory. There is no
lower bound on time needed to execute a step, but a process can delay itself explicitly
by executing a statement delay(d), for some constant d. The resulting model is called
the known-delay model or the unknown-delay model depending on whether or not the
bound ∆ is known a priori. An algorithm in the unknown-delay model is required
to be correct for all possible choices of ∆ and hence cannot refer to ∆ directly. We
show that the unknown-delay model is inherently different from both the known-
delay model and the asynchronous model by investigating two basic synchronization
problems, consensus and mutual exclusion.

In the consensus problem, processes need to agree on a common output in the
presence of possible failures [PSL80]. It has been proven that when even one process
can fail, the consensus problem is not solvable in asynchronous systems [DDS87,
FLP85, LA87]. In the known-delay model, there is an algorithm which tolerates any
number of failures and terminates within time O(∆) [AT96].

Our first result is a consensus algorithm that works in the unknown-delay model.
The algorithm guarantees that in every possible execution, processes never decide on
conflicting values and the decision value is an input value of some process. If every step
finishes within time ∆, then a process decides within time O(∆·fac−1(∆)) irrespective
of the failures of other processes, where fac−1 is the inverse of the factorial function;1

note that fac−1(d) = Θ(log d
log log d). Furthermore, the algorithm is fast: in absence of

contention, a process decides after a constant number of its own steps.

Our second result shows that the worst-case time complexity of any two-process
algorithm for consensus in the unknown-delay model is Ω(∆·fac−1(∆)); this implies
that our algorithm is time-optimal. The lower bound implies that not knowing ∆
multiplies the time complexity by a factor of fac−1(∆).

The mutual exclusion problem is to design a protocol that guarantees mutually
exclusive access to a critical section among a number of competing processes [Dij65].
A mutual exclusion algorithm satisfies the fast access property if in the absence of
contention, a process needs to execute only a constant number of steps in order to
enter or exit its critical section. In [Lam87], Lamport presented a fast mutual exclu-
sion algorithm that satisfies the fast-access property. In the presence of contention,
however small, the winning process in Lamport’s algorithm may have to check the
status of all of the other n processes before it is allowed to enter its critical section.
In the known-delay model, there is an algorithm that satisfies the fast-access prop-
erty without requiring the winning process to check the status of all of the other n
processes in the presence of contention [AT96]. Other algorithms which satisfy the
fast access property can be found in [CS93, MS93, Sty92, YA93].

Our third result is a mutual exclusion algorithm for the unknown-delay model
where in the presence of contention, a process needs to delay itself for 2 ·∆ time units
before entering its critical section. The algorithm has a “warm-up” period during
which the processes might have to access n registers before entering the critical section.
The algorithm always provides fast access in the absence of contention.

1 For a real number d > 0, fac−1(d) is the smallest natural number r such that r! ≥ d.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 541

For both problems, the knowledge of ∆ is beneficial: in the case of consensus,
the problem becomes solvable, and in the case of mutual exclusion, more efficient
solutions can be obtained. Our results imply that these benefits can be achieved even
when ∆ is unknown.

Dwork et al. have studied the consensus problem in message-passing systems
where there are unknown bounds on the time to deliver a message and on processes’
speed [DLS88]. Their work concentrates on the percentage of faulty processes (com-
pared to the total number of processes) that can be tolerated. Our consensus algo-
rithm is wait-free, that is, it can tolerate any number of crash failures.

Herzberg and Kutten [HK89] have studied a message-passing model where an a
priori upper bound on message delivery time is known but is much larger than the
actual message delay; this encourages the use of the (unknown) message delivery time
in the algorithm. They considered the problem of detecting faulty processes.

In section 2, a formal model is introduced and the issue of how to measure the time
complexity is discussed. Section 3 is dedicated to the consensus problem; matching
upper and lower bounds are presented for the worst-case time of a consensus algorithm.
The fast algorithm for mutual exclusion appears in section 4. We conclude with a
discussion of our results and directions for future work.

2. A timing-based model. In this section, we outline our model of distributed
systems. Processes are modeled as (possibly infinite) state machines communicating
via shared memory consisting of registers that support atomic reads and writes.

A configuration of the system includes the state of each process and the values of
all shared registers. An event is a single step of some process and is either a read of
a shared register, or a write to a shared register, or simply an update of the internal
state of a process. Processes can also execute a delay statement delay(d), for a positive
integer d, and its effect on a configuration is the same as a skip statement.

As in the standard interleaving semantics, an execution α of the system is an
alternating sequence s0

e0→ s1
e1→ · · · of configurations si and events ei such that (1)

the initial configuration s0 satisfies some initial conditions and (2) every configuration
si+1 is derived from the previous configuration si by executing the event ei.

We allow only crash failures: a failed process simply ceases to participate. For-
mally, a process p is nonfaulty in an execution α if and only if either α is finite or p
takes infinitely many steps in α.

The notion of an execution captures only the asynchronous part of the system
and not its timing requirements. Define the explicit delay of an event e, denoted by
d(e), to be n if e is the delay statement delay(n) and 0 otherwise. A time assignment
τ for an execution α is a mapping that assigns a real-valued occurrence time τi to
each event ei in α such that

1. the occurrence times are nondecreasing,
2. if α is infinite, then the sequence of occurrence times is unbounded,2 and
3. whenever two events ei and ej are consecutive steps of the same process, then

difference τj − τi is greater than d(ei).
The last requirement captures the assumption regarding the lower bounds on exe-
cution speeds. A delay statement delay(d) by a process p delays p for at least d
time units before it can continue. For other statements, we simply require that a
step of a process takes nonzero time.3 Note that adjacent events belonging to differ-
ent processes can be assigned the same time. As an example, consider the following

2 Our results do not depend on this second requirement.
3 Our definition allows delays of read or write steps to be as small as we want. In a context

542 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

execution, where each event is labeled with the process it belongs to:

αsample : s0
p:read(x)−→ s1

q:write(y)−→ s2
p:delay(4)−→ s3

p:read(y)−→ s4
q:read(x)−→ s5.

A time assignment τ for the above execution αsample is a sequence τ0 ≤ τ1 ≤ · · · ≤ τ4
such that

τ2 − τ0 > 0, τ3 − τ2 > 4, τ4 − τ1 > 0.

Thus a possible time assignment is

τsample : τ0 = 0, τ1 = 0, τ2 = 0.1, τ3 = 4.5, τ4 = 5.

The definition of the explicit delay of an event is also extended to finite executions: for
a finite execution α = s0

e0→ · · · sn, let d(α) denote the sum
∑

0≤i<n d(ei) of explicit
delays of all the events in α. For instance, d(αsample) equals 4.

The assumption about the time needed to access shared memory is reflected in
the following notion of admissibility. Let ∆ be a positive real number.

A timing assignment τ for an execution α is said to be ∆-admissible
if and only if whenever two events ei and ej are consecutive steps of
the same process, τj − τi ≤ ∆ + d(ei).

Thus if the ith step in an execution is a read or a write by process p, then the next
step by process p must be within time ∆; if it is the delay statement delay(d), then p’s
next step must be within time ∆ + d. If a process does not take the next step within
this bounded time period, then it can never take a step, implying a crash failure.

Every execution has several time assignments but may not have a ∆-admissible
time assignment for a given ∆; this is because delay statements restrict the possible
time assignments. An execution α is ∆-admissible if there exists a ∆-admissible time
assignment for α. For our sample execution αsample, the timing assignment τsample is
5-admissible (in fact, it is ∆-admissible if and only if ∆ ≥ 5). The execution αsample

itself is ∆-admissible for every ∆ > 4.
A problem such as consensus or mutual exclusion is usually specified by listing the

properties to be satisfied by all the executions. An algorithm A satisfies a property φ
in the asynchronous model if and only if all of its executions satisfy φ. While solving
a problem in the timing-based model with an upper bound of ∆ on the step time, a
key issue is whether the processes know the upper bound ∆.

In the known-delay model, we assume that individual processes know the upper
bound ∆. Consequently, delay statements can refer directly to this value, and a
process can enforce every other (nonfaulty) process to take at least one step by exe-
cuting the statement delay(∆). To solve a problem in this model, we want a family
of algorithms A(∆), parameterized by the upper bound ∆, such that for each ∆, all
∆-admissible executions of A(∆) satisfy all the requirements of the problem.

In the unknown-delay model, we assume that some upper bound exists, but it is
not known to individual processes a priori. In this model, we want a single algorithm
A that works for all possible values of ∆ without referring to its actual value. We
will say that an algorithm A satisfies a property φ in the unknown-delay model if for
every ∆, all ∆-admissible executions of A satisfy φ.

Before we consider specific problems, let us observe one property of algorithms in
the unknown-delay model. A property φ is a safety property if the following holds:

where a nonnegligible lower bound, say ε, on these steps is more appropriate, we can simply insert
the statement delay(ε) after every step.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 543

An infinite execution α satisfies φ if and only if all finite prefixes of α satisfy φ; that
is, a safety property has to be prefix-closed. The unknown-delay model is the same as
the asynchronous model as far as safety properties are concerned.

Lemma 2.1. An algorithm A satisfies a safety property φ in the asynchronous
model if and only if it satisfies φ in the unknown-delay model.

Proof. Clearly, if A satisfies a property φ in the asynchronous model, then it satis-
fies φ in the unknown-delay model. Suppose A does not satisfy φ in the asynchronous
model. Then there is an execution α of A which violates φ. If φ is a safety property,
then there is a finite prefix α′ of α such that α′ violates φ. The finite execution α′ is
∆-admissible for every ∆ ≥ d(α′). This implies the lemma.

Lemma 2.1 does not hold for liveness properties such as termination.
We now define our time complexity measures. Given an execution α and a time

assignment τ for it, suppose time(α, τ) is a measure of time taken according to τ . The
exact definition of time depends on the problem and on whether we are computing the
worst-case complexity or the contention-free complexity. For instance, in consensus,
time may denote the maximum time spent by a process between its first step and
its decision step in α. We denote by time∆(α) the maximum of time(α, τ) over all
∆-admissible time assignments τ for α. For an algorithm A, time∆(A) denotes the
maximum of time∆(α) over all ∆-admissible executions α of A.

Sometimes we will also need an estimate of how much time is spent due to explicit
delay statements. For an execution α, let min-time∆(α) denote the greatest lower
bound on time(α, τ) over all ∆-admissible time assignments τ for α; it gives the
minimum time spent by a process in α. For instance, if we define time(αsample, τ) as
τ4 − τ0, then for ∆ > 4, time∆(αsample) is 2∆ + 4 and min-time∆(αsample) is 4.

If time measures the contention-free complexity, which is the time spent by a
process when it executes by itself, then according to [Lam87, AT96], an algorithm is
fast if and only if time∆(A) is O(∆) and min-time∆(A) is zero. This implies that
in absence of contention, a process executes only a constant number of steps and no
explicit delay statements.

3. Time-adaptive consensus. In this section, we consider the problem of (bi-
nary) consensus in the unknown-delay model and provide tight bounds for its worst-
case time complexity.

The consensus problem is to design an algorithm in which all correct processes
reach a common decision based on their initial inputs [PSL80]. Formally, the problem
is defined as follows. There are n processes, and each process pi has an input value
ini ∈ {0, 1}. A process pi decides on a value v ∈ {0, 1} by executing the statement
decide(v). It may decide at most once. The consensus problem requires the following:

• Agreement: There exists a decision value out ∈ {0, 1} such that if a process
pi decides on the value v, then v = out.

• Validity: If a process pi decides on the value v, then v equals the input value
inj for some process pj .

Thus no two processes decide on conflicting values, and if all input values are the same,
then that value must be the decision value. Apart from the above safety requirements,
we want the correct processes to eventually decide the following:

• Wait freedom: Each process pi either takes only finitely many steps or decides
on some value.

The requirement of wait freedom means that one process cannot prevent another
process from reaching a decision, and thus the algorithm must tolerate arbitrary
number of process failures.

544 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

3.1. The algorithm. In this section, we present a consensus algorithm. The
algorithm always guarantees the safety requirements of agreement and validity. The
liveness requirement is ensured using timing assumptions. If every step finishes within
time ∆, then a process decides within time O(∆ · fac−1(∆)) irrespective of the fail-
ures of other processes, where fac−1 is the inverse of the factorial function. Thus the
algorithm satisfies wait freedom in the unknown-delay model. Furthermore, the algo-
rithm is fast: in the absence of contention, a process decides after a constant number
of steps without explicitly delaying itself.

Recall that there is no wait-free algorithm for consensus in the asynchronous
model. In the known-delay model, a process can use its knowledge about the speeds
of other processes by executing the statement delay(∆), and it is possible to design a
wait-free solution [AT96]. Let us see how such an algorithm can be constructed when
the upper bound is not known.

Initially, each process starts with some estimate, say 1, for ∆. The algorithm
proceeds in rounds. Each process has a preference for the decision value in each
round; initially, this preference is the input value of the process. In each round r,
processes execute a timing-based consensus algorithm with their current estimate of
∆, using their preferences for this round as inputs.4 The algorithm guarantees that
once processes have the same preference in some round, they will remain in agreement
and will eventually decide. The timing-based algorithm used in each round avoids
conflicting decisions even if the current estimate for ∆ is wrong. If no decision is made
in a round, then the processes advance to the next round, using a larger estimate for
the time bound ∆. Eventually, processes either decide or end up using the correct
estimate, in which case the timing-based algorithm guarantees that they will decide.

The code for the algorithm appears in Figure 1. The algorithm uses the following
shared data structures: an infinite array x[∗, 0..1] of bits, and an infinite array y[∗]; the
possible values of each y[i] are {⊥, 0, 1}. The decision value is written to the shared
bit out. We use only atomic reads and writes to the shared registers. In addition,
each process pi has a local register vi containing its current preference and a local
register ri containing its current round number. The estimate dr used in round r is
r!.

In round r, process pi first flags its preference v by writing 1 to x[r, v]. Then
the process checks the lock on this round by reading y[r] and writes its preference to
y[r] if y[r] has still its initial value ⊥. Process pi then reads the flag for the other
preference (denoted by v̄). If x[r, v̄] is not set, then every process that reaches round
r with the conflicting preference v̄ will find y[r] set to v. Consequently, process pi
can safely decide on v, and it writes the decision value to out. Otherwise, it waits for
dr (the estimate of ∆ for the current round) and then sets its preference for the next
round by reading y[r].

Two processes with conflicting preferences for round r will not resolve the conflict
only if both of them find y[r] = ⊥ first and one of them proceeds and chooses its
preference for the next round before the other one finishes the assignment to y[r].
However, if each process is required to finish the assignment within time ∆, and the
value of dr exceeds ∆, then this cannot happen. Also, notice that if all processes in
a round have the same preference, then a decision is reached in that round. These
observations, together with the fact that the sequence d1, d2, . . . increases without a
bound, ensure termination. The next section includes a complete proof of correctness
for this algorithm.

4 The idea of using preferences for consensus was used previously, e.g., in [AH90].

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 545

Shared registers: initially: out =⊥, y[∗] =⊥, x[∗, ∗] = 0.
Local registers: initially: ri = 1, vi = ini.
Constants: dr = r! for all r.

1 while out =⊥ do
2 x[ri, vi] := 1;
3 if y[ri] =⊥ then y[ri] := vi fi;
4 if x[ri, v̄i] = 0 then out := vi
5 else delay(dri);
6 vi := y[ri];
7 ri := ri + 1 fi
8 od;
9 decide(out).

Fig. 1. Time-adaptive consensus: the program for process pi with input ini.

3.2. Correctness. We now present the correctness proof of the algorithm. We
assume that a process keeps taking idling steps after it has decided. Thus an infinite
execution contains infinitely many steps of every nonfaulty process.

Lemma 3.1. If process pi decides on a value v, then inj = v for some process
pj.

Proof. If there are two processes that have different inputs, then the lemma holds
trivially. Suppose all processes start with the same input in. Consider the following
formula φ:

∀i. vi = in ∧ ∀r. y[r] ∈ {⊥, in} ∧ out ∈ {⊥, in}.

Initially, φ holds. It is easy to check that each transition of the algorithm preserves
φ. Thus φ is an invariant of the algorithm. The lemma follows immediately.

Let r ≥ 1 and v ∈ {0, 1}. Formally, a process pi reaches round r if it executes
statement 2 (see Figure 1) with ri = r. A process pi prefers the value v in round r if
vi = v when pi reaches round r. A process pi commits to the value v in round r if it
executes the assignment out := v with ri = r.

Lemma 3.2. If all processes reaching round r have the same preference v for
round r, then all nonfaulty processes reaching round r commit to v in round r.

Proof. Suppose all processes reaching round r have the same preference v for round
r. Thus whenever some process pi sets the bit x[r, vi] to 1, vi equals v. Consequently,
x[r, v̄] = 0 is an invariant. Now consider a process p reaching round r. Assuming
that p continues to take steps in round r, p will find x[r, v̄] unset at statement 4 and
commit to the value v.

Lemma 3.3. If some process commits to v in round r, then all processes reaching
round r + 1 prefer v in round r + 1.

Proof. Suppose some process p commits to v in round r. Since p finds x[r, v̄]
unset at statement 4, it follows that every process with preference v̄ for round r finds
y[r] 6=⊥ at statement 3. This implies that for a committed value v, y[r] 6= v̄ is an
invariant of the program. Since a process decides on its preference for round r+ 1 by
reading y[r], the lemma follows.

Lemma 3.4. No two processes decide on conflicting values.
Proof. Suppose two processes decide on conflicting values. This means that there

546 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

exist nonfaulty processes p0 and p1 such that p0 commits to 0 in round r and p1

commits to 1 in round r′. We will obtain a contradiction.
First, suppose that r 6= r′. Without loss of generality, let r < r′. Since p0 commits

to 0 in round r, by Lemma 3.3, all processes reaching round r + 1 prefer 0 in round
r+1, and consequently, by Lemma 3.2, if nonfaulty, commit to 0 in round r+1. Since
p1 reaches round r+1 and is nonfaulty, it follows that p1 commits to 0 in round r+1,
a contradiction.

Now suppose that r = r′. In round r, process p0 prefers 0 and process p1 prefers
1. If process p0 finds x[r, 1] unset at statement 4, then process p1 must find x[r, 0] set
at statement 4, and vice versa. Consequently, it is not possible that both commit in
round r.

The proof of termination relies only on the fact that the sequence of delays,
d1, d2, . . . is unbounded. The termination is guaranteed by the following lemma.

Lemma 3.5. In a ∆-admissible execution, if dr ≥ ∆, then all processes reaching
round r + 1 have the same preference in round r + 1.

Proof. Assume dr ≥ ∆. Consider a ∆-admissible execution α and a ∆-admissible
time assignment τ for it. Let k be the smallest index such that the event ek is the
assignment vi := y[r] (at statement 6) by some process pi that reaches round r + 1.
Let the event el correspond to the delay statement delay(dr) (at statement 5) by
process pi. We know that τk − τl > dr and hence τk − τl > ∆.

Before it reaches the delay statement, process pi either finds y[r] 6=⊥ or assigns
its preference for round r to y[r]. Hence in states sm, for m ≥ l, y[r] 6=⊥. Let y[r] = v
in state sk. We want to prove that y[r] = v in all states sm for m ≥ k. Suppose not.
Let pj , j 6= i, be a process that writes to y[r] (at statement 3) at step k′ > k. Let el′
be the event that pj tests the condition y[r] =⊥ (at statement 3). Since y[r] 6=⊥ in
all states sm for m ≥ l, we have l′ < l. This implies τk′ − τl′ ≥ τk − τl > ∆. Since
l′ and k′ are consecutive steps of pj , this contradicts the ∆-admissibility of τ . Thus
y[r] = v in all states sm for m ≥ k.

Since every process reaching round r+ 1 chooses its preference for round r+ 1 by
reading y[r] at some step m ≥ k, the lemma follows.

If dr ≥ ∆, then Lemmas 3.5 and 3.2 imply that in a ∆-admissible execution, no
process can reach round r + 2, and every nonfaulty process decides in round r + 1 or
lower. If the sequence d1, d2, . . . is unbounded, then for every ∆, there is some r such
that dr ≥ ∆. Consequently, we get termination in each ∆-admissible execution. This
implies the following theorem.

Theorem 3.6 (correctness). The algorithm in Figure 1 is a correct solution to
wait-free consensus in the unknown-delay model.

3.3. Time complexity. Now let us analyze the time complexity of the algo-
rithm. Recall that the worst-case time complexity of the algorithm is the maximum
time after which a nonfaulty process decides.

Formally, given an execution α and a time assignment τ , let time(α, τ) be the
maximum difference τk − τl such that both the events el and ek are nonidling steps
of the same process. Recall that a process takes idling steps only after it has decided.
The worst-case time complexity of an algorithm A when the upper bound is ∆ is then
time∆(A) as defined in section 2.

Lemma 3.7. Let R be the smallest index such that dR ≥ ∆. Then the worst-case
time complexity time∆(A) is at most 9(R+ 1)∆ + dR.

Proof. Let dR ≥ ∆ and dR−1 < ∆. Consider an execution α and a ∆-admissible
time assignment τ . Let p be a process. Since dR ≥ ∆, by Lemmas 3.5 and 3.2, either

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 547

p fails or p decides in round R + 1 or lower. For the worst-case analysis, we assume
that p decides in round R+ 1. For each round r, suppose p enters round r at the irth
step in α.

Let ek be the last nonidling step of process p. The time taken by p is τk − τi1 .
In each round r, p executes only a constant, at most 8, number of steps, possibly
including a delay statement. By ∆-admissibility, we have τir+1 − τir ≤ 8∆ + dr, for
any round r. For r < R, dr < ∆. Hence τiR+1

− τi1 ≤ 9R∆ + dR. In round R + 1,
pi takes only a constant, at most 7, number of steps without executing the delay
statement. Hence τk − τiR+1

≤ 7∆. Hence τk − τi1 ≤ 9(R + 1)∆ + dR. The lemma
follows.

The time complexity of the algorithm depends on the choice of the sequence dr.
If the sequence is fast growing, then the value of R will be small. However, if the
sequence grows too fast, then the value of dR can be much larger than ∆ itself. For
instance, if we let dr = r, then R = ∆ = dR, and the time complexity is O(∆2).
For dr = 2r, R = O(log ∆), dR ≤ 2·∆, and the time complexity is O(∆·log ∆). For
dr = 22r , R = O(log log ∆), but dR ≤ 2∆, giving time complexity O(2∆). As we
shall see (as part of the lower-bound proof in the next section), the best sequence is
dr = r!.

Let fac−1 be the inverse of the factorial function, that is, fac−1(d) is the smallest
integer r such that r! ≥ d, for any real d > 0; note that fac−1(d) = Θ(log d

log log d).

In the case where dr = r! for all r, R = fac−1(∆), and dR = (fac−1(∆))!. Hence
dR ≤ ∆·fac−1(∆). This gives the overall complexity of O(∆·fac−1(∆)).

Theorem 3.8 (time complexity). For the algorithm in Figure 1 with the sequence
of delays dr = r!, for every ∆, the worst-case time complexity time∆(A) is bounded
by 10·∆·(fac−1(∆) + 1).

Note that our algorithm uses unbounded space. In a ∆-admissible execution, only
the first (fac−1(∆) + 1) elements of the arrays x and y are used. Since fac−1(∆) is
small for any reasonable value of ∆, space is not a real problem. For instance, if our
time unit is a second and the upper bound ∆ is 1000 years, then fac−1(∆) is 14.

Finally, let us consider the contention-free complexity of the algorithm. Infor-
mally, we want the contention-free complexity to indicate the time taken by a process
when it executes by itself without interference from other processes. Formally, given
an execution α and a time assignment τ , let cf-time(τ, α) be the maximum difference
τj − τi such that both events ej and ei are nonidling events of the same process p,
and every other process q either has decided before step i or has not taken any step
before step j.

The contention-free time complexity of algorithm A for the upper bound ∆ is then
given by cf-time∆(A) and min-cf-time∆(A). Our algorithm has low contention-free
complexity.

Theorem 3.9 (fast decision in the absence of contention). For the algorithm in
Figure 1, for every ∆, cf-time∆(A) = 7·∆, and min-cf-time∆(A) = 0.

Proof. Consider an execution α and indices i and j such that event ei is the first
event of process p, event ej is the decision event of p, and every other process q either
has decided before step i or has not taken any step before step j. There are two cases
to consider.

If some process q has decided before process p starts, then the value of out is
different from ⊥ in state si, and p takes at most two steps before deciding, both of
which have zero explicit delay. This implies that if τ is a ∆-admissible assignment
for α, then τj − τi ≤ 2∆. Furthermore, since p does not execute any delay statement,

548 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

the difference τj − τi can be made as small as possible, implying that the infimum of
τj − τi over all ∆-admissible time assignments for α is 0.

If no process q has taken a step before event ei, then p is the first process to start,
and no process starts before p decides. In this case, p decides in the first round after
taking at most seven steps, again without executing any delay statement. In this case,
the maximum of τj − τi over all ∆-admissible time assignments for α is 7∆, and the
infimum is 0.

We point out that if some processes fail without deciding before a process p starts,
then even if p runs by itself, it may execute for O(∆·fac−1(∆)) time. Thus failures of
processes can lead to the worst-case time complexity.

3.4. Lower bound on time complexity. For the algorithm of section 3, if ∆
is the upper bound on step time, then a process decides within time O(∆·fac−1(∆)).
If a process knew the value of ∆ in advance, then it can execute the algorithm with
d1 = ∆, ensuring termination in the second round, within time O(∆). Thus the
lack of knowledge of the value of ∆ multiplies the time complexity by a factor of
fac−1(∆). In this section, we prove this increase in cost to be inherent: we prove
that any algorithm for solving two-process consensus in the unknown-delay model
has worst-case time complexity of O(∆·fac−1(∆)).

To prove the lower bound, we restrict our attention to a system with two processes,
p1 and p2. Let A be an algorithm for wait-free consensus in the unknown-delay
model. Consider an execution α = s0

e0→ s1
e1→ · · ·. The execution can be partitioned

into blocks, each containing a sequence of events by the same process. Formally, let
b0, b1, . . . be an increasing sequence of integers with b0 = 0 such that for each i,
all of the steps indexed from bi to bi+1 − 1 are of the same process, and the step
indexed bi+1 is of a different process. Thus the ith block is the execution fragment

sbi
ebi→ sbi+1 · · ·

ebi+1−1

→ sbi+1
consisting of steps of a single process.

By Lemma 2.1, A must also guarantee safety in the asynchronous shared-memory
model. Therefore, from the proof of the impossibility of solving consensus in the
shared-memory asynchronous model (e.g., [LA87, Theorem 4.1]), we can deduce the
following.

Lemma 3.10. There exists an infinite sequence of executions α0, α1, . . . such that
for all k ≥ 0, (1) αk is a finite execution with k + 1 blocks, (2) αk+1 is an extension
of αk, and (3) no process has decided at the end of αk.

Let us recall the definition of the time complexity of consensus. Given an execu-
tion α of A and a ∆-admissible time assignment τ for α, whenever ei and ej are the
(nonidling) steps of the same process, we have time∆(A) ≥ τj − τi. Now we consider
another definition needed for the proof. Given an execution α, define di to be the
total sum of the delays in delay statements appearing in the ith block. With each
execution we can associate a sequence d0, d1, . . ., called the sequence of block delays .

Lemma 3.11. Let α be a finite execution with k + 1 blocks with k ≥ 1 such that
no process has decided at the end of α. Let d0, d1, . . . , dk be the associated sequence
of block delays, and let ∆ ≥ 1 +

∑k−1
i=0 di. Then time2∆(A) ≥ k ·∆ + dk.

Proof. Let α be s0
e0→ · · · sn−1

en→ sn consisting of k + 1 blocks starting at indices
b0, . . . , bk. Without loss of generality, assume that the last block corresponds to steps
of process p1.

Since no process has decided and A satisfies wait freedom, we know that p1 can
take an additional step, en+1; let α′ denote the extended execution. Now we construct

a time assignment τ for α′ as follows. Let ∆ ≥ 1 +
∑k−1

i=0 di.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 549

We want each block, except the last one, to take ∆ time. For every 0 ≤ j ≤ n,
• if ej is the first step of the ith block (i.e., j = bi), for i = 0, . . . , k, then let τj

be i·∆; otherwise,
• if ej is the last step of the ith block (i.e., j = bi+1− 1), for i = 0, . . . , (k− 1),

then let τj be (i+ 1)·∆; otherwise,
• let τj be τj−1 + d(ej−1) + 1/n.

For each block i, the sum of the explicit delays of events in the block i is di, and the
number of events in the block i is bounded by n. By the choice of ∆, it is clear that
the sequence of values defined above is nondecreasing. Furthermore, let the time τn+1

of the last step be τn + d(en) + ∆.
Now consider events ej and ej′ that are consecutive steps of the same process.

There are two cases to consider.
1. Both ej and ej′ belong to the same block (i.e., j′ = j + 1). Then τj′ − τj >

d(ej). In each block, except possibly the last one, the difference between the time of
the last step and the first step is ∆. In the last block, the time of the first step is
k·∆, and the times of the remaining steps are increased only when p1 executes delay
statements. Hence τj′ − τj ≤ ∆ + d(ej).

2. The event ej is the last event of a block, say the ith block, and ej′ is the first
event of the (i + 2)th block. In this case, τj′ = (i + 2)·∆. If the ith block has only
one event, then τj = i·∆; otherwise, τj = (i+ 1)·∆. Thus ∆ ≤ τj′ − τj ≤ 2∆.

This implies that τ is a legal time assignment for α, and furthermore, it is 2∆-
admissible (i.e., we can choose 2∆ as the upper bound). Note that the total delay in
the last block may be larger than 2∆. Since only p1 takes steps in the last block, this
means that p2 has failed if we put an upper bound of 2∆ on the step times.

Finally, observe that the time of the last step τn+1 is (k+ 1)·∆ + dk. The time of
the first step of p1 is either 0 or ∆ depending on whether the first or the second block
corresponds to steps of p1. This means that p1 has executed for at least k ·∆ + dk
time without deciding. Hence time2∆(A) ≥ k ·∆ + dk.

Lemma 3.12. There exists an infinite nondecreasing sequence of values ∆1,∆2, . . .
such that for all k ≥ 1, for all ∆ ≥ ∆k, 2time∆(A) ≥ k ·∆ + (∆k+1 −∆k).

Proof. Consider the infinite sequence of executions α0, α1, . . . of Lemma 3.10.
Note that the lemma implies that αk+1 is obtained from αk by adding one block. Let

dk be the delay of the last block of αk. Let ∆k = 2(1 +
∑k−1

i=0 di). For each k ≥ 1,
by applying Lemma 3.11 to αk, we get that for all ∆ ≥ ∆k, time∆(A) ≥ k·∆/2 + dk.
The lemma follows since dk = (∆k+1 −∆k)/2.

To complete the proof of the lower bound, we present the following technical
lemma.

Lemma 3.13. For any nondecreasing sequence ∆1,∆2, . . . of real numbers, for
infinitely many indices k, k ·∆k + (∆k+1 −∆k) ≥ ∆k ·fac−1(∆k).

Proof. The proof is by contradiction. Suppose there exists a nondecreasing se-
quence ∆1,∆2, . . . and an index i such that for all k ≥ i, k ·∆k + (∆k+1 − ∆k) <
∆k ·fac−1(∆k). Define mk = fac−1(∆k). By definition, for all k,

(mk − 1)! < ∆k ≤ mk!.

The proof follows the following steps:
(1) For all k ≥ i, we have k ·∆k + (∆k+1 −∆k) < ∆k ·mk. Also, ∆k+1 −∆k ≥ 0

for all k. Hence mk > k for all k ≥ i.
(2) Let k ≥ i. We have

∆k+1 < (mk − k + 1)·∆k ≤ (mk − k + 1)·mk! < (mk + 1)!.

550 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

Hence mk+1 ≤ mk + 1. Thus the sequence of values (mk − k), for k ≥ i, is nonin-
creasing. From (1), (mk − k) is positive for all k ≥ i. That is, (mk − k), k ≥ i, forms
a nonincreasing infinite sequence of positive numbers. Hence there exists a positive
integer a and an index j such that mk − k = a for all k ≥ j.

(3) Choose k ≥ j such that k > (a + 1)2. We have ∆k+1 < (a + 1) ·∆k, and
∆k+2 < (a+ 1)·∆k+1. Hence

∆k+2 < (a+ 1)2 ·∆k ≤ (a+ 1)2 ·mk! < k ·(a+ k)! < (a+ k + 1)!.

This implies mk+2 ≤ a + k + 1. This contradicts the assertion mk+2 = a + k + 2 of
(2), which completes the proof.

Lemma 3.13, together with Lemma 3.12, implies the following.
Theorem 3.14 (lower bound on time complexity). For any algorithm A for

solving two-process wait-free consensus in the unknown-delay model, for every real
number d, there exists ∆ > d such that the worst-case time complexity time∆(A) is
at least (∆·fac−1(∆))/2.

Proof. Lemma 3.12 gives a nondecreasing sequence ∆1,∆2, . . . such that for all
k ≥ 1, for all ∆ ≥ ∆k, 2time∆(A) ≥ k ·∆ + (∆k+1 − ∆k). There are two cases to
consider:

1. The sequence ∆1,∆2 . . . is unbounded: For every real value d, there is an
index i such that for all k ≥ i, ∆k > d. Using Lemma 3.13, there is an index
k ≥ i such that ∆k > d and k ·∆k + (∆k+1 − ∆k) ≥ ∆k · fac−1(∆k), and hence
2time∆k

(A) ≥ ∆k ·fac−1(∆k).
2. The sequence ∆1,∆2 . . . is bounded: There is a value d∗ such that ∆k < d∗

for all k. Let ∆ ≥ d∗. Then by Lemma 3.12, for all k, 2time∆(A) ≥ k ·∆. Choosing
k > fac−1(∆) gives 2time∆(A) > ∆·fac−1(∆).

Notice that our lower bound implies that for every algorithm, there is an un-
bounded sequence of values ∆ for which the worst-case time complexity is at least (∆·
fac−1(∆))/2. This does not rule out the existence of a (different) unbounded sequence
of values ∆ for which the worst-case time complexity is less than (∆·fac−1(∆))/2. For
the algorithm of Figure 1, if we choose the sequence dr = 22r , then setting ∆ = dr
implies termination in O(log log r) rounds, giving the worst-case time complexity of
O(∆ · log log ∆); however, if we set ∆ = dr + 1, the worst-case time complexity is
O(2∆).

4. Time-adaptive mutual exclusion. The mutual exclusion problem is to de-
sign a protocol that guarantees mutually exclusive access to a critical section among
a number of competing processes [Dij65]. A solution to the problem should satisfy
the following two properties:

• Mutual exclusion: No two processes are in their critical section at the same
time.
• Deadlock freedom: If some process p starts executing its algorithm, then

eventually some process (possibly different from p) is in its critical section.
We assume that each of the potentially n contending processes has a unique iden-
tifier taken from the set {1, . . . , n}. While deadlock freedom is essential, starvation
freedom—any process that is trying to enter its critical section eventually does enter
its critical section—is less important in systems where contention is rare. When con-
tention is rare, it is important to design algorithms satisfying the fast-access property:

• Fast access: In the absence of contention, a process executes only a constant
number of steps in order to enter its critical section and only a constant
number of steps in order to execute the exit code.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 551

In [Lam87], Lamport presented a mutual exclusion algorithm that satisfies the fast-
access property. However, in the presence of contention, however small, the winning
process may have to check the status of all of the other n processes before it is allowed
to enter its critical section. Alur and Taubenfeld overcome this limitation in the
known-delay model [AT96] (see also [AT93]). Their algorithm satisfies the fast access
property, and furthermore, in the presence of contention, a process does not have to
check the status of all of the other n processes before it can enter its critical section,
but it may need to delay itself for 2 ·∆ time units. In the next section, we describe
an algorithm with similar properties for the unknown-delay model. Other algorithms
which satisfy the fast-access property can be found in [CS93, MS93, Sty92, YA93].

4.1. The algorithm. We now present a fast mutual exclusion algorithm for the
unknown-delay model. Since in this model a time bound on the speed exists but is not
known, the processes keep an estimate of this time (stored in a shared register) and
update it when it is noticed that the estimate is not accurate. An entry to the critical
section which involves an update (of the estimate) is going to be much slower than an
entry without an update. However, the algorithm has the property that at most ∆
updates are necessary. As we show, the algorithm is also time efficient when there is
contention. As is usually assumed when designing a mutual exclusion algorithm, we
also assume that process failures do not occur.

The precise code for the algorithm is given in Figure 2. Notice that the statement
await condition is an abbreviation for while ¬condition do skip (and hence may
involve many accesses to the shared memory). The algorithm is composed of two
basic algorithms. The first is Alur and Taubenfeld’s algorithm (abbreviated AT)
for fast mutual exclusion using a timing assumption [AT96]. Statements 1–10 are
the entry code of AT and statements 29–31 are its exit code. We point out that
in the original AT, the register bound is initially set to ∆ (which is assumed to be
known). Furthermore, while AT satisfies mutual exclusion only when bound ≥ ∆, the
proof of deadlock freedom does not depend on the value of bound. We will exploit
this property in our construction. The critical section of AT is now replaced by
Lamport’s fast mutual exclusion algorithm, statements 11–28. These two algorithms
are combined along with a mechanism for estimating and updating the current bound.
All references to the register update and the array trying belong to this mechanism
and are not part of the original AT and Lamport’s algorithms.

Intuitively, the algorithm works as follows. First, each process executes AT, using
the current estimate bound. If the estimate is correct, or if there is no contention, only
one process will proceed to the next stage (i.e., get to statement 11). However, it is
possible that the current estimate used by the processes is incorrect. In this case, more
than one process may proceed to the next stage, and therefore, to guarantee mutual
exclusion, we embed Lamport’s fast algorithm at this point. If a process discovers
contention while executing Lamport algorithm, it “knows” that the current estimate
used is incorrect and has to be increased. Contention is discovered when either of the
conditions in statements 14 and 18 evaluates true.

To avoid complications, only a process that enters its critical section (statement
23) is allowed to update the register bound. This guarantees that no two processes try
to update the estimate at the same time, and thus the value of bound never decreases.

The update is done as follows. First, the process sets update to 1, signaling
that it wants to make an update (statement 22). Then it waits until each active
process returns to the beginning of its trying code and waits for update to become 0
(statement 2). It is easy to check that once update is 1, eventually every process will

552 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

Initially: y = 0, yy = 0, z = 0, bound = 1, update = 0, trying[i] = 0, and b[i] = 0 for all i.

1 start1: repeat
2 if update = 1 then trying[i] := 0; await update = 0 fi;
3 trying[i] := 1;
4 x := i;
5 until (y = 0);
6 y := i;
7 if x 6= i then delay(2 · bound);
8 if y 6= i then goto start1 fi;
9 await (z = 0) or (update = 1)
10 else z := 1;

11 start2: if update = 1 then goto start1 fi;
12 b[i] := 1;
13 xx := i;
14 if yy 6= 0 then b[i] := 0;
15 await (yy = 0) or (update = 1);
16 goto start2 fi;
17 yy := i;
18 if xx 6= i then b[i] := 0;
19 for j := 1 to n do await (b[j] = 0) or (update = 1) od;
20 if yy 6= i then await (yy = 0) or (update = 1);
21 goto start2
22 else update := 1 fi fi; (* set lock *)
23 critical section;
24 trying[i] := 0;
25 if update = 1 then for j := 1 to n do await trying[j] = 0 od; (* wait *)
26 bound := bound+ 1 fi; (* increment bound *)
27 yy := 0;
28 b[i] := 0;

29 z := 0;
30 if update = 1 then y := 0; update := 0
31 else if y = i then y := 0 fi fi

Fig. 2. Fast time-adaptive algorithm: process i’s program.

test it. Once process i finds that update is 1, it returns to the beginning of its code,
signals to the updating process that it is at the beginning by setting trying[i] to 0,
and waits (statement 2). Once the updating process gets acknowledgments from all
active processes, it safely increments bound (statement 26), executes the exit code of
both the algorithms, and releases the lock (statement 30), which leaves the system in
its initial configuration (except for the value of bound).

The fact that the processes return to the beginning of their code before bound is
incremented guarantees that the value of the bound will never be greater than ∆.

Once bound equals ∆, the entry code of AT (statements 1–10) ensures that no two
processes execute Lamport’s algorithm (statements 11–28) at the same time. Hence
from that point on, processes will always enter their critical section along the fast
path of Lamport’s algorithm.

In summary, each process starts by checking if an update of bound is taking place,
in which case it waits until the update is finished. Then the process performs the entry
code for the timing-based mutual exclusion algorithm using the current estimate. If it
gains access to the critical section (of AT), the process executes Lamport’s fast mutual
exclusion algorithm. However, in the algorithm, if a process enters its critical section
via the slow path, it “knows” that the current estimate in use is incorrect and should
be increased. It does so by first signaling other processes to go to the beginning of

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 553

their code and, after they all do so, incrementing the register bound.

4.2. Correctness. The design of the algorithm and its correctness proof are
based on the following straightforward general observation.

Lemma 4.1. Let A and B be mutual exclusion algorithms (with disjoint sets of
shared registers), and let C be the algorithm obtained by replacing the critical section
of A with algorithm B.5

1. If both A and B are deadlock-free, then C is deadlock-free.
2. If either A or B satisfies mutual exclusion, then C satisfies mutual exclusion.

Proof. The entry code of C is composed of the entry code of A, denoted by CA,
followed by that of B, denoted by CB . Assume that both A and B are deadlock-free.
If some process starts executing algorithm C, then since A is deadlock-free, eventually
some process will finish CA and proceed to CB . Since B is deadlock-free, eventually
some process will finish CB and enter its critical section. Thus C is deadlock-free.

If A satisfies mutual exclusion, then no two processes can be at their CB code at
the same time. If B satisfies mutual exclusion, then no two processes can finish their
CB code at the same time. In either case, it implies that no two processes are in their
critical section at the same time.

The correctness of the algorithm is based on Lemma 4.1 and the properties of
Lamport’s algorithm and AT. Note that the algorithm also satisfies the correctness
requirements in the asynchronous model.

As already explained, the algorithm is obtained by replacing the critical section of
Alur and Taubenfeld’s algorithm with Lamport’s algorithm (statements 11–28). These
two algorithms are combined along with a mechanism for estimating and updating the
current time bound. All references to the register update and the array trying belong
to this mechanism and are not part of the original AT and Lamport’s algorithm.

It is known that Lamport’s algorithm satisfies mutual exclusion and deadlock
freedom and that AT satisfies deadlock freedom regardless of the value of bound.

Theorem 4.2. The algorithm in Figure 2 satisfies deadlock freedom in the asyn-
chronous model.

Proof. As long as the value of update is 0, executing statements 1–10 or 11–22 is
the same as executing the entry code of AT or the entry code of Lamport’s algorithm,
respectively. Since both AT and Lamport’s algorithm are deadlock-free (regardless
of the value of bound), Lemma 4.1 implies that the algorithm cannot be deadlocked
while the value of update is continuously 0.

We observe that if the value of update is 1, then there must be some process (called
the winner) which is either in its critical section or in its exit code. Once update is
1, eventually every process (other than the winner) will test it. Once process i finds
that update is 1, it returns to the beginning of its code and signals to the winner
that it is at the beginning by setting trying[i] to 0. Thus eventually the winner gets
acknowledgments from all active processes, which implies that the winner cannot be
blocked forever in the for loop of statement 25, and will eventually set update back
to 0. This implies that the system cannot be deadlocked while the value of update is
continuously 1.

Thus a deadlock can occur in an infinite execution only if update changes values an
infinite number of times. However, each time update changes its value, some process

5 If the critical section of A has a label, then in C this label is associated with the first statement
of B.

554 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

either enters or exits its critical section. Therefore, in an execution where update
changes values an infinite number of times, no deadlock can occur.

Theorem 4.3. The algorithm in Figure 2 satisfies mutual exclusion in the asyn-
chronous model.

Proof. As long as the value of update is 0, executing statements 11–28 is the
same as executing Lamport’s algorithm. Since Lamport’s algorithm satisfies mutual
exclusion, by Lemma 4.1, the new algorithm must also satisfy mutual exclusion when
the value of update is 0.

If the value of update is 1, then there must be some process (the winner) which
is either in its critical section or in its exit code.

If some process has tested update before it was set to 1, then the value of update
was 0 at this time, and (as already explained above) since Lamport’s algorithm satisfies
mutual exclusion, this process will not enter its critical section, and eventually it will
have to test update again.

Once the winner sets update to 1, no other process can enter the critical section
until update is set back to 0. To see this, observe that once update is 1, eventually
every process will test it, and once a process finds that update is 1, it returns to the
beginning of its code, signals to the updating process that it is at the beginning by
setting trying[i] to 0, and waits (statement 2) until update is set to 0. The winner
sets update to 0 in its exit code only after it gets acknowledgments from all active
processes. Because the processes retreat to start1 at the beginning of their code before
update is reset, no process executes Lamport’s (embedded) algorithm, which in turn
guarantees that no two processes can enter their critical section as long as the value
of update is not changed.

4.3. Time complexity. Next, we show that the register bound is updated at
most ∆ times.

Lemma 4.4. bound ≤ ∆ is an invariant of the algorithm.
Proof. Once bound reaches the correct ∆, the delay in statement 7 is 2 ·∆. At

this point, all the processes that participate in the algorithm, except the one that is
updating the value of bound, are at the beginning of their code, waiting for update to
become 0. Thus from that point on, this code (statements 1–10) behaves exactly like
the original AT.

This means that from now on, only one process can be in Lamport’s algorithm
(statements 11–28). When only one process is in Lamport’s algorithm, the test in line
18 is always evaluated to false, and hence statement 22 will not be reached, the value
of update will remain at 0, and no more updates to bound will occur. (Statement 22
is the only place where the value of update is changed from 0 to 1.) Thus the number
of times a winning process has to update bound after executing its critical section is
bounded by ∆.

The next theorem shows that the algorithm is time efficient. In the theorem, the
time it takes for a process to enter its critical section is measured from the last time
some process exited its critical section.

Theorem 4.5. The algorithm has the following properties:
1. Fast access: In the absence of contention, a process executes only a constant

number of steps (13) from the location start1 to its critical section and only a constant
number of steps (8) to execute the exit code. No delays are necessary.

2. In the presence of contention, a winning process which does not update the
register bound executes a constant number of steps (14) and may need to delay itself
for at most 2·∆ time units before entering its critical section.

TIME-ADAPTIVE ALGORITHMS FOR SYNCHRONIZATION 555

3. In the presence of contention, a winning process which needs to update the
register bound may execute O(n) steps and may need to delay itself for at most 2·∆
time units before entering its critical section. This may happen at most ∆ times.

Proof. The first part is straightforward.
By Lemma 4.4, bound ≤ ∆. Thus executing the delay in statement 7 takes at

most 2 ·∆ time units. Note that a winning process updates bound if and only if it
finds the condition in statement 18 (i.e., xx 6= i) to be true. The second part of the
theorem is easily verified by counting steps in the algorithm.

Only when a process finds the condition in statement 18 to be true does it
execute the for statement at statement 19, in which it may need to execute O(n)
steps. This implies the third part of the theorem and explains why the term O(n) is
added.

Observe that there is a tradeoff between the number of updates of the register
bound and its maximum value. For example, if instead of incrementing it by 1, we
double its value when it is updated, then we can show that bound is updated at most
log ∆ times and bound ≤ 2·∆−1. Incrementing by 1 is the best strategy since it gives
the best amortized time complexity when the number of entries to the critical section
is much bigger than ∆.

Notice that our algorithm uses 2n + 5 shared registers. It is possible to replace
the arrays b and trying , each of n bits, with one array of n 3-valued registers. Lynch
and Shavit proved that when the timing bounds are not known, n is a lower bound
on the number of shared registers [LS92]. (The model they used for their algorithm
design is the known-delay model, but their lower bound proof continues to hold for
the unknown-delay model as well.) In contrast, the algorithms for mutual exclusion in
the known-delay model use only a constant number of registers [Lam87, AT96, LS92].

In our algorithm, the value of the register bound can only be increased, and after
it is updated ∆ times, it will reach its maximum value ∆. In a dynamic system where
processes are created and destroyed, the upper bound on the speed of the processes
may change over time. Our algorithm adapts to an increase in ∆ (that may be caused
by adding slow processes). However, when ∆ decreases (a slow process is destroyed),
the value of bound may be too high, leading to inefficient utilization. This may be
resolved by periodically resetting bound to zero and letting it adjust to reflect the
current speed.

5. Discussion. We have defined the unknown-delay model, which formalizes sys-
tems in which there is an upper bound on memory access time, but this bound is not
known. For the consensus problem, we have shown that Θ(∆·fac−1(∆)) is an upper
and lower bound on the time complexity of any algorithm, where fac−1 is the inverse
of the factorial function. The algorithm that achieves this bound is fast in the ab-
sence of contention. Since consensus is universal [He91], our results imply that atomic
reads and writes are universal in the unknown-delay model. For the mutual exclusion
problem, we have presented an algorithm in which, in the presence of contention, a
process needs only delay itself for 2 ·∆ time units before entering the critical section,
when no update of the time estimate is needed. This algorithm is also fast in the
absence of contention.

The standard definitions of the consensus problem and the mutual exclusion prob-
lem differ in two ways. First, a mutual exclusion algorithm is invoked repeatedly, while
a consensus algorithm is invoked only once. Second, in the consensus problem, pro-
cesses may fail, while in the mutual exclusion problem, it is assumed that processes
do not fail. Note however, that our algorithms for both problems are constructed in

556 RAJEEV ALUR, HAGIT ATTIYA, AND GADI TAUBENFELD

a similar manner, by combining an asynchronous algorithm that guarantees safety, a
timing-based algorithm that converges when used with a correct estimate for ∆, and
a mechanism for estimating ∆.

Acknowledgments. We wish to thank Yehuda Afek, Eli Gafni, Eyal Kushile-
vitz, and Michael Merritt for helpful discussions and the anonymous referees for a
thorough review of the manuscript.

REFERENCES

[AT96] R. Alur and G. Taubenfeld, Fast timing-based algorithms, Distrib. Comput., 10
(1996), pp. 1–10.

[AT93] R. Alur and G. Taubenfeld, How to share an object: A fast timing-based solu-
tion, in Proc. 5th IEEE Symposium on Parallel and Distributed Processing, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 470–477.
remove

[AT94] R. Alur and G. Taubenfeld, Contention-free complexity of shared memory algo-
rithms, manuscript, 1994.

[AH90] J. Aspnes and M. Herlihy, Fast randomized consensus using shared memory, J.
Algorithms, 11 (1990), pp. 441–461.

[ADLS91] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, Bounds on the time to reach
agreement in the presence of timing uncertainty, J. Assoc. Comput. Mach., 41
(1994), pp. 122–152.

[CS93] M. Choy and A. Singh, Adaptive solution to the mutual exclusion problem, in Proc.
12th ACM Symposium on Principles of Distributed Computing, ACM, New York,
1993, pp. 183–194.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism needed for
distributed consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77–97.

[Dij65] E. W. Dijkstra, Solution of a problem in concurrent programming control, Comm.
Assoc. Comput. Mach., 8 (1965), p. 569.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in the presence of partial
synchrony, J. Assoc. Comput. Mach., 35 (1988), pp. 288–323.

[FLP85] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus with
one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[He91] M. Herlihy, Wait-free synchronization, ACM Trans. Programming Lang. Systems, 11
(1991), pp. 124–149.

[HK89] A. Herzberg and S. Kutten, Efficient detection of message forwarding faults, in Proc.
8th ACM Symposium on Principles of Distributed Computing, ACM, New York,
1989, pp. 339–353.

[LA87] M. Loui and H. Abu-Amara, Memory requirements for agreement among unreliable
asynchronous processes, Adv. Comput. Res., 4 (1987), pp. 163–183.

[Lam87] L. Lamport, A fast mutual exclusion algorithm, ACM Trans. Comput. Systems, 5
(1987), pp. 1–11.

[LS92] N. Lynch and N. Shavit, Timing-based mutual exclusion, in Proc. 13th IEEE Real-
Time Systems Symposium, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 2–11.

[MS93] M. M. Michael and M. Scott, Fast mutual exclusion, even with contention, Technical
Report 460, Department of Computer Science, University of Rochester, Rochester,
NY, 1993.

[PSL80] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults,
J. Assoc. Comput. Mach., 27 (1980), pp. 228–234.

[Sty92] E. Styer, Improved fast mutual exclusion, in Proc. 11th ACM Symposium on Principles
of Distributed Computing, ACM, New York, 1992, pp. 159–168.

[YA93] J-H. Yang and J. H. Anderson, Fast, scalable synchronization with minimal hardware
support, in Proc. 12th ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1993, pp. 171–182.

A FIRST-ORDER ISOMORPHISM THEOREM∗

ERIC ALLENDER† , JOSÉ BALCÁZAR‡ , AND NEIL IMMERMAN§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 557–567, April 1997 011

Abstract. We show that for most complexity classes of interest, all sets complete under first-
order projections (fops) are isomorphic under first-order isomorphisms. That is, a very restricted
version of the Berman–Hartmanis conjecture holds. Since “natural” complete problems seem to
stay complete via fops, this indicates that up to first-order isomorphism there is only one “natural”
complete problem for each “nice” complexity class.

Key words. complexity classes, descriptive complexity, reduction, first-order projection

AMS subject classifications. 68Q15, 03D15

PII. S0097539794270236

1. Introduction. In 1977, Berman and Hartmanis noticed that all NP-complete
sets that they knew of were polynomial-time isomorphic [BH77]. They made their
now-famous isomorphism conjecture, namely that all NP-complete sets are polynomial-
time isomorphic. This conjecture has engendered a large amount of work (cf. [KMR90,
You] for surveys).

The isomorphism conjecture was made using the notion of NP-completeness via
polynomial-time many–one reductions because that was the standard definition at
the time. In [Coo], Cook proved that the Boolean satisfiability problem (SAT) is NP-
complete via polynomial-time Turing reductions. Over the years SAT has been shown
to be complete via weaker and weaker reductions, e.g., polynomial-time many–one
[Kar], logspace many–one [Jon], one-way logspace many–one [HIM], and first-order
projections (fops) [Dah]. These last reductions, defined in section 3, are provably
weaker than logspace reductions. It has been observed that natural complete problems
for various complexity classes including NC1, L, NL, P, NP, and PSPACE remain
complete via fops; cf. [I87, IL, SV, Ste, MI].

On the other hand, Joseph and Young, [JY] have pointed out that polynomial-
time many–one reductions may be so powerful that they allow unnatural NP-complete
sets. Most researchers now believe that the isomorphism conjecture as originally
stated by Berman and Hartmanis is false.1

We feel that the choice of polynomial-time many–one reductions in the statement
of the isomorphism conjecture was made in part for historical rather than purely
scientific reasons. To elaborate on this claim, note that the class NP arises naturally

∗ Received by the editors June 20, 1994; accepted for publication (in revised form) June 5, 1995.
A preliminary version of this paper appeared in Proc. 10th Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Comput. Sci. 665, Springer-Verlag, Berlin, 1993, pp. 163–174.

http://www.siam.org/journals/sicomp/26-2/27023.html
† Department of Computer Science, Rutgers University, New Brunswick, NJ 08903 (allender@

cs.rutgers.edu). The research of this author was supported in part by National Science Foundation
grant CCR-9204874. Some of this work was done while this author was on leave at Princeton
University.
‡ Departamento L.S.I., Universitat Politècnica de Catalunya, Pau Gargallo 5, E-08071 Barcelona,

Spain (balqui@lsi.upc.es). The research of this author was supported in part by EC BRA ESPRIT-II
project 3075 (ALCOM) and Acción Integrada Hispano-Alemana 131 B.
§ Computer Science Department, University of Massachusetts, Amherst, MA 01003 (immer-

man@cs.umass.edu). The research of this author was supported by NSF grant CCR-9207797.
1 One way of quantifying this observation is that since Joseph and Young produced their unnatural

NP-complete sets, Hartmanis has been referring to the isomorphism conjecture as the “Berman”
conjecture.

557

558 ERIC ALLENDER, JOSÉ BALCÁZAR, AND NEIL IMMERMAN

in the study of logic and can be defined entirely in terms of logic, without any mention
of computation [Fa]. Thus it is natural to have a notion of NP-completeness that is
formulated entirely in terms of logic. On another front, Valiant [Val] noticed that
reducibility can be formulated in algebra using the natural notion of a projection,
again with no mention of computation. The sets that are complete under fops are
complete in all of these different ways of formulating the notion of NP-completeness.

Since natural complete problems turn out to be complete via very low-level re-
ductions such as fops, it is natural to modify the isomorphism conjecture to consider
NP-complete reductions via fops. Motivating this in another way, one could propose
as a slightly more general form of the isomorphism conjecture the following question:
Is completeness a sufficient structural condition for isomorphism? Our work answers
this question by presenting a notion of completeness for which the answer is yes.
Namely, for every nice complexity class including P, NP, etc., any two sets complete
via fops are not only polynomial-time isomorphic but first-order isomorphic.

There are additional reasons to be interested in first-order computation. It was
shown in [BIS] that first-order computation corresponds exactly to computation by
uniform AC0 circuits under a natural notion of uniformity. Although it is known that
AC0 is properly contained in NP, knowing that a set A is complete for NP under
polynomial-time (or logspace) reductions does not currently allow us to conclude
that A is not in AC0; however, knowing that A is complete for NP under first-order
reductions does allow us to make that conclusion.

First-order reducibility is a uniform version of the constant-depth reducibility
studied in [FSS, CSV]; sometimes this uniformity is important. For a concrete example
where first-order reducibility is used to provide a circuit lower bound, see [AG92].

Preliminary results and background on isomorphisms follow in section 2. Defi-
nitions and background on descriptive complexity are found in section 3. The main
result is stated and proved in section 4, and then we conclude with some related
results and remarks about the structure of NP under first-order reducibilities.

2. Short history of the isomorphism conjecture. The isomorphism conjec-
ture is analogous to Myhill’s Theorem that all recursively enumerable (r.e.) complete
sets are recursively isomorphic, [Myh]. In this section, we summarize some of the
relevant background material. In the following, FP is the set of functions computable
in polynomial time.

Definition 2.1. For A,B ⊆ Σ∗, we say that A and B are p-isomorphic (A
p∼= B)

iff there exists a bijection f ∈ FP with inverse f−1 ∈ FP such that A is many–one
reducible to B (A ≤m B) via f (and therefore B ≤m A via f−1).

Observation 2.2 ([BH77]). All the NP-complete sets in [GJ] are p-isomorphic.

How did Berman and Hartmanis make their observation? They did it by proving
a polynomial-time version of the Schröder–Bernstein theorem. Recall the following.

Theorem 2.3 ([Kel, Theorem 20]). Let A and B be any two sets. Suppose that
there are 1:1 maps from A to B and from B to A. Then there is a 1:1 and onto map
from A to B.

Proof. Let f : A → B and g : B → A be the given 1:1 maps. For simplicity,
assume that A and B are disjoint. For a, c ∈ A ∪B, we say that c is an ancestor of a
iff we can reach a from c by a finite (nonzero) number of applications of the functions
f and/or g. Now we can define a bijection h : A → B which applies either f or g−1

A FIRST-ORDER ISOMORPHISM THEOREM 559

according to whether a point has an odd number of ancestors or not:

h(a) =

{
g−1(a) if a has an odd number of ancestors,
f(a) if a has an even or infinite number of ancestors.

The feasible version of the Schröder–Bernstein theorem is as follows.
Theorem 2.4 ([BH77]). Let f : A ≤m B and g : B ≤m A, where f and g are

1:1, length-increasing functions. Assume that f, f−1, g, g−1 ∈ FP, where f−1 and g−1

are the inverses of f and g. Then A
p∼= B.

Proof. Let the ancestor chain of a string w be the path from w to w’s parent,
to w’s grandparent, and so on. Ancestor chains are at most linear in length because
f and g are length-increasing. Thus they can be computed in polynomial time. The
theorem now follows as in the proof of Theorem 2.3.

Consider the following definition.
Definition 2.5 ([BH77]). We say that the language A ⊆ Σ∗ has p-time padding

functions iff there exist e, d ∈ FP such that the following hold:
1. For all w, x ∈ Σ∗, w ∈ A ⇔ e(w, x) ∈ A.
2. For all w, x ∈ Σ∗, d(e(w, x)) = x.
3. For all w, x ∈ Σ∗, |e(w, x)| ≥ |w|+ |x|.

As a simple example, the following is a padding function for SAT:

e(w, x) = (w) ∧ c1 ∧ c2 ∧ · · · ∧ c|x|,

where ci is (y ∨ ȳ) if the ith bit of x is 1 and (ȳ ∨ y) otherwise, where y is a Boolean
variable numbered higher than all of the Boolean variables occurring in w.

Then the following theorem follows from Theorem 2.4.
Theorem 2.6 ([BH77]). If A and B are NP-complete and have p-time padding

functions, then A
p∼= B.

Finally, Observation 2.2 now follows from the following.
Observation 2.7 ([BH77]). All of the NP-complete problems in [GJ] have p-

time padding functions.
Hartmanis also extended the above work as follows: Say that A has logspace

padding functions if there are logspace-computable functions as in Definition 2.5.
Theorem 2.8 ([Har]). If A and B are NP-complete via logspace reductions and

have logspace padding functions, then A and B are logspace isomorphic.
Proof. Since A and B have logspace padding functions, we can create functions

f and g as in Theorem 2.4 that are length-squaring and computable in logspace.
Then the whole ancestor chain can be computed in logspace because each successive
iteration requires half of the previous space.

Here we show that sets complete under a very restrictive notion of reducibil-
ity are isomorphic under a very restricted class of isomorphisms. This result is in-
comparable to a recent result of [AB], which showed that all sets complete under
one-way logspace reductions (1-L reductions) are isomorphic under polynomial-time-
computable-isomorphisms. (This work of [AB] improves an earlier result of [A88].)
Note that it is easy to prove that the class of 1-L reductions is incomparable with the
class of first-order projections. Other interesting results concerning 1-L reductions
may be found in [BH90, HH].

3. Descriptive complexity. In this section, we recall the notation of descriptive
complexity, which we will need to state and prove our main results. See [I89] for a

560 ERIC ALLENDER, JOSÉ BALCÁZAR, AND NEIL IMMERMAN

survey and [IL] for an extensive discussion of the reductions we use here, including
first-order projections.

We will code all inputs as finite logical structures. The most basic example is a
binary string w of length n = |w|. We will represent w as a logical structure:

A(w) = 〈{0, 1, . . . , n−1}, R〉,

where the unary relation R(x) holds in A(w) (in symbols, A(w) |= R(x)) just if bit
x of w is a 1). As is customary, the notation |A| will be used to denote the universe
{0, 1, . . . , n−1} of the structure A. We will write ||A|| to denote n, the cardinality of
|A|.

A vocabulary τ = 〈Ra1
1 . . . Rarr , c1, . . . , cs〉 is a tuple of an input relation and con-

stant symbols. We call the Ri’s “input relations” because they correspond to the
input bits to a Boolean circuit. In the case of binary strings, the input relation tells
us which bits are 0 and which are 1. In the case of graphs, the input relation E tells
us which edges are present.

Let STRUC[τ] denote the set of all finite structures of vocabulary τ . We define a
complexity-theoretic problem to be any subset of STRUC[τ] for some τ .

For any vocabulary τ , there is a corresponding first-order language L(τ) built up
from the symbols of τ and the numeric relation symbols and constant symbols:2 =,
≤, BIT, 0, m, using logical connectives: ∧,∨,¬, variables: x, y, z, . . . , and quantifiers:
∀, ∃.

3.1. First-order interpretations and projections. In [Val], Valiant defined
the projection, an extremely low-level many–one reduction.

Definition 3.1. Let S, T ⊆ {0, 1}?. A k-ary projection from S to T is a sequence
of maps {pn}, n = 1, 2, . . . , that satisfy the following properties. First, for all n and
for all binary strings s of length n, pn(s) is a binary string of length nk and

s ∈ S ⇔ pn(s) ∈ T.

Second, let s = s0s1 . . . sn−1. Then each map pn is defined by a sequence of nk literals
〈l0, l1, . . . , lnk−1〉, where

li ∈ {0, 1} ∪ {sj , s̄j | 0 ≤ j ≤ n−1}.

Thus as s ranges over strings of length n, each bit of pn(s) depends on at most one
bit of s:

pn(s)[[i]] = li(s).

Projections were originally defined as a nonuniform sequence of reductions—one
for each value of n. That is, a projection can be viewed as a many–one reduction
produced by a family {Cn} of circuits of depth one. The circuits consist entirely of
wires connecting input bits or negated input bits to outputs. If the circuit family
{Cn} is sufficiently uniform, we arrive at the class of first-order projections. (Recall
that first-order corresponds to uniform AC0 [BIS].) We find it useful to work in the

2 Here ≤ refers to the usual ordering on {0, . . . , n− 1}, “BIT(i, j)” means that the ith bit of the
binary representation of j is 1, and 0 and m refer to 0 and n− 1, respectively. For simplicity, we will
assume throughout that n > 1 and thus 0 6= m. These relations are called “numeric” as opposed to
the input relations because, for example, “BIT(i, j)” and “i ≤ j” depend only on the numeric values
of i and j and do not refer to the input.

A FIRST-ORDER ISOMORPHISM THEOREM 561

framework of first-order logic rather than in the circuit model. The rest of this section
presents the necessary definitions of first-order reductions.

The idea of the definition is that the choice of the literals 〈l0, l1, . . . , lnk−1〉 in
Definition 3.1 is given by a first-order formula in which no input relation occurs.
Thus the formula can only talk about bit positions and not bit values. The choice
of literals depends only on n. In order to make this definition, we must first define
first-order interpretations. These are a standard notion from logic for translating one
theory into another (cf. [End]), modified so that the transformation is also a many–
one reduction [I87]. (For readers familiar with databases, a first-order interpretation
is exactly a many–one reduction that is definable as a first-order query.)

Definition 3.2 (first-order interpretations). Let σ and τ be two vocabularies,
with τ = 〈Ra1

1 , . . . , Rarr , c1, . . . , cs〉. Let S ⊆ STRUC[σ] and T ⊆ STRUC[τ] be two
problems. Let k be a positive integer. Suppose we are given an r-tuple of formulas
ϕi ∈ L(σ), i = 1, . . . , r, where the free variables of ϕi are a subset of {x1, . . . , xk·ai}.
Finally, suppose we are given an s-tuple of constant symbols3 t1, . . . , ts from L(σ). Let
I = λx1...xd〈ϕ1, . . . , ϕr, t1, . . . , ts〉 be a tuple of these formulas and constants. (Here
d = maxi(kai).)

Then I induces a mapping also called I from STRUC[σ] to STRUC[τ] as follows.
Let A ∈ STRUC[σ] be any structure of vocabulary σ, and let n = ||A||. Then the
structure I(A) is defined to be

I(A) = 〈{0, . . . , nk − 1}, R1, . . . , Rr, t1, . . . , ts〉,

where the relation Ri is determined by the formula ϕi for i = 1, . . . , r as follows. Let
the function 〈·, · · · , ·〉 : |A|k → |I(A)| be given by

〈u1, u2, . . . , uk〉 = uk + uk−1n+ · · ·+ u1n
k−1.

Then

Ri =
{

(〈u1, . . . , uk〉, . . . , 〈u1+k(ai−1), . . . , ukai〉)
∣∣ A |= ϕi(u1, . . . , ukai)

}
.

If the structure A interprets some variables ū, then these may appear freely in the
the ϕi’s and tj’s of I, and the definition of I(A) still makes sense.

Suppose that I is a many–one reduction from S to T , i.e., for all A in STRUC[σ],

A ∈ S ⇔ I(A) ∈ T

Then we say that I is a k-ary first-order interpretation of S to T .
We are now ready to define first-order projections, a syntactic restriction of first-

order interpretations. If each formula in the first-order interpretation I satisfies this
syntactic condition, then it follows that I is also a projection in the sense of Valiant.
In this case, we call I a first-order projection.

Definition 3.3 (first-order projections). Let I = 〈ϕ1, . . . , ϕr, t1, . . . , ts〉 be a k-
ary first-order interpretation from S to T as in Definition 3.2. Suppose further that
the ϕi’s all satisfy the following projection condition:

ϕi ≡ α1 ∨ (α2 ∧ λ2) ∨ · · · ∨ (αe ∧ λe),(3.1)

3 More generally, we could use closed terms, which are expressions involving constants and func-
tion symbols. An even more general way to interpret constants and functions is via a formula ϕ such
that ` (∀x̄)(∃!y)ϕ(x̄, y). However, in this paper, the simpler definition involving constant symbols
suffices.

562 ERIC ALLENDER, JOSÉ BALCÁZAR, AND NEIL IMMERMAN

where the αj’s are mutually exclusive formulas in which no input relations occur and
where each λj is a literal, i.e., an atomic formula P (xj1 , . . . , xja) or its negation.

In this case, the predicate Ri(〈u1, . . . , uk〉, . . . , 〈. . . , ukai〉) holds in I(A) if α1(ū)
is true, or if αj(ū) is true for some 1 < j ≤ e and the corresponding literal λj(ū) holds
in A. Thus each bit in the binary representation of I(A) is determined by at most
one bit in the binary representation of A. We say that I is a first-order projection.
We write rite S ≤fop T to mean that S is reducible to T via a first-order projection.

Example 3.4. To help the reader grasp an intuition of the way an fop reduction
behaves, let us describe an example. We present here the reduction from 3-SAT,
satisfiability of CNF Boolean expressions with exactly three literals per clause, to
3-COL, the problem of coloring the vertices of a graph with three colors under the
constraint that the endpoints of all edges get different colors. We use the same
reduction as described in [Man, section 11.4.5] so that the reader in need of additional
help can consult it there.

The respective vocabularies for the input and output structures are as follows. To
describe instances of 3-SAT, clauses and Boolean variables are each numbered from 0
through n − 1. There are six predicates: Pi(x, c), Ni(x, c), i = 1,2,3, indicating that
variable x occurs positively or negatively in the ith position of the clause c. The
vocabulary for the output structures is simply a binary predicate E that stands for
the Boolean adjacency matrix of the output graph. Thus E(u, v) is true exactly when
the edge (u, v) is present in the output graph.

The output graph consists of six vertices per clause and two vertices per Boolean
variable, plus three additional vertices usually named T , F , and R (standing for true,
false, and red). Let an arbitrary 3CNF formula be coded by an input structure,

A = 〈{0, 1, . . . , n− 1}, P1, P2, P3, N1, N2, N3〉.

The output structure will be a graph with 8n + 3 relevant vertices. The easiest way
for us to code this is to use an fop of arity 2. We will assume for simplicity that n is
always greater than or equal to 9.

I(A) = 〈{〈a, b〉 : 0 ≤ a, b < n}, E〉 = 〈{0, . . . , n2 − 1}, E〉,

where

E =
{

(〈x1, x2〉, 〈y1, y2〉)
∣∣ A |= ϕ(x1, x2, y1, y2)

}
.

It remains to write down the first-order projection, ϕ. To do this, we need some
nitty gritty coding. We will let the vertices T, F , and R be the elements 〈0, 0〉, 〈1, 0〉,
and 〈2, 0〉 of I(A), respectively. The formula ϕ will have three pieces:

ϕ(x1, x2, y1, y2) = α(x1, x2, y1, y2)∨β(x1, x2, y1, y2) ∨ β(y1, y2, x1, x2)

∨ γ(x1, x2, y1, y2) ∨ γ(y1, y2, x1, x2),

where α says that there are edges between T, F , and R; β says that vertices 〈x, 1〉
and 〈x, 2〉 representing the variable x and its negation are connected to each other
and to R; and γ says that for clause C = (a∨ b∨ d), vertices 〈C, 6〉, 〈C, 7〉, and 〈C, 8〉
are connected to each other, and the following edges exist: (〈C, 3〉, 〈C, 6〉), (〈C, 4〉,
〈C, 7〉), (〈C, 5〉, 〈C, 8〉), as well as the edges (a, 〈C, 3〉), (T, 〈C, 3〉), (b, 〈C, 4〉), (T, 〈C, 4〉),
and (d, 〈C, 5〉), (T, 〈C, 5〉).

A FIRST-ORDER ISOMORPHISM THEOREM 563

In case anyone really wants to see them, here are the formulas written out:

α(x1, x2, y1, y2) ≡ (x2 = y2 = 0) ∧ (x1 6= y1) ∧ (x1 ≤ 2) ∧ (y1 ≤ 2),

β(x1, x2, y1, y2) ≡ (x2 = 1 ∧ y2 = 2 ∧ x1 = y1) ∨ (x1 = 2 ∧ x2 = 0 ∧ (1 ≤ y2 ≤ 2)),

γ(x1, x2, y1, y2) ≡ (x1 = x2 = 0 ∧ (3 ≤ y1 ≤ 5) ∧ (3 ≤ y2 ≤ 5)

∨ (x1 = y1 ∧ (3 ≤ x2 ≤ 5) ∧ (y2 = x2 + 3))

∨ [(x2 = 1 ∧ y2 = 3) ∧ P1(x1, y1)] ∨ [(x2 = 2 ∧ y2 = 3) ∧N1(x1, y1)]

∨ [(x2 = 1 ∧ y2 = 4) ∧ P2(x1, y1)] ∨ [(x2 = 2 ∧ y2 = 4) ∧N2(x1, y1)]

∨ [(x2 = 1 ∧ y2 = 5) ∧ P3(x1, y1)] ∨ [(x2 = 2 ∧ y2 = 5) ∧N3(x1, y1)]

∨ (x1 = y1 ∧ x2 6= y2 ∧ (6 ≤ x2 ≤ 8) ∧ (6 ≤ y2 ≤ 8)).

4. Main theorem and proof.
Theorem 4.1. Let C be a nice complexity class, e.g., L, NL, P, NP, etc. Let S

and T be complete for C via first-order projections. Then S and T are isomorphic via
a first-order isomorphism.

To prove Theorem 4.1, we begin with the following lemma. Note the similarity
between Lemma 4.2 and the proofs of Theorems 2.4 and 2.8. For simplicity, in this
lemma we are assuming that I is a single fop that maps STRUC[σ] to itself. The
proof for the case with two fops and two vocabularies as in Lemma 4.3 is similar.

Lemma 4.2. Let I be an fop that is 1:1 and of arity greater than or equal to 2
(i.e., it at least squares the size). Then the following two predicates are first-order
expressible concerning a structure A:

a. IE(A), which means that I−1(A) exists;
b. #Ancestors(A, r), which means that the length of A’s maximal ancestor chain

is r.
Proof. Let I = λx1...xd〈ϕ1, . . . , ϕr, t1, . . . , ts〉, where each ϕi is in the form of

equation (3.1). To prove a, just observe that each bit of the relation Ri of A either
(1) depends on exactly one bit of some preimage B (specified by an occurrence of a
literal λij in ϕi) or (2) does not depend on any bit of a preimage. In case (2), a
given bit of A is either “right” or “wrong.” Thus A has an inverse iff no bit of A is
wrong, and no pair of bits from A are determined by the same bit of A’s preimage
in conflicting ways. We can check this in a first-order way by checking that for all
pairs of bits from A, Ri(ā) and Ri′(b̄), either they do not depend on the same bit
from B, or the same value of that bit gives the correct answer for Ri(ā) and Ri′(b̄).
Furthermore, the preimage B if it exists can be described uniquely by a first-order
formula that chooses the correct bits determined by entries of A. N.B. Since we have
assumed that I is 1:1, every bit of I−1(A) is determined by some bit of A.

b. To express #Ancestors(A, r), we want to describe the existence of an ancestor
chain:

Ar
I→ Ar−1

I→ · · · I→ A1
I→ A0 = A.(4.1)

We will then assert that this is the maximal-length such chain, i.e.,

¬IE(Ar) ∧ (∀k < r)IE(Ak)(4.2)

Equation (4.2) expresses the existence of the ancestor chain (4.1) inductively in
the following sense. Once we know that Ak exists, we can ascertain the value Ak[[pk]]
of the bit at position pk of Ak by exhibiting a certificate:

C(k, pk) = 〈(Ak[[pk]], pk), (Ak−1[[pk−1]], pk−1), . . . , (A0[[p0]], p0)〉.

564 ERIC ALLENDER, JOSÉ BALCÁZAR, AND NEIL IMMERMAN

We can say in a first-order sentence that C(k, pk) is internally consistent. That
is, for all i with k > i ≥ 0, bit pi+1 of Ai+1 is determined correctly via I by bit pi
of Ai.4 Note that because each structure Ai+1 is of size at most the square root of
the size of Ai, the certificate requires only O(logn) bits, i.e., a constant number of
variables, to express.

Thus in equation (4.2), we refer to bit pk of the structure Ak by existentially
quantifying an internally consistent certificate C(k, pk). We know inductively that
since IE(Ak−1), the bit value determined by C(k, pk) is unique and correct.

Lemma 4.3. If S and T are interreducible via 1:1 fops I and J each of arity at
least 2, then S and T are isomorphic via first-order isomorphisms.

Proof. LetA be a structure in the vocabulary of S, and, as in the proof of Theorem
2.3, define the length of the ancestor chain of A to be the length of the longest
sequence of the form J−1(A), I−1(J−1(A)), J−1(I−1(J−1(A))), The argument
given in Lemma 4.2 shows that there is a formula #Ancestors(A, r) that evaluates to
true iff A’s ancestor chain has length r. Lemma 4.2 also shows that there is a formula
computing J−1. The desired isomorphism is now the function b such that the ith bit
of b(A) is 1 iff the following first-order formula is true:

(∃r)
(
#Ancestors(A, r) ∧ (BIT(0, r) ∧ I(i)) ∨ (¬BIT(0, r) ∧ J−1(i))

)
(Note that this first-order isomorphism b is not, strictly speaking, a first-order inter-
pretation since it maps some inputs to strictly shorter outputs, which is impossible
for an interpretation.)

It now remains to show the following.
Lemma 4.4. Suppose that a problem S is complete via fops for a nice complexity

class C. Then S is complete for C via fops that are 1:1 and of arity at least 2.
Proof. Of course, it remains to define “nice,” but here is the proof. Every nice

complexity class has a universal complete problem:

UC =
{
M$w#r

∣∣ M(w) ↓ using resources fC(r)
}
.(4.3)

Here fC(r) defines the appropriate complexity measure, e.g., r nondeterministic
steps for NP, deterministic space log r for L, space 2r for EXPSPACE, etc.

We claim that UC is complete for C via fops that are 1:1 and of arity at least 2. In
order to make this claim, we need to agree on an encoding of inputs to UC that allows
us to interpret them as structures over some vocabulary. Since all of our structures
are encoded in binary, we will encode $ and # by 10 and 11, respectively, and the
binary bits 0 and 1 constituting M and w will be encoded by 00 and 01, respectively.
Now, as in, for example, [I87], we consider a binary string of length n to be a structure
with a single unary predicate over a universe of size n. Now for any given problem
T ∈ C accepted by machine M , we show that T is reducible to UC via a fop that is
1:1 and of arity at least 2. The fop simply maps input w to the string M$w#r, for
an appropriate r which we can always take to be at least |w|2. The fop checks that
if i ≤ 2|M |, then the odd-numbered bits are 0 and if i is even, then the ith bit is 1
iff the i/2nd bit of M is 1. Similarly, if 2|M | + 2 < i ≤ 2(|M | + |w| + 1), then the
odd-numbered bits are 0 and the even numbered bits are the corresponding bit of w,
etc.

4 The reader who is more familiar with bit hacking on Turing machines than with first-order
formulas could instead convince herself that this can be done by an alternating Turing machine
running in logarithmic time and making O(1) alternations; first-order expressibility follows by [BIS].

A FIRST-ORDER ISOMORPHISM THEOREM 565

To complete the proof of the lemma, let T be any problem in C and let S be as
above. Then we reduce T to S via a 1:1 length-squaring fop as follows. First, reduce
T to UC as above. Next, reduce UC to S via the fop promised in the statement of the
lemma.

It is easy to verify that, using the encoding that we have chosen for UC , it holds
that for every length n, for all i ≤ n, there are two strings x and y of length n,
differing only in position i, such that x ∈ UC and y 6∈ UC .

Thus the fop from UC cannot possibly ignore any of the bits in its input. However,
an fop cannot process several bits into one; it can only either ignore a bit or copy it,
or negate it, and this choice is made independently of the values of any of the bits.

It follows that the composition of these two fops is the 1:1 length-squaring fop
that we desire. (Note that an fop by definition must have arity at least 1 and thus
cannot be length-decreasing on Boolean strings.)

From the above three lemmas, we have a first-order version of Theorem 2.3, and
thus Theorem 4.1 follows.

We can inspect the proof of Lemma 4.4 to get a definition of “nice.” A complexity
class is “nice” if it has a universal complete problem via fops as in equation (4.3). It
is easy to check that the following complexity classes, among many others, are nice
and thus meet the conditions of Theorem 4.1.

Proposition 4.5. The following complexity classes are nice: NC1, L, NL,
LOG(CFL), NC2, P, NP, PSPACE, EXPTIME, and EXPSPACE.

Proof. This is immediate for the Turing-machine-based classes: L, NL, P, NP,
PSPACE, EXPTIME, and EXPSPACE. It similarly follows for the other three classes
using the definitions NCi = ASPACE[logn]−TIME[(logn)i] and LOG(CFL) =
ASPACE[logn]− ∀TIME[logn].

5. More on the relationship between isomorphisms and projections.
There are several questions about isomorphisms among complete sets that can be an-
swered in the setting of first-order computation but are open for general polynomial-
time computation. It is not known whether one-way functions exist since their ex-
istence would imply that P 6= NP. However, if one-way functions exist (i.e., if P 6=
UP), then there exists a one-way function f such that f(SAT) is polynomial-time
isomorphic to SAT [Ga].

Here we can be more definitive: the bijection f(x) = 3x (mod 2|x|) was shown
in [BL] to be one-way for first-order computation, in the sense that f is first-order
expressible but f−1 is not. (See also [H̊as] for other examples.) However, it is not too
hard to show that for this choice of f , f(SAT) is complete for NP under first-order
projections, and thus it is first-order isomorphic to SAT.

The next result shows that the class of sets that are complete under first-order
projections is not closed under first-order isomorphisms. (This also seems to be the
first construction of a set that is complete for NP under first-order (or even poly-time)
many–one reductions that is not complete under first-order projections.)

Theorem 5.1. There is a set first-order isomorphic to SAT that is not complete
for NP under first-order projections.

Proof. Let g(x) be a string of |x|2 bits, with bit xi,j representing the logical AND
of bits i and j of x. Let A = {〈x, g(x)〉 : x ∈ SAT}. By an extension of the techniques
used in proving Theorem 4.1, it can be shown that A is first-order isomorphic to
SAT. However, a direct argument shows that there cannot be any projection (even a
nonuniform projection) from SAT to A. (Sketch: For all n, one can find bit positions i
and j that are independent of each other and independent of every other bit position,

566 ERIC ALLENDER, JOSÉ BALCÁZAR, AND NEIL IMMERMAN

in the sense that for any setting b of bit j, there are two words that differ only in bit
i, having b in position j, such that one of the words is in SAT and one is not. No
projection reducing SAT to another language can “ignore” either i or j. However,
since i and j are independent of all other bit positions, no projection can encode the
AND of bits i and j.)

A natural question that remains open is the question of whether every set that
is complete for NP under first-order many–one reductions is first-order isomorphic to
SAT. A related question is whether one can construct a set that is complete for NP
under poly-time many–one reductions that is not first-order isomorphic to SAT. Since
so many tools are available for proving the limitations of first-order computation, we
are optimistic that this and related questions about sets that are complete under first-
order reductions should be tractable.5 Furthermore, we hope that insights gleaned in
answering these questions will be useful in guiding investigations of the polynomial-
time degrees.

Acknowledgments. The authors wish to thank the organizers of the 1992 Sem-
inar on Structure and Complexity Theory at Schloß Dagstuhl, where this work was
initiated. We also thank Richard Beigel, Jose Antonio Medina, and two anonymous
referees for comments on an earlier draft.

REFERENCES

[AB] M. Agrawal and S. Biswas, Polynomial isomorphism of 1-L-complete sets, in Proc.
8th Annual Structure in Complexity Theory Symposium, IEEE Computer Society
Press, Los Alamitos, CA, 1993, pp. 75–79.

[A88] E. Allender, Isomorphisms and 1-L reductions, J. Comput. System Sci., 36 (1988),
pp. 336–350.

[A89] E. Allender, P-uniform circuit complexity, J. Assoc. Comput. Mach., 36 (1989), pp.
912–928.

[AG91] E. Allender and V. Gore, On strong separations from AC0, in Advances in Computa-
tional Complexity Theory, J.-Y. Cai, ed., DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 13, AMS, Providence, RI, 1993, pp. 21–37.

[AG92] E. Allender and V. Gore, A uniform circuit lower bound for the permanent, SIAM
J. Comput., 23 (1994), pp. 1026–1049.

[BIS] D. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, J.
Comput. System Sci., 41 (1990), pp. 274–306.

[BH77] L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete
sets, SIAM J. Comput., 6 (1977), pp. 305–322.

[BL] R. Boppana and J. Lagarias, One-way functions and circuit complexity, Inform. and
Comput. 74 (1987), pp. 226–240.

[BH90] H.-J. Burtschick and A. Hoene, The degree structure of 1-L reductions, in Proc. Math.
Foundations of Computer Science, Lecture Notes in Comput. Sci. 629, Springer-
Verlag, Berlin, 1992, pp. 153–161.

[CSV] A. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility, SIAM J.
Comput., 13 (1984), pp. 423–439.

[Coo] S. Cook, The complexity of theorem proving procedures, in Proc. 3rd Annual ACM
Symposium on the Theory of Computing, ACM, New York, 1971, pp. 151–158.

[Dah] E. Dahlhaus, Reduction to NP-complete problems by interpretations, in Logic and Ma-
chines: Decision Problems and Complexity, E. Börger, D. Rödding, and G. Hasen-
jaeger, eds., Lecture Notes in Comput. Sci. 171, Springer-Verlag, Berlin, 1984, pp.
357–365.

5 One possible approach might be to attempt to construct a first-order analogue of the “scram-
bling” and “annihilating” functions studied in [KMR89]. However, we suspect that this particular
approach is likely to be difficult since this would involve constructing sets that have a sort of “immu-
nity” property relative to AC0. Related problems (although not precisely this problem) were shown
in [AG91] to imply the solution to some long-standing open questions in complexity theory.

A FIRST-ORDER ISOMORPHISM THEOREM 567

[End] H. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[Fa] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in Com-

plexity of Computation: Proc. SIAM–AMS Symposia, R. Karp, ed., Vol. 7, SIAM,
Philadelphia, 1974, pp. 43–73.

[FSS] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[Ga] K. Ganesan, One-way functions and the isomorphism conjecture, Theoret. Comput.
Sci., 129 (1994), pp. 309–321.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, San
Francisco, 1979.

[H̊as] J. Håstad, One-way permutations in NC0, Inform. Process. Letters, 26 (1987), pp.
153–155.

[Har] J. Hartmanis, On the logtape isomorphism of complete sets, Theoret. Comput. Sci., 7
(1978), pp. 273–286.

[HIM] J. Hartmanis, N. Immerman, and S. Mahaney, One-way log tape reductions, in Proc.
19th IEEE Symposium on Foundations of Computer Science, IEEE Computer So-
ciety Press, Los Alamitos, CA, 1978, pp. 65–72.

[HH] L. Hemachandra and A. Hoene, Collapsing degrees via strong computation, J. Com-
put. System Sci., 46 (1993), pp. 363–380.

[I87] N. Immerman, Languages that capture complexity classes, SIAM J. Comput., 16 (1987),
pp. 760–778.

[I89] N. Immerman, Descriptive and computational complexity, in Computational Complexity
Theory, J. Hartmanis, ed., Proc. Sympos. Appl. Math. 38, AMS, Providence, RI,
1989, pp. 75–91.

[IL] N. Immerman and S. Landau, The complexity of iterated multiplication, Inform. and
Comput., 116 (1995), pp. 103–116.

[Jon] N. Jones, Space-bounded reducibility among combinatorial problems, J. Comput. System
Sci., 11 (1975), pp. 68–85.

[JY] D. Joseph and P. Young, Some remarks on witness functions for non-polynomial and
non-complete sets in NP, Theoret. Comput. Sci., 39 (1985), pp. 225–237.

[Kar] R. Karp, Reducibility among combinatorial problems, in Complexity of Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–104.

[Kel] J. L. Kelley, General Topology, Van Nostrand/Reinhold, New York, 1955.
[KMR89] S. Kurtz, S. Mahaney, and J. Royer, The isomorphism conjecture fails relative to a

random oracle, in Proc. 21st ACM Symposium on the Theory of Computing, ACM,
New York, 1989, pp. 157–166.

[KMR90] S. Kurtz, S. Mahaney, and J. Royer, The tructure of complete degrees, in Complexity
Theory Retrospective, A. Selman, ed., Springer-Verlag, Berlin, 1990, pp. 108–146.

[Man] U. Manber, Introduction to Algorithms: A Creative Approach, Addison–Wesley, Read-
ing, MA, 1989.

[MI] J. A. Medina and N. Immerman, A syntactic characterization of NP-completeness, in
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1994, pp. 241–250.

[Myh] J. Myhill, Creative sets, Z. Math. Logik Grundlag. Math., 1 (1955), pp. 97–108.
[SV] S. Skyum and L. Valiant, A complexity theory based on Boolean algebra, J. Assoc.

Comput. Mach., 32 (1985), pp. 484–502.
[Ste] I. Stewart, Using the Hamiltonian operator to capture NP, J. Comput. System Sci.,

45 (1992), pp. 127–151.
[Val] L. Valiant, Reducibility by algebraic projections, Enseign. Math., 28 (1982), pp. 253–

268.
[You] P. Young, Juris Hartmanis: Fundamental contributions to isomorphism problems, in

Complexity Theory Retrospective, A. Selman, ed., Springer-Verlag, Berlin, 1990,
pp. 28–58.

GENERAL TECHNIQUES FOR ANALYZING RECURSIVE
ALGORITHMS WITH APPLICATIONS∗

RAKESH M. VERMA†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 568–581, April 1997 012

Abstract. The complexity of divide-and-conquer algorithms is often described by recurrences of
various forms. In this paper, we develop general techniques and master theorems for solving several
kinds of recurrences, and we give several applications of our results. In particular, almost all of the
earlier work on solving the recurrences considered here is subsumed by our work. In the process
of solving such recurrences, we establish interesting connections between some elegant mathematics
and analysis of recurrences. Using our results and improved bipartite matching algorithms, we also
improve existing bounds in the literature for several problems, viz, associative-commutative (AC)
matching of linear terms, associative matching of linear terms, rooted subtree isomorphism, and
rooted subgraph homeomorphism for trees.

Key words. analysis of algorithms, divide-and-conquer, recurrences, problem complexity, sub-
tree isomorphism, associative-commutative (AC) matching, graph algorithms

AMS subject classifications. 68Q25, 11B37, 68T10, 68R10, 68Q35

PII. S0097539792240583

1. Introduction. This paper investigates recurrences that arise frequently in
the analysis of divide-and-conquer algorithms. Divide-and-conquer is an important
and useful technique in the design of efficient sequential and parallel algorithms with
innumerable applications. For example, much of the book by Aho et al. [1] consists
of divide-and-conquer algorithms. The recurrences considered here are of three basic
forms (with appropriate initial conditions):

T (n,m) =

k∑
i=1

l∑
j=1

T (ni,mj) + h(k, l),(1)

T (n,m) =
k∑
i=1

l∑
j=1

T (ni,mj) + h(n,m),(2)

T (n) =
k∑
i=1

aiT (n/ci) + f(n), k ≥ 2.(3)

Our choice of the forms and dimensions (a recurrence in k variables, integer k > 0,
will be called k-dimensional) in this paper is motivated by both the applications and
the desire to minimize redundancy. If necessary, our results can be extended from
the one-dimensional case to the two-dimensional case, or specialized in the opposite
direction, for recurrences of the same form. In an earlier paper [22], we considered the
recurrence T (n) = aT (n/c)+f(n) and proved a general theorem on its analysis. These
recurrences typically arise in connection with recursive algorithms described as follows:
“To process an input of size n (or (n,m), etc.), spend an amount of computational
effort f(n) (or h(n,m), etc.) and recursively solve derived instances of the same pro-

∗ Received by the editors November 30, 1992; accepted for publication (in revised form) June 7,
1995. This research was supported in part by NSF grants CCR-9010366 and CCR-9303011.

http://www.siam.org/journals/sicomp/26-2/24058.html
† Department of Computer Science, University of Houston, Houston, TX 77004 (rmverma@

cs.uh.edu).

568

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 569

blem having size c(n) (or n/ci, (ni,mj), etc.).” Such recurrences also arise in other
situations, e.g., as deterministic counterparts of probabilistic recurrences.

Earlier systematic efforts on solving recurrences have emphasized linear one-
dimensional recurrences. Methods developed for them include differential-equation
methods, operator methods, the generating-function approach, etc. Some effort has
been given to nonlinear recurrences, but here the path is full of difficulties (see [11, 14]
for a detailed discussion on linear and some nonlinear recurrences). Recently, some
pioneering work has been done by Karp [15] on probabilistic recurrences. Much of this
work, however, is difficult to apply to the recurrences considered here.1 Earlier work
known to us that has a direct bearing on our investigations in this and the earlier
paper is as follows: a theorem on divide-and-conquer with equal parts (see [1, 3, 5]
and [7, p. 62]) and the two theorems given below.

Let G = (V1, V2, E) be a bipartite graph with r = |V1|, s = |V2|, and r ≤ s. Let
p and q be the two trees for rooted subtree isomorphism with sizes n and m, n ≤ m
(p is to be mapped into q). In 1977 Reyner claimed and in 1988 Verma and Reyner
[21, 25] proved the following.

Theorem 1.1 ([25]). Given an algorithm for bipartite matching that requires at
most O(rsu) operations, where u > 1, the subtree algorithm requires at most O(nmu)
operations.

Theorem 1.2 ([20]). Given an algorithm for bipartite matching that requires at
most O(rs) operations, the subtree algorithm will require at most O(nm lnn) opera-
tions.

In this paper, we present some techniques and several “master theorems” that
can be used to obtain fairly tight upper bounds on the functions T (n) and T (n,m)
of the above recurrences. In the process, we establish connections between some el-
egant mathematics (viz, theory of convex functions and inequalities) and analysis of
recurrences, which appears to have been missed so far. An immediate motivation
for analyzing these recurrences must also be mentioned. With progress in computer
science, the computational expenditure f keeps decreasing, which forces us to recon-
sider the analysis and rederive the bounds on T (n). For example, the complexity
of bipartite matching was improved from O(rs1.5) (see Hopcroft and Karp [13]) to
O((r+ s)1.5

√
rs/ log s) in 1990 by Alt et al. [2] and further to O(rs1.5/ log s) in 1991

by Feder and Motwani [8] (r ≤ s are the sizes of the two vertex sets). Since these
new bounds do not satisfy the hypotheses of Theorems 1.1 and 1.2, one is forced to
reanalyze the rooted subtree isomorphism algorithms from scratch. This rework can
be avoided if we can prove powerful theorems that can be applied to large classes of
functions representing the computational expenditure for dividing the problem and
merging the solutions.

1.1. Overview of our approach and results. To enhance the applicability
of our results, we extract the salient features of a variety of situations as follows.
We consider a homogeneous collection C of finite data structures partially ordered by
inclusion and for which a suitable size function has been defined (see section 3). We
then consider divide-and-conquer algorithms of a very general form with inputs from
C in two kinds of situations. The first is the more general one in which the sizes of the

1 Recurrence (3) can be transformed into a linear, nonhomogeneous, k-dimensional, k ≥ 1, recur-
rence by the substitution U(n1, n2, . . . , nk) = T (cn1

1 . . . c
nk
k). However, there are two problems in

applying existing work to the resulting recurrence: nonhomogeneity and dimensions. Techniques are
scarce and hard to apply for k > 2, and for k ≤ 2 complicated summations must still be evaluated to
obtain solutions by existing methods (see [14, 19]). This approach cannot be applied to recurrences
(1) and (2).

570 RAKESH M. VERMA

derived problem instances may depend not just on the size of the original instance
but on the instance itself, e.g., T (n,m) =

∑∑
T (ni,mj) + h(k, l). In the second,

the dependence is only on the size of the original instance and takes a certain known
form, e.g., T (n) =

∑
aiT (n/ci) + f(n). We then prove the following general results.

Recurrence (1). Here we study the general situation in which the sizes of the
derived instances depend on both the original instance and its size. In such situations,
we assume that the sum of the sizes of the derived instances is less than the size of
the original instance, which holds in a number of practical examples. We extend
the definition of additivity (see section 2) (called superadditivity in the mathematics
literature) of a univariate function to multivariate functions in a natural way. Then,
under fairly weak assumptions, we obtain upper bounds for T when (i) h is biadditive,
(ii) h is additive in one argument only, say the first, and there is a function f such
that h(, f()) is biadditive, (iii) h is additive in neither argument but there are f
and g such that h(f(), g()) is biadditive, and (iv) h is a continuous pseudoconvex
function (section 3).

Recurrence (2). As in the previous paragraph, this is the general situation and
we make the same assumption on the sum of the sizes of the derived instances. Then,
under weak assumptions, we obtain upper bounds for T when h is biadditive and
when h is continuous and pseudoconvex.

Recurrence (3). For simplicity and rigor, we consider recurrences over a real
variable x instead of an integer variable n. We identify two crucial properties of a
function, which we call g-star-shaped (this extends the definition of a star-shaped
function in the mathematics literature) and g-co-star-shaped, and then prove master
theorems, using the powerful principle of noetherian induction, under a variety of
hypotheses (see section 5).

Our proofs make use of the basic properties of convex, pseudoconvex, and bi-
additive functions. These are included in section 2.1. We also give some conditions
which imply that a function is biadditive, pseudoconvex, or convex, which we use in
applying our results. These are (mostly) known and are included in section 4 to make
the paper self-contained and to demonstrate the richness of these classes of functions.

Applications. In section 6, we present some of the applications of our theorems.
Specifically, in the two-dimensional case, we prove that all three problems, rooted sub-
tree isomorphism, associative-commutative (AC) matching of linear terms, and rooted
subgraph homeomorphism on trees, have tight upper bounds of O(nm1.5/ logm).
Our approach unifies the analysis of these problems and improves the existing upper
bounds (given by Verma and Reyner [25], Verma and Ramakrishnan [24, 23], and
Chung [6]) for these problems by a factor of logm in each case. In the process, we
demonstrate the existence of a much tighter relationship between these three problems
and bipartite matching than previously known. We also prove that all three problems
above require time O(nm) if there is a bipartite matching of time complexity O(rs)
and that associative matching of linear terms can be done in O(nm) time. First,
this improves by a factor of logn the existing upper bounds for (a) rooted subtree
isomorphism (see Theorem 1.2 above) and (b) associative matching of linear terms,
given by Verma and Ramakrishnan [24, 23]. Second, it implies that there are parallel
algorithms for all three problems of time complexity O(mn) using the parallel algo-
rithms for bipartite matching [9, 10]. Finally, solutions of recurrences arising in [4]
and [17] are corollaries of our theorems for the one-dimensional case.

Some implications of this work are as follows. First, much of the existing work
on these recurrences, e.g., the popular theorem on analyzing divide-and-conquer al-
gorithms with equal parts [1, 3, 5, 7, 14] (see Corollary 5.7) and the two theorems

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 571

given above, is subsumed by our results. Second, we establish interesting connections
between some elegant mathematics and analysis of recursive algorithms. The power of
our results means that considerable reworking may be avoided with future progress in
computer science and upper bounds for new algorithms that fit our framework could
be painlessly obtained. Finally, our work opens up an interesting area of research.

2. Preliminaries.
Notation. 1. All functions are defined on the nonnegative reals and take only

nonnegative real values unless explicitly stated otherwise. 2. All variables p, q, x, and
y and their subscripted versions take only nonnegative real values unless explicitly
stated otherwise. Thus the phrase “for all x” means “for all nonnegative real values
of x.” 3. All variables m and n and their subscripted versions take only nonnegative
integral values unless explicitly stated otherwise. 4. The restriction of a function f on
the nonnegative reals to nonnegative integers is indicated by changing the arguments
of f from real valued, e.g., x, to integer valued, e.g., n.

Definition 2.1. We say that a unary function f is additive iff f(x) + f(y) ≤
f(x+ y) for all x and y. We say that a binary function h is biadditive iff h(x1, y) +
h(x2, y) ≤ h(x1 + x2, y) and h(x, y1) + h(x, y2) ≤ h(x, y1 + y2) for all values of
the arguments to h. Similarly, we say that a function is additive for x > a if the
additivity requirement is satisfied for all values of x greater than a. Analogously, we
define biadditivity for x > a and y > b.

Remarks. An additive nonnegative function must be nondecreasing since by the
additivity of f , f(x1) + f(x2 − x1) ≤ f(x2) for x1 ≤ x2, which by the nonnega-
tivity of f implies f(x1) ≤ f(x2) for x1 ≤ x2. Similarly, a biadditive nonnegative
function must be nondecreasing in x for each y and in y for each x. An easy induc-
tion shows that the biadditivity requirement on h implies that

∑n
i=1

∑m
j=1 h(ai, bj) ≤

h(
∑n
i=1 ai,

∑n
j=1 bj).

Definition 2.2. A unary function f is convex iff f((x+y)/2) ≤ (f(x)+f(y))/2
for all x and y. A binary function f on the nonnegative reals is convex iff f((x1 +
x2)/2, (y1 + y2)/2) ≤ (f(x1, y1) + f(x2, y2))/2 for all x1, x2, y1, and y2. Notice that
the definition of convexity for binary functions requires more than convexity in x and
y separately. Functions that are convex in x for every y and in y for every x will be
called pseudoconvex.

Definition 2.3. A binary function f is pseudoconvex iff f((x1 + x2)/2, y) ≤
(f(x1, y) + f(x2, y))/2 for all x1, x2, and y and f(x, (y1 + y2)/2) ≤ (f(x, y1) +
f(x, y2))/2 for all x, y1, and y2.

2.1. Properties of convex and pseudoconvex functions. We need some
basic properties of convex and pseudoconvex functions to prove our theorems in the
following sections.

Lemma 2.4 ([12]). Let f be a continuous convex function on the nonnegative
reals. Then f((px+ qy)/(p+ q)) ≤ (pf(x) + qf(y))/(p+ q).

Lemma 2.5. Let f be a binary, continuous, pseudoconvex function on the non-
negative reals. We have the following:

1. f((px1 + qx2)/(p+ q), y) ≤ (pf(x1, y) + qf(x2, y))/(p+ q).
2. f(x, (py1 + qy2)/(p+ q)) ≤ (pf(x, y1) + qf(x, y2))/(p+ q).
3. f(x1, y1)+f(x2, y2) ≤ f(x1+x2, y1+y2)+f(x1+x2, 0)+f(0, y1+y2)+f(0, 0).

n∑
i=1

f(xi, yi) ≤ f
(

n∑
i=1

xi,
n∑
i=1

yi

)
+
n−1∑
j=1

(
f

(
j+1∑
i=1

xi, 0

)
+ f

(
0,

j+1∑
i=1

yi

))
+ (n−1)f(0, 0).

572 RAKESH M. VERMA

4.
∑n
i=1 f(xi, y) ≤ f(

∑n
i=1 xi, y) + (n − 1)f(0, y). Similarly,

∑m
j=1 f(x, yj) ≤

f(x,
∑m

j=1 yj) + (m− 1)f(x, 0).

5. Finally,
∑n
i=1

∑m
j=1 f(xi, yj) ≤ f(

∑n
i=1 xi,

∑m
j=1 yj) + (n− 1)f(0,

∑m
j=1 yj)

+ (m− 1)f(
∑n
i=1 xi, 0) + (m− 1)(n− 1)f(0, 0).

Proof.
1. For every y, we can apply Lemma 2.4 since f is convex in x for each y.
2. This is proved by the same reason as 1.
3. We first prove that f(x1, y) + f(x2, y) ≤ f(x1 +x2, y) + f(0, y), a very useful

inequality. We will call this and the corresponding inequality in y the addition in-
equalities for pseudoconvex functions. Let p = t1, x1 = t1 + t2, q = t2, and x2 = 0 in
property 1 of this lemma. Then

f(t1, y) ≤ t1f(t1 + t2, y)/(t1 + t2) + t2f(0, y)/(t1 + t2).

Now let p = t2, x1 = 0, q = t1, and x2 = t1 + t2. Then

f(t2, y) ≤ t2f(t1 + t2, y)/(t1 + t2) + t1f(0, y)/(t1 + t2)

Adding the two inequalities for f above, we have f(t1, y) + f(t2, y) ≤ f(t1 + t2, y) +
f(0, y). Similarly, we have f(x, t1) + f(x, t2) ≤ f(x, t1 + t2) + f(x, 0). This proof of
the addition inequalities is from [18].

Now we have f(x1, y1) + f(x2, y1) ≤ f(x1 +x2, y1) + f(0, y1). Since f is nonneg-
ative, this implies f(x1, y1) ≤ f(x1 + x2, y1) + f(0, y1). Similarly, f(x2, y2) ≤ f(x1 +
x2, y2) + f(0, y2). Adding the last two inequalities, we have f(x1, y1) + f(x2, y2) ≤
f(x1 + x2, y1) + f(x1 + x2, y2) + f(0, y1) + f(0, y2) ≤ f(x1 + x2, y1 + y2) + f(x1 +
x2, 0) + f(0, y1 + y2) + f(0, 0), which was what we wanted to prove.

For the generalization, use induction and the first part.
4. This is proved by induction on n using the addition inequalities.
5. This is proved by application of 4.

3. Two-dimensional recurrences. Let C be any homogeneous class of finite
data structures, partially ordered by inclusion. For example, C may be the class of all
finite graphs partially ordered by the subgraph relation, or C may be the class of all
finite rooted trees partially ordered by the subtree relation, etc. Further, let a size be
defined for each member of C by a positive monotonic size function s.

Definition 3.1. s : C → N is a size function if (i) s(D) ≥ 1 for every D ∈ C
and (ii) D included in E implies s(D) ≤ s(E) (the inequality being strict when the
inclusion is proper).

We wish to analyze the following type of recursive algorithms A, which return a
yes/no answer represented by 1/0. The algorithm divides the input data structures
D and E into n and m parts, respectively, where each part is also from the same class
of data structures as D and E.

Algorithm A(D,E) /* D,E ∈ C. */
if s(D) ≤ threshold or s(E) ≤ threshold then /* threshold ≥ 2 is a constant. */
B(D,E)

else
begin

for each pair (Di, Ej), i ∈ [n], j ∈ [m] do A(Di, Ej);
/* The Di’s are included in D, and the Ej ’s are included in E. */
Form an n×m matrix M with Mij = A(Di, Ej)
return C(M)

end

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 573

Let the time complexity of algorithm C be O(h(n,m)) when an n×m matrix is
the input to C. We first consider the case where h is a biadditive function on the
nonnegative reals. Suppose that

∑n
i=1 s(Di) ≤ s(D) − 1,

∑m
j=1 s(Ej) ≤ s(E) − 1,

and algorithm B takes a constant amount of time when the size of one of its inputs
is at most a constant called threshold. Then we can show that the time complexity of
algorithm A is O(h(s(D), s(E)) + s(D)s(E)).

Note that algorithm A needs the size of D, E, and their substructures on recursive
calls. The determination of these sizes is the preprocessing cost of algorithm A.
We will assume throughout this section that the preprocessing cost of the algorithm
denoted Tpre, is bounded from above by the cost of the algorithm itself, denoted T ,
i.e., Tpre(s(D), s(E)) ≤ T (s(D), s(E)), which holds in all of the applications that we
discuss in this paper. Thus the total cost Tpre + T ≤ 2T , so T will also stand for the
total cost. This assumption will not be stated in our theorems.

3.1. Biadditive h. The following theorem essentially states that if the com-
plexity of algorithm C is a biadditive function h of the input sizes, then the complexity
of algorithm A is also the same function h.

Theorem 3.2. If

1. identification of each pair (Di, Ej) takes O(1) time,

2. algorithm B takes O(1) time when the size of one of its inputs does not exceed
the threshold,

3. the time complexity of algorithm C is O(h(n,m)) for an n×m input matrix,
where h is biadditive,

4. s is a size function, and the sum of the substructure sizes on the recursive calls
is less than the parent structure size,

then the time complexity of algorithm A(D,E) is O(h(s(D), s(E)) + s(D)s(E)).

Proof. We assume that comparing a number with a constant takes a constant of
time. A simple proof by induction shows that the total number of recursive calls is
less than s(D)s(E). Therefore, by our assumption and hypothesis 1, the cost of all
comparisons and identification of the substructure pairs for the recursive calls over
all the recursive calls is O(s(D)s(E)). We now show that the cost of the remaining
steps is as claimed above, thus completing the proof. The proof is by induction on
s(D) and s(E). For the induction to succeed, we need to prove something slightly
stronger, viz, the complexity of A(D,E) is O(h((s(D)− 1), (s(E)− 1)) + (s(D)− 1)
(s(E)− 1)).

Basis. If either s(D) or s(E) is equal to threshold and both are at least two, then
the statement is trivially true by choosing the constant, say c, in the O notation large
enough and at least equal to max(c1, c2), where c1 is the positive constant in the time
complexity for setting up matrix M and c2 is the constant in the time complexity of
algorithm C.

Induction step. The time complexity of A(D,E) is bounded above by the time for
the recursive calls, plus the time c1nm for setting up the matrix M, and the time taken
by algorithm C on an n ×m input matrix. Therefore, by the inductive hypothesis,
the complexity of A(D,E) is bounded by

B =
n∑
i=1

m∑
j=1

c[h((s(Di)− 1), (s(Ej)− 1)) + (s(Di)− 1)(s(Ej)− 1)] + ch(n,m) + c1nm,

574 RAKESH M. VERMA

where c is the positive constant chosen above such that c ≥ c1 and c ≥ c2. Since h is
biadditive,

B ≤ ch

 n∑
i=1

(s(Di)−1),
m∑
j=1

(s(Ej)−1)

+ c(s(D)− n− 1)(s(E)−m− 1)

+ ch(n,m) + c1nm

= ch

 n∑
i=1

(s(Di)− 1),
m∑
j=1

(s(Ej)− 1)

+ ch(n,m) + c(s(D)− 1)(s(E)− 1)

− cns(E)− cms(D) + (c+ c1)nm+ c(n+m).

Further, since
∑n
i=1 s(Di) ≤ s(D) − 1 and all of the s(Di)’s are at least one (s is a

size function), it follows that s(D) > n. Similarly, s(E) > m. Also, since c ≥ c1, we
have (c+ c1)nm+ c(n+m) ≤ cns(E) + cms(D). Therefore,

B ≤ ch(s(D)− n− 1, s(E)−m− 1) + ch(n,m) + c(s(D)− 1)(s(E)− 1)

Again, by the additivity of h, we have

B ≤ ch(s(D)− 1, s(E)− 1) + c(s(D)− 1)(s(E)− 1).

This completes the induction step. Now since h is nondecreasing in both arguments,
h(s(D)−1, s(E)−1) ≤ h(s(D), s(E)) and therefore T (s(D), s(E)) = O(h(s(D), s(E))
+ s(D)s(E)).

Remark 3.3. Note that it is sufficient for h to be biadditive over the positive
integers. Furthermore, it is not necessary that h be biadditive for all positive n and
m. It is sufficient that h be biadditive almost everywhere, i.e., with at most a finite
number of (positive integral) exceptions. Also, it is possible to weaken the first two
hypotheses by requiring that the time taken in each is O(h(s(D), s(E))/(s(D)s(E)))
instead of O(1).

The following proposition merely states that the complexity of algorithmA cannot
be reduced by using a more time consuming algorithm C.

Proposition 3.4. Let T and T ′ denote the time complexities of algorithm A when
the time complexities of algorithm C are ch(m,n) and ch′(m,n) (c > 0), respectively,
and suppose that h(m,n) ≤ h′(m,n) for all m and n. Then for all values of s(D) and
s(E), T (s(D), s(E)) ≤ T ′(s(D), s(E)).

Proof. The proof is by induction on s(D) and s(E).

3.2. h is additive in one argument only. We now consider the case when h
is not biadditive, but h(x, y) is additive in only one argument, say x. Additivity on
the second argument, y, is handled similarly. Other things being equal, we prove that
the time complexity of algorithm A(D,E) is O(h(s(D), f(s(E))) + s(D)s(E)) if there
is an additive function f such that h(x, f(y)) is biadditive and h(x, y) ≤ h(x, f(y))
for all x and y.

Theorem 3.5. If all assumptions of Theorem 3.2 hold except that the time com-
plexity of algorithm C for an n × m input matrix is O(h(n,m)), where h is addi-
tive in one argument only, say m, then the time complexity of algorithm A(D,E) is
O(h(f(s(D)), s(E)) + s(D)s(E)) provided there exists additive function f such that
h(f(x), y) is biadditive and h(x, y) ≤ h(f(x), y) for all x and y.

Proof. The proof is similar to that of Theorem 3.2, except for minor changes and
one extra step, where, using the additivity of f , we push the summation from outside
f to inside, i.e., . . .

∑n
i=1 f(s(Di)) . . . to . . . f(

∑n
i=1 s(Di))

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 575

3.3. h is additive in neither argument. Next, suppose that h is not additive
in either argument. In this case, we prove that the time complexity of algorithm
A(D,E) is O(h(f(s(D)), g(s(E))) + s(D)s(E)) if there are additive functions f and
g such that h(f(x), g(y)) is biadditive and h(x, y) ≤ h(f(x), g(y)) for all x, y.

Theorem 3.6. If all assumptions of Theorem 3.2 hold except that the time com-
plexity of algorithm C for an n ×m input matrix is O(h(n,m)), where h is additive
in neither argument, then the time complexity of algorithm A(D,E) is O(h(f(s(D)),
g(s(E))) + s(D)s(E)), provided there exist additive functions f and g such that
h(f(x), g(y)) is additive and h(x, y) ≤ h(f(x), g(y)) for all x and y.

Proof. The proof is similar to that of Theorem 3.5 except for minor chan-
ges.

Clearly the time complexity of algorithm A(D,E) is O(s(D)s(E)) if h(n,m) =
O(nm). Also, if h(n,m) ≤ h′(n,m) and h′(n,m) is biadditive, then algorithm A takes
O(h′(s(D), s(E)) +s(D)s(E)) time by Proposition 3.4 and Theorem 3.2. With these
results, we can often handle functions that are not biadditive and do not become
biadditive for any additive functions f and g applied to n and m. Another useful gen-
eralization is the following theorem, which gives a biadditive bound on the complexity
of algorithm A when the complexity of algorithm C is a pseudoconvex function.

Theorem 3.7. If all assumptions of Theorem 3.2 hold except that the time
complexity of algorithm C for an n × m input matrix is O(h(n,m)), where h is a
continuous pseudoconvex function, then the time complexity of algorithm A(D,E) is
O(h(s(D), s(E)) + s(D)s(E)(1 + h(0, 0)) + s(D)h(0, s(E)) + s(E)h(s(D), 0)).

Proof. For n ≥ 1 and m ≥ 1, define φ(n,m) = h(m,n) + (n − 1)h(m, 0) +
(m − 1)h(0, n) + (n − 1)(m − 1)h(0, 0). A simple computation using the properties
of pseudoconvex functions given in Lemma 2.5 shows that φ is biadditive for all
n ≥ 1 and m ≥ 1. Clearly, φ(n,m) ≥ h(n,m) for all n ≥ 1 and m ≥ 1 since h is
nonnegative. Now apply Proposition 3.4 and Theorem 3.2. Note that the theorem
can also be proved from scratch by an induction similar to that of Theorem 3.2 using
only the properties of pseudoconvex functions, but the proof is longer and involves
more computations.

3.4. Recurrence (2). Now we examine the case when the merging process re-
quires more time. Specifically, we consider the case when the merging process takes
time that depends on the sizes of D and E as well, i.e., O(h(s(D), s(E)) +mn) time
instead of O(h(m,n) +mn) time.

Theorem 3.8. If all assumptions of Theorem 3.2 hold except that the time com-
plexity of merging solutions is O(h(s(D), s(E)) +mn), where h is biadditive, then the
time complexity of algorithm A(D,E) is O((s(D)+s(E))h(s(D), s(E))+s(D)s(E)).

Proof. The proof is similar to that of Theorem 3.2.

If h is pseudoconvex, then the time complexity of algorithm A is T (s(D), s(E)) =
O((s(D) + s(E))φ(s(D), s(E)) + s(D)s(E)), where φ is given in the proof of Theo-
rem 3.7.

4. Necessary and sufficient conditions. We now give relevant (some suffi-
cient and some necessary and sufficient) conditions that ensure the additivity of a
unary function, the biadditivity of a binary function, and pseudoconvexity.

Lemma 4.1. A unary function f is additive on the nonnegative reals if it sat-
isfies one of the following conditions: 1. f(x) = xg(x), where g is a monotonically
increasing function. 2. f is twice differentiable, f ′′ ≥ 0, and f(0) = 0.

Proof. 1. A simple computation suffices for 1.

576 RAKESH M. VERMA

2. Note that if f ′′ is nonnegative, f ′ is nondecreasing. Therefore, f ′(t) ≤ f ′(t+y)
for all t, y ≥ 0. Integrating both sides, we have

∫ x
0
f ′(t)dt ≤

∫ x
0
f ′(t + y)dt, or

f(x) − f(0) ≤ f(x + y) − f(y). Since f(0) = 0, we have f(x) + f(y) ≤ f(x + y).
Since f(0) + f(x) ≤ f(0 + x) = f(x), the requirement f(0) = 0 is also necessary
for nonnegative f . If f is twice differentiable, then the requirement f ′′ ≥ 0 is also
necessary.

Examples. Some examples of additive functions are as follows: for any c ≥ 0,
cx(log (x+ 1))k (k ≥ 0), cxu for all u ≥ 1, etc.

Lemma 4.2 ([12]). A twice-differentiable unary function f is convex on the
nonnegative reals iff f ′′ ≥ 0.

Theorem 4.3. A twice-differentiable binary function f is pseudoconvex iff
f ′′xx ≥ 0 and f ′′yy ≥ 0 (the second partial derivatives of f with respect to x and y,
respectively).

Proof. The proof follows from the definition of a pseudoconvex function and the
above lemma.

Examples. x+ y, xy, and (x− y)2 are some examples of pseudoconvex functions.

Theorem 4.4.

1. h(x, y) = f(x)g(y) is biadditive (pseudoconvex) if f and g are additive (convex)
functions.

2. h(x) = (f(x))u is additive for u ≥ 1 if f is additive.
3. For p ≥ 2, h(x, y) = pf(x)+g(y) is biadditive for x ≥ 2 and y ≥ 2 if f and g

are additive and f(x) ≥ 1 and g(y) ≥ 1 for all x and y.
4. h(x, y) = xyg(x, y) is biadditive if g(x, y) is a nondecreasing function of x

for every y and of y for every x.
5. h(x, y) is biadditive if h(x, y) is pseudoconvex and h(x, 0) = 0 for all x and

h(0, y) = 0 for all y.

Proof. 1. We verify only the biadditivity part. h(u, x) + h(v, x) = f(u)g(x) +
f(v)g(x) = (f(u) + f(v))g(x) ≤ f(u + v)g(x) = h(u + v, x) by the additivity of f .
Similarly, h(x, u) + h(x, v) ≤ h(x, u+ v).

2. h(x) + h(y) = (f(x))u + (f(y))u ≤ (f(x) + f(y))u since u ≥ 1. Also, (f(x) +
f(y))u ≤ (f(x+ y))u = h(x+ y) since f is additive and u is positive.

3. The proof follows from x + y ≤ xy for x ≥ 2 and y ≥ 2. h(u, x) + h(v, x) =
pf(u)+g(x) + pf(v)+g(x) = (pf(u) + pf(v))pg(x) ≤ pf(u)pf(v)pg(x) = pf(u)+f(v)pg(x) ≤
pf(u+v)+g(x) = h(u+ v, x). Similarly, h(x, u) + h(x, v) ≤ h(x, u+ v).

4. A simple computation suffices.

5. The proof follows from the addition inequalities of a pseudoconvex func-
tion.

5. One-dimensional recurrences. Let T (x) =
∑k
i=1 aiT (x/ci) + f(x) for all

reals x > K, T (x) = b for all reals 1 ≤ x ≤ K for some real constants ai ≥ 1, ci > 1
for 1 ≤ i ≤ k, and b > 0, and function f be defined on the nonnegative reals. Also,
let K ≥ maxi{ci} be an integer. In many applications, T is defined only for integral
values using flooring and ceiling operations. The reason for defining T for all real
values is that our analysis can easily be extended to the integral case. These details
can be filled in easily.

We need the principle of noetherian induction for our proofs. Let Q = {x ∈
R | x ≥ 1}. We define the relation R on Q by xRy iff y > K and x = y/ci for
some ci in the recurrence given above (i.e., T (x) appears on the right-hand side of
the recurrence for T (y)). Let R+ denote the transitive closure of R. Clearly, R is
noetherian, i.e., there are no infinite descending chains in R. Let P be any predicate

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 577

on Q. We say that P is R-complete iff ∀y ∈ Q[∀x such that xR+yP (x)] ⇒ P (y).
Our interest in noetherian relations is because of the following principle of noetherian
induction. Let R be a noetherian relation and P be a R-complete predicate; then
∀x ∈ Q P (x).

Definition 5.1. Let function g be given. We say that a function f is g-star-
shaped iff for all x ≥ 1 and 0 < t < 1, f(tx) ≤ g(t)f(x). We say that f is g-co-star-
shaped iff for all x and 0 < t < 1, f(tx) ≥ g(t)f(x).

The following theorem gives a tight bound on T (x) = Θ(f(x)) if f is g-star-shaped
and a certain sum of the subproblem sizes is smaller than 1 (which, for lack of a better
term, we call the g weighted sum of the suproblem-size fractions). For convenience,
we introduce the following notation.

Notation. Given function g, let S(g, T) denote
∑k
i=1 aig(1/ci), where the ai’s and

ci’s are as in the recurrence for T .
Theorem 5.2. If f(x) ≥ d over [1,K] for some d > 0, there exists g such that f

is g-star-shaped, and S(g, T) < 1, then T (x) = Θ(f(x)).
Proof. Clearly, T (x) = Ω(f(x)). Therefore, it suffices to show that T (x) =

O(f(x)). The proof is by noetherian induction. Choose C = max{b/d, 1/(1 −
S(g, T))}.

Basis. All the reals in [1,K] are minimal with respect to R. The statement of
the theorem is trivially true for all of these minimal elements since by our choice of
C, b ≤ (b/d)d ≤ Cf(x).

Induction step. Suppose y > K. By definition, T (y) =
∑k
i=1 aiT (y/ci) + f(n).

By definition of R, (y/ci) R y. Therefore, combining the recurrence for T (y) with our
induction hypothesis for the T (y/ci)’s, we have

T (y) ≤
k∑
i=1

aiCf(y/ci) + f(y)

≤ C
k∑
i=1

aig(1/ci)f(y) + f(y)

≤ Cf(y)

(
1/C +

k∑
i=1

aig(1/ci)

)
,

which is at most Cf(y) by our choice of C.
Next, we consider the case when f is of the form h(x)(log x)l for some h and l ≥ 0.

Here we give (i) an upper bound on T (x) of O(f(x) log x) when h is g-star-shaped
and the g weighted sum of the subproblem-size fractions is equal to 1 and (ii) a lower
bound of Ω(f(x) log x) when h is g-co-star-shaped and the g weighted sum of the
subproblem-size fractions is at least 1.

Theorem 5.3.

1. If f(x) = h(x)(log x)l + d (x ≥ 1) for some l ≥ 0, d > 0, there is a g such
that h is g-star-shaped, and S(g, T) = 1, then T (x) = O(f(x) log x).

2. If f(x) = h(x)(log x)l (x ≥ 1, l ≥ 0), there exists g such that h is g-co-star-
shaped, and S(g, T) ≥ 1, then T (x) = Ω(f(x) log x).

Proof.
1. First, we prove that T (x) ≤ Cf(x)(1 + logm x) for every x ≥ 1. Here

m = mini{ci}, which is clearly greater than 1. Again, we use noetherian induction.
Without loss of generality, we may assume that f(x) = h(x)(logm x)l + d. Choose
C = max{1, b/d}.

578 RAKESH M. VERMA

Basis. The upper bound on T (x) holds trivially for all reals in [1,K] by our
choice of C.

Induction step. Let y > K. Then T (y) =
∑k
i=1 aiT (y/ci) + f(y). By our

induction hypothesis for the T (y/ci)’s, we have

T (y) ≤
k∑
i=1

aiCf(y/ci)(1 + logm(y/ci)) + f(y)

=

k∑
i=1

aiC(h(y/ci)(logm(y/ci))
l + d)(1 + logm(y/ci)) + f(y)

≤ C
k∑
i=1

aig(1/ci)(h(y)(logm y)l + d)(1 + logm(y/ci)) + f(y)

≤ Cf(y)

k∑
i=1

aig(1/ci)(1 + logm(y/m)) + f(y)

≤ Cf(y)(1 + logm y)

since S(g, T) = 1 and C ≥ 1. Now Cf(x) logm x ≥ Cf(x) for x > m, so T (x) =
O(f(x) logm x) = O(f(x) log x).

2. Let f(x) = h(x)(logp x)l and let D be any constant such that f(x) ≤ D
over [1,K]. A similar proof by induction shows that T (x) ≥ Cf(x) logM x, where
M = p(maxi{ci}) and C = min{1/S(g, T), b/(D logM K)}.

By combining the two conditions of the above theorem, we have the following
corollary, which gives a Θ(f(x) log x) bound for T .

Corollary 5.4. If d ≤ f(x) over [1,K] for some d > 0, f(x) = Θ(h(x)(log x)l)
(l ≥ 0), there exists g such that h(tx) = g(t)h(x) for all x and 0 < t < 1, and
S(g, T) = 1, then T (x) = Θ(f(x) log x).

The following useful proposition is easy to prove by noetherian induction.

Proposition 5.5. Let f1(x) ≤ f(x) ≤ f2(x) for all x ≥ 1 and let T1, T ,
and T2 denote the solutions to recurrences of form 3 corresponding to f1, f , and f2,
respectively (initial conditions remain the same). Then for all x ≥ 1, T1(x) ≤ T (x) ≤
T2(x).

The following theorem is useful when for every function g such that f is g-star-
shaped, the g weighted sum of the subproblem-size fractions exceeds 1. Roughly
speaking, we try to find a function F that dominates f and satisfies conditions similar
to the ones imposed on f in the above theorems.

Theorem 5.6. Let F be any function such that f(x) ≤ F (x) for all x ≥ 1 and
for some d F (x) ≥ d > 0 over [1,K].

1. T (x) = O(F (x)) if there exists G such that F is G-star-shaped and S(G,T)
< 1.

2. T (x) = O(F (x)) if there is a c > 0 such that f(x) + c ≤ F (x) for all x ≥ 1,
there exists G such that F is G-star-shaped, S(G,T) ≤ 1 (note the ≤ sign as opposed
to <), and there is a g such that f is g-co-star-shaped with S(g, T) > 1.

3. T (x) = Ω(F (x)) if there exists G such that F is G-co-star-shaped and S(G,T)
≥ 1.

Proof.

1. Let T ′(x) =
∑k
i=1 aiT

′(x/ci) + F (x) and apply Theorem 5.2 to T ′ and then
Proposition 5.5 to get T (x) = O(F (x)).

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 579

2. Choose C = max{b/c, 1/(S(g, T)−1)}. We need to prove something stronger,
viz, T (x) ≤ C(F (x)− f(x)).

Basis. For x ∈ [1,K], we have T (x) = b ≤ Cc ≤ C(F (x)− f(x)).
Induction step. By our induction hypotheses for the T (y/ci)’s, we have

T (y) ≤
k∑
i=1

aiC(F (y/ci)− f(y/ci)) + f(y).

Since F is G-star-shaped and f is g-co-star-shaped, we have

T (y) ≤ CF (y)
k∑
i=1

aiG(1/ci)− f(y)

(
C

k∑
i=1

aig(1/ci)− 1

)
≤ C(F (y)− f(y))

by our choice of C and the assumption that S(G,T) =
∑k
i=1 aiG(1/ci) ≤ 1.

3. The proof is straightforward and follows by noetherian induction.

We now show that the popular theorem on the analysis of divide-and-conquer
algorithms with equal parts [1, 3, 5, 14], [7, p. 62] emerges as a special case of our
theorems above.

Corollary 5.7. Let ε > 0 and q = logc a. The solution to T (x) = aT (x/c) +
f(x) (a, b > 0, c > 1, T (x) = b for x ≤ c) is (i) T (x) = Θ(xq) if f(x) = O(xq−ε),
(ii) T (x) = Θ(f(x) logc x) if f(x) = Θ(xq(logc x)l), and (iii) T (x) = Θ(f(x)) if
f(x) = Ω(xq+ε).

Proof. (iii) By Proposition 5.5, it suffices to consider f(x) = dxp (d > 0, p ≥ 0)
and g(t) = tp. Then f(tx) = d(tx)p = g(t)f(x). If q < p, then ag(1/c) = a(1/c)p =
cq−p < 1. Therefore, by Theorem 5.2, we have T (x) = Θ(xp). (i) Again, it is sufficient
to let f be as in part (iii). If p < q, then ag(1/c) > 1. Let F (x) = (d + 1)xq so that
there is an e > 0 such that f(x) + e ≤ F (x). F is G-star-shaped, where G(t) = tq,
and aG(1/c) = 1. Since f is g-co-star-shaped and ag(1/c) > 1, by Theorem 5.6, we
have T (x) = Θ(xq). (ii) The proof follows from Theorem 5.3.

Note that Brassard and Bratley [5] have a slight generalization of the above
corollary, which is a consequence of our work reported in [22].

6. Applications. We present some applications of the above theorems.

Corollary 6.1. Let n and m denote the sizes of the two rooted trees, n ≤ m.
The following problems can be solved in O(nm1.5/ log m) time:

1. rooted subtree isomorphism [25];
2. AC matching of linear terms [23];
3. rooted subgraph homeomorphism on trees [6].

Proof. The function h(x, y) = cxy1.5/ log y is biadditive for every constant c ≥ 0
(part 1 of Theorem 4.4). Since the algorithms for all of these problems are of the form
given above with an algorithm for bipartite maximum matching in place of C, and
since there is a bipartite matching algorithm of complexity O(rs1.5/ log s) [8], where
r ≤ s are the sizes of the vertex sets, by Theorem 3.2 we have the stated result. In
each case, all of the assumptions of the theorem are satisfied.

Remarks. Clearly, this corollary does not follow from Theorem 1.1 given above.
Moreover, Theorem 1.1 is a corollary of Theorem 3.2.

Corollary 6.2. Associative matching of linear terms can be done in O(nm)
time, where n and m are the sizes of the input trees representing the terms.

580 RAKESH M. VERMA

Proof. The function h(x, y) = cxy is biadditive for every constant c ≥ 0. Since
there is an ordered bipartite matching (see [23] for the definition of ordered bipartite
matching) algorithm of time complexity O(rs), where r < s are the sizes of the vertex
sets, and since the algorithm for associative matching of linear terms is of the form
given above [23], by Theorem 3.2 we have the stated result.

Remark. This improves the bound given by Verma and Ramakrishnan [23] by a
factor of log n, and the corollary below improves Theorem 1.2 proved by Reyner in
[20] by a factor of lnn.

Corollary 6.3. If there is a bipartite matching algorithm of time complexity
O(rs), where r < s are the sizes of the vertex sets, then the algorithms for rooted sub-
tree isomorphism, AC matching of linear terms, and rooted subgraph homeomorphism
on trees are of time complexity O(nm).

Corollary 6.4. There are parallel algorithms for rooted subtree isomorphism,
AC matching of linear terms, and rooted subgraph homeomorphism on trees of time
complexity O(nm).

Proof. The proof follows from Corollary 6.3 and the parallel bipartite matching
algorithms of time complexity better than O(rs) [9, 10]. Note that everything else in
algorithm A is being done sequentially except for a parallel algorithm for C. (This
means that faster algorithms using more processors can be designed.)

Corollary 6.5.

1. The Select algorithm of Blum et al. [4] is of time complexity O(n), where n
is the input size.

2. The solution to T (n) ≤ T (n/2) + T (n/4) + cna, c > 0 [17], where a < b =
log2(1 +

√
5)− 1, is O(nb).

Proof.
1. The recurrence for the algorithm is T (x) = T (x/5) + T (3x/4) + cx for some

c > 0. Here f(x) = cx. Let g(t) = t; then f(tx) = ctx ≤ g(t)f(x) and S(g, T) =∑
i aig(1/ci) = 1(1/5) + 1(3/4) < 1. Therefore, by Theorem 5.2, we have the stated

result.
2. The proof follows from part 2 of Theorem 5.6.

7. Conclusion. In this paper, we have presented some general techniques and
master theorems for three kinds of recurrences frequently occurring in the analysis
of divide-and-conquer algorithms. Much of the existing work on the recurrences con-
sidered here is subsumed by our results. In the process, we established interesting
connections between some elegant mathematics and the analysis of recurrences. We
then gave several applications of our theorems, thus improving existing bounds in the
literature for several problems. This paper is an invitation to an exciting area for
further research, viz, general techniques and theorems for other frequently occurring
recurrences, which is obviously of considerable importance.

Acknowledgments. The author thanks the referees for their constructive com-
ments and suggestions. After this paper was submitted for publication, P. Kilpelainen
sent me a copy of his thesis [16], which contains a weaker form of Theorem 3.2. Sub-
sequently, we also received a paper [26] from E. Reingold which analyzes a different
(min-max) recurrence. Thanks also go to both of them.

REFERENCES

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison–Wesley, Reading, MA, 1974.

TECHNIQUES FOR ANALYZING RECURSIVE ALGORITHMS 581

[2] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a maximum cardinality matching
in a bipartite graph in time O(n1.5

√
m/logn), Inform. Process. Lett., 37 (1991), pp. 237–

240.
[3] J. Bentley, D. Haken, and J. Saxe, A general method for solving divide-and-conquer recur-

rences, SIGACT News, 12 (1980), pp. 36–44.
[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, Time bounds for selection,

J. Comput. System Sci., 7 (1972), pp. 448–461.
[5] G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice–Hall, Englewood

Cliffs, NJ, 1988.
[6] M. Chung, O(n2.5) time algorithms for the subgraph homeomorphism problem on trees, J. Al-

gorithms, 8 (1987), pp. 106–112.
[7] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press/McGraw–

Hill, Cambridge, MA, New York, 1990.
[8] T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms,

in Proc. ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 123–133.
[9] H. Gabow and R. Tarjan, Almost-optimal speedups of algorithms for matching and related

problems, in Proc. ACM Symposium on Theory of Computing, ACM, New York, 1988,
pp. 514–527.

[10] A. Goldberg, S. Plotkin, and P. Vaidya, Sublinear-time parallel algorithms for matching
and related problems, in Proc. IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 174–185.

[11] D. Greene and D. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, Boston,
1982.

[12] G. Hardy, J. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cam-
bridge, UK, 1952.

[13] J. Hopcroft and R. Karp, An n5/2 algorithm for maximum matching in bipartite graphs,
SIAM J. Comput., 2 (1973), pp. 225–231.

[14] P. Purdom Jr. and C. Brown, The Analysis of Algorithms, Oxford University Press, Oxford,
UK, 1985.

[15] R. Karp, Probabilistic recurrence relations, in Proc. ACM Symposium on Theory of Comput-
ing, ACM, New York, 1991, pp. 190–197.

[16] P. Kilpelainen, Tree matching problems with applications to databases, Ph.D. thesis, Univer-
sity of Helsinki, Helsinki, 1992.

[17] M. van Kreveld, M. Overmars, and P. Agarwal, Intersection queries in sets of disks, in
Proc. Scandinavian Workshop on Algorithm Theory, Lecture Notes in Comput. Sci. 447,
Springer-Verlag, Berlin, 1990, pp. 393–403; BIT, 32 (1992), pp. 268–279.

[18] D. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[19] L. Monier, Combinatorial solutions of multidimensional divide-and-conquer recurrences, J. Al-

gorithms, 1 (1980), pp. 60–74.
[20] S. W. Reyner, An analysis of a good algorithm for the subtree problem, SIAM J. Comput., 6

(1977), pp. 730–732.
[21] R. M. Verma, An error in Reyner’s “An analysis of a good algorithm for the subtree problem,”

Technical Report 88/03, Computer Science Department, State University of New York at
Stony Brook, Stony Brook, NY, 1988.

[22] R. M. Verma, A general method and a master theorem for divide-and-conquer recurrences
with applications, J. Algorithms, 16 (1994), pp. 67–79.

[23] R. M. Verma and I. V. Ramakrishnan, Tight complexity bounds for term matching problems,
Inform. and Comput., 101 (1992), pp. 33–69.

[24] R. M. Verma and I. V. Ramakrishnan, Some complexity theoretic aspects of AC Rewrit-
ing, in Proc. Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Comput. Sci. 349, Springer-Verlag, Berlin, 1989, pp. 407–420.

[25] R. M. Verma and S. W. Reyner, An analysis of a good algorithm for the subtree problem,
corrected, SIAM J. Comput., 18 (1989), pp. 906–908.

[26] L. Zhiyuan and E. Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM
J. Comput., 18 (1989), pp. 1188–1200.

POTENTIALS IN UNDIRECTED GRAPHS AND PLANAR
MULTIFLOWS∗

ANDRÁS SEBŐ†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 582–603, March 1997 013

Abstract. The duality relation between shortest paths and potentials in directed graphs and
the significance of both of these in the theory of network flows is well known. In this paper, we
work out the analogous undirected notions, which neither are contained in nor contain their directed
counterpart. They are more related to matching theory than to network flows: the corresponding
min-path-max-potential theorem can be considered a weighted generalization of the Gallai–Edmonds
structure theorem for matchings.

In our earlier work [J. Combin. Theory Ser. B, 49 (1990), pp. 10–39], the corresponding theorems
are proved in the special case of ±1 bipartite weightings, and this special case already contains the
main points of the general proof. The goal of the present paper is to extrapolate from this ±1-
weighted bipartite special case the arbitrarily weighted general min-path-max-potential theorem and
to show some algorithmic consequences related to planar multiflows, the Chinese postman problem,
the weighted and unweighted matching structure, etc. In order to make this paper self-contained, we
also include a compact, revised variant of earlier proofs, adapted to the present context. In addition
to good characterization theorems and polynomial algorithms, efficient (logarithmic polynomial)
parallel algorithms follow for some of these problems.

Key words. T -joins, T -cuts, multicommodity flows, Chinese postman, matching, structure,
parallel algorithm

AMS subject classifications. 05C38, 05C45, 90B10

PII. S0097539790186704

1. Introduction. In this section, we explain the background of the paper and
introduce the main tools that we will use. In particular, we present potentials in the
±1-weighted bipartite special case, which was developed in Sebő [1990]. Since this
constitutes the kernel of our results, we fully include a compact proof of the main
theorem concerning this case.

Then in section 2, we define potentials in arbitrary weighted undirected graphs
and prove (extrapolate from the bipartite special case) a minimax theorem on mini-
mum weight paths and maximum potentials. In section 3, we point out the algorithmic
consequences of our results and apply them to, for example, planar multiflows.

If G is a graph and w : E(G)→ IR, define the distance of x, y ∈ V (G) as

λG,w(x, y) = λw(x, y) = λ(x, y) = min{w(P) : P is an (x, y) path}.

In this paper, paths are considered to be sets of edges, or subgraphs. (For instance,
V (P) will denote the set of vertices of the path P .) They can have a repetition
of vertices, but no repetition of edges is allowed. An (x, y) path is a path whose
endpoints are x, y ∈ V (G). The definition of λG,w(x, y) is meant to be ∞ if x and y
are not in the same component of G.

A path without repetition of vertices will be called simple. If the two endpoints
of a (simple) path coincide, it is a cycle (circuit). w(P) denotes the sum

∑
e∈P w(e).

A shortest (w-shortest) path is an (a, b) path P with w(P) = λw(a, b). If a, b ∈ V (P),

∗ Received by the editors August 20, 1990; accepted for publication (in revised form) June 21,
1995. This research was partly supported by the Alexander von Humboldt Foundation and project
TEMPRA, Région Rhône-Alpes.

http://www.siam.org/journals/sicomp/26-2/18670.html
† CNRS, LEIBNIZ-IMAG, 46 Avenue Félix Viallet, 38031 Grenoble cedex 1, France (andras.

sebo@imag.fr).

582

UNDIRECTED POTENTIALS 583

P (a, b) denotes a simple subpath of P joining a and b. (If P is simple, P (a, b) is
uniquely determined.) For X ⊆ V (G), δ(X) will denote the set of edges with exactly
one endpoint in X. We will also use the notation E− := {e ∈ E(G) : w(e) < 0},
E+ := {e ∈ E(G) : w(e) > 0}.

A graph G with a weighting w : E(G)→ IR is called conservative if w(C) ≥ 0 for
every circuit C ⊆ E(G). Conservative graphs are characterized as follows.

(1.1) (G,w) is conservative if and only if for all x, y ∈ V (G), λw(x, y) = min{w(P) :
P is a simple (x, y) path}.

In particular, for connected graphs, λw(x, y) is finite for all x, y ∈ V (G).

Recall that λw(x, y) can be computed via matching techniques in various well-
known ways (see Edmonds [1965a] or Lawler [1976]); one of these will be explained
in section 3. On the other hand it cannot be reduced to the well-known shortest-path
algorithms because the two directed edges corresponding to an undirected edge of
negative weight constitute a negative directed cycle; moreover, subpaths of shortest
paths are not necessarily shortest and distances do not satisfy the triangle inequality.
Thus the notion of potentials and the related theory are also different in the undirected
case.

The behavior of undirected potentials is determined by the following theorem, as
will be explained in section 2:

If (G,w) is conservative and x0 ∈ V (G), we call each set V i = V i(λ) := {x ∈
V (G) : λw(x0, x) ≤ i} (i = 0,±1,±2, . . .) a level set of (G,w, x0); we denote by Gi

the graph induced by V i, and we call it the level graph. If the weights are ±1, then
edges go between neighboring levels; that is, we have the following.

(1.2) If w : E(G) → {−1, 1} is conservative, then for all xy ∈ E(G), |λ(x0, x)−
λ(x0, y)| ≤ 1. If, in addition, G is bipartite, then this inequality is satisfied with
equality for every edge.

Indeed, we can assume without loss of generality that λ(x0, x) ≥ λ(x0, y). Let P
be a simple shortest (x0, y) path. If xy ∈ P , then xy ∈ E− follows, and λ(x0, x) ≤
w(P \ {xy}) = w(P) + 1; if xy /∈ P , then xy ∈ E+, and λ(x0, x) ≤ w(P ∪ {xy}) =
w(P) + 1. Thus λ(x0, y) ≤ λ(x0, x) ≤ λ(x0, y) + 1. If G is bipartite, then in addition
λ(x0, x) 6= λ(x0, y), whence λ(x0, x) = λ(x0, y) + 1, and (1.2) is proved.

For an arbitrary conservative weighting, the inequality |λ(x0, x)− λ(x0, y)| ≤
|w(xy)| can be checked in the same way (and also follows easily from (1.2); see the
proof of Lemma 2.1(a)).

Theorem 1.1. Let G be a bipartite graph and w : E(G) → {−1, 1} such that
(G,w) is conservative. Furthermore, let x0 ∈ V (G) be arbitrary and D be the vertex
set of a component of Gi (i ∈ {0,±1,±2, . . .}, V i 6= ∅). Then |δ(D) ∩ E−| = 1
provided that x0 6∈ D and |δ(D) ∩ E−| = 0 provided that x0 ∈ D.

If D denotes the family of sets occurring as the vertex set of a component of a Gi

(as a D in the theorem), where G is bipartite, then because of (1.2), {δ(D) : D ∈ D}
partitions E(G); the theorem states that the D ∈ D with x0 /∈ D partition E− into
singletons.

Theorem 1 contains Seymour’s minimax theorem on T -joins and T -cut packings,
the Berge–Tutte theorem, and the Gallai–Edmonds structure theorem. It actually
implies the generalization of this structure theorem to T -joins and weighted matchings
(see Sebő [1990] and section 3 below).

Figure 1 illustrates the components of the level sets of a ±1-weighted conservative
graph. The thick edges are those of weight −1.

Proof of Theorem 1.1. Let (G,w) be conservative. We prove the theorem by

584 ANDRÁS SEBŐ

Fig. 1.

induction on |V (G)|. Let b be a vertex that satisfies

λw(x0, b) = m := min{λw(x0, x) : x ∈ V (G)}

and let P be a simple (x0, b) path, with w(P) = m. (P exists because of (1.1).)
In addition, we assume that b is chosen among all possible choices so that |P | is
minimum. (This last assumption is not really essential; the claims that we will prove
for b are true without it. However, it will be useful for technical simplicity.)

Let us first check the statement for {b}: since G is bipartite, V m does not induce
edges, whence {b} is one of its components. The statement to check is the following.

Claim 1.

|δ(b) ∩ E−| = 1 provided b 6= x0,

|δ(b) ∩ E−| = 0 provided b = x0;

Moreover, if b 6= x0, then P contains the unique negative edge adjacent to b.
If b = x0, then because of m = λw(x0, b) = 0, there cannot be a negative edge

adjacent to x0 = b. Now suppose that b 6= x0.
Since P is simple, it has exactly one edge adjacent to b. That edge is negative

because otherwise, if we delete it from P , we get a path which is shorter than w(P) =
m. Suppose indirectly that there exists a negative edge e ∈ δ(b) \ P : P ∪ e is also a
path and w(P ∪ e) < w(P) = m, and this contradiction proves Claim 1.

Let G∗ be the graph that we obtain after contracting δ(b) or, equivalently, after
identifying the vertices adjacent to b and deleting b. (By the choice of b and because
of (1.2), all neighbors of b are at level m − 1.) We consider that the vertices and
edges of G∗ are the same as those of G − b; w∗ is defined as the restriction of w to
E(G− b) = E(G∗). (Parallel edges can be replaced by one edge whose weight is the
minimum of the weights.)

Claim 2. Suppose b 6= x0. Then (G∗, w∗) is conservative, and for every x ∈
V (G∗), x 6= b, λG∗,w∗(x0, x) = λG,w(x0, x).

A circuit or (x0, x) path (x ∈ V (G), x 6= b) K∗ of G∗ is a circuit or (x0, x) path
of G or can be made into one by adding two edges of δ(b). Denote this corresponding
circuit or path of G by K. Since |δ(b)∩E−| = 1, w(K∗) = w(K)−2 or w(K∗) = w(K).

UNDIRECTED POTENTIALS 585

If K is not a zero-weight circuit or shortest (x0, x) path, then since G is bipartite,
w(K) ≥ 2 or w(K) ≥ λw(x0, x)+2, respectively, and w(K∗) ≥ 0 or w(K∗) ≥ λw(x0, x)
follow.

Therefore, let w(K) = 0 or w(K) = λw(x0, x), respectively. Claim 2 clearly
follows now from the following: either K ∩ δ(b) = ∅ or K ∩ δ(b) = {e1, e2}, e1 ∈ E−,
e2 ∈ E+.

Suppose indirectly that K ∩ δ(b) = {e1, e2}, e1, e2 ∈ E+.

Case 1. K∩P = ∅. If K is a zero-weight circuit, then P ′ := (P ∪K)\e1 is a path,
with w(P ′) = w(P) +w(K)− 1 = w(P) + 0− 1 < m, a contradiction. Therefore, sup-
pose that K is a w-shortest (x0, x) path. By (1.1), we can suppose that K is simple.
Since the only edge of K(x0, b) adjacent to b is positive, by Claim 1, K(x0, b) is not a
w-shortest path, that is, w(K(x0, b)) > w(P (x0, b)). Then, however, w(P (x0, b) ∪
K(b, x)) = w(P (x0, b)) + w(K(b, x)) < w(K(x0, b)) + w(K(b, x)) = λw(x0, x), a
contradiction because P (x0, b) ∪K(b, x) contains an (x0, x) path.

Case 2. K ∩ P 6= ∅. Then b 6= x0 (otherwise P = ∅), and by the last part of
Claim 1, the edge of P adjacent to b is negative, so it is different from the edges of
K adjacent to b. Thus V (K) ∩ V (P) cannot consist of b only. Walking on P from
b towards x0, let a 6= b be the first vertex of K we meet. K(a, b) ∩ P (a, b) = ∅.
K ′ := (K \K(a, b)) ∪ P (a, b) is also a circuit (if K is a circuit) or an (x0, x) path (if
K is so), whence w(K(a, b)) ≤ w(P (a, b)); otherwise, K ′ would be shorter than K.
Moreover, w(P (a, b)) ≤ 0 because otherwise w(P (x0, a)) = w(P (x0, b))−w(P (a, b)) <
m. On the other hand, by the conservativeness of (G,w), w(K(a, b) ∪ P (a, b)) ≥ 0,
whence we have equality throughout; in particular, w(K(a, b)) = w(P (a, b)) = 0 and
w(P (x0, a)) = m. |P (x0, a)| < |P (x0, b)|, contradicting the choice of b. Claim 2 is
proved.

Theorem 1.1 now follows by induction in a straightforward way:

• If b can be chosen to be different from x0, then the level sets of G∗ are the same
as those of G by Claim 2, except that {b} is no longer a level set and its neighbors
are identified.

• If b = x0 is the only possible choice for b, then all distances are positive from
x0. In particular, there is no negative edge adjacent to x0, and in contracting δ(x0),
all distances from x0 decrease exactly by one; again, the level sets of G∗ are the same
as those of G, except that {x0} is no longer more a level set and its neighbors are
identified.

In both cases, the components of the level graphs of G that are different from {b}
are exactly the components of the level graphs of G∗. We apply Claim 1 to {b} and
apply the induction hypothesis to G∗, and the theorem follows.

In the remaining part of this section, we explore some applications of our results.
For the moment, we restrict ourselves to the ±1-weighted special case.

If T ⊆ V (G), then F ⊆ E(G) is called a T -join if T is the set of odd-degree
vertices of F . X ⊆ V (G) is said to be T -odd if |X ∩ T | is odd. C ⊆ E(G) is a T -cut if
C = δ(X) for some X ⊆ V (G) and X is T -odd. It is an easy exercise to show that a
T -join F and a T -cut C have an odd and, in particular, nonempty intersection, and it
follows that the minimum cardinality of a T -join is at least as much as the maximum
cardinality of a family of pairwise-disjoint T -cuts.

To give a first, typical example of how Theorem 1 relates T -joins and T -cuts, let
us show how Theorem 1.1 implies Seymour’s [1981] following well-known theorem.

(1.3) If G is bipartite, then the minimum cardinality of a T -join is equal to the
maximum cardinality of a family of pairwise-disjoint T -cuts.

586 ANDRÁS SEBŐ

It is an easy exercise to show that a T -join F has minimum cardinality if and
only if, upon defining the weight of the edges in F to be −1 and the weight of the
other edges to be 1, we get a conservative weighting (a remark of Guan [1962]). Apply
Theorem 1.1 to this conservative weighting and to an arbitrary x0 ∈ V (G). If D is
a component of a level graph for which x0 /∈ D, then |δ(D) ∩ F | = 1; it follows that
δ(D) is a T -cut. According to (1.2) applied to the bipartite graph G, every edge leaves
some level graph, whence by Theorem 1.1, the number of T -cuts δ(D), x0 /∈ D, is |F |,
and these are pairwise disjoint. We have thus found a family of pairwise-disjoint T -
cuts which has the same cardinality as the minimum T -join, and Seymour’s theorem
is proved. In fact, the constructed set of disjoint T -cuts has the particular form of
the packings presented by the following theorem of Frank, Sebő, and Tardos [1984].

(1.4) Given a bipartite graph with a ±1 conservative weighting, both classes of
the bipartition can be partitioned into classes X1, . . . , Xk so that δ(C), where C is a
component of G−Xi (i = 1, . . . , k), contains at most one negative edge.

Indeed, according to Theorem 1.1, the vertices x, λw(x0, x) = i, in the components
of Gi with i odd, i = ±1,±3, . . . (or of Gi with i even), constitute the classes of a
partition which has the claimed property.

(1.3) and (1.4) easily imply half-integer minimax theorems valid for arbitrary
graphs. (The half-integer version of (1.3) is a result of Lovász [1975].)

The generalization of theorems on T -joins or conservative weightings to the weigh-
ted case is straighforward via subdivision of edges. For instance, given a weight
function w : E(G) → IIN, the minimum weight of a T -join is at least as much as the
maximum cardinality of a w-packing of T -cuts, where a w-packing is a multiset which
covers edge e ∈ E(G) at most w(e) times; Seymour’s theorem ((1.3)) states that there
is equality here for bipartite weightings. (For the sharpening series of integer minimax
theorems that have been developed (including weighted variants) and the blocking
pair of T -join and T -cut polyhedra, see Lovász and Plummer [1986b]; for a survey
of more recent results, see, for instance, Frank [1990] or other recent publications on
T -joins mentioned in the reference list. We will state some of these in section 3.) The
weighting w:E(G) → ZZ is called Eulerian if w(C) is even for every cut C, and it
is bipartite if it is even for every circuit C. A graph is Eulerian or bipartite if the
identically 1 function on its edges is Eulerian or bipartite.

Let us also note that the distances do not depend on the choice of the minimum
T -join F . (For an easy exercise, see, for example, Sebő [1990].)

The weighted generalization of (1.4) is somewhat artificial. On the other hand,
Theorem 1.1 itself can be straightforwardly generalized to the weighted case, and this
can be used for various purposes, as we will show in the following sections.

We finish this introduction by showing how Theorem 1.1 already applies to un-
weighted multiflows, that is, edge-disjoint path problems. We assume that the reader
is familiar with the (easy) relation between some notions in planar graphs and those
in the planar dual: the dual of the dual of a graph G is equal to G; Eulerian and bi-
partite graphs or weight functions correspond to each other; disjoint unions of circuits
correspond to sets of the form δ(X) (X ⊆ V (G)); etc.

If G is planar, in the dual graph, Theorem 1.1 has the following more apparent
meaning.

We are given an Eulerian graph (dual of “bipartite”) G embedded in the plane
and R ⊆ E(G) so that the cut condition

|C ∩R| ≤ |C \R| for every cut C

UNDIRECTED POTENTIALS 587

Fig. 2.

is satisfied for (G,R). (This condition is equivalent to the conservativeness of the
dual graph. Set weights −1 on (duals of) edges in R.) Assign to every face ϕ of G the
following magic numbers:

λ(ϕ) := min{|P \R| − |P ∩R| : P dual path from the infinite face to ϕ}.

A “dual” path is a path of the dual graph and can be imagined as going from face to
face, crossing edges. λ(ϕ) can be interpreted as the minimum cost of reaching face ϕ
if we must pay 1$ for crossing an edge in |E(G) \R| and −1$ for crossing an edge of
R. (Negative costs correspond to incomes.)

This definition of λ(ϕ) corresponds to a natural choice of x0 in Theorem 1.1. Let
x0 be the vertex corresponding to the infinite face of the dual graph. Let us apply
Theorem 1.1 to the dual of G with this choice of x0.

The union of any set of faces of a planar graph can be partitioned into (topologi-
cally) connected regions, where each region is the union of faces corresponding to the
components of the dual graph. Consider the regions determined by the faces ϕ with
λ(ϕ) ≤ i (Figure 2). Among these, those whose territory is bounded (equivalently,
which do not contain the infinite face) will be called patches (see Figure 2).

Theorem 1.2. Let G be an Eulerian graph embedded in the plane, and let R ⊆
E(G) be such that (G,R) satisfies the cut condition. Then the boundaries of patches
contain exactly one edge of R each, they are pairwise disjoint, and every e ∈ R is
contained in one of them.

Proof. Apply Theorem 1.1 to the dual of G, where the edge weights are −1 for
the duals of edges in R and 1 otherwise; note that the dual of G is bipartite; define
x0 to be the vertex of the dual graph corresponding to the infinite face of G. Clearly,
there is a one-to-one correspondence between the patches of G and those components
of the level graphs of the dual graph which do not contain x0. Because of (1.2), the
boundaries of these patches are disjoint; the rest of the statement can be extrapolated
from Theorem 1.1.

In other words, if G is a planar Eulerian graph and R ⊆ E(G) is such that (G,R)
satisfies the cut condition, then Theorem 1.2 provides a uniquely determined integer
“multiflow” (see the definition below), which will be called a patch flow . Similarly,
the packing of odd cuts defined after Theorem 1.1 will be called a patch packing for
(G,T, x0).

588 ANDRÁS SEBŐ

The reader may find it amusing to translate the proof of Theorem 1.1 to give a
direct proof of Theorem 1.2 and, in fact, of the following sharpening.

The necessity of the cut condition for the existence of paths in G − R between
the endpoints of the edges in R is trivial. The sufficiency is just the “planar dual” of
(1.3). That is, we have shown a constructive proof (see the corresponding polynomial
algorithm in section 3) of the following theorem of Seymour [1981].

(1.5) Let G be a planar Eulerian graph and R ⊆ E(G). Then there exist edge-
disjoint paths in G−R between the endpoints of the edges of R if and only if the cut
condition is satisfied for (G,R).

We conclude this section by defining multiflows precisely and listing a sequence of
known results about them. Let G be a graph and c:E(G)→ IR. c will mean capacity
on the positive edges and demand on the negative edges. We define the demand of
e ∈ E(G), c(e) < 0, to be −c(e). If c(e) < 0, e is called a demand edge.

Given a weight function in a graph, let us denote the set of negative edges by E−

and the set of nonnegative edges by E+. A multiflow for (G, c) is a set of circuits C
with “multiplicities” f : C → IR such that

|C ∩ E−| = 1 for all C ∈ C,∑
e∈C

f(C) ≤ c(e) if e ∈ E+, and∑
e∈C

f(C) = −c(e) if e ∈ E−.

If f(e) is (half-) integer for every e ∈ E(G), we say that the flow is (half-) integer.
If in this definition we replace “circuit” by “cut,” we say that (C, f) is a dual multi-
flow . The planar special case of dual multiflows is the panar multiflow problem, but
dual multiflows have the advantage that the theorems concerning them are valid for
arbitrary graphs.

The (integer) multiflow problem is the problem whose instances are (G, c) pairs,
where G is a graph and c:E(G) → IR, and the question is to decide the existence of
an (integer) multiflow. In the planar multiflow problem, we consider only instances
where G is planar.

Statements about capacitated multiflow problems can be reduced to uncapaci-
tated ones by replacing e by |c(e)| parallel copies of e. For instance, the cut condition
becomes

c(δ(X)) ≥ 0 for every X ⊆ V (G).

The results of Edmonds and Johnson [1973], Lovász [1975], Barahona [1980], and
Korach [1982] proved that in a planar graph, a half-integer flow or a violating cut can
be found in polynomial time. The best complexity was attained by Barahona [1989].
The closest predecessor to our approach is in the work of Matsumoto, Nishizeki, and
Saito [1986]. They decreased c along a face for all possible choices of faces and checked
the cut condition for each choice. The proof of Theorem 1.1 indicates explicitly that
the face to be chosen is ϕ with λ(ϕ) minimum; moreover, Theorem 1.1 foresees the
entire multiflow, the same one which would be the result of alternatively determining
ϕ and deleting its boundary.

Various results about integral (dual) multiflows have been obtained by Seymour
[1977, 1981], Korach and Penn [1992], Frank [1990], Sebő [1987a, b], and, more re-
cently, Frank and Szigeti [1995] and Ageev, Kostochka, and Szigeti [1995]. These

UNDIRECTED POTENTIALS 589

integer multiflows can also be obtained with the help of the “magic numbers”—some
of them with considerable additional work, but also with the algorithmic advantages
that this represents (see section 3).

The planar multiflow problem in general was proved by Middendorf and Pfeiffer
[1989] to be NP-complete.

In section 2, we will extrapolate the weighted generalization of the results in this
section, and in section 3, we will apply the results that we obtain.

2. Potentials. Potentials in directed graphs are defined in the following way:
Let G be a directed graph, w:E(G) → IR, and x0 ∈ V (G). (G,w) is said to be

conservative if w(C) ≥ 0 for every directed circuit C. π : V (G) → IR is called a
potential (centered at x0) if

π(x0) = 0 and

π(y)− π(x) ≤ w(x, y) for every directed edge xy.

The role of potentials is apparent from, for instance, the following well-known propo-
sition.

(2.1)
(a) (G,w) is conservative if and only if there exists a potential.
(b) If π is a potential centered at x0, then for all x ∈ V (G),

λw(x0, x) ≥ π(x).

(c) If (G,w) is conservative, the function defined by π(x) := λw(x0, x) is a poten-
tial centered at x0.

(b) and the if part of (a) are trivial; (c) is also easy and proves the only if
part of (a). In other words, potentials centered at x0 give an apparent proof of
conservativeness and a lower bound for the distances from x0. (c) claims the a priori
surprising fact that max{π(x) : π is a potential centered at x0} is attained by one
and the same potential for every x ∈ V (G), that is, by the distance function λ,
λ(x) := λw(x0, x) (x ∈ V (G)).

Now let G be undirected. Suppose first that G is bipartite, w:E(G) → {−1, 1},
and x0 ∈ V (G). π:V (G)→ ZZ will be called a potential centered at x0 if

(i) π(x0) = 0 and
(ii) |π(y)− π(x)| = 1 for every xy ∈ E(G).

If D is a component of the graph Gi = Gi(π) induced by the level set V i = V i(π)
:= {x ∈ V (G) : π(x) ≤ i} (i = 0,±1,±2, . . .), then

(iii)

|δ(D) ∩ E−| = 1 provided that x0 6∈ D,

|δ(D) ∩ E−| = 0 provided that x0 ∈ D.

Theorem 1.1 can now be restated in the following way.
(2.2) If G is ±1-weighted and bipartite, then (2.1) holds.
The if part of (2.1a) and all of (2.1b) can be proved in a straightforward way.

(For details, see Sebő [1990].) To prove (2.1c), which also implies the only if part of
(2.1a), we have to check (i), (ii), and (iii): (i) is trivial, (ii) is easy (we have already
proved it; see (1.2)), and (iii) is Theorem 1.1.

590 ANDRÁS SEBŐ

We have arrived at the main purpose of this section: we will generalize potentials
for arbitrary undirected graphs with arbitrary weights. Of course, we have to satisfy
two constraints: it should be easy to check whether a given function is a potential
(like the inequality for directed graphs or (i), (ii), and (iii) for bipartite ±1-weighted
graphs); (2.1) should be true.

For the sake of simplicity, we first do this work only for integer weights, and
then we will observe that the theorems hold for arbitrary real weights almost without
change and that the extension is straightforward.

If w is not bipartite, we associate with the pair (G,w) a bipartite graph Ĝ and a
weight function ŵ:E(Ĝ)→ {−1, 1} in the following way:

Contract the zero-weight edges of G and replace each edge e ∈ E(G), w(e) 6= 0,
by 2|w(e)| edges in series. (Divide e into 2|w(e)| edges by 2|w(e)| − 1 new points.)
We think of V (G) as a subset of V (Ĝ). If ê ∈ E(Ĝ) is an element of the subdivision
of e ∈ E(G), let ŵ(ê) = −1 if w(e) < 0 and let ŵ(ê) = +1 if w(e) > 0.

Clearly, the natural correspondence between paths of G and paths of Ĝ simply
doubles the weights. Thus

∀x, y ∈ V (G), λĜ,ŵ(x, y) = 2λG,w(x, y).

This shows that we shall have an easy task. We know that the potentials in (Ĝ, ŵ)
are the functions for which (i), (ii), and (iii) hold. On the other hand (e.g., for
applications), we need theorems that consider only (G,w) directly; potentials should
be defined in terms of (G,w). We will face no obstacles in obtaining this direct
definition because it turns out that a potential π̂ : V (Ĝ) → ZZ is already determined
by its restriction to V (G).

Lemma 2.1. Suppose π̂ : V (Ĝ)→ ZZ is a potential in (Ĝ, ŵ). Then π̂ is even on
V (G), and if π : V (G) → ZZ denotes the restriction of π̂/2 to V (G), then for every
ab ∈ E(G),

(a) |π(a)− π(b)| ≤ |w(ab)|.
Denote the path of Ĝ, replacing ab ∈ E(G) by Q = {p0, p1, . . . , pt−1, pt} (p0 =

a, pt = b, t = 2|w(ab)|).
(b) π uniquely determines π̂, namely, if w(ab) 6= 0, then in (Ĝ, ŵ),

π̂(pi) :=

{
2π(a) + i provided that 0 ≤ i ≤ i0,
2π(b) + |2w(ab)| − i provided that i0 ≤ i ≤ t,

where i0 = π(b)− π(a) + |w(ab)|.
(c) max0≤i≤t π̂(pi) = π̂(pi0) = π(a) + π(b) + |w(ab)|.
Remark. Lemma 2.1 gives the value of π̂(pi) (0 ≤ i ≤ t); it even gives two

definitions for π̂(pi0), but both of them define the value π̂(pi0) = π̂(a)+ π̂(b)+ |ŵ(ab)|.
Lemma 2.1 is illustrated in Figure 3.
Proof of Lemma 2.1. First, we prove that π̂ is even on V (G). Indeed, it follows

from (ii) that π̂ has different parity on the two endpoints of every edge, and hence its
parity is fixed on each class of the bipartition of Ĝ. Since one of these classes contains
V (G), and since π̂(x0) = 0, we get that π̂ is even on V (G).

We now prove (a). If w(ab) = 0, then π̂(a) = π̂(b), and (a) is trivial.
Suppose that w(ab) 6= 0. According to (ii), |π̂(pi)− π̂(pi−1)| = 1, whence

2|π(a)− π(b)| = |π̂(a)− π̂(b)| =
∣∣∣∣∣
t∑
i=1

π̂(pi)− π̂(pi−1)

∣∣∣∣∣ ≤ e
t∑
i=1

|π̂(pi)− π̂(pi−1)|

UNDIRECTED POTENTIALS 591

Fig. 3.

= t = |2w(ab)|,

and (a) is proved.
If π̂(pi) = π̂(pi−1) − 1, then we call the edge pi−1pi descending, and if π̂(pi) =

π̂(pi−1) + 1, then we call it ascending. By (ii), every edge is either descending or
ascending. If pi−1pi is descending, i < t, then pipi+1 cannot be ascending; otherwise,
{pi} ∈ D, which contradicts (iii) because δ(pi) consists of two positive or two negative
edges. From this it follows that there exists an i0 ∈ IIN such that pi−1pi is ascending if
1 ≤ i ≤ i0 and descending if i0 < i ≤ t. Consequently, with this i0, π̂(pi) = π̂(p0) + i
if 0 ≤ i ≤ i0 and π̂(pi) = π̂(pt) + (t − i) if i0 ≤ i ≤ t. Hence π̂(p0) + i0 = π̂(pi0) =
π̂(pt) + (t− i0), that is, i0 = (π̂(b)− π̂(a) + 2|w(ab)|)/2. Thus we have proved (b). (c)
is the immediate consequence of (b).

We call a function π : V (G)→ ZZ a potential centered at x0 ∈ V (G) if the function
2π is the restriction to V (G) of a potential in Ĝ centered at x0 ∈ V (Ĝ). Given G, w,
and a potential π, we will keep the notation Ĝ, ŵ, π̂; these are uniquely determined
(see Lemma 2.1(b)). The properties of π̂ can be “translated” into properties of π:

Let π : V (G) → ZZ and define Giw = Giw(π) by V (Giw) := {x ∈ V (G) : π(x)
≤ i} and E(Giw) := {xy ∈ E(G) : (π(x) + π(y) + |w(xy)|)/2 ≤ i} (i = 0,±1/2,
±1,±3/2, . . .). We also introduce the notation

D := {D ⊆ V (G): D is a component of Giw for some i}.

Lemma 2.2. Let G be an arbitrary undirected graph, w : E(G)→ ZZ, x0 ∈ V (G).
π : V (G)→ ZZ is a potential centered at x0 if and only if the following hold:

(̂ı) π(x0) = 0.
(̂ı̂ı) |π(y)− π(x)| ≤ |w(x, y)| for all xy ∈ E(G).
(̂ı̂ı̂ı) If D is a component of Giw(π), then

592 ANDRÁS SEBŐ

• all negative edges induced by D in G are in E(Giw) and
• (iii) holds for D.

Proof. To prove the only if part, suppose that π : V (G) → ZZ is a potential
centered at x0, that is, 2π is the restriction to V (G) of a potential π̂ of (Ĝ, ŵ) centered
at x0. We must prove that (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) hold for π provided that (i), (ii), and (iii)
hold for π̂. (̂ı) is obvious and (̂ı̂ı) is just Lemma 2.1(a).

To prove (̂ı̂ı̂ı), let ı̂ ∈ ZZ and note the following: the level graph Ĝı̂(π̂) of Ĝ
contains exactly those vertices v ∈ V (G) for which π̂(v) = 2π(v) ≤ ı̂; by Lemma
2.1(c), it entirely contains the subdivision of exactly those edges ab ∈ E(G) for

which π(a) + π(b) + |w(ab)| ≤ ı̂. That is, the components of Ĝı̂ are determined
by those vertices v ∈ V (G) for which π(v) ≤ ı̂/2 and those edges ab ∈ E(G) for which
(π(a) + π(b) + w(ab))/2 ≤ ı̂/2 (̂ı = 0,±1,±2, . . .). Defining i := ı̂/2, we see that these
vertices and edges are exactly those of E(Giw(π)). Thus there is a one-to-one corre-

spondence between the components of Ĝı̂(π̂) and those of Giw(π). If D is a component
of the latter, we will denote the corresponding component of the former by D̂.

(̂ı̂ı̂ı) now follows easily. If a negative edge ab induced by D is not in E(Giw),
then (π(a) + π(b) + |w(ab)|)/2 > i, and it follows from Lemma 2.1 that there are two
negative edges in δ(D̂). (Follow on Figure 3: since pi0 /∈ D̂ but a, b ∈ D̂, δ(D̂) contains
one negative edge from each of the paths (a, pi0) and (pi0 , b).) Therefore, since by
assumption π̂ satisfies (ii), such an edge ab does not exist, and the first part of (̂ı̂ı̂ı)
is proved. Furthermore, it now follows that the negative edges of D̂ are in one-to-one
correspondence with those entering D, so the second part of (̂ı̂ı̂ı) holds as well.

To prove the if part, suppose that (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) hold for π. Define π̂ to be
equal to 2π on V (Ĝ) ∩ V (G), and extend it to the entire V (Ĝ) in the unique way
dictated by Lemma 2.1 (b). By definition, π̂ satisfies (i) and (ii). If D is as in (̂ı̂ı̂ı),
then by the same correspondence as in the proof of the only if part, D correponds

to a component D̂ of Ĝı̂(π̂), and because of the first part of (̂ı̂ı̂ı), there is a one-to-
one correspondence between the negative edges of δ(D̂) and those of δ(D). Now the
second part of (̂ı̂ı̂ı) implies that (iii) holds for D̂.

The following theorem is a straightforward reformulation of Theorem 1.1 (that is,
of (2.2)) for the weighted case.

Theorem 2.1 Let G be an arbitrary undirected graph, and let w : E(G) → ZZ
such that (G,w) is conservative; furthermore, x0 ∈ V (G). Then λ : V (G) → ZZ,
where λ(x) := λG,w(x0, x) (x ∈ V (G)) is a potential centered at x0. Furthermore,
(2.1) holds.

Proof. Apply Theorem 1.1 and then (2.2) to the conservative bipartite (Ĝ, ŵ).
Then apply Lemma 2.2 to obtain the result for (G,w).

The reader may find it to be a useful exercise to give a direct proof of the trivial
if part of (2.1a) and all of (2.1b), where the definition of potentials is given in (̂ı), (̂ı̂ı),
and (̂ı̂ı̂ı).

The main point of Theorem 2.1 is that (̂ı̂ı̂ı) holds for the distances from x0. Since
this statement will be often used in what follows, let us restate it separately in a
slightly different form for later convenience.

(2.3) Let G be a undirected graph, w : E(G)→ ZZ such that (G,w) is conservative,
and x0 ∈ V (G), λ(x) := λG,w(x0, x), Giw := Giw(λ).

UNDIRECTED POTENTIALS 593

(a) If D is a component of Giw,

|δ(D) ∩ E−| = 1 provided that x0 6∈ D,

|δ(D) ∩ E−| = 0 provided that x0 ∈ D.

(b) Let y(D) := max{i : D is a component of Gi} − min{i : D is a component
of Gi}. Then for all e ∈ E−,

∑
D∈D,e∈δ(D) y(D) = |w(e)|, and for all e ∈ E(G),∑

D∈D,e∈δ(D) y(D) ≤ |w(e)|.
(2.3) shows how the magic numbers λ(x0, x) generate a special dual flow (packing

of T -cuts). This will be the basis of the applications in the following section.
In the rest of the paper, Gi will denote the graph defined in (2.3) (given that

(G,w) is conservative and x0 ∈ V (G)). The family D can be split into the union of
D′ and D′′, where D′ is the family of all components of Gi with i as an integer and
D′′ is the family of all components of Gi with i as a noninteger (but, of course, as
a half-integer). Each element of D′′ is partitioned by some elements of D′ because
V (Gi) = V (Gi+1/2), and E(Gi) ⊆ E(Gi+1/2). The following remark will be useful in
the construction of integer (dual) flows or packings.

(2.4) Let G be an undirected graph, and let w : E(G)→ {−1, 1} so that (G,w) is
conservative. Then {δ(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint cuts each of which
contains one negative edge, and xy ∈ E(G) is in none of these cuts if and only if
λ(x) = λ(y).

Indeed, let xy ∈ E(G), and suppose without loss of generality that λ(x) ≤ λ(y).
Then either λ(x) = λ(y) or λ(x) = λ(y)− 1. In the latter case, xy is in δ(D), where
D is the component of Gλ(x)+1/2 containing x; xy is in none of the other sets of the
form δ(X), X ∈ D′′. In the former case, (λ(x)+λ(y)+w(xy))/2 = λ(x)+1/2, that is,
xy ∈ E(Gλ(x)+1/2. It follows that x and y are in the same component of Gλ(x)+1/2),
whence none of the sets δ(D) (D ∈ D′′) contains it, and (2.4) is proved.

The dual flow defined by

V := {δ(D) : D ∈ D, x0 /∈ D}

with multiplicities y(D) will be called the patch dual flow of (G,w, x0). It is, in fact,
a dual multiflow. A patch dual flow becomes a multiflow in the dual of a planar
graph (and if we dualize so that x0 is the infinite face, this is the uniquely determined
patch flow); applying it to the conservative graph corresponding to a minimum T -join,
we get a patch packing of T -cuts (see section 1 for the unweighted case), which is a
maximum packing of T -cuts.

Note that the results can be generalized to arbitrary w:E(G) → IR, where the
potentials can be defined by (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı). The distances still form a potential ;
furthermore, (2.1) still holds.

Indeed, let ε ≤ (1/2n2)µ, where µ is the minimum difference between different
path lengths. The function wε(e) := dw(e)/εe wε:E(G)→ IIN has the property that for
two paths P and Q (not necessarily between the same pair of vertices), w(P) < w(Q)
implies wε(P) < wε(Q), whence the wε-shortest paths are also w-shortest paths.

Since w(e)/ε ≤ wε ≤ 1 +w(e)/ε, we have w(e) ≤ εwε ≤ ε+w(e). Thus, choosing
an arbitrary series εn → 0, εnwεn → w holds (uniformly on the paths). It follows
that, applying (2.1) to wεn , the same follows for εnwεn . Since, as we noticed, the
wεn -shortest paths are also w-shortest, the distances according to the weight function
εnwεn converge to λw. Now since in (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) we only have linear functions

594 ANDRÁS SEBŐ

of convergent series, these linear functions also converge to the same linear function
of the limits, and (2.1) follows for arbitrary real weights in a straightforward way.

Patch flows and patch packings (without using this term) have been applied to
prove integer-path or cut-packing theorems. See, for instance, Sebő [1990], Frank and
Szigeti [1995], or Ageev, Kostochka, and Szigeti [1995].

3. Algorithms and applications. It is well known that an algorithm for mini-
mum-weight T -joins has been deduced from weighted matching algorithms in various
ways (see Edmonds [1965b] and Lawler [1976]). The same sources reduce the shortest-
undirected-path problem of conservative graphs to matching problems with similar
gadget-type reductions. However, these and other “Waterloo folklore solutions” do
not give a satisfactory answer to the dual of the minimum-weight T -join problem
(though it is often needed in applications; see below). That is why there were later
several attempts at the solution of the primal and dual problem at the same time; see
Barahona [1980, 1989], Edmonds and Johnson [1973], and Korach [1982]. Barahona
[1989] gave a clear presentation; Barahona and Cunningham [1989] showed an elegant
way to provide an integer dual solution in the bipartite case.

Let n stand for |V (G)| and m stand for |E(G)| in the rest of the paper. In this
section, we will show that a dual flow or a maximum w-packing of T -cuts can be found
by solving n independent matching problems (which can also be carried out in par-
allel). Furthermore, we always get a half-integer solution, and if for all circuits w(C)
is even, then we automatically get an integer solution. Then we collect applications
of weighted and unweighted potentials, the complexity of which is determined by our
algorithm.

In the following, we shall need a subroutine that determines a minimum-weight
T -join. For this we shall use Edmonds and Johnson’s [1973] reduction to matchings,
which we shall describe now. It is the following obvious fact that makes possible the
use of this method.

Lemma 3.1. Suppose that (G,w) is conservative, a, b ∈ V (G), and T := {x ∈
V (G) : dE−(x) is odd}. If F is a |w|-minimum T4{a, b}-join, then in F4E−, any
(a, b)-path is w-shortest.

Remark. Since F4E− is an {a, b}-join, an (a, b)-path contained in it is trivial to
find. Thus Lemma 3.1 reduces the shortest-path problem to finding a minimum T -join
for nonnegative weights. Since, moreover, the zero-weight edges can be contracted, in
the following, we can concentrate on T -joins in graphs with positive weights.

We also remark that the converse of Lemma 3.1 is also true (but irrelevant here):
if P is a w-shortest (a, b)-path, then P4E− is a |w|-minimum T4{a, b}-join.

Proof of Lemma 3.1. Clearly, F4E− is an {a, b}-join, and

w(F4E−) = w(F \ E−) + w(E− \ F)

= |w|(F \ E−) + |w|(F ∩ E−)− |w|(E− ∩ F) + w(E− \ F)

= |w|(F) + w(E−).

Thus |w|(F) and w(F4E−) differ only in a constant independent of F . F is a
|w|-minimum T4{a, b}-join ⇔ F4E− is a w-minimum (a, b)-path ⇔ in F4E−, an
arbitrary circuit has weight 0.

Now let w : E(G) → IIN, and on the edges of the complete graph on H with
V (H) := T, define the weighting c(x, y) := min{w(P) : P ⊆ E(G), P is an (x, y) path}

UNDIRECTED POTENTIALS 595

> 0. (c(x, y) can, for instance, be computed by Dijkstra’s algorithm; see, for exam-
ple, Lawler [1976].) The following lemma of Edmonds and Johnson [1973] relates the
w-minimum T -joins of G to the c-minimum matchings of H.

Lemma 3.2. Let G be a connected graph, T ⊆ V (G), where |T | is even, and
w : E(G)→ IIN, and from these let us define H and c in the above way. Furthermore,
let k := |V (H)|/2. If {xiyi : i = 1, . . . , k} is a c-minimum perfect matching in H and

Pi is a shortest (xi, yi)-path (i = 1, . . . , k), then Pi ∩ Pj = ∅ (i 6= j) and
⋃k
i=1 Pi is a

w-minimum T-join in G.
Remark. Applying both Lemmas 3.1 and 3.2, the shortest paths of conservative

graphs can be determined using any matching algorithm (see Algorithm 1 below).
Proof of Lemma 3.2. Let M := {xiyi : i = 1, . . . , |V (H)|/2} be a c-minimum

perfect matching and Pi be a w-minimum (xi, yi) path (i = 1, . . . , k). Thus Pi ∩Pj = ∅
since if Pi ∩ Pj 6= ∅, then w(Pi4Pj) < w(Pi)+w(Pj), and Pi4Pj contains two (edge-)
disjoint paths between two disjoint pairs of points in {x1, y1, x2, y2}, which contradicts
the minimality of M.

The converse of this lemma is also easy. Given nonnegative weights, a minimum-
weight T -join (which is a forest) is easy to split into edge-disjoint paths between pairs
in V (H), and no matter how we carry this out, the pairs will create a c-minimum
matching of H.

We now have the means at our disposal to describe the algorithm based on The-
orem 2.1 (section 2).

Algorithm 1.
Input: graph G, x0 ∈ V (G), and w : E(G)→ ZZ.
Output: either a negative circuit in (G,w) or a feasible w-packing which is fur-

thermore the uniquely existing patch dual flow belonging to (G,w, x0).
0. Contract the zero-weight edges and with the help of Lemma 3.2 above, deter-

mine a |w|-minimum T -join F, T := {x ∈ V (G) : dE−(x) is odd}.
• If |w|(F) < |w|(E−), then a negative circuit can easily be found in F4E−.

STOP.
• If |w|(F) = |w|(E−), then GOTO 1.

1. With the help of Lemmas 3.1 and 3.2, determine the weight of a w-shortest
(x0, x) path for every x ∈ V (G), x 6= x0. Let this number be denoted by λ(x). GOTO
2.

2. Let the function λ : V (G) ∪ E(G)→ ZZ be the following:

λ(x) :=

λ(x) if x ∈ V (G),

λ(u) + λ(v) + w(uv)

2
if x = uv ∈ E(G).

• For the value of λ(x) (x ∈ V (G)) and λ(xy) (xy ∈ E(G)), define the compo-
nents of the graph Gi, that is, the set system D. (In the case of bipartite weightings,
λ takes only integer values because λ(x) and λ(y) have the same parity if w(xy) is
even and have different parities if it is odd.) The multiplicities y(D) (D ∈ D) are
easily seen to be computable in the following way:

y(D)← max
e∈E−∩δ(D)

λ(e)− min
e∈E−∩E(D)

λ(e).

(See (2.3b); for a proof, use (̂ı̂ı̂ı).)

V ← {δ(D) : D ∈ D, x0 6∈ D},

596 ANDRÁS SEBŐ

where we mean the multiplicity of C ∈ V, C = δ(D) (D ∈ D), to be y(C) := y(D).

Comments.

• The first step of Algorithm 1 associates the execution of a matching algorithm
with each point x 6= x0 (see Lemma 3.1) of step 0. The matching subroutine carried
out in step 0 can be associated with x0, so a matching algorithm has been associated
with each x ∈ V (G).

In fact, there is no real assymmetry between steps 0 and 1, in other words, between
x0 and the other vertices of G. The assymetry disappears as soon as we consider a
somewhat more general object than graphs (see “towers” in Sebő [1990]).

• For arbitrary real weights, Algorithm 1 works without any change; the only
difference is that the function λ defined in step 2 will not be an integer function.
We prefer to assume that the weights are integer and often that they are bipartite
because then λ is also an integer function and the integrality results that we obtain
are included in a natural way.

Theorem 3.1.

(a) V with multiplicities y(V) (V ∈ V) is a dual flow.

(b) V and y(V) (V ∈ V) can be determined by first computing the distances in
(G, |w|), then using n parallel running and noncommunicating matching subroutines,
and then executing at most n+m subroutines that find the connected components of
a graph. (These can also be executed in parallel and without communication.) The
inputs of the subroutines are graphs on at most n points, and in the input of the
matching algorithm, every weight is the sum of the weights w(e) of at most n edges
e ∈ E(G).

We will assume throughout the paper that the complexity of computing the dis-
tances (in parallel or nonparallel) in a graph with nonnegative weights does not exceed
that of the (parallel or nonparallel) matching algorithms, whence it can be neglected.

Proof of Theorem 3.1. (a) can immediately be seen from (2.3) (that is, Theorem
2.1), and it is an immediate consequence of Lemma 3.1 and 3.2 that Algorithm 1
satisfies the properties described in (b).

Corollary 1. Suppose that we have a weighted matching algorithm whose run-
ning time is t(n) for an input of n points, and suppose that it uses p(n) processors.
Then either a dual multiflow or a negative circuit can also be determined in t(n) time
and with np(n) processors.

According to the results of Mulmuley, Vazirani, and Vazirani [1986], a maximum
matching can be determined in O(log2 n) time with a random parallel algorithm. The
same article solves weighted matching problems for particular weights, but we do not
know of any general efficient parallel algorithm that solves this problem. However,
Mulmuley, Vazirani, and Vazirani note that the general weighted problem is also in
RNC2 if the encoding of the weights is unary. Wein [1991] developed a Las Vegas RNC
algorithm for minimum-weight perfect matchings which is logarithmic polynomial if
the encoding of the weights is unary. Through Theorem 2.1, we get the same results for
dual multiflows and all of their applications. (Wein’s [1991] result itself uses Theorem
2.1.)

In Algorithm 1, Theorem 3.1, and Corollary 1, instead of “dual flow,” we could
of course have written “maximum T -cut packing” for a (G,T) and a weighting w :
E(G) → ZZ+. Furthermore, Algorithm 1 always defines the uniquely existing patch
packing. Thus for every application of patch packings, we have the following corollary:

In planar networks, with the “dualization” described in section 1 and within the
time limits in Corollary 1, Algorithm 1 either finds a cut that violates the cut condition

UNDIRECTED POTENTIALS 597

or finds a feasible flow. The “dual distances” (see section 1) taken from the infinite
face can be determined by Algorithm 1, and in this way our result will be the uniquely
existing patch flow. The same holds for the Ising model (see Barahona [1980]). Thus
for these problems as well, a structural decomposition is implied. In the case of an
Eulerian graph, this will automatically be an integer flow.

Of course, to get the best complexity results, one should substitute into Corollary
1 the best possible complexity results that exploit planarity. Finding a logarithmic
polynomial parallel matching algorithm is still an open problem. The best known com-
plexity for matchings in planar graphs is by Lipton and Tarjan [1980]: O(n3/2 logn).
It follows that the sequential complexity of finding a patch flow in planar graphs—and
of all the planar problems mentioned above—is O(n5/2 logn).

Nishizeki, Matsumoto, and Saito [1986] also solved planar flow problems within
this time limit via n matching algorithms; however, these must be successive. In
their algorithm, the input of every matching subroutine depends on the output of all
subroutines carried out previously, and the output of the whole algorithm depends on
the choices made during the running of the algorithm.

Note that the best sequential complexity for the planar Chinese postman problem
has thus far been reached by Barahona [1989] with a direct algorithm that has the
same complexity as the best planar matching algorithm at present, O(n3/2 logn).

We now mention some applications that require more than a simple use of Theo-
rems 2.1 and 3.1.

3.1. Integer packings in graphs without odd K.
(3.1) (Seymour [1977]) Let G be a graph and suppose that T ⊆ V (G), where |T |

is even. If V (G) cannot be partitioned into four T -odd parts so that each induces a
connected graph, and if there exists an edge between any two of the four parts, then the
maximum cardinality of a family of disjoint T -cuts is equal to the minimum cardinality
of a T -join.

Since the constraint of (3.1) remains true after the usual subdivision (or contrac-
tion) of edges, the weighted generalization can be straightforwardly deduced. The
condition of (3.1) is not only sufficient but also necessary to have a maximum w-
packing of T -cuts that is integer for an arbitrary nonnegative integer weight function
w.

(3.1) is an important special case of Seymour’s general characterization of binary
clutters with the strong max-flow min-cut property. It is closely related to the follow-
ing result. (Again, for the sake of simplicity, we state only the cardinality case, which
implies the general case through the usual subdivision of edges.)

If P is a partition of V (G) into T -odd parts each of which induces a connected
graph, then the set of edges whose endpoints are in different parts of P is called a T -
border . The value of this T -border is |P|/2. A T -border B is called bicritical if, upon
contracting all the edges of E(G) \ B (that is, shrinking all the classes of P), we get
a bicritical graph, that is, a graph that has a perfect matching, and according to the
weight function that is −1 on a perfect matching and 1 everywhere else, the distance
between any two points is −1. (It is an easy exercise to show that this definition does
not depend on the chosen matching.)

(3.2) (Sebő [1988]) Let G be a graph and T ⊆ V (G), where |T | is even. The
minimum cardinality of a T -join of G is equal to the maximum sum of the values of
a set of edge-disjoint bicritical T -borders.

Again, (3.2) implies its own weighted generalization in the usual way. (3.2) implies
(3.1) using the following.

598 ANDRÁS SEBŐ

(3.3) (Sebő [1988]) The vertices of a bicritical graph can be partitioned into four
classes of odd cardinality so that, upon contracting all edges with both endpoints in
the same class, we get K4.

The original proof of (3.3) reduces the statement to Seymour’s theorem and points
out that an elementary proof would generate a simple proof of Seymour’s theorem via
(3.2). A simple proof of (3.3) was given by Lovász through the ear decomposition of
nonbipartite matching-covered graphs and by Gerards [1987] in an elementary way.
For an elegant, elementary proof of (3.3), see Frank and Szigeti [1994].

The original proof (see Sebő [1987a]) of (3.2) used Theorem 1.1, and for the sake
of the algorithmic consequences, this is what we must follow here. (In Sebő [1988],
the same proof was described in a self-contained way by substituting the proof of
Theorem 1.1 instead of using it. Frank and Szigeti [1994] replaced Theorem 1.1 by
using (1.4), which combined with their proof of (3.3) is the shortest variant.)

Proof of (3.2). It is trivial that the minimum is greater than or equal to the
maximum. To prove equality, let F be a minimum T -join and define w(e) := −1 if
e ∈ F and w(e) := 1 if e ∈ E(G) \ F . By Guan’s remark (see section 1), (G,w) is
conservative. We can suppose without loss of generality that G is connected. Let
x0 ∈ V (G) be arbitrary. Define D, D′, and D′′ as we did immediately after (2.3), and
apply (2.3).

As we noticed after (2.3), each D ∈ D′′ is partitioned by some elementsD1, . . . , Dk

of D′. If x0 /∈ D, then x0 /∈ D1 ∈ D, . . . , x0 /∈ Dk ∈ D, and by (2.3a), δ(Di) contains
exactly one negative edge for i = 1, . . . , k, and since δ(V (G) \ D) = δ(D), so does
δ(V (G)\D). G−D may be disconnected, but for one of its components—denote it by
D0—δ(D0) contains the unique negative edge of δ(D). Add each component of G−D
except D0 to one of the Di’s (i = 1, . . . , k) adjacent to it. (Since G is connected,
there exists at least one such Di for every component of G−D.) In this way, we get
a partition P(D) := {D0, D

′
1, . . . , D

′
k} whose classes are matched by (k + 1)/2 edges

of F , and there is no other edge of F in the set B(D) of edges joining different classes
of P(D). Thus B(D) is a T -border.

Moreover, B := {B(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint T -borders whose
sum of values is equal to |F |. This proves (3.2) without proving that these T -borders
are bicritical. If some of the T -borders B ∈ B are not bicritical, we will find a larger
number of disjoint T -borders with the same value. This will complete the proof of
(3.2) because the number of disjoint T -borders is bounded by the number of edges,
so it has a maximum, and then all T -borders are bicritical.

Let B∗ be the graph that we obtain by contracting E(G)\B (that is, by shrinking
the classes of the underlying partition). F ∩ B is a perfect matching of B∗, and the
weighting w becomes w∗: −1 on F and 1 elsewhere. (B∗, w∗) is conservative. Suppose
that B∗ is not bicritical; let x∗0 6= x∗ ∈ V (B∗) and λB∗,w∗(x

∗
0, x
∗) ≥ 0.

Apply to (B∗, w∗) the argument that we used for (G,w) to find a set of disjoint
V (B∗)-borders of maximum sum of values. We get a set B∗ of disjoint T -borders of
total value |B ∩ F |, the same as the value of B. The T -border in B∗ containing the
negative edge e adjacent to x∗0 contains only edges adjacent to vertices at distance
−1, whence it does not contain the negative edge adjacent to x∗. Thus |B∗| ≥ 2, as
claimed.

The algorithm that follows from this proof for finding the integer packing of (3.2)
is the following.

Algorithm 2.

Input: a graph G and w : E(G)→ IIN.

UNDIRECTED POTENTIALS 599

Output: a w-packing of T -borders (T -cuts if the condition of (3.1) is satisfied).

1. Find a patch dual flow (see Algorithm 1).

2. Find a w-packing of T -borders using the guidelines of the first part of the proof
of (3.2).

Comment. Of course, the proof must be applied to the graph where each e ∈
E(G) is subdivided into a path of w(e) edges, and if the algorithm really does the
subdivision, the polynomial bound is lost. However, from the multiplicities of the
cuts in the dual flow provided by Algorithm 1, it is straightforward to compute the
multiplicities of the T -borders in the packing without actually doing the subdivision.

3. Decompose each T -border B of the constructed packing into disjoint bicritical
T -borders using the guidelines of the second part of the proof of (3.2), and replace B
with the elements of the decomposition, assigning its multiplicity to each. Continue
this procedure with each of the newly constructed T -borders until there is no more
proper decomposition, that is, until the distance between any two vertices in all of
the T -borders is −1 (according to the weight function defined in the proof of (3.2)),
i.e., until they are all bicritical.

Comment. This step is the same in the weighted and unweighted cases. The
decomposition of a T -border into bicritical T -borders is an unweighted problem.

Theorem 3.2. The integer packing of odd cuts in (3.2) and (3.1) can be found
by solving O(mn2) matching algorithms on minors of G (graphs that arise with the
contraction and deletion of some edges from G) and performing some additional steps
whose order of magnitude is smaller.

Proof. To execute steps 1 and 2, the number of matching algorithms to be solved
is n. After the execution of step 3, the number of bicritical T -borders that decompose
a bicritical T -border is at most the number of edges of the latter. Thus m is an
upper bound for the number of times Algorithm 1 must be applied to the subsequent
T -borders. On each of these T -borders, we have to execute n2 matching algorithms
to prove that they are bicritical or decompose them.

It follows that the maximum integral dual solution to the minimization problem on
a T -join polyhedron described with a minimal totally dual integral (TDI) description
(see Sebő [1988]) can also be computed within the same time limit.

However, note that the bounds in Theorem 3.2 are weaker than those in Corollary
1. We do not see how our parallel complexity estimates could be saved for this case.

3.2. Integer flows—almost. Let (G,w) be ±1-weighted and conservative. Of
course, E− forms a forest. Korach and Penn [1992] proved that there exist pairwise-
disjoint cuts, each of which contains one negative edge, so that every negative edge
is in some of the cuts except perhaps at most one edge of each component of E−; in
fact, for one component of E−, one can require every edge to be in some of the cuts.
Equivalently, for arbitrary weights, Korach and Penn proved the following theorem.

(3.4) If (G,w) is conservative, then there exists F ⊆ E− with |F ∩ C| ≤ 1 for
every connected component C of E− such that for the weight function w′, there exists
an integer dual flow, where w′(e) := w(e) if e ∈ E \F and w′(e) := w(e)− 1 if e ∈ F .

We give the proof of Sebő [1990], which provides an algorithm for finding this dual
flow and the multiflow of Corollary 2 below via Theorem 2.1, with the time limits of
Theorem 3.1.

Proof of (3.4). The usual subdivision of edges leads to a ±1-weighted conservative
graph, so suppose that (G,w) is already one. Let x0 ∈ V (G) be arbitrary and λ(x) :=
λw(x0, x) (x ∈ V (G)). Denote the components of E− by E0, . . . , Ek.

600 ANDRÁS SEBŐ

Claim 3. For every x ∈ V (Ei), there exists at most one y ∈ V (Ei) with xy ∈ Ei
such that λ(y) ≥ λ(x) (i = 1, . . . , k).

Indeed, let xy1, xy2 ∈ Ei, y1 6= y2. A shortest simple (x0, x) path P contains
at most one of these edges—say, it does not contain the edge xy2. Then, however,
P ∪ xy2 is an (x0, y2) path and λ(y2) ≤ w(P ∪ xy2) = w(P)− 1 = λ(x)− 1.

Claim 4. The maximum of λ(x) on V (Ei) is reached on one vertex or the
two endpoints of an edge (i = 1, . . . , k). For every edge uv ∈ Ei but this one,
|λ(u)− λ(v)| = 1.

Indeed, if there are two nonadjacent vertices of Ei with λ(x) maximum, then
these two vertices are joined by a subpath of Ei, which, if it consists of at least two
edges, must contain a vertex, contradicting the claim. If |λ(u)− λ(v)| = 0, then in
exactly the same way, we get from Claim 3 that λ(u) = λ(v) are the only maxima of
λ(x), x ∈ V (Ei).

Thus each Ei (i = 1, . . . , k) contains at most one edge xy with λ(x) = λ(y).
According to (2.4), {δ(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint cuts which contains
every negative edge except those with λ(x) = λ(y), that is, there is at most one
exception in each Ei (i = 1, . . . , k) (see Claim 4).

The following statement of Korach and Penn [1992] is an immediate corollary.
Corollary 2. If (G, c) is an instance of the planar multiflow problem and the

cut condition is satisfied, then upon decreasing all but one of the demands by 1 (that
is, increasing all the negative capacities by 1), there exists an integer multiflow.

Korach and Penn also noticed that one can, in fact, require F ∩ E0 = ∅ for any
given component E0 of E−. Indeed, in the above proof as well, the choice x0 ∈ V (E0)
makes sure that in Claim 4, λ(x0) = 0, and for every other vertex of E0, λ(x) < 0. In
E0 there is no edge xy with λ(x) = λ(y).

Frank and Szigeti [1995] generalized (3.4) in the following way.
(3.5) Let G be a graph, w : E(G)→ ZZ, and E0, E1, . . . , Ek, Ek+1, . . . , Ek+l be the

components of E−. Suppose that w(C) ≥ s(C) holds for every circuit C of G, where
s(C) := |{i ∈ {1, . . . , k} : Ei ∩ C 6= ∅}| .

Then there exists a set F ⊆ Ek+1 ∪ · · · ∪ Ek+l such that |F ∩ Ei| ≤ 1 if i =
k + 1, . . . , k + l, with the property that, upon decreasing the demand of e ∈ Ei ∩ F by
1 (i = k + 1, . . . , k + l), there exists a dual multiflow.

The proof of Frank and Szigeti consists of splitting every vertex v ∈ E1 ∪ · · · ∪Ek
into two vertices v1 and v2, where v1 is incident to the positive edges and v2 is incident
to the negative edges of δ(v). v1 and v2 are joined by an edge of weight −1/2. If
the condition of (3.5) is satisfied, then the constructed graph with the constructed
weighting is conservative, and applying the proof of (3.4) to this graph with this
weight, we can obtain the dual multiflow stated in (3.5).

Frank and Szigeti [1995] also observed the following immediate corollary.
Corollary 3. If (G,w) is conservative and w(δ(X)) +w(δ(X)∩E−) ≥ 0, then

there exists an integer dual multiflow.
Theorem 3.1 then implies the following:
The integer (dual) multiflow in (3.4), (3.5), and Corollary 3 can be found within

the same time limits as those in Corollary 1. Of course, the same holds for integer
multiflows in planar graphs.

3.3. Packing cuts exactly. Finally, let us comment on the complexity of inte-
ger odd cut packings. Let G be a graph and T ⊆ V (G), where the number of vertices
of T in each component of G is even. (G,T) is said to have the Seymour property
if the minimum cardinality of a T -join is equal to the maximum cardinality of a set

UNDIRECTED POTENTIALS 601

of disjoint T -cuts. Accordingly, (G,w) (w : E(G) → ZZ) has the Seymour property
if there exists an integer dual flow. Middendorf and Pfeiffer [1989] proved that it is
NP-complete to test the Seymour property, even in planar graphs.

Therefore, instead of the Seymour property, our interest turns towards Seymour
graphs. G is called a Seymour graph if for arbitrary w : E(G)→ {−1, 1} for which the
cut condition holds, there exists an integer dual multiflow. Through the subdivision of
edges, the weighted generalization is the following: G is a Seymour graph with respect
to the weight function w : E(G)→ IIN if for an arbitrary w′ : E(G)→ [−|w(e)|, w(e)]
such that w′(e) ≡ w(e) mod 2 and the cut condition holds, there exists an integer
dual multiflow. (This is the class of weight functions that one gets by independently
signing the parts of a subdivided edge. In the following, we will restrict ourselves to
unweighted Seymour graphs since the generalization is trivial and somewhat artificial.)
It is not known whether the problem of deciding whether a graph G is a Seymour
graph is polynomially solvable or coNP-complete. (It is not trivial but true that it is
in coNP, as we shall see later.) However, the following somewhat weaker results are
known:

As Seymour’s result (1.3) implies that bipartite graphs are Seymour graphs, so
does (3.1) imply that series-parallel graphs are Seymour graphs. (The latter statement
can also be easily proved directly without using (3.1).) Gerards [1992] proved a
common generalization of these two results. A sharpening of this that provides a
coNP characterization of Seymour graphs was conjectured by Sebő [1991] and proved
by Ageev, Kostochka, and Szigeti [1995]. The following simplified version still provides
a polynomially checkable obstacle, and it suffices for our purposes.

(3.6) G is not a Seymour graph if and only if there exists a signing of the edges
such that the union of zero-weight circuits (in fact, of only two zero-weight circuits)
is nonbipartite.

The proof of the if part of this conjecture is a straightforward exercise.
The proof of the only if part given by Ageev, Kostochka, and Szigeti is based on

Theorem 1.1 in such a way that Algorithm 1 can be straightforwardly substituted in
it, and the corresponding polynomial bounds follow easily:

Given the graph G and w : E(G) → {−1, 1}, there is a polynomial algorithm
which either (a) finds an integer dual multiflow in (G,w) or a negative circuit or (b)
exhibits a weight function w′ : E(G)→ {−1, 1} for which (G,w′) is conservative but
no integer dual multiflow exists. In the latter case, a “good certificate” (a nonbipartite
graph and two zero-weight circuits covering all the edges) is provided.

As a consequence, the unweighted dual multiflow problem is polynomially solvable
in Seymour graphs , and all of the consequences provided by the Corollary 1 also hold.
Let us finally state the specialization to planar graphs (after dualization):

Given the graph G = (V,E) and R ⊆ E, there is a polynomial algorithm which
either (a) finds an integer multiflow in (G,R) or a violated cut or (b) exhibits R′ ⊆ E
for which the cut condition is satisfied (certificate: a half-integer multiflow) but no
integer multiflow exists (certificate: two zero-weight cuts whose union is odd).

As a consequence, the edge-disjoint paths problem is polynomially solvable in dual
Seymour planar graphs. The main open problem of whether Seymour graphs are in
NP and whether they can be recognized in polynomial time remains.

3.4. Weighted and canonical matching and T -join structure. If V (G) is
odd, a matching M will be called perfect if it leaves exactly one vertex uncovered.
The maximum- (or minimum-) weight matching problem can be easily reduced to the
problem of finding minimum-weight perfect matchings. If w : E(G) → IR, we will

602 ANDRÁS SEBŐ

denote by τ(G,w) the minimum weight of a perfect matching in G.

It is now easy to deduce the consequences of Theorems 2.1 and 3.1 to weighted
matchings:

Add a large number N (say, N is the sum of the absolute values of the weights) to
the weight of every edge. Add a new vertex x0 to G, and join it to every vertex with
an edge of weight N . Let G′ denote this new graph and w′ denote the weight function
that we defined on its edges. It is easy to see that the w′-minimum T := V (G′)-joins
(or T := V (G′) \ {x0}-joins, depending on which of the two is even) of G′ are exactly
the w-minimum perfect matchings of G (after deleting the edge adjacent to x0 if
|V (G)| is odd).

Choose a minimum-weight perfect matching of G or G′ (depending on whether
|V (G)| or |V (G′)| is even), and change the sign of the weights of the edges in it.

It is now easy to see that the distance of the vertex x ∈ V (G) from x0 is the
number τ(G − x,w) − τ(G,w). Note that it is independent of the particular w-
minimum matching chosen.

From a maximum 2-packing of T -cuts in G′, a maximum odd cut packing of G can
also be reconstructed. That is, Theorem 1.1 can be adapted to weighted matchings.
The “magic” numbers should be defined to be τ(G− x,w)− τ(G,w). These numbers
will be equal to the distances with the chosen weights; these independently computable
numbers determine a packing of odd cuts, which could be called a “patch packing”
and which generalizes the Gallai–Edmonds structure of maximum matchings. (See
more about the relation of Theorem 1.1 and the Gallai–Edmonds structure theorem
in Sebő [1990].)

Algorithm 1 and Lemmas 3.1 and 3.2 can be applied to other problems involving
integer packings in a similar way. We mention some results whose proofs involve
Theorem 1.1 (or 2.1) so that they can be accompanied by a polynomial algorithm
that combines Lemmas 3.1 and 3.2 and Algorithm 1.

A generalization of the Kotzig–Lovász theorem (Sebő [1987a, b]) provides a “canon-
ical partition” (implying new results on integer feasible flows or the computation of
the dimension of T -join polyhedra or multiflows). This canonical partition can be
computed via the distances, that is, with Lemmas 3.1 and 3.2. Thus the integer pack-
ings and flows of Sebő [1990], or perhaps a negative cut or an odd circuit consisting of
tight edges, or a set violating the cut condition or some stronger condition (see Sebő
[1987b]) can also be found in polynomial time.

Acknowledgments. I am thankful to András Frank for his encouragement and
to Zoltán Szigeti and an anonymous referee for a lot of helpful advice.

REFERENCES

A. Ageev, A. Kostochka, and Z. Szigeti [1995], A characterization of Seymour graphs, J. Graph
Theory, to appear.

F. Barahona [1980], Application de l’optimisation combinatoire á certains modéles de verres de
spin: Complexité et simulations, thèse de docteur ingénieur, Université Scientifique et Médicale
de Grenoble, Institut National Polytechnique de Grenoble, Grenoble, France.

F. Barahona [1989], Planar multicommodity flows: Max cut and the Chinese postman problem, in
Polyhedral Combinatorics, W. Cook and P. Seymour, eds., DIMACS Series in Discrete Mathe-
matics and Computer Science, Vol. 1, AMS, Providence, RI, pp.189–202.

F. Barahona and W. Cunningham [1989], On dual integrality in matching problems, Oper. Res.
Lett., 8, pp. 245–249.

J. Edmonds [1965a], Paths, trees and flowers, Canad. J. Math., 17, pp. 449–467.
J. Edmonds [1965b], The Chinese postman problem, Oper. Res., 13 (supplement 1), p. 373.

UNDIRECTED POTENTIALS 603

J. Edmonds and E. L. Johnson [1973], Matching, Euler tours and the Chinese postman, Math.
Programming, 5, pp. 88–124.

A. Frank [1990], Packing paths, circuits and cuts: A survey, in Paths, Flows and VLSI-Layout,
B. Korte, L. Lovász, H. Prömel, and A. Schrijver, eds., Springer-Verlag, Berlin, Heidelberg,
pp. 47–100.

A. Frank, A. Sebő, and É. Tardos [1984], Covering directed and odd cuts, Math. Programming
Stud., 22, pp. 99–112.

A. Frank and Z. Szigeti [1994], On packing T -cuts, J. Combin. Theory Ser. B, 61, pp. 263–271.
A. Frank and Z. Szigeti [1995], A note on packing paths in planar graphs, Math. Programming,

70, pp. 201–209.
A. Gerards [1987], private communication.
A. Gerards [1992], On shortest T -joins and packing T -cuts, J. Combin. Theory Ser. B, 55, pp.

73–82.
M. Guan [1962], Graphic programming using odd or even points, Chinese J. Math., 1, pp. 273–277.
E. Korach [1982], Packing of T-cuts, and other aspects of dual integrality, Ph.D. thesis, Waterloo

University, Waterloo, ON, Canada.
E. Korach and M. Penn [1992], Tight integral duality gap in the Chinese postman problem, Math.

Programming, 55, pp. 183–191.
E. Lawler [1976], Combinatorial Optimization, Networks and Matroids, Holt, Rinehart, and Win-

ston, New York.
R. J. Lipton and R. E. Tarjan [1980], Applications of a planar separator theorem, SIAM J. Com-

put., 9, pp. 615–627.
L. Lovász [1975], 2-matchings and 2-covers of hypergraphs, Acta Math. Acad. Sci. Hungar., 26,

pp. 433–444.
L. Lovász and M. Plummer [1986a], On bicritical graphs, in Infinte and Finite Sets, A. Hajnal,

R. Rado, V. T. Sós, et al., eds., Colloq. Math. Soc. János Bolyai, North–Holland, Amsterdam,
pp. 1051–1079.

L. Lovász and M. Plummer [1986b], Matching Theory, Akadémiai Kiadó, Budapest.
K. Matsumoto, T. Nishizeki, and N. Saito [1986], Plane multicommodity flows, maximum match-

ings and negative cycles, SIAM J. Comput., 15, pp. 495–510.
M. Middendorf and F. Pfeiffer [1989], On the complexity of the disjoint path problem, in Poly-

hedral Combinatorics, W. Cook and P. Seymour, eds., DIMACS Series in Discrete Mathematics
and Computer Science, Vol. 1, AMS, Providence, RI, pp. 171–178.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani [1987], A parallel algorithm for matching,
Combinatorica, 7, pp. 105–113.

A. Schrijver [1986], Theory of Linear and Integer Programming, John Wiley, Chichester, UK.
A. Sebő [1987a], The factors of graphs: Structures and algorithms, Ph.D. thesis, Eötvös Loránd

University, Budapest.
A. Sebő [1987b], Dual integrality and multicommodity flows, in Infinite and Finite Sets, A. Hajnal

and V. T. Sós, eds., Colloq. Math. Soc. János Bolyai, North–Holland, Amsterdam, pp. 453–469.
A. Sebő [1988], The Schrijver system of odd join polyhedra, Combinatorica, 8, pp. 103–116.
A. Sebő [1990], Undirected distances and the postman-structure of graphs, J. Combin. Theory Ser.

B, 49, pp. 10–39.
A. Sebő [1991], On two multiflow problems, lecture, Graph Minors Meeting, Seattle.
P. D. Seymour [1977], The matroids with the max-flow min-cut property, J. Combin. Theory Ser.

B, 23, pp. 189–222.
P. D. Seymour [1981], On odd cuts and plane multicommodity flows, Proc. London. Math. Soc., 42,

pp. 178–192.
J. Wein [1991], Las Vegas RNC algorithm for weighted matchings, Inform. Process. Lett., 40,

pp. 161–167.

BOOLEAN CIRCUITS, TENSOR RANKS, AND COMMUNICATION
COMPLEXITY ∗

PAVEL PUDLÁK† , VOJTĚCH RÖDL‡ , AND JIŘÍ SGALL§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 605–633, June 1997 001

Abstract. We investigate two methods for proving lower bounds on the size of small-depth
circuits, namely the approaches based on multiparty communication games and algebraic charac-
terizations extending the concepts of the tensor rank and rigidity of matrices. Our methods are
combinatorial, but we think that our main contribution concerns the algebraic concepts used in this
area (tensor ranks and rigidity). Our main results are following.

(i) An o(n)-bit protocol for a communication game for computing shifts, which also gives
an upper bound of o(n2) on the contact rank of the tensor of multiplication of polynomials; this
disproves some earlier conjectures. A related probabilistic construction gives an o(n) upper bound
for computing all permutations and an O(n log logn) upper bound on the communication complexity
of pointer jumping with permutations.

(ii) A lower bound on certain restricted circuits of depth 2 which are related to the problem
of proving a superlinear lower bound on the size of logarithmic-depth circuits; this bound has inter-
pretations both as a lower bound on the rigidity of the tensor of multiplication of polynomials and
as a lower bound on the communication needed to compute the shift function in a restricted model.

(iii) An upper bound on Boolean circuits of depth 2 for computing shifts and, more generally,
all permutations; this shows that such circuits are more efficient than the model based on sending
bits along vertex-disjoint paths.

Key words. circuit, tensor rank, communication complexity, random graph

AMS subject classifications. 68Q15, 68Q25, 68R10

PII. S0097539794264809

1. Introduction. The problem of proving superlinear lower bounds on the size
of circuits for an explicitly defined sequence of Boolean functions is perhaps the most
persistent problem in complexity theory. Attempts to solve it have led to several
weaker problems which are often of independent interest. The problem is still open
even if we look for functions of n input bits with n outputs and impose an additional
restriction that the depth of the circuit is O(logn).

The main motivation for this paper is a related problem in which the computation
is restricted to linear circuits over a field IF, i.e., circuits which have linear functions
as gates. The question is to find an explicit linear function which cannot be computed
by a linear circuit of size O(n) and depth O(logn). Clearly, such a function must have
a nonconstant number of output bits since every one-output linear function can be
computed by a balanced tree with linear gates. If the field is GF2, this is a variant
of the problem for general Boolean circuits. However, strictly speaking, the problem

∗ Received by the editors March 18, 1994; accepted for publication (in revised form) June 6, 1995.
http://www.siam.org/journals/sicomp/26-3/26480.html
† Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha

(Prague) 1, Czech Republic (pudlak@mbox.cesnet.cz). Part of this research was done while this au-
thor was visiting the Department of Mathematics and Computer Science, Emory University, Atlanta,
GA, 30322.
‡ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(rodl@mathcs.emory.edu). Part of this research was done while this author was visiting the Mathe-
matical Institute AV ČR, Žitná 25, 11567 Praha (Prague) 1, Czech Republic.
§ Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha

(Prague) 1, Czech Republic (sgallj@mbox.cesnet.cz). The research of this author was done at the
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 and partially sup-
ported by AV ČR grant A119107 and US–Czechoslovak Science and Technology Program grant
93 025.

605

606 P. PUDLÁK, V. RÖDL, AND J. SGALL

about linear circuits over GF2 is not a weaker problem since the class of computable
functions is smaller.

Many natural functions are not linear in all of the inputs, but only in some subset
of them. For example, matrix multiplication is a bilinear function, which means that
whenever one of the matrices is fixed, it is a linear function of the entries of the
other matrix. A natural extension of linear circuits which includes circuits for such
functions are semilinear circuits. Suppose that a function F (p, ~x) is linear for every
fixed parameter p. We say that a circuit C (with ~x as an input) is a semilinear circuit
for F (p, ~x) if for any fixed parameter p, we can assign linear functions to the gates of
C so that we get a linear circuit for F (p, ~x). We want to prove a lower bound on the
size of a semilinear circuit computing an explicit F (p, ~x).

Thus far, superlinear lower bounds have been proved only for infinite fields. Shoup
and Smolensky proved a lower bound of Ω(n logn/ log log n) for linear circuits of poly-
logarithmic depth [30]; however, their proof works only for functions with very large
values. For finite fields, no explicit functions not computable by linear or semilinear
circuits of size O(n) and depth O(logn) are known.

Some superlinear lower bounds have been proved for a much more restricted
model of constant-depth circuits with linear gates of unbounded fan-in. (This is
again nontrivial only for multioutput functions.) Some of these bounds use results
on the complexity of communication networks [13, 24, 26]. The bounds can be ex-
tended to bounded-depth Boolean circuits with arbitrary Boolean functions as gates,
which proves, for instance, that addition and multiplication cannot be computed by
a constant-depth circuit of size O(n).

We are interested in various algebraic and combinatorial concepts related to circuit
complexity. First, we review several such concepts that have been devised for proving
circuit lower bounds.

The algebraic approach dates back to Strassen, who introduced the concept of
the rank of a tensor [31]. This rank characterizes up to a constant factor the number
of multiplications needed to compute an explicit bilinear function, which is called
multiplicative complexity. It is a major open problem in algebraic complexity to
prove a superlinear lower bound on the rank of an explicit tensor. Valiant defined the
rigidity of a matrix [32]. Sufficiently large lower bounds on the rigidity of the matrix
defining a linear function would imply superlinear lower bounds on the size of linear
circuits of depth O(logn). However, thus far, the best bounds for explicit matrices are
too small [14]. Later, Razborov considered a modification of the tensor rank, called
the contact rank [27]. This rank characterizes the complexity of certain restricted
algebraic circuits (where only multiplications by a variable or a scalar are allowed).
He proved a lower bound of Ω(n3/2) on the contact rank of the tensor of multiplication
of polynomials and on the contact rank of the tensor of matrix multiplication. He also
used the contact rank to prove a lower bound on the rigidity of certain matrices. The
combinatorial approach (which can be also characterized as information-theoretic)
leads to the multiparty communication complexity introduced by Chandra, Furst, and
Lipton [16], which was used to prove lower bounds on circuit complexity in various
situations [7, 15, 20], and to the concept of computation with common bits introduced
by Valiant [32, 33].

In this paper, we generalize the concept of the rigidity of a matrix to the rigidity of
a tensor, where a tensor is essentially a set of matrices. This gives a tool for proving
lower bounds on semilinear circuits in the same way as the original concept does
for linear circuits. We also define another variant of tensor rank, which we call the

CIRCUITS, RANKS, AND COMPLEXITY 607

rigidity rank because of its relation to the rigidity of tensors. Furthermore, we define
certain refinements of the multiparty communication complexity and computation
with common bits and show that they are closely related to the rigidity rank. Thus
some bounds can be transferred from communication complexity to the algebraic
framework and vice versa.

We consider the complexity of computing all n cyclic shifts of input bits. We prove
an o(n) upper bound on the corresponding three-party communication game, thus giv-
ing a negative answer to a communication complexity question of Nisan and Wigder-
son motivated by the problem of circuits of depth O(logn) and size O(n) [20]. A
similar problem about computation with common bits was also posed by Valiant [33].
Since each shift is a linear function, computing all shifts can be presented as a prob-
lem about semilinear circuits or, equivalently, as a problem about the rigidity of the
diagonal tensor, which is the corresponding tensor. We get an upper bound of o(n2)
on the rigidity rank of this tensor. This disproves a conjecture of Razborov [27] that
the contact rank of this tensor is Ω(n2), since the rigidity rank is at least as large as
the contact rank.

This piece of information is quite important since it shows that certain direct
approaches to the problem of superlinear lower bounds for Boolean circuits do not
work. We have to use more refined notions, like the rigidity of a tensor instead of its
contact and rigidity ranks, or special kinds of protocols in the case of communication
complexity.

We generalize this upper bound in two ways. First, we consider all permuta-
tions instead of just shifts. Using probabilistic methods, we prove that the upper
bounds of o(n) on the communication complexity and o(n2) on the rigidity rank of
the corresponding tensor hold even for this much harder problem. Second, for the
communication complexity, we consider any constant number of players instead of
just three, computing the composition of several shifts. In such a case, we prove that
the communication complexity decreases exponentially with the number of players.
These results do not exclude the possibility of applying the communication complexity
and related combinatorial tools to the problem of proving a superlinear lower bound
for Boolean circuits. However, they show that the usual intuition—that for simple
functions the natural protocols are essentially the best possible—can be wrong.

Furthermore, we prove a lower bound on the size of circuits computing all shifts
with common bits. In the algebraic language, this gives a lower bound on the rigidity
of the diagonal tensor. As a consequence, we improve the current best lower bound
on Boolean circuits of depth 2 with arbitrary gates computing multiplication of two
integers (written in binary). We also give a slightly larger lower bound on the rigidity
rank of the tensor of multiplication of polynomials than is known for contact rank.
However, this bound is not strong enough to prove a lower bound for circuits of
logarithmic depth.

Another restricted model of computation used for computing permutations of
input bits are networks in which the inputs are routed through the network to the
corresponding outputs along vertex disjoint paths [21, 23]. This can be viewed as a
special case of semilinear circuits if we allow only projections as the gates instead of
general linear functions. We consider the gap between the complexity of conservative
computation by such networks and nonconservative computation by general semilinear
circuits. We prove that it is possible to compute all permutations by a semilinear
circuit which can be divided into two parts, one with a sublinear number of vertices
and the other with o(n3/2) edges. Using only routing along vertex-disjoint paths, such

608 P. PUDLÁK, V. RÖDL, AND J. SGALL

networks cannot compute even all shifts. It is not surprising that circuits are more
efficient, but as far as we know, this is the first proof of such a fact for the computation
of a set of permutations.

One of our technical tools is Theorem 4.4 concerning coloring random graphs,
which extends a famous estimate of the chromatic number of the random graph due
to Bollobás [10] and may be of independent interest. We also use other powerful
probabilistic techniques such as martingales and Janson’s inequality.

Even though our tools are combinatorial and we obtain some lower bounds on the
complexity of certain restricted computations, we think that the main contributions
of this paper are the refinement of the algebraic concepts used in this area (tensor
ranks and rigidity) and results obtained about them, together with the upper bounds
on the multiparty communication complexity and on the size of depth-2 circuits.

This paper expands the results of the extended abstract [25] and the note [28]
and contains some new results.

Independently of us, Babai, Kimmel, and Lokam [6] proved an o(n) upper bound
on the communication complexity of a game corresponding to computing certain set
of n permutations (instead of n shifts). Very recently (during the refereeing process of
this paper), Ambainis [4] improved some of our results on communication complexity
(Theorems 4.2 and 4.9). In another recent paper, Damm, Jukna, and Sgall [11] prove
bounds on the k-party communication complexity of the pointer-jumping function in
a restricted model not directly corresponding to the models considered here.

Here is an overview of the paper. In section 2, we give the basic definitions and
facts. Section 3 summarizes the relations between ranks of tensors, size of circuits, and
communication games. In section 4, we prove the upper bounds on the communication
complexity of computing all permutations and the iterated shift function, as well as
the corresponding bound on tensor rigidity. The lower bounds on computation of
shifts with common bits and the corresponding bounds on the rigidity and rigidity
rank of the diagonal tensor are proved in section 5. In section 6, we prove the gap
between conservative and nonconservative computation of shifts. The proof of the
estimate on the chromatic number of a random graph is given in section 7.

2. Basic definitions and facts. We index all vectors and tensors starting from
0 since this is convenient for the modular arithmetic. An exception are some tensors
that are indexed by a general parameter, which is not necessarily a number, in one
coordinate.

2.1. Boolean functions. For circuit bounds, we consider multioutput functions,
whose values are vectors of n bits. The shift function, Shiftn : {0, . . . , n−1}×{0, 1}n →
{0, 1}n, is defined by

Shiftn(s, ~x) = ~y, where yi = x(i+s) mod n.

This is a very important function since it can be reduced to many naturally occurring
functions, e.g., multiplication of binary numbers, convolution, etc. We believe that
linear-size circuits of logarithmic depth cannot compute the shift function, and hence
cannot compute any of the functions to which it can be reduced.

If we use general permutations in place of shifts, we obtain the permutation func-
tion,

Permn(π, ~x) = ~y, where yi = xπ(i)

and π is a permutation of the set {0, . . . , n− 1}. Note that the input size for Permn

is of the order of n logn, while it is only n+ dlogne for Shiftn.

CIRCUITS, RANKS, AND COMPLEXITY 609

Any multioutput function can be transformed into a one-output function with one
extra argument that indexes the output bits. For any function F (p, ~x) : Y × X →
{0, 1}n, we define its one-output variant, bitF : {0, . . . , n− 1} × Y ×X → {0, 1}, by

bitF (i, p, ~x) = (F (p, ~x))i.

We use lower-case letters for one-output functions and capitalize the names of corre-
sponding multioutput functions. It is easily seen that we can get a circuit for bitF by
adding only O(n) new gates to the circuit for F so that the depth increases only by
O(logn). As we will see later, the communication complexity of a one-output function
is related to the circuit complexity of the corresponding multioutput function.

We define

shiftn = bitShiftn , i.e., shiftn(i, j, ~x) = x(i+j) mod n;

permn = bitPermn , i.e., permn(i, π, ~x) = xπ(i).

These two functions can be generalized to several shifts or permutations. We define

shiftnk (s1, . . . , sk+1, ~x) = x(s1+···+sk+1) mod n;

permn
k (i, π1, . . . , πk, ~x) = xπk...π1(i).

Note that shiftn(i, j, ~x) = shiftn1 (i, j, ~x) and permn(i, π, ~x) = permn
1 (i, π, ~x).

All of the functions introduced above are linear in ~x. We call such functions
semilinear. More precisely, a function F (p, ~x) is semilinear in ~x if for every fixed
parameter p0, the function F (p0, ~x) is a linear function of ~x.

2.2. Circuits. The main motivation for our work is to study methods for prov-
ing superlinear lower bounds on the size of circuits with depth O(logn), where n is
the number of inputs and all gates have fan-in 2. No such bounds are known even
for functions with n outputs. In a Boolean circuit, the gates are arbitrary binary
functions. We also consider algebraic circuits, in which case the gates are arbitrary
polynomials over the given field.

Algebraic circuits over the field GF2 and Boolean circuits are closely related, but
there is a difference. In an algebraic circuit, we actually compute in GF2(x1, . . . , xn),
i.e., in GF2 extended by indeterminates x1, . . . , xn, while in a Boolean circuit we use
only the elements of GF2. A Boolean function f : {0, 1}n → {0, 1} can be identified
with a multilinear polynomial p of GF2[x1, . . . , xn]. Then an algebraic circuit for p is
a Boolean circuit for f . The converse, however, is not true. A polynomial p′ obtained
from a Boolean circuit C for f is equal to p only after factorizing by the ideal defined
by the equations x2

1 = x1, . . . , x
2
n = xn.

We are interested mainly in linear and semilinear functions. For that purpose it
is natural to consider circuits in which the gates are linear functions. In the case of
Boolean circuits, this means that the only gates allowed are parity, projections, and
their negations. For linear circuits, the distinction between Boolean and algebraic
circuits disappears.

In a circuit for a semilinear function F (p, ~x), we consider p to be a parameter of
each gate; therefore, it is natural to use the following definition. A semilinear circuit
for a function ~y = F (p, ~x) is a directed acyclic graph with sources labeled by the

610 P. PUDLÁK, V. RÖDL, AND J. SGALL

variables ~x and sinks labeled by the variables ~y such that for every fixed p, we can
assign linear gates to the nodes so that the resulting circuit computes F (p, ~x). We
measure the dependence of the circuit size on n = |x|.

Every one-output semilinear function has a semilinear circuit of size n and depth
logn. However, for most multioutput linear functions F : {0, 1}n → {0, 1}n, the size
of a circuit computing F is Ω(n2/ logn), and the same is true for semilinear functions
and semilinear circuits. It is an open problem to prove that some explicitly defined
Boolean semilinear function has no semilinear circuit of size O(n) and depth O(logn).

An important example of semilinear circuits are algebraic circuits for bilinear
functions, which include matrix multiplication, multiplication of polynomials, and
convolution. Let F (~y, ~x) =

∑
aijyixj be a bilinear function, let C be an algebraic

circuit for F (~y, ~x). If we substitute arbitrary constants for ~y, the circuit C computes
a linear function. It is well known and easy to prove that it is possible to convert a
general algebraic circuit for a linear function into a linear circuit computing the same
function in such a way that the underlying graph is unchanged. (Let us stress that
this does not hold for Boolean circuits; see [24].) Thus C, or, more precisely, the
underlying graph, is a semilinear circuit for F (~y, ~x).

An important tool for studying the circuits of size O(n) and depth O(logn) is
a reduction discovered by Valiant [32]. We use the terminology that he introduced
in [33].

Let F be a multioutput Boolean function with input variables ~x = (x0, . . . , xn−1)
and outputs ~y = (y0, . . . , yn−1). Let G be a bipartite graph with nodes x0, . . . , xn−1

and y0, . . . , yn−1. We say that F can be computed by the graph G with r common bits
if there exist Boolean functions h1, . . . , hr and g0, . . . , gn−1 such that

yi = (F (~x))i = gi(h1(~x), . . . , hr(~x), ~x(i)),

where ~x(i) is the substring of input variables adjacent to yi in G. In other words, F
can be computed by a circuit of depth 2 where there are some direct connections from
inputs to outputs given by the graph G and some connections through an intermediate
level of r gates of unbounded fan-in. By the degree of the graph G, we mean the
maximal degree of the nodes yi in the graph G. By the common bits, we mean the
functions h1, . . . , hr. We are interested in bounding the degree of G and the number
of common bits.

In the analogy with semilinear circuits, we are especially interested in the case
where the common bits and the functions gi are semilinear; we then say that the
computation by the graph uses only semilinear functions. In this restricted case, we
can also use the same notion for algebraic circuits over a general field IF; the functions
h1, . . . , hr and g0, . . . , gn−1 are then required to be semilinear functions with values
in IF, instead of Boolean functions.

The reduction is based on the following graph-theoretic fact proved in [32, The-
orem 5.3].

Theorem 2.1 (Valiant [32]). For every ε > 0, c, and d, there exists K such that
for any directed acyclic graph C with cn nodes and depth d logn, there exists a set S
of Kn/ log log n edges such that every directed path of length ε logn in C contains an
edge from S.

The consequence that is important for us is the following.
Theorem 2.2 (Valiant [32, 33]). For every ε > 0, c, and d, there exists K such

that if a function F can be computed by a circuit of size cn and depth d logn, then it
can be computed by a graph G of degree at most nε with Kn/ log log n common bits.

CIRCUITS, RANKS, AND COMPLEXITY 611

Moreover, if the original circuit is semilinear, then the computation by the graph G
uses only semilinear functions.

Proof. Let K and S be as in Theorem 2.1. Define the common bits to be the
functions computed at the edges from S by the circuit C. From Theorem 2.1, it
follows that each output can be expressed as a circuit of depth at most ε logn with
inputs from S and from the original inputs. Construct the graph G by connecting
each output to these inputs. Because the gates have fan-in 2, this circuit depends on
at most nε original inputs, and hence the degree of G is at most nε. The semilinearity
is preserved since any function computed in a semilinear circuit is semilinear.

Let us state explicitly what this reduction means for the shift function Shiftn.
No superlinear lower bounds are known for computing explicitly given functions by
semilinear circuits. In particular, it is an open problem whether it is possible to
compute shifts by a graph G of degree nε, ε < 1, with o(n) common bits using only
semilinear functions. We show that it is possible to compute by a graph of degree o(n)
with o(n) common bits not only all n shifts but in fact all n! permutations. Since the
degree of our graph is Θ(n log log n/ logn), which is much larger than nε, this does
not solve the above open problem. However, it shows that it is possible to compute
all permutations by a significantly smaller graph than was expected.

Valiant’s reduction suggests that we consider Boolean circuits with gates of un-
bounded fan-in and constant depth, where the gates are arbitrary Boolean functions
or arbitrary linear functions. The size of such a circuit is defined to be the number of
edges. (This is a trivial notion for one-output functions.) For this case, some super-
linear lower bounds for explicitly given Boolean functions are known; see [13, 21, 22].
These bounds are based on some graph properties of circuits computing particular
Boolean functions. For instance, a function can easily be defined so that every circuit
for the function is a superconcentrator. Similar graph-theoretic arguments can also
be used for the circuits of unbounded fan-in and small depth computing the function
Shiftn [26]. For example, for depth 2, this gives the bound of Ω(n logn). However,
these bounds are very small, and we do not get anything at all for depth O(logn).

An even more restricted model for computing Shiftn that has been considered
requires that the bits are routed along vertex-disjoint paths. A graph with n sources
{x0, . . . , xn−1} and n sinks {y0, . . . , yn−1} is an n-shifter if for every s there exist n
vertex disjoint paths x0+s → y0, x1+s → y1, . . . , xn−1+s → yn−1, where all indices
are computed modulo n; see [23]. Obviously, any shifter is a semilinear circuit for
Shiftn, but this condition seems to be much stronger. The lower bounds known for
the shifters are much larger than for general semilinear circuits, e.g., shifters of depth
2 have size Ω(n3/2), and general shifters have size Ω(n logn) (actually, these bounds
are tight). These bounds can be applied to monotone circuits since any circuit with
only monotone gates that computes the shift function is a shifter; see [22]. However,
for the monotone basis, there are well-known even exponential lower bounds for other
explicit functions. The reader interested in further applications of these methods to
circuit complexity should consult [21, 24].

It is well known that a general circuit for the shift function is not necessarily a
shifter [22]. It is an open problem whether the shift function can be computed more
efficiently using general circuits than using circuits that contain shifter graphs. We
give a partial result in this direction below by proving that certain circuits of depth 2
are more efficient than corresponding shifters; see Theorems 6.1 and 6.2.

2.3. Multiparty communication complexity. In the most common model of
multiparty communication, a function f(~x1, . . . , ~xk) is computed in the following way.

612 P. PUDLÁK, V. RÖDL, AND J. SGALL

There are k players; we denote them by Player 1, . . . , Player k. Player i knows ~x1, . . . ,
~xi−1, ~xi+1, . . . , ~xk. They send messages consisting of binary strings, and the game
ends when one of the players knows the answer y = f(~x1, . . . , ~xk). The communication
complexity is the minimal number of bits of communication needed in any protocol
which computes f(~x1, . . . , ~xk) correctly. For more background see, e.g., [19]. We
omit the general definition of a protocol because in this paper we consider only some
restricted models explained below. In particular, we require that each player sends
only one message and that all players send their messages simultaneously. This means
that the message can depend only on the input available to the player, not on the
previous communication. A lower bound for such a restricted model should be easier
to prove, while it would still imply the circuit lower bound.

Now we define our models more precisely. In the simultaneous model for com-
puting f(~x1, . . . , ~xk), there are k + 1 players, Player 0, Player 1, . . . , Player k. The
additional Player 0 does not have access to any input, while the others have the same
access as in the general model. There is only one round of communication, when
each of the Players 1, . . . , k sends a piece of information to Player 0. Then Player 0
produces the answer. A slight modification is an almost simultaneous protocol: there
are k Players, and the communication has one round, in which Players 1, . . . , k − 1
independently send a message to Player k, who produces the answer. The commu-
nication complexity is the total number of bits that has to be communicated for the
inputs of given length. By SCC(f) and ASCC(f), we denote the simultaneous and al-
most simultaneous communication complexity of f , respectively. Let us observe that
ASCC(f) differs from SCC(f) by at most the sum of the sizes of inputs ~x1, . . . , ~xk−1

since Player k can just send all the inputs he has access to Player 0, which changes an
almost simultaneous protocol into a simultaneous protocol. Therefore, if the size of
the first inputs is small, the difference can be disregarded. This is true, for example,
for shiftnk , where the size of the first two inputs is only logn.

A semilinear protocol is an almost simultaneous protocol such that for every fixed
~x1, . . . , ~xk−1, the message sent by each Player i consists of a vector of fixed linear
functions of ~xk. A restricted protocol is an almost simultaneous protocol for three
players such that for any fixed ~x1, the message sent by Player 2 consists of a fixed
substring of ~x3. A restricted semilinear protocol satisfies both conditions, i.e., Player
1 sends a vector determined by linear functions of ~x3 and Player 2 sends a substring
of ~x3.

We study the communication complexity of the functions shiftnk and permn
k .

Let us first examine our intuition about restricted protocols for shiftn(i, j, ~x). If
Player 2 does not send anything, the only knowledge of Player 3 about ~x comes from
Player 1. Therefore, Player 1 has to send n bits about ~x because without knowledge
of j he cannot determine which of the bits is relevant. (More precisely, for any two
~x 6= ~x′, the message sent by Player 1 has to be different.) Player 2 has to select a
subset of bits without the knowledge of i; therefore, if he sends only a small number
of bits, in most cases he does not send the bit xi+j . It would appear then that his
message can hardly be of any significant help in determining the output, and therefore
Player 1 has to send a long message even in this case. A natural conjecture is that
the total number of communicated bits for shiftn must be Ω(n). As we shall see,
this would yield a proof that there is no circuit of size O(n) and depth O(logn)
computing Shiftn. However, we disprove this conjecture by showing that even for the
more general function permn, there exists a restricted semilinear protocol with a total
communication of only O(n log log n/ logn) bits; see Corollary 4.8.

CIRCUITS, RANKS, AND COMPLEXITY 613

Clearly, the multiparty communication complexity of these functions can only
decrease with increasing k in any of the above models. It is a major open problem
to study the growth rate of the communication complexity when k increases. It
seems beyond the present means to prove any good bounds for increasing k. For the
function shiftnk , we have a partial result in that direction. We construct a restricted
semilinear protocol with a total communication of only O(n(log log n/ logn)k) bits for
any constant k.

The best known lower bound for shiftnk is given in the following proposition. It is
a straightforward generalization of the bound for k = 1 by Nisan and Wigderson [20].

Proposition 2.3. For every constant k, SCC(shiftnk) ≥ Ω(n
1
k+1).

Proof. Assume that the numbers s1, . . . , sk+1 are written as (k+1)-digit numbers

in the basis of b = dn 1
k+1 e. We restrict the domain of shiftnk (s1, . . . , sk+1, ~x) so that in

s1 only the first digit may be nonzero, in s2 only the second digit may be nonzero, etc.
(Thus for k = 1, s1 ranges over 0,

√
n, 2
√
n, . . . , n and s2 ranges over 0, 1, . . . ,

√
n.)

Each si can have only b different values, but s1+· · ·+sk+1 can be any number between
0 and bk+1 ≥ n.

Now consider any simultaneous protocol for shiftnk , and for a fixed x, write down
the information communicated by each player on all inputs s1, . . . , sk+1 from our
restricted range. The total amount of communication is at most O(n · SCC(shiftnk))
bits. Because the protocol is simultaneous, the information communicated by each
player depends only on the inputs available to him. For every input of a given player,
there are b different values of the input that he does not see, and therefore the same
output appears at b predetermined positions. Thus the information contained in all
communication is only O(nSCC(shiftnk)/b) bits. Given this information, it is possible
to reconstruct the whole vector ~x because we can reconstruct any bit xi by choosing
inputs such that s1 + · · · + sk = i and following the protocol. Thus for any two
different vectors ~x, this information must be different, and hence it has at least n bits

for some ~x. This gives us SCC(shiftnk) ≥ Ω(b) ≥ Ω(n
1
k+1).

The best known lower bound on multiparty communication complexity is Ω(n/ck)
for the generalized inner product [7]. This means that we have no lower bounds at
all for k = Ω(logn). If we could extend the lower bounds on the almost simultaneous
communication complexity to k = polylog(n), it would yield a lower bound on ACC
circuits, which is a major open problem; see [8, 15, 34].

One function often considered in this context is pointer jumping in a directed
acyclic graph with one source and k additional levels with n vertices on each level.
(The out-degree of each vertex is 1, except for the last level.) The inputs are divided
between the players so that every player sees everything except for one level. Intu-
itively, the most difficult instances should be those in which all vertices in the graph
are reachable, which means that on each level, the mapping given by the pointers
is one to one. This restriction of pointer jumping is essentially a variation of our
function permn

k . We define

jumpnk (i, π1, . . . , πk) = πk . . . π1(i).

We can use our bound for the function permn
k , Corollary 4.8, to improve the

obvious upper bound of O(n logn) on the communication complexity of permn
k by a

factor of log n/ log log n.
Proposition 2.4. For all k ≥ 2, ASCC(jumpnk) ≤ O(n log log n).
Proof. We can compute the dlogne bits of jumpnk (i, π1, . . . , πk) by computing the

value of permn
k−1(i, π1, . . . , πk−1,Permn(πk, ~x)) for logn vectors ~x as follows. Define

614 P. PUDLÁK, V. RÖDL, AND J. SGALL

vectors ~x(j), 1 ≤ j ≤ blognc, so that ~x
(j)
i , 0 ≤ i < n, is the jth digit in the binary

representation of i. By the definitions of Permn, permn
k−1, and jumpnk , the jth bit

of jumpnk (i, π1, . . . , πk) is permn
k−1(i, π1, . . . , πk−1,Permn(πk, ~x

(j))). We can run the
dlogne protocols for permn

k−1 in parallel since they are completely independent; note
that all players have the necessary information since the input is divided in the same
way for jumpnk as for all the instances of permn

k−1. The total communication is
dlogneASCC(permn

k−1) = O(n log log n) by Corollary 4.8.
Our results do not exclude the function jumpnk as a candidate for lower bounds,

but we think that they give some insight into the difficulties that are encountered in
the attempted proofs.

2.4. Tensors. By a tensor over a field IF, we simply mean a three-dimensional
matrix or, equivalently, a finite sequence of matrices of the same size with entries from
IF. We use the following notation to denote the slices of tensors in different directions.
For a tensor T , the symbol Ti,∗,∗ denotes the matrix consisting of all entries of T with
the first coordinate i; the matrix is indexed in the same way as the remaining two
coordinates of the tensor. Similarly, Ti,j,∗ denotes the vector of all entries with the
first coordinates i and j, i.e., the jth row of the matrix Ti,∗,∗. We define T∗,j,∗, T∗,j,k,
etc. similarly.

Tensors can be naturally associated with semilinear functions. Given a tensor
T , for each parameter p, the matrix T∗,p,∗ determines a linear function. Thus the
function defined by F (p, ~x) = T∗,p,∗~x is a semilinear function naturally corresponding
to the tensor T . Conversely, let F (p, ~x) be a function linear in ~x. Then there exists a
tensor TF and a vector ~cF such that for all p,

F (p, ~x) = TF∗,p,∗~x+ ~cFp .

The constants ~cFp have almost no influence on the complexity of computing F . The

main information is contained in the tensor TF , which we call a tensor corresponding
to F .

We study the tensors corresponding to the functions introduced in section 2.1.
The tensor corresponding to Shiftn is defined by Dn = TShiftn , i.e.,

Dn
i,j,k = 1 if i+ j ≡ k (mod n),

= 0 otherwise.

Dn is called a diagonal tensor, or the tensor of multiplying polynomials modulo xn−1
since it is connected with algebraic circuits computing this bilinear operation [12].

The tensor corresponding to Permn is defined by Pn = TPermn

, i.e.,

Pni,π,k = 1 if k = π(i),

= 0 otherwise.

It turns out that the size of a circuit computing a semilinear function is related
to some variants of the algebraic concept of rank.

Let IF be some fixed field. For a positive integer k, let ek0 , . . . , e
k
k−1 denote the

standard basis of the vector space IFk, i.e., eki (j) = 0 for i 6= j and eki (i) = 1. For
u ∈ IFl, v ∈ IFm, and w ∈ IFn, the tensor product of u, v, and w denoted by u⊗ v ⊗w
is the l ×m × n tensor T defined by Ti,j,k = uivjwk for 0 ≤ i < l, 0 ≤ j < m, and
0 ≤ k < n.

We define three different ranks of a tensor. In all three cases, the rank of T is
defined to be the minimal number of rank-1 tensors T i such that T =

∑
i T

i; it is 0 if

CIRCUITS, RANKS, AND COMPLEXITY 615

all entries of T are zeros. Note that the matrix rank can be defined in a similar way
since matrices of rank 1 are the matrices of the form u⊗v, where u and v are nonzero
vectors.

The usual tensor rank, rank(T), was introduced by Strassen [31] and is determined
by

rank(T) = 1 iff T = u⊗ v ⊗ w,
for some nonzero vectors u, v, w.

The contact rank, rank2,2(T), was introduced by Razborov [27] and is determined
by

rank2,2(T) = 1 iff T = eli ⊗ v ⊗ w or T = u⊗ emj ⊗ q,
for some nonzero vectors u, v, w, q and some i, j.

In other words, rank2,2(T) = 1 if all nonzero entries of T are either in the slice Ti,∗,∗
or in the slice T∗,j,∗, for some i or j, and the matrix rank of that slice is 1.

We introduce the rigidity rank and denote it by rank2,1(T); it is determined by

rank2,1(T) = 1 iff T = u⊗ emj ⊗ w or T = eli ⊗ v ⊗ enk ,
for some nonzero vectors u, v, w and some i, j, k.

Thus rank2,1(T) = 1 if either
(i) all nonzero entries of T are in the slice T∗,j,∗, for some j, and the matrix

rank of T∗,j,∗ is 1 or
(ii) all nonzero entries of T are in the column Ti,∗,k, for some i and k, and at

least one entry is not zero.
From these definitions, it is easy to see that for every tensor T ,

rank(T) ≤ rank2,2(T) ≤ rank2,1(T).

To give yet another equivalent definition of rank2,1, we define diff(T, U) to be the
set of different columns for T and U , i.e.,

diff(T, U) = {(i, k); ∃j Ti,j,k 6= Ui,j,k}.

Using the fact that the rank of a matrix M is the minimal number of matrices of rank
1 that add to M , it is easy to see that

rank2,1(T) = min
U

∑
j

rank(U∗,j,∗) + |diff(T, U)|

 ,(1)

where the minimum is taken over all tensors U of the appropriate dimensions.
Now we extend the concept of rigidity from matrices to tensors. The rigidity of

a matrix M is the function RM (r) equal to the minimal number of changes needed
to reduce the rank of M to r or less [32]. If we want to work with a set of matrices,
we can represent them as slices T∗,j,∗ of a tensor T . The rigidity of a tensor T is the
function RT (r) which for each r gives the minimal number of columns in which we
have to change the tensor in order to reduce the rank of each slice to r or less. More
precisely,

RT (r) = min{|diff(T, U)|;U is a tensor such that ∀j rank(U∗,j,∗) ≤ r}.(2)

616 P. PUDLÁK, V. RÖDL, AND J. SGALL

Note that in the special case of a single matrix, we just get Valiant’s rigidity.
It is known that the rank of the diagonal tensor Dn is Θ(n) for any field; for small

fields, it was proved only in 1987 by Chudnovsky and Chudnovsky [17] using methods
from algebraic geometry; see also [29] for a more detailed presentation. The growth
rate of rank2,2(Dn) and rank2,1(Dn) is not known.

Razborov proved that rank2,2(Dn) = Ω(n3/2), which shows that the gap between
rank and rank2,2 can be big [27]. He conjectured that rank2,2(Dn) = Ω(n2).

We disprove this conjecture by proving an upper bound on rank2,1(Dn). In fact,
we prove a stronger result, an upper bound on the rigidity of Pn, the tensor of
computing all permutations,

RPn(r) = n2−Ω(r/n).

This implies an upper bound on the rigidity rank of the same tensor,

rank2,1(Pn) = O

(
n2 log log n

logn

)
.

The diagonal tensor Dn is a subtensor of Pn; hence the same upper bounds hold for
Dn. The rigidity rank is always greater than or equal to the contact rank, so we get
the upper bound

rank2,2(Dn) = O

(
n2 log log n

logn

)
.

Rigidity and rigidity rank are closely related. From equations (1) and (2), it
follows easily that

rank2,1(T) ≤ RT (r) + nr.(3)

Using this fact, it is theoretically possible to get a lower bound on the rigidity of
a tensor from a lower bound on the rigidity rank of it. However, the lower bounds
needed for this approach to work are far beyond what we are able to prove nowadays.

In this paper, we prove a lower bound on the rigidity of Dn directly. We get

RDn(r) = Ω

(
n2

r
log

n

r

)
.

The same bound was proved even for a single matrix by Friedman [14]. However,
because we prove our bound for a special set of matrices, it enables us to prove the
following lower bound on the rigidity rank:

rank2,1(Dn) = Ω
(
n3/2(logn)1/2

)
.

This bound in turn implies some improvement of the lower bounds on the size of
certain circuits of depth 2.

3. Mutual relations. The concepts of computing a function by a graph with
common bits, rigidity of the corresponding tensor, and communication complexity of
the corresponding one-output function are closely related and can all be potentially
useful for proving lower bounds on the size of circuits. We survey these relations in this
section. Some parts of this material has been known and has appeared either explicitly
or implicitly in the literature; see [19, 20, 32, 33]. We quantify the connections as

CIRCUITS, RANKS, AND COMPLEXITY 617

precisely as possible because our upper bounds show that this might be necessary for
proving lower bounds.

We first demonstrate the connections on an example. We show a restricted semi-
linear protocol for the function shiftn(i, j, ~x) in which Player 2 sends only 1 bit and
Player 1 sends bn/2c bits. This protocol also demonstrates some of the ideas used
in our more complicated upper bounds. According to the intuition discussed before
Proposition 2.3, Player 2 almost never sends the bit that is to be computed. Before
reading on, the reader can try to imagine how this single bit could possibly be used
so that it saves half of the communication of the other player.

All indices in the protocol are computed modulo n. The protocol works as follows.

• Player 1 sends the bits x0 ⊕ xj , x1 ⊕ xj−1, . . . , i.e., parities of all pairs
xk ⊕ xj−k.

• Player 2 sends the bit xn−i.
• Player 3 computes xi+j as the parity of xn−i (from Player 2) and xn−i⊕xi+j

(from Player 1).

The corresponding bound on computation by a graph with common bits is for the
function Shiftn(j, ~x). We construct a graph of degree 1 with bn/2c common bits that
computes Shiftn(j, ~x). Every yi is adjacent to xn−i, which corresponds to the bit sent
by Player 2. For every j, the common bits are the same as the bits sent by Player 1
in the protocol. The output level computes xi+j in the same way as Player 3 in the
protocol.

The corresponding bound on the rigidity says that RDn(bn/2c) ≤ n for the diag-
onal tensor Dn. To prove this, we flip all the entries Di,j,n−i. It is easy to verify that
the rank of each matrix D∗,j,∗ is at most bn/2c because the matrix is essentially a
matrix with ones only along the main diagonal and along the diagonal running from
the lower left corner to the upper right corner (and zero in the intersection of the
diagonals).

Now we state these relationships formally.

Proposition 3.1. A function F (p, ~x) can be computed by a graph of maximal de-
gree d with r common bits if and only if there exists a restricted protocol for computing
bitF (i, p, ~x) in which Player 1 sends r bits and Player 2 sends d bits.

The computation by the graph uses only semilinear functions if and only if the
protocol is a restricted semilinear protocol.

Proof. Suppose that we have a graph that computes the function F . The protocol
for f is as follows. Player 1 sends the value of the common bits for the given input
(p, ~x). If the first input is i, Player 2 sends the value of all inputs xk that are adjacent
to the output yi in the graph. Player 3 can compute the output because he knows all
of the inputs of the output gate. Clearly, this protocol is a restricted protocol with
the required number of bits sent by each player.

Given a protocol, we construct a graph that computes F as follows. The output
yi is adjacent to all inputs xk such that Player 2 sends the value of input xk if
the first input is i. This graph computes F if the common bits compute the values
communicated by Player 1 on the given input. Clearly, the degree of the graph and
the number of the common bits are as required.

For both directions, semilinearity is preserved since the functions computed in
the protocol and used in the computation by the graph are identical.

Computing F by a graph with a bounded number of edges and a bounded number
of common bits using only semilinear functions is equivalent to a bound on the rigidity
of the tensor T .

618 P. PUDLÁK, V. RÖDL, AND J. SGALL

Proposition 3.2. Let F (p, ~x) be a semilinear function. Then the rigidity of
the corresponding tensor TF satisfies RTF (r) ≤ R if and only if there exists a graph
G with at most R edges such that for every p, F (p, ~x) can be computed by G with r
common bits using only semilinear functions.

Proof. First, assume that the condition on the rigidity is satisfied, which means
that we have a tensor U such that |diff(TF , U)| ≤ R and ∀p rank(U∗,p,∗) ≤ r. We
choose the graph G so that the input xk and the output yi are adjacent if (i, k) ∈
diff(TF , U). Obviously, there are at most R edges.

Now we show how this graph can compute F for fixed p with only r common bits.
Let us denote the ith row of the matrix U∗,p,∗ by ~u(i). The ith output function is
then given by

(F (p, ~x))i = TFi,p,∗ · ~x+ ci = ~u(i) · ~x+
∑

(i,k)∈diff(TF ,U)

ai,kxk + ci,

where ai,k and ci are some scalar constants from the given field. It follows that it
suffices to set the common bits so that ~u(i) · ~x can be computed from them for all i
since the rest of the expression can be computed based on the inputs adjacent to the
given output in G.

From the condition on the rank, it follows that there exist r vectors ~v(1), . . . , ~v(r)

such that any ~u(i) is their linear combination. We set the common bits to ~v(1) ·
~x, . . . , ~v(r) · ~x; hence any ~u(i) · ~x can be computed as their linear combination.

For the other direction, we assume that F can be computed by a graph G. We
want to find a tensor U which proves that the rigidity of TF is small. For a fixed p,
we know that

(F (p, ~x))i = gi(h1(~x), . . . , hr(~x), ~x(i)),

where ~x(i) is the substring of input variables adjacent to yi in G and both gi and
the common bits h1, . . . , hr are linear functions. Therefore, the function gi can be
written as a linear combination of the common bits, the extra inputs, and a constant.
Similarly to the other direction, we set Ui,p,∗ to be a vector which corresponds to
the linear combination of the common bits used for the given output. The rank of
the tensor is bounded by the number of common bits, and it differs from TF only in
columns corresponding to the edges of G.

The relation between the rigidity of tensors and the communication complexity
of the corresponding semilinear function now follows easily. We just have to examine
the proof of Proposition 3.1 and verify that if we replace the maximal degree of the
graph by the number of edges, the bound on the number of bits communicated by
Player 2 is replaced by the average number of bits.

Proposition 3.3. Let F (p, ~x) be a semilinear function. Then the rigidity of
the corresponding tensor TF satisfies RTF (r) ≤ dn if and only if there exists a re-
stricted semilinear protocol for the associated one-output function bitF (i, p, ~x) in which
Player 1 always sends r bits and Player 2 sends d bits on the average, where the av-
erage is taken over all values of i.

Using Valiant’s reduction, Theorem 2.2, we get the following two theorems.
Theorem 3.4. If F (p, ~x) can be computed by a circuit of size O(n) and depth

O(logn), then for any ε > 0, there exists a constant K such that
(i) F can be computed by a graph G of degree at most nε and with Kn/ log log n

common bits;

CIRCUITS, RANKS, AND COMPLEXITY 619

(ii) there exists a restricted protocol for bitF (i, p, ~x) such that Player 1 sends
O(n/ log log n) bits and Player 2 sends nε bits.

Theorem 3.5. If a semilinear function F (p, ~x) can be computed by a semilinear
circuit of size O(n) and depth O(logn), then for any ε > 0, there exists a constant K
such that

(i) F can be computed by a graph G of degree at most nε and with Kn/ log log n
common bits using only semilinear functions;

(ii) there exists a restricted semilinear protocol for bitF (i, p, ~x) in which Player 1
sends O(n/ log log n) bits and Player 2 sends nε bits ;

(iii) the rigidity of the corresponding tensor TF satisfies RTF (Kn/ log log n) ≤
n1+ε.

Originally, several researchers believed that a superlinear lower bound for circuits
of depth O(logn) can be proved by showing that

(i) Shiftn cannot be computed by a graph of degree o(n) with o(n) common
bits,

(ii) SCC(shiftn) = Ω(n), or
(iii) rank2,1(Dn) = Ω(n2) (which would give bounds for semilinear circuits).

We prove that all these statements are false by exhibiting an almost simultaneous
protocol for shiftn in which both players send O(n log log n/ logn) bits. This does
not mean that these approaches cannot be used at all—to demonstrate that, we
would need a protocol in which Player 2 sends only nε, which is less than our bound.
However, it shows that it is not sufficient to consider the total communication—
to prove a lower bound that way, it would be necessary to prove that more than
ω(n/ log log n) bits are needed, and our bound shows that this is not the case. Hence
it is necessary to consider more precise information, namely to estimate the number
of bits sent by each of the two players instead of the total amount of communication,
to use rigidity instead of the rigidity rank, or to estimate the degree of the graph in
a different way than the number of common bits.

4. Upper bounds. In section 4.1, we present the constructive proof of the up-
per bound on the communication complexity of the shift function shiftn. Then we
generalize it in two different ways. In section 4.2, we extend the upper bound to the
permutation function permn using the probabilistic method. These bounds also apply
to the rigidity of the corresponding functions. In section 4.3, we extend the upper
bound to the function shiftnk .

4.1. The shift function. The constructive proof of the upper bound for the
function shiftn is based on a suggestion of Wigderson to use arithmetic progressions.

The idea of the protocol is to divide the input ~x into groups. Player 1 sends
the parity of each group and Player 2 sends some substring of ~x such that all but
one elements of the group of xi+j are sent, similarly as in the simple protocol at the
beginning of section 3. For the function shiftn, we can do this constructively based on
the next lemma, which says that there exists a sparse subset B of [0, n− 1] such that
every a ∈ [0, n− 1] can be surrounded by an arithmetic progression with all elements
in B except possibly a itself.

Lemma 4.1. For every n and every l < logn/(2 log logn), there exists a set
B ⊆ [0, n − 1] of size O(ln1−1/(2l−1)) such that for every a ∈ [0, n − 1], there exist
a1, . . . , a2l−2 ∈ B such that a1, . . . , al−1, a, al, . . . , a2l−2 is an arithmetic progression
(computing modulo n) with modulus m = m(a) bounded by m ≤ O(n1−1/(2l−1)).

Proof. From the well-known bounds on the distribution of primes, it is easy
to prove that there exist 2l − 2 primes p1, . . . , p2l−2 larger than Ω(n1/(2l−1)) whose

620 P. PUDLÁK, V. RÖDL, AND J. SGALL

product is at most n1−1/(2l−1) < n/l. Define B to be the set of all integer multiples
of these primes between −n and 2n, taken modulo n, i.e.,

B = {b mod n; b ∈ [−n, 2n] ∧ (p1|b ∨ p2|b ∨ · · · ∨ p2l−2|b)}.

For a given a ∈ [0, n− 1], consider the following system of linear congruences:

a− (l − 1)m ≡ 0 (mod p1)

a− (l − 2)m ≡ 0 (mod p2)

...

a−m ≡ 0 (mod pl−1)

a+m ≡ 0 (mod pl)

a+ 2m ≡ 0 (mod pl+1)

...

a+ (l − 1)m ≡ 0 (mod p2l−2).

Since 0 ≤ l < p1, . . . , p2l−2, we can divide the congruences by l − 1, l − 2, . . . , 1, 1,
2, . . . , l − 1 and apply the Chinese remainder theorem to solve for m. We obtain
a solution 0 < m ≤ p1p2 · · · p2l−2, which is a modulus satisfying the requirements,
because all the numbers a1 = a − (l − 1)m, a2 = a − (l − 2)m, . . . , al−1 = a − m,
al = a+m, . . . , a2l−2 = a+ (l − 1)m taken modulo n are in B.

Theorem 4.2. There exists a restricted semilinear protocol for the shift function
shiftn which requires only O(n log log n/ logn) bits of communication.

Proof. Let B be a set with the properties as in Lemma 4.1 for an l which we
choose later. For a set C ⊆ [0, n − 1], let x[C] denote the subsequence of the bits of
x indexed by C. All indices of x are taken modulo n. The protocol is as follows.

• Player 1 partitions the interval [0, n−1] into n′ = O(n/l) arithmetic progres-
sions C0, . . . , Cn′−1 of length at most l with modulus m(j). Player 1 communicates⊕
x[Cα] for all α = 0, . . . , l, i.e., parity of bits of x indexed by each of the progressions,

a total of O(n/l) bits.
• Player 2 sends x[B + i], i.e., bits xb+i for all b ∈ B.
• Player 3 computes xi+j as described below.

Let C be the Cα containing i + j, and let c ∈ C, c 6= i + j. By the definition of C,
c − i − j is a small nonzero multiple of m(j). By the definition of B and m(j), it
follows that j+ (c− i− j) = c− i ∈ B, and hence c ∈ B+ i. This means that Player 2
communicated all bits of x[C] except possibly xi+j . Hence Player 3 can compute xi+j
by subtracting these bits sent by Player 2 from

⊕
x[C] sent by Player 1, using the fact

that he knows i and j and therefore knows the meaning of the bits sent by Players 1
and 2.

For l = logn/(4 log logn), the size of B is O(n/ logn) = O(n log log n/ logn), and
each player communicates O(n log log n/ logn) bits.

Corollary 4.3. rank2,1(Dn) = O(n2 log log n/ logn).
Proof. By Proposition 3.3, we get RDn(n log log n/ logn) = O(n2 log log n/ logn);

the result follows using the relation of the rigidity and the rigidity rank (3).

4.2. The permutation function. We prove an upper bound on the rigidity of
the tensor Permn using the following bound on the chromatic number χ of a random
graph G(n, q), which is an undirected random graph on n vertices with each edge
chosen independently at random with probability q.

CIRCUITS, RANKS, AND COMPLEXITY 621

Theorem 4.4. For every ε > 0, there exists δ > 0 and n0 such that

Pr

[
χ(G(n, q)) ≤

(
1

2
+ ε

)
−n log(1− q)

logn

]
> 1− exp

(
−n1+δ

)
,

as long as 7/8 < q < 1− 1/n
1
2−ε and n ≥ n0.

This is essentially the theorem which was proved by Bollobás for every con-
stant q [9]. However, for our application, we are interested in cases when q approaches
1 as n increases, which have not been considered in the literature. Therefore, we give
the proof of Theorem 4.4 in section 7.

Let S(n, p) be the sum of independent Bernoulli random variables with mean p.
Lemma 4.5. Let n, r, d, 0 < p < 1 be numbers such that

n! · Pr
[
χ(G(n, 1− p2)) > r

]
+ n · Pr

[
S(n, p) > d

]
< 1.(4)

Then permn can be computed by a restricted semilinear protocol where Player 1 sends
r bits and Player 2 sends d bits.

Proof. Let {x0, . . . , xn−1} and {y0, . . . , yn−1} be disjoint sets of distinct vertices.
Take a random bipartite graph H with each edge (xk, yi) chosen independently with
probability p. Let π be a permutation on {0, . . . , n − 1}. Let Gπ be an undirected
graph on {0, . . . , n − 1} such that for i 6= j, (i, j) is and edge of Gπ if both edges
(xi, yπ−1(j)) and (xj , yπ−1(i)) are in H. Then Gπ is a random graph with the same

distribution as G(n, p2), and its complement Gπ is a random graph from G(n, 1−p2).
By assumption (4), there exists a graph H such that the degree of H is at most d and
for each π, χ(Gπ) ≤ r. This means that for each π, the graph Gπ can be covered by
at most r cliques.

Using such a graph H, we construct a protocol for permn(i, π, ~x). (In fact, this
protocol demonstrates that Perm(π, ~x) can be computed by H with r common bits.)
For a fixed π, let C1, . . . , Cr be the cliques covering Gπ.

• Player 1 sends the vector (
⊕
x[C1], . . . ,

⊕
x[Cr]) (for notation, see Theo-

rem 4.2).
• Player 2 sends all inputs xk adjacent to yi in H.
• Player 3 takes the clique Cs containing π(i). Since for every k ∈ Cs −{π(i)}

the edge (k, π(i)) is in Gπ, it follows that xk is adjacent to yπ−1π(i) = yi in H. Thus
the message of Player 2 contains the bit xk for every t ∈ Cs −{π(i)}. Hence Player 3
can compute xπ(i) by subtracting these bits from

⊕
x[Cs] sent by Player 1.

Theorem 4.6. For every ε > 0 and 1/n
1
4−ε < p < 1/5, there exists n0 such that

for every n ≥ n0, permn can be computed by a restricted semilinear protocol where
Player 1 sends (1 + ε)(−n log p)/logn bits and Player 2 sends (1 + ε)pn bits.

Proof. Let ε and p satisfying the condition above be given, and let n be sufficiently
large. In order to apply Lemma 4.5, we only need to estimate the probabilities for
the chromatic number and independent Bernoulli variables. The first one is proved
by Theorem 4.4,

n! · Pr

[
χ(G(n, 1− p2)) > (1 + ε)

−n log p

logn

]
< exp(n logn− n1+δ) = o(1).

The second one is a direct consequence of Chernoff–Hoeffding bounds,

n · Pr [S(n, p) > (1 + ε)pn] ≤ n · 2 exp(−Ω(pn)) = o(1).

622 P. PUDLÁK, V. RÖDL, AND J. SGALL

Corollary 4.7. There exist constants c, δ > 0 such that for cn/logn < r < δn,

RPn(r) ≤ n2−(1−o(1)) rn .

Proof. The result follows from Theorem 4.6 and Proposition 3.3 by a compu-
tation.

Corollary 4.8.

(i) There exists a restricted semilinear protocol for permn which uses at most
O(n log log n/ logn) bits of communication. Thus for every k, ASCC(permn

k) =
O(n log log n/ logn).

(ii) rank2,1(Rn) = O(n2 log log n/ logn).
Proof. (i) Apply Theorem 4.6 with p = log logn/ logn. For larger k, the commu-

nication complexity can only be smaller.
(ii) This follows from (i) using Proposition 3.3.

4.3. The iterated shift function. In this section, we generalize the upper
bound from section 4.1 to the iterated shift function. This generalization is possible
because the protocol for the function shift is given explicitly. We are not able to
generalize the nonconstructive protocol of the previous section; thus we are not able
to prove a bound on ASCC(permn

k) which decreases with increasing k.
Theorem 4.9. There exists a semilinear protocol for the k-times iterated shift

function shiftnk (s1, . . . , sk+1, ~x) such that if k is an arbitrary constant, each player
sends at most O(n(log log n/ logn)k) bits, and if k ≥ c logn, for some constant c,
each player sends at most O(n6/7) bits.

Proof. Remember that in the construction for k = 1, Player 1 divides the input
x into several groups and communicates the parity of all of them. However, only one
of these bits is really used by the last player. In our generalized construction, we
compute this one bit recursively, using the first k players. It turns out that if we are
careful, this is very similar to computing the function shiftnk−1.

The length l of the arithmetic sequences we use will be chosen later to balance
the number of bits communicated by individual players. Let B ⊆ [0, n− 1] be the set
constructed in Lemma 4.1.

Player k + 1 acts as Player 2 in the construction for k = 1, he sends x[B + s1 +
· · ·+ sk], i.e., bits xb+s1+···+sk for all b ∈ B. (All indices of x are taken modulo n.)

Players 1 to k all know the input sk+1; hence they can compute the modulus
m = m(sk+1) as in Lemma 4.1. First they pad the input x by zeros so that its length
is the smallest n′ ≥ n divisible by ml. Then they divide the interval [0, n′ − 1] into
sequences C0, . . . , Cn′′−1 of length l and modulus m as follows. Sequence C0 starts
with 0, C1 starts with 1, . . . , Cm−1 starts with m − 1 (this covers the subinterval
[0,ml − 1]), Cm starts with xml, and so on.

Let yj =
⊕
x[Cj] be the parity of the bits of x indexed by the jth sequence.

Let f(j) be a number such that j ∈ Cf(j). The goal of Players 1 to k is to compute
yf((s1+···+sk) mod n′). If it were true that f((s1 + · · · + sk+1) mod n′) = (f(s1) +
· · · + f(sk) + t) mod n′′ for some constant t, we would just use the protocol for
shiftnk−1(f(s1), . . . , f(sk), y′), where y′ is y shifted by t. This is not exactly the case,
but we show that from the point of view of any player, there are only constantly many
possible values of t.

Every player can compute t under the assumption that the input he does not see
is 0. This value differs from the correct value by f(r+ s)− f(s)− f(r), where s is the
input he does not see and r is the sum of all other inputs si (taken modulo n′). We
now show that the only possible values of this difference are −m, 0, or m. Let the

CIRCUITS, RANKS, AND COMPLEXITY 623

numbers a, a′, a′′ < m, and b, b′, b′′ < l, and c, c′, c′′ be such that s = cml + bm + a,
r = cml + bm+ a, and r + s = cml + bm+ a. Then f(s) = cm+ a, f(r) = c′m+ a′,
and f(r + s) = c′′m + a′′. The claim is proved by observing that the value of a′′ is
either a+ a′ or a+ a′−m and the value of c′′ is either c+ c′ or c+ c′+ 1. This works
even for r + s ≥ n′ since we have chosen n′ divisible by ml.1

If each player communicates information according to the protocol for all three
possible values of t, he certainly communicates the information for the correct t. Player
k + 2 knows all s1, . . . , sk+1; hence he can determine which t is correct and recover
the result. Here we use the fact that the protocol is almost simultaneous; hence a
player can follow a protocol even if other players do not, as he is not dependent on
them.

It is obvious that the iterated protocol is semilinear. It remains to compute the
amount of communication. Let F (n, k) denote the maximal number of bits sent by an
individual player in our protocol for shiftnk . As a base case, we know by Theorem 4.2
that F (n, 1) = O(n log log n/ logn). From the previous analysis, we know that Play-
ers 1 to k send at most 3F (n′′, k−1) bits. As long as Player k+1 does not send more
bits, we have F (n, k) ≤ 3F (n′′, k − 1).

If k is constant, we choose l = logn/((k + 2) log logn) for each level of recur-
sion. Since n′′ ≤ 2n/l, the recurrence gives F (n, k) = O(n(log log n/ logn)k). By
Lemma 4.1, the size of B is O(n(logn)−k); hence the number of bits communicated
by the last player is small, and our use of the recurrence is correct.

If k is not constant, we choose l = 4. In this case, the bound on the modulus is
o(n) and hence n′′ = (1 + o(1))n/l = n(3/4 + o(1)). By induction, we get F (n, k) ≤
n(3/4 + o(1))k. By Lemma 4.1, the size of B is O(n6/7). Therefore, we can iterate
only as long as cn6/7 ≤ n(3/4 + o(1))k, i.e., up to some k = Θ(logn). At that point,
F (n, k) = O(n6/7).

5. Lower bounds. In this section, we prove a trade-off between the size of
graphs and common bits which are needed to compute the shift function. This implies
lower bounds on the rigidity function and the rigidity rank of the tensor Dn. As
corollaries, we obtain the best known lower bounds for depth-2 circuits computing the
shift function and multiplication. The same technique also shows that the protocols
based on disjoint parities used in our upper bound cannot be extended so that Player 2
sends less than n1/3 bits.

Let Hn be defined as Hn = {(xi, yj); 0 ≤ j < i < n}. We first show that this
graph cannot compute identity very well.

Lemma 5.1. Suppose that the graph Hn computes the identity function with
r common bits, either in the Boolean case or using only linear functions over an
arbitrary field. Then r ≥ n.

Proof. In the linear case, the computed function is represented by a matrix which
is a sum of a matrix of rank r (the part with the common bits) and an upper triangular
matrix with zeros on the diagonal (the edges). Such a matrix can be a diagonal matrix
only if r ≥ n.

In the Boolean case, we proceed by induction. The basis n = 1 is trivial. For the
step from n to n+1, let z1, . . . , zr be the common bits for Hn+1. Since yn is isolated in
Hn+1, yn = xn = g(z1, . . . , zr) for some function g. Let a ∈ {0, 1} be such that there

1 It might be clearer to look at special examples. If s = ml, then f(s) = m and it is easy to check
that f(r+s) = f(r)+m = f(r)+f(s) for all r. If s = m, then f(s) = 0 and either f(r+s) = f(r) or
f(r+s) = f(r)+m (if r+s is a multiple of ml). If s = 1, then f(s) = 1 and either f(r+s) = f(r)+1
or f(r + s) = f(r) + 1−m (if r + s is a multiple of m but not a multiple of ml).

624 P. PUDLÁK, V. RÖDL, AND J. SGALL

are at most 2r−1 elements ~z ∈ {0, 1}r with g(~z) = a. The set {~z ∈ {0, 1}r; g(~z) = a}
can be represented as a subset of {0, 1}r−1, and thus we can compute Idn with these
r−1 common bits with the graph Hn. By the inductive assumption, r−1 ≥ n; hence
r ≥ n+ 1.

Theorem 5.2. For every α > 0, there exists δ > 0 such that for every n and
r ≥ nα, if Shiftn(s, ~x) can be computed by a graph G with r common bits for any
n/2 values of s ∈ {0, . . . , n − 1}, either in the Boolean case or using only semilinear
functions over an arbitrary field, then the size of G satisfies

|G| ≥ δ n
2

r
log

n

r
.(5)

Proof. Suppose that a graph G ⊆ {x0, . . . , xn−1} × {y0, . . . , yn−1} computes n/2
shifts with r common bits. Let d = 4|G|/n, and let A = {i; degree(xi) ≤ d} and
B = {i; degree(yi) ≤ d} be the sets of vertices with small degrees in G. Clearly
|A|, |B| ≥ 3n/4 since d is four times the average degree of G.

Now consider a particular shift s computed by G. Let A′ = A ∩ (B + s), where
B + s = {(i+ s) mod n; i ∈ B}. Clearly |A′| ≥ n/2. Let Gs be a graph with vertices
A′ such that (a, b) is an edge if (xa+s, yb) ∈ G and a ≤ b. Let S be the set of all shifts
s such that Gs has at most n/4 loops (edges of type (a, a)). If |S| < n/4, there are at
least n2/16 loops in all graphs Gs, and (5) is satisfied since each edge of G corresponds
to at most one loop. Hence we assume that |S| ≥ n/4 and restrict ourselves to shifts
s ∈ S.

Suppose that for some s ∈ S the graph Gs has less than n/24 triangles. Then
there is a set A′′ ⊆ A′, |A′′| ≥ n/8, which induces a triangle-free graph with no loops.
Ajtai, Komlós, and Szemerédi [1] proved that a triangle-free graph of degree at most
d contains an independent set of size at least

t ≥ |A
′′| log d

100d
=
n log d

800d
.

If there is an independent set K in Gs, it follows that a > b whenever (xa+s, yb) ∈ G
for a, b ∈ K. Hence the graph G restricted to the nodes {xa+s; a ∈ K} and {yb; b ∈ K}
is essentially a subgraph of H |K|, and it computes the identity function, assuming G
computes the shift s correctly. By Lemma 5.1, the number of common bits r is at
least |K| ≥ t. It follows that

d = Ω
(n
r

log
n

r

)
and (5) is satisfied.

The remaining case is that each of the n/4 graphs Gs, s ∈ S, contains at least
n/24 triangles. Let c < a < b be vertices of a triangle in Gs. From the definition of
Gs, it follows that (xa+s, yb, xc+s, ya) is a path in G. Such a path determines s (as
the difference of the indices of the first and the last nodes); hence there are at least
|S|n/24 ≥ n2/96 such paths. However, since the degree of nodes in G indexed by A
and B is bounded by d, the number of paths is at most nd3. This gives nd3 ≥ n2/96;
hence d = Ω(n1/3), |G| = Ω(n4/3), and (5) is satisfied if r ≥ n2/3 logn.

Now suppose nα < r < n2/3 logn. We reduce this case to the previous part of
the proof. Take an ε such that

n
2
3 ε lognε < r < n

5
6 ε.

CIRCUITS, RANKS, AND COMPLEXITY 625

Thus 6x/5 < ε < 1. Divide each of the sets {x0, . . . , xn−1} and {y0, . . . , yn−1} into
n1−ε disjoint intervals of size nε. Let U ⊆ {x0, . . . , xn−1} and V ⊆ {y0, . . . , yn−1} be
two such intervals. Then G ∩ (U × V) realizes nε/2 noncyclic shifts with r common
bits. A simple modification of this graph (“wrapping around”) gives a graph with the
same number of edges which computes nε/2 cyclic shifts with r common bits. Thus for
each of the n2−2ε disjoint sections of G, we have a lower bound Ω((n2ε/r) log(nε/r))
and thus

|G| = n2−2ε Ω

(
n2ε

r
log

nε

r

)
= Ω

(
ε
n2

r
log

nε

r

)
= Ω

(
n2

r
log

n

r

)
because ε is bounded by the constant α.

Corollary 5.3.

(i) Let α > 0 be fixed. Then RDn(r) = Ω((n2/r) log(n/r)), for r ≥ nα.
(ii) Let α > 0 be fixed. In any restricted protocol that computes shiftn in which

Player 1 sends at most r bits, r ≥ nα, Player 2 sends at least Ω((n/r) log(n/r)) bits.
Thus the total communication is at least Ω(

√
n logn) bits.

(iii) rank2,1(Dn) = Ω
(
n3/2(logn)1/2

)
.

Proof. (i) and (ii) follow from Theorem 5.2 using Propositions 3.2 and 3.1.
(iii) Let r = n1/2(logn)1/2. Let a decomposition of Dn into tensors of the form

u ⊗ enj ⊗ w and eni ⊗ v ⊗ enk be given. Let S be the sum of the tensors of the first
type. If rank(S∗,j,∗) ≥ r for at least n/2 of the slices, we are done, so suppose the
converse. Using Theorem 5.2 for the set of shifts j such that rank(S∗,j,∗) < r and
the transformation from Proposition 3.2, it follows that the number of tensors of type
eni ⊗ v ⊗ enk is at least

Ω

(
n2

r
log

n

r

)
= Ω

(
n3/2(logn)1/2

)
.

Corollary 5.4.

(i) For any field IF, any depth-2 semilinear circuit for Shiftn has size at least
Ω
(
n(logn)3/2

)
.

(ii) Any depth-2 circuit with arbitrary Boolean functions as gates which com-
putes Shiftn has size at least Ω

(
n(logn)3/2

)
.

Proof. In both cases, let a circuit for Shiftn be given. Fix α > 0. Let d1 ≥ d2 ≥ · · ·
be the degrees of the vertices on the middle level. For an arbitrary r ≥ nα, we
construct a graph with r common bits that computes Shiftn as follows. We take the
common bits to be the functions computed at r vertices with maximal degree. The
graph is constructed by connecting an input to an output if they are connected by a
path going through one of remaining vertices. This graph has at most

∑
j>r d

2
j edges.

By Theorem 5.2, it follows that∑
j>r

d2
j ≥ Ω

(
n2

r
log

n

r

)
.

This bound (for nα ≤ r ≤ n) implies∑
j≥1

dj = Ω
(
n(logn)3/2

)
.

See [24, Lemma 4] for a proof of this implication.

626 P. PUDLÁK, V. RÖDL, AND J. SGALL

Corollary 5.5.

(i) Every depth-2 algebraic circuit for multiplying two polynomials has size
Ω
(
n(logn)3/2

)
.

(ii) Every depth-2 Boolean circuit for multiplying two n-bit numbers has size
Ω
(
n(logn)3/2

)
.

Proof. Reduce the function Shiftn to these functions.

These are the best lower bounds for these functions for depth 2. Also, the
bound Ω

(
n(logn)3/2

)
is the asymptotically largest lower bound for any explicitly

given Boolean function. Previously, such a bound for general depth-2 circuits was
known only for functions which contain a superconcentrator [2]. For linear circuits,
such a bound can also be proved using the bound on rigidity of the parity-check matrix
of a good code; see [14, 24].

The technique of counting triangles from Theorem 5.2 can be used to prove a
stronger result for a more restricted model of computation by graphs.

Theorem 5.6. Suppose that Shiftn(s, ~x) can be computed by a graph G with n/3
common bits using only semilinear functions, with an additional condition that for
every s, the common bits compute parities of pairwise-disjoint subsets of bits of ~x.
Then the degree of G is at least Ω(n1/3).

Proof. Suppose that the degree of G is d = o(n1/3). Similarly as in Theorem 5.2,
we consider the graph Gs for each shift. By counting the edges, for most values of s,
the graph Gs has at most o(n1/3) loops. This means that for such a value of s, the only
way how to compute the value of other outputs is to use one of the common bits and
the other input bits used by that common bit. Since each input is used only by a single
common bit, the corresponding vertices in Gs have to induce a complete graph (more
precisely, a tournament). Because there are only n/3 common bits which have to use
all of n−o(n1/3) input bits not in loops, these complete graphs contain Ω(n) triangles
for each s, a total of Ω(n2) triangles. By the same argument as in Theorem 5.2, the
total number of triangles is at most nd3 = o(n2), which is a contradiction.

Similarly as in Theorem 5.2, we can extend this result to all graphs computing
some constant fraction of shifts and prove that the number of edges has to be at least
n4/3, which is slightly stronger.

If we could prove a similar result without the additional restriction on the com-
putation, it would follow that there are no linear circuits of logarithmic depth for the
function Shiftn. Or, conversely, this result says that the protocols from section 4,
which are all based on disjoint parities, are not powerful enough to break the bound
of Theorem 3.5.

6. Conservative and nonconservative computation. Now we show that a
conservative model of computations of shifts, which is based on sending information
along vertex disjoint paths, is less efficient than a Boolean circuit (with parity gates)
or a linear circuit over any field. We show this for circuits of depth 2 when the
complexity is measured as the number of edges, with a modification that we do not
count edges incident to a small set of vertices (of size o(n)). In fact, we show a stronger
result, namely that in this way we can compute even all permutations more efficiently
than one can compute only shifts using shifters. Ideally, we would like to prove the
result when counting all edges; however, we are not able to do so at present time.

Theorem 6.1. There exists a semilinear circuit of depth 2 for Permn and a set
X of vertices on the middle level such that |X| = o(n) and there are only o(n3/2)
edges disjoint with X.

CIRCUITS, RANKS, AND COMPLEXITY 627

Before we prove Theorem 6.1, we prove the complementary lower bound for
shifters, which is quite simple.

Theorem 6.2. If G is an n-shifter of depth 2, then G has Ω(n3/2) edges, even if
we remove any o(n) vertices and the edges incident with them.

Proof. Suppose G is an n-shifter of depth 2. Let A be an arbitrary set of vertices
of size o(n). Suppose that there are only o(n3/2) edges of G which are not incident
with A. Let B be the set of vertices incident with n1/2 such edges. By the assumption,
|B| = o(n). Since G is an n-shifter, there are n−|A∪B| paths from inputs to outputs
disjoint with A ∪ B for each shift, a total of n2(1 − o(1)) paths disjoint with A ∪ B.
However, each edge which is not incident with A ∪ B can belong only to n1/2 paths;
hence there are n3/2(1− o(1)) edges not incident with A ∪B, a contradiction.

Bounds on the size of bounded-depth shifters have been proved in [23], including
a lower bound Ω(n3/2) for depth 2. Let us also mention a related unpublished result of
Maass which gives a bound Ω(n3/2) on the size of the circuits of depth 2 that compute
Shiftn, with the restriction that there is a constant-size set of Boolean functions
assigned to each vertex and for every shift we can only use as a gate assigned to this
vertex either one of these functions or an arbitrary projection.

The proof of Theorem 6.1 is again probabilistic. A constructive proof for Shiftn

also seems possible. The basic idea is the same as in the upper bounds of section 4.
Instead of sending the bits directly, we partition the inputs into o(n) blocks, send the
parities of the blocks through the extra o(n) vertices, and then compute the individual
bits from the parities of the blocks using direct connections realized by vertex-disjoint
paths. The difficult part is to realize these direct connections with only o(n3/2) edges.
We prove that a random graph with suitable parameters satisfies this condition. We
show that for each permutation, it is possible to choose one block of inputs with the
necessary vertex-disjoint paths with a very large probability. This enables us to choose
the blocks one by one until only o(n) inputs remain. The values of these remaining
inputs are also sent using the extra o(n) vertices.

We need to make some preliminary considerations before we begin the proof. For
the rest of this section, a graph means a graph of a circuit of depth 2, formally a
quadruple (V1, V2, V3, E) such that V1, V2, and V3 are disjoint sets of vertices and the
edges are E ⊆ (V1×V2)∪(V2×V3). An embedding of (V1, V2, V3, E) into (V ′1 , V

′
2 , V

′
3 , E

′)
is a one-to-one mapping g that maps vertices to vertices in the corresponding set and
edges to edges. For technical reasons, we assume that the sets V1 and V ′1 are ordered
and that any embedding has to preserve this ordering as well, i.e., if V1 = {x1, . . . , xn},
V ′1 = {x′1, . . . , x′n′}, and g(x1) = x′i1 , . . . , g(xn) = x′in , then i1 < i2 < · · · < in.

Let Gk = (U1, U2, U3, E) be the graph with k inputs and k outputs which realizes
by vertex-disjoint paths all connections between all pairs of inputs and outputs, except
for the corresponding pairs, i.e.,

U1 = {u1, . . . , uk},
U2 = {wi,j ; 1 ≤ i, j ≤ k, i 6= j},
U3 = {v1, . . . , vk}
E= {(ui, wi,j), (wi,j , vj); for wi,j ∈ U2}.

The proof of the theorem is based on the following lemma, which we prove later.
Lemma 6.3. Let k > 2 be an arbitrary constant. Then for sufficiently large n,

there exists a graph G = (V1, V2, V3, E), |V1| = |V3| = n, |V2| = nk2, with n3/2/k
edges such that for every m, n/k ≤ m ≤ n, every W1 ⊆ V1, W2 ⊆ V2, W3 ⊆ V3,
|W1| = |W3| = m, |W2| = mk2, and every bijection f : W3 → W1, there exists an

628 P. PUDLÁK, V. RÖDL, AND J. SGALL

embedding g of Gk into subgraph of G induced by W1∪W2∪W3 such that if g(vj) = x,
then g(uj) = f(x).

Proof of Theorem 6.1. For given n, pick the largest k such that the condition of
Lemma 6.3 holds. Because k was an arbitrary constant, we have k = ω(1). Take the
graph G from Lemma 6.3. Add a set X of 2n/k = o(n) extra vertices connected to
all inputs V1 = {x1, . . . , xn} and all outputs V3 = {y1, . . . , yn}. By Lemma 6.3, the
graph has at most n3/2/k = o(n3/2) edges. Hence it remains only to prove that this
circuit computes Permn(π, ~x).

Fix a permutation π. By repeated applications of Lemma 6.3, we can choose
disjoint embeddings of Gk into the graph G such that at most n/k inputs of G are
left uncovered, and whenever an embedding maps an output to yi, the corresponding
input is mapped to xπ(i).

For each of the chosen embeddings of Gk, take one of the extra vertices in X and
connect inputs of Gk with outputs of Gk through it. Thus for an input xj of Gk and
an output yi of Gk, we have just one path x→ y through X if j = π(i) and one path
through X and one path in Gk if j 6= π(i). Connect the inputs and the outputs not
covered by the embeddings of Gk paths through the remaining vertices in X. This is
possible since we need at most n/k vertices in X for Gk’s and at most n/k vertices
in X for inputs and outputs not covered by Gk’s.

Assign values to the edges as follows. All edges of the selected paths through
X have value 1. For each embedding of Gk, the edges going from V1 to V2 have
value 1 and the edges going from V2 to V3 have value −1. The remaining edges have
value 0. We set the linear function at each vertex to be the sum of the values on its
predecessors, each multiplied by the value of the connecting edge. Thus for j = π(i),
there is only one path from xj to yi with nonzero value and its value is 1. For j 6= π(j),
there are either no nonzero paths or one with value 1 and one with value −1. Hence
the circuit computes Permn(π, ~x).

For the rest of this section, we set

p = n
5/4−k2

2(k2−k) = n
− 1

2−
4k−5

8(k2−k) .

Let Rp,m denote the random graph with vertices

V1 = {x1, . . . , xm},
V2 = {z1, . . . , zmk2},
V3 = {y1, . . . , ym}

and each edge from V1 × V2 and V2 × V3 chosen independently at random with prob-
ability p.

Proof of Lemma 6.3. We prove that for sufficiently large n, the graph Rp,n satisfies
the conditions of Lemma 6.3 with high probability. The expected number of edges of
Rp,n is

2n2k2p = 2k2n
3
2−

4k−5

8(k2−k) = o(n3/2/k);

hence the condition on the number of edges is satisfied with high probability.
The number of possible quadruples W1,W2,W3, f is bounded by eO(n log n). For

a fixed quadruple W1,W2,W3, f , the probability that an appropriate embedding of
Gk exists is the same as the probability that there exists an embedding g of Gk into
Rp,m satisfying

g(ui) = xj iff g(vi) = yj ,(6)

CIRCUITS, RANKS, AND COMPLEXITY 629

where m = |W1|. Hence the proof is completed by the following lemma.
Lemma 6.4. Let k > 2 be an arbitrary constant. Then for n sufficiently large

and any m, n/k ≤ m ≤ n,

Pr[there exists no embedding of Gk into Rp,m satisfying (6)] ≤ e−n5/4+o(1)

.

Proof. Let X(H,G) denote the number of embeddings of H into G satisfying (6).
We want to prove an upper bound on Pr[X(Gk,Rp,m) = 0]. We use Janson’s in-
equality, see [3, Theorem 1.1, Chapter 8, p. 96].

Let Gk(1), . . . , Gk(i), . . . denote all possible occurrences of Gk in Rp,m satisfying
the condition (6). Let

ε = Pr[Gk(i) ⊆ Rp,m],

µ = E
(
X(Gk,Rp,m)

)
,

∆ =
∑
i∼j

Pr[Gk(i) ⊆ Rp,m ∧Gk(j) ⊆ Rp,m],

where we sum over the pairs of distinct occurrences of Gk which have at least one
common edge. By Janson’s inequality, we have

Pr[X(Gk,Rp,m) = 0] ≤ e−µ+ 1
1−ε

∆
2 .

Clearly, ε = p2(k2−k) = o(1). We prove that µ = Θ(n5/4) and ∆ = o(µ), which gives
the desired bound.

First, we compute µ as the number of all possible occurrences times the probability
of one fixed occurrence. (Remember that k is a constant.)

µ =

(
m

k

)(
mk2

k2 − k

)
p2(k2−k) = Θ(nknk

2−kn
5/4−k2

2(k2−k)
·2(k2−k)

) = Θ(n5/4).

We can bound ∆ as in [18] by

∆ ≤
∑

∅6=H⊂Gk

µ2

E(X(H,Rp,m))
X(H,Gk)2,

where the sum is over all graphs H with at least one edge which may occur as inter-
sections Gk(i) ∩Gk(j) for i 6= j. Since k is a constant, the number of such graphs is
bounded and the values of X(H,Gk) are bounded as well, and therefore

∆ ≤ O
(

µ2

minE(X(H,Rp,m))

)
.

For a given graph H, let r, 1 ≤ r ≤ k, be the number of its vertices from V1. The
vertices on the middle level of H have degree at most 2. Let s0, s1, and s2 denote
the number of vertices of H on the middle level whose degree in H is 0, 1, and 2,
respectively. Now we estimate the growth rate of E(X(H,Rp,m)) and prove that it
is at least ω(n5/4) = ω(µ) for every H.

E(X(H,Rp,m)) =

(
m

r

)(
mk2

s2

)(
mk2 − s2

s1

)(
mk2 − s2 − s1

s0

)
p2s2+s1

≈ nr+s2+s1+s0p2s2+s1 ≥ nr(np2)s2(np)s1

= n
r−s2

(
4k−5

4(k2−k)

)
+s1
(

1
2−

4k−5

8(k2−k)

)
.

We estimate the exponent separately for the following three cases.

630 P. PUDLÁK, V. RÖDL, AND J. SGALL

(i) Let r = 1. Then s2 = 0 since in Gk there is no path from ui to vi for any i.
Since H is has at least one edge, s1 ≥ 1 and the exponent is at least 1 + 1/2− (4k −
5)/(8(k2 − k)) > 5/4.

(ii) Suppose 2 ≤ r ≤ k − 1. Since there are at most r2 − r vertices of degree 2
on the middle level of H, the exponent is minimized for s1 = 0 and s2 = r2 − r, and
then it is

α = r − (r2 − r) 4k − 5

4(k2 − k)
.

This is a concave-down function in r; thus it is minimized at one of the endpoints of
the interval, i.e., for r = 2 or r = k−1. For r = 2, α = 2+(4k−5)/(2(k2−k)) > 5/4.
For r = k − 1, a short calculation gives α = 9/4− 5/(2k) > 5/4.

(iii) Finally, let r = k. Then s2 < k2 − k since H is required to be a proper
subgraph of Gk. Thus the exponent is minimized at s2 = k2−k−1 and s1 = 0, when
the value is 5/4 + (4k − 5)/(4(k2 − k)) > 5/4.

Hence ∆ ≤ µ2/ω(µ) = o(µ) and we can apply Janson’s inequality.

7. The chromatic number of a random graph. In this section, we prove
the estimate on the chromatic number of a random graph for a large probability of an
edge, Theorem 4.4. In our presentation of the proof, we follow the lines of [3, Chapter
7]. The proof is based on the following lemma, where clique(G) denotes the size of a
maximal clique in a graph G.

Lemma 7.1. For every ε > 0, there exist δ > 0 and n0 such that

Pr

[
clique(G(n, p)) > (2− ε) logn

− log p

]
> 1− exp(−n1+δ)

as long as 1/n
1
2−ε < p < 1/8 and n ≥ n0.

First, we deduce Theorem 4.4 from Lemma 7.1. Set m = n/(logn)2, ε′ = ε/2
and p = 1 − q. Let A be the event that every induced subgraph H of G(n, q) with
m vertices has an independent set of size α(H) > (2− ε)(logm)/(− log(1− q)). Note
that (2 − ε′)(logm)/(− log(1 − q)) ≥ (2 − ε)(logn)/(− log(1− q)) for n sufficiently
large. Then by Lemma 7.1 applied with ε′ = ε/2,

Pr(A) > 1−
(
n

m

)
exp(−n1+δ) > 1− exp

(
−nδ

)
.

This means that with probability at least 1− exp
(
−nδ

)
, the random graph G(n, q)

can be colored by

n−m
(2− ε) logm

− log(1−q)
+m ≤

(
1

2
+ ε

)
−n log(1− q)

logn

colors. This finishes the proof of Theorem 4.4.
Before we give a proof of Lemma 7.1 we prove another lemma. Let p = p(n) be

given, 1/n
1
2−ε < p < 1/8, ε > 0 constant. Let k = k(n) be the largest integer such

that (
n

k

)
p(
k
2) ≥ n3;(7)

CIRCUITS, RANKS, AND COMPLEXITY 631

note that (1 − ε)(logn)/(− log p) ≤ k ≤ 2(logn)/(− log p) + 1 for every sufficiently
large n. Let Y = Y (G(n, p)) be the maximal size of a family of edge-disjoint k-cliques
in G(n, p).

Lemma 7.2. E(Y) ≥ n2p/(2k5).

Proof. Let K denote the family of all k-cliques so that E(|K|) =
(
n
k

)
p(
k
2) ≥ n3.

Let W be the set of ordered pairs {S, T} of k-cliques of G(n, p) with 2 ≤ |S ∩T | < k.
Then

E(|W |) =

(
n

k

) k−1∑
i=2

(
k

i

)(
n− i
k − i

)
p2(k2)−(i2).

Set

Ai =

(
k

i

)(
n− i
k − i

)
p2(k2)−(i2).

Since for p < 1/8, the sequence

Bi =
Ai
Ai+1

=
(n− i)(i+ 1)

(k − i)2
pi

decreases, we infer that for some i0, Ai ≥ Ai+1 for i < i0 and Ai ≤ Ai+1 for i ≥ i0. A
straightforward calculation using (7) shows that Ak−1 ≤ A2. Hence Ai ≤ A2 for all
i = 2, . . . , k − 1 and thus

E(|W |) ≤
(
n

k

)
k

(
k

2

)(
n− 2

k − 2

)
p2(k2)−1.

Let K ′ be a random subfamily of K, where every S ∈ K is chosen independently with

Pr[S ∈ K ′] = γ =
1

4p(
k
2)−1k

(
k
2

)(
n−2
k−2

) .
Now construct a family L ⊆ K ′ by removing each pair S, T ∈ K ′ such that

{S, T} ∈W . No two cliques in L intersect; hence |L| ≤ Y . Thus

E(Y) ≥ E(|L|) ≥ γ|K| − 2γ2E(|W |)

= γ

(
n

k

)
p(
k
2) − 2γ2

(
n

k

)
k

(
k

2

)(
n− 2

k − 2

)
p2(k2)−1 =

1

2
γ

(
n

k

)
p(
k
2) ≥ n2p

2k5
.

Furthermore, we need the following definition. A martingale is a sequence Y0, Y1,
. . . , Ym of random variables such that for 0 ≤ i < m,

E(Yi+1|Yi) = Yi

holds. We use the following estimate.
Theorem 7.3 (Azuma’s inequality [3, 5]). Let 0 = X0, X1, . . . , Xm be a mar-

tingale with |Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr[Xm > λ] < e−
λ2

2m .

632 P. PUDLÁK, V. RÖDL, AND J. SGALL

Proof of Lemma 7.1. Let Y0, Y1, . . . , Ym, m =
(
n
2

)
, be the edge-exposure martin-

gale on G(n, p) with function Y defined above. (See [3] for the definitions.) Yi is the
conditional expectation of Y when we know the first i edges (for a fixed arbitrary
ordering of the edges); thus y0 = E(Y) and Ym = Y . Since Y is the cardinality of a
family of edge-disjoint cliques, |Yi+1−Yi| ≤ 1 holds, and hence by Azuma’s inequality,
taking Xi = Yi − E(Y),

Pr[clique(G) < k] = Pr[Y = 0] ≤ Pr[Y − E(Y) ≤ −E(Y)]

≤ exp

(
−E(Y)2

2
(
n
2

))
= exp

(
−n

2p2

4k10
(1 + o(1))

)
≤ exp(−n1+δ).

8. Conclusions and open problems. We have shown relations between circuit
complexity, multiparty complexity, and the algebraic characteristics of rigidity and
rigidity rank. The particular versions of these concepts that we have considered are
related to the problem of proving superlinear lower bounds on circuit complexity and
on the size of bounded-depth circuits with arbitrary Boolean gates.

We have proved some upper bounds. Though it is only a small improvement, it
disproves some earlier conjectures. The conclusion is that the problems are apparently
harder than was expected.

We have also improved some lower bounds. This is an example of how nontrivial
results in combinatorics may help in complexity theory. Still, the gaps between upper
and lower bounds remain very large.

There many open problems in this area; several of them are implicit in the above
text. Here we state only two which we consider to be the most challenging.

Problem 1. Does the function Shiftn have circuits of size O(n) and depth O(logn)?
This is open for semilinear circuits as well.

Problem 2. Improve the easy lower bound Ω(
√
n) for the simultaneous communi-

cation complexity of shiftn.
We believe that SCC(shiftn) is large; however, even our slightly larger lower bound

Ω(
√
n logn) from Corollary 5.3 works only under the restriction that Player 2 always

sends a substring of the input string ~x.

Acknowledgments. The first author would like to thank to Wolfgang Maass,
from whom he learned problems on circuits with arbitrary Boolean functions as gates,
and to Avi Wigderson for an idea which eventually led to the constructive upper bound
in Theorem 4.2. We also thank Steven Rudich for valuable comments.

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory
Ser. A, 29 (1980), pp. 354–360.

[2] N. Alon and P. Pudlák, Superconcentrators of depth 2 and 3: Odd levels help (rarely),
J. Comput. System Sci., 48 (1994), pp. 194–202.

[3] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley, New York, 1992.
[4] A. Ambainis, Upper bounds on multiparty communication complexity of shifts, in Proc. 13th

Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Com-
put. Sci. 1046, Springer-Verlag, Berlin, 1996, pp. 631–642.

[5] K. Azuma, Weighted sums of certain dependent random variables, Tôhoku Math. J., 3 (1967),
pp. 357–367.

[6] L. Babai, P. Kimmel, and S. V. Lokam, Simultaneous messages vs. communication, in
Proc. 12th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes
in Comput. Sci. 900, Springer-Verlag, Berlin, 1995, pp. 361–372.

CIRCUITS, RANKS, AND COMPLEXITY 633

[7] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs, J. Comput. System Sci., 45 (1992), pp. 204–232.

[8] R. Beigel and J. Tarui, On ACC, Comput. Complexity, 4 (1994), pp. 350–366.
[9] B. Bollobás, The chromatic number of random graphs, Combinatorica, 8 (1988), pp. 49–55.

[10] B. Bollobás, Random Graphs, Academic Press, New York, 1985.
[11] C. Damm, S. Jukna, and J. Sgall, Some bounds for multiparty communication complexity of

pointer jumping, Comput. Complexity, to appear.
[12] H. F. de Groote, Lectures on the Complexity of Bilinear Problems, Lecture Notes in Com-

put. Sci. 245, Springer-Verlag, Berlin, 1987.
[13] D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson, Superconcentrators, generalizers

and generalized connectors with limited depth, in Proc. 15th Annual ACM Symposium on
Theory of Computing, ACM, New York, 1983.

[14] J. Friedman, A note on matrix rigidity, Combinatorica, 13 (1993), pp. 235–239.
[15] J. Håstad and M. Goldmann, On the power of small-depth threshold circuits, Comput. Com-

plexity, 1 (1991), pp. 113–129.
[16] A. K. Chandra, M. L. Furst, and R. J. Lipton, Multi-party protocols, in Proc. 15th Annual

ACM Symposium on Theory of Computing, ACM, New York, 1983, pp. 94–99.
[17] D. V. Chudnovsky and G. V. Chudnovsky, Algebraic complexities and algebraic curves over

finite fields, Proc. Nat. Acad. Sci. U.S.A., 84 (1987), pp. 1739–1743.
[18] S. Janson, T. Luczak, and A. Ruciński, An exponential bound for the probability of nonex-

istence of a specified subgraph in a random graph, in Random Graphs ’87, M. Karoński
et al., eds., John Wiley, New York, 1990, pp. 73–87.

[19] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, Cam-
bridge, UK, to appear.

[20] N. Nisan and A. Wigderson, Rounds in communication complexity revisited, SIAM J. Com-
put., 22 (1993), pp. 211–219.

[21] N. Pippenger, The complexity of computations by networks, IBM J. Res. Develop., 31 (1987),
pp. 235–243.

[22] N. Pippenger and L. G. Valiant, Shifting graphs and their applications, J. Assoc. Com-
put. Mach., 23 (1976), pp. 423–432.

[23] N. Pippenger and A. C.-C. Yao, Rearrangeable networks with limited depth, SIAM J. Alge-
braic Discrete Meth., 3 (1982), pp. 411–417.

[24] P. Pudlák, Communication in bounded depth circuits, Combinatorica, 14 (1994), pp. 203–216.
[25] P. Pudlák and V. Rödl, Modified ranks of tensors and the size of circuits, in Proc. 25th

Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 523–531.
[26] P. Pudlák and P. Savický, On shifting networks, Theoret. Comput. Sci., 116 (1993), pp. 415–

419.
[27] A. A. Razborov, On rigid matrices, preprint, Mathematical Institute, Academy of Sciences of

USSR, Moscow, 1989 (in Russian).
[28] J. Sgall, A note on multiparty communication complexity of shifts, manuscript, 1992.
[29] M. A. Shokrollahi, Beiträge zur codierungs- und komplexitätstheorie mittels algebraischer

funktionkörper, Bayreuth. Math. Schr., 39 (1991).
[30] V. Shoup and R. Smolensky, Lower bounds for polynomial evaluation and interpolation, in

Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1991, pp. 378–383.

[31] V. Strassen, Vermeidung von divisionen, Crelles J. Reine Angew. Math., 264 (1973), pp. 184–
202.

[32] L. G. Valiant, Graph-theoretic arguments in low level complexity, in Proc. 6th Mathematical
Foundations of Computer Sci., Lecture Notes in Comput. Sci. 53, Springer-Verlag, Berlin,
1977, pp. 162–176.

[33] L. G. Valiant, Why is Boolean complexity theory difficult?, in Boolean Function Complexity,
M. S. Paterson, ed., Cambridge University Press, Cambridge, UK, 1992, pp. 84–94.

[34] A. C.-C. Yao, On ACC and threshold circuits, in Proc. 31st Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, 1990, pp. 619–627.

UNAMBIGUOUS COMPUTATION: BOOLEAN HIERARCHIES AND
SPARSE TURING-COMPLETE SETS∗

LANE A. HEMASPAANDRA† AND JÖRG ROTHE‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 634–653, June 1997 002

Abstract. It is known that for any class C closed under union and intersection, the Boolean
closure of C, the Boolean hierarchy over C, and the symmetric difference hierarchy over C all are
equal. We prove that these equalities hold for any complexity class closed under intersection; in
particular, they thus hold for unambiguous polynomial time (UP). In contrast to the NP case, we
prove that the Hausdorff hierarchy and the nested difference hierarchy over UP both fail to capture
the Boolean closure of UP in some relativized worlds.

Karp and Lipton proved that if nondeterministic polynomial time has sparse Turing-complete
sets, then the polynomial hierarchy collapses. We establish the first consequences from the assump-
tion that unambiguous polynomial time has sparse Turing-complete sets: (a) UP ⊆ Low2, where
Low2 is the second level of the low hierarchy, and (b) each level of the unambiguous polynomial
hierarchy is contained one level lower in the promise unambiguous polynomial hierarchy than is
otherwise known to be the case.

Key words. unambiguous computation, Boolean hierarchy, sparse Turing-complete sets

AMS subject classifications. 68Q15, 68Q10, 03D15

PII. S0097539794261970

1. Introduction. NP and NP-based hierarchies—such as the polynomial hier-
archy [47, 57] and the Boolean hierarchy over NP [9, 10, 41]—have played such a
central role in complexity theory, and have been so thoroughly investigated, that it
would be natural to take them as predictors of the behavior of other classes or hier-
archies. However, over and over during the past decade it has been shown that NP
is a singularly poor predictor of the behavior of other classes (and, to a lesser extent,
that hierarchies built on NP are poor predictors of the behavior of other hierarchies).

As examples regarding hierarchies, we have the following: though the polyno-
mial hierarchy possesses downward separation (that is, if its low levels collapse, then
all its levels collapse) [47, 57], downward separation does not hold “robustly” (i.e.,
in every relativized world) for the exponential time hierarchy [24, 36] or for limited-
nondeterminism hierarchies [32] (see also [4]). As examples regarding UP, we have the
following: NP has ≤pm-complete sets, but UP does not robustly possess ≤pm-complete
sets [22] or even ≤pT -complete sets [31]; NP positively relativizes, in the sense that
it collapses to P if and only if it does so with respect to every tally oracle [45] (see
also [1]), but UP does not robustly positively relativize [29]; NP has “constructive
programming systems,” but UP does not robustly have such systems [52]; NP (ac-
tually, nondeterministic computation) admits time hierarchy theorems [25], but it is
an open question whether unambiguous computation has nontrivial time hierarchy
theorems; NP displays upward separation (that is, NP−P contains sparse sets if and

∗ Received by the editors January 24, 1994; accepted for publication June 7, 1995.
http://www.siam.org/journals/sicomp/26-3/26197.html
† Department of Computer Science, University of Rochester, Rochester, NY 14627 (lane@

cs.rochester.edu). The research of this author was supported in part by NSF grants CCR-8957604,
INT-9116781/JSPS-ENGR-207, CCR-9322513, and INT-9513368/DAAD-315-PRO-of-ab and an
NAS/NRC COBASE grant.
‡ Institut für Informatik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany (rothe@

informatik.uni-jena.de). The research of this author was supported in part by a grant from the
DAAD and NSF grants CCR-8957604 and INT-9513368/DAAD-315-PRO-of-ab and was done in
part while visiting the University of Rochester.

634

UNAMBIGUOUS COMPUTATION 635

only if NE 6= E) [24], but it is not known whether UP does (see [32], which shows
that R and BPP do not robustly display upward separation, and [51], which shows
that FewP does possess upward separation).

In light of the above list of the many ways in which NP parts company with UP,
it is clear that we should not merely assume that results for NP hold for UP, but,
rather, we must carefully check to see to what extent, if any, results for NP suggest
results for UP. In this paper, we study, for UP, two topics that have been intensely
studied for the NP case: the structure of Boolean hierarchies, and the effects of the
existence of sparse Turing-complete/Turing-hard sets.

For the Boolean hierarchy over NP, which has generated quite a bit of interest and
the collapse of which is known to imply the collapse of the polynomial hierarchy [37, 16,
3], a large number of definitions are known to be equivalent. For example, for NP, all
the following coincide [9]: the Boolean closure of NP, the Boolean (alternating sums)
hierarchy, the nested difference hierarchy, and the Hausdorff hierarchy. The symmetric
difference hierarchy also characterizes the Boolean closure of NP [41]. In fact, these
equalities are known to hold for all classes that contain Σ∗ and ∅ and are closed under
union and intersection [26, 9, 41, 5, 20, 15, 14]. In section 3, we prove that both the
symmetric difference hierarchy (SDH) and the Boolean hierarchy (CH) remain equal
to the Boolean closure (BC) even in the absence of the assumption of closure under
union. That is, for any class K containing Σ∗ and ∅ and closed under intersection (e.g.,
UP, US, and DP, first defined, respectively, in [59], [6], and [50] and each of which
is not currently known to be closed under union): SDH(K) = CH(K) = BC(K).
However, for the remaining two hierarchies, we show that not all classes containing
Σ∗ and ∅ and closed under intersection robustly display equality. In particular, the
Hausdorff hierarchy over UP and the nested difference hierarchy over UP both fail to
robustly capture the Boolean closure of UP. In fact, the failure is relatively severe;
we show that even low levels of other Boolean hierarchies over UP—the third level
of the symmetric difference hierarchy and the fourth level of the Boolean (alternating
sums) hierarchy—fail to be robustly captured by either the Hausdorff hierarchy or
the nested difference hierarchy.

It is well known, thanks to the work of Karp and Lipton [39] (see also the re-
lated references given in section 4), that if NP has sparse Turing-hard sets, then the
polynomial hierarchy collapses. Unfortunately, the promise-like definition of UP—its
unambiguity, the very core of its nature—seems to block any similarly strong claim
for UP and the unambiguous polynomial hierarchy (which was introduced recently
by Niedermeier and Rossmanith [48]). Section 4 studies this issue and shows that if
UP has sparse Turing-complete sets, then the levels of the unambiguous polynomial
hierarchy “slip down” slightly in terms of their location within the promise unam-
biguous polynomial hierarchy (a version of the unambiguous polynomial hierarchy
that requires only that computations actually executed be unambiguous), i.e., the
kth level of the unambiguous polynomial hierarchy is contained in the (k − 1)st level
of the promise unambiguous polynomial hierarchy. Various related results are also
established. For example, if UP has Turing-hard sparse sets, then (a) UP ⊆ Low2,
where Low2 is the second level of the low hierarchy [53], and (b) the kth level of the
unambiguous polynomial hierarchy can be accepted via a deterministic polynomial-
time Turing transducer given access to both a Σp2 set and the (k − 1)st level of the
promise unambiguous polynomial hierarchy.

2. Notation. In general, we adopt the standard notations of Hopcroft and Ull-
man [35]. Fix the alphabet Σ = {0, 1}. Σ∗ is the set of all strings over Σ. For each

636 L. A. HEMASPAANDRA AND J. ROTHE

string u ∈ Σ∗, |u| denotes the length of u. The empty string is denoted by ε. For each
set L ⊆ Σ∗, ‖L‖ denotes the cardinality of L and L = Σ∗−L denotes the complement
of L. L=n (L≤n) is the set of all strings in L having length n (less than or equal to
n). Let Σn and Σ≤n be shorthands for (Σ∗)=n and (Σ∗)≤n, respectively. A set S is
said to be sparse if there is a polynomial q such that for every m ≥ 0, ‖S≤m‖ ≤ q(m).
To encode a pair of strings, we use a polynomial-time computable pairing function,
〈·, ·〉 : Σ∗ × Σ∗ → Σ∗, that has polynomial-time computable inverses; this notion is
extended to encode every k-tuple of strings, in the standard way. Let ≤lex denote the
standard quasi-lexicographical ordering on Σ∗, that is, for strings x and y, x ≤lex y if
either x = y, or |x| < |y|, or (|x| = |y| and there exists some z ∈ Σ∗ such that x = z0u
and y = z1v). x <lex y indicates that x ≤lex y but x 6= y.

For sets A and B, their join, A ⊕ B, is {0x |x ∈ A} ∪ {1x |x ∈ B}, and
their symmetric difference, A∆B, is (A − B) ∪ (B − A). For any class C, define

coC df
= {L |L ∈ C}, and let BC(C) denote the Boolean algebra generated by C, i.e.,

the smallest class containing C and closed under all Boolean operations. For any
classes A and B, let A⊕ B denote the class {A⊕B |A ∈ A ∧ B ∈ B}. Similarly, for
classes C and D of sets, define

C ∧D df
= {A ∩B |A ∈ C ∧B ∈ D}, C ∆ D df

= {A ∆ B |A ∈ C ∧B ∈ D},
C ∨D df

= {A ∪B |A ∈ C ∧B ∈ D}, C−D df
= {A−B |A ∈ C ∧B ∈ D}.

We will abbreviate “polynomial-time deterministic (nondeterministic) Turing ma-
chine” by DPM (NPM). An unambiguous (sometimes called categorical) polynomial-
time Turing machine (UPM) is an NPM that on no input has more than one accepting
computation path [59]. UP is the class of all languages that are accepted by some
UPM [59]. For the respective oracle machines, we use the shorthands DPOM, NPOM,
and UPOM.

Note, crucially, that whether a machine is categorical or not depends on its oracle.
In fact, it is well known that machines that are categorical with respect to all oracles
accept only easy languages [23] and thus create a polynomial hierarchy analogue
that is completely contained in a low level of the polynomial hierarchy (Allender and
Hemachandra as cited in [29]). So, when we speak of a UPOM, we will simply mean an
NPOM that, with the oracle the machine has in the context being discussed, happens
to be categorical.

For any Turing machine M , L(M) denotes the set of strings accepted by M , and
the notation M(x) means “M on input x.” For any oracle Turing machine M and any
oracle set A, L(MA) denotes the set of strings accepted by M relative to A, and the
notation MA(x) means “MA on input x.” Without loss of generality, we assume each
NPM and NPOM (in our standard enumeration of such machines) M has the property
that for every n, there is an integer `n such that, for every x of length n, every path
of M(x) is of length `n, and furthermore, in the case of oracle machines, that `n is
independent of the oracle. Let A and B be sets. We say A is Turing reducible to B
(denoted by A ≤pT B or A ∈ PB) if there is a DPOM M such that A = L(MB). A
set B is Turing-hard for a complexity class C if for all A ∈ C, A ≤pT B. A set B is
Turing-complete for C if B is Turing-hard for C and B ∈ C.

3. Boolean hierarchies over classes closed under intersection. The Bool-
ean hierarchy is a natural extension of the classes NP [17, 44] and DP

df
= NP∧ coNP [50].

Both NP and DP contain natural problems, as do the levels of the Boolean hierarchy.
For example, graph minimal uncolorability is known to be complete for DP [13]. Note

UNAMBIGUOUS COMPUTATION 637

that DP clearly is closed under intersection but is not closed under union unless the
polynomial hierarchy collapses (due to [37]; see also [15, 14]).

Definition 3.1. [9, 41, 26] Let K be any class of sets.
1. The Boolean (“alternating sums”) hierarchy over K:

C1(K)
df
= K, Ck(K)

df
=

{
Ck−1(K)∨K if k is odd,
Ck−1(K)∧ coK if k is even,

k ≥ 2, CH(K)
df
=
⋃
k≥1

Ck(K).

2. The nested difference hierarchy over K:

D1(K)
df
= K, Dk(K)

df
= K−Dk−1(K), k ≥ 2, DH(K)

df
=
⋃
k≥1

Dk(K).

3. The Hausdorff (“union of differences”) hierarchy over K:1

E1(K)
df
= K, E2(K)

df
= K−K, Ek(K)

df
= E2(K)∨Ek−2(K), k > 2, EH(K)

df
=
⋃
k≥1

Ek(K).

4. The symmetric difference hierarchy over K:

SD1(K)
df
= K, SDk(K)

df
= SDk−1(K) ∆ K, k ≥ 2, SDH(K)

df
=
⋃
k≥1

SDk(K).

It is easily seen that for any X chosen from {C, D, E, SD}, if K contains ∅ and
Σ∗, then for any k ≥ 1,

Xk(K) ∪ coXk(K) ⊆ Xk+1(K) ∩ coXk+1(K).

The following fact is shown by an easy induction on n.
Fact 3.2. For every class K of sets and every n ≥ 1,

1. D2n−1(K) = coC2n−1(coK) and
2. D2n(K) = C2n(coK).

Proof. The base case holds by definition. Suppose both statements of the fact to
be true for n ≥ 1. Then

D2n+1(K) =K∧ (coK∨D2n−1(K))
hyp.
= K∧ (coK∨ coC2n−1(coK))

=K∧ co(K∧C2n−1(coK)) = K∧ coC2n(coK)
= co(coK∨C2n(coK)) = coC2n+1(coK)

shows part 1 for n+ 1, and

D2n+2(K) = K− (K−D2n(K))
hyp.
= K∧ (coK∨C2n(coK)) = C2n+2(coK)

shows part 2 for n+ 1.
Corollary 3.3. CH(UP) = coCH(UP) = DH(coUP) and CH(coUP) =

coCH(coUP) = DH(UP).

1 Hausdorff hierarchies [26] (see [9, 5, 20], respectively, for applications to NP, R, and C=P are
interesting both in the case where, as in the definition here, the sets are arbitrary sets from K, and,
as is sometimes used in definitions, the sets from K are required to satisfy additional containment
conditions. For classes closed under union and intersection, such as NP, the two definitions are
identical, level by level [26] (see also [9]). In this paper, since UP, for example, is not known to be
closed under union, the distinction is nontrivial.

638 L. A. HEMASPAANDRA AND J. ROTHE

We are interested in the Boolean hierarchies over classes closed under intersection
(but perhaps not under union or complementation), such as UP, US, and DP. We
state our theorems in terms of the class of primary interest to us in this paper, UP.
However, many apply to any nontrivial class (i.e., any class containing Σ∗ and ∅) closed
under intersection (see Theorem 3.10). Although it has been proven in [9] and [41]
that all the standard normal forms of Definition 3.1 coincide for NP,2 the situation for
UP seems to be different since UP is probably not closed under union. (The closure of
UP under intersection is straightforward.) Thus all the relations among those normal
forms have to be reconsidered for UP.

We first prove that the symmetric difference hierarchy over UP (or any class
closed under intersection) equals the Boolean closure. Though Köbler, Schöning, and
Wagner [41] proved this for NP, their proof gateways through a class whose proof of
equivalence to the Boolean closure uses closure under union, and thus the following
result is not implicit in their paper.

Theorem 3.4. SDH(UP) = BC(UP).

Proof. The inclusion from left to right is clear. For the converse inclusion, it is
sufficient to show that SDH(UP) is closed under all Boolean operations since BC(UP),
by definition, is the smallest class of sets that contains UP and is closed under all
Boolean operations. Let L and L

′
be arbitrary sets in SDH(UP). Then for some

k, ` ≥ 1, there are sets A1, . . . , Ak, B1, . . . , B` in UP representing L and L
′
:

L = A1 ∆ · · · ∆Ak and L
′

= B1 ∆ · · · ∆B`.

So

L ∩ L′ =
(

∆ k
i=1Ai

)
∩
(

∆ `
j=1Bj

)
= ∆ i∈{1,...,k}, j∈{1,...,`}(Ai ∩Bj),

and since UP is closed under intersection and SDH(UP) is (trivially) closed under
symmetric difference, we clearly have that L ∩ L′ ∈ SDH(UP). Furthermore, since
L = Σ∗∆L implies that L ∈ SDH(UP), SDH(UP) is closed under complementation.
Since all Boolean operations can be represented in terms of complementation and
intersection, our proof is complete.

Next, we show that for any class closed under intersection, instantiated below to
the case of UP, the Boolean (alternating sums) hierarchy over the class equals the
Boolean closure of the class. Our proof is inspired by the techniques used to prove
equality in the case where closure under union may be assumed.

Theorem 3.5. CH(UP) = BC(UP).

Proof. We will prove that SDH(UP) ⊆ CH(UP). By Theorem 3.4, this will suffice.

Let L be any set in SDH(UP). Then there is a k > 1 (the case k = 1 is triv-
ial) such that L ∈ SDk(UP). Let U1, . . . , Uk be the witnessing UP sets; that is,
L = U1 ∆U2 ∆ · · · ∆Uk. By the inclusion–exclusion rule, L satisfies the equalities
below. For odd k,

L =

· · ·
(U1 ∪ U2 ∪ · · · ∪ Uk) ∩

 ⋃
j1<j2

(Uj1 ∩ Uj2)

2 Due essentially to its closure under union and intersection, and this reflects a more general

behavior of classes closed under union and intersection, as studied by Bertoni et al. [5] (see also [26,
9, 41, 15, 14]).

UNAMBIGUOUS COMPUTATION 639

∪

 ⋃
j1<j2<j3

(Uj1 ∩ Uj2 ∩ Uj3)

 ∩ · · · ∪
 ⋃
j1<···<jk

(Uj1 ∩ · · · ∩ Ujk)

 ,

where each subscripted j term must belong to {1, . . . , k}. For even k, we similarly
have

L =

· · ·
(U1 ∪ U2 ∪ · · · ∪ Uk) ∩

 ⋃
j1<j2

(Uj1 ∩ Uj2)

∪

 ⋃
j1<j2<j3

(Uj1 ∩ Uj2 ∩ Uj3)

 ∩ · · · ∩
 ⋃
j1<···<jk

(Uj1 ∩ · · · ∩ Ujk)

 .

For notational convenience, let us use A1, . . . , Ak to represent the respective terms in
the above expressions (ignoring the complementations). By the closure of UP under
intersection, each Ai, 1 ≤ i ≤ k, is the union of (ki) UP sets Bi,1, . . . , Bi,(ki). Using

the fact that ∅ is clearly in UP, we can easily turn the union of n arbitrary UP sets
(or the intersection of n arbitrary coUP sets) into an alternating sum of 2n − 1 UP
sets. So for instance, A1 = U1 ∪ U2 ∪ · · · ∪ Uk can be written(

· · ·
(((

U1 ∩ ∅
)
∪ U2

)
∩ ∅
)
∪ · · · ∪ Uk

)
;

call this C1. Clearly, C1 ∈ C2k−1(UP). To transform the above representation of L
into an alternating sum of UP sets, we need two (trivial) transformations holding for
any m ≥ 1 and for arbitrary sets S and T1, . . . , Tm:

S ∩
(
T1 ∪ T2 ∪ · · · ∪ Tm

)
=
(
· · ·
((
S ∩ T1

)
∩ T2

)
∩ · · ·

)
∩ Tm(3.1)

S ∪ (T1 ∪ T2 ∪ · · · ∪ Tm) = (· · · ((S ∪ T1) ∪ T2) ∪ · · ·) ∪ Tm.(3.2)

Using (3.1) with S = C1 and T1 = B2,1, . . . , Tm = B2,(k2) and the fact that ∅ is in UP,

A1 ∩ A2 can be transformed into an alternating sum of UP sets; call this C2. Now
apply (3.2) with S = C2 and T1 = B3,1, . . . , Tm = B3,(k3) to obtain, again using that

∅ is in UP, an alternating sum C3 = (A1∩A2)∪A3 of UP sets, and so on. Eventually,
this procedure of alternately applying (3.1) and (3.2) will yield an alternating sum Ck
of sets in UP that equals L. Thus L ∈ CH(UP).

Corollary 3.6. SDH(UP) and CH(UP) are both closed under all Boolean op-
erations.

Note that the proofs of Theorems 3.5 and 3.4 implicitly give a recurrence yield-
ing an upper bound on the level-wise containments. We find the issue of equality to
BC(UP), or lack thereof, to be the central issue, and thus we focus on that. Nonethe-
less, we point out in the corollary below that losing the assumption of closure under
union seems to have exacted a price: though the hierarchies SDH(UP) and CH(UP)
are indeed equal, the above proof embeds SDk(UP) in an exponentially higher level
of the C hierarchy over UP. Similarly, the proof of Theorem 3.4 embeds Ck(UP) in
an exponentially higher level of SDH(UP).

Corollary 3.7.

1. For each k ≥ 1, SDk(UP) ⊆ C2k+1−k−2(UP).
2. For each k ≥ 1, Ck(UP) ⊆ SDT (k)(UP), where T (k) = 2k−1 if k is odd, and

T (k) = 2k − 2 if k is even.

640 L. A. HEMASPAANDRA AND J. ROTHE

Proof. For an SDk(UP) set L to be placed into the R(k)th level of CH(UP),
L is represented (in the proof of Theorem 3.5) as an alternating sum of k terms
A1, . . . , Ak, each Ai consisting of (ki) UP sets Bi,j . In the subsequent transformation

of L according to equations (3.1) and (3.2), each Ai requires as many as (ki) − 1

additional terms ∅ or ∅, respectively, to be inserted, and each such insertion brings us
one level higher in the C hierarchy. Thus

R(k) =
k∑
i=1

(
k

i

)
+

((
k

i

)
− 1

)
= −k + 2

k∑
i=1

(
k

i

)
= 2k+1 − k − 2.

A close inspection of the proof of Ck(UP) ⊆ SDT (k)(UP) according to Theorem 3.4
leads to the recurrence

T (1) = 1 and T (k) =

{
2T (k − 1) + 3 if k > 1 is odd,
2T (k − 1) if k > 1 is even

since any set L ∈ Ck(UP) can be represented by sets A ∈ Ck−1(UP) and B ∈ UP as
follows:

L=A ∪B=A ∩B = Σ∗∆ ((Σ∗∆A) ∩ (Σ∗∆B)) if k is odd,
L=A ∩B=A ∩ (Σ∗∆B) if k is even.

The above recurrence is in (almost) closed form:

T (k) =

{
2k − 1 if k ≥ 1 is odd,
2k − 2 if k ≥ 1 is even,

as can be proven by induction on k (we omit the trivial induction base): For odd k
(i.e., k = 2n− 1 for n ≥ 1), assume T (2n− 1) = 22n−1 − 1 to be true. Then

T (2n+ 1) = 2T (2n) + 3 = 4T (2n− 1) + 3
hyp.
= 4

(
22n−1 − 1

)
+ 3 = 22n+1 − 1.

For even k (i.e., k = 2n for n ≥ 1), assume T (2n) = 22n − 2 to be true. Then

T (2n+ 2) = 2T (2n+ 1) = 2(2T (2n) + 3)
hyp.
= 4

(
22n − 2

)
+ 6 = 22n+2 − 2.

Remark 3.8. The upper bound in the second part of the above proof can be
slightly improved using the fact that Σ∗∆ Σ∗∆A = ∅∆A = A for any set A. This
gives the recurrence

T (1) = 1 and T (k) =

{
2T (k − 1) + 1 if k > 1 is odd,
2T (k − 1) if k > 1 is even,

or, equivalently, T (1) = 1, T (2) = 2, and T (k) = 2k−1 + T (k − 2) for k ≥ 3. Though
this shows that the upper bound given in the above proof is not optimal, the new
bound is not a strong improvement, since it still embeds Ck(UP) in an exponentially
higher level of SDH(UP). We propose as an interesting task the establishment of tight
level-wise containments, at least up to the limits of relativizing techniques, between
the hierarchies SDH(UP) and CH(UP), both of which capture the Boolean closure
of UP.

UNAMBIGUOUS COMPUTATION 641

We conjecture that there is some relativized world in which an exponential in-
crease (though less dramatic than the particular exponential increase of Corollary 3.7)
indeed is necessary.

Theorem 3.9 below shows that each level of the nested difference hierarchy is
contained in the same level of both the C and the E hierarchy. Surprisingly, it turns
out (see Theorem 3.13 below) that, relative to a recursive oracle, even the fourth
level of CH(UP) and the third level of SDH(UP) are not subsumed by any level
of the EH(UP) hierarchy. Consequently, neither the D nor the E normal forms of
Definition 3.1 capture the Boolean closure of UP.

Theorem 3.9. For every k ≥ 1, Dk(UP) ⊆ Ck(UP) ∩ Ek(UP).
Proof. For the first inclusion, by [11, Proposition 2.1.2], each set L in Dk(UP)

can be represented as

L = A1 − (A2 − (· · · (Ak−1 −Ak) · · ·)),

where Ai =
⋂

1≤j≤i Lj , 1 ≤ i ≤ k, and the Lj ’s are the original UP sets representing L.
Note that since the proof of [11, Proposition 2.1.2] only uses intersection, the sets Ai
are in UP. A special case of [11, Proposition 2.1.3] says that sets in Dk(UP) via
decreasing chains such as the Ai are in Ck(UP), and so L ∈ Ck(UP).

The proof of the second inclusion is done by induction on the odd and even levels
separately. The induction base follows by definition in either case. For odd levels,
assume D2n−1(UP) ⊆ E2n−1(UP) to be valid, and let L be any set in D2n+1(UP) =
UP− (UP−D2n−1(UP)). By our inductive hypothesis, L can be represented as

L = A−
(
B −

(
n−1⋃
i=1

(
Ci ∩Di

)
∪ E

))
,

where A,B,Ci, Di, and E are sets in UP. Thus

L = A ∩

B ∩
n−1⋃
i=1

(
Ci ∩Di

)
∪ E

= A ∩
(
B ∪

(
n−1⋃
i=1

(
Ci ∩Di

)
∪ E

))

= (A ∩B) ∪
(
n−1⋃
i=1

A ∩ Ci ∩Di

)
∪ (A ∩ E)

=

(
n⋃
i=1

Fi ∩Di

)
∪G,

where Fi = A ∩ Ci, for 1 ≤ i ≤ n − 1, Fn = A, Dn = B, and G = A ∩ E. Since UP
is closed under intersection, each of these sets is in UP. Thus L ∈ E2n+1(UP). The
proof for the even levels is analogous except that the set E is dropped.

Note that most of the above proofs used only the facts that the class is closed
under intersection and contains Σ∗ and ∅.

Theorem 3.10. Theorems 3.4, 3.5, and 3.9 and Corollaries 3.6 and 3.7 apply to
all classes that contain Σ∗ and ∅ and are closed under intersection.

Remark 3.11. Although DP is closed under intersection but seems to lack closure
under union (unless the polynomial hierarchy collapses to DP [37, 15, 14]) and thus

642 L. A. HEMASPAANDRA AND J. ROTHE

Theorem 3.10 in particular applies to DP, we note that the known results about
Boolean hierarchies over NP [9, 41] in fact even for the DP case imply stronger results
than those given by our Theorem 3.10, due to the very special structure of DP.
Indeed, since, e.g., Ek(DP) = E2k(NP) for any k ≥ 1 (and the same holds for the
other hierarchies), it follows immediately that all the level-wise equivalences among
the Boolean hierarchies (and also their ability to capture the Boolean closure) that
are known to hold for NP also hold for DP even in the absence of the assumption of
closure under union. This appears to contrast with the UP case (see Remark 3.8).

The following combinatorial lemma will be useful in proving Theorem 3.13.

Lemma 3.12. [12] Let G = (S, T,E) be any directed bipartite graph with out-
degree bounded by d for all vertices. Let S′ ⊆ S and T ′ ⊆ T be subsets such that
S′ ⊇ {s ∈ S | (∃t ∈ T) [〈s, t〉 ∈ E]}, and T ′ ⊇ {t ∈ T | (∃s ∈ S) [〈t, s〉 ∈ E]}. Then
either

1. ‖S′‖ ≤ 2d, or
2. ‖T ′‖ ≤ 2d, or
3. (∃s ∈ S′) (∃t ∈ T ′) [〈s, t〉 6∈ E ∧ 〈t, s〉 6∈ E].

For papers concerned with oracles separating internal levels of Boolean hierarchies
over classes other than those of this paper, we refer the reader to [9, 8, 20, 7, 18] (see
also [21]). Theorem 3.13 is optimal since clearly C3(UP) ⊆ EH(UP) and SD2(UP) ⊆
EH(UP), and both these containments relativize.

Theorem 3.13. There are recursive oracles A and D (though we may take
A = D) such that

1. C4(UPA) 6⊆ EH(UPA) and
2. SD3(UPD) 6⊆ EH(UPD).

Corollary 3.14. There is a recursive oracle A such that

1. EH(UPA) 6= BC(UPA) and DH(UPA) 6= BC(UPA), 3 and
2. EH(UPA) and DH(UPA) are not closed under all Boolean operations.

Proof of Theorem 3.13. Although the theorem claims that there is an oracle
keeping C4(UP) from being contained in any level of EH(UP), we will only prove that
for any fixed k we can ensure that C4(UP) is not contained in Ek(UP), relative to
some oracle A(k). In the standard way, by interleaving diagonalizations, the sequence
of oracles, A(k), can be combined into a single oracle, A, that fulfills the claim of the
theorem. An analogous comment holds for the second claim of the theorem, with a
sequence of oracles D(k) yielding a single oracle D. Similarly, both statements of the
theorem can be satisfied simultaneously via just one oracle, via interleaving with each
other the constructions of A and D. Though below we construct just A(k) and D(k),
as a notational shorthand we will use A and D below to represent A(k) and D(k).

Before the actual construction of the oracles, we state some preliminaries that
apply to the proofs of both statements in the theorem.

For any n ≥ 0 and any string v ∈ Σ≤n, define Snv
df
= {vw | vw ∈ Σn}. The sets Snv

are used to distinguish between different segments of Σn in the definition of the test
languages, LA and LD.

Fix any standard enumeration of all NPOMs. Fix any k > 0. We need only
consider even levels of EH(UP) since each odd level is contained in some even level.
Call any collection of 2k NPOMs, H = 〈N1,1, . . . , Nk,1, N1,2, . . . , Nk,2〉, a potential

3 Since both Corollary 3.3 (establishing DH(UP) = CH(coUP)) and Theorem 3.5 (BC(UP) =
CH(UP)) relativize, this oracle A also separates the Boolean (alternating sums) hierarchy over coUP
from the fourth level of the same hierarchy over UP and thus from BC(UP).

UNAMBIGUOUS COMPUTATION 643

(relativized) E2k(UP) machine, and for any oracle X, define its language to be:

L(HX)
df
=

k⋃
i=1

(
L(NX

i,1)− L(NX
i,2)
)
.

If for some fixed oracle Y , a potential (relativized) E2k(UP) machine HY has the
property that each of its underlying NPOMs with oracle Y is unambiguous, then
L(HY) indeed is in E2k(UPY). Clearly, our enumeration of all NPOMs induces an
enumeration of all potential E2k(UP) oracle machines. For j ≥ 1, let Hj be the
jth machine in this enumeration. Let pj be a polynomial bounding the length of
the computation paths of each of Hj ’s underlying machines (and thus bounding the
number of and length of the strings they each query). As a notational convenience,
we henceforth will use H and p as shorthands for Hj and pj , and we will denote the
underlying NPOMs by N1,1, . . . , Nk,1, N1,2, . . . , Nk,2.

The oracle X, where X stands for A or D, is constructed in stages, X =
⋃
j≥1Xj .

In stage j, we diagonalize against H by satisfying the following requirement Rj for
every j ≥ 1:

Rj : Either there is an n > 2 and an i, 1 ≤ i ≤ k, such that one of N
Xj
i,1 or N

Xj
i,2

on input 0n is ambiguous (thus H is in fact not an E2k(UP) machine relative
to X), or L(HX) 6= LX , where LX is as defined below.

Let Xj be the set of strings contained in X by the end of stage j, and let X
′

j be
the set of strings forbidden membership in X during stage j. The restraint function
r(j) will satisfy the condition that at no later stage will strings of length smaller than
r(j) be added to X. Also, our construction will ensure that r(j) is so large that Xj−1

contains no strings of length greater than r(j). Initially, both X0 and X
′

0 are empty,
and r(1) is set to be 2.

We now start the proof of Part 1 of the theorem. Define the test language

LA
df
= {0n | (∃x) [x ∈ Sn0 ∩A] ∧ (∀y) [y 6∈ Sn10 ∩A] ∧ (∀z) [z 6∈ Sn11 ∩A]}.

Clearly, LA is in NPA ∧ coNPA ∧ coNPA. However, if we ensure in the construc-
tion that the invariant ‖Snv ∩A‖ ≤ 1 is maintained for v ∈ {0, 10, 11} and every n ≥ 2,
then LA is even in UPA ∧ coUPA ∧ coUPA and thus in C4(UPA). We now describe
stage j > 0 of the oracle construction.

Stage j: Choose n > r(j) so large that 2n−2 > 3p(n).
Case 1: 0n ∈ L(HAj−1). Since 0n 6∈ LA, we have L(HA) 6= LA.
Case 2: 0n 6∈ L(HAj−1). Choose some x ∈ Sn0 and set Bj := Aj−1 ∪ {x}.

Case 2.1: 0n 6∈ L(HBj). Letting Aj := Bj implies 0n ∈ LA, so
L(HA) 6= LA.

Case 2.2: 0n ∈ L(HBj). Then there is an i, 1 ≤ i ≤ k, such that

0n ∈ L(N
Bj
i,1) and 0n 6∈ L(N

Bj
i,2). “Freeze” an accepting path of

N
Bj
i,1 (0n) into A

′

j ; that is, add those strings queried negatively on

that path to A
′

j , thus forbidding them from A for all later stages.
Clearly, at most p(n) strings are “frozen.”

Case 2.2.1: (∃z ∈ (Sn10 ∪ Sn11)−A′j) [0n 6∈ L(N
Bj∪{z}
i,2)].

Choose any such z. Set Aj := Bj ∪ {z}. We have 0n ∈ L(HA)
but 0n 6∈ LA.

Case 2.2.2: (∀z ∈ (Sn10 ∪ Sn11)−A′j) [0n ∈ L(N
Bj∪{z}
i,2)].

To apply Lemma 3.12, define a directed bipartite graph G =

644 L. A. HEMASPAANDRA AND J. ROTHE

(S, T,E) by S
df
= Sn10−A

′

j , T
df
= Sn11−A

′

j , and for each s ∈ S and

t ∈ T , 〈s, t〉 ∈ E if and only if N
Bj∪{s}
i,2 queries t along its lexico-

graphically first accepting path, and 〈t, s〉 ∈ E is defined analo-
gously. The out-degree of all vertices of G is bounded by p(n).
By our choice of n, min{‖S‖, ‖T‖} ≥ 2n−2 − p(n) > 2p(n), and
thus alternative 3 of Lemma 3.12 applies. Hence there exist

strings s ∈ S and t ∈ T such that N
Bj∪{s}
i,2 (0n) accepts on some

path ps on which t is not queried, and N
Bj∪{t}
i,2 (0n) accepts on

some path pt on which s is not queried. Since ps (pt) changes
from reject to accept exactly by adding string s (t) to the or-
acle, s (t) must have been queried on ps (pt). We conclude

that ps 6= pt, and thus N
Bj∪{s,t}
i,2 (0n) has at least two accepting

paths. Set Aj := Bj ∪ {s, t}.
In each case, requirement Rj is fulfilled. Let r(j + 1) be max{n,wj}, where wj is

the length of the largest string queried through stage j.

End of stage j.

We now turn to the proof of part 2 of the theorem. The test language here, LD,
is defined by:

LD
df
=

0n

((∃x) [x ∈ Sn0 ∩D] ∧ (∃y) [y ∈ Sn10 ∩D] ∧ (∃z) [z ∈ Sn11 ∩D])∨
((∀x) [x 6∈ Sn0 ∩D] ∧ (∀y) [y 6∈ Sn10 ∩D] ∧ (∃z) [z ∈ Sn11 ∩D])∨
((∃x) [x ∈ Sn0 ∩D] ∧ (∀y) [y 6∈ Sn10 ∩D] ∧ (∀z) [z 6∈ Sn11 ∩D])∨
((∀x) [x 6∈ Sn0 ∩D] ∧ (∃y) [y ∈ Sn10 ∩D] ∧ (∀z) [z 6∈ Sn11 ∩D])

 .

Again, provided that the invariant ‖Snv ∩D‖ ≤ 1 is maintained for v ∈ {0, 10, 11} and
every n ≥ 2 throughout the construction, LD is clearly in SD3(UPD), as for all sets
A, B, and C,

A∆B∆C = (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C).

Stage j > 0 of the construction of D is as follows.

Stage j: Choose n > r(j) so large that 2n−2 > 3p(n).
Case 1: 0n ∈ L(HDj−1). Since 0n 6∈ LD, we have L(HD) 6= LD.
Case 2: 0n 6∈ L(HDj−1). Choose some x ∈ Sn0 and set Ej := Dj−1 ∪ {x}.

Case 2.1: 0n 6∈ L(HEj). Letting Dj := Ej implies 0n ∈ LD, so
L(HD) 6= LD.

Case 2.2: 0n ∈ L(HEj). Then there is an i, 1 ≤ i ≤ k, such that

0n ∈ L(N
Ej
i,1) and 0n 6∈ L(N

Ej
i,2). “Freeze” an accepting path of

N
Ej
i,1 (0n) into D

′

j . Again, at most p(n) strings are “frozen.”

Case 2.2.1: (∃w ∈ (Sn10 ∪ Sn11)−D′j) [0n 6∈ L(N
Ej∪{w}
i,2)].

Choose any such w and setDj := Ej∪{w}. We have 0n ∈ L(HD)
but 0n 6∈ LD.

Case 2.2.2: (∀w ∈ (Sn10 ∪ Sn11)−D′j) [0n ∈ L(N
Ej∪{w}
i,2)].

As before, Lemma 3.12 yields two strings s ∈ Sn10 −D
′

j and t ∈
Sn11−D

′

j such thatN
Ej∪{s,t}
i,2 (0n) is ambiguous. SetDj := Ej ∪ {s, t}.

Again, Rj is always fulfilled. Define r(j + 1) as before.

End of stage j.

UNAMBIGUOUS COMPUTATION 645

Finally, we note that a slight modification of the above proof establishes the
analogous result (of Theorem 3.13) for the case of US [6] (which is denoted 1NP
in [21, 18]).

4. Sparse Turing-complete and Turing-hard sets for UP. In this section,
we show some consequences of the existence of sparse Turing-complete and Turing-
hard sets for UP. This question has been carefully investigated for the class NP [39,
34, 40, 1, 45, 54, 38].4 Kadin showed that if there is a sparse ≤pT -complete set in NP,

then the polynomial hierarchy collapses to PNP[log] [38]. Due to the promise nature
of UP (in particular, UP probably lacks complete sets [22]), Kadin’s proof does not
seem to apply here. But does the existence of a sparse Turing-complete set in UP
cause at least some collapse of the unambiguous polynomial hierarchy (which was
introduced recently in [48])?5

Cai, Hemachandra, and Vyskoč [12] observe that ordinary Turing access to UP,
as formalized by PUP, may be too restrictive a notion to capture adequately one’s
intuition of Turing access to unambiguous computation since in that model the or-
acle machine has to be unambiguous on every input—even those the base DPOM
never asks (on any of its inputs). To relax that unnaturally strong uniformity re-
quirement, they introduce the class denoted P UP , in which NP oracles are accessed
in a guardedly unambiguous manner, a natural notion of access to unambiguous
computation—suggested in the rather analogous case of NP ∩ coNP by Grollmann
and Selman [19]—in which only computations actually executed need be unambiguous.
Lange, Niedermeier, and Rossmanith [43], [48, p. 482] generalize this approach to
build up an entire hierarchy of unambiguous computations in which the oracle levels
are guardedly accessed (Definition 4.1, part 3)—the promise unambiguous polynomial
hierarchy.

Definition 4.1.

1. The polynomial hierarchy [47, 57] is defined as follows:

Σp0
df
= P, ∆p

0
df
= P, Σpk

df
= NPΣp

k−1 , Πp
k

df
= coΣpk, ∆p

k
df
= PΣp

k−1 , k ≥ 1, and

PH
df
=
⋃
k≥0 Σpk.

2. The unambiguous polynomial hierarchy [48] is defined as follows:

UΣp0
df
= P, U∆p

0
df
= P, UΣpk

df
= UPUΣp

k−1 , UΠp
k

df
= coUΣpk, U∆p

k
df
= PUΣp

k−1 , k ≥ 1, and

UPH
df
=
⋃
k≥0 UΣpk.

3. The promise unambiguous polynomial hierarchy [43], [48, p. 482] is defined

as follows: UΣp0
df
= P, UΣp1

df
= UP, and for k ≥ 2, L ∈ UΣpk if and only if L ∈ Σpk

via NPOMs N1, . . . , Nk satisfying for all inputs x and every i, 1 ≤ i ≤ k − 1, that
if Ni asks some query q during the computation of N1(x), then Ni+1(q) with oracle

L(N
L(N ·

·L(Nk)

i+3)

i+2) has at most one accepting path. UPH df
=
⋃
k≥0 UΣpk. The classes

U∆p
k and UΠp

k, k ≥ 0, are defined analogously. As a notational shorthand, we often

use P UP to represent U∆p
2; we stress that both notations are used here to represent

the class of sets accepted via guardedly unambiguous access to an NP oracle (that is,
the class of sets accepted by some P machine with an NP machine’s language as its

4 For reductions less flexible than Turing reductions (e.g., ≤pm, ≤pbtt, etc.), this issue has been
studied even more intensely (see, e.g., the surveys [61, 28]).

5 Note that it is not known whether such a collapse implies a collapse of PH. Note also that
Toda’s [58] result on whether P-selective sets can be truth-table hard for UP does not imply such a
collapse since truth-table reductions are less flexible than Turing reductions.

646 L. A. HEMASPAANDRA AND J. ROTHE

oracle such that on no input does the P machine ask its oracle machine any question
on which the oracle machine has more than one accepting path).

4. For each of the above hierarchies, we use Σp,Ak (respectively, UΣp,Ak and

UΣp,Ak) to denote that the Σpk (respectively, UΣpk and UΣpk) computation is performed
relative to oracle A; similar notation is used for the Π and ∆ classes of the hierarchies.

The following facts follow from the definition (see also [48]) or can easily be shown.
Fact 4.2. For every k ≥ 1, the following hold:

1. UΣpk ⊆ UΣpk ⊆ Σpk and U∆p
k ⊆ U∆p

k ⊆ ∆p
k.

2. If UΣpk = UΠp
k, then UPH = UΣpk.

3. If UΣpk = UΣpk−1, then UPH = UΣpk−1.

4. UΣp,UP∩coUP
k = UΣpk and PUΣp

k
∩UΠp

k = UΣpk ∩UΠp
k.

The classes “UP≤k,” the analogues of UP in which up to k accepting paths are
allowed, have been studied in various contexts [60, 27, 2, 12, 30, 33]. One motivation
for UΣpk is that, for each k, UP≤k ⊆ UΣpk [48].

Although we are not able to settle affirmatively the question posed at the end of
the first paragraph of this section, we do prove in the theorem below that if there is
a sparse Turing-complete set for UP, then the levels of the unambiguous polynomial
hierarchy are simpler than one would otherwise expect: they “slip down” slightly in
terms of their location within the promise unambiguous polynomial hierarchy, i.e., for
each k ≥ 3, the kth level of UPH is contained in the (k − 1)st level of UPH.

Theorem 4.3. If there exists a sparse Turing-complete set for UP, then
1. UPUP ⊆ P UP and
2. UΣpk ⊆ UΣpk−1 for every k ≥ 3.

Proof. For the first statement, let L be any set in UPUP. By assumption, L is

in UPPS

= UPS for some sparse set S ∈ UP. Let q be a polynomial bounding the
density of S, that is, ‖S≤m‖ ≤ q(m) for every m ≥ 0, and let NS be a UPM for S.
Let NL be a UPOM witnessing that L ∈ UPS , that is, L = L(NS

L). Let p(n) be
a polynomial bounding the length of all query strings that can be asked during the

computation of NL on inputs of length n. Define the polynomial r(n)
df
= q(p(n)) that

bounds the number of strings in S that can be queried in the run of NL on inputs of
length n.

To show that L ∈ P UP , we shall construct a DPOM M that may access its
UP oracle D in a guarded manner (more formally, “may access its NP oracle D
in a guardedly unambiguous manner,” but we will henceforth use UP and other
U · · · notations in this informal manner). Before formally describing machine M
(Figure 4.1), we give some informal explanations. M will proceed in three basic
steps: First, M determines the exact census of that part of S that is relevant for
the given input length, ‖S≤p(n)‖. Knowing the exact census, M can construct (by
prefix search) a table T of all strings in S≤p(n) without asking queries that make its
oracle’s machine ambiguous, so the P UP -like behavior is guaranteed. Finally, M asks
its oracle D to simulate the computation of NL on input x (answering NL’s oracle
queries by table-lookup using table T), and accepts accordingly.

In the formal description of machine M (given in Figure 4.1), three oracle sets
A, B, and C are used. Since M has only one UP oracle, the actual set to be used is
D = A ⊕ B ⊕ C (with suitably modified queries to D). A, B, and C are defined as
follows (we assume the set T below is coded in some standard reasonable way):

A
df
=

{
〈1n, k〉 n ≥ 0 ∧ 0 ≤ k ≤ r(n) ∧ (∃c1 <lex c2 <lex · · · <lex ck)

(∀` : 1 ≤ ` ≤ k) [|c`| ≤ p(n) ∧ NS(c`) accepts]

}
,

UNAMBIGUOUS COMPUTATION 647

Description of DPOM M.
input x;
begin
n := |x|;
k := r(n);
loop

if 〈1n, k〉 ∈ A then exit loop
else k := k − 1

end loop (* k is now the exact census of S≤p(n) *)
T := ∅; (* T collects the strings of S≤p(n) *)
for j = 1 to k do
cj := ε;
i := 1;
repeat

if 〈1n, i, j, k, 0〉 ∈ B then cj := cj0; i := i+ 1
else

if 〈1n, i, j, k, 1〉 ∈ B then cj := cj1; i := i+ 1
else i := 0 (* the lex. jth string of S≤p(n) has no ith bit *)

until i = 0;
T := T ∪ {cj}

end for
if 〈x, T 〉 ∈ C then accept
else reject

end
End of description of DPOM M.

Fig. 4.1. DPOM M guardedly unambiguously accessing an NP oracle to accept a set in UPUP.

B
df
=

〈1n, i, j, k, b〉 n ≥ 0 ∧ 1 ≤ j ≤ k ∧ 0 ≤ k ≤ r(n)∧
(∃c1 <lex c2 <lex · · · <lex ck) (∀` : 1 ≤ ` ≤ k)
[|c`| ≤ p(n) ∧ NS(c`) accepts ∧ the ith bit of cj is b]

 ,

C
df
= {〈x, T 〉 | ‖T‖ ≤ r(|x|) ∧ NT

L (x) accepts}.

It is easy to see that M runs deterministically in polynomial time. This proves
that L ∈ P UP .

In order to prove the second statement, let L be a set in UΣpk for any fixed k ≥ 3.

By assumption, there exists a sparse set S in UP such that L is in UΣp,P
S

k−1 = UΣp,Sk−1; let

N1, N2, . . . , Nk−1 be the UPOMs that witness this fact, that is, L = L(N
L(N ·

·
L(NS

k−1
)

2)
1).

Now we describe the computation of a UΣpk−1 machine N recognizing L. As

before, N on input x computes in P UP its table of advice strings, T = S≤p(|x|),

and then simulates the UΣp,Sk−1 computation of N
L(N ·

·
L(NS

k−1
)

2)
1 (x) except with N1,

N2, . . . , Nk−1 modified as follows. If in the simulation some machine Ni, 1 ≤ i ≤
k−2, consults its original oracle L(N

(·)
i+1) about some string, say z, then the modified

machine N
′

i queries the modified machine at the next level, N
′

i+1, about the string
〈z, T 〉 instead. Finally, the advice table T , which has been “passed up” in this manner,

648 L. A. HEMASPAANDRA AND J. ROTHE

is used to correctly answer all queries of Nk−1.

Note that N ’s oracle in this simulation, L(N
′

2

L(N
′
3

··
L(N
′
k−1

)

)
), is not in general a

UΣpk−2 set (and L is thus not in UΣpk−1 in general) since the above-described computa-
tion depends on the advice table T , and so, for some bad advice T , the unambiguity
of the modified machines N

′

1, N
′

2, . . . , N
′

k−1 is no longer guaranteed. But since our
base machine N is able to provide correct advice T , we have indeed shown that
L ∈ UΣpk−1.

In the above proof, the assumption that the sparse set S is in UP is needed to
determine the exact census of S using the UPM for S. Let us now consider the weaker
assumption that UP has only a Turing-hard sparse set. Karp and Lipton have shown
that if there is a sparse Turing-hard set for NP, then the polynomial hierarchy col-
lapses to its second level [39].6 Hopcroft [34] dramatically simplified their proof, and
Balcázar, Book, and Schöning [1, 54] generalized, as Theorem 4.6, the Karp–Lipton
result; the general approach of Hopcroft and Balcázar, Book, and Schöning will be cen-
tral to our upcoming proof of Theorem 4.7. Schöning’s low hierarchy [53] gives a way of
classifying the complexity of NP sets that seem to be neither in P nor NP-complete.

Of particular interest to us is the class Low2
df
= {A |A ∈ NP and NPNPA

⊆ NPNP}.
Note that for the special case k = 0, Theorem 4.6 below says that Low2 ⊇ NP ∩
P/poly ∩ {L |L is self-reducible}.

Definition 4.4. [46]

1. A partial order <pwl on Σ∗ is polynomially well-founded and length-related if
and only if (a) every strictly decreasing chain is finite and there is a polynomial p such
that every finite <pwl-decreasing chain is shorter than p of the length of its maximum
element, and (b) (∃q : q polynomial) (∀x, y ∈ Σ∗) [x <pwl y =⇒ |x| ≤ q(|y|)].

2. A set A is self-reducible if and only if there exist a polynomially well-founded
and length-related order <pwl on Σ∗ and a DPOM M such that A = L(MA) and on
any input x ∈ Σ∗, M queries only strings y with y <pwl x.

Lemma 4.5. [1] Let A be a self-reducible set and let M witness A’s self-redu-
cibility. For any set B and any n, if (L(MB))≤n = B≤n, then A≤n = B≤n.7

Theorem 4.6. [1] If A is a self-reducible set and there is a k ≥ 0 and a sparse

set S such that A ∈ Σp,Sk , then Σp,A2 ⊆ Σpk+2.

We now state and prove our results regarding sparse Turing-hard sets for UP.

Theorem 4.7. If there exists a sparse Turing-hard set for UP, then

1. UP ⊆ Low2 and

2. UΣpk ⊆ UΣ
p,Σ

p, UΣ
p
k−j−3

2
j ∩ P UΣp

k−1
⊕Σp2 for every k ≥ 3 and j, 0 ≤ j ≤ k − 3.

Proof. 1. Let L ∈ Σp,A2 , where A ∈ UP via UPM NA and polynomial-time bound
t. (We assume that each step is nondeterministic—one can require this, without loss
of generality, while maintaining categoricity.) Our proof uses the well-known fact that
the “left set” [55, 49] of any UP set is self-reducible and is in UP. More precisely, to
apply Theorem 4.6 we would need A to be self-reducible. Although that cannot be
assumed in general of an arbitrary UP set, the left set of A, i.e., the set of prefixes of

6 Very recently, Köbler and Watanabe [42] have improved this collapse to ZPPNP, and they have
also obtained new consequences from the assumption that UP ⊆ (NP ∩ coNP)/poly, whereas we
obtain different consequences from the assumption that UP ⊆ P/poly (see [42] for the notations not
defined in this footnote).

7 A can be viewed as a “fixed point” of M .

UNAMBIGUOUS COMPUTATION 649

Description of self-reducer Mself for B.
input 〈x, y〉;
begin

if |y| > t(|x|) then reject;
if NA(x) accepts on path y then accept
else

if 〈x, y0〉 ∈ B or 〈x, y1〉 ∈ B then accept
else reject

end
End of description of self-reducer Mself for B.

Fig. 4.2. A self-reducing machine for the left set of a UP set.

Description of DPOM MA.
input x;
begin
y := ε;
while |y| < t(|x|) do

if 〈x, y0〉 ∈ B then accept
else y := y1

end while
if 〈x, y〉 ∈ B then accept
else reject

end
End of description of DPOM MA.

Fig. 4.3. A Turing reduction from a UP set A to its left set B via prefix search.

witnesses for elements in A defined by

B
df
= {〈x, y〉 | (∃z) [|yz| = t(|x|) ∧ NA(x) accepts on path yz]},

does have this property and is also in UP. A self-reducing machine Mself for B is
given in Figure 4.2. Note that the queries asked in the self-reduction are strictly less
than the input with respect to a polynomially well-founded and length-related partial
order <pwl defined by the following: For fixed x and all strings y1, y2 ∈ Σ≤p(|x|),
〈x, y1〉 <pwl 〈x, y2〉 if and only if y2 is a prefix of y1.

By assumption, since B is a UP set, B ∈ PS for some sparse set S, so Theorem 4.6
with k = 0 applies to B. Furthermore, A is in PB , via prefix search by DPOM MA

(Figure 4.3). Thus L ∈ Σp,P
B

2 ⊆ Σp,B2 ⊆ Σp2, which shows that A ∈ Low2.
2. For k = 3 (thus j = 0), both inclusions have already been shown in part 1, as

Σp2 ⊆ ∆p
3. Now fix any k > 3, and let L ∈ UΣpk = UΣp,Ak−1 be witnessed by UPOMs

N1, N2, . . . , Nk−1 and A ∈ UP. Define B to be the left set of A as in part 1, so A ∈ PB

via DPOM MA (see Figure 4.3), B is self-reducible via Mself (see Figure 4.2), and B is
in UP. By hypothesis, B ∈ PS for some sparse set S; let MB be the reducing machine,
that is B = L(MS

B), and let m be a polynomial bound on the runtime of MB . Let q

650 L. A. HEMASPAANDRA AND J. ROTHE

be a polynomial such that ‖S≤m‖ ≤ q(m) for every m ≥ 0. Let p(n) be a polynomial
bounding the length of all query strings whose membership in the oracle set B can
be asked in the run of N1 (with oracle machines N2, N3, . . . , Nk−1, MB

A) on inputs of

length n. Define the polynomials r(n)
df
= m(p(n)) and s(n)

df
= q(r(n)).

To show that L ∈ P UΣp
k−1
⊕Σp2 , we will describe a DPOM M that on input x,

|x| = n, using the Σp2 part D (defined below) of its oracle, performs a prefix search to
extract the lexicographically smallest of all “good” advice sets (this informal term will
be formally defined in the next paragraph), say T , and then calls the UΣpk−1 part of its

oracle to simulate the UΣp,Ak−1 computation of N
L(N ·

·
L(NA

k−1
)

2)
1 (x) except with N1, N2,

. . . , Nk−1 modified in the same way as was described in the proof of Theorem 4.3. In
more detail, if in the simulation some machine Ni, 1 ≤ i ≤ k− 2, consults its original

oracle L(N
(·)
i+1) about some string, say z, then the modified machine N

′

i queries the

modified machine at the next level, N
′

i+1, about the string 〈z, T 〉 instead. Finally, if
Nk−1 consults its original oracle A about some query y, then the modified machine

N
′

k−1 runs the P computation M
L(MT

B)
A on input 〈y, T 〉 instead to correctly answer

this query without consulting an oracle.
An advice set T is said to be good if the set L(MT

B) is a fixed point of B’s self-

reducer Mself up to length p(n), that is, (L(M
L(MT

B)
self))≤p(n) = (L(MT

B))≤p(n), and thus
B≤p(n) = (L(MT

B))≤p(n) by Lemma 4.5. This property is checked for each guessed T
in the Σp2 part of the oracle. Formally,

D
df
=

〈1n, i, j, b〉
n ≥ 0 ∧ (∃T ⊆ Σ≤r(n)) (∀w : |w| ≤ p(n)) [T = {c1, . . . , ck}
∧ 0 ≤ k ≤ s(n) ∧ c1 <lex · · · <lex ck ∧ the ith bit of cj is b

∧ (w ∈ L(MT
B) ⇐⇒ w ∈ L(M

L(MT
B)

self))]

 .

The prefix search of M is similar to the one performed in the proof of Theorem 4.3
(see Figure 4.1); M queries D to construct each string of T bit by bit.

To prove the other inclusion, fix any j, 0 ≤ j ≤ k − 3. We describe a UPOM N

witnessing that L ∈ UΣ
p,Σ

p, UΣ
p
k−j−3

2
j . On input x, N simulates the UΣpj computation

of the first j UPOMs N1, . . . , Nj . In the subsequent Σp2 computation, two tasks have
to be solved in parallel: the computation of Nj+1 and Nj+2 is to be simulated, and
good advice sets T have to be determined. For the latter task, the base machine of
the Σp2 computation guesses all possible advice sets and the top machine checks if
the guessed advice is good (that is, if L(MT

B) is a fixed point of Mself). Again, each
good advice set T is “passed up” to the machines at higher levels Nj+3, . . . , Nk−1

(in the same fashion as was employed earlier in this proof and also in the proof of
Theorem 4.3) and is used to correctly answer all queries of Nk−1 without consulting
an oracle. This proves the theorem.

Since Theorem 4.7 relativizes and there are relativized worlds in which UPA is
not LowA2 [56], we have the following corollary.

Corollary 4.8. There is a relativized world in which (relativized) UP has no
sparse Turing-hard sets.

Acknowledgments. We are very grateful to Gerd Wechsung for his help in
bringing about this collaboration, and for his kind and insightful advice over many
years. We thank Marius Zimand for proofreading and Nikolai Vereshchagin for helpful
discussions during his visit to Rochester. We thank Osamu Watanabe for discussing

UNAMBIGUOUS COMPUTATION 651

with us his results joint with Johannes Köbler, and we thank Osamu Watanabe and
Johannes Köbler for providing us with copies of their paper [42].

REFERENCES

[1] J. Balcázar, R. Book, and U. Schöning, The polynomial-time hierarchy and sparse oracles,
J. Assoc. Comput. Mach., 33 (1986), pp. 603–617.

[2] R. Beigel, On the relativized power of additional accepting paths, in Proc. 4th Structure in
Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1989,
pp. 216–224.

[3] R. Beigel, R. Chang, and M. Ogiwara, A relationship between difference hierarchies and
relativized polynomial hierarchies, Math. Systems Theory, 26 (1993), pp. 293–310.

[4] R. Beigel and J. Goldsmith, Downward separation fails catastrophically for limited nondeter-
minism classes, in Proc. 9th Structure in Complexity Theory Conference, IEEE Computer
Society Press, Los Alamitos, CA, 1994, pp. 134–138.

[5] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P. Young, Generalized Boolean
hierarchies and Boolean hierarchies over RP, in Proc. 7th Conference on Fundamentals of
Computation Theory, Lecture Notes in Comput. Sci. 380, Springer-Verlag, Berlin, 1989,
pp. 35–46.

[6] A. Blass and Y. Gurevich, On the unique satisfiability problem, Inform. and Control, 55
(1982), pp. 80–88.

[7] D. Bruschi, D. Joseph, and P. Young, Strong separations for the Boolean hierarchy over
RP, Internat. J. Found. Comput. Sci., 1 (1990), pp. 201–218.

[8] J. Cai, Probability one separation of the Boolean hierarchy, in Proc. 4th Annual Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 247, Springer-
Verlag, Berlin, 1987, pp. 148–158.

[9] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and

G. Wechsung, The Boolean hierarchy I: Structural properties, SIAM J. Comput., 17
(1988), pp. 1232–1252.

[10] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and

G. Wechsung, The Boolean hierarchy II: Applications, SIAM J. Comput., 18 (1989),
pp. 95–111.

[11] J. Cai and L. Hemachandra, The Boolean hierarchy: Hardware over NP, Technical Report
85-724, Department of Computer Science, Cornell University, Ithaca, NY, 1985.

[12] J. Cai, L. Hemachandra, and J. Vyskoč, Promises and fault-tolerant database access, in
Complexity Theory, K. Ambos-Spies, S. Homer, and U. Schöning, eds., Cambridge Uni-
versity Press, Cambridge, UK, 1993, pp. 101–146.

[13] J. Cai and G. Meyer, Graph minimal uncolorability is DP-complete, SIAM J. Comput., 16
(1987), pp. 259–277.

[14] R. Chang, On the structure of NP computations under Boolean operators, Ph.D. thesis, Cornell
University, Ithaca, NY, 1991.

[15] R. Chang and J. Kadin, On computing Boolean connectives of characteristic functions, Tech-
nical Report TR 90-1118, Department of Computer Science, Cornell University, Ithaca,
NY, 1990.

[16] R. Chang and J. Kadin, The Boolean hierarchy and the polynomial hierarchy: A closer
connection, SIAM J. Comput., 25 (1996), pp. 340–354.

[17] S. Cook, The complexity of theorem-proving procedures, in Proc. 3rd ACM Symposium on
Theory of Computing, ACM, New York, 1971, pp. 151–158.

[18] K. Cronauer, A criterion to separate complexity classes by oracles, Technical Report 76,
Institut für Informatik, Universität Würzburg, Würzburg, Germany, 1994.

[19] J. Grollmann and A. Selman, Complexity measures for public-key cryptosystems, SIAM
J. Comput., 17 (1988), pp. 309–335.

[20] T. Gundermann, N. Nasser, and G. Wechsung, A survey on counting classes, in Proc. 5th
Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1990, pp. 140–153.

[21] T. Gundermann and G. Wechsung, Counting classes with finite acceptance types, Com-
put. Artificial Intelligence, 6 (1987), pp. 395–409.

[22] J. Hartmanis and L. Hemachandra, Complexity classes without machines: On complete
languages for UP, Theoret. Comput. Sci., 58 (1988), pp. 129–142.

[23] J. Hartmanis and L. Hemachandra, Robust machines accept easy sets, Theoret. Comput. Sci.,
74 (1990), pp. 217–226.

652 L. A. HEMASPAANDRA AND J. ROTHE

[24] J. Hartmanis, N. Immerman, and V. Sewelson, Sparse sets in NP−P: EXPTIME versus
NEXPTIME, Inform. and Control, 65 (1985), pp. 159–181.

[25] J. Hartmanis and R. Stearns, On the computational complexity of algorithms,
Trans. Amer. Math. Soc., 117 (1965), pp. 285–306.

[26] F. Hausdorff, Grundzüge der Mengenlehre, Walter De Gruyten & Co., Berlin, Leipzig, 1927.
[27] L. Hemachandra, Counting in Structural Complexity Theory, Ph.D. thesis, Technical Report

TR87-840, Department of Computer Science, Cornell University, Ithaca, NY, 1987.
[28] L. Hemachandra, M. Ogiwara, and O. Watanabe, How hard are sparse sets?, in Proc. 7th

Structure in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 222–238.

[29] L. Hemachandra and R. Rubinstein, Separating complexity classes with tally oracles, Theo-
ret. Comput. Sci., 92 (1992), pp. 309–318.

[30] E. Hemaspaandra and L. Hemaspaandra, Quasi-injective reductions, Theoret. Comput. Sci.,
123 (1994), pp. 407–413.

[31] L. Hemaspaandra, S. Jain, and N. Vereshchagin, Banishing robust Turing completeness,
Internat. J. Found. Comput. Sci., 4 (1993), pp. 245–265.

[32] L. Hemaspaandra and S. Jha, Defying upward and downward separation, Inform. and Com-
putation, 121 (1995), pp. 1–13.

[33] L. Hemaspaandra and M. Zimand, Strong self-reducibility precludes strong immunity,
Math. Systems Theory, 29 (1996), pp. 535–548.

[34] J. Hopcroft, Recent directions in algorithmic research, in Proc. 5th GI Conference on The-
oretical Computer Science, Lecture Notes in Comput. Sci. 104, Springer-Verlag, Berlin,
1981, pp. 123–134.

[35] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison–Wesley, Reading, MA, 1979.

[36] R. Impagliazzo and G. Tardos, Decision versus search problems in super-polynomial time,
in Proc. 30th IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1989, pp. 222–227.

[37] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM
J. Comput., 17 (1988), pp. 1263–1282; erratum, SIAM J. Comput., 20 (1991), p. 404.

[38] J. Kadin, PNP[log n] and sparse Turing-complete sets for NP, J. Comput. System Sci., 39
(1989), pp. 282–298.

[39] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity
classes, in Proc. 12th ACM Symposium on Theory of Computing, ACM, New York, 1980,
pp. 302–309; an extended version has also appeared as Turing machines that take advice,
Enseign. Math. (2), 28 (1982), pp. 191–209.

[40] K. Ko and U. Schöning, On circuit-size complexity and the low hierarchy in NP, SIAM
J. Comput., 14 (1985), pp. 41–51.

[41] J. Köbler, U. Schöning, and K. Wagner, The difference and truth-table hierarchies for NP,
RAIRO Inform. Théor. Appl., 21 (1987), pp. 419–435.

[42] J. Köbler and O. Watanabe, New collapse consequences of NP having small circuits, in
Proc. 22nd International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Comput. Sci. 944, Springer-Verlag, Berlin, 1995, pp. 196–207.

[43] K.-J. Lange and P. Rossmanith, Unambiguous polynomial hierarchies and exponential size,
in Proc. 9th Structure in Complexity Theory Conference, IEEE Computer Society Press,
Los Alamitos, CA, 1994, pp. 106–115.

[44] L. Levin, Universal sorting problems, Problems Inform. Transmission, 9 (1973), pp. 265–266.
[45] T. Long and A. Selman, Relativizing complexity classes with sparse oracles, J. Assoc. Com-

put. Mach., 33 (1986), pp. 618–627.
[46] A. Meyer and M. Paterson, With what frequency are apparently intractable problems diffi-

cult?, Technical Report MIT/LCS/TM-126, Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, MA, 1979.

[47] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring
requires exponential space, in Proc. 13th IEEE Symposium on Switching and Automata
Theory, IEEE Computer Society Press, Los Alamitos, CA, 1972, pp. 125–129.

[48] R. Niedermeier and P. Rossmanith, Extended locally definable acceptance types, in Proc. 10th
Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Com-
put. Sci. 665, Springer-Verlag, Berlin, 1993, pp. 473–483.

[49] M. Ogiwara and O. Watanabe, On polynomial-time bounded truth-table reducibility of NP
sets to sparse sets, SIAM J. Comput., 20 (1991), pp. 471–483.

[50] C. Papadimitriou and M. Yannakakis, The complexity of facets (and some facets of com-
plexity), J. Comput. System Sci., 28 (1984), pp. 244–259.

UNAMBIGUOUS COMPUTATION 653

[51] R. Rao, J. Rothe, and O. Watanabe, Upward separation for FewP and related classes,
Inform. Process. Lett., 52 (1994), pp. 175–180.

[52] K. Regan, Provable complexity properties and constructive reasoning, manuscript, 1989.
[53] U. Schöning, A low and a high hierarchy within NP, J. Comput. System Sci., 27 (1983),

pp. 14–28.
[54] U. Schöning, Complexity and Structure, Lecture Notes in Comput. Sci. 211, Springer-Verlag,

1986.
[55] L. Selman, Natural self-reducible sets, SIAM J. Comput., 17 (1988), pp. 989–996.
[56] M. Sheu and T. Long, UP and the low and high hierarchies: A relativized separation,

Math. Systems Theory, 29 (1996), pp. 423–450.
[57] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1–22.
[58] S. Toda, On polynomial-time truth-table reducibilities of intractable sets to P-selective sets,

Math. Systems Theory, 24 (1991), pp. 69–82.
[59] L. Valiant, The relative complexity of checking and evaluating, Inform. Process. Lett., 5

(1976), pp. 20–23.
[60] O. Watanabe, On hardness of one-way functions, Inform. Process. Lett., 27 (1988), pp. 151–

157.
[61] P. Young, How reductions to sparse sets collapse the polynomial-time hierarchy: A primer,

SIGACT News, 1992, #3, pp. 107–117 (part I), #4, pp. 83–94 (part II), and #4, p. 94
(corrigendum to part I).

RAY SHOOTING AMIDST SPHERES IN THREE DIMENSIONS AND
RELATED PROBLEMS∗

SHAI MOHABAN† AND MICHA SHARIR‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 654–674, June 1997 003

Abstract. We consider the problem of ray shooting amidst spheres in 3-space: given n arbitrary
(possibly intersecting) spheres in 3-space and any ε > 0, we show how to preprocess the spheres in
time O(n3+ε) into a data structure of size O(n3+ε) so that any ray-shooting query can be answered
in time O(nε). Our result improves previous techniques (see [P. K. Agarwal, L. Guibas, M. Pelle-
grini, and M. Sharir, “Ray shooting amidst spheres,” unpublished note] and [P. K. Agarwal and J.
Matoušek, Discrete Comput. Geom., 11 (1994), pp. 393–418]), where roughly O(n4) storage was
required to support fast queries. Our result shows that ray shooting amidst spheres has complex-
ity comparable with that of ray shooting amidst planes in 3-space. Our technique applies to more
general (convex) objects in 3-space, and we also discuss these extensions.

Key words. computational geometry, ray shooting

AMS subject classifications. 52B11, 68P05, 68Q20, 68Q25

PII. S0097539793252080

1. Introduction. The ray shooting problem can be defined as follows:
Given a collection S of n objects in Rd preprocess S into a data struc-
ture so that one can quickly determine the first object of S intersected
by a query ray.

The ray-shooting problem has received considerable attention in the past few years
because of its applications in computer graphics and other geometric problems [1, 4,
5, 6, 10, 11, 13, 16, 21]. Most of the work to date has studied the planar case, where
S is a collection of line segments in R2. Chazelle and Guibas proposed an optimal
algorithm for the special case where S is the boundary of a simple polygon [16]. Their
algorithm answers a ray-shooting query in O(logn) time using O(n) space; simpler
algorithms with the same asymptotic performance bounds were recently developed
in [13, 24]. If S is a collection of arbitrary segments in the plane, the best known

algorithm answers a ray-shooting query in time O((n/
√
s) logO(1) n) using O(s1+ε)

space and preprocessing1 [1, 6, 10], where s is a parameter that can vary between n
and n2. Although no lower bound is known for this case, it is conjectured that this
bound is close to optimal.

In spite of some recent developments, the three-dimensional ray-shooting problem
seems much harder, and it is still far from being fully solved. The general three-
dimensional ray-shooting problem is to preprocess a collection S of n convex objects
so that the first object hit by a query ray can be computed efficiently. Most studies of

∗ Received by the editors July 15, 1993; accepted for publication (in revised form) June 14, 1995.
This research was supported by NSF grant CCR-91-22103 and grants from the U.S.–Israeli Binational
Science Foundation, the German–Israeli Foundation for Scientific Research and Development (GIF),
and the Fund for Basic Research administered by the Israeli Academy of Sciences. This paper is part
of the first author’s M.Sc. thesis, prepared under the supervision of the second author.

http://www.siam.org/journals/sicomp/26-3/25208.html
† School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel (shai@

math.tau.ac.il).
‡ School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel and Courant Insti-

tute of Mathematical Sciences, New York University, New York, NY 10012 (sharir@math.tau.ac.il).
1 Throughout this paper, bounds of this kind mean that, given any arbitrarily small positive con-

stant ε, the algorithm can be fine-tuned so that its performance satisfies the bound; the multiplicative
constants in such bounds usually depend on ε and tend to ∞ as ε ↓ 0.

654

RAY SHOOTING AMIDST SPHERES 655

this problem consider the case where S is a collection of triangles. If these triangles
are the faces of a convex polyhedron, then an optimal algorithm with O(logn) query
time and linear space can be obtained using the hierarchical-decomposition scheme of
Dobkin and Kirkpatrick [19]. If the triangles form a polyhedral terrain (a piecewise-
linear surface intersecting every vertical line in exactly one point), then the technique
of Chazelle et al. [15] yields an algorithm that requires O(n2+ε) space and answers
ray-shooting queries in O(logn) time. Nontrivial solutions to the general problem
(involving triangles) were obtained only recently; see [4, 6, 11] for some of these results.
The best known algorithm for ray-shooting among triangles in three dimensions is due
to Agarwal and Matoušek [5]; it answers a ray shooting query in time O(n1+ε/s1/4)
with O(s1+ε) space and preprocessing. The parameter s can range between n and
n4. If s assumes its maximum value, queries can be answered in O(log2 n) time;
see [5, 6] for more details. A variant of this technique was given recently in [7] for
the case of ray shooting amidst a collection of convex polyhedra. We remark that no
nontrivial lower bounds are known for the three-dimensional problem (for triangles) as
well, although such bounds are known for the related simplex range-searching problem
[12], which is used as a subprocedure in the solutions just mentioned. These bounds
are close to Ω(n/s1/4) and thus might suggest that the known ray-shooting algorithms
for triangles in R3 are close to optimal.

On the other hand, there are certain special cases of the three-dimensional ray-
shooting problem which can be solved more efficiently. For example, if the objects
of S are planes or half-planes, ray shooting amidst them can be performed in time
O(n1+ε/s1/3) with O(s1+ε) space and preprocessing; see [4] for details. It is therefore
of interest to identify additional classes of objects for which ray shooting can also be
performed more efficiently.

In this paper, we consider the case of spheres. This problem has recently been
studied in [5] and in a yet unpublished work [3]. The algorithm presented in [5] has
query time O(n1+ε/s1/4) with O(s1+ε) space and preprocessing, that is, the same per-
formance as in the case of triangles. The algorithm of [3] achieves similar performance
for s = n4.

We present an improved solution for the case where large storage is allowed.
Specifically, we achieve query time O(nε) with only O(n3+ε) space and preprocessing.
Thus we show that in some sense, the case of spheres is essentially no harder than the
case of planes, which might sound somewhat surprising given that spheres are more
complex objects (and require four real parameters to specify, as opposed to only three
for planes). Our solution is fairly general—the spheres may have arbitrary radii and
may also intersect one another.

Our technique adapts some ideas from [3]. Roughly speaking, in both approaches,
we reduce the ray-shooting problem to the following problem (although certain parts
of our reduction are simpler than those of [3]). We are given a collection S of n
arbitrary spheres in 3-space, S1, . . . , Sn, and we want to preprocess them so that we
can answer the following queries efficiently: we are given a line ` such that for each
sphere Si, either ` intersects Si or else Si contains no point that lies vertically above
some point on `, and we want to determine whether ` intersects any of these spheres.
The reduction of the ray-shooting problem to this problem is fairly routine using
mostly standard machinery.

We solve this main subproblem in a more careful manner than in [3]. This sub-
problem can be mapped onto the four-dimensional parametric space that represents
lines in 3-space, and it reduces to the problem of point location in the region of this 4-

656 SHAI MOHABAN AND MICHA SHARIR

space lying above the upper envelope of certain low-degree algebraic surface patches,
each representing an “upper tangency” between a line and one of the spheres. Almost
a year after the original submission of this paper, it was shown by Aronov et al. [2]
that point location above such an envelope can be performed fast (in polylogarith-
mic time) using only O(n3+ε) storage and O(n3+ε) randomized expected time. This
gives an alternative solution with roughly the same asymptotic performance as our
solution. However, (a) the algorithm of [2] is randomized, whereas our solution is
deterministic, and (b) our solution analyzes and exploits the geometric structure of
the problem much more explicitly, and we hope that its analysis will find additional
applications. Although our approach is more geometric in nature, it does not exploit
any special properties of spheres and is thus much more general. As a matter of fact,
our technique can be viewed as an explicit solution of the problem of point location
above an envelope in 4-space for the special type of surfaces arising in the context of
ray shooting. In section 3, we indeed present a generalization of our technique to ray
shooting among more general convex objects in 3-space and exemplify it for the case
of axis-parallel ellipsoids.

2. The algorithm.

2.1. Overview. We use the general approach to ray shooting due to Agarwal
and Matoušek [4]. This approach, which is based on the parametric searching tech-
nique of Megiddo [27], reduces the ray-shooting problem to the segment-emptiness
problem. Namely, we need to preprocess the spheres so that given any segment e in
3-space, we can quickly determine whether e intersects any of the spheres. As shown
in [4], the time for the actual ray-shooting query is only within a logarithmic factor
of the query time for the segment-emptiness problem.

We first describe the preprocessing scheme. We construct a multilevel data struc-
ture, where each level of the structure filters out spheres that satisfy a different ge-
ometric relationship with respect to the query segment, so a sphere satisfying the
conjunction of all these relationships must intersect the query segment; see [26] for a
more detailed discussion of multilevel data structures of this kind. Each level of the
data structure consists of a tree-like structure T , where each node of T corresponds
to some “canonical” subset of spheres. The root of the top-level structure represents
the entire collection S of spheres.

First, here is a brief overview of our approach. It is fairly easy to show that a
segment e intersects a sphere S if and only if one of the following two conditions hold:

(i) One endpoint of e lies inside S and the other lies outside S.
(ii) Both endpoints of e lie outside S, the center of S lies inside the slab Σe

bounded by the two planes passing through the endpoints of e and perpendicular to
e, and the line containing e intersects S. See Figure 1 for an illustration.

Consequently, we construct two data structures, one for testing whether condition
(i) holds for any sphere, and the other for testing condition (ii).

2.2. First data structure. We start by describing the first (and simpler) data
structure. Its first level T1 is used to find all spheres of S containing a query point.
The root of T1 is associated with the entire set S. We fix some sufficiently large
constant parameter r and construct a (1/r)-net E of O(r log r) spheres from S for
certain ranges (subsets of S) that will be defined in a moment. (E is a (1/r)-net if
each range that contains more than |S|/r elements must contain an element of E ; see
[23] for more details.) E is constructed by the deterministic technique of Matoušek
[25] (or by simply choosing a random sample of O(r log r) spheres). We next construct

RAY SHOOTING AMIDST SPHERES 657

e

S

Σe

Fig. 1. Illustration of condition (ii) for segment-intersection detection.

the arrangement A(E) of these spheres and apply the vertical decomposition technique
of [18] (see also [14]) to that arrangement. It decomposes 3-space into O(r3+ε) cells of
“constant description complexity” so that the interior of each cell is not crossed by any
of the spheres of E ; see [18] for more details. The ranges with respect to which E has
to be a (1/r)-net are sets of spheres of S, each consisting of those spheres intersecting
a region having the shape of a cell of the vertical decomposition in an arrangement
of spheres, as above. As is easy to see, the resulting range space has so-called finite
VC-dimension, which thus implies the existence of a (1/r)-net E with only O(r log r)
spheres. (We again refer the reader to [23] for more details.) For each cell C of the
decomposed arrangement, we create a child of the root of T1 and associate with it the
set SC of spheres intersecting C. Since E is a (1/r)-net, none of the sets SC contains
more than n/r spheres. We also store with each cell C the set S0

C of all spheres that
completely contain C in their interior. We then continue the preprocessing recursively
at each child of the root with its associated set SC .

The second-level structure is built for each of the nodes of the first level. The set of
spheres associated with the root of the second-level structure at a node corresponding
to some cell C in the first-level decomposition is the set S0

C defined above. The
purpose of the second-level structure is to test whether any of the given spheres does
not contain a query point. This is achieved using almost the same preprocessing as
for the first level, except that here we define the set S0

C to be the set of all spheres
whose enclosed ball is disjoint from the cell C.

Given a query segment e = pq, we first search with p through the first-level
structure, obtaining the set of spheres containing p as a disjoint union of sets S0

C . For
each of these sets, we search with q through the corresponding second-level structure;
if we find a node there whose set S0

C is nonempty, we stop and conclude that e
intersects a sphere of S. Otherwise, we repeat this procedure, searching with q in the
first-level structure and with p in the second-level structures. Again, we either detect
an intersection between e and some sphere or else conclude that no intersection of
type (i) occurs, and then we move on to search in the second data structure.

658 SHAI MOHABAN AND MICHA SHARIR

`

π

V

S

Fig. 2. The planes V and π and their relationships to a sphere.

2.3. Second data structure. The first two levels of the second data structure
are very similar to those of the first data structure. Their purpose is to filter out all
spheres that do not contain any of the endpoints of the query segment e. These levels
are constructed in much the same way as above, except that the sets S0

C in both levels
are the sets of spheres whose enclosed balls are disjoint from the corresponding cell
C. We search with e in these two levels as described above, and the search results in
a collection of canonical sets S0

C of spheres whose (disjoint) union is the subset of all
spheres whose enclosed balls do not contain any endpoint of e.

The next two levels of the structure aim at finding all spheres whose centers lie
in the slab Σe as defined in condition (ii) above. In both levels, we take the set of
the centers of the relevant spheres and preprocess them for half-space range searching
in three dimensions (using, e.g., the method of [17]). Since Σe is the intersection of
two half-spaces H1 and H2, we search with H1 in the third-level structures and with
H2 in the fourth-level structures, and we wind up with a collection of canonical sets
of spheres whose (disjoint) union is the set of all spheres that satisfy the first two
parts of condition (ii). Hence for each of the resulting sets of spheres, we only need
to determine whether the line ` containing the query segment e intersects any sphere
in that set.

The fifth level of our structure is also a half-space range-searching structure on
the centers of the relevant spheres. We search in that level with the two half-spaces
bounded by the plane π passing through ` and orthogonal to the vertical plane V
passing through `. Let π+ denote the half-space lying above π, and let π− denote
the half-space lying below π. Let S be a sphere whose center lies in π+ and which
intersects V in a disc D. Then the center of D lies above `, so either ` intersects S or
else it passes below S, in the sense that ` and S are disjoint and there is a point on `
that lies vertically below a point in S. See Figure 2 for an illustration. A symmetric
property holds if the center of S lies in π−; we will continue the description of our
data structure so that it handles only the latter situation since the handling of the
former case is fully symmetric.

To recap, we have reduced our problem to the following subproblem. We are

RAY SHOOTING AMIDST SPHERES 659

k
j

i

Fig. 3. Two bridges connecting a disc Di to two larger discs.

given a collection of arbitrary spheres in 3-space, which is a canonical set of spheres
in the output of the fifth level of our structure, and we want to preprocess it so that
we can answer the following queries efficiently: we are given a line ` such that for
each sphere S in our collection, either ` intersects S or else there is no point of S that
lies vertically above `. We want to determine whether ` intersects any of the given
spheres. For brevity of notation, we call the given collection S and assume its size to
be n.

2.4. Detecting intersection between a line and the upper hull of a verti-
cal planar cross-section of S. We begin by describing a few constructs that will be
used in our technique. For each point (ξ1, ξ2), let V = Vξ1,ξ2 denote the vertical plane
passing through the line y = ξ1x+ ξ2. We denote by (ρ, z) the coordinates within V ,
where ρ is the horizontal coordinate (along the line y = ξ1x+ ξ2) and z is the vertical
coordinate. Let E = {S1, . . . ,St} be a subset of t spheres of S. Let D1, . . . , Dt denote
the (possibly empty) two-dimensional discs formed by intersecting the corresponding
spheres S1, . . . , St with V . We consider the upper convex hull of these discs. This hull
consists of bridges, namely common tangents between pairs of discs which form edges
of the hull, and of circular arcs which are portions of the boundaries of the discs and
which lie between two adjacent bridges; see Figure 3. Suppose the disc Di is part of
the upper convex hull of these t discs (within V), and consider the set of bridges that
connect Di with other discs whose radius is greater than or equal to that of Di. It
is easily checked that there can be at most two such bridges, at most one connecting
Di to a disc Dj following it in the positive ρ-direction and at most one connecting
Di to a disc Dk preceding it; see Figure 3 again. (This claim is trivial if the discs are
pairwise disjoint, but it also holds if they are allowed to intersect.) For each bridge
b, we denote by b+ the half-plane lying above the line containing it. For each circular
arc γ of the hull, we denote by γ+ the region above it (that is, we erect a vertical ray
upwards from each point on γ and take the union of all these rays); see Figure 4.

Here is a quick overview of our approach: we fix some sufficiently large constant
parameter r and construct a set E ⊆ S of size t = O(r log r), which will serve as a
(1/r)-net with properties that will be explained in a moment. Consider a query line
` and the vertical plane V passing through it. We will build a data structure on E ,
from which we will be able to quickly determine the set of bridges of the upper convex
hull of the t intersection discs of the spheres of E with V . We will then check if `
intersects this hull. If it does, we are done—` intersects a sphere of S. Otherwise,
we find two bridges b and b′ whose slopes are nearest to the slope of ` so that ` lies
completely in the union of the regions b+, b′+, and γ+, where γ is the circular arc
between b and b′; see Figure 4. We then continue the query recursively in the set of
spheres intersecting each of these three regions. For this approach to be efficient, we
need each of the regions b+ and γ+ to be intersected by a small number of spheres (at
most n/r spheres). We will actually define two range spaces here, where each of the
ranges of each of these spaces is defined in terms of a constant number of spheres and
both range spaces have finite VC-dimension. The first range space deals with ranges

660 SHAI MOHABAN AND MICHA SHARIR

Di

γ

b′+ b+γ+

b′
b

`

Fig. 4. A line ` passing above the upper convex hull, and the three regions whose union
contains `.

related to the regions b+, and the second range space deals with ranges related to the
regions γ+. We will build a (1/r)-net E1 of size O(r log r) for the first range space
and another (1/r)-net E2 of size O(r log r) for the second range space, so the union
E = E1 ∪ E2 is a (1/r)-net for both range spaces of size t = O(r log r).

2.5. The planar maps M±(Si). We now describe our technique in detail. We
build a data structure so that given any vertical plane V = Vξ1,ξ2 represented by the
point (ξ1, ξ2) as above, the bridges and circular arcs of the upper convex hull of the
discs Di within V can be found quickly. For each sphere S ∈ E , we construct two
planar maps M+(S) and M−(S) in the ξ1ξ2-coordinate system, where ξ1 is the slope
and ξ2 is the intercept of the xy-projection of a line in 3-space. If Di contributes to the
upper convex hull and the unique larger disc following it along the hull in the positive
ρ-direction is Dj , we label in M+(Si) the point (ξ1, ξ2) by the index j; similarly, if
Di contributes to the upper convex hull and the unique larger disc following it along
the hull in the negative ρ-direction is Dk, we label in M−(Si) the point (ξ1, ξ2) by
the index k; otherwise, we label (ξ1, ξ2) by 0 in the respective map. (This alternative
labeling also applies in the cases where Di is empty or does not appear at all along
the upper hull.) The faces of M+(Si) and of M−(Si) are maximal connected regions,
all of whose points have the same label; edges and vertices of these maps are defined
accordingly. The edge between two adjacent cells of the map M+(Si) (M−(Si)),
which are labeled by j and k, respectively, consists of points (ξ1, ξ2) where the disc
following (preceding) Di along the hull is about to change from Dj to Dk, or the radius
of Dj becomes equal to the radius of Di, or Di is getting out of the hull boundary
by another disc. Thus each edge e of any of these maps consists of points (ξ1, ξ2) at
which the upper hull of the discs in the plane Vξ1,ξ2 has a bridge tangent to three
discs, or has two adjacent discs of equal radius, or has a disc degenerating to a single
point. See below for a more detailed analysis of these maps; we will show that the
overall complexity of all these maps is only roughly cubic in r. We next construct a
vertical decomposition of each of the planar maps M+(Si) and M−(Si) by erecting
a vertical segment from each vertex and from the points with ξ2-vertical tangency
on each edge, and we extend it upwards and downwards until it hits another edge of
the map. Note that the set of labels of a point (ξ1, ξ2) in all of these maps provides
complete information about the structure of the upper convex hull of the intersection
discs Di in the vertical plane Vξ1,ξ2 .

Let C be a cell in, say, the vertical decomposition of the map M+(Si), and suppose

RAY SHOOTING AMIDST SPHERES 661

ij

ijk

ik

ij

C

ijl

il

iu

iju

iku

ijku

iv

ijv

Fig. 5. A cell C labeled by j > 0 in the map M+(Si).

that its label is j > 0 (cells with label 0 can be ignored in this process). For each
point (ξ1, ξ2) in C, we consider the plane V = Vξ1,ξ2 as defined above. We know
that Si contributes to the upper convex hull of the discs of intersection of the spheres
of E with this plane, and we know that the unique next larger disc along the hull
in the positive ρ-direction is Dj . Let b denote the bridge connecting the two discs
in the upper convex hull; we denote by b+(ξ1, ξ2) the half-plane of V above the line
containing b (that is, the half-plane supporting the discs Di and Dj from above).
Consider the three-dimensional region RC =

⋃
(ξ1,ξ2)∈C b

+(ξ1, ξ2), and let SC be the
subset of all the original spheres intersecting RC . We define similar regions RC for
all the cells C in all the other maps M±(Sk) for k = 1, . . . , t.

Note that each of the regions RC is the union of half-planes b+(ξ1, ξ2), where b is
a bridge determined by a fixed pair of spheres of E and where (ξ1, ξ2) ranges over a
cell C of one of the maps M±(Si), which is a region of constant complexity. Actually,
suppose C has label j > 0. Then C is defined in terms of at most six spheres: at most
three spheres, Si, Sj , and another sphere Sk, define the top edge of C, at most three
spheres, Si, Sj , and another Sl, define its bottom edge, at most one more sphere is
needed to define the left vertical edge of C, and at most one more sphere is needed to
define its right edge. See Figure 5 for an illustration. It follows that C is defined by at
most six spheres of E . Moreover, the two spheres forming the bridge b belong to this
collection of six spheres, so RC is also defined in terms of at most six spheres and is
thus a region of constant complexity. The ranges with respect to which E1 (and hence
E) should be a (1/r)-net are subsets of the form SC , defined for regions RC which are
defined in terms of at most six spheres, as just outlined. Again, it is easy to verify
that the resulting range space has finite VC-dimension. Since by construction none
of the spheres of E intersects any of the regions RC , it follows by definition that the
maximum cardinality of the sets SC over all cells C of all the 2t maps M±(Si) is at
most n/r.

We construct the sets SC using any brute-force method, which takes O(n) time
since we assume r to be constant. For each cell C in each map, we then create a child
of the root node of T , associate the set SC of spheres with that child, and continue the
construction of the data structure recursively at each child with the corresponding set

662 SHAI MOHABAN AND MICHA SHARIR

Fig. 6. The possible xy-projections of the portions S+
j . (The projections have smooth bound-

aries, but some are drawn with nonsmooth boundary to illustrate the fact that they are composed of
two different arcs.)

of spheres. There is, however, a second set of children of the root, obtained through
a second decomposition scheme, which we now proceed to describe.

2.6. The spatial maps N(Si). We now define our second range space, with
respect to which E2 (and hence E) should be a (1/r)-net. Let N denote the three-
dimensional parametric space with coordinates (ξ1, ξ2, ρ), where, as above, (ξ1, ξ2)
give the dual representation of a line λ(ξ1, ξ2) : y = ξ1x + ξ2 in the xy-plane and
where ρ measures the distance along λ(ξ1, ξ2). Note that each point (ξ1, ξ2, ρ) ∈ N
actually represents (in a many-to-one manner) a point in the xy-plane, namely the
point σ(ξ1, ξ2, ρ) with coordinate ρ along the line λ(ξ1, ξ2). The reason for this three-
dimensional representation of the xy-plane will become clearer later on.

For each of the t spheres Si ∈ E , we form in N a spatial subdivision N(Si)
consisting of roughly O(t2) cells of constant complexity, as follows. For any other
sphere Sj ∈ E , let S+

j denote the portion of Sj that lies above Si and let S∗j denote

the xy-projection of S+
j . We obtain a collection of at most t planar regions, each of

which is the intersection of Qi, the xy-projection of Si, with either a disc, an ellipse,
or a convex region with a smooth boundary which is the union of a circular arc and
an elliptic arc; see Figures 6 and 7.

Let Ki denote the complement (within Qi) of the union
⋃
j 6=i S

∗
j . We map Ki

into the following set in our parametric space N :

K̃i = {(ξ1, ξ2, ρ) : ρ ∈ Ki(ξ1, ξ2)},

where Ki(ξ1, ξ2) = Ki ∩λ(ξ1, ξ2). In other words, K̃i is the preimage of Ki under the
mapping σ from N onto the xy-plane, as defined above. Note that a point (ξ1, ξ2, ρ)
is in K̃i if and only if the vertical line (in actual 3-space) passing through the point on
λ(ξ1, ξ2) with coordinate ρ does not meet any sphere of E above its highest intersection
with Si.

We next decompose K̃i into constant-complexity cells by applying a standard
vertical decomposition (with ρ being the “vertical” coordinate) as in [14, 18]. This
yields the spatial map N(Si). As observed in the papers just cited (and as is eas-
ily seen), the complexity (number of resulting cells) of N(Si) is proportional to the
number of vertically visible pairs (e, e′) of edges of K̃i (where we also include among
these edges the loci of points with vertical tangency along the boundary of K̃i). Such

RAY SHOOTING AMIDST SPHERES 663

Qi

Fig. 7. The arrangement of the xy-projections of the portions S+
j .

a pair of edges (e, e′) is vertically visible if there exists a point (ξ1, ξ2) such that the
vertical line in N passing through that point intersects both e and e′ and the segment
between these points of intersection lies fully in K̃i. An edge e of K̃i consists of points
(ξ1, ξ2, ρ) such that the line λ(ξ1, ξ2) passes through a vertex of Ki or is tangent to
the boundary of Ki and ρ is the coordinate of that vertex or point of tangency along
λ(ξ1, ξ2). Thus each vertically visible pair (e, e′) of edges of K̃i corresponds to a line
λ(ξ1, ξ2) which passes through two points, each being either a vertex of Ki or a point
of tangency between λ(ξ1, ξ2) and the boundary of Ki, so that the interval between
these two points is fully contained in Ki.

In other words, the number of vertically visible pairs (e, e′) as above is propor-
tional to

∑
f c

2
f , where the sum extends over all faces f of Ki and where cf is the

complexity of f . All of these faces are faces of a planar arrangement of O(t) circular
and elliptic arcs, and each pair of these arcs intersect in at most four points. Hence,
as shown in [20], we have

∑
f c

2
f = O(λ2

6(t)), where λ6(t) = t · 2O(α2(t)) is the (nearly
linear) maximum length of a (t, 6) Davenport–Schinzel sequence [8]. We have thus
shown that the number of cells (each having constant complexity) in all the subdivi-
sions N(Si) is O(tλ2

6(t)), and it is thus nearly cubic in r (recall that t = O(r log r)).

We next associate a set SC of spheres with each cell C of N(Si). For each
point (ξ1, ξ2, ρ) ∈ C, let `(ξ1, ξ2, ρ) denote the vertical line (in actual 3-space) passing
through the point of coordinate ρ on the line λ(ξ1, ξ2), and let `+(ξ1, ξ2, ρ) denote the
portion of `(ξ1, ξ2, ρ) above its highest intersection point with Si. Let RC denote the
union of all the rays `+(ξ1, ξ2, ρ) for (ξ1, ξ2, ρ) ∈ C. The set SC consists of all spheres
of S that intersect RC . We note that RC is a region of constant complexity defined in
terms of only a constant number of spheres of E . The ranges with respect to which E2
(and hence E) should be a (1/r)-net are subsets SC , each consisting of those spheres
that intersect a region of the form RC defined for cells C in N that have the same
structure as the cells of the vertical decompositions constructed above. Again, it is
easily seen that the resulting range space has finite VC-dimension. (Intuitively, this
is due to the fact that each of the regions RC has constant description complexity;
see, e.g., [29] for more details.)

We next observe that none of the spheres of E intersect RC . Indeed, if one of
these spheres, Sj , did intersect RC , then there would exist a point (ξ1, ξ2, ρ) ∈ K̃i

such that the vertical line `(ξ1, ξ2, ρ) meets Sj at a point that lies above Si. Then,

664 SHAI MOHABAN AND MICHA SHARIR

b

b′

Di

γ

Fig. 8. An original sphere intersecting V in a disc meeting the small region between Di and
the extension of its two bridges.

however, by definition, the line `(ξ1, ξ2, ρ) meets the xy-plane at a point belonging to
S∗j , so by definition of Ki, ρ does not belong to Ki(ξ1, ξ2) and thus (ξ1, ξ2, ρ) does

not belong to K̃i, a contradiction. We thus conclude that the maximum cardinality
of the sets SC over all cells C of N(Si) and over all spheres Si of E is at most n/r.
We construct the sets SC by any brute-force method in linear time (r is assumed to
be a constant), create a new set of additional children of the root of the tree T , one
child for each cell C in each of the subdivisions N(Si), associate with that node the
corresponding set SC of spheres, and continue the construction of the data structure
recursively at each child with the corresponding set of spheres. This concludes the
description of the sixth (and last) level of our data structure.

2.7. Answering a query. We next describe how a query is processed. Let
e = pq be a query segment in 3-space. We have already described how to search with
e in the first data structure and how to search with e in the first five levels of the
second data structure. Let S be a canonical set of spheres in the output of the search
in the first five levels of the second structure, and let ` be the line containing e. We
assume with no loss of generality that for each sphere S ∈ S, either ` meets S or
else S has no point that lies vertically above `. Our goal is to determine whether `
intersects any sphere in S.

Suppose ` is represented by the two equations y = ξ1x+ ξ2 and z = ξ3x+ ξ4. We
start at the root of the sixth-level tree of S and locate the point (ξ1, ξ2) in each of the
2t maps M+(Si) and M−(Si) of the root. Let C1, . . . , Ck, for some k ≤ 2t, denote
the cells of these maps which contain (ξ1, ξ2) and whose label is not 0. As noted, the
labels of these cells provide a complete description of the upper convex hull of the t
intersection discs Di of our net spheres with the plane Vξ1,ξ2 . We compute the slopes
µ1, . . . , µk of the k bridges of that hull and compare each of them with the slope of
the query line within V , which is, as is easily verified, κ = ξ3/

√
1 + ξ21 . If one of

the bridges, say b, has slope µb = κ, we simply check whether our query line passes
below b, in which case ` intersects a sphere of S, so we can return a positive answer
to the query. Otherwise, ` passes above (the line containing) b, and we recurse in the
subtree corresponding to the cell C that defines b. (Only spheres in SC can meet `.)
In general, though, we will obtain two adjacent bridges, b and b′, both tangent to the
same sphere of E , say Si, such that µb ≤ κ ≤ µb′ . In this case, if an original sphere S
intersects `, then either S meets one of the two half-planes b+(ξ1, ξ2) and b′+(ξ1, ξ2) or
S ∩ Vξ1,ξ2 meets the small region R enclosed between Si and the two lines containing
b and b′; see Figure 8 for an illustration. Let γ denote the (upper) arc of Di between

RAY SHOOTING AMIDST SPHERES 665

its two points of tangency with b and b′. It is clear that no sphere of E intersects
the region γ+ consisting of all points of Vξ1,ξ2 that lie above γ, which implies that
the xy-projection γ∗ of γ is fully contained in (a single connected component of) the
region Ki(ξ1, ξ2), as defined above. It thus follows that the set γ̃ consisting of all
points (ξ1, ξ2, ρ), where ρ is the coordinate along λ(ξ1, ξ2) of a point of γ∗, is fully
contained in K̃i and, in fact, is fully contained within a single cell of the subdivision
N(Si) of K̃i. (γ̃ is a vertical segment contained in K̃i, and such a segment must be
fully contained in a single cell of its vertical decomposition.)

We thus continue the search recursively at the two nodes of T associated with
the cells corresponding to the bridges b and b′ and with the node corresponding to
the cell C of N(Si) containing the arc γ̃. This concludes the description of the query
processing.

2.8. Complexity analysis. We next analyze the complexity of our algorithm
in terms of space, preprocessing time, and query time. The first five levels of our
second structure (as well as the two levels of the first structure) involve half-space
range searching and structures for point location among spheres in R3. At each of
these levels, the size of the structure for a set of m spheres, excluding substructures at
deeper levels, is O(m3+ε) for any ε > 0. Indeed, for half-space range searching, this
follows from [17]. For point location among spheres, this follows by noting that the
maximum storage S(m) and preprocessing cost P (m) for this structure on m spheres
satisfy the following recurrences:

P (m) ≤ c1r3+εP (m/r) + c2mr
3+ε

and

S(m) ≤ c1r3+εS(m/r) + c′2r
3+ε

for appropriate constants c1, c2, and c′2 (some of which depend on ε). The solution
of these recurrences is easily seen to be O(m3+ε′) for another, still arbitrarily small
ε′ > ε > 0, where the constant of proportionality depends on ε.

As observed in [26] (and as is easy to verify), the overall size and preprocessing
cost of a multilevel data structure of the type considered here can be deduced from the
maximum size and preprocessing at any fixed level. In particular, if we show that the
sixth level of our structure also requires O(m3+ε) storage and preprocessing for a set
of m spheres, it will follow that the overall storage and preprocessing cost of the full
multilevel structure will also be O(n3+ε) (with a larger constant of proportionality);
see [26] for more details.

We thus turn to consider the cost of the sixth level of our structure, which involves
the upper convex hull structure of the intersection discs. We first claim that the total
complexity of all the 2t planar maps M+(Si) and M−(Si) is only roughly O(r3). To
see this, ignore for now the added complexity caused by the vertical segments forming
the vertical decompositions of the maps. (This increases the complexity by only a
small constant factor.) Fix a sphere Si ∈ E and let C be a cell of, say, M+(Si) with
a nonzero label j. Each edge e on the boundary of C consists of points (ξ1, ξ2) at
which either the sphere Sj following Si in the upper hull is about to change, or Si
itself is about to disappear from the upper hull, or the sizes of the two intersection
discs Di and Dj become equal. In the first two cases, either Di shrinks to a point
and then disappears from V or the (line containing the) bridge connecting Di and
Dj in the plane Vξ1,ξ2 becomes tangent to a third disc Dk (it is also possible that Di

666 SHAI MOHABAN AND MICHA SHARIR

j
l

i
k

l i

j k

l

k

i j

(a) (b) (c)

Fig. 9. The three possible configurations that can occur at a vertex of the map M+(Si).

and Dj become tangent to each other); in the first case, Dk is between Di and Dj or
after Dj , and in the second case, Dk precedes Di. Each vertex v of C is formed by
the intersection of two such boundary edges e and e′. Suppose first that both e and
e′ represent events of triple tangency. Then v must be of one of the following three
types:

• Each of the edges e and e′ represents a change in the sphere following Si.
Denote the two corresponding new spheres that are about to replace Sj as the next
sphere by Sk and Sl. Since v lies on e, the discs Di, Dj , and Dk have a common
tangent that appears as a bridge in the upper convex hull. Similarly, since v also lies
on e′, the same is true for Di, Dj , and Dl. Hence at v the four discs Di, Dj , Dk, and
Dl have a common tangent bridge. See Figure 9(a) for an illustration.

• One of the edges, say e, represents a change in the sphere following Si, say
from Sj to some Sk, and the other edge e′ represents a situation where Si is displaced
from the upper convex hull by another sphere Sl preceding Si along the hull. As is
easily verified, in this case as well, the four corresponding discs Di, Dj , Dk, and Dl

must have a common tangent bridge at v. See Figure 9(b) for an illustration.
• Each of the edges e and e′ represents a situation where Si is displaced from

the upper convex hull, by two respective other spheres Sk and Sl preceding Si along
the hull. In this case as well, the four corresponding discs Di, Dj , Dk, and Dl must
have a common tangent bridge at v. See Figure 9(c) for an illustration.

We have thus shown that each vertex of M+(Si) of these types is a point (ξ1, ξ2)
for which the plane Vξ1,ξ2 contains a line tangent to four intersection discs and passing
above all other spheres. Similar arguments imply that this also holds for all the other
maps M±(Sk). Note that, assuming general position of the spheres, each such vertex
can be present in at most eight of the 2tmaps, twice for each of the at most four spheres
that define it. (It has no effect on the labeling of cells in other maps.) Similarly, each
edge in one of these maps is defined in terms of at most three spheres and can thus
appear only in the maps of those three spheres.

Note that if two edges e and e′, both representing situations where the size of Di

becomes equal to that of the following disc on the upper hull, meet at a point v, then
v also lies on an edge of a triple tangency, as is easily seen.

The next case to consider is thus that of vertices formed by the intersection of
two edges e and e′, where e consists of points (ξ1, ξ2) at which the upper hull of the
intersection discs in the plane Vξ1,ξ2 contains a bridge tangent to Di and to two other
discs, Dj and Dk, and e′ consists of points (ξ1, ξ2) at which the size of Di becomes
equal to the size of one of these discs, say Dj . It is easily seen that the number of

RAY SHOOTING AMIDST SPHERES 667

such vertices is only O(t3) over the entire collection of maps M±(Si) because each
such vertex is defined by three spheres of E , and each triple of spheres gives rise to
only a constant number of such vertices.

Finally, consider cases where a disc Di shrinks to a point or becomes tangent to
an adjacent disc along the upper hull. Again, it is easily verified that a vertex v of
M±(Si) at which this occurs is defined in terms of at most three spheres (Si plus
two other spheres defining an edge of triple tangency on which v lies, or Si, Sj , and
another sphere becoming tangent to the common tangent line to Di and Dj). Thus
the total number of such vertices over all maps is O(t3).

We thus need to bound the number of points (ξ1, ξ2) at which the upper convex
hull of the intersection discs between the spheres and the vertical plane Vξ1,ξ2 has a
bridge tangent to four discs. To do so, we apply the following transformation to the
problem. For each sphere S ∈ E , we define a partial trivariate function FS(ξ1, ξ2, ξ3)
as follows. Suppose that the intersection disc D = S ∩Vξ1,ξ2 is not empty (otherwise,
FS(ξ1, ξ2, ξ3) is undefined). We define FS(ξ1, ξ2, ξ3) to be the value of ξ4 for which the
line y = ξ1x+ ξ2, z = ξ3x+ ξ4 is tangent to D from above. Note that FS is (partially)
well defined and that its graph is an algebraic surface patch of low constant degree.

It follows by definition that the upper envelope of the functions FS represents the
locus of all lines that are tangent to the upper convex hull of any vertical planar cross-
section of the spheres of E . Moreover, each vertex of the upper envelope represents
a line tangent to such an upper convex hull and touching four of the corresponding
intersection discs, and each such “critical” line is indeed a vertex of the envelope.

By the recent results of [22, 28], the complexity of the upper envelope of n alge-
braic surface patches of constant maximum degree in d-space is O(nd−1+ε) for any
ε > 0. Hence it follows that the complexity of the upper envelope of the t = O(r log r)
functions FS is O(r3+ε) for any ε > 0. This implies that the number of vertices of the
types considered above in our 2t maps M±(Si) is O(r3+ε), which is thus also a bound
on the overall complexity of the vertical decompositions of these maps. As already
argued, this bound also dominates the overall complexity of the spatial subdivisions
N(Si) and implies that the number of children of any node in any sixth-level tree
structure is O(r3+ε).

We can finally complete the analysis of the performance of our algorithm. Assum-
ing r to be a (sufficiently large) constant, the construction of the (1/r)-net E can be
done in O(n) time, as in [25]. The construction of the 2t maps M±(Si) can be done
in constant time. More precisely, we first need to construct the upper envelope of the
functions FSi . As shown in [2], this can be done in time O(r3+ε) for any ε > 0. The
features of these envelopes are then distributed among the maps M±(Si), the addi-
tional edges and vertices of these maps are constructed in a straightforward manner,
and the maps are then vertically decomposed, within the same asymptotic running
time.

The construction of the t spatial subdivisions N(Si) can also be performed in
constant time. For each fixed sphere Si ∈ E , we first compute the “top portions”
S+
j of the other spheres of E , project them onto the xy-plane, and compute the

complement Ki of their union. We then construct all vertices of N(Si) by examining
every pair of vertices and/or edges of each face of Ki in the manner described above,
from which the complete subdivision N(Si) is easy to construct.

For any cell C in each of these maps, we compute the set SC of all spheres
intersecting its associated region RC . This can be done in O(n) time since each such
region is of constant complexity and the number of regions is also constant. More

668 SHAI MOHABAN AND MICHA SHARIR

precisely, all the canonical sets SC can be computed in O(nr3+ε) time. As already
noted, the maximum size of any set SC is ≤ n/r.

Let S6(n), T6(n), and Q6(n) denote, respectively, the expected space complexity,
preprocessing time, and query time for the sixth level of the data structure on a
canonical set of n spheres. Then we have the following recurrence relations:

P6(n) ≤ c1r3+εP6(n/r) + c2nr
3+ε

and

S6(n) ≤ c1r3+εS6(n/r) + c′2r
3+ε

for appropriate constants c1, c2, and c′2 (some of which depend on ε). As above, the
solution of these recurrences is easily seen to be O(n3+ε′) for another, still arbitrarily
small ε′ > ε > 0, where the constant of proportionality depends on ε.

As for the query time Q6(n), we have the following recurrence:

Q6(n) ≤ 3Q6(n/r) +O(r3+ε).

(The factor 3 appears since we search recursively in at most three children of any node
that is visited during the query processing.) The solution of this recurrence is easily
seen to be Q6(n) = O(nε), again with a constant of proportionality that depends on
ε.

If we now combine the sixth level of the structure with the preceding five levels,
apply the observations of [26] concerning multilevel structures, as mentioned above,
and also take into account the overhead of the parametric searching, we easily conclude
the following main result.

Theorem 2.1. Given a collection S of n arbitrary spheres in 3-space and any
ε > 0, one can preprocess S in time O(n3+ε) into a data structure of size O(n3+ε)
which supports ray shooting queries among the spheres of S in time O(nε) per query.

3. Extensions. In this section, we extend our algorithm so that it applies to
more general classes of objects. As a matter of fact, we present a general approach
to ray shooting in three dimensions amidst a collection S of n (possibly intersecting)
convex objects, each of constant description complexity. The approach is modular and
consists of several stages, where each stage filters out objects that satisfy a certain
geometric constraint with respect to the query ray so that the query ray intersects
all objects that satisfy the conjunction of all of these constraints; using this property,
the actual ray shooting is then easy to perform. Thus to obtain a ray shooting
algorithm for a specific class of objects, we need to provide appropriate and efficient
filtering mechanisms for this class at each level separately. These mechanisms and
their efficiency depend on the class in question; we will exemplify them for two classes
of objects: triangles and ellipsoids.

As above, we only consider the case where we want to obtain fast queries (O(nε)
time per query) and are willing to use large storage. We follow the general approach
of [4], reducing the ray-shooting problem to the segment-emptiness problem. We then
proceed through the following stages:

(1) We begin by reducing the segment-emptiness problem to the line-emptiness
problem, and we accomplish this in the first two stages. Let e = pq be the query
segment and let ` be the line containing e. In the first stage, we want to partition our
objects into three categories:

RAY SHOOTING AMIDST SPHERES 669

(i) Objects that contain exactly one endpoint of e in their interior. If there
is any such object, we can stop the query immediately with a positive answer. We
can compute this subset of objects (and also the two other subsets in (ii) and (iii)
below) using the same technique that we have used for spheres since we did not exploit
any special properties of spheres there. The main tool that we used there was the
existence of a vertical decomposition of an arrangement of objects in 3-space into a
slightly supercubic number of cells of constant complexity each. This can be done, e.g.,
for any collection of objects whose boundary is defined in terms of a constant number
of algebraic equalities and inequalities of constant maximum degree [14]. Thus, in
general, this stage can be performed using O(n3+ε) storage and preprocessing and
O(logn) query time.

(ii) Objects that contain both endpoints of e in their interior. Since the objects
are assumed to be convex, we can ignore such objects because e cannot intersect any
of them.

(iii) Objects that do not contain any endpoint of e. These objects require further
treatment and are passed to the subsequent stages.

(2) Let S be an object of the third type with respect to our query segment e, and
suppose that e intersects S. Since p lies outside S, there exists a plane through p that
avoids S, and it is clear that q and S lie on the same side of this plane. (As a matter
of fact, this holds for any plane that passes through p and avoids S.) A symmetric
property holds at q. Conversely, if there exist a pair of such planes, then, as is easily
seen, e intersects S if and only if ` intersects S. Thus at this stage, we want to sift
out all objects for which there exist a pair of planes with these properties.

Here is a way (perhaps not always the most efficient way) of doing this. Suppose
that each object S ∈ S is defined by a polynomial inequality Q(x, y, z) ≤ 1. Since p
lies outside S, there is λ > 1 such that Q = λ at p. The plane πp through p tangent
to the surface Q = λ is a plane that contains S fully on one side. The equation of the
half-space bounded by πp and containing S is

Qx(p)(x− xp) +Qy(p)(y − yp) +Qz(p)(z − zp) ≤ 0,

where (xp, yp, zp) are the coordinates of p. Since q also has to lie in this half-space,
we obtain the constraint

Qx(p)(xq − xp) +Qy(p)(yq − yp) +Qz(p)(zq − zp) ≤ 0,

where (xq, yq, zq) are the coordinates of q. A symmetric condition has to hold at q,
namely

Qx(q)(xq − xp) +Qy(q)(yq − yp) +Qz(q)(zq − zp) ≥ 0.

Both inequalities are linear in the coefficients of Q. Thus if we represent each S ∈ S
as a point in Rk, where k is the number of distinct monomials appearing in the partial
derivatives of the corresponding polynomials Q, the testing for the present condition
amounts to two half-space range-searching queries in Rk.

Of course, this method is not ideal if k is large, but it is nevertheless a fairly
general technique. It works well for spheres: indeed, if the equation of a sphere
Si ∈ S is (x− ai)2 + (y− bi)2 + (z− ci)2 = r2i , then the above two constraints become

(xp − ai)(xq − xp) + (yp − bi)(yq − yp) + (zp − ci)(zq − zp) ≤ 0

and

(xq − ai)(xq − xp) + (yq − bi)(yq − yp) + (zq − ci)(zq − zp) ≥ 0,

670 SHAI MOHABAN AND MICHA SHARIR

Fig. 10. A disc appearing more than once along the upper convex hull.

which, interestingly enough, are identical to the testing of the condition that the
center of Si lies inside the slab Σe, as used in our previous algorithm.

(3) At this stage, we have reduced our problem to that of detecting an intersection
between a query line ` and the objects of S (or, more precisely, of some canonical
subset of S). We next need to further reduce it to the problem of detecting an
intersection between ` and the planar upper convex hull of the cross-sections of the
objects of S in the vertical plane V passing through `, as we did for spheres. To do this
we wish to partition S into two subsets; none of the objects in the first subset should
intersect V in a cross-section that lies fully above `, and none of the objects in the
second subset should intersect V in a cross-section that lies fully below `. We have
shown that this step can be performed for spheres using an appropriate half-space
range searching on the set of centers of the spheres.

(4) In the last stage, we need to decide whether our query line ` passes above
the upper convex hull of the cross-sections of the objects of (a canonical subset of)
S in the vertical plane V passing through `. However, our solution for this stage is
fairly general and can be adapted to apply to objects other than spheres. Indeed,
a close inspection of our technique shows that the only place where we have used
specific geometric properties of spheres is in the definition of the maps M±(Si), where
each map records the spheres that are adjacent to a sphere Si along the upper hull,
provided that the intersection of such a sphere with V is larger than the intersection of
Si with V . This was done in order to overcome the technical difficulty that the sphere
following (or preceding) Si along the hull need not be unique since one intersection
disc may appear more than once along the hull; see Figure 10. Here is a way to
overcome this difficulty if we assume that the objects of S are pairwise disjoint. In
this case, their cross-sections in any vertical plane are pairwise-disjoint convex regions.
We say that one such region Di is wider than another region Dj if the length of the
projection of Di on the x-axis is larger than that of Dj . We now define the maps
M±(Si) in complete analogy to their definition in the case of spheres, with the proviso
that a bridge connecting a cross-section Di with a cross-section Dj is recorded in the
appropriate map of the narrower of the two regions. It is easily verified that there
can be at most one bridge connecting Di with a wider Dj which follows Di in the
upper hull and at most one bridge connecting Di with a wider region preceding Dj

along the hull. Hence the maps are all well defined, and we can proceed in exactly the
same manner as for spheres. If the objects in S can intersect, we need to devise an
alternative method for recording all bridges on the upper hull in a well-defined manner.
Assuming that this is indeed possible, the remainder of our algorithm applies to more
general classes of objects, with only some obvious and simple modifications. We only
need to require that each object in S has constant description complexity; this will

RAY SHOOTING AMIDST SPHERES 671

suffice to show that the overall complexity of the maps M±(Si) and (the vertically
decomposed) N(Si) is only O(r3+ε). This implies that this stage of the algorithm can
be performed on a set of n objects with O(n3+ε) preprocessing and storage and with
O(nε) query time. It is interesting that the most complex stage of our algorithm in
the case of spheres is the most general stage, which applies with comparable efficiency
to general classes of objects.

We now combine all these stages into a multilevel data structure, as we did for
spheres. The preprocessing time and storage of the overall structure are roughly
dominated by those of the most “expensive” stage, as already mentioned above and
as will be illustrated below.

We next illustrate how the various stages of the algorithm can be performed for
two specific classes of objects: triangles and ellipsoids.

3.1. The case of triangles. Most of the stages of the algorithm are easy to
perform in the case of triangles. The first stage is void, assuming nondegenerate
position of the query segment. In the second stage, it suffices to find the set of all
triangles such that the two endpoints of the query segment are separated by the plane
containing the triangle. This is easy to do using half-space range searching in three
dimensions. The fourth stage applies in full generality, as we have noted, and the
technical difficulty concerning relative sizes of the intersection objects (line segments
in this case) is easy to handle; we leave details of this to the reader.

The most expensive stage, in the case of triangles, is the third one. Here we want
to find all triangles passing below (resp. above) a query line or intersecting it. For
each triangle ∆, we can find an edge s so that it suffices to determine whether the
query line ` passes above (resp. below) the line containing s. This in turn can be done
by mapping the problem into a half-space range-searching problem in Plücker 5-space,
which can be done using O(n4+ε) preprocessing and storage; see [15] for details. Thus
the third stage is the bottleneck in obtaining an efficient ray-shooting method for
triangles, and in this case, our approach does not seem to yield a better solution than
those already known [5].

3.2. The case of ellipsoids. We next consider the case where our objects are
ellipsoids whose axes are parallel to the coordinate axes. Each ellipsoid Si ∈ S can be
represented by the equation Ai(x−ai)2 +Bi(y−bi)2 +Ci(z−ci)2 = 1 for appropriate
parameters Ai, Bi, Ci, ai, bi, and ci, where Ai, Bi, and Ci are positive.

As noted above, the first stage can be applied in a general setting, which includes
the case of ellipsoids. The second stage calls for the testing of the inequalities

Ai(xp − ai)(xq − xp) +Bi(yp − bi)(yq − yp) + Ci(zp − ci)(zq − zp) ≤ 0

and

Ai(xq − ai)(xq − xp) +Bi(yq − bi)(yq − yp) + Ci(zq − ci)(zq − zp) ≥ 0.

These are homogeneous linear inequalities in the six parameters (Ai, Aiai, Bi, Bibi, Ci,
Cici), and so this stage can be performed in projective 5-space using O(n5+ε) storage
and preprocessing and logarithmic query time.

Remark. Since this stage is the bottleneck in the case of ellipsoids, it is useful to
observe that we can make this stage more efficient if our ellipsoids satisfy additional
properties. For example, if they are all ellipsoids of revolution (about their vertical
axis), then Ai = Bi and the above inequalities become homogeneous linear inequalities

672 SHAI MOHABAN AND MICHA SHARIR

in projective 4-space, so they can be tested in O(logn) time using onlyO(n4+ε) storage
and preprocessing.

The third stage can be carried out as follows. Suppose that the query line ` is
represented by the equations y = ξ1x+ ξ2 and z = ξ3x+ ξ4. Take an ellipsoid Si and
project it onto the xy-plane, obtaining the ellipse S∗i : Ai(x− ai)2 +Bi(y− bi)2 = 1.
The intersection of S∗i with the projection `∗ : y = ξ1x+ ξ2 of ` leads to the equation

Ai(x
2 − 2aix+ a2

i) +Bi(ξ
2
1x

2 − 2(bi − ξ2)ξ1x+ (bi − ξ2)2) = 1,

or

(Ai +Biξ
2
1)x2 − 2(Aiai +Bibiξ1 −Biξ1ξ2)x+ (Aia

2
i +Bi(bi − ξ2)2 − 1) = 0.

The midpoint between the two intersection points (if they exist) thus satisfies

xm =
Aiai +Bibiξ1 −Biξ1ξ2

Ai +Biξ21
.

It suffices to compare zm = ξ3xm+ξ4 with ci; if zm > ci, then the cross-section Si∩V
cannot lie fully above `, and if zm < ci, then this cross-section cannot lie fully below
`. This yields the classification of the ellipsoids that we seek.

The required comparison is equivalent to the testing of the sign of the expression

Aiaiξ3 +Aiξ4 +Bibiξ1ξ3 +Bi(ξ
2
1ξ4 − ξ1ξ2ξ3)−Aici −Biciξ21 ,

which is a linear homogeneous expression in the six coefficients (Aiai, Ai, Bibi, Bi, Aici,
Bici). Thus the testing in this stage reduces to half-space range searching in projec-
tive 5-space. Moreover, since we are looking for a solution that uses large storage
and small query time, the problem becomes, in a dual setting, that of point location
among an arrangement of hyperplanes in 5-space. Since the query points lie on a
four-dimensional low-degree algebraic surface (they are parametrized by the four pa-
rameters (ξ1, . . . , ξ4)), we can exploit the zone theorem of Aronov et al. [9] to solve
this problem using O(n4+ε) storage and preprocessing with logarithmic query time
(see [5] for more details).

The fourth stage is applicable in the general setting, and the technical difficulty
concerning multiple bridges from the same cross-section can be overcome for pairwise-
disjoint ellipsoids, as described above. Hence, putting it all together, we obtain the
following result.

Theorem 3.1. Ray shooting amidst n axis-parallel pairwise-disjoint ellipsoids in
3-space can be performed in O(nε) time using O(n5+ε) preprocessing time and storage.
This can be reduced to O(n4+ε) for ellipsoids of revolution.

4. Conclusion. In this paper, we have developed a new and improved technique
for ray shooting amidst spheres in three dimensions. Our method requires O(n3+ε)
preprocessing time and storage and performs a ray-shooting query in time O(nε) for
any ε > 0, improving previous solutions by roughly an order of magnitude (in terms
of preprocessing and storage costs). We have also shown that our technique can be
extended to obtain a general algorithm for ray shooting amidst convex objects (of con-
stant description complexity) in 3-space, and we have demonstrated this extension for
the case of triangles (where the resulting algorithm is no worse than known solutions)
and for the case of axis-parallel ellipsoids, where we obtain an algorithm that appears
to be new and yields fast queries using O(n5+ε) preprocessing and storage.

RAY SHOOTING AMIDST SPHERES 673

The weakness of our algorithm is that it does not seem to yield a good trade-off
between storage and query time (in contrast with the less efficient solution of [4],
which does have such a trade-off). Of course, we can combine our solution with that
of [4] to obtain some trade-off. Readers familiar with this technique can easily check
that the resulting algorithm yields a query time of O(n9/8+ε/s3/8) for n ≤ s ≤ n3

using O(s1+ε) storage and preprocessing. It would be interesting (and we pose it as
an open problem) to design an algorithm for ray shooting amidst spheres, which takes
close to linear storage and can answer ray-shooting queries in time close to O(n2/3).

Another set of open problems is to apply our general technique for various specific
classes of objects, attempting to find solutions to each stage that are as efficient as
possible. In particular, can the algorithm be improved for the case of ellipsoids to
require only O(n4+ε) storage?

Finally, no lower bounds are known for the ray-shooting problem. Is our solution
for the case of spheres close to optimal in the worst case?

REFERENCES

[1] P. K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing
number, SIAM J. Comput., 21 (1992), pp. 540–570.

[2] P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with
applications, in Proc. 10th ACM Symposium on Computational Geometry, ACM, New
York, 1994, pp. 348–358.

[3] P. K. Agarwal, L. Guibas, M. Pellegrini, and M. Sharir, Ray shooting amidst spheres,
unpublished note.

[4] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput.,
22 (1993), pp. 794–806.

[5] P. K. Agarwal and J. Matoušek, Range searching with semi-algebraic sets, Discrete Comput.
Geom., 11 (1994), pp. 393–418.

[6] P. K. Agarwal and M. Sharir, Applications of a new space partitioning technique, Discrete
Comput. Geom., 9 (1993), pp. 11–38.

[7] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polyhedra and polyhedral terrains
in three dimensions, SIAM J. Comput., 25 (1996), pp. 100–116.

[8] P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of
general Davenport–Schinzel sequences, J. Combin. Theory Ser. A, 52 (1989), pp. 224–278.

[9] B. Aronov, M. Pellegrini, and M. Sharir, On the zone of a surface in a hyperplane
arrangement, Discrete Comput. Geom., 9 (1993), pp. 177–186.

[10] R. Bar Yehuda and S. Fogel, Good splitters with applications to ray shooting, in Proc. 2nd
Canadian Conference on Computational Geometry, Ottawa, Ontario, 1990, pp. 81–85.

[11] M. de Berg, D. Halperin, M. H. Overmars, J. Snoeyink, and M. van Kreveld, Efficient
ray shooting and hidden surface removal, Algorithmica, 12 (1994), pp. 30–53.

[12] B. Chazelle, Bounds on the complexity of polytope range searching, J. Amer. Math. Soc., 2
(1989), pp. 637–666.

[13] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and

J. Snoeyink, Ray shooting in polygons using geodesic triangulations, Algorithmica, 12
(1994), pp. 54–68.

[14] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential stratifica-
tion scheme for real semi-algebraic varieties and its applications, Theoret. Comput. Sci.,
84 (1991), pp. 77–105.

[15] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Stolfi, Lines in space:
Combinatorics and algorithms, Algorithmica, 15 (1996), pp. 428–447.

[16] B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry, Discrete
Comput. Geom., 4 (1989), pp. 551–589.

[17] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica, 8 (1992), pp. 407–430.

[18] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5
(1990), pp. 99–160.

674 SHAI MOHABAN AND MICHA SHARIR

[19] D. Dobkin and D. Kirkpatrick, Determining the separation of preprocessed polyhedra: A
unified approach, in Proc. 17th International Colloquium on Automata, Languages and
Programming, Springer-Verlag, Berlin, 1991, pp. 400–413.

[20] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir, Arrange-
ments of curves in the plane: Topology, combinatorics, and algorithms, Theoret. Comput.
Sci., 92 (1992), pp. 319–336.

[21] L. Guibas, M. Overmars, and M. Sharir, Ray shooting, implicit point location, and related
queries in arrangements of segments, Technical Report 433, Department of Computer
Science, New York University, New York, 1989.

[22] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions with ap-
plications to visibility of terrains, Discrete Comput. Geom., 12 (1994), pp. 313–326.

[23] D. Haussler and E. Welzl, Epsilon nets and simplex range searching, Discrete Comput.
Geom., 2 (1987), pp. 127–151.

[24] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a
walk, in Proc. 4th ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1993, pp. 54–63.

[25] J. Matoušek, Approximations and optimal geometric divide-and-conquer, in Proc. 23rd ACM
Symposium on Theory of Computing, ACM, New York, 1991, pp. 506–511.

[26] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom.,
10 (1993), pp. 157–182.

[27] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
Assoc. Comput. Mach., 30 (1983), pp. 852–865.

[28] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete
Comput. Geom., 12 (1994), pp. 327–345.

[29] M. Sharir and P. K. Agarwal, Davenport–Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, Cambridge, UK, New York, Melbourne, 1995.

ON THE COMPLEXITY OF FINDING A MINIMUM CYCLE
COVER OF A GRAPH∗

CARSTEN THOMASSEN†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 675–677, June 1997 004

Abstract. We prove that the problem of finding a cycle cover of smallest total length is NP-hard.
This confirms a conjecture of Itai, Lipton, Papadimitriou, and Rodeh from 1981.

Key words. complexity, minimum cycle cover

AMS subject classifications. 05C38, 68Q25

PII. S0097539794267255

1. Introduction. A path x1x2 . . . xn is a graph with distinct vertices x1, x2, . . . ,
xn and edges x1x2, x2x3, . . . , xn−1xn. If we add the edge xnx1, we obtain a cycle.
The length of a path or a cycle is the number of edges in it. A cycle cover of a graph
G is a collection of cycles in G such that every edge is in at least one cycle. The
length of a cycle cover is the sum of lengths of the cycles. The smallest length of a
cycle cover of G is denoted cc(G).

There are several good upper bounds on cc(G) that are computable by polynomial-
time algorithms; for references, see [4, 5]. However, we show that the question “Is
cc(G) ≤ k?” is NP-complete as conjectured by Itai et al. [3]. The problem is also
mentioned in [4, 5] and discussed in the survey of Bondy [1].

2. Covers by paths and cycles. The subgraph induced by the vertices p1,
p2, . . . , p9 in Figure 1 together with a new vertex p10 joined to p1, p2, p3 is the Petersen
graph P .

Lemma 2.1. cc(P) > 20.
Proof. Consider a cycle cover of length cc(P). Since all vertices of P have odd

degree, each vertex of P must be incident with at least one edge which is covered an
even number of times. Hence cc(P) ≥ 20. Suppose equality holds. Then each vertex
of P is incident with precisely one edge which is covered twice. Thus P minus the
edges that are covered twice is a graph—say H—in which each vertex has degree 2.
Hence H is the union of disjoint cycles. Since P has no cycle of length 10 and no
cycle of length smaller than 5, H is the union of two disjoint cycles C1 and C2, each
of length 5. If C: z1z2z3 . . . is a cycle in the cycle cover and z1z2 is in C1, say, then
z2z3 goes from C1 to C2, z3z4 is in C2, etc. Hence C has the same number of edges
in C1 as in C2. Moreover, the edges of C ∩C1 must be nonadjacent and hence C has
at most two edges in C1. It follows that C has length 8. Then, however, 8 divides
cc(P), a contradiction.

It is easy to show that cc(P) = 21, but we shall not use this fact.
We denote by H(k, q)(k ≥ 1, q ≥ 1) the graph obtained from the graph of Figure 1

by replacing each edge yizi by a path of length k (i = 1, 2, 3) and each edge of the
form pipj(1 ≤ i < j ≤ 9) by a path of length q. By a path-cycle cover of H(k, q),
we mean a collection of cycles and paths covering the edges of H(k, q) such that each
path in the collection connects two vertices in {x1, x2, x3}. If si is the number of

∗Received by the editors May 9, 1994; accepted for publication (in revised form) June 28, 1995.
http://www.siam.org/journals/sicomp/26-3/26725.html
†Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark

(c.thomassen@mat.dtu.dk).

675

676 CARSTEN THOMASSEN

Fig. 2.1.

paths with an end vertex in xi (i = 1, 2, 3), we speak of an (s1, s2, s3)-cover. Because
of symmetry, we can assume that 1 ≤ s1 ≤ s2 ≤ s3.

Lemma 2.2. If k ≥ 16(q + 1) > 80, then the sum of lengths of the paths and
cycles in an (s1, s2, s3)-cover of H(k, q) is at least 16q + 10k + 12. Equality can be
achieved only for (s1, s2, s3) = (1, 2, 3).

Proof. The paths x1y1z1p1p9p6p7p4p5p8p3z3y3x3, x2y2z2p2p5p4p1p9p8p3z3y3x3,
x2y2z2p2p6p7p3z3y3x3 and two cycles y1z1y1 and y2z2y2 form a (1, 2, 3)-cover ofH(k, q)
with total length 16q + 10k + 12.

Now suppose there exists an (s1, s2, s3)-cover of total length ≤ 16q + 10k + 12
such that (s1, s2, s3) 6= (1, 2, 3). Since s1 + s2 + s3 is the total number of ends of the
paths, s1 + s2 + s3 is even and hence some si (1 ≤ i ≤ 3) is even. Therefore one of the
three paths between yi and zi is covered twice. If there exists a j ∈ {1, 2, 3}\{i} such
that sj is also even, then one of the paths between yj and zj is also covered twice and
hence the total length of the path-cycle cover is at least 11k, which is greater than
16q + 10k + 12, a contradiction. Thus precisely one si is even.

A similar argument shows that the total length of the path-cycle cover is at least
11k if s3 ≥ 5. Hence 1 ≤ s1 ≤ s2 ≤ s3 ≤ 4.

Suppose now that s3 = 4. Then either both of p3p8 and p3p7 are covered twice or
one is covered three times. Since s1 and s2 are odd and every vertex in {p1, p2, . . . , p9}
is incident with an edge covered an even number of times, it follows that the total
length of the path-cycle cover is at least 17q + 10k + 12, a contradiction. Thus
1 ≤ s1 ≤ s2 ≤ s3 ≤ 3. This leaves the possibilities (s1, s2, s3) = (2, 3, 3) or (1, 1, 2).

MINIMUM CYCLE COVER 677

In the former case, the total length of the path-cycle cover is at least 16q + 10k+ 16,
a contradiction.

Assume finally that (s1, s2, s3) = (1, 1, 2). It follows from Lemma 1 that the
path-cycle cover restricted to the graph induced by {p1, p2, . . . , p9} has total length
at least 17q. Hence the path-cycle cover has total length at least 17q + 10k + 8, a
contradiction.

3. Cycle covers and the 3-edge-coloring problem. The 3-edge-coloring
problem is the following: Given a cubic graph G (i.e., every vertex of G has de-
gree 3), is it possible to assign a color in {1, 2, 3} to each edge such that no two
edges of the same color are incident with the same vertex? Holyer [2] proved that the
3-edge-color problem is NP-complete.

Theorem 3.1. The 3-edge-color problem can be reduced by a polynomial-time
transformation to the question “Is cc(G) ≤ k?”. Since the former is NP-complete, so
is the latter.

Proof. Let G be a cubic graph (which we would like to 3-edge-color). Let n be the
number of vertices of G. We insert a vertex of degree 2 on every edge of G. Call the
resulting graph G1. If v is a vertex of degree 3 in G1, then we delete v and replace it
by a copy of H(100,5) in such a way that x1, x2, and x3 get degree 2 in the resulting
graph, which we call M . We claim that G is 3-edge-colorable if and only if

cc(M) ≤ 1092n.

Every path-cycle cover of H(100,5) has total length at least 1092 by Lemma 2. Hence
cc(M) ≥ 1092n. Moreover, if equality holds, then each H(100,5) is covered by a
(1, 2, 3)-cover, and this results in a 3-edge-coloring of G. (An edge e in G is colored
by i, where i ∈ {1, 2, 3}, and the new vertex of degree 2 on e is contained in precisely
i cycles in the cycle cover of M .) Conversely, if G has a 3-edge-coloring, then we let
C1, C2, . . . , Cr denote the cycles of color 1, 3 and C ′1, C

′
2, . . . , C

′
s denote the cycles of

color 2, 3. Now the system C1, C2, . . . , Cr, C
′
1, C

′
1, C

′
2, C

′
2, . . . , C

′
s, C

′
s covers each edge

of color i precisely i times (i = 1, 2, 3). By modifying this collection of cycles using
the paths in the beginning of the proof of Lemma 2, we obtain a cycle cover of M of
length 1092n.

REFERENCES

[1] J. A. Bondy, Small cycle double covers of graphs, in Cycles and Rays, G. Hahn, G. Sabidussi,
and R. E. Woodrow, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990,
pp. 21–40.

[2] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718–720.
[3] A. Itai, R. J. Lipton, C. H. Papadimitriou, and M. Rodeh, Covering graphs with simple

circuits, SIAM J. Comput., 10 (1981), pp. 746–750.
[4] G. Fan, Covering graphs by cycles, SIAM J. Discrete Math., 5 (1992), pp. 491–496.
[5] C. Zhao, Smallest (1, 2)-Eulerian weight and shortest cycle covering, J. Graph Theory, 18 (1994),

pp. 153–160.

AN OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING
TREES OF UNDIRECTED GRAPHS∗

AKIYOSHI SHIOURA† , AKIHISA TAMURA‡ , AND TAKEAKI UNO§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 678–692, June 1997 005

Abstract. Let G be an undirected graph with V vertices and E edges. Many algorithms have
been developed for enumerating all spanning trees in G. Most of the early algorithms use a technique
called “backtracking.” Recently, several algorithms using a different technique have been proposed
by Kapoor and Ramesh (1992), Matsui (1993), and Shioura and Tamura (1993). They find a new
spanning tree by exchanging one edge of a current one. This technique has the merit of enabling
us to compress the whole output of all spanning trees by outputting only relative changes of edges.
Kapoor and Ramesh first proposed an O(N +V +E)-time algorithm by adopting such a “compact”
output, where N is the number of spanning trees. Another algorithm with the same time complexity
was constructed by Shioura and Tamura. These are optimal in the sense of time complexity but
not in terms of space complexity because they take O(V E) space. We refine Shioura and Tamura’s
algorithm and decrease the space complexity from O(V E) to O(V +E) while preserving the time
complexity. Therefore, our algorithm is optimal in the sense of both time and space complexities.

Key words. optimal algorithm, spanning trees, undirected graphs

AMS subject classifications. 05C30, 68R10

PII. S0097539794270881

1. Introduction. Let G be an undirected graph with V vertices and E edges. A
spanning tree of G is defined as a connected subgraph of G which contains all vertices
but no cycle. In this paper, we consider the enumeration of all spanning trees in an
undirected graph. Many algorithms for solving this problem have been developed,
e.g., [7, 8, 4, 5, 6, 9], and these may be divided into several types.

The first type [7, 8, 4], to which many of the early algorithms belong, uses a
technique called “backtracking.” This is a useful technique for listing the kinds of
subgraphs, e.g., cycles, paths, and so on. Gabow and Myers [4] refined the algorithms
of Minty [7] and Read and Tarjan [8]. Their algorithm uses O(NV+V+E) time
and O(V+E) space, where N is the number of all spanning trees. If we enumerate
all spanning trees by outputting all edges of each spanning tree, their algorithm is
optimal in terms of time and space complexities.

Recently, several algorithms [5, 6, 9] that use another technique have been de-
veloped. These algorithms find a new spanning tree by exchanging one pair of edges
instead of backtracking. Furthermore, if we enumerate all spanning trees by out-
putting only relative changes of edges between spanning trees, we can compress the
size of output to Θ(N+V), and hence the total time complexity may be reduced. In
fact, Kapoor and Ramesh [5] proposed an O(N+V+E) time and O(V E)-space algo-
rithm by adopting such a “compact” output, which is optimal in the sense of time
complexity. On the other hand, Matsui [6] developed an O(NV+V+E)-time and
O(V+E)-space algorithm for enumerating all spanning trees explicitly, by applying
the reverse-search scheme [3]. Reverse search is a scheme for general enumeration

∗ Received by the editors July 11, 1994; accepted for publication (in revised form) July 10, 1995.
http://www.siam.org/journals/sicomp/26-3/27088.html
† Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1

Oh-okayama, Meguro-ku, Tokyo 152, Japan (shioura@is.titech.ac.jp).
‡ Department of Computer Science and Information Mathematics, University of Electro-

Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan (tamura@im.uec.ac.jp).
§ Department of Systems Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku,

Tokyo 152, Japan (uno@is.titech.ac.jp).

678

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 679

problems (see [1, 2]). Shioura and Tamura [9] also developed an algorithm generating
a compact output with the same time and space complexities as the Kapoor–Ramesh
algorithm by using the reverse-search technique. The Kapoor–Ramesh algorithm and
the Shioura–Tamura algorithm, however, are not efficient in terms of space complexity
because they take O(V E) space.

The main aim of this paper is to obtain an algorithm that generates a compact
output and is optimal in the sense of both time and space complexities by refining
the Shioura–Tamura algorithm. When the process goes to a lower-level node of the
computation tree of the original algorithm, some edge set can be efficiently divided
without requiring extra information. However, in order to efficiently restore such an
edge set when the process goes back to the higher-level node, the algorithm requires
extra O(E) information. Since the depth of the computation tree is V−1, it takes
O(V E) space. We propose a useful property for efficiently restoring the edge set
and a technique for restoring it which uses extra O(V) space in all, while the time
complexity remains O(N+V+E).

In section 2, we explain the technique for enumeration of spanning trees and
compact outputs. In section 3, we define a nice child–parent relationship between
spanning trees and propose a näıve algorithm. In section 4, we show some properties
which are useful for efficient manipulation of data structures in our implementation.
Our implementation is presented in section 5, and the time and space complexities
are analyzed.

2. Compact output. Let G be an undirected graph (not necessary simple) with
V vertices {v1, . . . , vV } and E edges {e1, . . . , eE}. We define two types of edge sets
which are necessary for our algorithm, so-called fundamental cuts and fundamental
cycles. Let T be a spanning tree of G. Throughout this paper, we represent a spanning
tree by its edge set of size V−1. For any edge f ∈ T, the deletion of f from T yields two
connected components. The fundamental cut associated with T and f is defined as
the set of edges connecting these components and is denoted by Cut(T\f). Likewise,
we define the fundamental cycle associated with T and g 6∈ T as the set of edges
contained in the unique cycle of T ∪ g. We will denote it as Cyc(T∪g). By definition,
T\f∪g is a spanning tree for any f ∈ T and any g ∈ Cut(T\f). Similarly, for any
g 6∈ T and any f ∈ Cyc(T∪g), T∪g\f is also a spanning tree. These properties are
useful for enumerating spanning trees because by using fundamental cuts or cycles,
we can construct a different spanning tree from a given one by exchanging exactly
one edge.

Given a graph G, let S(G) = (T ,A) be the graph whose vertex set T is the set
of all spanning trees of G and whose edge set A consists of all pairs of spanning
trees which are obtained from each other by exchanging exactly one edge using some
fundamental cut or cycle. For example, the graph S(G1) of the left one, G1, is shown
in Figure 2.1.

Our algorithm finds all spanning trees of G by implicitly traversing some spanning
tree D of S(G). In order to output all (V−1) edges of each spanning tree, Θ(|T | ·V) =
Θ(N · V) time is required. However, if we output all edges of the first spanning tree
and then only the sequence of exchanged edge pairs of G obtained by traversing D, we
need only Θ(|T | + V) = Θ(N+V) time because |D| = |T |−1 and exactly two edges
of G are exchanged for each edge of D. Furthermore, by scanning such a “compact”
output, one can construct all spanning trees. Since we adopt such a compact output,
it becomes desirable to find the next spanning tree from a current one efficiently in
constant time.

680 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

S(G)

v1

v2

v4v3

e5
e1

e2 e3

G

e4

1

1

Fig. 2.1. Graph G1 and graph S(G1).

3. Basic ideas and the näıve algorithm. In this section, we explain the basic
ideas and the näıve algorithm.

We define the total orders over the vertex set {v1, . . . , vV } and the edge set
{e1, . . . , eE} of G by their indices as v1 < v2 < · · · < vV and e1 < e2 < · · · < eE .
Particularly, we call the smallest vertex v1 the root. For each edge e, we call the
smaller incident vertex the tail, denoted by ∂+e, and call the larger one the head,
denoted by ∂−e. Relative to a spanning tree T of G, if the unique path in T from the
vertex v to the root v1 contains a vertex u, then u is called an ancestor of v and v is
a descendant of u. Similarly, for two edges e and f in T, we call e an ancestor of f
and f a descendant of e if the unique path in T from f to the root v1 contains e. A
“depth-first spanning” tree of G is a spanning tree which is found by some depth-first
search of G. It is known that a depth-first spanning tree is defined as a spanning tree
such that for each edge of G, its one incidence vertex is an ancestor of the other.

In our algorithm, we make several assumptions regarding the vertex set and the
edge set of G.

Assumption 1. T 0 is a depth-first spanning tree of G.

Assumption 2. T 0={e1, . . . , eV−1}.
Assumption 3. Any edge in T 0 is smaller than its proper descendants.

Assumption 4. Each vertex v is smaller than its proper descendants relative to
T 0.

Assumption 5. For any two edges e, f 6∈ T 0, if e < f , then ∂+e ≤ ∂+f.

Vertices and edges of graph G2 in Figure 3.1 satisfy these assumptions. In fact,
one can find T 0 and sort vertices and edges of G in O(V+E) time so that G satisfies
the above assumptions by applying Tarjan’s depth-first search [10]. We note that
Assumptions 1, 2, and 3 are sufficient for the correctness of our algorithm. However,
we further need Assumptions 4 and 5 for an efficient implementation.

For any nonempty subset S of {e1, . . . , eE}, Min(S) denotes the smallest edge in

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 681

e7

v2

e2

v3

e3 e4
v4 v5

e1

e6

v1

e5

Fig. 3.1. Graph G2.

S. For convenience, we assume that Min(∅) = eV .
Lemma 3.1 (see [9]). Under Assumptions 1 and 3, for any spanning tree T c 6= T 0,

if f = Min(T 0 \ T c), then Cyc(T c∪f) ∩ Cut(T 0\f) \ f contains exactly one edge.
Proof. The set T 0 \ f has exactly two components, one containing ∂−f and the

other containing ∂+f. Therefore, the unique path Cyc(T c∪f) \ f from ∂−f to ∂+f in
T c contains at least one edge in Cut(T 0\f). Hence Cyc(T c∪f) ∩Cut(T 0\f) \ f 6= ∅.

Since T 0 is a depth-first spanning tree, we may assume without loss of generality
that the head of any edge is a descendant of its tail relative to T 0. Let e be the first
edge from ∂−f on the path such that e ∈ Cut(T 0\f). Then the head ∂−e is a descen-
dant of ∂−f relative to T 0, and the tail ∂+e is an ancestor of ∂+f. From Assumption 3
and the minimality of f, ∂+e and ∂+f are connected in T c∩T 0. Thus there is no edge
contained in Cut(T 0\f) between ∂+e and ∂+f in the path Cyc(T c∪f) \ f. Hence e is
the only edge in Cyc(T c∪f) \ f and Cut(T 0\f).

Consider the graph G2 of Figure 3.1. Here let T 0 = {e1, e2, e3, e4} and T c =
{e4, e5, e6, e7}. In graph G2,

f = Min{e1, e2, e3} = e1,

Cyc(T c∪f) = {e1, e5, e7},
Cut(T 0\f) = {e1, e5, e6}.

Therefore, Cyc(T c∪f) ∩ Cut(T 0\f) \ f = {e5}.
Given a spanning tree T c 6= T 0 and the edge f = Min(T 0 \ T c), let g be the

unique edge in Cyc(T c∪f)∩Cut(T 0\f) \ f. Clearly, T p = T c∪f\g is a spanning tree.
We call T p the parent of T c and T c a child of T p. Lemma 3.1 guarantees that each
spanning tree other than T 0 has a unique parent. Since |T p ∩ T 0| = |T c ∩ T 0|+1
holds, T 0 is the ancestor of all spanning trees. For the graph G1 in Figure 2.1, all
child–parent pairs are shown by the arrows in Figure 3.2. Each arrow goes from a
child to its parent. We can see that all arrows construct a spanning tree of S(G1)
rooted at T 0.

Let D be the spanning tree of S(G) consisting of all child–parent pairs of span-
ning trees. Our algorithm implicitly traverses D from T 0 by recursively scanning all
children of a current spanning tree. Thus we must find all children of a given spanning
tree, if they exist. The next lemma gives a useful idea for this.

Lemma 3.2 (see [9]). Let T p be an arbitrary spanning tree of G, and let f and g
be two distinct edges. Under Assumptions 1, 2, and 3, T c = T p\f∪g is a child of T p

682 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

S(G)

T7T6

T1T4

T5
T3

T2

1

Fig. 3.2. Child–parent relations in S(G1).

if and only if f and g satisfy the following conditions:

f < Min(T 0 \ T p) and g ∈ Cut(T p\f) ∩ Cut(T 0\f) \ f.(3.1)

Proof. Under Assumptions 1 and 3, T c is a child of T p if and only if the following
conditions hold:

T c is a spanning tree different from T 0;(3.2)

f ′ = Min(T 0 \ T c) and g′ ∈ Cyc(T c∪f ′) ∩ Cut(T 0\f ′) \ f ′,(3.3)

T p = T c∪f ′\g′.(3.4)

We first show that f = f ′ and g = g′. From (3.2), (3.3), and (3.4), T c and T p are
different spanning trees. Assume to the contrary that f 6∈ T p; then T p \ f = T p.
Since T c is a spanning tree and f 6= g, we have g ∈ T p and T c = T p\f∪g = T p, which
is a contradiction. Thus f ∈ T p and g 6∈ T p. From (3.4), T p = {T p\f∪g}∪f ′\g′, and
hence f = f ′ and g = g′ must hold.

Conditions (3.2), (3.3), and (3.4) imply

f ∈ T p ∩ T 0 and g 6∈ T p ∪ T 0.(3.5)

On the other hand, under Assumption 2, (3.1) implies (3.5). Moreover, (3.1) and (3.5)
imply (3.2) and (3.4). All we have to do is to show that (3.1) and (3.3) are equivalent
under conditions (3.2), (3.4), and (3.5).

From the definition of T c and (3.5), T 0 \ T c = T 0 \ (T p\f∪g) = (T 0 \ T p)∪{f}.
Hence Min(T 0 \ T c) = Min(Min(T 0 \ T p)∪{f}). This implies that f = Min(T 0 \ T c)
if and only if f < Min(T 0 \ T p). Since T p and T c = T p\f∪g are distinct, g ∈
Cyc(T c∪f) is equivalent to g ∈ Cut(T p\f). Therefore, the second condition of (3.1)
is equivalent to the second condition of (3.3).

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 683

Let ek be the largest edge less than Min(T 0 \ T p). From Lemma 3.2, we can
find all children of T p if we know the edge sets Cut(T p\ej) ∩ Cut(T 0\ej) \ ej for
j = 1, 2, . . . , k. Consider the graph G = G1 defined in Figure 2.1 and T p = T 1 (see
Figure 3.2). In this case, e1 and e2 are the only edges smaller than Min(T 0 \ T 1) = e3
and

Cut(T 1\e2) ∩ Cut(T 0\e2) \ e2 = {e2, e4} ∩ {e2, e4} \ e2 = {e4},
Cut(T 1\e1) ∩ Cut(T 0\e1) \ e1 = {e1, e3, e4} ∩ {e1, e4, e5} \ e1 = {e4}.

Therefore, T 1 has only the two children, T 1\e2∪e4 and T 1\e1∪e4.
In the rest of paper, we abbreviate Cut(T p\ej)∩Cut(T 0\ej) \ ej as Entr(T p, ej)

on the grounds that any edge in Cut(T p\ej) ∩ Cut(T 0\ej) \ ej can be “entered”
into T p in place of ej . From the above consideration, we can construct the following
algorithm.

Algorithm all-spanning-trees(G);
input: a graph G with a vertex set {v1, . . . , vV } and an edge set {e1, . . . , eE};

begin
by using a depth-first search,

• find a depth-first spanning tree T 0 of G,
• sort vertices and edges to satisfy Assumptions 2, 3, 4, and 5;

output(“e1, e2, · · · , eV−1, tree,”) ;{output T 0}
find-children(T 0,V−1);

end.

Procedure find-children(T p,k);
input: a spanning tree T p and an integer k with ek < Min(T 0 \ T p);

begin
if k ≤ 0 then return;
for each g ∈ Entr(T p, ek) do begin

{output all children of T p not containing ek}
T c := T p\ek∪g;
output(“−ek,+g, tree,”);
find-children(T c,k−1); {find the children of T c}
output(“−g,+ek,”);

end;
find-children(T p,k−1); {find the children of T p not containing ek−1}

end.

In this algorithm, procedure find-children() finds all children of each spanning tree.
When it is called with two arguments T p and k, it finds all children of T p not con-
taining an edge ek. Whenever it finds such a child T c, it recursively calls itself again
to find all children of T c. In this stage, arguments are set to T c and k−1 because if
k > 1, then ek−1 becomes the largest edge less than Min(T 0 \ T c). If all children of T p

not containing ek have been found, it recursively calls itself again to find all children
of T p not containing ek−1. In this case, arguments are T p and k−1. Initially, algo-
rithm all-spanning-trees(G) calls find-children() with arguments T 0 and V−1, and
all spanning trees of G are found. Figure 3.3 shows the enumeration tree of spanning
trees in graph G1.

Theorem 3.3 (see [9]). Algorithm all-spanning-trees() outputs each spanning
tree exactly once.

684 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

T1

T2 T3

T4

T5

T6 T7

Fig. 3.3. Enumeration tree of spanning trees in G1.

Proof. From Lemma 3.2, every spanning tree different from T 0 is output once for
each time its parent is output. From Lemma 3.1, for any spanning tree T c other than
T 0, its parent always exists and is uniquely determined. Since T 0 is the ancestor of
all spanning trees, the algorithm outputs each spanning tree exactly once.

4. Manipulating data structures. In our algorithm, we define each state
when we find all children of T p not containing ek by a pair (T p, k). When we call
procedure find-children(T p, k), the current state becomes (T p, k), and if we find a
child T c of T p not containing ek, the state moves to (T c, k−1). After all children of
T p not containing ek have been found, the state moves to (T p, k−1). At the state
(T p, k), the entering edge set Entr(T p, ek) is required to output all children of T p

not containing ek. After the state moves to (T c, k−1) (or (T p, k−1)), the entering
edge set Entr(T c, ek−1) (or Entr(T p, ek−1)) is required for the first time. The key
point is finding an entering edge set Entr(T c, ek−1) (or Entr(T p, ek−1)) efficiently.
To construct an entering edge set efficiently, our implementation maintains the edge
sets Can(ej ;T

p, k) for j = 1, . . . , k defined below. Let T p be a spanning tree and k be
a positive integer with ek < Min(T 0 \ T p). For each edge ej (j = 1, . . . , k), we define
Can(ej ;T

p, k) by

Can(ej ;T
p, k) = Entr(T p, ej) \

k⋃
h=j+1

Entr(T p, eh).(4.1)

Here we use this notation in the sense that Can(ej ;T
p, k) is a set of “candidates”

of the entering edges Entr(T p, ej) for a leaving edge ej at the state (T p, k). We can
find Entr(T p, ek) very easily by maintaining Can(ej ;T

p, k) for j = 1, . . . , k because
Can(ek;T p, k) = Entr(T p, ek) from the definition in (4.1). When we find a child
T c of T p, we update Can(ej ;T

p, k) for j = 1, . . . , k to Can(ej ;T
c, k−1) for j =

1, . . . , k−1. On the other hand, after we have found all children of T p not containing
ek−1, we construct Can(ej ;T

p, k−1) for j = 1, · · · , k−1 from Can(ej ;T
p, k) for j =

1, . . . , k. The efficiency of our implementation depends on how to maintain Can(∗; ∗, ∗)
efficiently.

Figure 4.1 shows the states and edge sets Can(∗; ∗, ∗) during the enumeration of
all spanning trees of G1 in Figure 2.1. For example, at the initial state (T 0, 3),

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 685

, 3)(T0 (, 2)T0

T0

(, 1)T0

T1 (, 2)T1 (, 1)T1

:{}
:{
:{

e
e
e

1

2

3

e
e

4

5

}
}

:{
:{

e
e

1

2

}
}

e
e

5

4

e1 :{ e 4 }, e5

}
e
e

1

2

:{}
:{ e 4

e1 :{ }e 4

T2 (, 1)T2

:{}e1

T3

T4 (, 1)T4

T5

5e1 :{ }e
T6 T7

Fig. 4.1. Movement of the state and Can(∗; ∗, ∗).

Can(e1;T 0, 3) = ∅,
Can(e2;T 0, 3) = {e4},
Can(e3;T 0, 3) = {e5}.

At the succeeding states (T 1, 2) and (T 0, 2),

Can(e1;T 1, 2) = ∅,
Can(e2;T 1, 2) = {e4},

and

Can(e1;T 0, 2) = {e5},
Can(e2;T 0, 2) = {e4}.

Here we consider how to maintain such edge sets. First, we show that the initial
edge sets Can(ej ;T

0, V−1) for j = 1, . . . , V−1 can be found easily.
Lemma 4.1 (see [9]). Under Assumptions 1, 2, 3, and 4,

Can(ej ;T
0, V−1) = {e | e 6∈ T 0, ∂+e ≤ ∂+ej and ∂−e = ∂−ej}(4.2)

(j = 1, . . . , V−1)

Proof. Since Entr(T 0, ej) = Cut(T 0\ej) \ ej , Can(ej ;T
0, V−1) can be written

as

Can(ej ;T
0, V−1) =

[
Cut(T 0\ej) \ ej

]
\

V−1⋃
h=j+1

[
Cut(T 0\eh) \ eh

]
.

Under Assumptions 1 and 4, an edge e 6∈ T 0 belongs to Cut(T 0\ej) if and only if ∂−e
is a descendant of ∂−ej and ∂+e is an ancestor of ∂+ej relative to T 0. In addition,
under Assumption 3, for e 6∈ T 0, ej is the largest edge with e ∈ Cut(T 0\ej) if and
only if ∂−e = ∂−ej and ∂+e ≤ ∂+ej .

686 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

From Lemma 4.1, we can find Can(ej ;T
0, V−1) for j = 1, . . . , V−1 in O(V +E)

time by applying a depth-first search.
Lemma 4.2. For any spanning tree T p and any positive integer k with ek <

Min(T 0 \ T p), let g be an arbitrary edge in Entr(T p, ek) ∪ {ek}. Under Assumptions
1, 2, 3, and 4, the following relation holds for a spanning tree T = T p\ek∪g and an
edge ej with j < k:

Entr(T, ej) =

{
Entr(T p, ej) if ej ∈ A,
Entr(T p, ej) \ Entr(T p, ek) otherwise,

(4.3)

where A is the set of ancestors of the edge et in T 0 with ∂−et = ∂+g if it exists;
otherwise, A = ∅.

Proof. We note that if g ∈ Entr(T p, ek), then T is a child of T p and if g = ek,
then T = T p. Each descendant of ∂−ek relative to T p is a descendant of ∂−g rela-
tive to T, and vice versa. Therefore, for any ej ∈ A, Entr(T, ej) = Entr(T p, ej).
If ej 6∈ A is an ancestor of ek, then Entr(T, ej) ⊆ Entr(T p, ej). More precisely, for
any edge e∈Entr(T p, ej) such that ∂−e is a descendant of ∂−ek relative to T p, e
does not belong to Entr(T, ej), and the other edges obviously belong to Entr(T, ej).
That is, Entr(T, ej) = Entr(T p, ej) \ Entr(T p, ek). If ej is not an ancestor of ek,
Entr(T, ej) = Entr(T p, ej) = Entr(T p, ej) \ Entr(T p, ek) holds because Entr(T p, ej)
∩ Entr(T p, ek) = ∅.

Lemma 4.3 (see [9]). Let T p be a spanning tree and let k be a positive integer
with ek < Min(T 0 \ T p). Under Assumptions 1, 2, 3, and 4, for any edge g ∈
Can(ek;T p, k) ∪ {ek} and for a spanning tree T = T p\ek∪g, the following relation
holds:

Can(ej ;T, k−1) =

 Can(ej ;T
p, k) ∪ [Can(ek;T p, k) ∩ {e|∂+e<∂+g}]

if ∂−ej = ∂+g,
Can(ej ;T

p, k) if ∂−ej 6= ∂+g.
(4.4)

Proof. From the assumptions, for two edges e and f with e, f < Min(T 0 \ T p),
e is an ancestor of f relative to T 0 if and only if e is an ancestor of f relative to T p,
so we will omit the phrase “relative to T 0 (or T p)” for such edges. Let et be the edge
with ∂−et = ∂+g if it exists, and let A be the set of edges in T 0 which are ancestors
of et if et exists; otherwise, A = ∅. We prove (4.4) by using relation (4.3).

Case 1. If ej 6∈ A, then

Can(ej ;T, k−1)

= [Entr(T p, ej) \ Entr(T p, ek)]

\

 k−1⋃
h=j+1, eh 6∈A

(Entr(T p, eh)\Entr(T p, ek)) ∪
k−1⋃

h=j+1, eh∈A
Entr(T p, eh)

= Entr(T p, ej) \

k⋃
h=j+1

Entr(T p, eh) = Can(ej ;T
p, k).

Case 2. If ej ∈ A, then

Can(ej ;T, k−1)

= Entr(T p, ej) \

 k−1⋃
h=j+1, eh 6∈A

(Entr(T p, eh)\Entr(T p, ek)) ∪
k−1⋃

h=j+1, eh∈A
Entr(T p, eh)

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 687

= Can(ej ;T
p, k)

⋃Entr(T p, ej) ∩
Entr(T p, ek) \

k−1⋃
h=j+1, eh∈A

Entr(T p, eh)

 .
If ej = et, then there is no edge eh with j < h < k and eh ∈ A. Therefore,

Can(ej ;T, k− 1) = Can(ej ;T
p, k)

⋃
[Entr(T p, ej) ∩ Entr(T p, ek)]

= Can(ej ;T
p, k)

⋃[
Can(ek;T p, k) ∩ {e | ∂+e < ∂−et}

]
.

If ej is a proper ancestor of et, then Entr(T p, ej)∩Entr(T p, ek) ⊆ Entr(T p, et), and
et satisfies j < t < k and et ∈ A. Hence Can(ej ;T, k−1) = Can(ej ;T

p, k).
Lemma 4.3 guarantees that at most one of the sets Can(∗;T p, k) is updated when

we want to find all children of T c or all children of T p containing ek. In Figure 4.1,
when the state moves from (T 0, 3) to (T 0, 2), e1 is the edge such that ∂−e1=∂+e3 and
the following equations hold:

Can(e2;T 0, 2) = Can(e2;T 0, 3) = {e4}
Can(e1;T 0, 2) = Can(e1;T 0, 3) ∪

[
Can(e3;T 0, 3) ∩ {e | ∂+e<∂+e3}

]
= ∅ ∪

[
{e5} ∩ {e | ∂+e<v2}

]
= {e5}.

On the other hand, when the state moves from (T 0, 3) to (T 1, 2), no candidate edge
set is updated because there is no edge with ∂−et=∂

+e5:

Can(e2;T 1, 2) = Can(e2;T 0, 3) = {e4},
Can(e1;T 1, 2) = Can(e1;T 0, 3) = ∅.

In our implementation, we use the global variables candi(∗) and leave. At the
state (T p, k), variable candi(ej) (j=1, . . . , k) represents the edge set Can(ej ;T

p, k)
and variable leave represents the edge set {ej | j ≤ k and Can(ej ;T

p, k) 6= ∅}. We
can check in constant time whether or not the current spanning tree has children by
checking to see if leave 6= ∅. Suppose that each edge set is represented as an ascending
ordered list realized by a doubly linked list. We also use (i) a data structure for a
given graph G so that two incidence vertices of any edge are found in constant time
and (ii) a data structure for the initial spanning tree T 0 so that for any vertex v other
than the root, the unique edge e with ∂−e = v is found in constant time. Recall that
graph G satisfies the following assumption.

Assumption 5. For any two edges e, f 6∈ T 0, if e < f , then ∂+e ≤ ∂+f.
From this assumption, one can find the edge set Can(ek;T p, k) ∩ {e|∂+e<∂+g}

by searching the ordered list candi(ek) from the beginning. Thus we can complete
this in time proportional to the size of this edge set. Merging two edge sets can be
executed in time proportional to the sum of the size of two edge sets. Therefore,
it takes O(|Can(et;T

p, k)| + |Can(ek;T p, k) ∩ {e|∂+e<∂+g}|) time to update edge
sets candi(∗) when the current state (T p, k) goes to a succeeding state (T, k−1). If
candi(et) changes from empty to nonempty, then we must insert an edge et into leave.
Since leave is an ascending ordered list, we can complete it in O(|{e∈leave|e<et}|) =
O(|{ej |j < t and Can(ej ;T

p, k) 6= ∅}|) time.
On the other hand, when the state goes back from (T, k−1) to (T p, k), we must

reconstruct Can(∗;T p, k) from Can(∗;T, k−1). To do this, we must restore the edges
Can(ek;T p, k) ∩ {e|∂+e<∂+g} from candi(et) to candi(ek). In the Shioura–Tamura
algorithm [9], such a restoration is efficiently executed by recording Can(ek;T p, k) ∩

688 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

{e|∂+e<∂+g} before state (T p, k) goes to (T, k−1). However, this idea requires O(V E)
extra space since the depth of recursive calls of the algorithm is O(V). In the rest of
this section, we discuss our idea for reducing extra space.

Let Head(ej ;T
p, k) denote the head set of edges contained in Can(ej ;T

p, k).
Then we have the following result.

Lemma 4.4. Under Assumptions 1, 2, 3, and 4, all head sets Head(ej ;T
p, k) for

j = 1, . . . , k are mutually disjoint at any state (T p, k).
Proof. From Lemma 4.1, Head(ej ;T

0, V−1) = {∂−ej} at the initial state (T 0, V−1)
if Can(ej ;T

0, V−1) is nonempty. Thus the assertion is true at the initial state.
We assume that the lemma holds at state (T p, k) and prove that this holds at the

next state (T p\ek∪g, k−1), where g ∈ Can(ek;T p, k) ∪ {ek}. From Lemma 4.3, the
following relation holds:

Head(ej ;T, k−1) =

{
Head(ej ;T

p, k) ∪HS if ∂−ej = ∂+g,
Head(ej ;T

p, k) if ∂−ej 6= ∂+g,
(4.5)

where HS is the head set of all edges in Can(ek;T p, k) ∩ {e|∂+e<∂+g}. Because
HS ⊆ Head(ek;T p, k) and each Head(ej ;T

p, k) for j = 1, . . . , k−1 does not intersect
HS, all head sets Head(ej ;T

p, k−1) for j = 1, . . . , k−1 are mutually disjoint.
By Lemma 4.4, the head set HS of edges in Can(g;T p, k) ∩ {e|∂+e<∂+g} has

no intersection with any head set Head(ej ;T
p, k) (j = 1, . . . , k−1). Hence if we can

find HS before restoring candi(∗), it is easy to pick up the edges Can(ek;T p, k) ∩
{e|∂+e<∂+g} = {e ∈ Can(et;T, k−1)|∂−e ∈ HS} from Can(et;T, k−1).

In Figure 4.1, when the state goes back from (T 0, 1) to (T 0, 2), all edges
in Can(e2;T 0, 2) ∩ {e|∂+e<∂+e2} = {e4} must be restored from candi(e1) =
Can(e1;T 0, 1) = {e4, e5} to candi(e2). The head set of Can(e2;T 0, 2)∩{e|∂+e<∂+e2}
is equal to {v3}. In this case, e4 ∈ candi(e1) is put back into candi(e2) to reconstruct
Can(e2;T 0, 2).

Our implementation uses the global variables head(∗) to represent each
Head(ej ;T

p, k) for j=1, . . . , k at state (T p, k). Suppose that each head set is rep-
resented by a (not necessarily ascending) doubly linked list. From Lemma 4.4, we
require O(V) space for manipulating these head sets.

Now we describe two procedures for manipulating the data structures candi(∗),
leave, and head(∗) when the current state (T p, k) goes to a succeeding state (T, k−1)
or (T, k−1) goes back to (T p, k), respectively. The procedure for the first case is shown
below.

Procedure update-data-structure(ek,g);
{the current state (T p, k) goes to a succeeding state (T, k−1) = (T p\ek∪g, k−1)}
begin

et := the edge in T 0 with ∂−et = ∂+g if it exists, otherwise return;
move {e∈candi(ek)|∂+e < ∂+g} from candi(ek) to candi(et);
if candi(et) changes from empty to nonempty then insert et into leave;
HS := the head set of the edges in {e∈candi(ek)|∂+e < ∂+g};
for each maximal sublist of consecutive elements of HS in head(ek) do begin

record the first element of the sublist and its position in head(ek) on a stack;
delete the sublist from head(ek);
add this to the end of head(et);

end;
record the position of the first element of HS in head(et) on a stack;

end.

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 689

head(ek)

head(et)

head(ek)

head(et)

maximal sublists

A B C

the first element
 of maximal sublists

v1 v2

v1v1

v2

v2 v3

L 2

L 3

1L

v3

v3

stack

v2 B,

v1 A,

v3 C,

Fig. 4.2. Update of head(∗).

When the state changes from (T p, k) to (T, k−1), we must move the head set HS of
all edges in Can(ek;T p, k) ∩ {e|∂+e<∂+g} from head(ek) to head(et). At this time,
we do not move each element of HS one by one but move each maximal sublist of
consecutive elements of HS in head(ek) to head(et) as Figure 4.2. Then the extra
space for recording positions of such maximal sublists is O(V) in all because the
number of maximal sublists is at most |head(ek) \ HS| + 1, and head(ek) \ HS is
unchanged until the state comes back to (T p, k). It is easy to manipulate head(∗)
in the same time as candi(∗) because |HS| ≤ |Can(ek;T p, k) ∩ {e|∂+e<∂+g}|. Here
we omit details. Thus the time complexity of the procedure is O(|Can(et;T

p, k)| +
|Can(ek;T p, k) ∩ {e|∂+e<∂+g}|+ |{ej |j < t and Can(ej ;T

p, k) 6= ∅}|).
The second procedure restores data structures in the following way.

Procedure restore-data-structure(ek,g);
{the state (T p\ek∪g, k−1) goes back to (T p, k)}
begin

et := the edge in T 0 with ∂−et = ∂+g if it exists, otherwise return;
find HS by the record of the position of its first element in head(et);
delete HS from head(et);
move {e∈candi(et)|∂−e ∈ HS} from candi(et) to the beginning of candi(ek);
if candi(et) changes from nonempty to empty then delete et from leave;
move each sublist in HS to the correct place in head(ek)

by using records on a stack;
end.

Since we recorded the first element of head vertices which were added to head(et), we
can find HS in constant time. For each edge in candi(et), we can check in constant
time whether it is in HS by marking all elements of HS in advance. Hence we can re-
store candi(∗) inO(|Can(et;T, k−1)|) = O(|Can(et;T

p, k)|+|{e ∈ Can(ek;T p, k)|∂+e
<∂+g}|) time. The deletion of an edge from leave is completed in constant time. The

690 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

head set HS is returned from head(et) to head(ek) in time proportional to the number
of maximal sublists by the information of the places in head(ek). Therefore, procedure
restore-data-structure() takes O(|Can(et;T

p, k)| + |{e ∈ Can(ek;T p, k)|∂+e<∂+g}|)
time.

5. An optimal implementation and its analysis. Finally, we describe our
efficient implementation and analyze its time and space complexities. Our implemen-
tation is shown below.

Algorithm all-spanning-trees(G);
input: a graph G with a vertex set {v1, . . . , vV } and an edge set {e1, . . . , eE};

begin
by using a depth-first search, (simultaneously) execute

• find a depth-first spanning tree T 0 of G,
• sort vertices and edges to satisfy assumptions 2, 3, 4, and 5,
• for each ej∈T 0, candi(ej) := {e|e 6∈ T 0, ∂+e ≤ ∂+ej and ∂−e = ∂−ej},
• for each ej∈T 0, head(ej) := {∂−ej},
• leave := {ej ∈ T 0|candi(ej) 6= ∅};

output(“e1, e2, . . . , eV−1, tree,”); {output T 0}
find-children(); {of T 0}

end.

Procedure find-children(); {T p:current spanning tree}
begin

if leave = ∅ then return;
Q := ∅;
ek := the last entry of leave;
delete ek from leave;
while candi(ek) 6= ∅ do begin

g := the last entry of candi(ek);
delete g from candi(ek), and add g to the beginning of Q;
output(“−ek,+g, tree,”); {output T c := T p\ek∪g}
update-data-structure(ek,g);
find-children(); {find children of T c}
restore-data-structure(ek,g);
output(“−g,+ek,”); {reconstruct T p := T c∪ek\g}

end;
move all entries of Q to candi(ek);
update-data-structure(ek,ek);
find-children(); {find children of T p containing ek}
restore-data-structure(ek,ek);
add ek to the end of leave;

end.

Now we discuss the time complexity of our implementation. The next lemma is
useful for analyzing the time complexity.

Lemma 5.1 (see [9]). Suppose that T is a spanning tree and that k is a positive
integer with ek < Min(T 0 \ T). Under Assumptions 1, 2, 3, and 4, for any edge
gj ∈ {ej} ∪ Can(ej ;T, k) (j ≤ k), T ′ = T \ {e1, . . . , ek} ∪ {g1, . . . , gk} is a spanning
tree.

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 691

Proof. Let T j = T \ {ej , . . . , ek} ∪ {gj , . . . , gk} for j = 1, . . . , k. Obviously, T k is
a spanning tree. We suppose that T j is a spanning tree. If j ≥ 2, from Lemma 4.3,
Can(ej−1;T, j−1) ⊆ Can(ej−1;T j , j−1). Thus T j−1 = T j\ej−1∪gj−1 is a spanning
tree.

In algorithm all-spanning-tree(), the time required other than for calling find-
children() is O(V+E). At state (T p, k), O(# of children of T p not containing ek) time
is taken to execute procedure find-children() other than for the maintenance of data
structures. Now we consider the time complexities of the maintenance of data struc-
tures. From the discussion in section 4, it takes O(|Can(et;T

p, k)|+ |Can(ek;T p, k)∩
{e|∂+e<∂+g}|+ |{ej |j < t and Can(ej ;T

p, k) 6= ∅}|) time to maintain data structures
when the state changes between (T p, k) and (T p\ek∪g, k−1), where et is an edge with
∂−et=∂

+g. We consider the following two cases.
Case A. Maintenance for finding children of T c (i.e., g ∈ Can(ek;T p, k)).
Case B. Maintenance for finding children of T p containing ek (i.e., g = ek).
Note that Case A occurs exactly one time for each spanning tree T c other than

T 0 and that Case B occurs at most one time for each spanning tree T p and for each
edge ek ∈ {e|e1 ≤ e < Min(T 0 \ T p)}. In Case A, |Can(et;T

p, k)|+ |Can(ek;T p, k) ∩
{e|∂+e<∂+g}| is bounded by the number of children of T c not containing et. Moreover,
for each edge ej with j < t and Can(ej ;T

p, k) 6= ∅, there is a child of T c not containing
ej . Therefore, the time complexity in Case A is O(# of children of T c). In Case B,
|Can(ek;T p, k) ∩ {e|∂+e<∂+ek}| is bounded by the number of children of T p not
containing ek. From Lemma 5.1, T p has at least |{e∈Can(ek;T p, k)|∂+e<∂+ek}| ×
|Can(et;T

p, k)| grandchildren which contain neither ek nor et. Similarly, |{ej |j <
t and Can(ej ;T

p, k) 6= ∅}| is bounded by the number of grandchildren of T p not
containing ek. Thus the time complexity in Case B is

O(# of children of T p not containing ek) +
O(# of grandchildren of T p not containing ek).

We recall that procedure find-children() checks in constant time whether T p has
children. From the above discussion, the total required time of find-children() at
state (T p, k) is

O(# of children and grandchildren of T p not containing ek).

Thus the total time complexity of our implementation is O(N+V+E).
Finally, we consider the space complexity. At any state, the edge sets

candi(ej) (j = 1, . . . , V−1) have no intersection with each other, and neither do
the head sets head(ej) (j = 1, . . . , V−1). Thus we need O(V+E) space for candi

and O(V) space for head. Obviously, the cardinality of leave is at most V−1. As
we described in section 4, the size of the stack recording positions maximal sublists
of HS is O(V) in all. The total size of local variables Q in find-children() is O(E)
because each edge is stored in one of the global variables candi(∗) or local variables
Q. Hence the space complexity of our implementation is O(V+E).

Theorem 5.2. The time and space complexities of our implementation are
O(N+V+E) and O(V+E), respectively.

In this paper, we proposed an efficient algorithm for enumerating all spanning
trees. This is optimal in sense of time and space complexities.

Acknowledgment. We are greatly indebted to Professor Yoshiko T. Ikebe of
Science University of Tokyo for her kind and valuable comments on this manuscript.

692 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

REFERENCES

[1] D. Avis and K. Fukuda, A basis enumeration algorithm for linear systems with geometric
applications, Appl. Math. Lett., 4 (1991), pp. 39–42.

[2] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.

[3] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 65 (1996),
pp. 21–46.

[4] H. N. Gabow and E. W. Myers, Finding all spanning trees of directed and undirected graphs,
SIAM J. Comput., 7 (1978), pp. 280–287.

[5] S. Kapoor and H. Ramesh, Algorithms for enumerating all spanning trees of undirected and
weighted graphs, SIAM J. Comput., 24 (1995), pp. 247–265.

[6] T. Matsui, An algorithm for finding all the spanning trees in undirected graphs, Research
Report, Department of Mathematical Engineering and Information Physics, University of
Tokyo, Tokyo, 1993.

[7] G. J. Minty, A simple algorithm for listing all the trees of a graph, IEEE Trans. Circuit
Theory, CT-12 (1965), p. 120.

[8] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees, Networks, 5 (1975), pp. 237–252.

[9] A. Shioura and A. Tamura, Efficiently scanning all spanning trees of an undirected graph, J.
Oper. Res. Soc. Japan, 38 (1995), pp. 331–344.

[10] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp.
146–160.

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS∗

RUSSELL IMPAGLIAZZO† , RAMAMOHAN PATURI† , AND MICHAEL E. SAKS‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 693–707, June 1997 006

Abstract. The following size–depth tradeoff for threshold circuits is obtained: any threshold

circuit of depth d that computes the parity function on n variables must have at least n1+cθ−d edges,
where c > 0 and θ ≤ 3 are constants independent of n and d. Previously known constructions show
that up to the choice of c and θ this bound is best possible. In particular, the lower bound implies an
affirmative answer to the conjecture of Paturi and Saks that a bounded-depth threshold circuit that
computes parity requires a superlinear number of edges. This is the first superlinear lower bound
for an explicit function that holds for any fixed depth and the first that applies to threshold circuits
with unrestricted weights.

The tradeoff is obtained as a consequence of a general restriction theorem for threshold circuits
with a small number of edges: For any threshold circuit with n inputs, depth d, and at most kn
edges, there exists a partial assignment to the inputs that fixes the output of the circuit to a constant

while leaving bn/(c1k)c2θ
dc variables unfixed, where c1, c2 > 0 and θ ≤ 3 are constants independent

of n, k, and d.
A tradeoff between the number of gates and depth is also proved: any threshold circuit of depth

d that computes the parity of n variables has at least (n/2)1/2(d−1) gates. This tradeoff, which is
essentially the best possible, was proved previously (with a better constant in the exponent) for the
case of threshold circuits with polynomially bounded weights in [K. Siu, V. Roychowdury, and T.
Kailath, IEEE Trans. Inform. Theory, 40 (1994), pp. 455–466]; the result in the present paper holds
for unrestricted weights.

Key words. threshold circuits, circuit complexity, lower bounds

AMS subject classification. 68Q15

PII. S0097539792282965

1. Introduction. A fundamental problem in complexity theory is to prove lower
bounds on the size and the depth of general Boolean circuits for specific problems of
interest such as arithmetic operations, graph reachability, linear programming, and
satisfiability [11, 8, 5]. Unfortunately, current research has not begun to provide lower
bounds for such computationally significant problems in general models. For example,
the best known lower bound on the size of Boolean circuits over the standard basis
{AND, OR, NOT} for any problem in NP is a 4n− 4 bound on the parity function
[20]; over the basis of all two-input functions, the best known lower bound is 3n − 3
[4].

Since proving bounds for general circuits seems very difficult, it is interesting
to look at restricted families of circuits, for example, small-depth circuits over var-
ious bases. Some of these classes of circuits are interesting on their own. For ex-
ample, the size and the depth required for unbounded-fan-in circuits over the basis
{AND, OR, NOT} to compute a function f are the same as the number of processors
(up to a polynomial factor) and the parallel time (up to a constant factor) required
to compute f on a CREW PRAM model.

∗ Received by the editors August 1, 1992; accepted for publication (in revised form) July 11, 1995.
http://www.siam.org/journals/sicomp/26-3/28296.html
† Department of Computer Science and Engineering, University of California at San Diego, La

Jolla, CA 92093 (rimpagliazzo@ucsd.edu, paturi@cs.ucsd.edu).
‡ Department of Computer Science and Engineering, University of California at San Diego, La

Jolla, CA 92093 and Department of Mathematics, Rutgers University, New Brunswick, NJ 08903
(saks@math.rutgers.edu). The research of this author was supported in part by NSF grant CCR-
8911388, AFOSR grants 89-0512 and 90-0008, and DIMACS, which is funded by NSF grant STC-
91-19999.

693

694 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

Another basis of interest is the family of linear threshold gates. Circuits over
this basis, threshold circuits, have attracted interest as a model for neural networks
[14, 12] and because of the potential that hardware implementations of threshold cir-
cuits might become a reality [15]. Bounded-depth threshold circuits are also appealing
theoretically since they provide a surprisingly strong bounded-depth computational
model. Indeed, it has been shown that basic operations like addition, multiplication,
division, and sorting can be performed by bounded-depth polynomial-size threshold
circuits [7, 17, 22, 5, 2, 6, 24, 27, 13]. On the other hand, unbounded-fan-in bounded-
depth polynomial-size circuits over the standard basis (even when supplemented with
mod p gates for prime p) cannot compute majority [5, 21, 25]. Therefore, separating
the class of functions computable by bounded-depth polynomial-size threshold cir-
cuits, TC0, from those computable by polynomial-time Turing machines would be an
extremely interesting result in complexity theory.

In this paper, we give the first superlinear separation between bounded-depth
threshold circuits and P. More precisely, our main result (Theorem 1 and its refine-
ment, Theorem 3) says that for any threshold circuit with n inputs, depth d, and
kn edges, there exists a partial assignment to the inputs that fixes the output of

the circuit to a constant while leaving at least bn/(c1k)c2θ
dc variables unfixed, where

c1, c2 > 0 and θ ≤ 3 are constants. In particular, this implies (Corollary 2 and its
refinement, Corollary 4) that any depth-d circuit that computes the parity function

on n variables must have at least n1+cθ−d edges for the same θ and some constant
c > 0, proving the conjecture of Paturi and Saks [18]. (The value of θ obtained in this
paper is 1 +

√
2 = 2.414 . . ., as compared to the value (1 +

√
5)/2 = 1.618 . . . in the

upper bound given in [18].) In particular, any linear-size threshold circuit for parity
requires depth Ω(log logn), matching the upper bound given in [18].

The only lower bounds known previously for the number of edges needed to com-
pute the parity function were for depth-2 and depth-3 circuits with polynomial-size
weights. In [18], it is proved that Ω(n2/ log2 n) edges are required for depth-2 thresh-

old circuits and Ω(n1.2/ log5/3 n) edges are required for depth-3 circuits. These results
are obtained by showing that small-size depth-2 and depth-3 threshold circuits can
be approximated by low-degree rational functions. The results in this paper are more
general in that they hold for threshold circuits with arbitrary weights and all depths.
However, for the special cases mentioned above, our techniques yield weaker bounds.

Our proof uses a random restriction method as in [1, 9, 26, 10, 16]. However,
unlike previous proofs, our proof uses a distribution on the partial assignments that
depends on the structure of the circuit. The main restriction lemma (Lemma 3.1)
shows that for any family of linear threshold gates on a common set of n variables
with a total of δn edges, there is a partial assignment that leaves n/(4δ2 +2) variables
free and makes every gate in the family dependent on at most one variable. Given
a threshold circuit, this lemma can be applied to the set of gates at the first level in
order to reduce the depth of the circuit by 1. A straightforward induction argument
then yields the main result with θ = 3. A more careful induction argument improves
this to θ = 1 +

√
2.

In fact, the restriction lemma applies to a more general class of functions than
threshold functions, called generalized monotone functions. A Boolean function f(~x)

is generalized monotone if f(~x) = g(~x ⊕ ~b) for some monotone Boolean function g

and Boolean vector ~b, where ⊕ represents the componentwise addition mod 2. (These
functions are sometimes referred to in the literature as “unate.”)

We also prove analogous results for the number of gates in a small-depth threshold

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 695

circuit. We prove a lemma (Lemma 3.2) that is analogous to Lemma 3.1 and says
that for any family of N generalized monotone function gates on a common set of n
variables there is a partial assignment that leaves n/(N2 + 1) variables free and fixes
all of the functions. This result, together with a simple induction argument, proves
Theorem 2—that for any threshold circuit with n inputs, depth d, and N gates, there
exists a partial assignment to the inputs that fixes the output of the circuit to a
constant while leaving at least bn/2N2(d−1)c variables unfixed. This theorem easily
implies a (n/2)1/2(d−1) bound on the number of threshold gates required to compute
parity by a depth-d threshold circuit (Corollary 3). A similar bound (Ω(dn1/d/ log2 n))
was obtained previously in [23] in the special case of circuits with polynomial-size
weights. Beigel [3] obtains similar bounds for a more general circuit model that
allows any subexponential number of AND, OR, and NOT gates.

Section 2 contains definitions and some preliminary observations. In section 3, we
state the main restriction theorem with θ = 3 and show how it follows from Lemma
3.1. We also formalize the statement of Theorem 2 and show how it follows from
Lemma 3.2. These two lemmas are proved in the succeeding two sections. In section
6, a more careful argument is used to improve the value of θ in the main restriction
theorem to 1 +

√
2. In the last section, we present some related combinatorial results

and discuss some possible strengthenings.

2. Preliminaries. A threshold gate with fan-in n is an (n+ 1)-tuple g = (~w; b),
where ~w ∈ Rn and b ∈ R. wi is called the weight of variable i and b is called the
threshold value for the gate. The Boolean function fg : {0, 1}n → {0, 1} computed
by g is defined on input (x1, . . . , xn) = ~x ∈ {0, 1}n by fg(~x) = sgn(g(~x)), where the
weighted sum g(~x) is given by g(~x) = 〈~w, ~x〉−b =

∑n
i+1 wixi−b and sgn : R→ {0, 1}

is defined as

sgn(α) =

{
1 if α > 0,
0 otherwise.

A Boolean function f which is representable as fg for some threshold gate is called
a threshold function.

A threshold circuit T on n inputs is a directed acyclic graph with a designated
node (output) and exactly n source nodes, one for each input. Each nonsource node
is labeled by a threshold gate with its fan-in equal to the in-degree of the node. The
function fv(x1, . . . , xn) computed by the node v is obtained by functional composition
in the obvious way. The function fT : {0, 1}n → {0, 1} computed by T is the function
computed by the designated output node.

The gate complexity of T is defined as the number of nonsource nodes of T . The
edge complexity of T is defined as the number of edges in T .

The level of a node in a circuit T is defined inductively. The level of each source
node is 0. The level of any other node i is one more than the maximum level of its
immediate predecessors. The depth of T is the level of the output node. The circuit
T is layered if the inputs to each gate are from gates of level one less.

It will be convenient to fix a variable set X of cardinality n and define an as-
signment of X to be a function α : X → {0, 1}. Letting A(X) denote the set of
assignments, we then view an n-variable Boolean function f as a function from A(X)
to {0, 1}. We say that f depends on variable x ∈ X if there are two assignments α
and β that differ only in their values at x such that f(α) 6= f(β). The set of variables
that f depends on is denoted by S(f), and s(f) = |S(f)|.

696 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

As usual, we write α ≤ β if α(x) ≤ β(x) for all x ∈ X, and we denote the
complement of α by α. A monotone Boolean function h is one that satisfies h(α) ≤
h(β) whenever α ≤ β. The sum α⊕ β of two assignments is defined by (α⊕ β)(x) =
(α(x) + α(y)) mod 2. A Boolean function f is a generalized monotone function if
there exists an assignment β and a monotone function h such that f(α) = h(α⊕ β).
The assignment β is called an orientation of f . It is easy to see that any threshold
function is a generalized monotone function g and β is an orientation of g if and only
for each in variable x in S(f), β(x) = sgn(wx), where wx is the weight of the variable
x.

A partial assignment α of X is a function from a subset Y of X to {0, 1}. The
domain Y of α is denoted ∆(α), and elements x ∈ Y are said to be assigned or fixed
by α. The variables in the set Φ(α) = X − ∆(α) are said to be unassigned or free.
We denote by P(X) the set of all partial assignments of X. This set contains A(X);
if we wish to emphasize that an assignment α is in A(X), we say that it is a total
assignment. If Y is a subset of variables and α is a total assignment, then αY denotes
the partial assignment with domain Y and αY (x) = α(x) for x ∈ Y .

If α and β are partial assignments such that ∆(β) ⊆ ∆(α) and β(x) = α(x)
for x ∈ ∆(β), then we say that α extends or is an extension of β. If α and β are
partial assignments that fix disjoint sets of variables, then the partial assignment αβ
is the unique minimal extension of both α and β. For a Boolean function f and a
partial assignment α, the restriction of f induced by α, written as f(α), is the Boolean
function with variable set Φ(α) obtained by assigning the variables in ∆(α) according
to α.

An ordering of a set Y is a bijection Γ : [|Y |] → Y , where [k] denotes the set
{1, 2, . . . , k}. Given Γ, we refer to Γ(i) as the ith element of Y . Also, Γ(≤ i) denotes
the set {Γ(j) : j ≤ i and j ∈ [|Y |]} and Γ(≥ i) denotes the set {Γ(j) : j ≥ i and j ∈
[|Y |]}.

The following simple lemma states the main property of the generalized monotone
functions that is used in this paper.

Lemma 2.1. Let f be a nonconstant generalized monotone function on X with an
orientation β, and let Γ be an ordering of X. Then there exists a j ∈ {0, 1, . . . , n}
such that f(βΓ(≤j)) is identically 0 and f(β̄Γ(≥j)) is identically 1.

Proof. Label the elements of X as x1, . . . , xn according to the ordering Γ. Any
assignment α is identified with the vector (α(x1), . . . , α(xn)). Consider first the case
that f is monotone, i.e., β = 0n. Since f is not a constant function, we have f(0n) = 0
and f(1n) = 1. Let j be the least index such that f(0j1n−j) = 0 . This implies
that f(βΓ(≤j)) is identically 0. j ≥ 1 since f is not a constant function. Then
f(0j−11n−j+1) = 1, which implies that f(β̄Γ(≥j)) is identically 1 by monotonicity since
every total assignment that extends β̄Γ(≥j) is greater than or equal to 0j−11n−j+1.

In the case that f is not monotone, the desired result follows immediately by
applying the previous argument to the monotone function h(α) = f(α⊕ β).

One useful consequence of this lemma is the following.
Corollary 1. Any generalized monotone function f on n variables has a partial

assignment α that leaves at least bn/2c variables free, such that f(α) is constant.

3. Results. Our main result concerns the computational power of depth-d thresh-
old circuits with a small number of edges.

Theorem 1. Let C be an n-input threshold circuit with depth d and nk edges,
where k ≥ 1. Let f denote the function computed by C. Then there exists a partial

assignment α that leaves at least bn/(2(3k)3d−1−1)c variables free such that f(α) is a

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 697

constant function.
If f is the parity function, then f(α) is constant only if α is a total assignment.

Thus it follows from Theorem 1 that if C is a depth-d circuit with nk edges that

computes the parity function on n variables, then n < 2(3k)3d−1−1. This yields the
following result.

Corollary 2. Any threshold circuit of depth d that computes parity of n vari-

ables has at least n1+1/(3d−1−1)/(3
√

2) edges.
The key to proving Theorem 1 is the following.
Lemma 3.1 (main lemma). Let F be a collection of generalized monotone func-

tions on n variables and let δ = (1/n)
∑
f∈F s(f) (so the total support of the functions

is nδ). Then there exists a partial assignment α that leaves at least n/(4δ2 + 2) vari-
ables free such that for every f ∈ F , f(α) depends on at most one variable.

Proof of Theorem 1 from main lemma. We proceed by induction on the depth d of
the circuit. If d = 1, the circuit consists of a single threshold gate and the conclusion
follows from Corollary 1. For d > 1, let F be the family of functions corresponding
to the gates at depth 1. By hypothesis, the sum of the fan-ins of these gates is at
most nk. Lemma 3.1 implies that there is a partial assignment that leaves at least
n′ = n/(4k2 + 2) ≥ n/(6k2) variables free such that the induced restriction of each
function in F depends on at most one variable. We may then collapse the first level
of the circuit, i.e., if g is a gate at depth 2, then each input to g is either an input
to the circuit or the output of a gate at level 1, which after the restriction is equal to
a variable or its complement. Thus each gate g at depth 2 can now be reexpressed
as a threshold gate that depends only on the original inputs. (Note that g may have
several edges entering which depend on the same variable, but these can be combined
into one edge by adjusting the weights of g.) Hence we obtain a depth-(d− 1) circuit
C ′ on at least n′ variables with at most n′k′ edges, where k′ = 6k3 and nk = n′k′.
By the induction hypothesis, there exists a partial assignment to the variables of C ′

such that the number of free variables is at least⌊
n′

2(3k′)3d−2−1

⌋
≥
⌊

n/(6k2)

2(3(6k3))3d−2−1

⌋
≥
⌊

n

2(3k)3d−1−1

⌋
,

as required to prove the theorem.
Remark. Since the main lemma applies to generalized monotone functions, it

might appear that Theorem 1 could be generalized to apply to circuits whose gates
compute arbitrary generalized monotone functions. However, the proof fails to gen-
eralize because when the circuit is collapsed in the induction step, a level-2 gate may
have more than one input corresponding to the same variable. In that case, it is not
true that the gate computes a generalized monotone function of the original variables;
indeed, it is easy to see that every n-variable Boolean function can be represented as a
single generalized monotone function on 2n variables by identifying variables in pairs.

To bound the number of gates in a small-depth circuit instead of the number of
edges, we use the following (simpler) relative of Lemma 3.1.

Lemma 3.2. Let F be a collection of generalized monotone functions on n vari-
ables. Then there exists a partial assignment α that leaves at least bn/(|F |2 + 1)c
variables free such that for each f ∈ F , f(α) is a constant function.

This leads to the following result for threshold circuits with a small number of
gates. In this case, the result holds for generalized monotone functions.

698 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

Theorem 2. Let C be a circuit consisting of generalized monotone function gates
of depth d on n inputs with at most N gates. Then there exists a partial assignment
α leaving bn/2N2(d−1)c variables free such that fC(α) is constant.

Proof of Theorem 2 from Lemma 3.2. We proceed by induction on the depth
d of the circuit, as in the proof of Theorem 1. If d = 1, the circuit consists of a
single threshold gate and the conclusion follows from Corollary 1. For d > 1, consider
the family F of threshold functions corresponding to the depth-1 gates. Note that
|F | ≤ N − 1. We apply Lemma 3.2 to F to obtain a partial assignment that leaves
at least n′ = bn/(|F |2 + 1)c ≥ bn/N2c variables free such that the induced restriction
of each function in F is constant. After the restriction, the only nonconstant inputs
to the second-level gates are the inputs to the circuit. Thus the resulting circuit C ′

has depth at most d− 1, at most N gates, and at least n′ variables. By the induction
hypothesis, there exists a partial assignment of the variables of C ′ which leaves at
least bn′/2(N)2(d−2)c ≥ bn/2(N)2(d−1)c variables free (where the inequality follows
from the fact that for positive integers n, A, and B, bbn/Ac/Bc = bn/ABc).

Again using the fact that the only partial assignments that make the parity func-
tion constant are the total assignments, we deduce that the number N of gates of a
depth-d parity circuit satisfies 2N2(d−1) ≥ n, and thus we have the following.

Corollary 3. Any circuit of depth d consisting of generalized monotone function
gates that computes the parity of n inputs has at least (n/2)1/2(d−1) gates.

Slightly stronger bounds (removing the half from the exponent of the lower bound)
than those obtained in Theorem 2 and Corollary 3 were previously proved in [17, 23]
for the case of threshold circuits with polynomially bounded weights.

It remains to prove Lemmas 3.1 and 3.2, and these proofs constitute the main
part of the paper. The proofs of these lemmas are similar; both use a probabilistic
method to demonstrate the existence of the required partial assignment.

The proof of Lemma 3.2 is somewhat simpler, so we present the proof in the next
section. The proof of Lemma 3.1 will be presented in section 5.

4. Proof of Lemma 3.2. In the probabilistic arguments in this section and the
next, we adopt the following notational convention. Random variables are denoted
by placing a ˜ over the identifier. When we refer to a specific value that a random
variable may assume, we denote that value by an identifier without a .̃

We have a family F of Boolean generalized monotone functions on n variables
and seek a partial assignment that makes all of the functions constant. It will be
convenient to fix an indexing f1, f2, . . . , fm of the functions in F . Let βi be an
orientation for f i.

Fix an ordered partition Y1, Y2, . . . , Yq of the variable set X into q = m2 +1 blocks
of nearly equal size (each having bn/qc or bn/qc + 1 variables). The desired partial
assignment will be obtained by fixing the variables in all but one of the blocks. We
describe a randomized procedure P which produces such a partial assignment α̃ and
show that with positive probability f i(α̃) is constant for all i ∈ [m].

The procedure P is as follows. Let U be a symbol (meaning “unallocated”).
Choose uniformly at random a 1–1 function M̃ from [m]×[m] ∪ {U} to [q]. Intuitively,
we think of M̃ as “allocating” sets YM̃(i,1), . . . , YM̃(i,m) to function f i, while leaving

set YM̃(U) unallocated. In addition, choose a vector (t̃1, t̃2, . . . , t̃m) uniformly from

the set {0, 1, 2, . . . ,m}m. For each 1 ≤ i, j ≤ m, if j ≤ t̃i, then fix the variables in
YM̃(i,j) according to βi, and if j > t̃i, then fix the variables in YM̃(i,j) according to β̄i.
Thus all of the variables except those in the unique block YM̃(U) are fixed. Call the
resulting partial assignment α̃.

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 699

The key property of this distribution is given by the following lemma.
Lemma 4.1. For each h ∈ [m], the probability that fh(α̃) is not constant is at

most 1/(m+ 1).
It follows from this lemma that the probability that there exists i ∈ [m] with

f i(α̃) not constant is at most m/(m+ 1). Thus there exists a particular α such that
f i(α) is constant for all i ∈ [m], and this α satisfies the conclusion of Lemma 3.2.

Proof of Lemma 4.1. Fix h ∈ [m]. We define a modification Ph of the procedure P .
It will be easy to see that this modified construction produces the same distribution;
we then use the modified construction to verify the conclusion of the lemma.

The modified construction is as follows. Choose t̃′i ∈ {0, . . . ,m} uniformly at
random for i 6= h, and pick t̃′h ∈ {1, . . . ,m + 1} uniformly at random. Pick M̃ ′, a
random 1–1 function from [m]× [m] ∪ {(h,m+ 1)} to [q]. For i 6= h, assign variables
in YM̃ ′(i,j) as before, according to βi if j ≤ t̃′i and according to β̄i otherwise. For

j < t̃′h, assign the variables in YM̃ ′(h,j) according to βh, and for j > t̃′h, assign them

according to β̄h. We leave the variables in YM̃ ′(h,t̃′h) unassigned.
As in the original procedure, each gate is allocated m random sets of variables,

with one random set of variables being unallocated. For each gate, the number of
these sets fixed according to the orientation of the gate is randomly chosen between
0 and m, and the rest are set according to the negation of the orientation. Thus the
two distributions are identical. More formally, we could define M̃(i, j) = M̃ ′(i, j) for

i 6= h, M̃(h, j) = M̃ ′(h, j) for j < t̃h
′
, M̃(h, j) = M̃ ′(h, j + 1) for t̃′h < j ≤ m, and

M̃(U) = M̃ ′(h, t̃h
′
) and define t̃i = t̃′i for i 6= h, t̃h = t̃′h−1. Then the distributions on

M̃ and t̃ are identical to those in the original process, and all values M and t1, . . . , tm
of these random variables, if chosen by the original process, would determine the same
value of α as M ′ and the t′i’s do in the modified process.

Thus it will suffice to upper bound the probability that fh(α̃) is not constant
when α̃ is constructed according to Ph. For this, fix any value M ′ for M̃ ′, and fix
values t′i for t̃′i, i 6= h. This determines the setting of α̃ for all the variables in YM ′(i,j)
for i 6= h. We will show that, given the above information, the probability that fh is
nonconstant when restricted by α̃ is at most 1/m+ 1. Let g be fh restricted to the
variables in the blocks Yh,j , 1 ≤ j ≤ m+ 1, with the other variables set according to
α̃. (As we noted before, the value of α̃ at all other variables has been fixed by the
information that we are conditioning on.) g is a generalized monotone function with
the same orientation βh as fh.

For each block YM ′(h,j), fix an arbitrary order on variables of the block; extend
these orders to an ordering Γ on all the variables for g by ordering the blocks according
to j. Then we can apply Lemma 2.1 to obtain an index l such that the functions
g(βhΓ(≤l)) and g(β̄hΓ(≥l)) are both constant. Let 0 ≤ r ≤ m + 1 be such that Γ(l) ∈
YM ′(h,r), i.e., the lth variable is in the rth block allocated to fh. We claim that

g(α̃)—and hence fh(α̃)—is constant unless t̃′h = r, an event which happens with
probability 1/(m+ 1) (since t̃′h ∈ [m + 1] is chosen independently from M̃ ′ and the
t̃′i’s for i 6= h.). If t̃′h > r, all variables in blocks labeled r or less are fixed by α̃ to
βh, so α̃ extends βhΓ(≤l), so g(α̃) is constant. Similarly, if t̃′h < r, α̃ extends β̄hΓ(≥l)
and g(α̃) is constant. Thus with probability 1− 1/(m+ 1), fh(α̃) = g(α̃) is constant,
as required to complete the proof of Lemma 4.1 and hence of Lemma 3.2.

5. Proof of the main lemma. Again, index the functions in F as f1, . . . , fm

and let βi denote an orientation for f i. For each variable x, let Dx be the subfamily
of F that consists of those functions that depend on variable x and let δx = |Dx|.

700 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

Thus the quantity δ = (1/n)
∑
f∈F s(f) in the lemma is also the average of the δx’s.

We seek a partial assignment α that leaves at least n/(4δ2 +2) variables free and such
that for every f ∈ F , f(α) depends on at most one variable.

We will describe a randomized algorithm A(L), where L is a positive real param-
eter, for constructing a partial assignment α̃ and show that, for an appropriate choice
of L, α̃ has the desired properties with positive probability. The random procedure in
the previous proof can be viewed as associating a fraction m/(m2 +1) of the variables
to each function and then fixing the variables associated with a function in a way that
is determined by the orientation of the function. We will do something similar here;
however, here we will require that the set of variables assigned to f i is a subset of
S(f i), the set of variables on which f i depends.

Procedure A(L).

1. Partition the variables. (Intuitively, this step assigns each function a set of
variables in proportion to its support size, leaving a few variables unassigned.) Con-
struct a random partition of the variable set X into m+1 parts R̃, C̃1, C̃2, . . . , C̃m. For
each variable x, the block of the partition containing x is determined independently
according to the following rule. With probability 1/(1 +Lδx), x ∈ R̃. Otherwise, x is
assigned to block C̃ĩ(x), where ĩ(x) is the index of a uniformly chosen element of Dx.

In other words, for each f i ∈ Dx, the probability that x ∈ C̃i is L/(1 + Lδx). Let
r̃ = |R̃| and for each i ∈ [m], let c̃i = |C̃i|.

2. For each i ∈ [m], fix all of the variables in C̃i. (Intuitively, this step fixes
the variables assigned to each f i so that any particular function f i becomes constant
with a good probability.) For each i ∈ [m], choose b̃i uniformly at random from
{0, 1, . . . , c̃i}. Choose a subset B̃i of C̃i uniformly from all b̃i-element subsets of C̃i.
Let γ̃i denote the partial assignment which fixes the variables of B̃i according to βi

and fixes the variables of C̃i − B̃i according to β̄i. Let γ̃ be the union of the partial
assignments γ̃i, i ∈ [m].

3. Fix some of the variables in R̃. (Intuitively, this step cleans up the few
remaining functions that are still nonconstant so that they depend on at most one
variable.) For each i ∈ [m], let T̃i denote the set of variables on which f i(γ̃) depends,
and if T̃i 6= ∅, let T̃ ′i be an arbitrary subset containing all but one element of T̃i;
otherwise, T̃ ′i = ∅. Let α̃ be the restriction obtained from γ̃ by setting all the
elements of each T̃ ′i to 1.

The third step above ensures that the partial assignment α̃ has the required
property that f i(α̃) depends on at most one variable for each i. Thus it remains to
show that with positive probability the number φ̃ of variables left free is sufficiently
large.

The set of free variables of α̃ consists of those variables in R̃ that are not fixed
during step 3. Thus φ̃ ≥ r̃ −

∑m
i=1 max{0, |T̃i| − 1}. Our goal is to obtain a lower

bound on the expectation of φ̃. Note that E[r̃] =
∑
x∈X 1/(Lδx + 1).

The harder part is to upper bound the expectation of a(|T̃i|), where a(m) =
max{0,m− 1}. The key lemma of this section is the following.

Lemma 5.1. For each h ∈ [m],

E[a(|T̃h|)] ≤
1

L

∑
x∈S(fh)

1

Lδx + 1
.

Assuming this lemma for the moment, we have

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 701

E[φ̃] ≥ E[r̃]−
m∑
i=1

E[a(|T̃i|)]

≥
∑
x∈X

1

(Ldx + 1)
−

m∑
i=1

1

L

∑
x∈S(fi)

1

Lδx + 1

≥
∑
x∈X

1

(Ldx + 1)
− 1

L

∑
x∈X

∑
fi∈Dx

1

Lδx + 1

≥
∑
x∈X

1

(Ldx + 1)
−
∑
x∈X

δx/L

Lδx + 1

=
∑
x∈X

1− δx/L
Lδx + 1

≥ n
(

1− δ/L
Lδ + 1

)
,

where the last inequality follows from the convexity of the function λ(z) = (1 −
z/L)/(Lz + 1) for positive z and the fact (Jensen’s inequality) that the arithmetic
mean of a convex function on a set is at least the function evaluated at the mean
value of the set. Choosing the parameter L = 2δ to (approximately) maximize this
quantity, we will have that the expectation of φ̃ is at least n/(4δ2 + 2). Thus among
the partial assignments that could be produced by the procedure A(2δ), there must
exist a partial assignment that leaves at least n/(4δ2 + 2) variables free, as required
to prove the main lemma.

It remains to prove Lemma 5.1. Fix h ∈ [m]. Let χ̃h denote the random variable
which is 1 if the hth function is not fixed after step 2, i.e., if fh(γ̃) is not constant,
and is 0 if fh(γ̃) is constant. Clearly, T̃h is empty if χ̃h = 0, and otherwise T̃h is a
subset of the set Ũh = R̃ ∩ S(fh). Letting ũh denote the cardinality of |Ũh|, we have
a(|T̃h|) ≤ χ̃ha(ũh). Lemma 5.1 is an immediate consequence of the following Lemma.

Lemma 5.2. Let h ∈ [m] and let q be an arbitrary nonnegative-valued function
defined on the natural numbers. Then

E[χ̃hq(ũh)] ≤ 1

L
E[q(ũh + 1)].

Applying this lemma with q = a, the right-hand side of the inequality is just
E[ũh]/L, which by linearity of expectation is

1

L

∑
x∈S(fh)

P[x ∈ R̃] =
1

L

∑
x∈S(fh)

1

Lδx + 1
,

as required to prove Lemma 5.1.
Proof of Lemma 5.2. Let K̃ = C̃h ∪ Ũh, i.e., the set of variables on which fh

depends that are assigned to either C̃h or R̃. Let k̃ = |K̃|.
Fix a particular instantiation Ci and Bi for all i 6= h and let Ξ denote the event

that C̃i = Ci and B̃i = Bi for all i 6= h. Note that Ξ determines the value K of K̃
and also determines γ̃ on all variables in S(fh) − K̃. Thus let g be the function of
the variables in K determined by restricting fh according to γ̃i for each i 6= h.

702 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

We will show that for any such event Ξ,

E[χ̃hq(ũh) | Ξ] ≤ 1

L
E[q(ũh + 1) | Ξ].

The lemma then follows by deconditioning the expectation.
Given Ξ, the variables in K are partitioned into the two sets C̃h and Ũh as follows:

for x ∈ K, the conditional probability given Ξ that x is in R̃ (and hence in Ũh) is
p = 1/(L + 1), and otherwise (with probability L/(L + 1)) x is in C̃h. Furthermore,
these events are independently determined for each x ∈ K. Thus the conditional
distribution given Ξ of ũh is a binomial distribution B(k, p), i.e., P[ũh = i | Ξ] =(
k
i

)
pi(1− p)k−i. We have

E[χ̃hq(ũh) | Ξ] ≤
k∑
i=0

q(i)P[ũh = i | Ξ]P[g(γ̃) is not constant | Ξ ∧ (ũh = i)]

=

k∑
i=1

q(i)

(
k

i

)
pi(1− p)k−iP[g(γ̃) is not constant | Ξ ∧ (ũh = i)].

We next determine an upper bound for P[g(γ̃)is not constant | Ξ ∧ (ũh = i)].
The conditional distribution of C̃h, B̃h given Ξ ∧ (ũh = i) can be described as

follows. C̃h is a uniformly chosen (k− i)-element subset of K, b̃h is chosen uniformly
at random from {0, 1, . . . , k − i}, and B̃h is a uniformly chosen b̃h-element subset of
C̃h.

An alternative way to generate this same distribution on B̃h, C̃h is as follows:
Choose an order Γ̃ of the elements of K uniformly at random. Choose b̃h uniformly
from {0, 1, . . . , k − i}. Let B̃h be the first b̃h elements of K and let C̃h consist of B̃h
together with the last k − i − b̃h elements of K. It is clear that this distribution is
equivalent to the one described in the previous paragraph.

We want to determine the conditional probability that g is not constant given Ξ
and ũh = i. Lemma 2.1 applied to the function g and the ordering Γ̃ of K implies
that there is an index j̃ = j̃(Γ̃) in {0, 1, . . . , k} such that f(βh

Γ̃(≤j̃)) is identically 0

and f(β̄h
Γ̃(≥j̃)) is identically 1. Now observe that if b̃h is chosen to be greater than

or equal to j̃, then the partial assignment γ̃h is an extension of βh
Γ̃(≤j̃) and f(γ̃h) is

thus identically 0. Similarly, if b̃h is chosen to be less than j̃ − i, then the partial
assignment γ̃h is an extension of β̄h

Γ̃(≥j̃) and f(γ̃h) is thus identically 1. Thus the

only way that Ξ̃h can be nonzero is if b̃h satisfies j̃ − i ≤ b̃h ≤ j̃ − 1, and since b̃h is
chosen uniformly in the range {0, 1, . . . , k− i}, this happens with probability at most
i/(k − i + 1). We conclude that the conditional probability given Ξ ∧ (ũh = i) that
g is not constant is at most i/(k − i + 1). Using this probability, we can rewrite the
expression for the conditional expectation of χ̃hq(ũh) as

E[χ̃hq(ũh) | Ξ] ≤
k∑
i=1

q(i)

(
k

i

)
pi(1− p)k−i i

k − i+ 1

=
p

1− p

k∑
i=1

q(i)

(
k

i− 1

)
pi−1(1− p)k−(i−1)

=
p

1− p

k−1∑
i′=0

q(i′ + 1)

(
k

i′

)
pi
′
(1− p)k−i′

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 703

=
p

1− p

k−1∑
i′=0

q(i′ + 1)P[ũh = i′ | Ξ]

≤ p

1− pE[q(ũh + 1) | Ξ]

=
1

L
E[q(ũh + 1) | Ξ],

as required to complete the proof of Lemma 5.2, which in turn completes the proofs
of Lemma 5.1 and the main lemma.

6. An improved lower bound. In this section, we present refined versions of
Theorem 1 and Corollary 2 for which the parameter θ is reduced from 3 to 1 +

√
2.

In the following, our results are stated for layered threshold circuits. This is sufficient
for our purposes since an arbitrary threshold circuit can be converted to a layered one
that computes the same function by increasing the number of edges by a factor of at
most d.

To state the improvement of Theorem 1, define νi for i ≥ 1 to be the solution
to the recurrence equation νi+2 = 2νi+1 + νi with the initial conditions ν1 = 1 and
ν2 = 3. Note that the explicit expression for νi is of the form A(1+

√
2)i+B(1−

√
2)i,

where A 6= 0 and B are easily determined constants, and so νi ∈ Θ((1 +
√

2)i).

Theorem 3. Let C be a layered depth-d threshold circuit with n inputs d and nk
edges, where k ≥ 1. Let f denote the function computed by C. Then there exists a
partial assignment α that leaves at least bn/4(11k)νd−1c variables free such that f(α)
is a constant function.

As before, this theorem immediately implies a size–depth tradeoff for the parity
function.

Corollary 4. Any threshold circuit of depth d ≥ 2 that computes parity of n

variables has at least (n/11)
1+ 1

νd−1 edges.

To motivate the proof of Theorem 3, we first summarize the main inductive
argument of the previous proof. In each inductive step, the depth of the circuit
is decreased by 1 by fixing some variables in order to eliminate the first level. The
fraction of variables left unfixed after each step is inversely proportional to the square
of the parameter δ, the ratio of the number of edges at the first level to the number
of unfixed variables before the step. In analyzing the resulting recurrence, we upper
bounded the number of edges at the first level by the total number of edges in the
circuit.

The idea for improving this analysis is to substantially improve this upper bound
on the number of edges at the first level, thereby increasing the fraction of variables
that are known to survive each reduction step. It might seem that since the circuit
is arbitrary, we cannot do better than to bound the number of edges at the first level
by the total number of edges in the circuit. This is indeed true the first time the
reduction is applied. However, it turns out that for all subsequent reduction steps,
there is a better bound available. This is because the partial assignment produced
by A(L) in the proof of Lemma 3.1 has a very useful side effect: for each first-level
gate whose output is fixed to a constant by the partial assignment, the edges leaving
that gate can be eliminated from the circuit. We will show that with high probability
the number of edges in the second level of the circuit (which becomes the first level)
is decreased by a large amount. This allows us to keep a larger fraction of variables

704 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

unassigned when we recursively perform the reduction on the first level of the resulting
circuit.

To make this idea precise, we need a modified version of Lemma 3.1.
Lemma 6.1. Let F be a collection of generalized monotone functions on n vari-

ables, and suppose that each function f ∈ F has a nonnegative weight w(f). Let
δ = (1/n)

∑
f∈F s(f) ≥ 1 and W =

∑
f∈F w(f). Then assuming that n/(9δ)2 ≥ 4,

there exists a partial assignment α that leaves at least n/(9δ)2 variables free such that
1. for every f ∈ F , f(α) depends on at most one variable;
2.
∑

f :f(α) is not constant w(f) ≤W/8δ.
Note that when we apply this lemma in the inductive argument, the weights of

the functions will correspond to the out-degree of the corresponding gates. The point
is that the total number of edges remaining on the new first level can then be bounded
above by 1/8δ times the number of edges in the circuit.

Proof of Lemma 6.1. The proof is a modification of that of Lemma 3.1, and we
retain the notation of that lemma. We use procedure A(L) to generate the random
restriction α̃. We show the following:

1. With probability at least 1/2, the sum of the weights of the nonconstant
gates is at most 2W/L.

2. Assuming that n ≥ 16(1 + Lδ), then with probability exceeding 1/2, the
number φ̃ of free variables is at least n(1− 8δ/L)/2(Lδ + 1).

If we choose L = 16δ, then it follows immediately that with positive probability
α̃ satisfies the conclusion of the lemma, and thus such a partial assignment exists.

Thus it suffices to prove the two claims. For the first claim, using the notation of
Lemma 5.2, the sum of the weights of the nonconstant gates can be bounded above
by

m∑
h=1

χ̃hw(fh).

The expectation of a generic term of the sum can be bounded above by w(fh)/L
using Lemma 5.2 with q being the constant function w(fh). Thus the expectation of
the sum is at most W/L. By Markov’s inequality, with probability greater than 1/2,
the sum does not exceed 2W/L.

We now verify the second claim. As in the proof of the main lemma, we write
φ̃ ≥ r̃ − s̃, where s̃ denotes

∑m
i=1 max{0, |T̃i| − 1}.

Recall that r̃ is the cardinality of R̃. For each x ∈ X, let r̃x denote the random
variable that is 1 if x ∈ R̃ and is 0 otherwise; then r̃ =

∑
x∈X r̃x. Thus as observed

previously, E[r̃] =
∑
x∈X 1/(1 + Lδx), which is at least n/(1 + Lδ) by the convexity

of the function λ(y) = 1/(1 +Ly) for nonnegative y. Furthermore, since the variables
r̃x are mutually independent, we may use Chernoff-type bounds (see, e.g., Theorem
2 of [19]) to bound the probability that r̃ is less than half its mean: P[r̃ < E[r̃]/2] <
e−E[r̃]/8 = e−n/8(1+Lδ). In particular, for n ≥ 16(1 + Lδ), this is less than 1/4.

On the other hand, by Markov’s inequality, P[s̃ > 4E[s̃]] ≤ 1/4. Combining this
with the previous inequality, we get P[(r̃ ≥ E[r̃]/2)∧(s̃ ≤ 4E[s̃])] > 1/2, which implies
that P[r̃ − s̃ ≥ E[r̃]/2− 4E[s̃]] > 1/2. As noted above, E[r̃] ≥ n/(1 + Lδ), and from
Lemma 5.1, E[s̃] ≤

∑
x∈X(δx/L)/(Lδx + 1) which is at most (δ/L)/(Lδ + 1) (by the

concavity of the function λ(y) = (y/L)/(Ly + 1) for positive y). Substituting these
bounds, we get P[φ̃ ≥ n(1− 8δ/L)/2(Lδ + 1)] > 1/2.

Corollary 5. Let C be a depth-d layered threshold circuit with n inputs and
nk edges, where k ≥ 1. Let f denote the function computed by C. For i ≥ 0, let

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 705

ρi = (11k)νi+1−1. Then for each i ∈ {0, 1, . . . , d − 1} such that n ≥ 4ρi, there exists
a partial assignment αi that leaves at least n/ρi variables free such that f(αi) can be
computed by a layered circuit Ci of depth d− i.

Proof. For i = 0, we take αi to be the trivial restriction and C0 = C. For
i ∈ [d − 1], we will use Lemma 6.1 repeatedly to define partial assignments αi and
circuits Ci that have depth d− i. For Ci, we let ni denote the number of inputs, mi

denote the number of edges entering the level-1 gates, and Fi denote the family of
functions computed by the level-1 gates.

For 0 ≤ i ≤ d−2, we construct Ci+1 from Ci as follows: Apply Lemma 6.1 to the
set Fi with w(f) equal to the fan-out (in Ci) of the gate into level 2. Note that the
quantity δ in this application of the lemma is equal to mi/ni. Thus the hypothesis of
the lemma holds as long as ni ≥ 4(9(mi/ni))

2. Assuming this holds, then after the
application of the lemma, we can eliminate the level-1 gates to produce Ci+1.

It remains to verify that for 0 ≤ i ≤ d − 2, ni ≥ 4(9(mi/ni))
2 (so that Lemma

6.1 can be applied in constructing Ci+1) and ni+1 ≥ n/ρi+1 (which is the conclusion
of the corollary). From the conclusion of Lemma 6.1, ni+1 ≥ ni/(9(mi/ni))

2. Thus if
we define p0 = n and pi = n3

i−1/(9mi−1)2 for i ≥ 1, then the condition for applying
the lemma to construct Ci+1 for 0 ≤ i ≤ d − 2 is pi+1 ≥ 4 and the conclusion of
the lemma gives ni+1 ≥ pi+1. Furthermore, Lemma 6.1 implies that the number of
edges into the level-1 gates of Ci+1 is at most 1/8δ times the number of edges into the
level-2 gates of Ci, and hence mi+1 ≤ nkni/8mi. Squaring this and multiplying both
sides by 81pi+2ni, we obtain nin

3
i+1 ≤ (81nk/8)2pi+2pi+1. Substituting the bounds

ni+1 ≥ pi+1 and ni ≥ pi yields the following recurrence entirely in terms of pi: for
i ≥ 0,

pi+2 ≥
(

8

81nk

)2

p2
i+1pi ≥

(
1

11nk

)2

p2
i+1pi

with the initial conditions p0 = n and p1 ≥ n3/(9nk)2 ≥ n/(11k)2.
If we set li = log pi, we get a linear recurrence which is easily shown to imply

pi ≥ n/ρi. (Alternatively, this inequality can be verified directly by induction on i.)
Thus for each i ∈ {0, 1, . . . , d− 2}, if n ≥ 4ρi+1, then pi+1 ≥ 4 and ni+1 ≥ pi+1 ≥

n/ρi+1, as required.
We can now finish the proof of Theorem 3. If n < 4ρd−1 then we can choose any

total assignment for α and the conclusion holds trivially. Otherwise, we may apply
Corollary 5 with i = d − 1 to find a partial assignment αd−1 with at least n/ρd−1

unfixed variables such that the resulting restricted function can be computed by a
single threshold gate. Applying Corollary 1, we need to fix at most half the remaining
variables to make the function constant.

7. Final remarks and open problems. This paper gives the first nontrivial
lower bounds, for threshold circuits with arbitrary weights and any fixed depth, on the
number of edges and gates needed to compute an explicit function. The results show
that there are functions ε(d) and γ(d) such that any depth-d threshold circuit that
computes parity on n variables must have at least n1+ε(d) edges and nγ(d) gates. In
our case, the functions ε(d) and γ(d) tend to 0 as d tends to∞. An apparently difficult
challenge would be to prove an nε lower bound, with ε > 1 a constant independent of
depth, on the number of gates needed to compute some explicit function.

For each fixed depth, there is a gap between the bounds provided by our results
and the best constructions for parity circuits. For instance, for depth-2 circuits, the

706 R. IMPAGLIAZZO, R. PATURI, AND M. E. SAKS

result in this paper gives an Ω(n3/2) bound on the number of edges and an n1/2 bound
on the number of gates, while the best construction requires O(n2) edges and O(n)
gates. One way to reduce this gap is to improve Lemma 3.1 by increasing the number
of variables left free in the restrictions.

Problem 1. What is the smallest exponent r such that the conclusions of Lemmas
3.1 and 6.1 hold with n/(4δ2 + 2) replaced by Ω(n/δr)?

The best possible r is at least 1, as shown by the family F = {Ti : 0 ≤ i ≤ n} of
n-variable functions, where Ti is the function which is 1 on inputs with at least i 1’s.
If the conclusion holds for r = 1, then this would lead to an Ω(n2)-edge lower bound
for depth-2 circuits that compute parity and, more generally, to an improvement in
the value of θ in the main theorem to θ = (1 +

√
5)/2. This would exactly match

the value of θ in the known upper bounds. Note that for purposes of applications
to circuits, it would suffice to consider the above problem for families of threshold
functions rather than for generalized monotone functions.

It is interesting also to look for a similar improvement to Lemma 3.2.
Problem 2. What is the smallest exponent r such that the conclusion of Lemma

3.2 holds with n/(4δ2 + 2) replaced by Ω(n/|F |r)?
Again, the best lower bound on r we have is 1. Any value of r < 2 would give a

corresponding improvement in Theorem 2: the number of variables left free would be
Ω(n/Nr(d−1)).

For the special case of monotone functions, it is easy to show that Lemma 3.2 has
such a strengthening.

Proposition 1. Let F be a collection of monotone functions on n variables.
Then there exists a partial assignment α that leaves at least bn/(|F | + 1)c variables
free such that for each f ∈ F , f(α) is a constant function.

Proof. Fix an ordering Γ for the variables X and for each f ∈ F , let j(f) be
the index promised by Lemma 2.1. Order the functions as f1, f2, . . . , fm so that
j1 ≤ j2 ≤ · · · ≤ jm, where ji = j(fi), and let j0 = 0 and jm+1 = n + 1. Let i be an
index such that ji+1 − ji is maximum (and hence at least (n+ 1)/(m+ 1)) and let α
be the assignment which sets all variables in Γ(≤ ji) to 0 and Γ(≥ ji+1) to 1. Then
fh(α) is identically 0 for all h ≤ i and fh(α) is identically 1 for all h ≥ i + 1. The
number of free variables of α is ji+1 − ji − 1 ≥ bn/(m+ 1)c.

REFERENCES

[1] M. Ajtai, Σ1
1-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1–48.

[2] P. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related problems,
SIAM J. Comput., 15 (1986), pp. 994–1003.

[3] R. Beigel, When do extra majority gates help?, in Proc. 24th ACM Symposium on Theory of
Computing, ACM, New York, 1992, pp. 450–454.

[4] N. Blum, A Boolean function requiring 3n network size, Theoret. Comput. Sci., 28 (1984), pp.
337–345.

[5] R. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Vol. A, Elsevier Science Publishers, Amsterdam, New York, 1990, pp.
757–804.

[6] J. Bruck, and R. Smolensky, Polynomial threshold functions, AC0 functions and spectral
norms, in Proc. 31st IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1990, pp. 632–641.

[7] A. Chandra and L. Stockmeyer, Constant depth reducibility, SIAM J. Comput., 13 (1984),
pp. 423–439.

[8] P. E. Dunne, The Complexity of Boolean Functions, Academic Press, New York, 1988.
[9] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy,

Math. Systems Theory, 17 (1984), pp. 13–28.

SIZE–DEPTH TRADEOFFS FOR THRESHOLD CIRCUITS 707

[10] J. Håstad, Almost optimal lower bounds for small depth circuits, in Proc. 18th ACM Sympo-
sium on Theory of Computing, ACM, New York, 1986, pp. 6–20.

[11] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Com-
putation, Addison–Wesley, Reading, MA, 1979.

[12] G. E. Hinton, Connectionist learning procedures, Technical Report CMU-CS-87-115, Depart-
ment of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1987.

[13] T. Hofmeister, W. Hohberg, and S. Köhling, Some notes on threshold circuit and multi-
plication in depth 4, Inform. Process. Lett., 39 (1991), pp. 219–225.

[14] M. Minsky and S. A. Papert, Perceptrons, expanded ed., MIT Press, Cambridge, MA, 1988.
[15] C. Mead, Analog VLSI and Neural Systems, Addison–Wesley, Reading, MA, 1989.
[16] W. Maass, G. Schnitger, and E. D. Sontag, On the computational power of sigmoid versus

Boolean threshold circuits, in Proc. 32nd IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 767–776.

[17] I. Parberry and G. Schnitger, Parallel computation with threshold functions, J. Comput.
System Sci., 36 (1988), pp. 278–302.

[18] R. Paturi and M. E. Saks, Approximating threshold circuits by rational functions, Inform.
and Comput., 112 (1994), pp. 257–272.

[19] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, in Proc. 27th IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1986, pp. 10–18.

[20] N. P. Red’kin, A roof of minimality of circuits consisting of functional elements, Problemy
Kibernet., 23 (1973), pp. 83–102 (in Russian); Systems Theory Res., 23 (1973), pp. 85–103
(in English).

[21] A. A. Razborov, Lower bounds on the size of bounded depth networks over a complete basis
with logical addition, Mat. Zametki, 41 (1986), pp. 598–607 (in Russian); Math. Notes
Acad. Sci. USSR, 41 (1986), pp. 333–338 (in English).

[22] J. Reif, On threshold circuits and polynomial computations, in Proc. 2nd Structure in Com-
plexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1987, pp.
118–125.

[23] K. Siu, V. Roychowdury, and T. Kailath, Rational approximation techniques for analysis
of neural networks, IEEE Trans. Inform. Theory, 40 (1994), pp. 455–466.

[24] K.-Y. Siu, J. Bruck, and T. Kailath, Depth-efficient neural networks for division and related
problems, IEEE Trans. Inform. Theory, 39 (1993), pp. 946–956.

[25] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity,
in Proc. 19th ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 77–
82.

[26] A. C.-C. Yao, Circuits and local computation, in Proc. 21st ACM Symposium on Theory of
Computing, ACM, New York, 1989, pp. 186–196.

[27] A. C.-C. Yao, On ACC and threshold circuits, in Proc. 31st IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 619–627.

BOUNDS FOR THE COMPUTATIONAL POWER AND LEARNING
COMPLEXITY OF ANALOG NEURAL NETS∗

WOLFGANG MAASS†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 708–732, June 1997 007

Abstract. It is shown that high-order feedforward neural nets of constant depth with piecewise-
polynomial activation functions and arbitrary real weights can be simulated for Boolean inputs and
outputs by neural nets of a somewhat larger size and depth with Heaviside gates and weights from
{−1, 0, 1}. This provides the first known upper bound for the computational power of the former
type of neural nets. It is also shown that in the case of first-order nets with piecewise-linear activation
functions one can replace arbitrary real weights by rational numbers with polynomially many bits
without changing the Boolean function that is computed by the neural net. In order to prove these
results, we introduce two new methods for reducing nonlinear problems about weights in multilayer
neural nets to linear problems for a transformed set of parameters. These transformed parameters
can be interpreted as weights in a somewhat larger neural net.

As another application of our new proof technique we show that neural nets with piecewise-
polynomial activation functions and a constant number of analog inputs are probably approximately
correct (PAC) learnable (in Valiant’s model for PAC learning [Comm. Assoc. Comput. Mach., 27
(1984), pp. 1134–1142]).

Key words. neural networks, analog computing, threshold circuits, circuit complexity, learning
complexity

AMS subject classifications. 68Q05, 68Q15, 68T05, 92B20, 94C05

PII. S0097539793256041

1. Introduction. We examine in this paper the computational power and learn-
ing complexity of high-order analog feedforward neural nets N , i.e., of circuits with
analog computational elements in which certain parameters are treated as
programmable parameters. We focus on neural netsN of bounded depth in which each
gate g computes a function from Rm into R of the form 〈y1, . . . , ym〉 7→
γg(Qg(y1, . . . , ym)). We assume that, for each gate g, γg is some fixed piecewise-
polynomial activation function (also called response function). This function is applied
to some polynomial Qg(y1, . . . , ym) of bounded degree with arbitrary real coefficients,
where y1, . . . , ym are the real-valued inputs to gate g. One usually refers to the degree
of the polynomial Qg as the order of the gate g. It should be noted that (following
the conventions in the neural net literature) the order of a gate g does not refer to the
degree of its activation function γg. We will specify bounds for that degree separately.

The coefficients (“weights”) of Qg are the programmable variables of N whose
values may arise from some learning process.

We are primarily interested in the case where the neural net N computes (re-
spectively, learns) a Boolean-valued function. For that purpose we assume that the
real-valued output of the output gate gout of N is “rounded off.” More precisely,
we assume that there is an outer threshold Tout (which belongs to the programmable
parameters of N) such that the output of N is 1 whenever the real-valued output z of
gout satisfies z ≥ Tout and 0 if z < Tout. In some results of this paper we also assume
that the input 〈x1, . . . , xn〉 of N is Boolean valued. It should be noted that this does

∗Received by the editors September 22, 1993; accepted for publication (in revised form) July 12,
1995.

http://www.siam.org/journals/sicomp/26-3/25604.html
†Institute for Theoretical Computer Science, Technische Universität Graz, Klosterwiesgasse 32/2,

A-8010 Graz, Austria (maass@igi.tu-graz.ac.at).

708

BOUNDS FOR ANALOG NEURAL NETS 709

not affect the capacity of N to carry out, on its intermediate levels (i.e., in its “hidden
units”), computation over reals, whose real-valued results are then transmitted to the
next layer of gates.

Circuits of this type have rarely been considered in computational complexity
theory, and they give rise to the principal question whether these intermediate analog
computational elements will allow the circuit to compute more complex Boolean func-
tions than a circuit with a similar layout but digital computational elements. Note
that circuits with analog computational elements have an extra source of potentially
unlimited parallelism at their disposal, since they can execute operations on num-
bers of arbitrary bit-length in one step, and they can transmit numbers of arbitrary
bit-length from one gate to the next.

One already knows quite a bit about the special case of such neural netsN , where
each gate g is a linear threshold gate. In this case each polynomial Qg(y1, . . . , ym)
is of degree ≤ 1 (i.e., a weighted sum), and each activation function γg in N is the
Heaviside function (also called hard limiter) H defined by

H(y) =

{
1 if y ≥ 0,
0 if y < 0

(e.g., see [R], [Ni], [Mu], [MP], [PS], [HMPST], [GHR], [SR], [SBKH], [BH], [A], [B],
[L]). The analog versus digital issue does not arise in this case, since the output of
each gate is a single bit. Still, it requires some work to bound the potential power of
arbitrary weights (in the weighted sums) for the computation of Boolean functions on
such circuit. Since there are only finitely many Boolean circuit inputs, it is obvious
that only rational weights have to be considered. The key result for the analysis of
these circuits was the discovery of Muroga [Mu] that it is sufficient to consider for
a linear threshold gate with m Boolean inputs only weights α1, . . . , αm and a bias
α0 that are integers of size 2O(m logm). (This upper bound is optimal according to a
recent result of H̊astad [Has].) With the help of this a priori bound on the relevant
bit-length of weights, it is easy to show that the same arrays (Fn)n∈N of Boolean
functions Fn : {0, 1}n → {0, 1} are computable by arrays (Nn)n∈N of neural nets
of depth O(1) and size O(nO(1)) with linear threshold gates, no matter whether one
uses as weights arbitrary reals, rationals, integers, or elements of {−1, 0, 1}; see [Mu],
[CSV], [HMPST], [GHR], [MT]. The resulting class of arrays (Fn)n∈N of Boolean
functions is called (nonuniform) TC0 (see [HMPST], [J]).

In comparison, very little is known about upper bounds for the computational
power and the learning complexity of feedforward neural nets whose gates g em-
ploy more general types of activation functions γg. This holds in spite of the fact
that “real neurons and real physical devices have continuous input-output relations”
[Ho]. In the analysis of information processing in natural neural systems, one usu-
ally views the firing rate of a neuron as its current output. Such firing rates are
known to change between a few and several hundred spikes per second (see Chap. 20
in [MR]). Hence the activation function γg of a gate g that models such a neuron
should have a graded response. It should also be noted that the customary learning
algorithms for artificial neural nets (such as backward propagation [RM]) are based
on gradient descent methods which require that all gates g employ smooth activation
functions γg.

In addition, it has frequently been pointed out that it is both biologically plau-
sible and computationally relevant to consider gates g that pass to γg instead of
a weighted sum

∑m
i=1 αiyi + α0 some polynomial Qg(y1, . . . , ym) of bounded de-

gree, where y1, . . . , ym are circuit inputs or outputs of the immediate predecessors

710 WOLFGANG MAASS

of g. Such gates are called sigma-pi units or high-order gates in the literature (see
p. 73 and Chap. 10 in [RM]; see also [DR], [H], [PG], [MD]). From the point of
view of approximation theory there has been particular interest in the case in which
Qg(y1, . . . , ym) =

∑m
i=1 αi(yi − ci)2 measures a “distance” of its input 〈y1, . . . , ym〉

from some “center” 〈c1, . . . , cm〉 (the latter may be determined through a learning pro-
cess). Apparently Theorems 3.1 and 4.3 of this paper provide the first upper bounds
for the computational power and learning complexity of high-order feedforward neural
nets with non-Boolean activation functions.

The power of feedforward neural nets with other activation functions besides H
has previously been investigated in [RM, Chap. 10], [S1], [S2], [H], [MSS], [DS], [SS]. It
was shown in [MSS] for a very general class of activation functions γg that neural nets
(Nn)n∈N of constant depth and size O(nO(1)) with real weights of size O(nO(1)) and
output separation Ω(1/nO(1)) (between the unrounded circuit outputs for rejected and
accepted inputs) can compute only Boolean functions in TC0. It follows from a result
of Sontag [S2] that the assumptions on the weight size and separation are essential for
this upper bound: he constructed an arbitrarily smooth monotone function Θ (which
can be made to satisfy the conditions on γg in the quoted result of [MSS]) and neural
nets Nn of size 2 (!) with activation function Θ such that Nn can compute with
sufficiently large weights any Boolean function Fn : {0, 1}n → {0, 1} (hence Nn has
VC dimension 2n).

These results leave open the question about the computational power and learning
complexity of feedforward neural nets with arbitrary weights that employ “natural”
analog activation functions γg. For example there has previously been no upper bound
for the set of Boolean functions computable by analog neural nets with the very simple
piecewise-linear activation function π defined by

π(y) =

 0 if y ≤ 0,
y if 0 ≤ y ≤ 1,
1 if y ≥ 1.

([L] refers to a gate g with γg = π as a threshold logic element.) On the other
hand, there exist results which suggest that such upper bound would be nontrivial.
It has already been shown in [MSS] that constant size neural nets of depth 2 with
activation function π and small integer weights can compute more Boolean functions
than constant size neural nets of depth 2 with linear threshold gates (and arbitrary
weights). [DS] exhibits an even stronger increase in computational power for the case
of quadratic activation functions.

Hence even simple non-Boolean activation functions provide more computational
power to a neural net than the Heaviside function. However it has been an open
problem by how much they can increase the computational power (in the presence
of arbitrary weights). From the technical point of view, this difficulty in proving
an upper bound for the computational power was caused by the lack of an upper
bound on the amount of information that can be encoded in such a neural net by the
assignment of weights. For the case of neural nets with Heaviside gates, this upper
bound on the information capacity of weights is provided by the quoted result of
Muroga [Mu]. However, this problem is substantially more difficult for neural nets
with piecewise-linear activation functions. For this model it is no longer sufficient to
analyze a single gate with Boolean inputs and outputs. Even if the inputs and outputs
of the neural net are Boolean valued, the signals that are transmitted between the
hidden units are real valued. Furthermore, one can give no a priori bound on the

BOUNDS FOR ANALOG NEURAL NETS 711

precision required for such analog signals between hidden units, since one has no
control over the maximal size of weights in the neural net. Obviously a large weight
will magnify any imprecision. Note also that a computation on a multilayer neural
net of the type considered here involves products of weights from subsequent levels.
Hence, if some of the weights are arbitrarily large, one needs arbitrarily high precision
for the other weights.

The main technical contribution of this paper is two new methods for reducing
nonlinear problems about weights in multilayer neural nets to linear problems for
a transformed set of parameters. These two methods are presented in sections 2
and 3 of this paper. We introduce in section 2 of this paper a method that allows
us to prove an upper bound for the information capacity of weights for neural nets
with piecewise-linear activation functions (hence in particular for π). It is shown
that for the computation of Boolean functions on neural nets Nn of constant depth
and polynomially in n many gates (where n is the number of input variables) it is
sufficient to use as weights rational numbers with polynomially in n many bits. As
a consequence, one can simulate any such analog neural net by a digital neural net
of constant depth and polynomial size with the Heaviside activation function (i.e.,
linear threshold gates) and binary weights (i.e., weights from {0, 1}). This result also
implies that the VC dimension of Nn can be bounded above by a polynomial in n.

In section 3 we introduce another proof technique that allows us to derive the
same two consequences for neural nets with piecewise-polynomial activation functions
and nonlinear gate inputs Qg(y1, . . . , ym) of bounded degree. These results show that
in spite of the previously quoted evidence for the superiority of non-Boolean activation
functions in neural nets, there is some limit to their computational power as long as
the activation functions are piecewise-polynomial. On the other hand the polynomial
upper bound on the VC dimension of such neural nets may be interpreted as good
news: it shows that neural nets of this type can in principle be trained with a sequence
of examples that is not too long.

We conclude in section 4 with a positive result for learning on neural nets in
Valiant’s model [V] for probably approximately correct learning (PAC learning). We
consider the problem of learning on neural nets with a fixed number of analog (i.e.,
real-valued) input variables. We exploit here the implicit linearization of the require-
ments for the desired weight assignment that is achieved in the new proof techniques
from sections 2 and 3. In this way one can show that such neural nets are properly
PAC learnable in the case of piecewise-linear activation functions and PAC learnable
with a hypothesis class that is given by a somewhat larger neural net in the case
of piecewise-polynomial activation functions. Another application of our parameter
transformation method from section 2 to PAC learning has subsequently been given
by Koiran [K94].

The results of this paper were first announced in [M92], and an extended abstract
of these results appeared in [M93a]. Another result of [M93a], the construction of
neural nets whose VC dimension is superlinear in the number of weights, has subse-
quently been improved to apply for depth 3 also. A full version of that proof appears
in [M93b].

Definition 1.1. A network architecture (or neural net) N of order k is a labeled
acyclic directed graph 〈V,E〉. Its nodes of fan-in 0 are labeled by the input variables
x1, . . . , xn. Each node g of fan-in m > 0 is called a computation node (or gate) and is
labeled by some activation function γg : R → R and some polynomial Qg(y1, . . . , ym)
of degree ≤ k. Furthermore, N has a unique node of fan-out 0 which is called the

712 WOLFGANG MAASS

output node of N and which carries as an additional label a certain real number Tout

(called the outer threshold of N).
The coefficients of all polynomials Qg(y1, . . . , ym) for gates g in N and the outer

threshold Tout are called the programmable parameters of N . Assume that N has
w programmable parameters and that some numbering of these has been fixed. Then
each assignment α ∈ Rw of reals to the programmable parameters in N defines an
analog circuit Nα, which computes a function x 7→ Nα(x) from Rn into {0, 1} in
the following way: assume that some input x ∈ Rn has been assigned to the input
nodes of N . If a gate g in N has m immediate predecessors in 〈V,E〉 which output
y1, . . . , ym ∈ R, then g outputs γg(Qg(y1, . . . , ym)). Finally, if gout is the output gate
of N and gout gives the real-valued output z (according to the preceding inductive
definition), we define

Nα(x) :=

{
1 if z ≥ Tout,
0 if z < Tout,

where Tout is the outer threshold that has been assigned by α to gout.
Any parameters that occur in the definitions of the activation functions γg of N

are referred to as architectural parameters of N .
Definition 1.2. A function γ : R → R is called piecewise-polynomial if there

are thresholds t1, . . . , tk ∈ R and polynomials P0, . . . , Pk such that t1 < · · · < tk and
for each i ∈ {0, . . . , k} : ti ≤ x < ti+1 ⇒ γ(x) = Pi(x) (we set t0 := −∞ and
tk+1 :=∞).

If k is chosen minimal for γ, we refer to k as the number of polynomial pieces of
γ; to P0, . . . , Pk as the polynomial pieces of γ; and to t1, . . . , tk as the thresholds of
γ. Furthermore we refer to t1, . . . , tk together with all coefficients in the polynomials
P0, . . . , Pk as the parameters of γ. The maximal degree of P0, . . . , Pk is called the
degree of γ. If the degree of γ is ≤ 1 then we call γ piecewise-linear, and we refer to
P0, . . . , Pk as the linear pieces of γ.

If γ occurs as activation function γg of some network architecture N , then one
refers to the parameters of γ as architectural parameters of N .

Note that we do not require that γ is continuous (or monotone). It should also
be pointed out that according to Definition 1.1 the order k of a neural net does not
bound the degrees of the polynomial pieces of its activation functions. Finally, we
would like to mention that in contrast to [MSS], we do not require here any minimal
distance between the real-valued network outputs z and the outer threshold Tout.

Definition 1.3. Assume that N is an arbitrary network architecture with n
inputs and w programmable parameters and that S ⊆ Rn is an arbitrary set. Then
one defines the VC dimension of N over S in the following way:

VC dimension(N , S) := max{|S′||S′ ⊆ S has the property that for every function
F : S′ → {0, 1} there exists a parameter assignment
α ∈ Rw such that ∀ x ∈ S′(Nα(x) = F (x))}.

Remark 1.4. VC dimension is an abbreviation for Vapnik–Chervonenkis dimen-
sion. It has been shown in [BEHW] (see also [BH], [A]) that the VC dimension of a
neural net N essentially determines the number of examples that are needed to train
N (in Valiant’s model for PAC learning [V]). Sontag [S2] has shown that the VC di-
mension of a neural net can be drastically increased by using activation functions with
non-Boolean output instead of the Heaviside function H. The methods described in

BOUNDS FOR ANALOG NEURAL NETS 713

this paper were used in [M93a] to give the first proof of a polynomial upper bound for
the VC dimension of the here-considered neural nets. Subsequently [GJ] have shown
that such bounds for the VC dimension can also be derived more directly via Milnor’s
theorem. However their method does not yield upper bounds for the computational
power of these neural nets.

2. A bound for the information—capacity of weights in neural nets
with piecewise-linear activation functions. We consider for arbitrary a ∈ N the
following set of rationals with up to a bits before and after the comma:

Qa :=

{
r ∈ Q

∣∣∣∣ r = s ·
a−1∑
i=−a

bi · 2i for bi ∈ {0, 1}, i = −a, . . . , a− 1, and

s ∈ {−1, 1}
}
.

Note that for any r ∈ Qa : |r| ≤ 2a ≤ 22a ·min{|r′| | r′ ∈ Qa and r′ 6= 0}.
Theorem 2.1. Consider an arbitrary network architecture N of order 1 over a

graph 〈V,E〉 with n input nodes in which every computation node has fan-out ≤ 1.
Assume that each activation function γg in N is piecewise-linear with parameters
from Qa. Let w := |V |+ |E|+ 1 be the number of programmable parameters in N .

Then for every α ∈ Rw there exists a vector α′ = 〈 s1t , . . . ,
sw
t 〉 ∈ Qw with integers

s1, . . . , sw, t of absolute value ≤ (2w + 1)! 22a(2w+1) such that ∀x ∈ Qn
a (Nα(x) =

Nα′(x)). In particular Nα′ computes the same Boolean function as Nα.
Remark 2.2. The condition of Theorem 2.1 that all computation nodes in N have

fan-out ≤ 1 is automatically satisfied for d ≤ 2. For larger d one can simulate any
network architecture N of depth d with s nodes by a network architecture N ′ with
≤ s

s−1 · sd−1 ≤ 3
2s
d−1 nodes and depth d that satisfies this condition (replace each

computation node with fan-out k by k identical nodes with fan-out 1, starting from
the output layer). Hence this condition is not too restrictive for network architectures
of a constant depth d.

It should also be pointed out that there is in the assumption of Theorem 2.1 no
explicit bound on the number of linear pieces of γg (apart from the requirement that
its thresholds are from Qa). For example, these activation functions may consist of 2a

linear pieces (with discontinuous jumps in between). Furthermore γg is not required
to be monotone.

Finally, it should be mentioned that a corresponding version of Theorem 2.1 also
holds for rational numbers that do not have a finite binary representation, i.e., for all
rationals from Q′a := {r ∈ Q : r is the quotient of integers of bit-length ≤ a} instead
of Qa.

Remark 2.3. Previously, one had no upper bound for the computational power
(or for the VC dimension) of multilayer neural nets N with arbitrary weights and
analog computational elements (i.e., activation functions with non-Boolean output).
Theorem 2.1 implies that any N of the considered type can compute with the help
of arbitrary parameter assignments α ∈ Rw at most 2O(aw2 logw) different functions
from Qn

a into {0, 1}, hence VC dimension (N ,Qn
a) = O(w2(a + logw)) (see Remark

3.9 for a slightly better bound and for a related bound for the case of inputs from
Rn).

Furthermore Theorem 2.1 implies that one can replace all analog computations
inside N by digital arithmetical operations on not too large integers (the proof gives
an upper bound of O(wa+w logw) for their bit-length). It is well known that each of

714 WOLFGANG MAASS

these digital arithmetical operations (multiple addition, multiplication, division) can
be carried out on a circuit of small constant depth with O(aO(1) ·wO(1)) MAJORITY-
gates, hence also on a network architecture of depth O(1) and size O(aO(1) · wO(1))
with Heaviside gates and weights from {−1, 0, 1} (see [CSV], [PS], [HMPST], [GHR],
[SR], [SBKH]). Thus one can simulate for inputs from {0, 1}n any depth d network
architecture N as in Theorem 2.1 with arbitrary parameter assignments α ∈ Rw by
a network architecture of depth O(d) and size O(aO(1) · wO(1)) with Heaviside gates
and weights from {−1, 0, 1}. The same holds for inputs from Qn

a if they are given to
N in digital form.

The size of this simulating digital neural net with Heaviside gates is polynomial
in the number of real-valued parameters of the simulated analog neural net N but
exponential in the depth of N . Subsequent to [M93a], Koiran [K93] has proven a
complementary simulation result, where the size of the simulating digital neural net
is exponential in the number of real-valued parameters in N but subexponential in
the depth of N .

Proof of Theorem 2.1. In the special case where γg = H for all gates in N this
result is well known [Mu]. It follows by applying separately to each gate in N the
following result.

Lemma 2.4 (folklore; see [MT] for a proof). Consider a system Ax ≤ b of some
arbitrary finite number of linear inequalities in l variables. Assume that all entries in
A and b are integers of absolute value ≤ K.

If this system has any solution in Rl, then it has a solution of the form 〈 s1t , . . . ,
sl
t 〉,

where s1, . . . , sl, t are integers of absolute value ≤ (2l + 1)! K2l+1.
Sketch of the proof for Lemma 2.4. Let k be the number of inequalities in Ax ≤ b.

One writes each variable in x as a difference of two nonnegative variables and adds
to each inequality a “slack variable.” In this way one gets an equivalent system

(1) A′x′ = b, x′ ≥ 0,

over l′ := 2l + k variables for some k × l′ matrix A′. The k columns of A′ for the k
slack variables in x′ form an identity matrix. Hence A′ has rank k.

The assumption of the lemma implies that (1) has a solution over R. Hence by
Carathéodory’s theorem (Corollary 7.1i in [Sch]) one can conclude that there is also
a solution over R of a system

(2) A′′x′′ = b, x′′ ≥ 0.

Subsequent to the first publication of the techniques of this article in [M93a], Koiran
[K93] has proven a complementary result without assumption that the depth is
bounded but where one has to assume that the number of real-valued parameters
in the given neural net N is bounded by a constant where A′′ consists of k linearly
independent columns of A′. Since A′′ has full rank, (2) has in fact a unique solution
that is given by Cramer’s rule: x′′j = det(A′′j)/ detA′′ for j = 1, . . . , k, where A′′j
results form A′′ by replacing its jth column by b. Since all except up to 2l columns
of A′′ contain exactly one 1 and else only 0’s, we can bring each of the matrices A′′,
A′′j by permutations of rows and columns into a form

B =

(
C 0

D I

)
,

where C is a square matrix with 2l+1 rows. Hence the determinant of B is an integer
of absolute value ≤ (2l + 1)! K2l+1.

BOUNDS FOR ANALOG NEURAL NETS 715

The difficulty of the proof of Theorem 2.1 lies in the fact that with analog com-
putational elements one can no longer treat each gate separately, since intermediate
values are no longer integers. Furthermore, the total computation of N can in general
not be described by a system of linear inequalities, where the w variable parameters
of N are the variables in the inequalities (and the fixed parameters of N are the
constants). This becomes obvious if one just considers the composition of two very
simple analog gates g1 and g2 on levels 1 and 2 of N , whose activation functions γ1, γ2

satisfy γ1(y) = γ2(y) = y. Assume x =
∑n
i=1 αixi + α0 is the input to gate g1, and

g2 receives as input
∑m
j=1 α

′
jyj + α′0, where y1 = γ1(x) = x is the output of gate g1.

Then g2 outputs α′1 · (
∑n
i=1 αixi + α0) +

∑m
j=2 α

′
jyj + α′0. Obviously this term is not

linear in the weights α′1, α1, . . . , αn. Hence if the output of gate g2 is compared with
a fixed threshold at the next gate, the resulting inequality is not linear in the weights
of the gates in N .

If the activation functions of all gates in N were linear (as in the example for g1

and g2), then there would be no problem because a composition of linear functions is
linear. However for piecewise-linear activation functions it is not sufficient to consider
their composition, since intermediate results have to be compared with boundaries
between linear pieces of the next gate.

We introduce in this paper a new method in order to handle this difficulty. We
simulate Nα by another neural net N̂ [c]β (which one may view as a “normal form”
for Nα) that uses the same graph 〈V,E〉 as N but different activation functions
and different values β for its variable parameters. The activation functions of N̂ [c]

depend on |V | new parameters c ∈ R|V |, which we call scaling parameters in the
following. Although this new neural net has the disadvantage that it requires |V |
additional parameters c, it has the advantage that we can choose in N̂ [c] all weights
on edges between computation nodes to be from {−1, 0, 1}. Since these weights from
{−1, 0, 1} are already of the desired bit-length, we can treat them as constants in the
system of inequalities that describes computations of N̂ [c]. Therefore, all variables
that appear in the inequalities that describe computations of N̂ [c] (the variables for
weights of gates on level 1, the variables for the biases of gates on all levels, the
variable for the outer threshold, and the new variables for the scaling parameters c)
appear only linearly in those inequalities. Hence we can apply Lemma 2.4 to the
system of inequalities that describes the computations of N̂ for inputs from Qn

a and
thereby get a rational solution β′, c′ for all variable parameters in N̂ . Finally we

observe that we can transform N̂ [c′]β
′

back into the original neural net N with an
assignment of rational numbers α′ to all variable parameters in N .

We will now fill in some of the missing details. Consider the gate function γ
of an arbitrary gate g in N . Since γ is piecewise-linear, there are fixed parameters
t1 < · · · < tk, a0, . . . , ak, b0, . . . , bk in Qa (which may be different for different gates
g) such that with t0 := −∞ and tk+1 := +∞ one has γ(x) = aix+ bi for x ∈ R with
ti ≤ x < ti+1; i = 0, . . . , k. For an arbitrary scaling parameter c ∈ R+ we associate
with γ the following piecewise-linear activation function γc: the thresholds of γc are
c · t1, . . . , c · tk, and its output is γc(x) = aix+ c · bi for x ∈ R with c · ti ≤ x < c · ti+1;
i = 0, . . . , k (set c · t0 := −∞, c · tk+1 := +∞). Thus for all reals c > 0 the function
γc is related to γ through the equality: ∀x ∈ R(γc(c · x) = c · γ(x)).

Assume that α ∈ Rw is some arbitrarily given assignment to the variable pa-
rameters in N . We transform Nα into a normal form N̂ [c]β , in which all weights on
edges between computation nodes are from {−1, 0, 1} such that ∀x ∈ Rn(Nα(x) =
N̂ [c]β(x)). We proceed inductively from the output level towards the input level.

716 WOLFGANG MAASS

Assume that the output gate gout of Nα receives as input
∑m
i=1 αiyi + α0, where

α1, . . . , αm, α0 are the weights and the bias of gout (under the assignment α) and
y1, . . . , ym are the (real-valued) outputs of the immediate predecessors g1, . . . , gm of
g. For each i ∈ {1, . . . ,m} with αi 6= 0 such that gi is not an input node we replace

the activation function γi of gi by γ
|αi|
i , and we multiply the weights and the bias of

gate gi with |αi|. Finally we replace the weight αi of gate gout by

sgn(αi) :=

{
1 if αi > 0,
−1 if αi < 0.

This operation has the effect that the multiplication with |αi| is carried out before the
gate gi (rather than after gi, as done in Nα) but that the considered output gate gout

still receives the same input as before. The analogous operation is then inductively
carried out for the predecessors gi of gout (note, however, that the weights of gi are
no longer the original ones from Nα, since they have been changed in the preceding
step). We exploit here the assumption that each gate has fan-out ≤ 1.

Let β consist of the new weights on edges adjacent to input nodes, the resulting

biases of all gates in N̂ , and the (unchanged) outer threshold Tout. Let c consist of
the resulting scaling factors at the gates of N . Then we have ∀x ∈ Rn(Nα(x) =
N̂ [c]β(x)).

Finally we have to replace all strict inequalities of the form “s1 < s2” that are
needed to describe the computation of N̂ [c]β for some input x ∈ Qn

a by inequalities
of the form “s1 + 1 ≤ s2”. This concerns inequalities of the form s < c · ti, where
c · ti is the threshold of some gate g in N̂ [c] and s is its gate input, inequalities
of the form s < Tout where s is the output of gout, and inequalities of the form
0 < c for each scaling parameter c. In order to achieve this stronger separation it is
sufficient to multiply all parameters β, c in N̂ by a sufficiently large constant K. For
simplicity we write again β, c for the resulting parameters. We now specify a system
Az ≤ b of linear inequalities in w variables z that play the role of the w parameters
β, c in the computations of N̂ [c]β for all inputs x from Qn

a . The constants of these
inequalities are the coordinates of all inputs x ∈ Qn

a , the parameters of the activation
functions γ in N , the constants −1, 1 that occur in N̂ as weights of edges between
computation nodes, and the constants 1 that arise from the replacement of strict
inequalities “s1 < s2” by “s1 + 1 ≤ s2.”

For each fixed input x ∈ Qn
a one places into the system Az ≤ b up to two linear

inequalities for each gate g in N . These inequalities are defined by induction on the
depth of g. If g has depth 1, t1 < · · · < tk are the thresholds of its activation functions
γ in N , and its input

∑n
i=1 αixi + α0 in N̂ [c]β satisfies c · tj ≤

∑n
i=1 αixi + α0 and∑n

i=1 αixi+α0 +1 ≤ c ·tj+1, then one adds these two inequalities to the system (more
precisely, if j = 0 or j = k then only one inequality is needed since the other one is
automatically true).

If g′ is a successor gate of g, it receives from g for some specific j ∈ {0, . . . , k}
an output of the form aj · (

∑n
i=1 αixi + α0) + c · bj (where c is the scaling factor of

gate g). Note that this term is linear, since aj , bj are fixed parameters of gate g′.
In this way one can express for circuit input x the input I(x) of gate g′ as a linear
term in the weights, biases, and scaling factors of its preceding gates. (We exploit
here that in N̂ the weight on the edge between g′ and each predecessor gate is a fixed
parameter from {−1, 0, 1}, not a variable.) If this input I(x) satisfies in N̂ [c]β the
inequalities c′ · t′j′ ≤ I(x) and I(x) + 1 ≤ c′ · t′j′+1 (where t′1 < · · · < t′k′ are the

thresholds of g′ in N , and c′ is the scaling factor of g′ in N̂), then one adds these two

BOUNDS FOR ANALOG NEURAL NETS 717

inequalities to the system Az ≤ b (respectively, only one if j′ = 0 or j′ = k′). Note
that all resulting inequalities are linear, in spite of the fact that the system contains
variables for the biases of all gates. It should also be pointed out that the definition
of this system of inequalities is more involved than it may first appear, since the sum
of terms I(x) depends on the chosen inequalities for all predecessor gates (e.g., on j in
the example above). Hence a precise definition has to be similar to that of the proof
of Theorem 3.1.

It is clear that the resulting system Az ≤ b has a solution in Rw, since z := 〈β, c〉
is a solution. Hence we can apply Lemma 2.4, which provides a solution z′ of the
form 〈 sit 〉i=1,...,w with integers s1, . . . , sw, t of absolute value ≤ (2w + 1)! 22a(2w+1).

Let N̂ [c′]β
′

be the neural net N̂ with this new assignment 〈β′, c′〉 := z′ of “small”

parameters. By definition we have ∀x ∈ Qn
a(Nα(x) = N̂ [c′]β

′
). We show that

one can transform this neural net N̂ [c′]β
′

into a net N β′ with the same activation
functions as Nα but a new assignment α′ of rational parameters (that can easily be
computed from β′, c′). This transformation proceeds inductively from the input level

towards the output level. Consider some gate g on level 1 in N̂ that uses (for the new
parameter assignment c′) the scaling factor c > 0 for its activation function γc. Then

we replace the weights α1, . . . , αn and bias α0 of gate g in N̂ [c′]β
′

by αi
c , . . . ,

αn
c ,

α0

c

and γc by γ. Furthermore if r ∈ {−1, 0, 1} was in N̂ , the weight on the edge between
g and its successor gate g, we assign to this edge the weight c ·r. Note that g′ receives
in this way from g the same input as in N̂ [c′]β

′
(for every circuit input). Assume now

that α′1, . . . , α
′
m are the weights that the incoming edges of g′ get assigned in this way,

that α′0 is the bias of g′ in the assignment z′ = 〈β′, c′〉, and that c′ > 0 is the scaling

factor of g′ in N̂ [c′]β
′
. Then we assign the new weights

α′1
c′ , . . . ,

α′m
c′ and the new bias

α′0
c′ to g′, and we multiply the weight on the outgoing edge from g′ by c′.

By construction we have that ∀x ∈ Rn(Nα′(x) = N̂ [c′]β
′
(x)); hence ∀x ∈

Qn
a(Nα′(x) = Nα(x)).

3. Upper bounds for neural nets with piecewise-polynomial activation
functions.

Theorem 3.1. Consider an arbitrary array (Nn)n∈N of high-order network ar-
chitectures Nn of depth O(1) with n inputs and O(nO(1)) gates in which the gate
function γg of each gate g is piecewise-polynomial of degree O(1) with O(nO(1)) poly-
nomial pieces, with arbitrary reals as architectural parameters.

Then there exists an array (N̂n)n∈N of first-order network architectures N̂n of
depth O(1) with n inputs and O(nO(1)) gates such that each gate g in N̂n uses as
its activation function the Heaviside function H (i.e., g is a linear threshold gate)
and such that for each assignment αn of arbitrary reals to the programmable param-
eters in Nn there is an assignment α̃n of O(nO(1)) numbers from {−1, 0, 1} to the

programmable parameters in N̂n such that ∀x ∈ {0, 1}n(Nαn
n (x) = Ñ α̃n

n (x)).
Hence for any assignment (αn)n∈N of real-valued parameters the Boolean func-

tions that are computed by (Nαn
n)n∈N are in TC0. In particular, VC dimension

(Nn, {0, 1}n) = O(nO(1)).
Remark 3.2.
(a) The proof of Theorem 3.1 shows that one can replace in its claim the Boolean

domain {0, 1}n by {−K, . . . ,K}n for any K ∈ N.
(b) Theorem 3.1 yields no bound for the computational power of neural nets with

the activation function σ(y) = 1/(1 + e−y). However it provides bounds for

718 WOLFGANG MAASS

the case where the activation functions are spline approximations to σ of
arbitrarily high degree d, provided that d ∈ N is fixed.

Proof of Theorem 3.1. This proof is quite long and involved, even for the simplest
nonlinear case where the activation functions consist of two polynomial pieces of degree
2. Note that in contrast to the model in [SS] the magnitude of the given weights in
Nn may grow arbitrarily fast as a function of n.

We first note that one can eliminate all nonlinear polynomials Qg as arguments
of activation functions by introducing intermediate gates with linear gate inputs and
quadratic activation functions. One exploits here the obvious fact that y · z = 1

2 ((y+
z)2 − y2 − z2). In this way one can transform the given network architectures into
first-order network architectures which still satisfy the assumptions of Theorem 3.1.
One should note, however, that this transformation does not affect the degrees of
polynomial pieces in the activation functions.

Subsequently we transform each given network architecture Nn into a normal
form N̂n of constant depth and size O(nO(1)) in which all gates g have fan-out ≤ 1
and in which all gates g use as activation functions γg piecewise-polynomial functions
of the following special type: γg consists of up to three pieces, of which at most one is
not identically 0 and in which the nontrivial piece outputs the constant 1 or computes
a power y 7→ yk (where k ∈ N satisfies k = O(1)). The preceding “normalization” of
activation functions is easy to achieve, since every activation function of a gate in Nn
can be written as linear combination of activation functions of this normalized type.
The transformation from Nn to N̂n can be carried out in such a way that for every
assignment αn of real values to the programmable parameters of Nn there exists an
assignment β

n
of real numbers to the programmable parameters of N̂n such that

∀x ∈ {0, 1}n(Nαn
n (x) = N̂ β

n
n (x)),

and such that any strict inequality “s1 < s2” that arises in the computation of N̂ β
n

n

for some input x ∈ {0, 1}n (when one compares some subresult of that computation
with a threshold of the activation function of some gate or with the outer threshold

of N̂ β
n

n) can be replaced by the stronger inequality “s1 + 1 ≤ s2.”
It would also be possible to push all nontrivial weights to the gates on level 1

in correspondence to the construction in the proof of Theorem 2.1. However, in the
present context this additional operation does not eliminate nonlinear conditions on
the weights. Assume for example that g is a gate on level 1 with input α1x1+α2x2 and
activation function γg(y) = y2. Then this gate g outputs α2

1x
2
1 + 2α1α2x1x2 + α2

2x
2
2.

Hence the variables α1, α2 will not occur linearly in an inequality which describes the
comparison of the output of g with some threshold of a gate at the next level.

Although it does not eliminate nonlinear conditions on the weights if one pushes
all weights toward level 1, the resulting network provides some notational advantage
because all weights between computation nodes can be treated as constants (with
three possible values). This approach has therefore been chosen in [M92] and [M93a].
However, this approach is disadvantageous if one wants to apply the method of this
proof in the context of agnostic PAC learning on analog neural nets [M93c]. In
this application one has to be able to control the bit-length of the (rational) weights.
Therefore, one cannot afford to push all weights toward level 1, since this may increase
the bit-length of weights in an unbounded manner. For example, if one pushes the
weight 2 through a gate g with activation function γg(y) = y2, then this weight is
changed to

√
2 (since 2γg(y) = γg(

√
2 · y)).

BOUNDS FOR ANALOG NEURAL NETS 719

Since the nonlinearity of the conditions on the weights cannot be eliminated in
the same way as for Theorem 2.1, we have to introduce an alternative method. We
fix an arbitrary assignment β

n
of real numbers to the programmable parameters of

N̂n. We introduce for the system of inequalities L(N̂ β
n

n , {0, 1}n) (that describes

the computations of N̂ β
n

n for all inputs x ∈ {0, 1}n) new variables v for all nontrivial

parameters in N̂ β
n

n (i.e., for the weights and bias of each gate g, for the outer threshold
Tout, and for the thresholds tg1, t

g
2 of each gate g). In addition we introduce new

variables for all products of such parameters that arise in the computation of N̂ β
n

n .
We have to keep the inequalities linear in order to apply Lemma 2.4. Hence we cannot
demand in these inequalities that the value of the variable vvg1 ,v

g
2

(that represents the

product of αg1 and αg2) is the product of the values of the variables vg1 and vg2 (that
represent the weights αg1, respectively, αg2). We solve this problem by describing in

detail in the linear inequalities L(N̂ β
n

n , {0, 1}n) which role the product of αg1 and

αg2 plays in the computations of N̂ β
n

n for inputs from {0, 1}n. It turns out that this

can be done in such a way that it does not matter whether a solution A of L(N̂ β
n

n ,
{0, 1}n) assigns to the variable vvg1 ,v

g
2

a value A(vvg1 ,v
g
2
) that is equal to the product

of the values A(vg1) and A(vg2) (that are assigned by A to the variables vg1 and vg2).
In any case A(vvg1 ,v

g
2
) is forced to behave like the product of A(vg1) and A(vg2) in the

computations of N̂ β
n

n .

We would like to emphasize that the parameters β
n

do not occur as constants

in the system L(N̂ β
n

n , {0, 1}n) of inequalities. They are also replaced by variables.

The reason the real-valued parameters β
n

occur nevertheless in our notation L(N̂ β
n

n ,
{0, 1}n) of inequalities is the following. These inequalities consist of conditions which
demand that for any input x ∈ {0, 1}n the computation on the neural net proceeds
exactly as for the parameter assignment β

n
(i.e., the same inequalities with thresholds

of the piecewise-polynomial activation functions are satisfied and the same pieces of
the activation functions are used at each gate as in the computation with parameter
assignment β

n
).

Before we present the formal definitions and proofs, we give a high-level descrip-
tion of the proof idea and the purpose of the formal definitions. These preceding
informal remarks should be real interactively with the subsequent formal part.

In more abstract terms, one may view any solution A of L(N̂ β
n

n , {0, 1}n) as a

model of a certain linear fragment L(N̂ β
n

n , {0, 1}n) of the theory of the role of the

parameters β
n

in the computations of N̂ β
n

n on inputs from {0, 1}n. Such a model
A (which will be given by Lemma 2.4) may be viewed as some type of nonstandard

model of the theory of computations of N̂ β
n

n , since it replaces products of weights by
values that one might call nonstandard products. Such a nonstandard model A does
not provide a new assignment of (small) weights to the network architecture N̂n, only

to a nonstandard version MAn of the neural net N̂ β
n

n . However the linear fragment

L(N̂ β
n

n , {0, 1}n) can be chosen in such a way that MAn computes the same Boolean

function as N̂ β
n

n . Furthermore, if A consists of a solution with rational numbers as
given by Lemma 2.4, then MAn can be simulated by a constant-depth polynomial-
size Boolean circuit whose gates g are all MAJORITY-gates (i.e., g(y1, . . . , ym) = 1 if∑m
i=1 yi ≥ m/2; otherwise g(y1, . . . , ym) = 0). This implies that the Boolean functions

720 WOLFGANG MAASS

that are computed by (MAn)n∈N are in TC0. However, by construction these are the
same Boolean functions that are computed by (Nαn

n)n∈N.

We will now describe the details of the previously sketched proof of Theorem 3.1.

We will simply write N instead of N̂ β
n

n (where β
n

is some assignment of real numbers

to the programmable parameters of the network architecture N̂n). We will define for
each gate g in N by induction on the depth of g,

(1) in Definition 3.3 a set V g of variables and a set Mg of formal terms that are
needed to describe the operation of gate g.

[The intuition is here that one writes for any network input x the output of g
as a sum of products (of programmable parameters, of architectural parameters, and
of components of x). Which of these terms will occur for a specific circuit input
x will depend on the course of the computation in N up to gate g: for different
inputs the involved gates may use different pieces of their activation function. The
set Mg contains a separate formal term for each product that may possibly occur
in this sum. Each term in Mg consists of a variable w ∈ V g (that represents a
programmable or architectural parameter of N or some product of these) and of a
product P ≡ ±x j11 · . . . · x jnn of input variables x1, . . . , xn.]

(2) in Definition 3.4 for any fixed network input x ∈ Rn a set Lg(x) of linear
inequalities associated with gate g (with variables from V N := ∪{V g′ |g′ is a gate of
N}) that hold for the computation of N on input x if all formal terms t ∈ Mg are
replaced by their actual value W (t, x) for the given parameter assignment in N . We
also define in Definition 3.4 a set Sg(x) of formal terms whose sum represents the
input of g and a set T g(x) ⊆Mg of formal terms whose sum represents the output of
g for circuit input x.

[Lg(x) specifies in particular which piece of γg is used by gate g for network
input x.]

(3) in Definition 3.6 for any input set S ⊆ Rn, any solution A of the resulting
system L(N , S) := ∪{Lg(x) | x ∈ S and g is a gate in N} of linear inequalities, and
any term t ∈ Mg a network architecture MAg,t that decides for any network input
x ∈ S whether t occurs as a summand in the output of g in N .

[For any input x ∈ S the network architectures (MAg,t)t∈Mg together compute the
characteristic function of the set T g(x) ⊆ Mg which represents the output of gate g
in N . In this way one can replace in a recursive manner the analog computations in
N by digital manipulations of formal terms, with “nonstandard products” of weights
in place of real products.]

One verifies in Lemma 3.5 that L(N , S) describes correctly the role of the pa-

rameters β
n

in the computations of N := N̂ β
n

n for inputs x ∈ S. Unfortunately,
L(N , S) does not provide a complete description of the properties of the parameters
β
n

in these computations, since it represents only a linear fragment of their theory.
Nevertheless, one can prove with the help of Lemmas 3.7 and 3.8 that for any solution
A of L(N , S) the network architectures MAg,t carry out a truthful simulation of the
corresponding initial segments of N .

We would like to point out a difference to the proof of Theorem 2.1 regarding the
treatment of architectural parameters. In the proof of Theorem 3.1 the programmable
parameters αn of Nαn

n and the architectural parameters of the given network archi-
tecture Nn (the thresholds of activation functions γg and the coefficients of the poly-

nomial pieces of γg) are all changed simultaneously in the transformation to N̂ β
n

n .

Consequently, β
n

denotes the values of all nontrivial parameters in N̂ β
n

n (i.e., of all

BOUNDS FOR ANALOG NEURAL NETS 721

programmable and architectural parameters). As a consequence of this treatment
of parameters one can allow in the given network architectures Nn of Theorem 3.1
arbitrary reals as architectural parameters (i.e., for the thresholds and coefficients of
the polynomial pieces of the given activation functions γg).

We refer to an analog network architecture N with the properties of N̂ β
n

n as a
network architecture in normal form. This means that N is a first-order network
architecture whose gates have fan-out ≤ 1; all gates g in N use as activation function
γg a piecewise-polynomial function that consists of three pieces, of which at most one
piece is not identically 0 and in which the nontrivial piece (if it exists) outputs the
constant 1 or computes a power y 7→ yk for some k ∈ N.

In order to simplify our notation, we assume that for a network architecture N in
normal form the nontrivial piece of the activation function γg of each gate g is defined
over a half-open interval [tg1, t

g
2) with certain reals tg1 < tg2. It is easy to see that the

subsequent proof can also be carried out without this simplifying assumption. We
also assume without loss of generality (w.l.o.g.) that N is leveled, i.e., each gate g
in N has the property that all paths in N from an input node to g have the same
length.

Definition 3.3. Assume that N is a network architecture in normal form with n
input variables x1, . . . , xn, where arbitrary reals have been assigned to all parameters
of N . We define by induction on the depth of g for each gate g in N a set V g of
variables, a value W (v) for each variable v ∈ V g (that arises from the assignment β

n

in N̂ β
n

n := N), and a set Mg of (formal) terms. Each element of Mg is of the form
v · P , where v ∈ V g is a variable and P is some formal polynomial term of the form
±x j11 ·. . .·x jnn , with j1, . . . , jn ∈ N . The here-occurring formal variables x1, . . . , xn for
the input components should be distinguished from the concrete values x1, . . . , xn ∈ R
for these variables that are considered later (starting in Definition 3.4).

We consider first the case where g has depth 1. If γg gives on its nontrivial piece
[tg1, t

g
2) the constant 1 as output, we set

V g := {vg0 , . . . , vgn} ∪ {v
g
const} ∪ {v

g
I , v

g
II} and Mg := {vgconst}.

We define W (vgi) := αgi for i = 0, . . . , n, W (vgconst) := αg, W (vgI) := tg1, and W (vgII) :=
tg2 (αg1, . . . , α

g
n are the weights and αg0 is the bias of gate g in N , αg is the weight on

the edge that leaves g, and tg1, tg2 are the thresholds of the activation function γg). In
the other case γg computes a power y 7→ yk on its nontrivial piece. Then we introduce
for each ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {v

g
1 · x1, . . . , v

g
n · xn})k a new variable

vgw1,...,wk
in V g and a term vgw1,...,wk

·
∏k
i=1 Pi in Mg. We assume here that a formal

multiplication P · P ′ for formal terms P , P ′ of the form ±x j11 · . . . · x jnn is defined in
the obvious way. We define

V g := {vg0 , . . . , vgn} ∪ {v
g
I , v

g
II} ∪ {vgw1,...,wk

| 〈w1, . . . , wk〉 ∈ {vg0 , . . . , vgn}k}.

We set W (vgw1,...,wk
) := αg ·

∏k
i=1W (wi), and we define W (v) for the other variables

as before. We define

Mg :=

{
vgw1,...,wk

·
k∏
i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {v
g
1 · x1, . . . , v

g
n · xn})k

}
.

[The terms in Mg denote the summands that one gets from the output (αg0+
∑m
i=1 α

g
i ·

xi)
k of γg by multiplying this output with the weight αg on the next edge and then

rewriting it as a sum of products.]

722 WOLFGANG MAASS

We now consider the case where g is a gate on level l+1, with edges from the gates
g1, . . . , gm on level l leading into g. Assume that αg1, . . . , α

g
m are in N , the weights on

these edges, that αg is the weight on the edge out of g, and that αg0 is the bias of g.
If g is an output gate (i.e., g has fan-out 0) then we set αg := 1. If γg outputs the
constant 1 on its nontrivial piece, we set

V g := {vg0 , v
g
const} ∪ {v

g
I , v

g
II} and Mg := {vgconst}.

We set W (vg0) := αg0, W (vgconst) := αg,W (vgI) := tg1, and W (vgII) := tg2. If γg computes
the power y 7→ yk on its nontrivial piece, we introduce for each ktuple

〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

Mgj

k

a new variable vgw1,...,wk
in V g and a term vgw1,...,wk

·
∏k
i=1 Pi in Mg. Thus we set

V g := {vg0} ∪ {v
g
I , v

g
II}

∪ {vgw1,...,wk
| 〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

Mgj

k

,

for arbitrary polynomial termsP1, . . . , Pk and variables

wi ∈ ({vg0} ∪
⋃m
j=1 V

gj)}.

We define W (vgw1,...,wk
) := αg·

∏k
i=1W (wi), W (vg0) := αg0, W (vgI) := tg1, W (vgII) :=

tg2.
We set

Mg :=

vgw1,...,wk
·
k∏
i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

Mgj

k
 .

[The argument of γg is a sum of αg0 and of summands that are denoted by terms
in ∪mj=1M

gj . Hence the terms in Mg correspond to the summands that one gets by
multiplying the output of γg with the weight on the next edge and then rewriting this
product as a sum of products by multiplying out.]

Finally, for the output gate gout of N , we place into V g in addition the variable
vgout . We define W (vgout) as the value of the outer threshold of N .

Definition 3.4. Assume that N is a network architecture in normal form with
n input variables and some fixed assignment of reals to its parameters. Let x ∈ Rn

be a fixed input for N . We define for each gate g in N by simultaneous induction on
the depth of g

(1) a set Lg(x) of inequalities (that are linear in the variables from V G),
(2) a set Sg(x) of formal terms (whose sum represents the argument of γg for

network input x),
(3) a set T g(x) ⊆ Mg (whose sum represents the output of g for network input

x after multiplication with the weight on the next edge).
Since x is now a fixed element of Rn, one can assign a specific value W (P, x) ∈ R

to each term P of the form ±x j11 · . . . ·x jnn that occurs in a formal term of the preceding

BOUNDS FOR ANALOG NEURAL NETS 723

definition. Hence one can assign to any formal term t = v · P (that belongs to some
Mg) a specific value W (t, x) := W (v) ·W (P, x). For a set S of formal terms we define
W (S, x) :=

∑
t∈SW (t, x). For the case S = φ we set W (φ, x) := 0.

The value W (t, x) of a formal term t reflects the value of this term for network
input x under the fixed parameter assignment in N . These values W (t, x) are needed
for the definition of the systems Lg(x) and L(N , x) of linear inequalities that describe
the computation of N .

If g has depth 1, then we define

Sg(x) := {vg0} ∪ {v
g
i · xi | i = 1, . . . , n}.

Assume that g is a gate on level l + 1 with edges from gates g1, . . . , gm on level l
leading into g. Then we set

Sg(x) := {vg0} ∪
m⋃
j=1

T gj (x).

We define Lg(x) and T g(x) as follows for any gate g in N . If W (Sg(x), x) < tg1,
then Lg(x) contains the inequality [

∑
Sg(x) + 1]x [x] ≤ vgI . If W (Sg(x), x) ≥ tg2, then

Lg(x) contains the inequality [
∑
Sg(x)]x [x] ≥ vgII. In either case we set T g(x) := φ.

[We use here and in the following the notation [H]x [x] for any sum H of formal
terms to indicate that each variable xi in H is replaced by the value of the ith
coordinate xi of the concrete input x ∈ Rn. Note that the only variables that are
left in [H]x [x] are the variables of the form vgconst, v

g
i , or vgw1,...,wk

. This substitution
is necessary to make sure that the only variables that occur in the resulting system
L(N , S) of linear inequalities are of this type or are variables of the form vgI , v

g
II.]

If tg1 ≤W (Sg(x), x) < tg2, then Lg(x) contains the inequalities vgI ≤ [
∑
Sg(x)]x [x]

and [
∑
Sg(x)+1]x [x] ≤ vgII. If γg gives on its nontrivial piece a constant ag as output,

we set in this case T g(x) := {vgconst}. If γg computes on its nontrivial piece a power
y 7→ yk, we set

T g(x) :=

{
vgw1,...,wk

·
k∏
i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {v
g
1 · x1, . . . , v

g
n · xn})k

}
if g has depth 1, and in the general case

T g(x) :=

vgw1,...,wk
·
k∏
i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

T gj (x)

k
 .

Finally, if g is the output gate gout of N and W (T gout(x), x) < W (vgout), we add to
Lgout(x) also the inequality [

∑
T gout(x)+1]x [x] ≤ vgout . If W (T gout(x), x) ≥W (vgout),

we add to Lgout(x) also the inequality [
∑
T gout(x)]x [x] ≥ vgout .

We define

L(N , x) :=
⋃
{Lg(x) | g is a gate of N},

and for S ⊆ Rn

L(N , S) :=
⋃
{L(N , x) | x ∈ S}.

The following lemma verifies that for any x ∈ Rn the system L(N , x) of inequal-
ities provides a truthful description of the computation of N for input x.

724 WOLFGANG MAASS

Lemma 3.5. Assume that N is a network architecture in normal form with n
input variables and some arbitrary assignment to its parameters and that x ∈ Rn is
an arbitrary concrete input.

Then we have for any gate g in N that W (Sg(x), x) is the input and W (T g(x), x)
is the output of gate g (multiplied with the weight on the next edge) in the computation
of N for input x. Furthermore,

W (Sg(x), x) < tg1 ⇔ “[Sg(x) + 1]x [x] ≤ vgI ” ∈ L(N , x)

W (Sg(x), x) < tg2 ⇔ “[Sg(x) + 1]x [x] ≤ vgII” ∈ L(N , x)

W (Sg(x), x) ≥ tg1 ⇔ “[Sg(x)]x [x] ≥ vgI ” ∈ L(N , x)

W (Sg(x), x) ≥ tg2 ⇔ “[Sg(x)]x [x] ≥ vgII” ∈ L(N , x).

Proof. The claim about L(N , x) follows immediately from the definition of
L(N , x) in Definition 3.4.

One shows by induction on g that for any network input x the input of g in N is
equal to W (Sg(x), x), and the output of g in N (after multiplication with the weight
on the next edge) is equal to W (T g(x), x).

If g is of depth 1 then we have by the definition of Sg(x) in Definition 3.4 and by
the definition of the values W (t, x) for terms t in Definition 3.3 that W (Sg(x), x) =
αg0+

∑n
i=1 α

g
i ·xi, where α1, . . . , α

g
n are the weights and αg0 is the bias of gate g inN un-

der the given parameter assignment inN . Hence W (Sg(x), x) is equal to the input of g
inN for network input x. Furthermore if αg0+

∑n
i=1 α

g
i ·xi < tg1 or αg0+

∑n
i=1 α

g
i ·xi ≥ t

g
2

then T g(x) = φ; hence W (T g(x), x) = 0. If tg1 ≤ αg0 +
∑n
i=1 α

g
i · xi < tg2 then

W (T g(x), x) = αg if γg outputs the constant 1 on its nontrivial piece (where αg

is the weight on the edge out of g). If γg computes y 7→ yk on its nontrivial
piece, then W (T g(x), x) = αg ·

∑
({αg0} ∪ {α

g
i · xi | i = 1, . . . , n})k. In either

case W (T g(x), x) is equal to the output of g in N (multiplied with αg) for network
input x.

If g is of depth l+ 1 with immediate predecessors g1, . . . , gm then W (Sg(x), x) =
αg0 +

∑m
j=1W (T gj (x), x). By induction hypothesis this value is equal to the input

of gate g in N for network input x. In the most interesting case, where gate g ap-
plies the polynomial piece y 7→ yk to this input, its output (multiplied with αg) is
equal to

αg ·

αg0 +
m∑
j=1

W (T gj (x), x)

k

= αg ·
∑

k∑
i=1

W (wi · Pi, x)|〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

T gj (x)

k

=
∑W (vgw1,...,wk

) ·
k∏
i=1

W (Pi, x)|〈w1 · P1, . . . , wk · Pk〉 ∈

{vg0} ∪ m⋃
j=1

T gj (x)

k

= W (T g(x), x).

BOUNDS FOR ANALOG NEURAL NETS 725

Definition 3.6. Assume that N is a neural act in normal form with n inputs.
Furthermore, assume that S ⊆ Rn and A : V N → R is an arbitrary solution of the
system L(N , S) of inequalities with the variable set V N :=

⋃
{V g | g is a gate in N}.

We define by induction on the depth of gate g in N for each term t ∈ Mg a
first-order network architecture MAg,t. Together the network architectures (MAg,t)t∈Mg

mimic the initial segment of N between the input and gate g. The first-order network
architectureMAg,t consists of gates with activation functions from the class {Heaviside,

y 7→ y, y 7→ y2}. For any circuit input x ∈ S the output of the first-order network
architecture MAg,t will be 1 if t ∈ T g(x); otherwise it will be 0.

One associates with each network architecture MAg,t for t ∈ Mg of the form t ≡
v ·P another network architecture M̃Ag,t that outputs for any network input x ∈ S the
real number

A(t, x) :=

{
A(v) ·W (P, x) if MAg,t(x) = 1,

0 if MAg,t(x) = 0.

The extension from MAg,t to M̃Ag,t is done in a canonical manner with the help of

subcircuits that simulate product gates via the equality y · z = 1
2 ((y + z)2 − y2 − z2).

Obviously, M̃Ag,t just has to compute the product of A(v), W (P, x) and of the output

of MAg,t for network input x.

The definition of a value A(t, x) for each term t and each x ∈ S is extended in a
canonical way to arbitrary sets M of terms

A(M,x) :=
∑
t∈M
A(t, x), A(φ, x) := 0.

We consider first the case where g has depth 1. Let Hg
1 be a linear threshold gate that

checks whether A(vgI) ≤ A(Sg(x), x), and let Hg
2 be a linear threshold gate that checks

whether A(Sg(x), x) + 1 ≤ A(vgII). For each term t ∈ Mg we define MAg,t to be the
AND of Hg

1 and Hg
2 .

Assume then that g is a gate on level l + 1 with edges from the gates g1, . . . , gm
on level l leading into g. According to Definition 3.4 we have in this case Sg(x) =
{vg0} ∪

⋃m
j=1 T

gj (x) for every x ∈ S. By induction hypothesis we have already defined

network architectures MAgj ,t, and hence also network architectures M̃Agj ,t for all t ∈
Mgj , j = 1, . . . ,m. For each term t ∈ Mg the network architecture MAg,t employs
two linear threshold gates Hg

1 and Hg
2 , which receive their inputs from the network

architectures M̃Agj ,t for t ∈ Mgj , j = 1, . . . ,m. The linear threshold gate Hg
1 has

the task to check for any x ∈ S whether A(vgI) ≤ A(Sg(x), x). Obviously it can

easily accomplish this task provided that for input x the network architectures M̃Agj ,t
for t ∈ Mgj (j = 1, . . . ,m) give as output the value A(t, x). Analogously the linear
threshold gate Hg

2 has the task to check whether A(Sg(x), x) + 1 ≤ A(vgII).

If γg outputs the constant 1 on its nontrivial piece, MA
g,vgconst

is defined as the

AND of Hg
1 and Hg

2 .

If γg computes y 7→ yk on its nontrivial piece, then each t ∈ Mg is of the form
vgw1,...,wk

·
∏k
i=1 Pi for some ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪

⋃m
j=1M

gj)k. In

this case MAg,t is defined as the AND of Hg
1 , Hg

2 and of the outputs of the network

architectures MAgj ,wi·Pi for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,m} with wi · Pi ∈Mgj .

726 WOLFGANG MAASS

[A word of caution: Although the variable vgw1,...,wk
is supposed to play the role

of the product of w1, . . . , wk and αg (where αg is the weight on the edge out of g),

the assignment A will in general not satisfy A(vgw1,...,wk
) = A(αg) ·

∏k
i=1A(wi).]

Finally we define the network architecture MA by using as components the net-
work architectures MAgout,t for all t ∈ Mgout . The output of MA is given by a linear
threshold gate H that checks whether

∑
t:MAgout,t

(x)=1A(t, x) ≥ A(vgout).

Lemma 3.7. Assume that S ⊆ Rn and A is an arbitrary solution of L(N , S).
Then the following holds for any gate g in N , for any term t ∈ Mg, and any input
x ∈ S:

(a) For network input x the gate Hg
1 in MAg,t outputs 1 if and only if tg1 ≤

W (Sg(x), x). Similarly the output of the gate Hg
2 in MAg,t is 1 if and only if

W (Sg(x), x) + 1 ≤ tg2.
(b) t ∈ T g(x)⇔ (MAg,t outputs 1 for network input x).

(c) M̃Ag,t outputs A(t, x) for network input x.
Proof. The proof proceeds by induction on the depth of gate g. The claim is

obvious from the definition if g is of depth 1. If g is of depth l+ 1 > 1 we exploit the
induction hypothesis for the network architecturesMAgj ,t and M̃Agj ,t with t ∈Mgj (for

the immediate predecessors gj of gate g). Hence we may assume that gate Hg
1 inMAg,t

outputs 1 if and only if A(vgI) ≤ A(Sg(x), x). Since A is a solution of L(N , S), the
latter inequality holds if and only if L(N , S) contains the inequality vgI ≤ [Sg(x)]x[x].
By Lemma 3.5 this holds if and only if tg1 ≤W (Sg(x), x). The claim for Hg

2 is verified
analogously.

The least trivial case for part (b) of the claim is the case where γg computes

y 7→ yk on its nontrivial piece. Then each t ∈ Mg is of the form vw1,...,wk ·
∏k
i=1 Pi

for some ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪
⋃m
j=1M

gj)k. By definition of T g(x)

we have t ∈ T g(x) if and only if tg1 ≤ W (Sg(x), x) < tg2 and wi · Pi ∈ T gj (t) for all
i ∈ {1, . . . , k} and j ∈ {1, . . . ,m} with wi · Pi ∈ Mgj . By construction of MAg,t and

by the induction hypothesis we have that MAg,t outputs 1 for network input x if and
only if all of the preceding conditions are satisfied.

Part (c) of the claim for gate g follows immediately from part (b) and the definition
of M̃Ag,t.

Lemma 3.8. Assume that N is a network architecture in normal form with n
input variables, S ⊆ Rn is an arbitrary set of inputs, and A is an arbitrary solution
of L(N , S). Then N and MA compute the same function from S into {0, 1}.

Proof. This is an immediate consequence of Lemmas 3.5 and 3.7. By the def-
inition of MA the output of MA for any network input x ∈ S is 1 if and only if∑
t:MAgout,t

(x)=1A(t, x) ≥ A(vgout). By Lemma 3.7 we have that MAgout,t(x) = 1 ⇔
t ∈ T gout(x). Hence, since A is a solution of L(N , S), the preceding inequality holds
if and only if L(N , S) contains the inequality [

∑
T gout(x)]x [x] ≥ vgout . By defi-

nition of L(N , S) the latter holds if and only if W (T gout(x), x) ≥ W (vgout). By
Lemma 3.5 the value W (T gout(x), x) is the output of gout in N for network input
x. Hence W (T gout(x), x) ≥ W (vgout) holds if and only if N outputs 1 for network
input x.

We are now in a position where we can complete the proof of Theorem 3.1. Assume
that a given array (Nn)n∈N of neural nets satisfies the assumption of Theorem 3.1
and that (αn)n∈N is an arbitrary array of real-valued assignments αn to the variable
parameters in Nn. One can transform the given neural nets (Nαn

n)n∈N into an array

(N̂ β
n

n)n∈N of neural nets in normal form (with properties as specified above) such that

BOUNDS FOR ANALOG NEURAL NETS 727

N̂ β
n

n computes the same Boolean function as Nαn
n . We then apply the machinery from

the definition and Lemmas 3.5 to 3.8 to each neural net N := N̂ β
n

n with S := {0, 1}n.

By construction of N̂ β
n

n the resulting system L(N , {0, 1}n) of inequalities has some
solution over R. We exploit here in particular that β

n
was chosen so that all relevant

strict inequalities “s1 < s2” in computations of N̂ β
n

n on inputs x ∈ {0, 1}n were

strengthened to “s1 + 1 ≤ s2.” Since |
⋃
{Mg | g gate in N̂ β

n
n } |= O(nO(1)), it follows

that the number of gates in MA is bounded by O(nO(1)).
The number of variables in L(N , {0, 1}n) is polynomial in n, and it only contains

small constants. Hence by Lemma 2.4 there is a solution A of L(N , {0, 1}n) that
consists of rationals of the form s

t (with a common integer t) such that s and t are

integers of size 2O(nO(1)). By Lemma 3.8 the constructed network architecture MA
computes the same Boolean function as N . Furthermore all constants and parame-
ters in MA are quotients of integers with polynomially in n many bits. Thus (see
[SBKH], [SR]) one can carry out all arithmetical operations in MA for inputs from
{0, 1}n by polynomial-sized digital subcircuits of constant depth with linear threshold
gates (or, equivalently, with MAJORITY-gates, see [CSV]). In the resulting circuit all
parameters from A are replaced by corresponding sequences of bits. Hence one gets
in this way neural nets Ñn which satisfy the claim of Theorem 3.1.

Remark 3.9. Sontag [S3] suggested using the quasilinearization that is achieved in
the proof of Theorem 3.1 in order to also get upper bounds for the VC dimension over
Rn by counting the number of components into which the weight space is partitioned
by the hyperplanes that are defined by some arbitrary finite set S ⊆ Rn of inputs.

By letting αn vary and keeping the neural net Nn and the input x ∈ S fixed one

gets up to 2O(nO(1)) different systems L(N̂ β
n

n , x) in the proof of Theorem 3.1. Hence
the total number ln of linear inequalities that arise in this way for different x ∈ S

and different parameters αn is bounded by |S| · 2O(nO(1)). Furthermore, the total
number wn of variables that occur in these ln inequalities is bounded by O(nO(1)).
Therefore the hyperplanes that are associated with these ln inequalities partition

the range Rwn of the variables into at most
∑wn
k=0

∑k
i=0

(
wn−i
k−i

)(
ln

wn−i
)

= |S|O(nO(1))

connected components (Theorem 1.3 in [E]). Each A ∈ Rwn gives rise to at most

2O(nO(1)) different network architectures MA when Nn and S are kept fixed, but the

parameters αn vary. Thus each A ∈ Rwn can be used to compute at most 2O(nO(1))

different functions S → {0, 1} on the resulting circuits. Furthermore, if A and Ã
belong to the same connected component of the partition of Rwn then for all αn the

network architectures MA and MÃ compute the same function S → {0, 1}. Hence
if S is shattered by Nn (i.e., any function S → {0, 1} can be computed by Nαn

n for

suitable parameters αn) then 2|S| ≤ |S|O(nO(1)) ·2O(nO(1)); hence |S| = O(nO(1)). This
implies that VC dimension (Nn,Rn) = O(nO(1)).

One can apply in a similar fashion the linearization that is achieved in the proof
of Theorem 2.1. Consider a neural net N over a graph 〈V,E〉 as in Theorem 2.1,
but allow that each activation function γg consists of ≤ p linear pieces with arbitrary
fixed real parameters. Then one can show that VC dimension (N ,Rn) = O(w2 log p),
where w := |V |+ |E|+ 1 is the number of variable parameters in N . It is sufficient to
observe that for different x ∈ S and different initial assignments α altogether at most
|S| · 2O(w log p) linear inequalities arise in the description of the computations of the
associated nets N̂ [c]β for input x. The associated hyperplanes partition the “weight

space” Rw for the variable parameters β, c into ≤ |S|O(w) · 2O(w2 log p) connected

728 WOLFGANG MAASS

components. The vectors from each connected component can be used to compute
at most 2O(w) different functions S → {0, 1} (note that in general more than one
function S → {0, 1} can be computed because of different weights from {−1, 0, 1}
between computation nodes). Hence 2|S| ≤ |S|O(w) ·2O(w2 log p) ·2O(w) if S is shattered
by N ; thus |S| = O(w2 log p).

Subsequent to this observation from [M92] and [M93a], our polynomial upper
bound for the VC dimension of analog neural nets of constant depth has been extended
to neural nets of unbounded depth via an application of a well-known theorem of
Milnor [GJ]. In [M93c] this result has been further generalized to yield a polynomial
upper bound for the pseudodimension (see [H]) of analog neural nets of arbitrary
depth which takes over the role of the VC dimension in the case of learning on analog
neural nets with real-valued outputs.

4. PAC learning on analog neural nets. We now turn to the analysis of
learning on analog neural nets in Valiant’s model [V] for probably approximately
correct learning (PAC learning). More precisely, we consider the common extension of
this model to real-valued domains due to [BEHW]. Unfortunately, most results about
PAC learning on neural nets are negative (see [BR], [KV]). This could mean either
that learning on neural nets is impossible or that the common theoretical analysis of
learning on neural nets is not quite adequate.

We want to point to one somewhat problematic aspect of the traditional asymp-
totic analysis of PAC learning on neural nets. In analogy to the standard asymptotic
analysis of the run time of algorithms in terms of the number n of input bits one
usually formalizes PAC learning on neural nets in exactly the same fashion. However
in contrast to the common situation for computer algorithms (which typically receive
their input in digital form as a long sequence of n bits) for many important applica-
tions of neural nets the input is given in analog form as a vector of a small number n
of analog real-valued parameters. These relatively few input parameters may consist
for example of sensory data, or they may be the relevant components of a longer
feature vector (which were extracted by some other mechanism). If one analyzes PAC
learning on neural nets in this fashion, the relevant asymptotic problem becomes a
different one: can a given analog neural net with a fixed number n of analog inputs
approximate the target concept arbitrarily close after it has been shown sufficiently
many training examples?

We show that for those types of neural nets which were considered in the preceding
sections the previously discussed PAC learning problem has in fact a positive solution.

Theorem 4.1. Let N be an arbitrary network architecture of order 1 as in
Theorem 2.1, where the fixed parameters of the piecewise-linear activation functions
may now be arbitrary reals. Let CN := {C ⊆ Rn|∃α ∈ Rw ∀x ∈ Rn(χC(x) = Nα(x))}
be the associated concept class, where χC is the characteristic function of a concept
C. Then CN is properly PAC learnable.

This means that one can design for the given network architecture N a learning
algorithm LAN such that for any distribution Q over Rn, any target concept CT ∈ CN ,
and any given ε, δ ∈ R+ the learning algorithm LAN with inputs ε and δ carries out
in O((1

ε)O(1), (1
δ)O(1)) computations steps (with respect to the uniform cost criterion

on a RAM) the following task: it computes a suitable number m and draws some
sequence S of m examples for CT according to distribution Q. Then it computes
from S an assignment αS ∈ Rw for the programmable parameters of N such that
Q[{x ∈ Rn|χCT (x) 6= NαS (x)}] ≤ ε with probability ≥ 1− δ.

Proof. We have VC dimension (CN) < ∞ by Remark 3.9. Hence according

BOUNDS FOR ANALOG NEURAL NETS 729

to [BEHW], it suffices to show that for any given set S of m examples for CT one
can compute from S within a number of computation steps that is polynomial in
m, 1

ε ,
1
δ an assignment αS ∈ Rw to the programmable parameters of N such that

∀x ∈ S(χCT (x) = NαS (x)). The construction in the proof of Theorem 2.1 implies
that it is sufficient if one computes instead with polynomially in m, 1

ε , 1
δ computation

steps an assignment β
S

, cS of parameters for the associated neural net N̂ such that

∀x ∈ S(χCT (x) = N̂ [cS]βS (x)). The latter task is easier because the role of the
parameters β, c in a computation of N̂ for a specific input x can be described by
linear inequalities (provided one knows which linear piece is used at each gate).

Nevertheless, the following technical problem remains. Although we know which
output N̂ [cS]βS should give for an input x ∈ S, we do not know in which way this
output should be produced by N̂ [cS]βS . More specifically, we don’t know which
particular piece of each piecewise-linear activation function γg of N̂ will be used for
this computation. However, this detailed information would be needed for each x ∈ S
and for all gates g of N̂ in order to describe the resulting constraints on the parameters
β, c by a system of linear inequalities.

However, one can generate a set of polynomially in m many systems of linear
inequalities such that at least one of these systems provides for all x ∈ S satisfiable
and sufficient constraints for β, c. By definition CN we know that there are parameters

β
T

, cT such that N̂ [cT]βT computes χCT . Consider any inequality I(β, c, x) ≤ 0
(with I(β, c, x) linear in β, c for fixed x, and linear in x for fixed β, c) as they were
introduced in the proof of Theorem 2.1 in order to describe the comparison with a
threshold at some gate g of N̂ . The hyperplane {x ∈ Rn | I(β

T
, cT , x) = 0} defines

a partition of S into {x ∈ S | I(β
T
, c, x) ≤ 0} and {x ∈ S | I(β

T
, c, x) > 0}. Hence

it suffices to produce (e.g., with the algorithm of [EOS]) in polynomially in m many
computation steps all partitions of S that can be generated by as many hyperplanes
as there are linear inequalities I(β, c, x) ≤ 0 in the proof of Theorem 2.1. One of
these partitions will agree with the partition of S that is defined by the hyperplanes
{x ∈ Rn | I(β

T
, cT , x) = 0} for the “correct values” β

T
, cT of the parameters. Each of

these partitions corresponds to a guess which linear pieces of the activation functions
γg of N̂ are used for the different inputs x ∈ S, and hence it defines a unique system
of linear inequalities in β, c (with the inputs x ∈ S as fixed coefficients). Furthermore,
it is guaranteed that one of these guesses is correct for β

T
, cT .

For each of the resulting polynomially in m many systems of inequalities we
apply the method of the proof of Lemma 2.4 (i.e., we reduce the solution of each
system of inequalities to the solution of polynomially in m many systems of linear
equalities), or we apply Megiddo’s polynomial time algorithm for linear programming
in a fixed dimension [Me] in order to find values β

s
, cs for which N̂ [cs]

β
s gives the

desired outputs for all x ∈ S. By construction, this algorithm will succeed for at least
one of the selected system of inequalities.

Remark 4.2. Assume N is some arbitrary network architecture of order 1 accord-
ing to Definition 1.1 with arbitrary piecewise-linear activation functions, and N does
not satisfy the condition that all computation nodes of N have fan-out ≤ 1. Then
Theorem 4.1 does not show that CN is properly PAC learnable. However, it implies
that CN is PAC learnable, with CN ′ for a somewhat larger network architecture N ′
of the same depth used as hypothesis class (see Remark 2.2 for the definition of N ′).

Note that this result may lead toward a theoretical explanation of an effect that
has been observed in many experiments: one often achieves better learning results on
artificial neural nets if one uses a neural net with somewhat more units than necessary

730 WOLFGANG MAASS

(i.e., necessary in order to compute the target concept on the neural net).

Theorem 4.3. Let N be an arbitrary network architecture with arbitrary piecewise-
polynomial activation functions and arbitrary polynomial gate inputs Qg(y1, . . . , ym).
Then the associated concept class CN is PAC learnable with a hypothesis class of the
form CÑ for a somewhat larger network architecture Ñ .

Proof. One can reduce this problem to the case of network architectures with
linear gate inputs as indicated at the beginning of the proof of Theorem 3.1. One
uses as hypotheses, sets which are defined by a network architecture Ñ of the same
structure as the network architecture MA in the proof of Theorem 3.1. For this
network architecture Ñ one can express the constraints on the assignment A by linear
inequalities. Remark 3.9 implies that VC dimension (Ñ ,Rn) <∞.

One applies the method from the proof of Lemma 2.4 in a manner analogous
to the proof of Theorem 4.1 or linear programming in a fixed dimension [Me] to
polynomially in m many systems of linear inequalities. There is one small obstacle in
generating the associated partitions of S since the corresponding inequalities are not
linear in the circuit inputs x. One overcomes this difficulty by going to an input space
of higher dimension (where the variables represent monomials of bounded degree in
the original variables).

Remark 4.4. It is shown in [M93c] that the positive learning results of this
section can be extended to analog neural nets with real-valued outputs. Furthermore
it is shown in that paper that these learning results can be extended to Haussler’s
refinement [H] of Valiant’s model [V], where no a priori assumptions about the target
function are required and where arbitrary noise in the training examples is permitted.

Acknowledgments. We would like to thank Eduardo D. Sontag for drawing our
attention to the problem of finding upper bounds for neural nets with π-gates and
for his insightful comments. We thank Peter Auer, Franz Aurenhammer, Philip M.
Long, and Gerhard Wöginger for various helpful discussions on this research.

REFERENCES

[A] Y. S. Abu-Mostafa, The Vapnik-Chervonenkis dimension: Information versus com-
plexity in learning, Neural Comput., 1 (1989), pp. 312–317.

[B] P. L. Bartlett, Lower bounds on the Vapnik-Chervonenkis dimension of multi-layer
threshold networks, in Proc. 5th Annual ACM Conference on Computational Learn-
ing Theory, ACM, New York, 1993, pp. 144–150.

[BH] E. B. Baum and D. Haussler, What size net gives valid generalization?, Neural Com-
put., 1 (1989), pp. 151–160.

[BR] A. Blum and R. L. Rivest, Training a 3-node neural network is NP-complete, in Proc.
1988 Workshop on Computational Learning Theory, Morgan Kaufmann, San Mateo,
CA, 1988, pp. 9–18.

[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and
the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach., 36 (1989), pp. 929–
965.

[CSV] A. K. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility, SIAM
J. Comput., 13 (1984), pp. 423–439.

[DS] B. DasGupta and G. Schnitger, The power of approximating: A comparison of ac-
tivation functions, in Advances in Neural Information Processing Systems, Vol. 5,
Morgan Kaufmann, San Mateo, 1993, pp. 615–622.

[DR] R. Durbin and D. E. Rumelhart, Product units: A computationally powerful and
biologically plausible extension to backpropagation networks, Neural Computation,
1 (1989), pp. 133–142.

[E] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin,
1987.

BOUNDS FOR ANALOG NEURAL NETS 731

[EOS] H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines
and hyperplanes with applications, SIAM J. Comput., 15 (1986), pp. 341–363.

[GJ] P. Goldberg and M. Jerrum, Bounding the Vapnik-Chervonenkis dimension of con-
cept classes parameterized by real numbers, in Proc. 5th Annual ACM Conference
on Computational Learning Theory, ACM, New York, 1993, pp. 361–369.

[GHR] M. Goldmann, J. Håstad, and A. Razborov, Majority gates vs. general weighted
threshold gates, in Proc. 7th Structure in Complexity Theory Conference, IEEE
Computer Society Press, Los Alamitos, CA, 1992, pp. 2–13.

[HMPST] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turan, Threshold circuits
of bounded depth, J. Comput. System Sci., 46 (1993), pp. 129–154.

[Has] J. Håstad, On the size of weights for threshold gates, SIAM J. Discrete Math., 7 (1994),
pp. 484–492.

[H] D. Haussler, Decision theoretic generalizations of the PAC model for neural nets and
other learning applications, Inform. and Comput., 100 (1992), pp. 78–150.

[Ho] J. J. Hopfield, Neurons with graded response have collective computational properties
like those of two-state neurons, Proc. Nat. Acad. Sci. U.S.A., (1984), pp. 3088–3092.

[J] D. S. Johnson, A catalog of complexity classes, in Handbook of Theoretical Computer
Science, A, J. van Leeuwen, ed., MIT Press, Cambridge, MA, 1990, pp. 67–161.

[KV] M. Kearns and L. Valiant, Cryptographic limitations on learning boolean formulae
and finite automata, in Proc. 21st ACM Symposium on Theory of Computing,
ACM, New York, 1989, pp. 433–444.

[K93] P. Koiran, A weak version of the Blum, Shub, Smale model, in Proc. 34th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1993, pp. 486–495.

[K94] P. Koiran, Efficient learning of continuous neural networks, Proc. 7th Annual ACM
Conference on Computational Learning Theory, 1994, ACM, New York, 1994,
pp. 348–355.

[L] R. P. Lippmann, An introduction to computing with neural nets, IEEE ASSP Magazine,
1987, pp. 4–22.

[M92] W. Maass, Bounds for the computational power and learning complexity of analog
neural nets, IIG Report 349, Technische Universität Graz, Graz, Austria, 1992.

[M93a] W. Maass, Bounds for the computational power and learning complexity of analog
neural nets (extended abstract), in Proc. 25th ACM Symposium on the Theory of
Computing, 1993, pp. 335–344.

[M93b] W. Maass, Neural nets with superlinear VC-dimension, in Proc. International Con-
ference on Artificial Neural Networks, Springer-Verlag, Berlin, 1994, pp. 581–584.
Neural Comput., 6 (1994), pp. 877–884.

[M93c] W. Maass, Agnostic PAC-learning of functions on analog neural nets, Neural Comput.,
7 (1995), pp. 902–926.

[MSS] W. Maass, G. Schnitger, and E. D. Sontag, On the computational power of sigmoid
versus boolean threshold circuits, in Proc. 32nd Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1991, pp. 767–776.

[MT] W. Maass and G. Turan, How fast can a threshold gate learn?, in Computa-
tional Learning Theory and Natural Learning Systems: Constraints and Prospects,
G. Drastal, S. J. Hanson, and R. Rivest, eds., MIT Press, Cambridge, MA, 1994,
pp. 381–414.

[MR] J. L. McClelland and D. E. Rumelhart, Parallel Distributed Processing, Vol. 2, MIT
Press, Cambridge, MA, 1986.

[Me] N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc.
Comput. Mach., 31 (1984), pp. 114–127.

[MP] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry,
expanded Ed., MIT Press, Cambridge, MA, 1988.

[MD] J. Moody and C. J. Darken, Fast learning in networks of locally tuned processing
units, Neural Computation, 1 (1989), pp. 281–294.

[Mu] S. Muroga, Threshold Logic and Its Applications, John Wiley, New York, 1971.
[Ni] N. J. Nilsson, Learning Machines, McGraw–Hill, New York, 1971.
[PS] I. Parberry and G. Schnitger, Parallel computation with threshold functions, in Lec-

ture Notes in Computer Science, Vol. 223, Springer-Verlag, Berlin, 1986, pp. 272–
290.

[PG] T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE,
78 (1990), pp. 1481–1497.

732 WOLFGANG MAASS

[R] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1988.
[RM] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Vol. 1, MIT

Press, Cambridge, MA, 1986.
[Sch] A. Schrijver, Theory of Linear and Integer Programming, John Wiley, New York,

1986.
[SS] H. T. Spiegelmann and E. D. Sontag, Neural Networks with Real Weights: Analog

Computational Complexity, Report SYCON-92-05, Rutgers Center for Systems and
Control, Rutgers University, New Brunswick, NJ, 1992.

[SBKH] K. Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister, Depth efficient neural networks
for division and related problems, IEEE Trans. Inform. Theory, 39 (1993), pp. 946–
956.

[SR] K. Y. Siu and V. Roychowdhury, On Optimal Depth Threshold Circuits for Multipli-
cation and Related Problems, Technical Report ECE-92-05, University of California
at Irvine, Irvine, CA, 1992.

[S1] E. D. Sontag, Remarks on interpolation and recognition using neural nets, in Advances
in Neural Information Processing Systems 3, R. P. Lippmann, J. Moody, D. S.
Touretzky, eds., Morgan Kaufmann, San Mateo, CA, 1991, pp. 939–945.

[S2] E. D. Sontag, Feedforward nets for interpolation and classification, J. Comput. System
Sci., 45 (1992), pp. 20–48.

[S3] E. D. Sontag, private communication, July, 1992.
[V] L. G. Valiant, A theory of the learnable, Comm. Assoc. Comput. Mach., 27 (1984),

pp. 1134–1142.

ON THE AMOUNT OF NONDETERMINISM AND THE POWER OF
VERIFYING∗

LIMING CAI† AND JIANER CHEN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 733–750, June 1997 008

Abstract. The relationship between nondeterminism and other computational resources is in-
vestigated based on the “guess-then-check” model GC. Systematic techniques are developed to
construct natural complete languages for the classes defined by this model. This improves a num-
ber of previous results in the study of limited nondeterminism. Connections of the model GC to
computational optimization problems are exhibited.

Key words. computational complexity, nondeterminism, complete languages, computational
optimization

AMS subject classifications. 68Q05, 68Q10, 68Q15, 68Q25

PII. S0097539793258295

1. Introduction. The study of the power of nondeterminism is central to com-
plexity theory. The relationship between nondeterminism and other computational
resources still remains unclear. Two fundamental questions are those of how much
computational resource we should pay in order to eliminate nondeterminism and
how much computational resource we can save if we are granted nondeterminism.
A computation with nondeterminism can basically be decomposed into the phase
of guessing (nondeterministically) and the phase of verifying (using other computa-
tional resources). In general, the phase of guessing and the phase of verifying work
interactively.

The notion of classifying problems according to the amount of nondeterminism
and the power of verifying in a computation has appeared in recent research. Dı́az and
Torán [14] studied the classes βk, for k ≥ 1, by allowing a deterministic polynomial-
time computation to make an O(logk n) amount of nondeterminism.1 The class βf
for a more general function f(n) was studied by Farr [16]. Buss and Goldsmith [5]
considered the classes NkPh, for k, h ≥ 1, in which languages can be recognized
by an O(nh logO(1) n)-time multitape Turing machine making at most k logn binary
nondeterministic choices. Wolf [25] studied models that are NC circuits with nonde-
terministic gates. Papadimitriou and Yannakakis [21] considered a set of optimization
problems that can be solved by computations with an O(log2 n) amount of nondeter-
minism.

We generalize the above ideas by introducing the computation model GC (guess-
then-check). Let s(n) be a function and let C be a complexity class; then GC (s(n), C)
is the class of languages that can be recognized by first nondeterministically guessing

∗ Received by the editors November 10, 1993; accepted for publication (in revised form) July
12, 1995. A preliminary version of this paper appeared in Proc. 18th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’93), Lecture Notes in Comput. Sci. 711,
Springer-Verlag, Berlin, 1993, pp. 311–320.

http://www.siam.org/journals/sicomp/26-3/25829.html
† Department of Mathematics, School of Electrical Engineering and Computer Science, Ohio

University, Athens, OH 45701 (cai@cs.ohiou.edu). The research of this author was supported in part
by an Engineering Excellence Award from Texas A&M University.
‡ Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

(chen@cs.tamu.edu). The research of this author was supported in part by National Science Foun-
dation grant CCR-9110824.

1 These classes were originally introduced in Kintala and Fisher [19].

733

734 LIMING CAI AND JIANER CHEN

O(s(n)) binary bits then using the power of C to verify. The reader should realize
that the GC model is a restricted version of the interactive-proof systems that have
received considerable attention recently (for a survey, see [18]).

We develop systematic and powerful techniques to show that for a large class
of functions s(n) and for many complexity classes C, the class GC (s(n), C) has nat-
ural complete languages. The techniques involve characterizing the computation of
a verifier by a circuit and encoding a nondeterministic string of length s(n) as an
input of length (n · s(n))/ logn to the circuit. Our techniques improve a number of
previous results in the study of completeness for complexity classes with limited non-
determinism. In particular, we show that the weight-k circuit-satisfiability problem
is complete under quasi-linear-time reduction for the class NkP1 proposed by Buss
and Goldsmith [5]. This gives a complete language for the class NkP1 which is more
natural than the previously known complete languages for the class [5] in the sense
that no explicit mention of “k logn” appears in its statement. Moreover, we prove
that one can obtain complete languages for the class βk by restricting the amount of
nondeterminism in NP-complete languages. This result is opposite to a conjecture
made by Dı́az and Torán [14] that by restricting the amount of nondeterminism in
NP-complete languages, one would not get complete languages for the class βk. We
also derive complete languages for the classes NNC k(logi n) studied by Wolf [25], for
which it was unknown whether there exist complete languages.

Of special interest is the class GC(s(n),ΠB
k), where s(n) is a function larger than

Θ(logn) and ΠB
k is the class of languages accepted by log-time alternating Turing

machines of k alternations. The model GC(s(n),ΠB
k) has guessing ability presumably

stronger than and verifying ability provably weaker than deterministic polynomial-
time Turing machines [27]. More careful analysis is given to show that for many
functions s(n) and for all integers k > 1, the class GC(s(n),ΠB

k) has natural complete
languages.

The importance of the class GC(s(n),ΠB
k) is its close connection to computational

optimization problems. We show that the optimization classes LOGSNP and LOGNP
introduced by Papadimitriou and Yannakakis [21] can be precisely characterized by
GC(log2 n,ΠB

2) and GC(log2 n,ΠB
3), respectively. An inequality GC(log2 n,ΠB

2) 6=
GC(log2 n,ΠB

3) is established to show the difference between LOGSNP and LOGNP.
We explain based on our characterization of the class LOGSNP why the problems
LOG2SAT, LOG CLIQUE, and LOG CHORDLESS PATH do not seem to be com-
plete for the class LOGSNP. This partially answers a question posed by Papadimitriou
and Yannakakis [21]. Our characterizations also give a restricted version of the satis-
fiability problem that is polynomial-time equivalent to the problem TOURNAMENT
DOMINATING SET, improving a result of Meggido and Vishkin [20]. The GC
model also has nice applications in the study of the fixed-parameter tractability of
optimization problems [15].

The paper is organized as follows. Section 2 introduces the necessary prelim-
inaries. The model GC is defined in section 3, in which complete languages are
constructed for several GC classes. Section 4 studies the GC models with very weak
verifiers. Connections of the GC models to computational optimization problems are
given in section 5.

2. Preliminaries. We assume reader’s familiarity with the basic definitions in
circuit complexity theory and alternating Turing machines. For more detailed de-
scriptions of these topics, the reader is referred to [3, 23].

Let b > 0 be an integer. A string x of length n can be partitioned into dn/be

NONDETERMINISM AND VERIFYING 735

segments of b consecutive characters (the last segment may contain less than b char-
acters). The segments will be called b-blocks of x.

To simplify expressions, we will denote 2dlog log ne by `(n). Note that `(n) =
Θ(logn). Moreover, a deterministic Turing machine can multiply or divide a number
of O(logn) bits by `(n) in O(logn) time. The (`(n))-blocks of a string x of length n
will be simply called `-blocks of x.

An O(logn)-time alternating Turing machine (log-time ATM) is equipped with
a random-access input tape and a read-write input address tape such that the Tur-
ing machine has access to the bit of the input tape denoted by the contents of the
input address tape. Several input read-modes have been proposed. The one that
we adopt here is the standard read-mode introduced in [11] with the restriction that
in the last phase of each computation path, a log-time ATM only reads inputs from
a constant number of `-blocks of the input. This input read-mode is a Turing ma-
chine implementation of the Block Transfer mode of RAMs proposed in [1] (see [7] for
discussions).

A ΠB
k -ATM is a log-time ATM that makes at most k alternations and must begin

with ∧ states. Define ΠB
k to be the class of languages accepted by ΠB

k -ATMs.

An (unbounded fan-in) Boolean circuit αn with n inputs x1, . . . , xn is a directed
acyclic graph. The nodes of fan-in 0 are called input nodes and are labeled from the
set {0, 1, x1, x1, . . . , xn, xn}. The nodes of fan-in greater than 0 are called gates and
are labeled either and or or. A set of the nodes is designated the output nodes. The
size is the number of gates, and the depth is the maximum distance from an input
to an output. Each node in a circuit of size s has a unique node number of length
O(log s). We assume that circuits are of a special form where all and and or gates
are organized into alternating levels with edges only between adjacent levels. Any
circuit may be converted to one of this form without increasing the depth and by at
most squaring the size [12]. In this special form, the gates connected to input nodes
are called level-1 gates. We also assume that circuits are topologically ordered in the
sense that the node number of a gate is always larger than the node numbers of its
inputs.

A family of circuits is a sequence F = {αn |n ≥ 1} of circuits, where circuit αn
has n inputs and one output. A family of circuits may be used to accept a language
in {0, 1}∗. The circuit family F is log-space uniform if there is an O(logn)-space
deterministic Turing machine that on input 1n prints the encoding of the circuit αn.

Let x = x1x2 . . . xn be a string of n Boolean variables and let b > 0 be an integer.
A specimen of a b-block xib+1 . . . x(i+1)b of x is a string s(xib+1) . . . s(x(i+1)b), where
s(xj) is either xj or xj , for ib+ 1 ≤ j ≤ (i+ 1)b.

Definition 2.1. A family F = {αn |n ≥ 1} of circuits is called a Πpoly,Bc
k -family

if there is a polynomial p such that each αn is a circuit with an and output gate and
of size at most p(n) and depth at most k + 1 in which the input of each level-1 gate
consists of exactly c specimens of `-blocks of x1x2 . . . xn.

Cai and Chen [7] have shown the equivalence of ΠB
k -ATMs and Πpoly,Bc

k -families
of circuits under a proper uniformity. For the present paper, the following theorem
will be sufficient (see Lemma 5.2 and Remark 5.1 in [7]).

Theorem 2.2 (see [7]). If a language L ∈ {0, 1}∗ is accepted by a ΠB
k -ATM

M , then L is accepted by a log-space uniform Πpoly,Bc
k -family F = {αn | n ≥ 1} of

circuits, where c ≥ 1 is an integer. Moreover, if the input of a level-1 gate of αn
consists of specimens of `-blocks B1, . . . , Bc of the input, then there is a computation
path of M that reads only from these `-blocks.

736 LIMING CAI AND JIANER CHEN

In order to let a ΠB
k -ATM simulate the computation of a circuit efficiently, we

introduce a regular way to encode a circuit. An input node labeled “xi” (resp. “xi”)
is called a positive input (resp. negative input).

Definition 2.3. The normal encoding of a circuit α with inputs x1 . . . xn is a
sequence s = 〈n, g1, . . . , gm〉, where the gi’s are nodes of α, |gi| = 2c`(n) for a fixed con-
stant c. For a gate gi with inputs h1, . . . , hj, gi is encoded as 〈id, op, a(h1), . . . , a(hj)〉,
where id is the gate number, op is the gate type, and a(hp) is the address of the node
hp in the sequence s. Moreover, if gi is a level-1 gate, then the negative inputs of gi
should be listed first.

3. The GC model and complete languages. Informally, GC (s(n), C) is a
restricted interactive-proof system in which a prover passes a proof of length O(s(n))
to a verifier that has the power of C. A more formal definition is given as follows.

Definition 3.1. Let s(n) be a function and let C be a complexity class. A
language L is in the class GC(s(n), C) if there is a language A ∈ C together with
an integer c > 0 such that for all x ∈ {0, 1}∗, x ∈ L if and only if ∃y ∈ {0, 1}∗,
|y| ≤ c · s(|x|), and 〈x, y〉 ∈ A.

We point out that in the above definition, the condition |y| ≤ c · s(|x|) can be
replaced by the equality |y| = c′s(|x|), where c′ = 2c, if we encode 0 by 00, 1 by 01,
and “useless symbol” by 10 or 11 and use the useless symbols to make up the guessed
string y to be of length exactly 2c · s(|x|).

If we require that the length |y| of the guessed string y be strictly bounded by
s(|x|) (i.e., the constant c be strictly 1), we call the model a “strict GC, ” written as
sGC(s(n), C).

Many complexity classes can be characterized by the GC model. For example,
the class NP can be characterized by GC (nO(1), P). We will develop a systematic
technique to show that many GC classes have natural complete languages. The
technique is illustrated in detail by deriving complete languages for the classes NkP1

introduced in [5].

Let P1 be the class of languages accepted by deterministic Turing machines of
running time O(n logO(1) n). A circuit family F = {αn |n ≥ 1} is P1-uniform if there
is a deterministic Turing machine M that, on input 1n, generates the circuit αn in
time O(n logO(1) n).

Lemma 3.2. A language L is in P1 if and only if L is accepted by a P1-uniform
family of circuits.

Proof. That L ∈ P1 implies L accepted by a P1-uniform family of circuits follows
directly from the classical work of Fischer and Pippenger [17]. Conversely, if L is
accepted by a P1-uniform circuit family F = {αn |n ≥ 1}, then L can be accepted

by an O(n logO(1) n)-time deterministic Turing machine M as follows: on input x of

length n, M first generates the circuit αn in time O(n logO(1) n), then simulates the

circuit αn on input x in time O(|αn| log2 |αn|) = O(n logO(1) n) using an algorithm
by Pippenger [22].

Let NkP1 denote the class of languages that is accepted by a deterministic
O(n logO(1) n)-time Turing machine that can make at most k logn binary guesses
[5]. It is easy to see that NkP1 is identical to the class sGC(k logn, P1).

A language L is complete for the class NkP1 under quasi-linear-time reduction
if (i) L is in NkP1, (ii) for every language L′ in NkP1, there is a function f such
that x ∈ L′ if and only if f(x) ∈ L, and (iii) the function f(x) is computable in

deterministic O(n logO(1) n) time.

NONDETERMINISM AND VERIFYING 737

Define the weight of a binary string to be the number of 1’s in the string. Consider
the following language, where f is a function.

BWCS[f] (bounded-weight circuit satisfiability)
Instance: A circuit α of m inputs.
Question: Does α accept an input of weight ≤ f(m)?

In particular, for any fixed constant k, we denote by BWCS[k] the language
BWCS[ck], where ck is the constant function ck(n) ≡ k.

Let d be an integer. A binary string y of length d logm is a weight representation
of a binary string vy of length m if the ith bit of vy is 1 if and only if a (logm)-block
of y is a binary representation of the integer i− 1.

Lemma 3.3. For each integer k ≥ 1, the language BWCS[k] is in the class
sGC(k logn, P1).

Proof. For each fixed integer k ≥ 1, we construct a deterministic Turing machine
Mk as follows: on an input of the form 〈α, y〉, where α is a circuit with m inputs and
y is a binary string of length d logm, d ≤ k, Mk writes down on a worktape a string
vy of length m whose weight representation is y. Then Mk simulates the circuit α on
input vy and accepts if and only if the circuit α accepts the input vy.

The simulation of the circuit α on input vy can be implemented by the algorithm
of Pippenger [22], which runs in time O(|α| log2 |α|). All other steps of the Turing

machine Mk can easily be implemented in time O(|α| logO(1) |α|). Thus, the language
Ak accepted by Mk is in the class P1. It is easy to see that a circuit α of m inputs is
in BWCS[k] if and only if 〈α, y〉 ∈ Ak for a binary string y of length ≤ k log |α|. That
is, the language BWCS[k] is in the class sGC(k logn, P1).

We introduce a special function ψ from binary numbers to binary numbers as
follows.

ψ(x) =

i if x = 0i−110n−i and i < 2blog |x|c,
0blog |x|c if x = 0i−110n−i and i ≥ 2blog |x|c,
arbitrary otherwise

Note that for any binary number i of length blognc, there is a length-n binary
number x of the form 0i−110n−i such that ψ(x) = i. It is also easy to see that the
function ψ can be computed by a P1-uniform family of circuits.

Now we are ready to prove our first main theorem. For a circuit α, we denote by
I(α) the input of α.

Theorem 3.4. The language BWCS[k] is complete for the class sGC(k logn, P1)
(= NkP1) under quasi-linear-time reduction, for all k ≥ 1.

Proof. By Lemma 3.3, it suffices to show that BWCS[k] is hard for the class
sGC(k logn, P1) under quasi-linear-time reduction. Let L be a language in the class
sGC(k logn, P1). Then there is a language A ∈ P1 such that for any x, x ∈ L if and
only if there is a y ∈ {0, 1}∗, |y| ≤ k log |x|, such that 〈x, y〉 ∈ A. We show how to

reduce the language L to the language BWCS[k] in deterministic O(n logO(1) n) time.

Since A ∈ P1, by Lemma 3.2, there is a P1-uniform family FA = {γn |n ≥ 1} of
circuits accepting A. Given an instance x to the language L, |x| = n, we consider the
circuits γn, γn+1, . . . , γn+k log n in FA. Let τi(x) be the circuit with i inputs that is
obtained from the circuit γn+i with the first n input bits being assigned by the value
x, 0 ≤ i ≤ k logn. Thus x ∈ L if and only if at least one of the circuits τi(x) is
satisfiable.

738 LIMING CAI AND JIANER CHEN

����∨P
PP

from τ0(x) . . .
��

�
from τk log n(x). . .

Q
Q
Q
Q
Q
Q

�
�

�
�

�
�

τi(x)· · · · · · · · · · · ·

n
PPPPPPPP

HHHHH

· · ·
n

aaaaaa
@
@

· · ·
· · · · · · n

\
\\

�
��

· · · �
�
�
��

· · ·
· · ·2j

the input of the circuit α(x)

����ψ ����ψ . . . ����ψ ����ψ
�� AA �� AA �� AA· · · · · · · · · �� CC· ·
logn logn · · · logn j

the input
of τi(x)

Fig. 1. The structure of the circuit α(x).

We construct a circuit α(x) based on these circuits τ0(x), . . . , τk log n(x). The
circuit α(x) has kn input nodes and one output gate, plus the k logn + 1 circuits
τi(x), 0 ≤ i ≤ k logn. For each i, 0 ≤ i ≤ k logn, suppose i = d logn + j, where
0 ≤ d ≤ k and 0 ≤ j < logn. For each q, 1 ≤ q ≤ d, we construct a subcircuit σi,q
with n inputs and logn outputs that computes the function ψ on domain {0, 1}n such
that the n inputs of σi,q are the qth n-block of the input I(α(x)) of the circuit α(x)
and the logn outputs of σi,q replace the qth (logn)-block of the input I(τi(x)) of the
circuit τi(x) in α(x). Similarly, we construct a subcircuit σi,d+1 with 2j inputs and j

outputs that computes the function ψ on domain {0, 1}2j such that the 2j inputs of
σi,d+1 are the first 2j positions of the (d+ 1)st n-block of I(α(x)) and the j outputs
of σi,d+1 replace the (d+ 1)st (logn)-block of I(τi(x)). Finally, the output gate of the
circuit α(x) is an or gate that receives inputs from output gates of all the circuits
τi(x) in α(x), i = 0, 1, . . . , k logn. See Figure 1.

By the definition of the function ψ, every assignment to the qth (logn)-block
of I(τi(x)) can be realized in α(x) by a weight-1 assignment to the qth n-block of
I(α(x)). Furthermore, through the circuit σi,q, every assignment to the qth n-block
of I(α(x)) (not necessarily weight 1) realizes an assignment to the qth (logn)-block of
I(τi(x)) of the circuit τi(x) in α(x). Therefore, for each τi(x) in α(x), 0 ≤ i ≤ k logn,
every assignment to I(τi(x)) can be realized by an assignment to I(α(x)), in which
each n-block has weight 1. Moreover, each assignment to I(α(x)) (not necessarily
with weight-1 n-blocks) realizes an assignment to I(τi(x)) for each τi(x).

If the circuit α(x) accepts an input of weight at most k, then at least one of the
circuits τi(x) in α(x) is satisfiable, which implies that x ∈ L. Conversely, suppose
that x ∈ L. Then one of the circuits, say τi(x), is satisfiable by an assignment y to
I(τi(x)). We can construct an assignment z to I(α(x)) in which every n-block has
weight 1 such that z realizes the assignment y to I(τi(x)). The weight of z is k. With
this assignment z to I(α(x)), the circuit α(x) has value 1.

By the above discussion, we conclude that x ∈ L if and only if the circuit α(x)
accepts an input of weight at most k, i.e., if and only if α(x) is in the language
BWCS[k]. Moreover, since the circuit family FA = {γn | n ≥ 1} is P1-uniform,

NONDETERMINISM AND VERIFYING 739

there is a deterministic Turing machine M that constructs the circuit γn+i in time

O((n+i) logO(1)(n+i)) = O(n logO(1) n), for all 0 ≤ i ≤ k logn. Therefore, the circuit

α(x) has size O(n logO(1) n) and can be constructed in time O(n logO(1) n).
Thus the language BWCS[k] is complete for the class NkP1 = sGC(k logn, P1)

under quasi-linear-time reduction for all k ≥ 1.
Theorem 3.4 presents a new complete language for the class NkP1 under quasi-

linear-time reduction. The language BWCS[k] is more natural than the previously
known complete languages for NkP1 (see [5]) in the sense that there is no explicit

mention of “k logn” or “n logO(1) n” in the statement of BWCS[k]. We point out that
the above proofs can easily be extended to derive natural complete languages under
proper reductions for the classes NkPh studied by Buss and Goldsmith [5], for h > 1.

Theorem 3.4 and its proof illustrate a systematic technique for constructing com-
plete languages for the class GC(s(n), C). Roughly speaking, what we need is a circuit
characterization of the complexity class C together with an encoding of a nondeter-
ministic string of length s(n) by a length (n · s(n))/ logn string of weight s(n)/ logn.
Below we list a few more examples and briefly describe the proofs.

Let f be a function. Define βf to be the class of languages that are accepted by
deterministic polynomial-time Turing machines that can make an O(f(n)) amount of
nondeterminism. The class βf was introduced by Kintala and Fisher [19] and studied
in detail by Dı́az and Torán [14]. By our GC model, the class βf is identical to the
class GC (f(n), P).

Theorem 3.5. Let f(n) be a function constructible in deterministic O(logn)
space. Then the language BWCS[f] is complete for the class GC(f(n) log n, P) =
βf log n under log-space reduction.

Proof. The proof that BWCS[f] is in the class GC(f(n) log n, P) is similar to the
proof of Lemma 3.3.

To show that BWCS[f] is hard for the class GC(f(n) log n, P) under log-space
reduction, let L be a language in GC(f(n) log n, P). Then there is a language A in
P with a constant c such that for all x, x ∈ L if and only if there is a y, |y| =
cf(|x|) log |x|, and 〈x, y〉 ∈ A. By the results of Borodin [4], there is a log-space
uniform circuit family FA = {γn |n ≥ 1} that accepts A. Given an x, |x| = n, let
τcf(n) logn(x) be the circuit with cf(n) logn inputs that is obtained from γn+cf(n) logn

with the first n input bits assigned by the value x. Thus x ∈ L if and only if the
circuit τcf(n) logn(x) is satisfiable.

Now the proof goes similarly to that of Theorem 3.4. We construct a circuit α(x)
based on the circuit τcf(n) logn(x). The circuit α(x) has m = f(n)nc inputs, and for
each (nc)-block of I(α(x)), there is a subcircuit with nc inputs that computes the
function ψ whose nc inputs are from the (nc)-block of I(α(x)) and whose c logn out-
puts are connected to the corresponding (c logn)-block of the input of τcf(n) logn(x).
Now if the circuit α(x) accepts an input of weight at most f(m), then this input of
α(x) should produce a satisfiable input to the circuit τcf(n) logn(x) via the ψ func-
tion, which implies that x ∈ L. Conversely, if x ∈ L, then a weight-f(n) input of
α(x), f(n) ≤ f(m), can be constructed to produce via the ψ function a satisfiable in-
put to the circuit τcf(n) logn(x). Thus this weight-f(n) input should satisfy the circuit
α(x), and α(x) is in BWCS[f].

In particular, the language BWCS[logi−1 n] is complete for the class GC(logi n, P)

= βlogi n
def
= βi, for all integers i ≥ 2. Note that the language BWCS[logi−1 n]

is a restricted version of the circuit-satisfiability problem that is complete for the
class NP. This answers a question posed by Dı́az and Torán [14], who were able to

740 LIMING CAI AND JIANER CHEN

construct complete languages for βi from certain complete languages for the class
P by adding nondeterminism, and who conjectured that one might not be able to
construct complete languages for βi from complete languages for the class NP by
restricting nondeterminism. We point out that a different approach has been adopted
by Szelepcsényi [24] and Farr [16] to study complete languages for the class βf .

Let f be a function. Now we consider the class GC(f(n),NC d) for all d ≥ 1. In
particular, the classes GC(logi n,NC d) have been investigated by Wolf [25]—in his
notation, NNC d(logi n).

Consider the following language.

BWCSd[f]
Instance: A circuit α with m inputs and depth logdm.
Question: Does α accept an input of weight ≤ f(m)?

Theorem 3.6. Let f be a function constructible in deterministic O(logn) space
and let d ≥ 1 be an integer. Then the language BWCSd[f] is complete for the class
GC(f(n) logn,NCd) under log-space reduction.

Proof. Using the universal-depth NCd circuit family developed by Cook and
Hoover [13], we can show that the language BWCSd[f] is in GC(f(n) log n,NCd).

The proof that the language BWCSd[f] is hard for the class GC(f(n) log n,NCd)
under log-space reduction is completely similar to that of Theorem 3.5.

In particular, the language BWCSd[logi−1 n] is complete for the class NNC d(logi n)
under log-space reduction, for all i ≥ 2. This is the first language that is known to
be complete for the class NNC d(logi n).

4. The GC classes with very weak verifiers. In this section, we derive
complete languages for GC classes with verifiers strictly weaker than deterministic
polynomial-time Turing machines.

The basic idea here is the same as that in section 3: we characterize the verifier
by a circuit family and encode the nondeterministic string of length s(n) by an input
of length (n ·s(n))/ logn to the circuit. However, implementation of these methods on
models such as ΠB

k -ATMs becomes more subtle. For example, it would not be proper
to encode the string of length s(n) using the function ψ defined in section 3 because
that would increase the depth of the circuit. Similar difficulty also occurs when we
test the bounded-weight satisfiability of circuits of depth k using a ΠB

k -ATM. We will
present a number of new techniques to overcome these difficulties.

Recall that in the last phase of each computation path, a ΠB
k -ATM M can read

input bits from at most a constant number of `-blocks of the input. We further require
that if the input to a ΠB

k -ATM M is of the form 〈x, y〉, then the last phase of each
computation path of M can read input bits from at most one `-block from the second
string y. It is easy to see that this additional requirement has no influence on the
class accepted by ΠB

k -ATMs. Furthermore, we also assume that the pairing function
〈x, y〉 is simple and can be decoded into x and y in deterministic O(logn) time [2].

We first consider the GC classes whose verifier is ΠB
2k, for k ≥ 1. A circuit is a Π-

circuit if it has a single output gate, which is of type and. A circuit α is semimonotone
if at most two inputs of each level-1 gate of α are negative input nodes.

Definition 4.1. BWCS(s(n), k) is the set of pairs x = 〈α,w〉, where α is a
semimonotone Π-circuit of depth k in the normal encoding such that α accepts an
input of weight w, w ≤ s(|x|).

Lemma 4.2. For any function s(n) and any k ≥ 1, the language BWCS (s(n), 2k)
is in the class GC (s(n)`(n),ΠB

2k).

NONDETERMINISM AND VERIFYING 741

Algorithm BWCS-Simulator
Input: 〈x, y〉, where x = 〈α,w〉 and α is a circuit with m inputs.
1. Reject if w > m, or if y does not consist of exactly w different input-node

numbers of α, each of length `(|x|), or if α is not in the normal encoding,
or if α is not a semimonotone Π-circuit of depth 2k;

2. Let g be the output gate of α;
3. Repeat the following loop (2k − 1) times:

Suppose g = 〈id, op, a(h1), . . . , a(hj)〉 :
If op = and, then universally choose an a(hi). Let g = hi;
If op = or, then existentially guess an a(hi). Let g = hi;

4. {At this point, g = 〈id, op, a(h1), . . . , a(hj)〉 is a level-1 gate.}
(a) Deterministically find the negative input nodes in h1, . . ., hj . For each
such negative input node hi, universally check whether hi is contained in
y.
(b) If any of these negative input nodes is not contained in y, then accept;
otherwise, existentially guess a positive input node a(hi) of g and accept
if and only if the node number of hi is contained in y.

Fig. 2. The algorithm BWCS-Simulator.

Proof. Consider the algorithm BWCS-Simulator in Figure 2. We will prove that
this algorithm can be implemented by a ΠB

2k-ATM such that for all x = 〈α,w〉,
x ∈ BWCS(s(n), 2k) if and only if there is a string y ∈ {0, 1}∗, |y| ≤ s(|x|)`(|x|) such
that the algorithm accepts 〈x, y〉.

Let z = 〈x, y〉 be an input to the algorithm BWCS-Simulator, where x = 〈α,w〉.
In deterministic O(log |z|) time, we can compute the lengths |x| and |y| (see [2]) and
check the relation w > m. Note that w ≤ m implies |w| ≤ log |z|, so multiplying and
dividing w by `(|x|) can be done in deterministic O(log |z|) time.

The Boolean string y of length w`(|x|) is used as the weight representation of an
input vy of weight w to the circuit α. To verify that y contains exactly w different
input-node numbers of α, each of length `(|x|), we universally check that (i) |y| =
w`(|x|), (ii) each `(|x|)-block of y is a binary number ≤ m, and (iii) no two `(|x|)-
blocks of y are identical. To check whether α is in the normal encoding and whether
α is a semimonotone Π-circuit of depth 2k, we universally check the gates of α level
by level, starting from the output gate of α.

Since the output gate of α is an and gate, the first execution of the loop in step 3
is a universal branch. Therefore, steps 1 and 2 combined with the first execution of
the loop in step 3 form the first phase, which is a universal phase of the algorithm.

The loop execution of step 3 simply simulates the computation of the circuit α.
After 2k− 1 executions of the loop in step 3, the algorithm is in its (2k− 1)st phase,
which is a universal phase, and the current gate g is a level-1 gate of the circuit α,
which is an or gate. Therefore, the universal checking in step 4(a) can be combined
into the (2k − 1)st phase. Since α is semimonotone, only h1 and h2 can be negative
input nodes to the gate g, which can be checked in deterministic O(log |z|) time.

If any of the negative input nodes of g is not in y, then all universal branches in
step 4(a) accept according to the “then” part of step 4(b). This is correct because
this forces the gate g to have value 1 on input vy. On the other hand, if all negative
input nodes of g are in y, then we must check the positive input nodes of g. Thus
the algorithm starts its (2k)th phase in the “else” part of step 4(b). Each path in
this phase checks whether a positive input node hi of g is contained in y. For this,
the algorithm existentially checks an `(|x|)-block in y. Note that in this phase, the
algorithm reads one `(|x|)-block from the first string x (the address a(hi) of the gate
hi) and one `(|x|)-block from the second string y in the input 〈x, y〉.

742 LIMING CAI AND JIANER CHEN

This concludes that the algorithm BWCS-Simulator is a ΠB
2k-ATM which accepts

〈x, y〉, where x = 〈α,w〉, if and only if y contains exactly w different input-node num-
bers of α and the circuit α accepts the weight-w input vy whose weight representation
is y.

Now it is easy to see that x = 〈α,w〉 ∈ BWCS(s(n), 2k) if and only if the
ΠB

2k-ATM BWCS-Simulator accepts 〈x, y〉 for a binary string of length bounded
by s(|x|)`(|x|). Thus the language BWCS (s(n), 2k) is in the class GC (s(n)`(n),
ΠB

2k).

Now we show the completeness of BWCS(s(n), 2k) in the class GC (s(n)`(n),ΠB
2k).

A proof for the following lemma can be found in [6].

Lemma 4.3. Let b > 0 and c > 0 be two integers, and let τ be a Π-circuit of depth
k in which the input of each level-1 gate is a specimen of a b-block of x1 . . . xn. Then
there is a Π-circuit γ of depth k and size ≤ 2cbsize(τ) computing the same function
in which the input of each level-1 gate is a specimen of a (cb)-block of x1 . . . xn.

Theorem 4.4. Let s(n) ≤ n be a nondecreasing function computable in deter-
ministic O(logn) space. Then the language BWCS(s(n), 2k) is complete for the class
GC (s(n)`(n),ΠB

2k) under O(logn)-space reduction, for k ≥ 1.

Proof. By Lemma 4.2, we only need to prove hardness.

Let L be a language in GC (s(n)`(n),ΠB
2k). By definition, there is a ΠB

2k-ATM
M with an integer c > 0 such that x ∈ L if and only if there is a y ∈ {0, 1}∗,
|y| = c s(|x|)`(|x|), and M accepts 〈x, y〉. Without loss of generality, assume that c
is an even number. Moreover, we can assume that no phase except the last phase of
each computation path of M has access to the input [7]. By Theorem 2.2, there is a

log-space uniform Πpoly,Bh
2k -family {τm | m ≥ 1} of circuits that accepts L(M), where

h is a constant.

Given an instance x of the language L, we show how to reduce x to an instance
z = 〈α(x), w(x)〉 for the language BWCS (s(n), 2k) such that x ∈ L if and only if z is
in BWCS (s(n), 2k). Let |x| = n, and |〈x, y〉| = m, where y is a binary string of length
c s(n)`(n). Let τm(x) be the circuit τm with the first part of the input assigned by
the value of x. τm(x) is a circuit with c s(n)`(n) inputs, and x ∈ L if and only if the
circuit τm(x) is satisfiable.

Since |y| = c s(n)`(n) = O(n logn), |x| = n ≤ m = |〈x, y〉| ≤ n2. Therefore,
we have either `(m) = `(n) or `(m) = 2`(n). Thus the number of inputs of the
circuit τm(x) can be written as as(n)`(m), where a is an integer such that a = c if
`(m) = `(n) or a = c/2 if `(m) = 2`(n).

Recall that the circuit τm is a Π-circuit of depth 2k + 1 in which the input of
each level-1 gate consists of exactly h specimens of `-blocks of 〈x, y〉. Moreover, the
last phase of each computation path of M reads inputs from at most one `-block from
the string y. By Theorem 2.2, at most one specimen in the input of each level-1 gate
of τm is from an `-block of the string y. Therefore, the circuit τm(x) is a Π-circuit
with as(n)`(m) inputs and of depth 2k + 1 in which the input of each level-1 gate is
a specimen of an `(m)-block of its input. By Lemma 4.3, there is a Π-circuit γm(x)
of depth 2k + 1 and size bounded by a polynomial of m that computes the same
function as τm(x) such that the input of each level-1 gate of γm(x) is a specimen of
an (a`(m))-block of its input.

Now we are ready to describe the circuit α(x).

The input I(α(x)) = v1 . . . vs(n)2a`(m) of the circuit α(x) is of length s(n)2a`(m) and

partitioned into s(n) 2a`(m)-blocks. Similarly, the input I(γm(x)) = u1 . . . uas(n)`(m)

of the circuit γm(x) is partitioned into s(n) (a`(m))-blocks. The circuit α(x) will be

NONDETERMINISM AND VERIFYING 743

���∨ g4 ���∨ g5 ���∨ g6

���∧ g1 ���∧ g2 ���∧ g3
c
c
c

c
c
c

#
#
#

#
#
#

input of γm(x)

u1 u2 u3 u1 u2 u3 u1 u2 u3

C
C
C

C
C
C

C
C
C

�
�
�

�
�
�

�
�
�

���∨ g4

v1 = v000+1

���∨ g5

v6 = v101+1

���∨ g6

v7 = v110+1

input of α(x)

J
J
J
J
J
JJ

J
J
J
J
J
JJ

-

Fig. 3. From circuit γm(x) to circuit α(x).

constructed from the circuit γm(x) by replacing each level-1 gate in γm(x) by an input
node of α(x). As we have done in section 3, for each q, we will use a position in the
qth 2a`(m)-block of I(α(x)) to represent an assignment to the qth (a`(m))-block of
I(γm(x)). To simplify discussion, we describe the construction of the first 2a`(m)-block
of I(α(x)) based on the first (a`(m))-block of I(γm(x)). The construction of the qth
2a`(m)-block of I(α(x)) for general q can be done similarly.

Let g be a level-1 gate of the circuit γm(x) whose input is a specimen of the first
(a`(m))-block of I(γm(x)). Note that g is an and gate; thus there is a unique Boolean
assignment bg to the first (a`(m))-block of I(γm(x)) that makes the gate g have value
1. Regarding bg as a binary number between 0 and 2a`(m) − 1, we replace the gate g
in γm(x) by the positive input node vbg+1 in I(α(x)), which is in the first 2a`(m)-block
of I(α(x)). In the same way, we perform this replacement on each level-1 gate in the
circuit γm(x). See Figure 3. The resulting circuit α(x) has depth 2k. Also, note that
so far the circuit α(x) contains no negative input nodes.

By construction, each assignment of the qth (a`(m))-block of I(γm(x)) in γm(x)
can be implemented by a weight-1 assignment of the qth 2a`(m)-block of the input
I(α(x)) in the circuit α(x). Therefore, each assignment of I(γm(x)) in γm(x) can be
implemented by a weight-s(n) assignment of I(α(x)) in α(x), in which the assignment
to each 2a`(m)-block has weight 1. We conclude that if the circuit γm(x) is satisfiable,
then the circuit α(x) accepts an input of weight s(n).

The construction has not yet been completed. Note that if in an assignment of
I(α(x)), a 2a`(m)-block has weight different from 1, then the assignment does not
implement any assignment of I(γm(x)). To ensure that each 2a`(m)-block of I(α(x))
is assigned exact one 1, we let

φ(v1, . . . , vt) = (v1 ∨ . . . ∨ vt)
∧∧

i,j

(vi ∨ vj)

 .

It is easy to see that φ(v1, . . . , vt) = 1 if and only if exactly one vi is 1. The function
φ(v1, . . . , vt) can be implemented by a Π-circuit of depth 2 in which at most two
negative input nodes appear in the input of each level-1 gate. Now for each 2a`(m)-
block of I(α(x)), we add a Π-subcircuit of depth 2 that implements the function φ
with 2a`(m) variables, and we connect the output of this subcircuit to the output gate
of the circuit α(x) (which is the output gate of the circuit γm(x)). Note that this
does not increase the depth of the circuit α(x) since both the output gate of such a
subcircuit and the output gate of the circuit α(x) are and gates, and the depth of
the circuit α(x) is at least 2. This completes the construction of the circuit α(x).

744 LIMING CAI AND JIANER CHEN

Algorithm antiBWCS-Simulator
Input: 〈x, y〉, where x = 〈α,w〉 and α is a circuit with m inputs.
1. Reject if w > m, or if y does not consist of exactly w different input node

numbers, each of length `(|x|), or if α is not in the normal encoding, or if
α is not a semiantimonotone Π-circuit of depth 2k + 1;

2. Let g be the output gate of α;
3. Repeat the following loop 2k times:

Suppose g = 〈id, op, a(h1), . . . , a(hj)〉 :
If op = and, then universally choose an a(hi). Let g = hi;
If op = or, then existentially guess an a(hi). Let g = hi;

4. {At this point, g = 〈id, op, a(h1), . . . , a(hj)〉 is a level-1 gate.}
(a) Deterministically find the positive input nodes in h1, . . . , hj . For each
such positive input node hi, existentially check whether hi is contained in
y.
(b) If any of these positive input nodes is not contained in y, then reject;
otherwise, universally guess a negative input node a(hi) of g and reject if
and only if the node number of hi is contained in y.

Fig. 4. The algorithm antiBWCS-Simulator.

The circuit α(x) is semimonotone because only the subcircuits that implement the
function φ contain negative input nodes.

Now if the circuit α(x) accepts an assignment of weight s(n), then each 2a`(m)-
block of the assignment must have weight 1. Thus the assignment implements a
satisfying assignment to the circuit γm(x).

Since the circuit γm(x) is satisfiable if and only if x ∈ L, we conclude that the
circuit α(x) accepts a weight-s(n) input if and only if x ∈ L. Consequently, the
mapping from x to 〈α(x), s(n)〉 is a many–one reduction from the language L to the
language BWCS(s(n), 2k).

By assumption, the function s(n) can be constructed in deterministic O(logn)
space and the circuit τm can be constructed in deterministic O(logm) = O(logn)
space. It is also easy to see that the circuit constructions from τm to τm(x), from τm(x)
to γm(x), and from γm(x) to α(x) (in the normal form) can all be done in deterministic
O(logn) space. Therefore, the reduction can be implemented in deterministic O(logn)
space. This completes the proof of the theorem.

Unfortunately, the above methods do not seem to work for GC(s(n)`(n),Π2k+1).
In fact, we are even unable to prove that the language BWCS(s(n), 2k + 1) is in the
class GC(s(n)`(n),Π2k+1). For this, we need to introduce another special type of
circuits that are dual to the semimonotone circuits. A circuit α is semiantimonotone
if at most two inputs of each level-1 gate of α are positive input nodes.

Definition 4.5. anti BWCS(s(n), k) is the set of pairs x = 〈α,w〉, where α is
a semiantimonotone Π-circuit of depth k in the normal encoding such that α accepts
an input of weight w, w ≤ s(|x|).

Lemma 4.6. For any function s(n) and any k ≥ 1, antiBWCS(s(n), 2k+ 1) is in
the class GC(s(n)`(n),ΠB

2k+1).
Proof. We first design an algorithm antiBWCS-Simulator as shown in Figure 4.

As in the proof of Lemma 4.2, we can prove that the algorithm antiBWCS-Simulator
can be implemented by a ΠB

2k+1-ATM M . In particular, since the circuit α is in the
normal encoding, the positive input nodes should always appear at the end of the in-
put list of a level-1 gate. Thus they can be found in deterministic O(logn) time since
α is semiantimonotone. It can also be proved that M accepts 〈x, y〉, where x = 〈α,w〉,
if and only if y contains exactly w different input-node numbers of the semiantimono-
tone circuit α, and the circuit α accepts the input vy of weight w whose weight

NONDETERMINISM AND VERIFYING 745

representation is y. Consequently, for any x = 〈α,w〉, x ∈ antiBWCS(s(n), 2k + 1) if
and only if there is a string y ∈ {0, 1}∗ of length s(|x|)`(|x|) such that the algorithm
antiBWCS-Simulator accepts 〈x, y〉. We leave the detailed proof to the interested
reader.

Theorem 4.7. Let s(n) ≤ n be a nondecreasing function computable in de-
terministic O(logn) space. Then antiBWCS(s(n), 2k + 1) is complete for the class
GC(s(n)`(n),ΠB

2k+1) under O(logn)-space reduction, for k ≥ 1.

Proof. Let L be a language in GC(s(n)`(n),ΠB
2k+1). For an instance x of L, let

n = |x|, m = |〈x, y〉|, where y is a binary string of length as(n)`(m) for an integer
a > 0. As in the proof of Theorem 4.4, we can construct a Π-circuit γm(x) with
as(n)`(m) inputs and of depth 2k + 2 in which the input of each level-1 gate is a
specimen of an (a`(m))-block of its input such that x ∈ L if and only if the circuit
γm(x) is satisfiable.

The construction of the circuit α(x) from the circuit γm(x) is in some sense dual
to the one in the proof of Theorem 4.4.

Let g be a level-1 gate of the circuit γm(x) whose input is a specimen of the first
(a`(m))-block of I(γm(x)). Note that g is an or gate; thus there is a unique Boolean
assignment bg to the first (a`(m))-block of I(γm(x)) that makes the gate g have value
0. Regarding bg as a binary number between 0 and 2a`(m) − 1, we replace the gate g
in γm(x) by the negative input node vbg+1 in I(α(x)). We perform this replacement
on each level-1 gate in the circuit γm(x). The resulting circuit α(x) has depth 2k+ 1.
Also, note that so far the circuit α(x) contains no positive input nodes.

To ensure that each 2a`(m)-block of I(α(x)) is assigned exactly one 1, we again
use the function φ in the proof of Theorem 4.4. However, this time we implement the
function φ by a Π-circuit Cφ of depth 3 so that all level-1 gates of the circuit Cφ have
fan-in 1. Thus the circuit Cφ is semiantimonotone. Now including the subcircuits Cφ
into the circuit α(x) ensures that the circuit α(x) accepts an input of weight s(n) if
and only if the circuit γm(x) is satisfiable. Moreover, adding the subcircuits Cφ to
α(x) does not increase the depth of the circuit α(x) because the depth of α(x) is at
least 3.

All other parts of the proof are exactly the same as that in the proof of Theorem
4.4.

In many cases, the function `(n) in GC(s(n)`(n),ΠB
k) can be replaced by log n,

as stated in the following theorem. A proof of this theorem can be found in [6].
Theorem 4.8. If the function s(n) is computable in deterministic O(logn) time

and |s(n)| = O(logn/ log log n) for all n, then for all k ≥ 1,

GC(s(n)`(n),ΠB
k) = GC(s(n) log n,ΠB

k).

5. GC classes and optimization problems. In this section, we present a
number of interesting connections of the GC classes to computational optimization
problems.

Following Papadimitriou and Yannakakis [21], define LOGNP0 to be the class of
all problems described as follows:

{I : ∃S ∈ [n]log n, ∀x ∈ [n]p, ∃y ∈ [n]q, ∀j ∈ [logn], φ(I, sj , x, y, j)},(1)

where I ⊆ [n]m is the input relation, x and y are tuples of first-order variables
ranging over [n] = {1, 2, . . . , n}, j is a first-order variable ranging over [logn], S is
an ordered subset S = (s1, . . . , slog n) of [n], and φ is a quantifier-free first-order

746 LIMING CAI AND JIANER CHEN

expression involving the relation symbol I and the variables in x and y as well as the
variables j and sj .

A weaker class LOGSNP0 contains all problems definable by one less alternation
of quantifiers:

{I : ∃S ∈ [n]log n, ∀x ∈ [n]p, ∃j ∈ [logn], φ(I, sj , x, j)}.(2)

The class LOGNP is defined to be the class of languages that can be polynomial-
time reduced to a problem in LOGNP0, and the class LOGSNP is defined to be the
class of languages that can be polynomial-time reduced to a problem in LOGSNP0.

The complexity of a number of interesting optimization problems can be nicely
characterized by the classes LOGNP and LOGSNP. For instance, it has been shown
[21] that the problems LOG DOMINATING SET, TOURNAMENT DOMINATING
SET, RICH HYPERGRAPH COVER, and LOG ADJUSTMENT are complete under
polynomial-time reduction for the class LOGSNP and that the problem V-C DIMEN-
SION is complete under polynomial-time reduction for the class LOGNP.

The following two theorems characterize the classes LOGNP and LOGSNP by
the GC models.

Theorem 5.1. A language L is in the class LOGSNP if and only if L is
polynomial-time reducible to a language in GC(log2 n,ΠB

2).
Proof. We first show that the language BWCS(logn, 2) is in the class LOGSNP0

when circuits are encoded properly. A circuit is in the edge-relation encoding if it is
represented by a collection of five kinds of tuples: e(g, g′) if node g is an input of node
g′, p(i, g) if the ith input of the level-1 gate g is a positive input node, n(i, g) if the ith
input of the level-1 gate g is a negative input node, pos(k, g) if the positive input node
xk is an input of the level-1 gate g, and neg(k, g, i) if the ith input of the level-1 gate
g is the negative input node xk. Note that for a semimonotone circuit, neg(k, g, i) is
false for all i ≥ 3. It is easy to see that the edge-relation encoding of circuits and the
normal encoding of circuits can be converted to each other in polynomial time.

With the edge-relation encoding, it is easy to see the language BWCS(logn, 2) is
defined by the following logic expression:

{〈α,w〉 : ∃S ∈ [n]log n, ∀g ∈ [n], ∀a, b ∈ [logn], ∃j ∈ [logn], ([A] ∧ [B] ∧ [C] ∧ [D])},

where

[A] = e(g, g0) ∧ p(1, g)→ pos(sj , g),
[B] = e(g, g0) ∧ n(1, g) ∧ p(2, g) ∧ (a ≤ w)

→ pos(sj , x) ∨ [(a = j) ∧ neg(sj , g, 1)],
[C] = e(g, g0) ∧ n(1, g) ∧ n(2, g) ∧ (a, b ≤ w)

→ pos(sj , x) ∨ [(a = j) ∧ neg(sj , g, 1)] ∨ [(b = j) ∧ neg(sj , g, 2)],
[D] = (j ≤ w),

where g0 is the output gate of the circuit α.
Thus the language BWCS(logn, 2) is in the class LOGSNP0 when circuits are in

the edge-relation encoding. By Theorems 4.4 and 4.8, the language BWCS(logn, 2)
is complete under O(logn)-space reduction for class GC(log2 n,ΠB

2) when circuits
are in the normal encoding. Since the normal encoding of a circuit can easily be
converted into the edge-relation encoding of the circuit, we conclude that all languages
in the class GC(log2 n,ΠB

2) are in LOGSNP. Consequently, all languages that are
polynomial-time reducible to a language in the class GC(log2 n,ΠB

2) are contained in
the class LOGSNP.

NONDETERMINISM AND VERIFYING 747

To prove the inverse, we consider the following problem. A tournament is a
directed graph in which for any two vertices exactly one of the two directed edges is
presented. It is not difficult to see that a tournament of n vertices has a dominating
set of size log n [21]. Thus the following problem has a trivial solution when k ≥ logn.

TOURNAMENT DOMINATING SET: “Given a tournament with
n vertices and integer k, does it have a dominating set of size k?”

Papadimitriou and Yannakakis [21] have shown that TOURNAMENT DOMINAT-
ING SET is complete for LOGSNP under polynomial-time reduction. Therefore, to
show that all languages in LOGSNP are polynomial-time reducible to a language in
the class GC(log2 n,ΠB

2), we only have to show that TOURNAMENT DOMINAT-
ING SET is in GC(log2 n,ΠB

2). It can be easily done as follows: given an input
〈G, k, y〉, where y is of length k logn and encodes k vertices of the tournament G, the
ΠB

2 -ATM M first universally picks a vertex v of G, then existentially guesses a vertex
w in y, and finally verifies if v = w or [w, v] is an edge of G.

This completes the proof.

The proof of Theorem 5.1 also shows that TOURNAMENT DOMINATING SET
is complete for the class GC(log2 n,ΠB

2) under polynomial-time reduction.

Theorem 5.2. A language is in the class LOGNP if and only if it is polynomial-
time reducible to a language in GC(log2 n,ΠB

3).

Proof. Since the proof is similar to that of Theorem 5.1, we only describe the
differences here.

The language antiBWCS(log n, 3) can be given by the following logic expression:

{〈α,w〉 : ∃S ∈ [n]log n, ∀g′ ∈ [n], ∃g ∈ [n], ∃a, b ∈ [logn],

∀j ∈ [logn], ([A] ∧ [B] ∧ [C] ∧ [D])},
where

[A] = e(g′, g0) ∧ e(g, g′) ∧ n(1, g) ∧ (j ≤ w)→ neg(sj , g),
[B] = e(g′, g0) ∧ e(g, g′) ∧ p(1, g) ∧ n(2, g) ∧ (j ≤ w)

→ neg(sj , x) ∧ [(a 6= j) ∨ pos(sj , g, 1)],
[C] = e(g′, g0) ∧ e(g, g′) ∧ p(1, g) ∧ p(2, g) ∧ (j ≤ w)

→ neg(sj , x) ∧ [(a 6= j) ∨ pos(sj , g, 1)] ∧ [(b 6= j) ∨ pos(sj , g, 2)],
[D] = (a ≤ w) ∧ (b ≤ w).

To show that every language in the class LOGNP is polynomial-time reducible
to a language in GC(log2 n,ΠB

3), we will show that the problem V-C DIMENSION,
which is known to be complete for the class LOGNP [21], is contained in the class
GC(log2 n,ΠB

3).

Let C be a family of subsets of a universe U . The V-C dimension of C is the
largest cardinality of a subset S of U such that the following holds: For all subsets T
of S there is a set C[T] ∈ C such that S ∩ C[T] = T . Closer inspection reveals that
the V-C dimension of a family C is at most log |C|.

V-C DIMENSION: “Given a finite family C of finite sets and an
integer k, is the V-C dimension of C at least k?”

To show that the problem V-C DIMENSION is in the class GC(log2 n,ΠB
3), we

construct a ΠB
3 -ATM M as follows. Let n = |C|. On input 〈C, k, y〉, where y is a binary

string of length k logn that encodes a subset S of U of k elements, the ΠB
3 -ATM M

first universally picks a subset T of S (this can be done by picking a binary string of
length k to indicate which elements of S are included in T), then existentially guesses
a subset C[T] in C, and finally universally checks for each element v in S that v is in
T if and only if v is in C[T]. It is not hard to see that with a proper encoding of the

748 LIMING CAI AND JIANER CHEN

family C, the machine M can be implemented by a ΠB
3 -ATM.

The proof of Theorem 5.2 also shows that V-C DIMENSION is complete for the
class GC(log2 n,ΠB

3) under polynomial-time reduction.
One may not expect an easy proof that the classes LOGSNP and LOGNP are

different because that would imply P 6= NP . However, based on the GC model
characterizations of these classes, we can show strong evidence that these two classes
are distinct.

Theorem 5.3. For all integer k ≥ 1, the class GC(log2 n,ΠB
k) is a proper subclass

of the class GC(log2 n,ΠB
k+1).

Proof. By Boppana and Sipser [3, Thm. 3.13], for any integer k ≥ 1, there is a
language Lk+1 that is accepted by a ΠB

k+1-ATM but not by any family of Σ-circuits

of size O(nO(log n)) and depth k+ 2 in which the fan-in of the level-1 gates is bounded
by O(logn). Thus the language Lk+1 is in the class GC(log2 n,ΠB

k+1).

Suppose that the language Lk+1 is also in the class GC(log2 n,ΠB
k). Then there

is a ΠB
k -ATM M such that for every instance x of Lk+1, x ∈ Lk+1 if and only if

there is a binary string y of length c log2 n such that 〈x, y〉 is accepted by M , where

c is a fixed constant. By Theorem 2.2, there is a Πpoly,Bd
k -family F = {αm | m ≥ 1}

of circuits that accepts the same language as M . Now we can construct a circuit
family F ′ = {γn | n ≥ 1} to accept Lk+1 as follows. Given an instance x of Lk+1,
|x| = n, let m = n+ c log2 n. Note that by definition, x ∈ Lk+1 if and only if 〈x, y〉 is
accepted by the circuit αm, for a binary string y of length c log2 n. For each binary
string y of length c log2 n, we construct a circuit αm(y) that is the circuit αm with
the last c log2 n input variables assigned by the value of y. Now let γn be the or of
all these 2c log2 n = nc log n circuits αm(y), y ∈ {0, 1}c log2 n. Then the Σ-circuit γn has
size O(nO(log n)) and depth k + 2 in which the fan-in of the level-1 gates is bounded

by O(logn) (recall that the circuit family F = {αm|m ≥ 1} is a Πpoly,Bd
k -family of

circuits), and γn accepts x if and only if x ∈ Lk+1. However, this contradicts the
definition of the language Lk+1.

This completes the proof that the language Lk+1 is in the class GC(log2 n,ΠB
k+1)

but not in the class GC(log2 n,ΠB
k).

Papadimitriou and Yannakakis [21] have shown that the following three problems
are in LOGSNP.

LOG2SAT: “Given a CNF Boolean formula with n clauses and log2 n
variables, does it have a satisfying truth assignment?”
LOG CLIQUE: “Given a graph with n vertices, does it have a clique
of size log n?”
LOG CHORDLESS PATH: “Given a graph with n vertices, does it
have a chordless path of length logn?”

It was asked in [21] whether these three problems are complete for the class LOGSNP.
Based on our characterization, we show that it is unlikely that these problems are
complete for the class LOGSNP.

The problem LOG CLIQUE is actually in the class GC(log2 n,ΠB
1) if on input

〈x, y〉, we allow each computation path of a ΠB
1 -ATM to read two `-blocks from the

second parameter y. In fact, let G be a graph and let y encode logn vertices of G;
then on input 〈G, y〉, a ΠB

1 -ATM can universally pick a pair (v, w) of vertices from the
string y and check with G if there is an edge connecting them. Similarly, the problem
LOG CHORDLESS PATH can be shown to be in the class GC(log2 n,ΠB

1). Note that
in the proof of Theorem 5.3, the fact that the last phase of each computation path of
a ΠB

k -ATM reads at most one `-block from y was actually not used. Thus even though

NONDETERMINISM AND VERIFYING 749

we allow each computation path of a ΠB
1 -ATM to read two `-blocks from y, the class

GC(log2 n,ΠB
1) is still a proper subclass of the class GC(log2 n,ΠB

2). Therefore, the
problems LOG CLIQUE and LOG CHORDLESS PATH seem not hard enough to be
complete for the class LOGSNP. Similarly, the problem LOG2SAT can be shown to
belong to the class GC(log2 n,ΠB∗

2), where ΠB∗
2 is the class of languages accepted by

restricted ΠB
2 -ATMs in which the last phase of each computation path runs at most

O(log log n) steps and reads at most constant number of input bits. A proof similar to
that of Theorem 5.3 can be derived to show that GC(log2 n,ΠB∗

2) is a proper subclass
of GC(log2 n,ΠB

2). Therefore, the problem LOG2SAT also seems not hard enough
to be complete for the class GC(log2 n,ΠB

2) (for detailed discussions on the problem
LOG2SAT, see [6]).

Meggido and Vishkin [20] studied the problem TOURNAMENT DOMINATING
SET and proved that the problem LOG2SAT is polynomial-time reduced to TOUR-
NAMENT DOMINATING SET and that TOURNAMENT DOMINATING SET is
polynomial-time reduced to a generalization of the LOG2SAT problem. They asked
whether there is a version of the satisfiability problem that precisely characterizes the
problem TOURNAMENT DOMINATING SET. Our Theorem 5.1 concludes that the
problem TOURNAMENT DOMINATING SET is polynomial-time equivalent to the
problem BWCS(logn, 2), which is the standard satisfiability problem with a weight
restriction on the truth assignment and the restriction that in each clause of the CNF
formula there are at most two negative literals.

We point out that one can also derive from a result in [21] that the problem
SPARSE SAT (“Given a CNF Boolean formula of n variables, does it have a satisfy-
ing truth assignment of weight at most log n?”) is also polynomial-time equivalent to
TOURNAMENT DOMINATING SET [26]. However, the language BWCS(log n, 2)
characterizes the problem TOURNAMENT DOMINATING SET more precisely in
the sense that both BWCS(logn, 2) and TOURNAMENT DOMINATING SET be-
long to the class LOGSNP0∩GC(log2 n,ΠB

2) under standard encodings, while SPARSE
SAT does not seem to belong to either LOGSNP0 or GC(log2 n,ΠB

2) under standard
encodings.

Finally, we point out that the GC model also has nice applications in the study of
fixed-parameter tractability of optimization problems [15]. We refer interested readers
to our related work [9, 10].

Acknowledgments. The authors thank Rod Downey, Mike Fellows, Don Friesen,
Judy Goldsmith, Christos Papadimitriou, Robert Szelepcsényi, Marty Wolf, Mihalis
Yannakakis, and Chee Yap for their comments and constructive discussions. The
authors also thank the referees for their careful reading and many useful comments,
which have greatly improved the presentation.

REFERENCES

[1] A. Aggarwal, A. K. Chandra, and M. Snir, Hierarchical memory with block transfer, in
Proc. 28th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1987, pp. 204–216.

[2] D. A. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, J. Com-
put. System Sci., 41 (1990), pp. 274–306.

[3] R. B. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Vol. A, J. van Leeuwen, ed., MIT Press, Cambridge, MA, 1990, pp. 757–
804.

[4] A. Borodin, On relating time and space to size and depth, SIAM J. Comput., 6 (1977), pp.
733–744.

750 LIMING CAI AND JIANER CHEN

[5] J. F. Buss and J. Goldsmith, Nondeterminism within P , SIAM J. Comput., 22 (1993), pp.
560–572.

[6] L. Cai, Nondeterminism and optimization, Ph.D. thesis, Department of Computer Science,
Texas A&M University, College Station, TX, 1994.

[7] L. Cai and J. Chen, On input read-modes of alternating Turing machines, Theoret. Com-
put. Sci., 148 (1995), pp. 33–55.

[8] L. Cai and J. Chen, On the amount of nondeterminism and the power of verifying, in Proc.
18th International Symposium on Mathematical Foundations of Computer Science (MFCS
’93), Lecture Notes in Comput. Sci. 711, Springer-Verlag, Berlin, 1993, pp. 311–320.

[9] L. Cai and J. Chen, Fixed parameter tractability and approximability of NP-hard optimization
problems, in Proc. 2nd Israel Symposium on Theory and Computing Systems, Springer-
Verlag, Berlin, 1993, pp. 118–126.

[10] L. Cai and J. Chen, R. Downey, and M. Fellows, On the structure of parameterized prob-
lems in NP, Inform. and Comput., 123 (1995), pp. 38–49.

[11] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach.,
28 (1981), pp. 114–133.

[12] J. Chen, Characterizing parallel hierarchies by reducibilities, Inform. Process. Lett., 39 (1991),
pp. 303–307.

[13] S. A. Cook and H. J. Hoover, A depth-universal circuit, SIAM J. Comput., 14 (1985), pp.
833–839.

[14] J. D́iaz, and J. Torán, Classes of bounded nondeterminism, Math. System Theory, 23 (1990),
pp. 21–32.

[15] R. G. Downey and M. R. Fellows, Fixed-parameter intractability, in Proc. 7th Structure in
Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 36–49.

[16] G. Farr, On problems with short certificates, Acta Inform., 31 (1994), pp. 479–502.
[17] M. Fischer and N. J. Pippenger, Relations among complexity measures, J. Assoc. Com-

put. Mach, 26 (1979), pp. 361–381.
[18] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms, 13 (1992),

pp. 502–524.
[19] C. Kintala and P. Fisher, Refining nondeterminism in relativized complexity classes, SIAM

J. Comput., 13 (1984), pp. 329–337.
[20] N. Meggido and U. Vishkin, On finding a minimum dominating set in a tournament, Theo-

ret. Comput. Sci. 61 (1988), pp. 307–316.
[21] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity

of the V-C dimension, in Proc. 8th Structure in Complexity Theory Conference, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 12–18.

[22] N. J. Pippenger, Fast simulation of combinational logic networks by machines without
random-access storage, in Proc. 15th Allerton Conference on Communication, Control,
and Computing, 1977, pp. 25–33.

[23] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 21 (1981), pp. 365–383.
[24] R. Szelepcsényi, βk-complete problems and greediness, Technical Report 455, Computer Sci-

ence Department, University of Rochester, Rochester, NY, 1993.
[25] M. J. Wolf, Nondeterministic circuits, space complexity, and quasigroups, Theoret. Com-

put. Sci., 125 (1994), pp. 295–313.
[26] M. Yannakakis, private communications, 1993.
[27] A. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. 26th Annual Symposium

on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1985, pp. 1–10.

BOUNDS ON THE NUMBER OF EXAMPLES NEEDED FOR
LEARNING FUNCTIONS∗

HANS ULRICH SIMON†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 751–763, June 1997 009

Abstract. We prove general lower bounds on the number of examples needed for learning
function classes within different natural learning models which are related to pac-learning (and
coincide with the pac-learning model of Valiant in the case of {0, 1}-valued functions). The lower
bounds are obtained by showing that all nontrivial function classes contain a “hard binary-valued
subproblem.” Although (at first glance) it seems to be likely that real-valued function classes are
much harder to learn than their hardest binary-valued subproblem, we show that these general lower
bounds cannot be improved by more than a logarithmic factor. This is done by discussing some
natural function classes like nondecreasing functions or piecewise-smooth functions (the function
classes that were discussed in [M. J. Kearns and R. E. Schapire, Proc. 31st Annual Symposium
on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990,
pp. 382–392, full version, J. Comput. System Sci., 48 (1994), pp. 464–497], [D. Kimber and P. M.
Long, Proc. 5th Annual Workshop on Computational Learning Theory, ACM, New York, 1992, pp.
153–160]) with certain restrictions concerning their slope.

Key words. function learning, sample complexity

AMS subject classification. 68T05

PII. S0097539793259185

1. Introduction. The question of how many examples are necessary and suf-
ficient for learning has found a very satisfactory answer within the distribution-
free learning model for deterministic concept classes C (the pac-learning model of
Valiant [12]). There is a lower bound of Ω((d(C) + ln(1/δ))/ε) (see [3] and [4]) and
an upper bound of O((d(C) ln(1/ε) + ln(1/δ))/ε) (see [3]), where d(C) denotes the
Vapnik–Chervonenkis dimension of C. Since these bounds are within a logarithmic
factor of each other, it is fairly well known how the sample complexity scales with the
parameters ε and δ (which specify the demanded accuracy and confidence of learning).

The distribution-free learning model has been transferred to probabilistic concept
classes (also called p-concept classes) by Kearns and Schapire (see [6]) and to function
classes by Haussler (see [5]). In this paper, we restrict ourselves to functions with real
values in the range [0, 1] (hereafter simply called functions).1 The main difference
between p-concept learning and function learning lies in the kind of feedback. A
labeled example for a function f has the form (x, f(x)), i.e., the learning algorithm
obtains the correct value of f at point x. For p-concept learning, the feedback is
weaker. Here f(x) is interpreted as a probability (that x fits into the concept). A
labeled example has the form (x, l(x)), where l(x) ∈ {0, 1} is the outcome of a coin
which produces 1 with probability f(x) and 0 with probability 1 − f(x). Note that
learning f as a function is easier than learning f as a p-concept since the feedback is
much stronger.

∗ Received by the editors November 16, 1993; accepted for publication (in revised form) July
12, 1995. This research was supported by Bundesministerium für Forschung und Technologie grant
01IN102C/2.

http://www.siam.org/journals/sicomp/26-3/25918.html
† Fachbereich Informatik, Universität Dortmund, D-44221 Dortmund, Germany (simon@

ls2.informatik.uni-dortmund.de).
1 It will become evident, however, that all results are easily extended to functions with bounded

range.

751

752 HANS ULRICH SIMON

This paper will demonstrate that the sample complexity of function learning
can be characterized very well in terms of a quantity dF (γ), which is related to the
Natarajan dimension of F (see [9]), but depends on a given width γ of shattering.2

We first derive some general lower bounds. They are obtained by showing that all
nontrivial function classes contain a “hard binary-valued subproblem.” Although (at
first glance) it seems to be likely that real-valued function classes are much harder
to learn than their hardest binary-valued subproblem, we show that these general
lower bounds cannot be improved by more than a logarithmic factor. This is done
by discussing some natural function classes like nondecreasing functions or piecewise-
smooth functions (the function classes that were discussed in [6] and [7]) with certain
restrictions concerning their slope.3

Although our general lower bounds cannot be substantially improved (because
there are “almost matching” upper bounds for some specific function classes), we are
not aware of general upper bounds which match the lower ones modulo a logarithmic
factor. Recently, Anthony and Shawe-Taylor derived general upper bounds for func-
tion learning in terms of several other notions of dimension associated with F and
γ (see [2]). Their results are incomparable to ours because the variation within the
different notions of dimension is too large. In particular, their general upper bounds
cannot be directly applied to the specific function classes considered in this paper (the
corresponding dimensions are not finite). Thus closing the gap between the general
upper and lower bounds is a major object of future research.

This paper is structured as follows. Section 2 presents the definition of the learn-
ing models. Section 3 presents the general lower bounds. Section 4 presents “almost
matching” upper bounds for some natural function classes. Section 5 presents gener-
alizations to higher-dimensional domains. Section 6 discusses some open problems.

2. The learning models. Let F be a class of functions from a domain X into
[0, 1]. The environment for learning consists of a hidden target function f ∈ F and an
unknown distribution D on X.4 A random sample I of size m w.r.t. D, f consists of
m sample points x1, . . . , xm drawn randomly according to Dm and the corresponding
values f(x1), . . . , f(xm) of the target function. A function h : X → [0, 1] is called an
(ε, γ)-good model for f if

D({x| |f(x)− h(x)| ≥ γ}) < ε.

The expected absolute difference and the expected quadratic difference of h (w.r.t. D, f)
are given by

e1(h) = ED[|f(x)− h(x)|] and e2(h) = ED[(f(x)− h(x))2],

respectively.
A learning algorithm A for F with sample size m = m(ε, γ, δ) gets as input the

parameters ε, γ, and δ and a random sample of size m w.r.t. D and f . It outputs a
hypothesis hI : X → [0, 1]. Note that the output hI depends on the randomly chosen

2 In a similar way, Kearns and Schapire defined a variant of the combinatorial dimension which
depends on a width γ of shattering (see [6]).

3 The reader interested in related work for p-concept learning is referred to [11].
4 Formally, D is a probability measure for (X,A), where A denotes a σ-algebra of X. We assume

that all functions from F and all hypotheses h used are measurable functions from (X,A) into
([0, 1],B), where B denotes the standard algebra of Borel sets in [0, 1]. This assumption will guarantee
that throughout the paper all probabilities or expectations are well defined.

LEARNING FUNCTIONS FROM EXAMPLES 753

sample I. It is therefore meaningful to speak about the probability (w.r.t. Dm) that
hI has a particular property. For some of the learning models (to be defined below),
parameter γ is missing.

We say that A learns F with an (ε, γ)-good model if for all f ∈ F , all domain
distributions D, all 0 < ε, γ, δ < 1, and m = m(ε, γ, δ), there is a probability of at
least 1− δ (w.r.t. Dm) that hI is an (ε, γ)-good model for f .

Similarly, we say that A learns F with ε-bounded absolute (or ε-bounded quadratic)
difference if for all f ∈ F , all domain distributionsD, all 0 < ε, δ < 1, andm = m(ε, δ),
there is a probability of at least 1 − δ (w.r.t. Dm) that hI satisfies e1(h) < ε (or
e2(h) < ε, respectively).

3. General lower bounds. We begin this section with the definition of the
function dF (γ) associated with a function class F and a given width γ of shattering.
A sequence

S = ((x1, r1, s1), . . . , (xd, rd, sd)) ∈ (X × [0, 1]× [0, 1])d

is called γ-shattered by F if the following hold:

1. (∀b ∈ {0, 1}d) (∃f = fb ∈ F) (∀i = 1, . . . , d) f(xi) =

{
ri if bi = 0,
si if bi = 1.

2. (∀i = 1, . . . , d) si ≥ 2γ + ri.
In other words, for each point xi there exists a low function value ri and a high
function value si. Function class F is sufficiently rich to allow all combinations of low
and high values, and the high value exceeds the low one by at least 2γ. We define
dF (γ) as the maximal number d (possibly ∞) such that there exists a sequence of
length d which is γ-shattered by F .

We would like to make some informal comments on the motivation behind this
definition. Without demanding that si ≥ 2γ + ri, we would obtain the definition
of the so-called Natarajan dimension dN (F) (defined in [9], where it is called the
generalized dimension). However, the existence of low and high function values (and
free combinations there of) is not really “dangerous” for learning algorithms A. If ri
and si are very close to each other, A may make a trivial guess (such as (ri + si)/2,
for instance) and still approximate the true function value quite accurately. For this
reason, in [6], Kearns and Schapire proposed to incorporate the width γ of shattering
into the definition. Their results show that dF (γ) is a lower bound for p-concept
learning.5 In this section, we strengthen this result in two directions. First, we
derive a higher lower bound. Second, we show that the lower bound is even valid
w.r.t. function learning. (Recall that the feedback for p-concept learning is weaker;
lower bounds for function learning are therefore always lower bounds for p-concept
learning, but not vice versa.)6

Consider, for example, the class ND of nondecreasing functions from the real
domain < into [0, 1] (discussed as a p-concept class in [6]). It is not hard to show that

((0, 0, 2γ), (2γ, 2γ, 4γ), (4γ, 4γ, 6γ), . . .)

is a γ-shattered sequence of maximal length. Thus

dND(γ) = b1/(2γ)c.

5 They used a slightly different definition of dF (γ). Both definitions coincide for the function
classes considered in this paper.

6 The reader interested in almost optimal lower bounds for p-concept learning is referred to [11].

754 HANS ULRICH SIMON

As a second example, consider the class F1 of continuous functions from [0, 1] into
[0, 1] which are piecewise continuously differentiable and satisfy∫ 1

0

|f ′(x)|dx ≤ 1

(i.e., the average slope of f is bounded by 1). A more restricted class is F∞, which
consists of all continuous functions from [0, 1] into [0, 1] which are piecewise continu-
ously differentiable and whose slope is bounded by 1 at each x ∈ [0, 1]. (For points
at which two pieces are stuck together, there are “two slopes” depending on whether
we differentiate from the left or from the right; for functions f ∈ F∞, “both slopes”
must then be bounded by 1.) It is obvious that the sequence

((0, 0, 2γ), (2γ, 0, 2γ), (4γ, 0, 2γ), . . .)

is γ-shattered by F1 and F∞. Thus

dF1
(γ) ≥ dF∞(γ) ≥ 1 + b1/(2γ)c.

In section 4, we show that these inequalities can be turned into equalities. In [7],
Kimber and Long discuss a hierarchy of function classes which starts in F∞ and ends
in F1. They were interested in (different variants of) on-line learning of function
classes. Their results are incomparable to ours. (For instance, F1 is not learnable
in the on-line model, but it is learnable in our model, as we will show in section 4.)
However, it is worth mentioning that we will obtain (see section 4) an upper bound on
the sample complexity of F1 (the most general class of the hierarchy) which is tight
to within a logarithmic factor to a lower bound on the sample complexity of F∞ (the
least general class of the hierarchy). Our bounds are therefore “almost tight” for the
whole hierarchy considered by Kimber and Long.

We are now ready to derive our general lower bounds. We say that two functions
f1 and f2 on domain X are disjoint if f1(x) 6= f2(x) for all x ∈ X. A function class
F is called trivial if its functions are pairwise disjoint. Note that a single example
is sufficient for learning a trivial function class. (Each labeled example reveals the
identity of the function.) Our attention will therefore be focused on nontrivial classes.
The quantity ∆(F) is defined as follows:

∆(F)

= sup{|g(x)− f(x)|, where x ∈ X and f and g are nondisjoint functions from F}.

It measures how much two nondisjoint functions may differ on some point of domain
X. For instance, ∆(F) = 1 for F = ND,F∞,F1. This is witnessed by the identity
and the constant-zero function on [0, 1] in the obvious way.

Theorem 3.1. Let A be an algorithm which learns function class F with an
(ε, γ)-good model.

1. If F is nontrivial, ε < 1/2, and γ < ∆(F)/2, then A needs Ω(ln(1/δ)/ε)
examples. 2. If 0 < ε ≤ 1/8, 0 < δ ≤ 1/100, then A needs Ω((dF (γ) − 1)/ε)
examples.

Proof. 1. Since F is nontrivial, there exist two nondisjoint functions f, g ∈ F and
two points a, b ∈ X such that

f(a) = g(a) and f(b) + 2γ ≤ g(b).

LEARNING FUNCTIONS FROM EXAMPLES 755

W.l.o.g., X = {a, b} and F = {f, g}. Let f̄ and ḡ be given by

f̄(a) = ḡ(a) = 0, f̄(b) = 0, and ḡ(b) = 1,

and F̄ = {f̄ , ḡ}. F̄ is a nontrivial deterministic concept class. It is well known
that Ω(ln(1/δ)/ε) examples are needed for pac-learning F̄ under domain distribution
D(a) = 1− ε, D(b) = ε (see [3]). The assertion of our theorem is now easily obtained
because algorithm A can be converted into a pac-learning algorithm Ā for F̄ as follows.

Let t̄ ∈ F̄ denote the target concept. A sample for t̄ can be converted into a sample
for t by substituting (a, f(a)) for (a, 0), (b, f(b)) for (b, 0), and (b, g(b)) for (b, 1).
Algorithm A then runs on the converted sample and produces (with high confidence)
a hypothesis h which is an (ε, γ)-good model for t ∈ {f, g}. W.l.o.g., h(a) = f(a)
because both possible target functions attain the same value at a. Since f and g
differ by at least 2γ at point b, h(b) differs from f(b) or g(b) by at least γ. It follows
w.l.o.g. that h(b) ∈ {f(b), g(b)}. Thus h ∈ F . Finally, observe that h̄ is an ε-good
hypothesis for t̄ w.r.t. pac-learning if h is an (ε, γ)-good model for t.

2. Let d = dF (γ) and S = ((x1, r1, s1), . . . , (xd, rd, sd)), the γ-shattered sequence.
W.l.o.g., X = {x1, . . . , xd} and F consists of the 2d shattering concepts fb for S (b ∈
{0, 1}d). We associate with each fb the deterministic concept f̄b given by f̄b(xi) = bi.
F̄ denotes the corresponding deterministic concept class. Note that S is shattered by
F̄ (in the traditional sense) and d coincides with the Vapnik–Chervonenkis dimension
of F̄ . It is well known that Ω((d−1)/ε) examples are needed for pac-learning F̄ under
domain distribution D(x1) = 1− 8ε, and D(xi) = 8ε/(d− 1) for i = 2, . . . , d (see [4]).
The assertion of the theorem is now easily obtained because A can be converted into
a pac-learning algorithm Ā′ for F̄ . The design for Ā′ is similar to the aforementioned
design of Ā. Now the labels ri and si correspond to the labels 0 and 1, respectively.
We omit the details.

Corollary 3.2. Any algorithm which learns one of the function classes ND,
F∞, F1 with an (ε, γ)-good model needs at least Ω(1/(εγ)) examples.

We shall see in section 4 that this bound is tight to within a logarithmic factor.
To keep the assertion of the following corollary simple, we assume that dF (γ) is
polynomially bounded in 1/γ and that ε and δ are sufficiently small.

Corollary 3.3. 1. Let F be a nontrivial function class. Any algorithm which
learns F with ε-bounded absolute (or quadratic) difference needs at least Ω(ln(1/δ)∆(F)
/ε) (or Ω(ln(1/δ)∆2(F)/ε)) examples.

2. Any algorithm which learns F with ε-bounded absolute (or quadratic) difference
needs at least Ω(dF (ε)) (or Ω(dF (

√
ε))) examples.

Proof. The assertions follow immediately from Theorem 3.1 and the following
facts from [6]:

Let 0 < c ≤ 1. If e1(h) < ε, then h is an (ε/c, c)-good model. If e2(h) < ε, then h
is an (ε/c2, c)-good model.

Assertion 1 is obtained by setting c < ∆(F)/2 (for instance, c = ∆(F)/3). As-
sertion 2 is obtained by setting c = 8ε or

√
8ε, respectively.

Corollary 3.4. Any algorithm which learns one of the function classes ND, F∞,
F1 with an ε-bounded absolute (or quadratic) difference needs at least Ω(ln(1/δ)/ε)
examples.

We shall see in section 4 that this bound is tight to within a logarithmic factor.

4. Upper bounds. In this section, we define the class BV of functions with
bounded variation, which contains ND and F1 as subclasses. We describe learning
algorithms for BV whose consumption of examples meets the lower bounds of section 3

756 HANS ULRICH SIMON

within a logarithmic factor. (Note that the upper bounds hold for the most general
class BV and the “almost matching” lower bounds hold already for subclasses.)

We say that a function f on domain X ⊆ < has bounded variation if

r−1∑
i=1

|f(xi+1)− f(xi)| ≤ 1

for all r ≥ 1 and all sequences x1 < · · · < xr of numbers from X. BV denotes the
class of functions with bounded variation.7

Lemma 4.1. ND,F1 ⊆ BV .
Proof. Nondecreasing functions from < to [0, 1] satisfy

r−1∑
i=1

|f(xi+1)− f(xi)| =
r−1∑
i=1

f(xi+1)− f(xi) = f(xr)− f(x1) ≤ 1− 0 = 1.

Thus ND ⊆ BV . Now let f ∈ F1 and define

ti =

∫ xi+1

xi

|f ′(x)|dx.

It follows that
∑r−1
i=1 ti ≤ 1. If f is monotonic in [xi, xi+1], then

ti =

∫ xi+1

xi

|f ′(x)|dx =

∣∣∣∣∫ xi+1

xi

f ′(x)dx

∣∣∣∣ = |f(xi+1) − f(xi)|.

A simple shortcut construction (illustrated in Figure 1) shows that a function f which
is not monotonic in some interval [a, b] can be transformed into a function which is
monotonic, takes the same values at points a and b, and has an average slope which is
not higher than the original one. This shows that, in general, ti ≥ |f(xi+1)− f(xi)|.
Thus f has bounded variation. Therefore, F1 ⊆ BV .

ba

Fig. 1. Making nonmonotonic functions monotonic by shortcuts (drawn dotted).

The following lemma is useful for the analysis of functions with bounded variation.

7 All the following results are easily extended to the class BV [B], where we allow an arbitrary
bound B on the variation. This class contains functions whose average slope is bounded by B, or
which consist of B monotonic segments.

LEARNING FUNCTIONS FROM EXAMPLES 757

Lemma 4.2. Let d ≥ 2. Let 0 ≤ ri < si ≤ 1 and λi = si − ri for i = 1, . . . , d.
Then it is possible to choose ti ∈ {ri, si} such that

d−1∑
i=1

|ti+1 − ti| ≥
λ1 + λd

2
+
d−1∑
i=2

λi.

Proof. Choose the sequences T = (ti) and T ′ = (t′i) as

T = r1, s2, r3, s4, . . . and T ′ = s1, r2, s3, r4,

As illustrated in Figure 2, the following condition holds:

d−1∑
i=1

(|ti+1 − ti|+ |t′i+1 − t′i|) ≥
d−1∑
i=1

(λi + λi+1).

Thus T or T ′ satisfies the assertion of the lemma.

r2

s2

r1

L’
L’

s1

r2 λ 1s

2

1

s

1r
1λ

2λ
2λ

L L

Overlapping Case Nonoverlapping Case

Fig. 2. Two dual line segments L and L′. Their combined height difference |s2− r1|+ |s1− r2|
is at least λ1 + λ2.

Corollary 4.3. dBV (γ) = dF1
(γ) = dF∞(γ) = 1 + b1/(2γ)c.

Proof. Since F∞ ⊆ F1 ⊆ BV and dF∞(γ) ≥ 1 + b1/(2γ)c, it suffices to show
that d = dBV (γ) ≤ 1 + b1/(2γ)c. Assume that S = (xi, ri, si)1≤i≤d is γ-shattered by
BV . Remember that si ≥ ri + 2γ. Choose the sequence ti ∈ {ri, si} according to
Lemma 4.2. Choose b ∈ {0, 1}d such that the shattering function f = fb attains value
ti at point xi. It follows from Lemma 4.2 and the definition of BV that the following
holds:

(d− 1)2γ ≤
d−1∑
i=1

|f(xi+1)− f(xi)| ≤ 1.

Thus d ≤ 1 + 1/(2γ). Since d is an integer, the assertion of the corollary fol-
lows.

The following two theorems are the main results of this section.
Theorem 4.4. O ((1/ε) · ((1/γ) ln(1/ε) + ln(1/δ))) examples are sufficient for

learning BV with an (ε, γ)-good model.
Proof. We first describe a learning function which transforms a labeled sample I

of target function f into a hypothesis h. Let (after sorting of the sample points)

I = (x1, α1), . . . , (xm, αm), x1 ≤ x2 ≤ · · · ≤ xm.

758 HANS ULRICH SIMON

It will be technically convenient to define x0 = inf X,xm+1 = supX. For all x ∈ X,
let i(x) = j if and only if xj is the sample point closest to x (breaking ties in favor
of smaller indices). We come up with the hypothesis h(x) = αi(x). Note that h is
consistent with the sample. The critical question is how well h models f within the
open intervals (xj , xj+1).

We now turn to the statistical analysis of this learning function. Let D denote
the unknown domain distribution. The variation in interval Ij = [xj , xj+1] ∩ X is
defined as

vj = sup
a,b∈Ij

|f(b)− f(a)|.

Since f ∈ BV , the sum of all variations is bounded by 1. The open interval I ′j =
(xj , xj+1) is said to be wild if vj ≥ γ. Otherwise, it is said to be tame. Within tame
intervals, our hypothesis is certainly γ-close to f . Thus all that remains to do is to
bound (with high confidence) the total probability of hitting a wild interval by ε.
Since the variations sum up to at most one, there are at most 1/γ wild intervals. The
“dangerous” region U of the real line is therefore always a union of at most 1/γ open
intervals. The class U of all regions of this form has Vapnik–Chervonenkis dimension
2b1/γc. Note that region U does not contain any point from random sample I.
Applying a uniform convergence theorem from [3] (with improved constants from [1]
or [10]), it follows that the following holds with a confidence of at least 1− δ for all
sample sizes

m ≥ 4b1/γc ln(6/ε) + ln(2/δ)

ε(1−
√
ε)

and all U ∈ U : if U does not contain any point from I, then D(U) < ε. From this the
theorem follows.

Theorem 4.5. O (ln(1/(εδ))/ε) examples are sufficient for learning ND with an
ε-bounded absolute or quadratic difference.

Proof. Since e2(h) ≤ e1(h), it suffices to show the assertion w.r.t. ε-bounded
absolute difference. The hypothesis h is constructed from the sample I in the same
way as in the proof of Theorem 4.4. Also, the notations from this proof are reused.
It follows easily that the expected absolute difference of h satisfies

e1(h) ≤
m∑
j=0

vj ·D(I ′j) ≤ max
0≤j≤m

D(I ′j)

because the variations sum up to at most 1. It suffices therefore to bound (with high
confidence) the maximal probability of hitting an open interval I ′j by ε. Using the
same uniform convergence theorem as in the proof of Theorem 4.4 (now applied to the
system of open intervals, which has Vapnik–Chervonenkis dimension 2), we conclude
that the following holds with a confidence of at least 1− δ for all sample sizes

m ≥ 4 ln(6/ε) + ln(2/δ)

ε(1−
√
ε)

and all open intervals U : if U does not contain any point from I, then D(U) < ε.
From this the theorem follows.

LEARNING FUNCTIONS FROM EXAMPLES 759

5. Higher-dimensional domains. In this section, we investigate the learnabil-
ity of classes of functions with bounded variation which depend on several variables.
We first discuss the two-dimensional case. Later, we briefly mention the generalization
to more dimensions.

We call the sequence

(x1, y1), . . . , (xr, yr) ∈ < × <

an ascending (or descending) chain if x1 ≤ · · · ≤ xr and y1 ≤ · · · ≤ yr (or y1 ≥ · · · ≥
yr, respectively). We say that a function f on a domain X = X1 × X2 ⊆ <2 has
bounded variation if condition

r−1∑
i=1

|f(xi+1, yi+1)− f(xi, yi)| ≤ 1

is satisfied for all (ascending or descending) chains. We say that f has semibounded
variation if this condition must hold only for ascending chains. The corresponding
function classes are denoted by BV (2) and SBV (2), respectively. Note that both
classes collapse to BV for functions which only depend on one of the two variables.

A product distribution on < × < is given by two independent distributions on
<. Thus the x- and y-coordinates of a randomly drawn point (x, y) ∈ < × < are
independent. We want to show that SBV (2) (which contains BV (2)) is efficiently
learnable under product distributions. The learning algorithm A will use a suitable
partition of domain X into r× r orthogonal cells, given by r− 1 horizontal and r− 1
vertical lines, respectively. We associate with each cell C its indices i(C), j(C) ∈
{1, . . . , r} in the partitioning, where indexing goes from left to right and from bottom
to top. We say that a sequence C1, . . . , Cr of cells is an ascending chain if

i(C1) < · · · < i(Cr) and j(C1) < · · · < j(Cr).

The basic idea in the design of A is to draw sufficiently many random examples such
that with high confidence, each cell is hit at least once. If the first sample point
which hits C has label α(C), then A’s hypothesis is set to α(C) for all points in
C. This definition is ambiguous at the boundary of the cells. We will, however, use
partitionings which avoid this ambiguity. Thus if all cells are hit at least once, A
comes up with a well-defined hypothesis h. An important notion is the variation of
target function f ∈ SBV within a cell, defined by

v(C) = sup
z′,z′′∈C

|f(z′′)− f(z′)|.

Our analysis is based on the following lemma.
Lemma 5.1. If C1, . . . , Cr is an ascending chain, then

∑r
i=1 v(Ci) ≤ 2.

Proof. Since the variation of f on ascending chains is bounded by 1, it suffices to
show that there exists an ascending chain z1, . . . , zs which satisfies

s−1∑
i=1

|f(zi+1)− f(zi)| ≥
1

2
·
r∑
i=1

(v(Ci)−∆)

for arbitrarily small ∆ > 0. Because C1, . . . , Cr is an ascending chain of cells, it
suffices to find an ascending pair z, z̄ within each cell C ∈ {C1, . . . , Cr} which satisfies

760 HANS ULRICH SIMON

|f(z) − f(z̄)| ≈ v(C)/2. The sequence of these pairs then forms an appropriate
ascending chain of length 2r. Cell C contains two points z′ and z′′ which satisfy
|f(z′′) − f(z′)| ≈ v(C). W.l.o.g., z′ is left of z′′. If z′ is below z′′, then z′, z′′ is
an appropriate ascending pair. If z′ is to the left of and above z′′, then let z be
the point which shares the x-coordinate with z′ and the y-coordinate with z′′ (see
Figure 3). Then z, z′ and z, z′′ are both ascending pairs of points. At least one of
these pairs witnesses a variation of approximately v(C)/2. This completes the proof
of the lemma.

z’’

z’

z

Fig. 3. A “descending pair” z′, z′′ and two “ascending pairs” z, z′ and z, z′′.

Corollary 5.2. The variations of all r2 cells sum up to at most 4r − 2.
Proof. The r2 cells partition into 2r − 1 diagonal ascending chains. Accord-

ing to Lemma 5.1, each diagonal contributes at most 2 to the total sum of varia-
tions.

Assume that there is a constant k such that the hitting probability D(C) of each
cell C satisfies

1

kr2
≤ D(C) ≤ k

r2
(condition of k-uniformity).

For instance, if X = [0, 1] × [0, 1] and D is the uniform distribution on X, a regu-
lar partitioning into r2 cells has this property with k = 1. The expected absolute
difference of h can then be bounded as follows:

e1(h) ≤ k

r2
·
∑
C

v(C) <
4k

r
.

Thus e1(h) < ε if r ≥ 4k/ε. Standard arguments show that m = kr2(2 ln(r)+ln(1/δ))
random examples are sufficient to hit each cell at least once with a confidence of 1−δ.
This shows that O(ln(1/(εδ))/ε2) examples are sufficient given the assumption of k-
uniformity. We are now ready to prove the main result of this section.

Theorem 5.3. O(ln(1/(εδ))/ε2) examples are sufficient to learn SBV (2) with
ε-bounded absolute (or quadratic) difference if the domain distribution is a product
distribution.

Proof. We may assume w.l.o.g. that two different sample points never share a
coordinate.8 It is then possible to cut X into r horizontal and r vertical slices such
that each (open) slice contains m/r sample points. (W.l.o.g., assume that m is a
multiple of r.) The system of slices has a Vapnik–Chervonenkis dimension of 2. We
may therefore apply a uniform convergence theorem from [3] (Theorem A3.1) which
(when applied separately to horizontal and vertical slices with confidence parameter
δ/4, respectively) states the following: there exists a constant c such that for all m ≥

8 For product distributions given by continuous density functions, this is almost certainly the
case. For general product distributions, one can use the trick of Kearns and Schapire in [6] which
guarantees the technical assumption by formally changing the domain X into a new one, where
different occurrences of the same coordinate are regarded as different. Geometrically, this means
that, loosely speaking, horizontal or vertical lines get (artificially) a nonzero width. We omit the
details of this construction.

LEARNING FUNCTIONS FROM EXAMPLES 761

cr ln(r/δ), all slices S satisfy 1/(2r) ≤ D(S) ≤ 2/r with a confidence of 1−δ/2. Since
D is a product distribution, each of the resulting r2 cells C satisfies 1/(4r2) ≤ D(C) ≤
4/r2. In other words, we can achieve k-uniformity with k = 4. Now O(ln(1/(εδ))/ε2)
additional examples are sufficient to guarantee with a confidence of 1− δ/2 that each
cell is hit at least once.

Using the simple fact (see [6]) that e1(h) < εγ implies that h is an (ε, γ)-good
model, we obtain the following result.

Corollary 5.4. O(ln(1/(εγδ))/ε2γ2) examples are sufficient to learn SBV (2)
with an (ε, γ)-good model of probability if the domain distribution is a product distri-
bution.

There is no chance to generalize the results about SBV (2) to arbitrary domain
distributions because dSBV (2)(γ) = ∞ for all 0 < γ ≤ 1/2. Consider, for instance,
the functions

fb(x, y) =

{
b(x, y) if x+ y = 0,

1/2 otherwise,

where b is an arbitrary function from <2 to {0, 1}. Each function fb has semibounded
variation. On the other hand, these functions γ-shatter the sequence

((x,−x), 0, 1)x∈<

for all γ ≤ 1/2. According to the lower bounds derived in section 3, SBV (2) is not
learnable in the distribution-free model. We leave it as an open question whether
BV (2) is learnable under arbitrary domain distributions. All that we know is a lower
bound on the number of examples required for learning. It is obtained from the
general lower bounds in section 3 and the following result.

Lemma 5.5. ⌊
1

2γ

⌋2

≤ dBV (2)(γ) ≤
(

1 +
1

2γ

)2

.

Proof. The lower bound for dBV (2)(γ) follows from a close inspection of Figure 4
which shows a grid consisting of r2 × r2 points (r = 4 in the figure). r2 of them are
drawn black; the remaining ones are drawn white. Let the function class F consist
of functions which attain value γ on white points and value 0 or 2γ on black points.
Obviously, the r2 black points are γ-shattered by F . We claim that all functions from
F belong to BV (2) if r = b1/(2γ)c. This can be seen as follows. Each ascending or
descending chain of grid points contains at most r black points. The induced variation
is therefore bounded by 2γr ≤ 1.

We have still to verify the upper bound. Assume that there is a sequence S of
length d which is γ-shattered by BV (2). According to a classical result of Erdös
(reported in [8]), S contains an ascending or a descending chain of length at least

√
d.

At least one of the shattering functions must have a total variation of 2γ · (
√
d − 1)

on this chain. (The proof for this is similar to the proof of Corollary 4.3.) Thus
2γ · (

√
d− 1) ≤ 1, and the assertion of the lemma follows.

We denote the obvious generalization of BV (2) and SBV (2) to n dimensions by
BV (n) and SBV (n), respectively. Although the generalization of the above results
to n dimensions is tedious, it uses basically the same ideas. We state without proof
that the following holds.

762 HANS ULRICH SIMON

Fig. 4. A (16× 16)-grid with 16 black points.

Corollary 5.6. O ((2en/ε)n · (n ln(n/ε) + ln(1/δ))) examples are sufficient to
learn SBV (n) with ε-bounded absolute difference if the domain distribution is a prod-
uct distribution.

As in the two-dimensional case, we obtain the corresponding bound for learning
with an (ε, γ)-good model by substituting εγ for ε in the bound of Corollary 5.6. Of
course, SBV (n) is not learnable in the distribution-free model for all n ≥ 2. We do
not know whether BV (n) is learnable in this model. However, we know the following
bounds: ⌊

1

2nγ

⌋n
≤ dBV (n)(γ) ≤

(
1 +

1

2γ

)2n−1

.

We made no serious attempt to close the large gap between the lower and the upper
bound on dBV (n)(γ).

6. Conclusions and open problems. Some statisticians prefer learning mod-
els where expectation is also taken over all random samples. The confidence parameter
δ then becomes superfluous. Each of the models considered in this paper has its “part-
ner model” in this setting. We state without proof that all of our (lower and upper)
bounds can be transferred to the partner models without changing the respective
order of magnitude by more than a logarithmic factor.

It is an open problem whether there are general upper bounds which match our
general lower bounds modulo a logarithmic factor. We do not know how the general
lower and upper bounds change when we restrict the resources of time or space for the
learning algorithms. It would be interesting to show a relation between nonlearnability
of functions by polynomial-time learning algorithms and complexity theory (similar
to the relation which is known for deterministic concept learning). It would also be
interesting to know supplementary lower bounds (perhaps completely unrelated to the
combinatorial or Natarajan dimension) which succeed in cases where our bound fails.
We do not know whether BV (n) is learnable in the distribution-free model and, if so,

LEARNING FUNCTIONS FROM EXAMPLES 763

whether our lower bound on the required number of examples in terms of dBV (n)(γ)
is (almost) tight. We do not know whether the upper bound on the number of
examples for learning SBV (n) under product distributions is (almost) tight. It would
be interesting to derive distribution-dependent lower bounds for function learning.

Acknowledgments. We thank Svetlana Anoulova and Martin Dietzfelbinger for
valuable conversations.

REFERENCES

[1] M. Anthony, N. Biggs, and J. Shawe-Taylor, The learnability of formal concepts, in Proc.
3rd Annual Workshop on Computational Learning Theory, Morgan Kaufmann, San Mateo,
CA, 1990, pp. 246–258.

[2] M. Anthony and J. Shawe-Taylor, Valid generalization of functions from close approxima-
tion on a sample, in Proc. European Conference on Computational Learning Theory, 1993,
Oxford University Press, 1994, pp. 95–109.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik–Chervonenkis dimension, J. Assoc. Comput. Mach., 36 (1989), pp. 929–965.

[4] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the
number of examples needed for learning, Inform. and Comput., 82 (1989), pp. 247–261.

[5] D. Haussler, Generalizing the pac model: Sample size bounds from metric–dimension based
uniform convergence results, in Proc. 30th Annual Symposium on the Foundations of Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 40–46.

[6] M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of probabilistic concepts,
in Proc. 31st Annual Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1990, pp. 382–392; full version, J. Comput. System Sci.,
48 (1994), pp. 464–497.

[7] D. Kimber and P. M. Long, The learning complexity of smooth functions of a single variable,
in Proc. 5th Annual Workshop on Computational Learning Theory, ACM, New York, 1992,
pp. 153–160.

[8] D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed.,
Addison–Wesley, Reading, MA, 1973.

[9] B. K. Natarajan, On learning sets and functions, Mach. Learning, 4 (1989), pp. 67–97.
[10] J. Shawe-Taylor, M. Anthony, and N. Biggs, Bounding sample size with the Vapnik–

Chervonenkis dimension, Discrete Appl. Math., 41 (1993), pp. 65–73.
[11] H. U. Simon, General bounds on the number of examples needed for learning probabilistic

concepts, in Proc. 6th Annual Workshop on Computational Learning Theory, ACM, New
York, 1993, pp. 402–412; J. Comput. System Sci., 52 (1996), pp. 239–255.

[12] L. G. Valiant, A theory of the learnable, Comm. Assoc. Comput. Mach., 27 (1984), pp. 1134–
1142.

A PUMPING CONDITION FOR REGULAR SETS∗

STEFANO VARRICCHIO†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 764–771, June 1997 010

Abstract. We prove that a language of a finitely generated free monoid is regular if and only if
it satisfies the positive block pumping property. This gives a positive answer to a problem posed by
Ehrenfeucht, Parikh, and Rozenberg [SIAM J. Comput., 10 (1981), pp. 536–541].

Key words. automata theory, regular languages, pumping conditions

AMS subject classifications. 68Q45, 20M35

PII. S0097539790179944

1. Introduction. Pumping properties have always had great importance in for-
mal languages theory and have frequently been used in order to prove that some sets
of words do not belong to a certain family of languages. Several pumping condi-
tions have been found for various families of languages. In particular, we recall the
well-known “pumping lemma” for regular languages (cf. [9, pp. 55–56]) that gives a
necessary condition for a language to be regular.

This condition alone does not enforce the regularity of a language, so one may
be induced to consider stronger pumping properties in order to obtain conditions
equivalent to regularity, and in fact many papers have been devoted to this problem
[1], [3], [7], [8].

The block pumping properties introduced in [3] are quite interesting. In that
paper it is proved that the regularity of a language is equivalent to a block pumping
property with a nonnegative pump. Moreover, it is questioned whether a positive
block pumping property is a regularity condition.

In this paper we will give a positive answer to that question, proving that a
language of a finitely generated free monoid is regular if and only if it satisfies a block
pumping property with positive pump. de Luca and Varricchio [1], [2] have given a
partial answer to the problem when the pumping condition is assumed to be uniform.
In this case the pumping property may be expressed as an iteration property of the
syntactic monoid, and, for a language L, the problem is led back to the finiteness of
M(L).

In the following, A will denote a finite set, or alphabet, and A∗ will denote the
free monoid over A. The elements of A are called letters and those of A∗ are called
words. The identity element of A∗ is denoted by Λ. For any word w, |w| denotes its
length. Let u, v ∈ A∗. We then say that u is a factor (resp., prefix) of v if there exist
λ, µ ∈ A∗ such that v = λuµ (resp., v = uµ). We set u < v when u is a prefix of
v. Ak (resp., A[k]) denotes the set of the words having length k (resp., length ≤ k).
A (right) infinite word is a map b: N → A. The set of infinite words is denoted by
Aω. Moreover we set A∞ = A∗ ∪Aω. For any b ∈ A∞, F (b) will denote the set of all
finite words which are factors of b. The subsets of A∗ are called languages. If L is a
language, F (L) is the set of the factors of words of L. Let L be a language of A∗ and
σ ∈ A∗, we set Lσ = {x ∈ A∗ | σx ∈ L}. Let u, v ∈ A∗ and L ⊆ A∗. We set u ≡L v
(resp., u NL v) if the following condition holds: ∀x, y ∈ A∗ xuy ∈ L ⇔ xvy ∈ L

∗Received by the editors April 16, 1990; accepted for publication (in revised form) July 17, 1995.
http://www.siam.org/journals/sicomp/26-3/17994.html
†Dipartimento di Matematica Pura e Applicata, Università di L’Aquila, Via Vetoio, 67010

L’Aquila, Italy (varricchio@univaq.it).

764

A PUMPING CONDITION FOR REGULAR SETS 765

(resp., ∀x ∈ A∗ ux ∈ L ⇔ vx ∈ L). NL and ≡L are called, respectively, the right
Nerode congruence and the syntactic congruence of L. The syntactic monoid of L
is the quotient monoid M(L) = A∗/≡L. A monoid M is called periodic if for any
m ∈M , there exist two positive integers n, k, such that mn = mn+k.

The reader is referred to the books of Eilemberg [4] and Hopcroft and Ullman
[9] for the basic notions concerning the theory of formal languages. Here we recall
the fundamental theorem of Myhill–Nerode [10], [11] which says that a language L is
regular if and only if the right congruence NL has finite index.

2. Preliminaries. In this section we will recall some recent results of combi-
natorics on words that are fundamental tools in the study of finiteness condition for
semigroups and in several combinatorial problems.

Definition 2.1. Let b ∈ Aω be an infinite word. We say that b is uniformly
recurrent if there exists a function c: A∗ → N such that if w, v ∈ F (b) and |v| ≥ c(w),
then w is a factor of v.

We observe that, given a uniformly recurrent word b, it is possible to consider the
function C: N→ N, defined by

C(n) = max{c(w) | w ∈ F (b) ∩An}.

This function satisfies the following property. For any n > 0 and v ∈ F (b) with
|v| > C(n), one has that

F (b) ∩A[n] ⊆ F (v).

The importance of uniformly recurrent infinite words is due to the following.
Theorem 2.1. Let L be an infinite language of A∗. Then there exists an infinite

word b ∈ Aω such that
(i) b is uniformly recurrent,

(ii) F (b) ⊆ F (L).
The previous theorem is proved in [5] using techniques of symbolic dynamics; a

combinatorial proof is given in [2]. Let us consider now some combinatorial properties
of uniformly recurrent infinite words.

Lemma 2.2. Let b ∈ Aω be a uniformly recurrent infinite word. For any n > 0
there exists a positive integer K(n) such that for any w ∈ A∗, a ∈ A, with wa ∈ F (b)
and |w| ≥ K(n) one has that

w = λw1w2 · · ·wn,

with λ ∈ A∗, wi ∈ aA∗ for i ∈ {1, . . . , n}, and wi ∈ wi+1 · · ·wnaA∗ for i ∈ {1, . . . ,
n− 1}.

Proof. The proof is by induction on n. For n = 1 let K(1) = C(1), where C is
the function associated to the word b. Let w ∈ A∗, |w| ≥ K(1), and wa ∈ F (b). Then
w must contain the letter a, so w = xay with x, y ∈ A∗. The statement follows if we
set w1 = ay.

Now let n > 1. By the induction hypothesis we may suppose that there exists an
integer K(n− 1) that satisfies the statement for n− 1. Then we set

K(n) = C(K(n− 1) + 1) +K(n− 1).

Let w ∈ A∗, a ∈ A such that |w| ≥ K(n) and wa ∈ F (b). We can write w = xv,
with |x| ≥ C(K(n − 1) + 1) and |v| = K(n − 1). Since va ∈ F (b), by the induction
hypothesis one has

766 STEFANO VARRICCHIO

v = λ′w2 · · ·wn,

with λ ∈ A∗, wi ∈ aA∗ for i ∈ {2, . . . , n} and wi ∈ wi+1 · · ·wnaA∗ for i ∈ {2, . . . ,
n − 1}. By the properties of the function C, one has that x contains va as a factor
and hence also w2 · · ·wna. Then one can write x = λw2 · · ·wnaµ, with λ, µ ∈ A∗, so
that

w = λw2 · · ·wnaµλ′w2 · · ·wn.

Therefore, if we let w1 = w2 · · ·wnaµλ′, one has w1 ∈ aA∗, w1 ∈ w2 · · ·wnaA∗, and
the statement is true.

3. Pumping conditions. In this section we recall the definitions of the pumping
properties. Later on, after some technical lemmas, we will show that the positive block
pumping property is a regularity condition. The proof is inspired by the techniques
used in [3] to prove a similar result for the block cancellation property.

Definition 3.1. Let L be a language of A∗, x ∈ A∗, and x = uvw. We say that
v is a pump for x relative to L if and only if for every i ≥ 0

u(v)iw ∈ L⇔ x ∈ L.

We say that v is a positive pump if the latter condition is satisfied for every i > 0.
Definition 3.2. Let L be a language of A∗. We say that L satisfies the property

BPm (resp., PPm) if for any x, w1, w2, . . . , wm, y ∈ A∗, there exist i, j, 1 ≤ i <
j ≤ m + 1 such that wi · · ·wj−1 is a pump (resp., positive pump) for xw1w2 · · ·wmy
relative to L. We say that L satisfies the block pumping property (resp., positive
block pumping property) if there exists an integer m > 0 such that L satisfies BPm
(resp., PPm).

Definition 3.3. Let L be a language of A∗. We say that S satisfies BCm if for
any x,w1, w2, . . . , wm, y ∈ A∗, there exist i, j, 1 ≤ i < j ≤ m+ 1 such that

xw1w2 · · ·wmy ∈ L⇔ xw1w2 · · ·wi−1wj · · ·wmy ∈ L.

We say that L satisfies the block cancellation property if there exists an integer m > 0
such that L satisfies BCm.

Remark. In the former definitions the integers i, j depend on the context (x, y)
in which the block w1w2 · · ·wm is considered. If they do not depend on the con-
text, then the corresponding properties will be called, respectively, uniform block
pumping property and uniform block cancellation property. For instance, S satisfies
the uniform block cancellation property if there exists an integer m > 0 such that
for any w1, w2, . . . , wm ∈ A∗ there exist i, j (depending only on w1, w2, . . . , wm),
1 ≤ i < j ≤ m+ 1 such that for all x, y ∈ A∗

xw1w2 · · ·wmy ∈ L⇔ xw1w2 · · ·wi−1wj · · ·wmy ∈ L.

We observe that BPm implies BCm and PPm. Moreover, as shown in [3], BCm
implies BPm. The contribution of this paper is to show that all are the same and
equivalent to regularity. We recall that in [3] it has been proved that if a language L
satisfies the block cancellation property, then L is regular. In [1] a similar result is
proved for the uniform positive block pumping property. In what follows we will prove
that any language satisfying the positive block pumping property is regular (Theo-
rem 3.7). First we prove that the languages satisfying PPm are closed under the map

A PUMPING CONDITION FOR REGULAR SETS 767

L → Lσ (Lemma 3.4) and are finitely many in number (Lemma 3.6). The regular-
ity of the languages satisfying PPm will hence follow from a Nerode-type argument
(Lemma 3.3).

Now we recall a version of the Ramsey theorem (cf. [6]). Let X be a set and r
a positive integer; we denote by P (X) the family of all the subsets of X, and we set
Pr(X) = {Y ∈ P (X) | card(Y) = r}.

Theorem 3.1 (Ramsey). Let r, k be positive integers with 1 ≤ r ≤ k. Then there
exists an integer R(r, k) such that for any set X, with card(X) = R(r, k), and for any
bipartition Y1, Y2 of Pr(X) there exists Y ∈ Pk(X) such that either Pr(Y) ⊆ (Y1) or
Pr(Y) ⊆ (Y2).

Lemma 3.2. Let m be a positive integer and F = {L ⊆ A∗ | L satisfies PPm}.
Then for any k > 0 there exists an integer M (depending on k) such that for any
(x1, y1, L1), (x2, y2, L2), . . . , (xk, yk, Lk) ∈ A∗×A∗×F and for any w1, w2, . . . , wM ∈
A∗ there exist i, j, 1 ≤ i < j ≤M + 1 such that wi · · ·wj−1 is a simultaneous positive
pump for xsw1w2 · · ·wMys relative to Ls for s ∈ {1, 2, . . . , k}.

Proof. The proof is by induction on k. If k = 1, then the statement is true for
M = m, since L1 satisfies PPm. Let k > 1. By the induction hypothesis there exists
an integer M ′ that satisfies the statement for k − 1.

Then let us set M = R(2,M ′ + 1), where R is the function of the Ramsey
theorem. Let w1, w2, . . . , wM ∈ A∗ and X = {1, 2, . . . ,M}. Let us consider the
following bipartition of P2(X):

Y1 = {{i, j} | wi · · ·wj−1 is a positive pump for xkw1 · · ·wMyk relative to Lk},

Y2 = P2(X)− Y1.

For the Ramsey theorem there exists Y ∈ PM ′+1(X) such that either P2(Y) ⊆
Y1 or P2(Y) ⊆ Y2. Let Y = {j1, j2, . . . , jM ′+1}, v1 = wj1 · · ·wj2−1, . . . , vM ′ =
wjM′ · · ·wjM′+1−1. Since M ′ ≥ m, there exist s, t with 1 ≤ s < t ≤ M ′ + 1
such that vs · · · vt−1 is a positive pump for xkw1 · · ·wMyk relative to Lk. Since
vs · · · vt−1 = wjs · · ·wjt−1, one has that

{js, jt} ∈ Y1 ∩ P2(Y) 6= ∅;

hence P2(Y) ⊆ Y1. This means that for any i, j, with 1 ≤ i < j ≤M ′ + 1, vi · · · vj−1

is a positive pump for xkw1 · · ·wMyk relative to Lk. By the induction hypothesis,
we can choose i, j, with 1 ≤ i < j ≤ M ′ + 1 such that, for any s ∈ {1, . . . , k − 1},
vi · · · vj−1 is a positive pump for xsw1 · · ·wMys relative to Ls.

The following lemma has already been proved in [3]; however, we will report the
proof for the sake of completeness.

Lemma 3.3. Let P be a property defined in P (A∗). If the following two conditions
are satisfied, then any language satisfying P is regular:

(a) L satisfies P ⇒ Lσ satisfies P for any σ ∈ A∗,
(b) the languages of A∗ satisfying P are finitely many.
Proof. Let L be a language satisfying P and let NL be the Nerode congruence of

L. One has that for any x, y ∈ A∗

xNLy ⇔ Lx = Ly.

Since the languages Lσ with σ ∈ A∗ are finitely many, then NL has finite index and,
by the Myhill–Nerode theorem, L is regular.

768 STEFANO VARRICCHIO

Lemma 3.4. Let L ⊆ A∗ be a language satisfying PPm; then for any σ ∈ A∗, Lσ
satisfies PPm.

Proof. Since L satisfies PPm, there exist i, j with 1 ≤ i < j ≤ m + 1 such that
for any s > 0

σxw1 · · ·wmy ∈ L⇔ σxw1 · · ·wi−1(wi · · ·wj−1)swj · · ·wmy ∈ L.

Therefore, for any s > 0 one has

xw1 · · ·wmy ∈ Lσ ⇔ xw1 · · ·wi−1(wi · · ·wj−1)swj · · ·wmy ∈ Lσ,

and Lσ satisfies PPm.
Lemma 3.5. Let L ⊆ A∗ be a language satisfying PPm. Then the syntactic

monoid M(L) is periodic.
Proof. Let w ∈ L. We prove that for any x, y ∈ A∗

xwmy ∈ L⇔ xwm+m!y ∈ L.

The condition PPm, applied to w1 = w2 = · · · = wm = w, shows that there exists an
integer k < m such that for any s > 0

xwmy ∈ L⇔ xwm+sky ∈ L.

Since k divides m!, there exists an integer s > 0 such that sk = m! and the statement
is true.

Remark. Let L, L′ ⊆ A∗ be two languages such that M(L) and M(L′) are
periodic. Then for any w ∈ A∗ there exist positive integers n, k, n′, k′ such that
wn ≡L wn+k and wn

′ ≡L′ wn
′+k′ . We can obviously suppose that n = n′ and k = k′,

otherwise n and n′ could be replaced by max(n, n′) and k, k′ by lcm(k, k′) and the
former relations still would hold.

Lemma 3.6. The languages of A∗ satisfying PPm are finitely many.
Proof. Suppose that there exists an integer k > 0 such that for any L1, L2 ⊆ A∗

satisfying PPm one has

L1 ∩A[k] = L2 ∩A[k] ⇒ L1 = L2.

Then the statement is trivially true.
Let us suppose by contradiction that there exist infinitely many languages of A∗

satisfying PPm. Then such an integer k could not exist. Hence for any k > 0 there
exists a word wk ∈ A∗ and two languages L1,k, L2,k satisfying PPm such that

L1,k ∩A[k] = L2,k ∩A[k]

and

wk ∈ L1,k, wk 6∈ L2,k.

Moreover we may suppose that wk has minimal length; that is, for any l < |wk| one
has

L1,k ∩A[l] = L2,k ∩A[l];

moreover, |wk| > k.

A PUMPING CONDITION FOR REGULAR SETS 769

Let us consider now the language L = {w1, w2, . . . , wk, . . .}. Since L is infinite,
by Theorem 2.1 there exists a uniformly recurrent infinite word b ∈ Aω such that
F (b) ⊆ F (L). Let C, K: N→ N be the functions associated with the infinite word b
as in Definition 2.1 and Lemma 2.2. Let M be a positive integer satisfying Lemma 3.2
for k = 4.

Let N = (M + 1) · C(K(M)). Let u be a factor of b such that |u| = N . Since
F (b) ⊆ L, there exist w ∈ L, x, y ∈ A∗ such that w = xuy. Moreover, there exist two
languages L1, L2 ⊆ A∗ satisfying PPm such that for any l < |w|

L1 ∩A[l] = L2 ∩A[l]

and

w ∈ L1, w 6∈ L2.

Since |u| = N , we can write u = u1u2 · · ·uM+1, with |ui| ≥ C(K(M)) and all ui are
in F (b). Therefore, there exists a word v ∈ F (b) with |v| = K(M) such that

ui = λivµi,

λi, µi ∈ A∗, 1 ≤ i ≤M + 1. Hence, since w = xuy, one can write

w = λv1v2 · · · vM+1µ,

where λ = xλ1, µ = µn+1y, vi ∈ vA∗, |v| = K(M), and v1v2 · · · vM+1 ∈ F (b).
By Lemma 3.2 there exist i, j with 1 ≤ i < j ≤ M + 1 such that z = vi, · · · vj−1

is a positive pump for w = λv1v2 · · · vM+1µ relative to L1 and L2. Therefore, letting
x′ = λv1v2 · · · vi−1, y

′ = vj · · · vM+1µ, one has w = x′zy′, y′ ∈ vA∗, zv ∈ F (b), and for
any s > 0

(3.1) w = x′zy′ ∈ Lt ⇔ x′zsy′ ∈ Lt

for t = 1, 2.
By Lemma 3.5, M(L1) and M(L2) are periodic. Then there exist n, k > 0 such

that

(3.2) zn ≡Lt zn+k

for t = 1, 2.
From (3.1) for s = k we have

(3.3) x′zy′ ∈ Lt ⇔ x′zky′ ∈ Lt

for t = 1, 2.
Now let z′ be the maximal common prefix of zn and y′. Since v < zn and v < y′

we have that |z′| ≥ |v| ≥ K(M). Let y′′ ∈ A∗ such that y′ = z′y′′.
We now prove the following claim.
Claim A. There exists λ ∈ A∗ such that

(3.4) x′z′y′′ ∈ Lt ⇔ x′znλy′′ ∈ Lt

and

(3.5) x′zkz′y′′ ∈ Lt ⇔ x′zkznλy′′ ∈ Lt

for t = 1, 2.

770 STEFANO VARRICCHIO

The proof is by induction on q = |zn| − |z′|. If q = 0 then z′ = zn and (3.4), (3.5)
hold for λ = Λ. Let q > 0 and z′ be a proper prefix of zn. Let z′′ be the suffix of z′

such that |z′′| = K(M) and let a ∈ A such that z′a < zn. Since |v| = K(M) = |z′′|
and z ∈ vA∗, as z′′a ∈ F (zn), one can easily see that z′′a ∈ F (zv) ⊆ F (b). Then by
Lemma 2.2 we can write

z′′ = ζw1w2 · · ·wM ,

with ζ ∈ A∗, wi ∈ aA∗ for i ∈ {1, . . . ,M} and wi ∈ wi+1 · · ·wMaA∗ for i ∈
{1, . . . ,M − 1}. Since z′′ is a suffix of z′, one has

z′ = ζ ′w1w2 · · ·wM

for a suitable ζ ′ ∈ A∗.
Now we may apply Lemma 3.2 to the four terms (x′ζ ′, y′′, L1), (x′ζ ′, y′′, L2),

(x′zkζ ′, y′′, L1), and (x′zkζ ′, y′′, L2). Therefore, there exist i, j with 1 ≤ i < j ≤M+1
such that

(3.6)
x′z′y′′ = x′ζ ′w1 · · ·wMy′′ ∈ Lt ⇔ x′ζ ′w1 · · ·wi−1(wi · · ·wj−1)2wj · · ·wMy′′ ∈ Lt

and

(3.7)
x′zkz′y′′ = x′zkζ ′w1 · · ·wMy′′ ∈ Lt ⇔ x′zkζ ′w1 · · ·wi−1(wi · · ·wj−1)2wj · · ·wMy′′ ∈ Lt

for t = 1, 2.
Now, considering that wi ∈ wj · · ·wMaA∗ for i < j, then for a suitable ξ ∈

A∗ wi · · ·wM = wj · · ·wMaξ, and substituting on the right side of (3.6) and (3.7) we
have

(3.8) x′z′y′′ ∈ Lt ⇔ x′z′aξy′′ ∈ Lt

and

(3.9) x′zkz′y′′ ∈ Lt ⇔ x′zkz′aξy′′ ∈ Lt

for t = 1, 2.
Therefore, since z′a < zn and |zn| − |z′a| = q − 1, by the induction hypothesis

there exists ξ′ ∈ A∗ such that

(3.10) x′z′aξy′′ ∈ Lt ⇔ x′znξ′ξy′′ ∈ Lt

and

(3.11) x′zkz′aξy′′ ∈ Lt ⇔ x′zkznξ′ξy′′ ∈ Lt

for t = 1, 2.
So if we set λ = ξ′ξ, comparing (3.8) with (3.10) and (3.9) with (3.11), we obtain

(3.4) and (3.5), respectively, and Claim A is proved.
From (3.3), (3.5), and (3.2), considering that z′y′′ = y′, one derives

x′zy′ ∈ Lt ⇔ x′zky′ = x′zkz′y′′ ∈ Lt ⇔ x′zk+nλy′′ ∈ Lt ⇔ x′znλy′′ ∈ Lt

for t = 1, 2.

A PUMPING CONDITION FOR REGULAR SETS 771

Therefore, from (3.4) it follows that

(3.12) x′zy′ ∈ Lt ⇔ x′y′ ∈ Lt

for t = 1, 2.
We recall that L1 ∩A[l] = L2 ∩A[l] for l < |w| and therefore

x′y′ ∈ L1 ⇔ x′y′ ∈ L2.

Hence by (3.12),

x′zy′ ∈ L1 ⇔ x′zy′ ∈ L2.

From here, since x′zy′ = w, we have

w ∈ L1 ⇔ w ∈ L2,

which is a contradiction, because w ∈ L1 and w 6∈ L2.
Theorem 3.7. Let L ⊆ A∗. Then L is regular if and only if L satisfies the

positive block pumping property.
Proof. If L satisfies the positive block pumping property then there exists an

integer m such that L satisfies PPm. From Lemmas 3.6, 3.4, and 3.3 it follows that
L is regular. Conversely, if L is regular, then it is easy to prove [3] that L satisfies
PPm for a suitable m > 0.

REFERENCES

[1] A. de Luca and S. Varricchio, A positive pumping condition for regular sets, Bull. EATCS,
39 (1989), pp. 171–175.

[2] A. de Luca and S. Varricchio, Finiteness and iteration conditions for semigroups, Theoret.
Comput. Sci., 87 (1991), pp. 315–327.

[3] A. Ehrenfeucht, R. Parikh, and G. Rozenberg, Pumping lemmas for regular sets, SIAM
J. Comput., 10 (1981), pp. 536–541.

[4] S. Eilemberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
[5] H. Fustemberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc., 5 (1981),

pp. 211–234.
[6] R. L. Graham, B. L. Rotshild, and J. H. Spencer, Ramsey Theory, 2nd ed., J. Wiley, New

York, 1990.
[7] J. Jaffe, A necessary and sufficient pumping lemma for regular languages, SIGACT News,

10 (1978), pp. 48–49.
[8] K. Hashigushi, Notes on congruences relations and factor pumping conditions for rational

languages, Theoret. Comput. Sci., 57 (1988), pp. 303–316.
[9] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Com-

putations, Addison-Wesley, New York, 1979.
[10] J. Myhill, Finite automata and the representation of events, WADD Technical Report 57-624,

Wright–Patterson Air Force Base, Dayton, OH, 1957.
[11] A. Nerode, Linear automata transformations, Proc. Amer. Math. Soc., 9 (1958), pp. 541–544.

LEADER ELECTION IN COMPLETE NETWORKS∗

GURDIP SINGH†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 772–785, June 1997 011

Abstract. Leader election is a fundamental problem in distributed computing and has a number
of applications. This paper studies the problem of leader election in complete asynchronous networks.
We present a message-optimal protocol that requires O(N logN) messages and O(N/ logN) time,
where N is the number of nodes in the system. The time complexity of this protocol is a significant
improvement over currently known protocols for this problem. We also give a family of protocols
with message and time complexities O(Nk) and O(N/k), respectively, where logN ≤ k ≤ N . Many
problems such as spanning-tree construction and computing a global function are equivalent to leader
election in terms of their message and time complexities, and therefore our result improves the time
complexity of these problems as well.

Key words. distributed algorithms, leader election, time complexity, complete networks

AMS subject classifications. 68Q22, 68Q25, 68N25

PII. S0097539794276865

1. Introduction. In the leader-election problem, there are N nodes in the net-
work, each having a unique identity. Initially all nodes are passive. An arbitrary
subset of nodes, called the candidates, wake up spontaneously and start the proto-
col. On the termination of the protocol, exactly one node announces itself the leader.
Leader election is a fundamental problem in distributed computing and has several
applications. It is an important tool for breaking symmetry in a distributed sys-
tem. By distinguishing a single node as a leader, it is possible to execute centralized
protocols in a decentralized environment.

The problem of leader election has been studied in various computation models
and topologies. For an asynchronous network with an arbitrary topology, a lower
bound of Ω(E + N logN) messages holds, where E is the number of edges in the
network, and a protocol with this complexity was given in [5]. The time complexity of
this protocol is O(N logN). In [3], an improved protocol with time complexity O(N)
was proposed. Several protocols for ring topologies have also been proposed [6, 4].
In this paper, we consider the problem of electing a leader in asynchronous complete
networks. In a complete network, each pair of nodes is connected by a bidirectional
link. Complete networks have been studied extensively since they provide bounds
for other types of networks (with less connectivity). In the rest of the paper, by a
network, we will mean a complete network.

In [2], a lower bound of Ω(N logN) was proved on the message complexity of
leader election for synchronous networks and showed that any protocol sending at most
O(N logN) messages must require at least Ω(logN) time. For asynchronous networks,
it was shown in [7] that Ω(N logN) messages are required for leader election and
proposed a protocol which requires O(N logN) messages and O(N logN) time. In [1],
the complexity was further improved by giving a series of protocols for asynchronous
networks, each with O(N logN) message complexity and O(N) time complexity.

∗Received by the editors November 9, 1994; accepted for publication (in revised form) July 17,
1995. This research was supported by NSF grants CCR8901966, CCR9211621, and CCR9502506.
Some results contained in this paper appear in a preliminary form in Proc. ACM Symposium on
Principles of Distributed Computing, ACM, New York, 1992, pp. 179–190.

http://www.siam.org/journals/sicomp/26-3/27686.html
†Department of Computing and Information Sciences, Kansas State University, 234 Nichols Hall,

Manhattan, KS 66506 (singh@cis.ksu.edu).

772

LEADER ELECTION IN COMPLETE NETWORKS 773

In [2], it was conjectured that Ω(N) is a lower bound on the time complexity
of any message-optimal election protocol for asynchronous networks. We disprove
this conjecture by proposing a protocol which requires O(N logN) messages and
O(N/ logN) time. There are many problems such as spanning-tree construction,
computing a global function, and counting which are equivalent to leader election in
terms of message and time complexities [3]. Therefore, our protocol leads to improve-
ments in the time complexity of these problems as well. To arrive at this protocol,
we first develop two protocols, Γ and A. Γ has message and time complexities O(N2)
and O(1), respectively. A is a variation of the protocol A of [1] and has message and
time complexities O(N logN) and O(N), respectively. We combine features of these
protocols to obtain our final protocol with the desired complexity. We find that the
problem of awakening N nodes using O(N logN) messages dominates the time com-
plexity of our protocol. We also present a modified message optimal protocol which
requires O(min(r,N/ logN) + logN) time. In this protocol, the min(r,N/ logN) fac-
tor corresponds to the time required to awaken all nodes to participate in the protocol.
In [8], it was also shown that any protocol sending O(N logN) messages requires at
least Ω(N/ logN) time, which implies that our protocol is message and time optimal.

The interaction between time and message complexities for any problem is an
important issue and it is desirable to have a spectrum of protocols which trade off
message complexity for execution time. For asynchronous complete networks, we give
a family of protocols, D(k), where logN ≤ k ≤ N . The message and time complexities
of D(k) are (Nk) and O(N/k), respectively.

This paper in organized as follows. In the next section, we give a brief description
of our model of distributed computation. In section 3, we describe the component
protocols Γ and A. Section 4 presents our protocol and its complexity analysis and
correctness. In section 5, we extend this protocol to obtain a family of protocols.
Section 6 deals with extensions of our protocol. Finally, we conclude in section 7.

2. Model. We model the communication network as a complete graph (N,E),
where N and E represent the processors and communication links, respectively. We
assume that each node has a unique identity. By a node i, we will mean a node with
identity i. We assume that the network is asynchronous, i.e., message-transmission
and processing times are unpredictable but finite. Messages sent over a link arrive at
their destination in the order sent and are not lost.

The message complexity of a protocol is the maximum number of messages sent
during any possible execution of the protocol. The time complexity of a protocol is the
worst-case execution time assuming that each message takes at most one time unit to
reach its destination and computation time is negligible. Furthermore, intermessage
delay on a link is assumed to be at most one time unit. This assumption is made
only for calculating the time complexity and the correctness of the protocol does not
depend on this assumption.

In the leader-election problem, an arbitrary subset of nodes, called the candidates,
wake up spontaneously to start the protocol. All other nodes are passive. A passive
node wakes up on receiving a message of the protocol. Initially, a node knows only
its own identity. At the termination of the protocol, exactly one node among the
candidates is elected and all nodes know the identity of this node. All additions in
the paper are assumed modulo N.

3. Component leader-election protocols. In this section, we develop two
protocols, Γ and A, for leader election. Protocol Γ has O(N2) message complexity

774 GURDIP SINGH

and O(1) time complexity while A has O(N logN) message complexity and O(N)
time complexity. We will then combine these protocols to obtain the final protocol.

3.1. Protocol Γ. In this protocol, a candidate attempts to capture all other
nodes. The node that is able to capture all other nodes declares itself the leader. On
waking up, a candidate sends its identity in an elect message on all incident edges.
When a node j receives an elect(i) message over edge e, it behaves as follows:

If j is a candidate and j > i, then no response is sent over e.
Otherwise, j sends an accept message over e.

A node that receives an accept message on all incident edges declares itself the leader
and notifies all nodes of this fact. In this protocol, the candidate node with the largest
identity is elected the leader. The time complexity of this protocol is O(1). However,
its message complexity is O(N2) since the number of candidate nodes may be O(N),
each of which sends O(N) messages.

3.2. Protocol A. Protocol A is a modification of the protocol A of [1]. We
cannot use A directly to obtain the protocol with O(N/ logN) time complexity since
it suffers from link congestion, which is one of the sources of O(N) time complexity.
We will first describe the protocol A of [1], which has O(N logN) message complexity.
Section 3.3 describes the modifications required to obtain A.

The protocol described here is a slight variation of A (for simplicity, we use
additional message types). The outline of the protocol is as follows:

A candidate node tries to capture other nodes in a sequential manner by sending
capture messages on its incident edges one at a time. A node that is successful in
capturing all other nodes is elected the leader. A candidate node i sends its identity
and a variable, leveli, in the capture messages to contest with other nodes (leveli is
the number of nodes which i has captured so far). If a capture message from i reaches
a node j which has not yet been captured and (leveli, i) is greater than (levelj , j)
(lexicographically), then i captures j; otherwise, i is killed. If j is a captured node,
then i has to kill j’s owner before claiming j. If i is successful in capturing j, then
it increments leveli and proceeds with its conquest by sending a capture message to
another node.

We will now describe the protocol in detail. Each node maintains the following
variables:
• Each node has a variable statei which is either passive, candidate, captured,

or killed. Initially, statei is passive for all nodes i.
• Every candidate node i maintains a list of edges, called untraversedi, over

which it has not yet sent a message to capture the node at the other end. Initially,
untraversedi is the set of edges incident on i.
• The owneri of a node i is the identity of the node which captured it, and

owner-linki is the edge leading to owneri.
• Each node i has a variable leveli which is initially 0. For a candidate node i

which has not yet been captured, leveli is the number of nodes it has captured so far.
For any other node i, leveli is the maximum level number received in any message by
i.
• maxidi is the identity of the node from which the message containing the

maximum level number was received. (maxidi is initially 0, and for an uncaptured
candidate node, maxidi = i.) Hence at any time, as far as i can tell, (leveli,maxidi)
is the largest such pair in the system.

In the following, by setting (l, d) to (l′, d′), we will mean the execution of the
statements l := l′ and d := d′. Also, (l, d) > (l′, d′) if (l > l′) or (l = l′ and d > d′).

LEADER ELECTION IN COMPLETE NETWORKS 775

On waking up spontaneously, a candidate node i sends a capture(leveli, i) message
on an edge in untraversedi. When node j receives a capture(l, i) message over edge
e, it behaves as follows:
• Case 1: statej 6= captured.
? If (levelj ,maxidj) > (l, i), then j does not send any response over e. (If no

response is sent to i, then i is blocked and will therefore never become the leader.) In
this case, j knows that there is a node with a higher (level, id) than (l, i).

? Otherwise, j sets (levelj ,maxidj) to (l, i). i becomes j’s owner and e is
marked as owner-linkj . Further, j sends an accept message over e and changes statej
to captured.
• Case 2: statej = captured.
? If (levelj ,maxidj) > (l, i), then no response is sent to i.
? Otherwise, j sets (levelj ,maxidj) to (l, i). In this case, i must kill j’s owner

before claiming j. This is done to ensure that, at any time, the sets of nodes captured
by candidate nodes are disjoint. For this purpose, j sends a kill-owner(l, i) message
over owner-linkj .

When ownerj receives a kill-owner(l, i) message over edge e′, it behaves as
follows:

If (levelownerj ,maxidownerj) > (l, i), then ownerj does not respond.
Otherwise, ownerj sets (levelownerj ,maxidownerj) to (l, i) and sends an owner-

accept(i) message over e′. If ownerj is not a captured node, then it changes state to
killed. A killed node does not attempt to capture any more nodes. In this case, i
cannot include ownerj in its set of captured nodes. To capture ownerj , it must send
a capture message directly to it.

If j receives an owner-accept(i) message and maxidj is i (i.e., no other capture
message with a higher (level, id) has been received), then i becomes j’s owner and the
edge over which the capture message from i was received is marked as owner-linkj .
Further, an accept message is sent over this edge.

If node i receives an accept message and is not killed or captured then it in-
creases leveli by 1 and proceeds by sending a capture message over the next edge in
untraversedi. A node that captures all other nodes declares itself the leader.

A candidate node stops capturing nodes if it is killed or captured or its capture
message reaches a node with a higher (level, id). We say that a candidate node
becomes dormant when it stops capturing nodes. Notice that node i may not know
that it has become dormant if this is due to its capture message reaching a node with
a higher (level, id).

The message and time complexities of protocol A are O(N logN) and O(N),
respectively [1]. The following lemma is given in [1]. (The proof of this lemma relies
on the property that at any time, the sets of nodes captured by different candidates
are disjoint.)

Lemma 3.1. For any given k, where 1 ≤ k < N , the number of nodes that own
N/k nodes or more is at most k.

3.3. Modifications to protocol A. One of the sources of O(N) time complex-
ity of A is possible congestion on the links. For example, consider the situation where
j is a captured node, capture messages from nodes i1, i2, i3, . . . , im arrive at node j in
the order given, and in each case j sends a kill-owner message to ownerj . Further,
assume that only the kill-owner message of im is successful in killing ownerj . kill-
owner messages for all nodes il, 1 ≤ l ≤ m, are sent over the same edge and each may
take one time unit to arrive at ownerj . Since the intermessage delay on a particular

776 GURDIP SINGH

edge may be one time unit, the kill-owner message for im may arrive at ownerj only
after m time units. Since m could be O(N), it may take O(N) time for im to capture
j. Thus capturing a node may take up to O(N) time.

In the following, we modify A to obtain A, in which if a node is able to capture
another node, then it does so in a constant amount of time. The algorithm for a
node j when statej = candidate is given in Figure 3.1, and the algorithm for a node
j when statej 6= candidate is given in Figure 3.2. We have omitted the subscript j
from variables in the figures for clarity.

state := candidate; level := 0;
untraversed := list of incident edges; maxid := j
while state = candidate
do

if level = N − 1
then send elected(j) to all incident edges; state := elected
else select an edge e from untraversed;

delete e from untraversed;
send capture(level, j) over e;
Received := false

while state = candidate and ¬Received
do

receive M on edge e
Case M of
capture(l, i): if (level,maxid) < (l, i) then

(level,maxid) := (l, i); owner := i;
owner-link := e; send accept over e;
state := captured

accept: level := level + 1; Received := true

kill-owner(l, i): if (level,maxid) < (l, i) then
(level,maxid) := (l, i); state := killed;
send owner-accept(i) over e;

else send killed(i) over e

elected(i): state := captured
od

od

Fig. 3.1. Protocol for a candidate node j.

The only modification to A is in the response to the capturemessage by a captured
node. (The rest of the protocol is the same.) Each node j maintains a variable
waitingj which is true if j has sent a kill-owner message but has received no response
from ownerj . Let a captured node j receive a capture(l, i) message over edge e.
• If (levelj ,maxidj) > (l, i), then no response is sent over e. Otherwise, j sets

(levelj ,maxidj) to (l, i). Further,
? if ¬waitingj , then the kill-owner(l, i) message is sent over owner-linkj and

waitingj is set to true;
? if waitingj , then the response to node i is delayed.
•When ownerj receives a kill-owner(l, i) message over e′, it behaves as follows: If

(levelownerj ,maxidownerj) > (l, i), then ownerj sends a killed(i) message over e′ (indi-
cating the fact that node i did not survive). Otherwise, it sets (levelownerj ,maxidownerj)

LEADER ELECTION IN COMPLETE NETWORKS 777

finished := false; waiting := false
while ¬finished
do

receive M over edge e
if M is the first message received then

state := captured; maxid := 0; level := 0
case M of
capture(l, i): if (level,maxid) < (l, i) then

if state = killed then
send accept over e; (level,maxid) := (l, i);
state := captured; owner-link := e

else
(level,maxid) := (l, i); potential-owner := e
if ¬waiting then

send kill-owner(l, i) over owner-link;
waiting := true;

kill-owner(l, i): if (level,maxid) < (l, i) then
(level,maxid) := (l, i);
send owner-accept(i) over e;

else send killed(i) over e

owner-accept(i): owner := maxid; owner-link := potential-owner;
send accept over owner-link

killed(i): if maxid 6= i then
send kill-owner(level,maxid) over owner-link

else waiting := false;

elected(i): finished := true
od

Fig. 3.2. Protocol for a noncandidate node j.

to (l, i) and sends an owner-accept(i) message over e′. If ownerj is not a captured
node, then it changes state to killed.

• If j receives a killed(i) message from its owner and maxidj is not i, then j
sends a kill-owner(levelj ,maxidj) message over owner-linkj . If j receives an owner-
accept(i) message, then maxidj becomes j’s owner. The edge over which the capture
message from maxidj was received is marked as owner-linkj and an accept message
is sent over this edge.

Lemma 3.2. If node i is successful in capturing node j, then it does so in a
constant amount of time.

Proof. Consider a node i which is successful in capturing node j. After the
capture(l, i) message from i reaches j, then depending on the state of j, we have the
following cases:

(1) If j is not a captured node, then j will send an accept message. This message
will reach i within two time units (because there may already be a message in transit
from j to i). Hence capturing j in this case will take at most three time units.

(2) Let j be a captured node. If j is not waiting, then a kill-owner message
will be sent to ownerj and ownerj will respond with an owner-accept message. This
message will be received by j within three time units of it sending the kill-owner

778 GURDIP SINGH

message (because there may be an accept message in transit from j to ownerj when
the kill-owner message is sent). Node j will then send an accept message to i. This
capturing will take a total of at most five time units.

If j is waiting, then a response from j’s owner will be received within three time
units. If an owner-accept message is received by j, then it will send an accept message
to i (since i captures node j). If a killed message is received, then a kill-owner(l, i)
message will be sent to ownerj . A response to this will be received within two time
units. Thus, if j is waiting, it will take at most seven time units to capture j.

Hence if node i successfully captures node j, then it does so in a constant amount
of time (at most seven time units).

4. A composite protocol. We will now combine Γ and A to obtain a protocol
B. Protocol B has O(N logN) message complexity and requires O(N/ logN) time
after the node which is elected the leader wakes up. However, due to a specific
wakeup pattern, the time complexity of B is still O(N). We first present B and then
discuss the modification to eliminate this second source of O(N) time complexity.

Protocol Γ requires O(N2) messages because the number of candidates for election
(which are the candidates) can be O(N). However, if the number of candidates is
reduced to O(logN) before this protocol is executed, then it will require O(N logN)
messages. In protocol A, there can be at most logN nodes at level N/ logN (from
Lemma 3.1). In protocol B, we use protocol A to reduce the number of candidates for
protocol Γ by requiring a node to execute A until its level number reaches N/ logN
and Γ thereafter. Protocol B is as follows:

On waking up spontaneously, a node starts executing protocol A. When a node
reaches level N/ logN , it sends an elect message with its identity on all incident
edges. Let node j receive an elect(i) message over e. If (levelj ,maxidj) is less than
(N/ logN, i), then j changes state to killed and sends an accept message over e. A
node which receives an accept message on all incident edges declares itself the leader.

Since the message complexity of A is O(N logN) and at most logN nodes broad-
cast an elect message, the message complexity of B is O(N logN). Since it takes a
constant amount of time to capture a node (from Lemma 3.2), it will take O(N/ logN)
time for a node to reach level N/ logN after it wakes up (if it reaches this level). After
a node reaches this level, it broadcasts an elect message. If it is elected the leader, it
will receive all replies in a constant amount of time and will declare itself the leader.
Therefore, the node which is elected the leader takes O(N/ logN) time after waking
up spontaneously to declare itself the leader. (Note that if we had used A instead of
A, then B would still require O(N) time after the leader wakes up.)

However, a node may wake up spontaneously O(N) time units after the first node
wakes up and be elected the leader as shown in the following example. Assume that
nodes have identities in the range 1, . . . , N (as shown in Figure 4.1) and node 1 is the
first node to wake up spontaneously. After waking up spontaneously, node i sends a
capture message to node i + 1. Assume that the message from i reaches i + 1 just
after i+ 1 wakes up and i+ 1 sends the message to capture i+ 2 before receiving the
message from i. In this case, no response will be sent to i since it has the same level
number as i+ 1 but a smaller identity. If this happens for all sites i, 1 ≤ i ≤ N , then
only node N will survive and capture all other nodes. If the capture message for each
node takes exactly one time unit to arrive (as shown in Figure 4.1), node N will wake
up at time N − 1 and therefore the protocol will require O(N) time units.

Protocol B, however, satisfies the following two lemmas. In the following, when
we say that a node wakes up, we will mean either spontaneously or on receiving a

LEADER ELECTION IN COMPLETE NETWORKS 779

1 2 3 N

2
3

time

N-1

1

Fig. 4.1. Example illustrating O(N) time complexity.

message of the protocol.

Lemma 4.1. If all nodes wake up within O(N/ logN) time of each other, then B
will terminate in O(N/ logN) time.

Lemma 4.2. After the level number of a node reaches logN , B terminates within
O(N/ logN) time.

Proof. There can be at most N/ logN nodes at level logN (from Lemma 3.1). Let
i be the first node to reach level logN . Then in the next seven time units, i will either
become dormant or increase its level number (because it takes at most seven time
units to capture a node). Only a node at level logN can cause i to become dormant.
If j causes i to become dormant, then by the same reasoning, in the next seven time
units, j will either become dormant or increase its level number. Therefore, in every
interval of seven time units after the first node reaches level logN , the node with
the highest (level, id) at the beginning of the interval will either become dormant
or increase its level number. Consider a sequence of (2N/ logN) − logN−1 slots in
an execution after the first node reaches level log N, where each slot is seven time
units. At most N/ logN − 1 slots can be associated with nodes at level at least logN
becoming dormant. Each of the remaining N/ logN−logN slots must correspond to
a level increase. Therefore, 7((2N/ logN)−logN−1) time units after the first node
reaches level logN , the level number of a node will reach at least N/ logN . After
a node reaches level N/ logN , Γ is executed, which takes O(1) time. Hence B will
terminate in O(N/ logN) time units.

Given Lemma 4.2, we are led to the following protocol:

On waking up spontaneously, node i executes an initial phase in which it sends
logN capture(0, i) messages simultaneously on different edges. (The rules for captur-
ing are as in A.) If it receives an accept response to all capture messages and it has
not been killed or captured, then it increases its level from 0 to logN (thus leveli
never has a value in between 0 and logN) and proceeds with protocol B.

Since each node can send logN capture messages on waking up spontaneously,
the message complexity of this protocol is O(N logN). However, for this protocol,
we can also construct an example similar to the one in Figure 4.1 in which a node
reaches level logN after N − logN time units of the first node waking up. In this
protocol, when node i tries to capture logN nodes in parallel, it is allowed to capture
nodes that may have awakened at any time in the past. In the following, we develop a
protocol C in which the nodes that i can capture when it is executing its initial phase

780 GURDIP SINGH

are restricted to those which wake up within a constant time of i waking up.

If logN nodes wake up every c time units, where c is a constant, then all nodes will
wake up in cN/ logN time units. Then from Lemma 4.1, the protocol will terminate
in O(N/ logN) time. Thus if we can ensure that

in every interval of c time units, either at least logN nodes wake up or some node
reaches level at least logN by the end of this interval,

then from Lemmas 4.1 and 4.2, the protocol will require O(N/ logN) time. For this
purpose, we require a candidate node to execute two initial phases on waking up
spontaneously. If it successfully executes these phases, then it qualifies as a candidate
for election and proceeds by executing B. In the first phase, a node requests permission
to enter the second phase from logN different nodes. A node which has finished
executing its first phase denies the request while others grant it. As we will show
later, nodes which grant i permission to enter the second phase are those which wake
up within c time units of i waking up. In the second phase, node i tries to capture the
logN nodes from which it obtained permission in the first phase. The second phase
ensures that if fewer than logN + 1 nodes wake up in an interval of c time units (as
a result, any new node that wakes up in this interval will not get permission to enter
the second phase), then some candidate node reaches level logN by the end of this
interval. For the initial two phases, the algorithm for a node j with statej = candidate
is given in Figure 4.2, and the algorithm for a node j with statej 6= candidate is given
in Figure 4.3. In Figure 4.3, for a response to the capture message, only those actions
which correspond to the initial two phases are given. (In addition to these actions,
any action required by protocol B must also be performed.)

First phase.

• On waking up spontaneously, node i enters the first phase. It selects logN
incident edges and sends a first-phase(i) message on each of these edges.

• When node j receives a first-phase(i) message over e, it behaves as follows:

(1) If j is not captured, then

? if j has finished executing the first phase, then j sends a finish message over
e;

? if j is passive, then i becomes j’s owner and j marks e as owner-linkj ; it
sends an accept message over e and changes its state to captured;

? if j is in the first phase, then j sends a proceed message over e.

(2) If j is captured, then it has to check whether its owner has finished the first
phase. For this purpose, it sends a check message over owner-linkj . If j has already
sent a check message to which no response has been received, then the response to i
is delayed.

If ownerj has finished its first phase when the check message reaches it, then
it responds with a finish message. Otherwise, it responds with an in-first-phase
message.

If j receives a finish message over owner-linkj , then it sends a finish message
over e and also on any other edge over which it may have received a first-phase
message in the meantime (or will receive one in the future). If j receives an in-first-
phase message from its owner, then it sends a proceed message over e and also on any
other edge over which it may have received a first-phase message in the meantime.

(3) If j has already received a capture message or receives a capture message
after receiving the first-phase message from i (a capture message can be sent by a
node which is in the second phase or has finished the second phase) and no response
has been sent to i, then it sends a finish message to i over e.

LEADER ELECTION IN COMPLETE NETWORKS 781

state := candidate; phase := 1;
select a set S of logN edges from untraversed;
delete S from untraversed;
send first-phase(j) over edges in S; Response := 0
while state = candidate and Response < logN
do

receive M on edge e
Case M of
first-phase(i): send proceed over e

proceed: Response := Response+ 1

accept: Response := Response+ 1; S = S − {e}
finish: state := killed

check: send in-first-phase over e

capture(l, i): state := captured; owner := i; owner link := e;
maxid := i; phase := 2
send accept over e

od
if Response = logN then phase := 2;
if state = candidate then

send capture(0, j) over edges in S; Response = 0
while state = candidate and Response < |S|
do

receive M on edge e
Case M of:
capture(l, i): if (l, i) > (0, j) then

state := captured; maxid := i; owner-link := e;
send accept over e

kill-owner(l, i): if (l, i) > (0, j) then
state := killed; send owner-accept over e

else send killed(i) over e

accept: Response := Response+ 1

first-phase(i): send finish over e

check: send finish over e

od
if state = candidate then level := logN

Fig. 4.2. Initial phases for a candidate node j.

• After node i has received responses to all logN first-phase messages, it behaves
as follows: It exits the first phase. If it has received a finish message, then it does
not enter the second phase and it changes state to killed. Otherwise, it proceeds to
the second phase.

Second phase.

• In the second phase, node i tries to reach level logN by capturing logN nodes.
For this purpose, it sends a capture(0, i) message on each edge on which it received
a proceed message in the first phase. (It has already captured nodes from which it
received an accept message.) The rules for capturing are the same as in protocol B

782 GURDIP SINGH

done := false; waiting := false;
while ¬done
do

receive M on edge e
if M is the first message then

state := passive; phase := 1;
Case M of
first-phase(i): if state = passive then

state := captured; maxid := i; owner-link := e;
send accept over e

else if phase = 2 then send finish over e
else if state = captured then

if ¬waiting then
send check over owner-link;
waiting := true; Wait := {}

else WAIT := WAIT ∪ {e}
finish: if owner-link = e then

phase := 2;
send finish over each edge in WAIT; WAIT := {}

in-first-phase: send proceed over each edge in WAIT; WAIT := {}
capture(l, i): phase := 2;

send finish over each edge in WAIT; WAIT := {}
proceed: skip
accept: skip
check: if phase = 1 then send in-first-phase over e

else send finish over e

elected: done := true
od

Fig. 4.3. Initial phases for a noncandidate node j.

with the following changes:

A node which has not started the second phase is regarded as passive. Therefore,
if a capture(0, i) message reaches j and j is in the first phase or has finished the first
phase but was not successful in entering the second phase, then i becomes j’s owner.
In case j is a captured node, then j sends a kill-owner message as in B. If ownerj
has not started its second phase, then it is killed. Further, a node increases its
level number from 0 to logN only after receiving an accept response to all capture
messages.

Since the level number sent in the capture messages is 0, capturing in the second
phase is only on the basis of node identities. If node i receives all accept responses and
it is not killed or captured, then it sets leveli to logN and proceeds with protocol B.
It deletes the logN edges from untraversedi over which it had sent the first-phase
messages.

Hence in protocol C, a node executes the first and second phases before executing
B. In order to show that C terminates with an elected leader, we have to show that
some node will finish its second phase and participate in B. Since nodes in B cannot
be killed by nodes in the initial two phases (nodes in B have a higher level number)

LEADER ELECTION IN COMPLETE NETWORKS 783

and B does elect a leader, C also terminates with an elected leader. This is shown in
the following two lemmas.

Lemma 4.3. In any execution of C, there will be a node which enters the second
phase.

Proof. Assume that no node enters its second phase in an execution. Then every
candidate node must have received a finish message in response to at least one of
its first-phase messages. Let i1, i2, . . . be a sequence of candidate nodes such that
il receives a finish message from il+1 or from one of the nodes captured by il+1.
Node il+1 (or a node captured by il+1) can send a finish message only after il+1 has
finished its first phase. (The finish message cannot be sent by il+1 due to the fact
that it received a capture message from some other node because a capture message
can only be received from a node in the second phase or which has finished the second
phase, which contradicts the assumption.) Therefore, the first phase of il+1 terminates
before the first phase of il. This is true for all l’s, and therefore ik 6= im, where k < m.
This is a contradiction since the number of nodes is finite. Hence there will be a node
in the sequence which does not receive a finish message and which will therefore
enter the second phase.

Lemma 4.4. In any execution of C, there will be a node which finishes the second
phase.

Proof. By Lemma 4.3, there is a node which enters the second phase. Only a
node in its second phase (or which has finished the second phase) can cause another
node in its second phase to become dormant. Further, any two nodes in the second
phase cannot both cause each other to become dormant (because only a node with
a higher identity can cause a node to become dormant). Therefore, there will be a
node which will finish its second phase and participate in B.

Lemma 4.5. The time complexity of C is O(N/ logN).

Proof. A candidate node finishes its first phase within five time units of waking
up. (The proof is similar to the proof of Lemma 3.2.) If node i wakes up sponta-
neously at time t, then for i to participate in the second phase, each of its first-phase
messages must go to a node which is in its first phase (this node must have awakened
spontaneously after time t−5; otherwise it would have finished its first phase by time
t) or is captured (in this case, its owner must have awakened after time t−5; otherwise
it would have finished its first phase by time t) or is passive (this node will wake up
by time t+ 1 as a result of i’s message). Therefore, i is able to proceed to the second
phase only if at least logN nodes other than i wake up in the interval [t− 5, t+ 1].

Consider an interval of five time units, say [m,m + 5], where m ≥ 0, during the
execution of the protocol. We have the following cases:

(1) At least logN + 1 nodes wake up in the interval [m− 5,m+ 6].

(2) Fewer than logN + 1 nodes wake up in the interval [m − 5,m + 6]. In this
case, we will show that some node will reach level at least logN (i.e., some node will
successfully finish the second phase). We will first show that there must exist a node
which has entered the second phase by time m+ 5. On the contrary, assume that no
such node exists. All nodes that wake up before time m finish the first phase by time
m + 5 (since it takes five time units to execute the first phase), and by assumption,
none of these nodes enter the second phase. Furthermore, any node which wakes up
in the interval [m,m + 5] will be denied permission to enter the second phase (since
fewer than logN nodes wake up in the internal [m−5,m + 6]). If in this execution
no node wakes up spontaneously after time m + 5, then there will not exist a node
which enters the second phase, which is a contradiction (Lemma 4.4). Hence there

784 GURDIP SINGH

must exist a node which enters the second phase by time m+ 5.

Among the nodes which enter the second phase, if no node has finished the second
phase by time m+ 5, then there must exist at least one node in the second phase at
time m + 5. Let i be the node with the highest identity among the nodes which are
in the second phase at time m + 5. Let a capture message from i reach a node j. If
j is not a captured node, we have the following cases:

(a) If j has not started the second phase, then it will respond with an accept
message.

(b) If j has started the second phase, then it must be the case that j entered
the second phase at or before time m + 5. Assume not. Since nodes that wake up
before time m enter the second phase before time m + 5 and nodes that wake up in
the interval [m,m+ 5] do not participate in the second phase, j must have awakened
after time m+ 5. Because i sent a capture message to j in the second phase, it must
have also sent a first-phase message to j. In this case, the first-phase message from
i must have reached j before time m + 5. Since j is passive before time m + 5, j
will be captured by i’s message, and hence j cannot enter the second phase. Thus j
must have entered the second phase at or before time m + 5. In this case, j < i (by
assumption), and therefore j will respond with an accept message.

If j is a captured node, then it will forward the message to its owner. If the ownerj
has not started the second phase, then it will send an accept message. Otherwise,
ownerj must have entered the second phase at or before time m + 5. Assume not.
Since nodes that wake up before time m enter the second phase before time m + 5
and nodes that wake in the interval [m,m+ 5] do not participate in the second phase,
ownerj must have awakened after time m+ 5. Because i sent a capture message to j
in the second phase, it must have also sent a first-phase message to j. In this case,
the first-phase message from i must have reached j before time m + 5. In this case,
it is not possible for ownerj to capture j. (ownerj could not have captured j in its
first phase because only a passive node can be captured in the first phase; if ownerj
captured j in its second phase, then it would have received a proceed message for
logN nodes which awakened in the interval [m− 5,m+ 6], which is a contradiction.)
Thus ownerj must have entered the second phase at or before time m + 5. In this
case, ownerj will be killed and an accept message will be sent to i since ownerj < i
by assumption. Thus i will receive all accept responses, and therefore i will finish its
second phase.

Hence in each interval of 11 time units ([m−5, m + 6]), either at least logN
nodes wake up or some node will reach level logN . Therefore, by time 11N/ logN ,
either all nodes will be awake or some node will have reached level logN . Then from
Lemma 4.1 and Lemma 4.2, the protocol will terminate in O(N/ logN) time units.

5. A family of protocols. In this section, we generalize protocol C to obtain
a family of protocols, D(k), where logN ≤ k ≤ N . Informally, D(k) is the same as
C except that k is used instead of logN . D(logN) is the same as C. The changes
required in C to obtain D(k) are as follows:

In the first phase, node i sends k first-phase messages (instead of logN). If it
does not receive a finish message in response to any of the first-phase messages,
then i enters the second phase. In the second phase, node i sends a capture message
on all edges on which it received a proceed response in the first phase. If it receives an
accept response to all capture messages, then it increases its level to k and proceeds
with protocol A. When the level number of i reaches N/k, it executes protocol Γ,
i.e., it sends its identity in an elect message over all edges. If all responses are accept,

LEADER ELECTION IN COMPLETE NETWORKS 785

then it declares itself the leader.
The time complexity of D(k) is O(N/k). The execution of the first and second

phases requires O(Nk) messages. Since there can be at most k nodes at level N/k,
the execution of protocol Γ after the level number of a node reaches N/k requires
O(Nk) messages. Hence the message complexity of the protocol is O(Nk).

6. Extensions to the protocol. The execution time of C depends on its ability
to wake up all nodes within O(N/ logN) time units of each other. Let r be the number
of candidate nodes. In the following, we present a modification of the protocol to
achieve a time complexity of O(min(r,N/ logN) + logN). In protocol A, nodes are
captured in a sequential manner. In [2], a protocol for synchronous networks was
presented in which a node is allowed to capture many nodes in parallel. In particular,
a node i in phase l tries to capture 2l nodes in parallel by sending capture(l, i) message
over 2l untraversed edges. Node i increases its level number from l to l + 1 only
on receiving an accept response to all 2l capture messages. The time complexity
of this protocol of [2] is logN since a node has to go through logN phases. By
employing this style of capturing, we can extend our protocol to obtain a protocol
with O(min(r,N/ logN)+logN) time. In this protocol, the min(r,N/ logN) factor is
the time required to awaken all nodes (and is the complexity of the first two phases).
Since at most r nodes wake up, the chain of messages shown in Figure 4.1 can be at
most r units (and hence the node which is elected leader must wake up within r time
units of the first node waking up). Thus if r < N/ logN , then it will take r time
units in the first two phases; if r ≥ N/ logN , then the first two phases ensure that
some node will reach level logN within O(N/ logN) time units. After the second
phase, a node which is elected leader has to go through logN phases, where each
phase requires a constant amount of time.

7. Conclusion. In this paper, we have presented a distributed algorithm for
leader election in an asynchronous complete network. The protocol has O(N logN)
message complexity and O(N/ logN) time complexity. This is an improvement over
existing protocols for the this problem. We further extended the result to obtain a
family of protocols, D(k), where logN ≤ k ≤ N . The message and time complexities
of D(k) are O(Nk) and O(N/k), respectively.

REFERENCES

[1] Y. Afek and E. Gafni, Simple and efficient distributed algorithms for election in complete
networks, in Proc. 22nd Annual Allerton Conference on Communication, Control and Com-
puting, Allerton, IL, 1984, pp. 689–698.

[2] Y. Afek and E. Gafni, Time and message bounds for election in synchronous and asyn-
chronous complete networks, SIAM J. Comput., 20 (1991), pp. 376–394.

[3] B. Awerbuch, Optimal distributed algorithms for minimal weight spanning tree, counting,
leader election and related problems, in Proc. ACM Symposium on Theory of Computing,
ACM, New York, 1987, pp. 230–240.

[4] G. Frederickson and N. Lynch, The impact of synchronous communication on the problem
of electing a leader in a ring, in Proc. ACM Symposium on Theory of Computing, ACM,
New York, 1987, pp. 493–503.

[5] R. G. Gallager, P. A. Humblet, and P. M. Spira, A distributed algorithm for minimal
spanning tree, ACM Trans. Programming Languages Systems, 30 (1983), pp. 66–77.

[6] D. Hirschberg and J. Sinclair, Decentralized extrema-finding in circular configurations of
processors, Comm. Assoc. Comput. Mach., 23 (1980), pp. 627–628.

[7] E. Korach, S. Moran, and S. Zaks, Optimal lower bounds for some distributed algorithms
for a complete network of processors, Theoret. Comput. Sci., 64 (1989), pp. 125–132.

[8] G. Singh, Leader election in complete networks, in Proc. ACM Symposium on Principles of
Distributed Computing, ACM, New York, 1992, pp. 179–190.

THE COST OF DERANDOMIZATION: COMPUTABILITY OR
COMPETITIVENESS∗

XIAOTIE DENG† AND SANJEEV MAHAJAN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 786–802, June 1997 012

Abstract. Recently, much work has been done in game theory towards understanding the
bounded rationality of players in infinite games. This requires the strategies of realistic players to
be restricted to have bounded resources of reasoning. (See [H. Simon, Decision and Organization,
North–Holland, Amsterdam, 1972, pp. 161–176] for an extensive discussion; also see [X. Deng and
C. H. Papadimitriou, Math. Oper. Res., 19 (1994), pp. 257–266], [C. Futia, J. Math. Econom., 4
(1977), pp. 289–299], [V. Knoblauch, Games Econom. Behav., 7 (1994), pp. 381–389], [E. Kalai
and W. Stanford, Econometria, 56 (1988), pp. 397–410], [A. Neyman, Econom. Lett., 19 (1985),
pp. 227–229], and [C. H. Papadimitriou, Game Theory Econom. Behav., 4 (1992), pp. 122–131].)
In this paper, we discuss infinite two-person games, focusing on the case where our player follows
a computable strategy and the adversary may use any strategy, which formulates the notion of
computer against extremely formidable nature. In this context, we say that an infinite game is
semicomputably determinate if either the adversary has a winning strategy or our player has a
computable winning strategy.

We show that, whereas all open games are semicomputably determinate, there is a semicom-
putably indeterminate closed game. Since we want to prove an indeterminacy result for closed
games and since the adversary’s strategy set is uncountable and our player’s strategy set is count-
able, our proof for the indeterminacy result requires a new diagonalization technique, which might be
useful in other similar cases. Our study of semicomputable games was inspired by online computing
problems. In this direction, we discuss several possible applications to derandomization in online
computing, with the restriction that the strategies of our player should be computable.

We also study the power of randomization for the classical case where our player is allowed to
play according to unrestricted strategies. An indeterminate game is obtained for which both players
have a simple randomized winning strategy against all of the deterministic strategies of the opponent.

Key words. online algorithms, computability, game theory, derandomization

AMS subject classifications. 68Q99, 90D20, 04A10

PII. S0097539791202301

1. Introduction. In an online problem, requests come one at a time and need
to be served as soon as they come. A cost function is associated with serving each
request, which depends on the history of requests and the serving strategy. The object
is to minimize the total cost incurred while serving the request sequence. If the request
sequence is known in advance, it can be served optimally. However, since the future
requests are not known in advance, we cannot in general design a strategy which
will optimally serve the requests. To measure the performance of a strategy σ, the
concept of the competitive ratio was introduced [ST, KMRS, MMS], i.e., the worst-
case ratio (over all finite request sequences) of the cost of serving a request sequence
by σ (one may allow an extra addition constant) to the minimum cost of serving the

∗ Received by the editors July 22, 1991; accepted for publication (in revised form) July 18, 1995.
This research was supported in party by a grant from the Natural Sciences and Engineering Research
Council of Canada and the Advanced Systems Institute of British Columbia to Tiko Kameda. This
paper is based on an earlier work published in Proc. 23rd Annual ACM Symposium on Theory of
Computing, ACM, New York, 1991.

http://www.siam.org/journals/sicomp/26-3/20230.html
† School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. Cur-

rent address: Department of Computer Science, York University, North York, ON, M3J 1P3, Canada
(deng@cs.yorku.ca). The research of this author was supported by an NSERC International Post-
doctoral Fellowship.
‡ School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

(mahajan@mpi-sb.mpg.de).

786

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 787

same request sequence. A strategy of serving requests is called α-competitive if its
competitive ratio is no more than α.

A request–answer game formulation is introduced to explore the power of ran-
domization in online problems for finite games in [BBKTW] and for infinite games in
[RiS]. The idea is that, since we defined the competitive ratio as a worst-case ratio, we
can think of the requests as coming from an adversary. The adversary and our player
alternate between giving requests and serving them. Since the adversary is assumed
to be omnipotent and omniscient, we also assume that the adversary serves her own
requests with the minimum cost. An infinite game can be described as an infinite tree
on which two players make their moves in turn, starting at the root.

In this formulation, we have two distinguished players: Player I, the adversary;
and Player II, our player. The adversary makes choices at even levels, starting at
level 0, the root, and our player makes choices at odd levels. The set of all the
infinite paths is partitioned into two subsets: the winning set for our player and the
winning set of the adversary. A strategy for the adversary (our player) corresponds
to a pruned tree from the original game tree on which each branching at even (odd)
levels is pruned to allow at most one possible child. The resulting play for a given
pair of strategies corresponds to a path in the game tree. A strategy for our player
is a winning strategy if all of the paths in the corresponding pruned tree belong to
the winning set of our player. The winning strategies for the adversary are defined
similarly. A game is called determinate if one of the players has a winning strategy.

Denote by OC the cost of our player and by AC the adversary’s cost. Then by
the above discussion, a strategy of our game is α-competitive if there is a constant c
such that the request–answer sequence generated by playing with any adversary has
the property that OC ≤ α ·AC+ c. Under this formulation, the winning paths of our
player form a closed set under the Hausdorff topology, and hence the corresponding
game is called a closed game. (A formal definition is introduced in the next section).
We call this type I competitiveness. In [RaS], a more relaxed definition is introduced
by requiring

∪i ∪j ∩k≥j{(x0, x1, . . .) : OC(x0, . . . , xk)− α ·AC(x0, . . . , xk) ≤ i},

which leads to a countable union of closed sets, called by an Fσ game. This case
considers how our cost increases as the adversary cost grows unboundedly in each
branch of the game tree. We call it type II competitiveness.

Since both closed games and Fσ games are determinate [GS], it follows that,
when playing against an offline adaptive adversary, randomization does not yield
more competitive algorithms [BBKTW, RaS]. In essence, it is shown in [RaS] that
for any determinate game, a randomized winning strategy guarantees a deterministic
winning strategy. In this sense, we can say that the derandomization hypothesis holds
for online problems. Raghavan and Snir point out that although the randomized
strategy may be computable, the deterministic strategy guaranteed by this theorem
may not be computable [RaS].

To address this question, we formulate the computable derandomization hypothe-
sis: a computable randomized winning strategy guarantees a computable deterministic
winning strategy. Following the approach in [BBKTW, RaS], we want to know if
closed games or Fσ games are all semicomputably determinate. If this is true for
closed (Fσ) games, then type I (type II) competitive randomized algorithms would
guarantee computable type I (type II) competitive deterministic algorithms. On the
contrary, we show that, whereas all open games are semicomputably determinate,

788 XIAOTIE DENG AND SANJEEV MAHAJAN

there is a semicomputably indeterminate closed game. This opens the door for the
possibility that there exists an online problem for which there is a computable ran-
domized competitive strategy but there is no computable deterministic competitive
strategy. Indeed, we are able to construct an Fσ game for which there is a simple ran-
domized strategy which wins almost surely but there is no computable deterministic
winning strategy. Thus the computable derandomization hypothesis does not hold,
even for Fσ games. This confirms the belief in [RaS]. With a certain cost function
assigned for the game, this shows that there is a simple randomized strategy which
is type II competitive almost surely, but there is no computable type II competitive
deterministic strategy. We can also extend the result, in a slightly weaker form, to
closed games for the notion of type I competitiveness. Therefore, the computable de-
randomization hypothesis does not hold for online problems, neither under the notion
of type I competitiveness nor under the notion of type II competitiveness.

In our discussion, on one hand, we take an extremely pessimistic view of nature:
it is formulated as an offline adaptive adversary [BBKTW] with complete power. On
the other hand, we restrict our player to computable strategies. Such situations occur
when strategies are designed to make dynamic decisions with an unpredictable future.
One case is in the task of designing online algorithms to serve an unknown sequence
of future requests, such as paging [ST], server problems [MMS, KP], and metrical task
systems [BLS]. Robot navigation in an unknown world [PY, BRS] and robot learning
[RiS, DP2] are similar situations. In all of these cases, while we may assume that
the adversary may have unlimited power, our player is restricted by the computing
machinery that is available. In a not unrelated problem, Papadimitriou has discussed
asymmetric players in two-person games in terms of computational complexity by
formulating nature as an amiable indifferent adversary: a randomized adversary with
equal probabilities on choices of its moves [Pa2]. Many authors have considered players
with restricted computational power [DP1, Fu, KS, Ne, Si].

The study of situations dealing with unknown future events leads to the concept
of competitiveness. An online algorithm is α-competitive if its cost on any finite
sequence of requests is within a factor of α of the optimal cost (up to an additive
constant) by an algorithm that knows all of the future requests [KMRS]. For one
problem of this type, the k-server problem, a matched upper bound and lower bound
of k are conjectured [MMS]. The conjecture remains unsolved in spite of many efforts,
even though it is shown to be true on several particular metric spaces [CL, CKPV,
MMS]. A recent result [KP] comes very close to resolving this problem (see also [FRR,
Gro]). The above-mentioned result in [BBKTW, RaS] provides another approach to
solving the conjecture. Thus if one can design a k-competitive randomized online
algorithm for the k-server problem, the above conjecture is proven even though one
may not be able to design a computable deterministic algorithm. This approach
depends very much on the possibility of a k-competitive algorithm against the offline
adaptive adversary. However, all known k-competitive randomized algorithms for the
server problem are against an online adaptive adversary [RaS, CDRS]. The failure
in resolving the conjecture for general metric space, however, may not be attributed
to the conjecture being false. The optimal strategy may simply be noncomputable.
Though one may doubt whether this is the case for this natural game of the k-
server problem since there is a computable strategy conjectured to be optimal, it
is always helpful to look into other possibilities. Indeed, there are known cases of
naturally defined games for which the optimal response strategy of our player to an
adversary strategy cannot be computable. A very interesting example is the well-

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 789

known prisoner’s dilemma game [Kn]. This motivation provides another perspective
to the formalism discussed in this paper. However, this does not exclude the possibility
that for some games, computable optimal strategies are possible to construct. In fact,
Ben-David et al. show several such cases for the request–answer game, which can be
applied to the k-server problem.

In section 2, we will formally introduce necessary notations and related defini-
tions. We will discuss semicomputable determinacy of infinite games in section 3.
In section 4, we look into possible implications of our main result to the semicom-
putable derandomization hypothesis for games and for online computation problems.
Section 5 contains a discussion on the derandomization hypothesis for indeterminate
games, a classic case without the computability restriction on our player. Section 6
concludes the paper with remarks and some open problems.

2. Definitions and notation. An infinite game can be described as an infinite
tree on which two players make their moves in turn, starting at the root. We distin-
guish the players by naming Player I as the adversary and Player II as our player.
The adversary makes choices at even levels, starting at level 0, the root, and our
player makes choices at odd levels. We also call a pair of two moves a stage; thus
level 2n and 2n+ 1 are classified as stage n, n = 0, 1, For convenience, we restrict
the choice space of each player’s moves to be finite, though some results may also
extend to infinite choice spaces. The set of all of the infinite paths is partitioned into
two subsets A and B, where A is the winning set for our player and B is the winning
set of the adversary. A strategy τ (σ) for the adversary (our player) corresponds to
a pruned tree Tτ (Tσ) from the original game tree on which each branching at even
(odd) levels is pruned to allow at most one possible child. The resulting play (σ, τ) for
a given τ and a given σ corresponds to a path in the game tree. We call σ a winning
strategy for our player if for every τ , the path (σ, τ) belongs to A. The winning
strategies for the adversary are defined similarly. Finally the game is determinate if
either player has a winning strategy.

We now define a topology on the set of all plays. A subset S of all the paths is
defined as being open iff for every path (a0, a1, . . .) ∈ S, there exists a number n such
that for all bn+1, bn+2, . . .,

(a0, a1, . . . , an, bn+1, bn+2, . . .) ∈ S.

Let O(a0, a1, . . . , an) = {(a0, a1, . . . , an, bn+1, bn+2, . . .) : all bn+1, bn+2, . . .} and call
it an elementary open set. A set of paths is closed if it is the complement of an open
set. An important feature of this topology is that an elementary open set is also
closed [Mos].

A game is open (closed) if the winning set of our player is open (closed). In their
classical paper on infinite games [GS], Gale and Stewart show that all open and closed
games are determinate and that there exists a game that is indeterminate. Martin
[Mar] further proves that all Borel games are determinate. (A game is Borel if the
winning set of Player I (or II) is Borel under the topology defined above.) Observe
that in classical infinite-game theory, there is no restriction on the strategies in terms
of computability.

In [BBKTW], online problems are formulated as finite games, and in [RaS], an
infinite-game formulation is given. Depending on the criteria of competitiveness, one
may get different winning sets for an online problem. Let us denote by OC the cost of
our player and by AC the adversary’s cost. A simple α-competitiveness requirement is
defined byOC ≤ α·AC. We will call it the type I competitive condition. When the cost

790 XIAOTIE DENG AND SANJEEV MAHAJAN

function is accumulative, e.g., in the case of the server problem, type I competitiveness
will define a closed game: the adversary wins iff the play reaches a node where the
condition is violated. A slightly different definition is to allow an additive constant
c > 0 and use OC ≤ α · AC + c instead. This is not much different. Raghavan and
Snir [RaS] use a formulation which allows an arbitrary additive constant, which gives
rise to a game with a winning set in Fσ (the countable union of closed sets):

∪i ∪j ∩k≥j{(x0, x1, . . .) : OC(x0, . . . , xk)− α ·AC(x0, . . . , xk) ≤ i}.
Thus infinite paths of constant costs are always in the winning set of our player. In
section 1, this was defined as the type II competitive condition.

A randomized strategy for our player is a function that makes an assignment of
probability to all the possible choices of our player depending on the position of the
node on the game tree. We say a randomized strategy is computable if, firstly, the
probability density function on the choice space is a computable function and, sec-
ondly, the rules for the assignment of probabilities for different nodes on the game tree
are computable. As noted in [RaS, HT], a statement about a randomized algorithm is
true if it is true against all adversary strategies. Thus, given a randomized strategy,
we consider each adversary deterministic strategy τ and the induced probability dis-
tribution for the pruned tree Tτ . We specify a topology and a probability measure on
the smallest σ-algebra generated by the topology by specifying them on all the basic
open sets. A basic open set U is specified by a node x on Tτ such that it contains all
of the paths passing through x and its probability measure is the probability that the
randomized strategy reaches x. The measure is extended to all of the Borel sets in
the topology by the standard method [CT]. When we specify an adversary strategy
τ , a similar method is applied to define the conditional distribution on the pruned
tree Tτ . Again, a randomized strategy is α-competitive almost surely iff for all of
the pruned trees Tτ , it is α-competitive almost surely with respect to this probability
distribution.

With the terminologies defined above, it is not difficult to construct a semicom-
putably indeterminate game if we drop the requirement that it is closed (for the
purpose of applications to online problems.) We simply take the list of all of the
computable strategies that each player can have: τ1, τ2, . . . , τn, . . . for the adversary
and σ1, σ2, . . . , σn, . . . for our player. Using a standard diagonalization technique, we
construct the winning paths of our player and the adversary as follows. Initially,
choose 〈σ1, τ1〉 to be B1, denote τ1 = τσ1

, and let A0 = ∅. In general, suppose for
k ≥ 1 that Bk and Ak−1 are constructed, with Bk = {〈σi, τσi〉 : i = 1, 2, . . . , k},
Ak−1 = {〈στi , τi〉 : i = 1, 2, . . . , k− 1}, and Bk ∩Ak−1 = ∅. Let m to be the minimum
index such that 〈σm, τk〉 ∈/Bk. This is well defined since {〈σn, τk〉 : n = 1, 2, . . .} is
an infinite set but Bk is finite. Denote σm = στk and set Ak = Ak−1 ∪ {〈σm, τk〉}.
Similarly, let p to be the minimum index such that 〈σk+1, τp〉 ∈/Ak. This is well
defined since {〈σk+1, τn〉 : n = 1, 2, . . .} is an infinite set but Ak is finite. Denote
τp = τσk+1

and set Bk+1 = Bk ∪ {〈σk+1, τp〉}. Take A = ∪∞n=1An and B = ∪∞n=1Bn.
We have two subsets A and B of infinite paths of plays such that for each computable
strategy σ of the adversary, there is a computable strategy τσ of our player with the
path 〈σ, τσ〉 ∈ A; for each computable strategy τ of our player, there is a computable
strategy στ of the adversary with the path 〈στ , τ〉 ∈ B.

The above sets of A and B may not partition the set of all plays. We can put all
of the other paths in the winning set of our player. This proves the following:

0. There exists an indeterminate game when both players are restricted to using
only computable strategies.

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 791

Moreover, this is in fact a semicomputably indeterminate game.
0′. There exists a semicomputably indeterminate game.
With possible applications to online problems in mind, however, we want to study

the semicomputable determinacy of Fσ games and closed games. Our main results
are the following:

1. There is a semicomputably indeterminate closed game.
Since a closed game is also in Fσ (that is, games in which the winning set is a

countable union of closed sets), this also means there is a semicomputably indetermi-
nate Fσ game. In contrast, for open games, the following is true.

2. All open games are semicomputably determinate.
To study randomized strategies for infinite games, we also need to specify the

proper probability distribution. Raghavan and Snir formally defined it through a
probability distribution over the strategy space of our player [RaS]. When the adver-
sary’s strategy is specified, it induces a probability distribution over the pruned tree
corresponding to the adversary strategy. Halpern and Tuttle [HT] had a similar idea
for distributed systems. Thus a statement about a randomized algorithm is true iff
it is true for all the pruned trees. We prove that the computable derandomization
hypothesis is not always true, even for Fσ games.

3. There exists an Fσ game
• which is semicomputably indeterminate and
• in which our player has a simple randomized computable strategy that wins

all most surely.
We can also assign a cost function on paths of this game to transform it into an

online problem to obtain the following result.
3′. There exists an Fσ game on which we can define an online problem such that

our player has a randomized computable strategy which is type II competitive almost
surely but has no deterministic computable type II competitive strategy.

Similarly, we can construct a closed game and get a slightly weaker result for
type I competitiveness.

3′′. For any ε > 0, there is a closed game on which we can define an online problem
such that our player has a randomized computable strategy which is type I competitive
with probability 1− ε but has no deterministic computable type I competitive strategy.

The above result for type II competitiveness also holds when we use the expected
value instead of high probability. A weaker result holds for the type I competitiveness.
When none of the players is restricted in computational power, we show that the
derandomization hypothesis is not true in general for indeterminate games.

4. There exists an indeterminate game for which both players have a randomized
strategy which wins against all of the deterministic strategies of the other player.

3. Semicomputable determinacy of infinite games. While all Borel games
are determinate [Mar], we would like to know under what topological conditions a
game is semicomputably determinate. First, we have the following.

Theorem 1. There is a semicomputably indeterminate closed game.
We give both players two choices of actions: r0 and r1 for the adversary and

a0 and a1 for our player. We first give some intuition on the proof of the theorem.
We need to partition the set of all of the paths into two sets A (the winning set
for our player, which is closed) and B (the winning set for the adversary) such that
for each computable strategy σ of our player, there exists an adversary strategy τ
such that (σ, τ) is in B (call it condition C1), and for each adversary strategy τ of
the adversary, there exists a computable strategy of our player σ such that (σ, τ) is

792 XIAOTIE DENG AND SANJEEV MAHAJAN

in A (call it condition C2). C1 and C2 force certain plays to be put in A and B,
respectively, and we should make sure that (A,B) is a partition. Moreover, we want
a construction that makes A a closed set.

Observe that the indeterminacy proof given in [GS] cannot be translated into this
case. Our result is obtained via a new method which may be useful in other similar
situations.

We construct A and B in stages. Let the computable strategies of our player
be ordered as σi, i = 0, 1, 2, Say that a strategy σ is killed in stage j if we put
(σ, τ ′) ∈ B for some τ ′ of the adversary in B in stage j (and similarly for an adversary
strategy). At each stage, we kill at least one σ and perhaps an uncountable number of
τ ’s so that A and B remain disjoint, and we make sure that each σ and each τ is killed
in some finite stage without destroying the disjointness criterion. An indeterminate
game is thus constructed. The construction will guarantee that A constructed thusly
is closed. We now give the technical details of the result.

Proof of Theorem 1. For simplicity, we assume that the adversary’s choice space
is r0, r1 and our player’s choice space is a0, a1. We list all (computable) strategies
of our player in the set

Σ = {σ0, σ1, . . . , σn, . . .}
such that σ0 is the strategy that chooses move a0 all the time. Informally, we need
to construct a game with winning sets A for our player and B for the adversary such
that the following conditions hold.

C1. For each σ ∈ Σ, there is τ ∈ T and (σ, τ) ∈ B.
C2. For each τ ∈ T , there is σ ∈ Σ and (σ, τ) ∈ A.
Construction of A,B. Initially, set A0 contain all of the paths along which the

adversary never requests r1. B0 = ∅. Let A = A0 and B = B0. Denote the root of
the game tree as being level 0. Incrementally assign level numbers to the tree. We
will prune the tree in levels. First, level 0 is processed, and then we show inductively
how to process level n for each n = 1, 2, 3,

Level 0. Denote by T1 all of the adversary strategies that make r1 as their first
request. Choose some τ0 ∈ T1 and assign the path 〈σ0, τ0〉 in B1. Moreover, we make
B1 an elementary open set containing the path 〈σ0, τ0〉. To be specific, from the root
on the path 〈σ0, τ0〉, we take the (2K + 1)-st node N1, for some K > 1, and make
B1 contain all of the infinite paths that pass N1. Assign all of the other paths that
start with r1 to A1. Update A← A∪A1 and B ← B ∪B1. Thus condition C1 holds
for σ0 and condition C2 holds for all τ ∈ T1. Remove σ0 from the strategy set of our
player. Now we consider all of the paths that start with r0. At level 1, according to
the choice of our player, the strategy set for our player is partitioned into two subsets
Σ0 and Σ1, where the lists for Σ0 and Σ1 keep the same order as the list in Σ.

Level 2i − 1, i ≥ 1. We keep the following inductive assumption for the pruning
process at the end of level 2i− 2. Each remaining node at level 2i− 1 is a descendent
of the adversary that played r0 at all of the past i requests. Thus each node can
be denoted by an i-bit binary number that corresponds to plays made by our player
from the root to the node. At node j, Σj represents all of our player strategies
that are consistent with j up to this node. Σj ’s, j = 0i, 0i−11, 0i−210, . . . , 1i, form a
partition of the remaining members in Σ which do not yet satisfy condition C1. All
of the adversary strategies that remain at node j are those which make i consecutive
requests of r0’s when played against our player which answers j correspondingly. We
will denote them by Tj . From the above discussion for levels 0 and 1, this holds for
i = 1.

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 793

Level 2i. Consider each node independently. Without loss of generality, let us
look at node 0i. Let

Σ0i = {σ0i0 , σ0i1 , . . . , σ0in , . . .}.

Denote by T0i1 all of the strategies in T0i that make the (i + 1)st request as r1. We
assign the path 〈σ0i0 , τ0i0〉 to the set B0i1 for some τ0i0 ∈ T0i1. Moreover, we make
B0i1 an elementary open set containing the path 〈σ0i0 , τ0i0〉. To be specific, from the
node j on the path 〈σ0i0 , τ0i0〉, we take the (2K+ 1)st node N0i1, for the same K > 1
as in level 0, from the first r1 request and make B0i1 contain all of the paths that
pass N0i1. All of the other paths that start from 0i and continue with r1 are assigned
to A0i1. At level 2i+ 1, according to the choice of our player, the strategy set for our
player is partitioned into two subsets Σ0i0 and Σ0i1, where the lists for Σ0i0 and Σ0i1

keep the same order as the list in Σ. Thus condition C1 holds for σ0i0 and condition
C2 holds for all τ ∈ T0i1. We also perform similar operations on all of the nodes j of i
bits. For all j nodes of i bits, condition C1 holds for σj0 and condition C2 holds for all

τ ∈ Tj1. Update the set A and B by assigning A← A∪1i

j=0iAj1 and B ← B∪1i

j=0iBj1.

It follows from these definitions that the inductive hypothesis holds for level (2i+ 1).
Correctness proof. We now prove that conditions C1 and C2 are true for all

adversary strategies and our player strategies. Notice that our player’s strategies are
first enumerated in the set Σ, and the ordering is kept when they are partitioned
at each level. For the first strategy σ in Σj , there is an adversary strategy τ such
that (σ, τ) ∈ B according to our pruning process. Therefore, for each i = 1, 2, . . . ,
σi satisfies condition C1 no later than at level 2i − 1 in our construction. To prove
that condition C2 holds for all adversary strategies, we consider two cases: one is
the case where the adversary plays r0 all the time; the other is the case where the
adversary plays r1 at least once for some strategy. The first case is done by the initial
assignment of set A. For the second case, we notice that for any other strategy τ of
the adversary, it will play r1 at least once for a strategy of our player at a finite level.
If the strategy of our player is not a computable strategy, we can simply truncate the
infinite strategy at that finite level and append it by always playing a0. This will
be a computable strategy σ(τ). Suppose j is the node for the first step where the
adversary plays an r1; then the adversary strategy τ will lose to σ(τ) at one path in
Tj1.

To show that A is a closed set, we notice that B1 is an open set and so are all the
Bj1’s. Thus B is open since it is the union of a countably many open sets. A and B
partition the whole space; therefore, A is closed.

In contrast, all open games with a finite choice space for the adversary have enough
mathematical structure to make them semicomputably determinate. To prove this,
we need the following lemma (see, e.g., [Ku].)

Lemma 2 (Koenig). Every finitely branching infinite tree has an infinite
path.

Theorem 3. All open games are semicomputably determinate if the choice space
for the adversary is finite.

Proof. Suppose no adversary strategy wins over all strategies of our player. Since
open games are determinate [GS, Mar], there is a strategy σ of our player which wins
against all of the adversary strategies (though σ may not be computable). Consider
the pruned tree Tσ. Every infinite path in Tσ is in the winning set A of our player.
Since A is open, for each infinite path in Tσ, there is a node x on the path such that
all the paths passing through x are in A. We can thus remove the branch from x

794 XIAOTIE DENG AND SANJEEV MAHAJAN

down and make x a terminal node on which our player wins. This will not change the
win/lose situation of the tree since all of the paths that pass x are in A. The game
tree thus pruned has no infinite path. By Lemma 2, since this pruned tree is finitely
branching and has no infinite paths, it is finite. Therefore, if there is no adversary
winning strategy, our player can win by simply coding the structure of the pruned
finite tree and choosing its moves accordingly.

By exchanging the role of our player and the adversary, we can further obtain the
following corollary.

Corollary 4. For closed games, there is either a finite-state adversary strategy
that wins against all strategies of our player or a strategy of our player that wins
against all adversary strategies if the choice spaces for both the adversary and our
player are finite.

For the notion of type I competitiveness, the winning set of our player is closed.
If there is no deterministic winning strategy of our player, then the winning strategy
of the adversary will enable us to prune the tree to a finite tree according to Corollary
4. We thus easily conclude that there is no competitive randomized strategy for our
player. The result of [BBKTW, RaS] for infinite games follows immediately. Corollary
4 also implies that if we allow our player to use unlimited power, we only need to look
for a lower bound forced by adversaries with a simple computational power: finite-
state machines. Thus it is easier to establish a general lower bound than a lower
bound tailored to computable strategies of our player.

4. Applications to online algorithms. While online problems are formulated
as closed and Fσ games, we would also like to formulate closed and Fσ games as
online problems such that there is a winning strategy for our player in a given game
iff there is an α-competitive online algorithm for the corresponding online problem.
This may not be true in general. However, for semicomputable indeterminate games
constructed in this paper, we want to make sure that the above condition is satisfied.
First, we construct a game similar to the one given in section 3 for this goal.

Theorem 5. There exists a semicomputably indeterminate Fσ game such that
there is a computable randomized winning strategy (almost surely). Moreover, on
this game, we can define an online problem of accumulative cost such that there is
a computable randomized type II competitive strategy (almost surely) but there is no
computable deterministic type II competitive strategy.

An Fσ semicomputably indeterminate game. We construct a game similar to
the one for proving Theorem 1. The changes are as follows. We choose A0 in
the same way as we did in Theorem 1. Notice that A0 is closed because it can
be obtained by removing countably many disjoint elementary open sets as follows:

for n = 0 to ∞ do remove the r1 branch for level 2n.

Actually, A0 is a Cantor-type set (see, e.g., [Bi]).

In level 0, we will put (σ0, τ0) in B1, instead of an elementary open set containing
the path, and all the other paths starting with r1 are put into A1. Similarly, at node
j, we also put one path 〈σj0 , τj0〉 in Bj1, and all of the other paths that start at node
j and continue with r1 are put in Aj1. The rest of the construction follows the same
pattern as before. Notice that Aj1 consists of countably many elementary open sets.
However, as noticed while defining the topology in section 2, an elementary open set
is also closed. Thus each Aj1 is an Fσ set. Therefore, A is also an Fσ set.

Although A is no longer closed, the proof that the game is semicomputably in-
determinate follows from the same reason as in Theorem 1. The only differences are

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 795

assignments of paths that are irrelevant to the proof of semicomputably indetermi-
nacy.

A simple randomized winning strategy. Consider the randomized algorithm that
always chooses a0 and a1 with probability 0.5:0.5. We claim that this simple (com-
putable) randomized algorithm wins almost surely.

To discuss the proof carefully, for any adversary strategy τ , consider its corre-
sponding pruned tree Tτ . For the root level, if the adversary chooses r1, there is
exactly one winning path of the adversary in its strategy tree Tτ . We can remove all
of the nodes below this node to reduce this tree to one root node, leading to one leaf
node through an edge labeled r1. On the collection of paths from this leaf node, our
player wins with probability 1.

In general, our player wins with probability 1 in each branch on a node reached
from the root by a consecutive sequence of r0 requests followed by the first r1 request.
With this observation, we further prune the tree Tτ as follows. Move from the root
down the tree Tτ until the first request r1 is encountered. Then delete the branch after
that node. Thus infinite paths of the further pruned tree will all contain request r0
only. They are all in the winning set of our player. On all of the leaves created by the
above pruning procedure, our player wins with probability 1. It follows immediately
that this simple randomized strategy wins with probability 1 against any adversary
strategy.

A cost function. We want to have an accumulative cost function such that it
increases smoothly as plays proceed. All nodes at even levels are assigned a cost of 0.
Thus in the following, all of the nodes assigned costs are nodes at odd levels. On the
winning paths of the adversary in the game tree, we assign the cost of each node to
be 1 until the first r1 is encountered. After the first r1 request, the cost of each node
on the winning paths of the adversary in the game tree is its level minus the level of
the node the first r1 request is made. At all other nodes, a cost of 1 is assigned. The
accumulative cost (informally, the online cost) of our player along a path will be the
sum of the costs of nodes it has passed on the game tree. The cost of the adversary
(informally, the offline cost) will be the minimum cost over all the paths with the
same request sequence. That is, we consider an offline adaptive adversary [BBKTW].
Therefore, for a fixed request sequence, the offline cost grows linearly with the length
of the request sequence. Along a winning path of the adversary with at least one r1
request, the growth rate of the online cost is asymptotically quadratic in the length
of the request sequence. Along all other paths, the growth rate of the online cost is
asymptotically linear with the length of the request sequence.

Competitiveness. Denote an infinite path by 〈τ, σ〉. We will denote by 〈τ, σ〉k
the subpath consisting of the first k edges in the infinite path 〈τ, σ〉. From the above
game construction and the cost function, we have the following:

(a) For any 〈τ, σ〉,

AC(〈τ, σ〉k) = dk/2e.

This holds since we can always obtain a subpath with any given sequence of dk/2e
requests which does not shares any edge with an adversary winning path except
probably the first one. In either case, the cost on each odd-level node is 1. The total
cost is thus dk/2e.

(b) For any 〈τ, σ〉 ∈ A, there is a constant c such that

lim
k→∞

[OC(〈τ, σ〉k)− dk/2e] ≤ c.

796 XIAOTIE DENG AND SANJEEV MAHAJAN

Suppose 〈τ, σ〉 is not in the adversary winning set. Let f be the number of edges that it
shares with an adversary winning path after the first r1 request. Then the cumulative
cost along path P at a node of level k = 2j is bounded by j + (1 + 3 + · · ·+ f) = j +
(f + 1)2/4. The offline cost is at least j. Therefore, OC(〈τ, σ〉)−dk/2e ≤ (f + 1)2/4,
for all k ≥ 0. The claim follows by choosing c = (f + 1)2/4.

(c) For any 〈τ, σ〉 ∈ B and for any constant c,

lim
k→∞

[AC(〈τ, σ〉k)− cdk/2e] =∞.

Let the first r1 request on 〈τ, σ〉 is at level 2j. Then the cost at level 2i + 1 is 1,
if 0 ≤ i < j and is 2(i − j) + 1 if i ≥ j. Therefore, the cumulative cost at level

k = 2i+ 1, or 2i+ 2, for i ≥ j, is j +
∑i
t=j(2(t− j) + 1), which is Ω(k2) as k goes to

infinity. Then it cannot be bounded by any linear function. The claim follows.
From the construction of the game, for any deterministic strategy σs, there exists

a τs such that 〈τs, σs〉 ∈ B. Therefore, σs cannot have any constant competitive ratio
by (c). On the other hand, for any adversary strategy τ , at most one path of Tτ
is in B, which is taken by our randomized strategy with probability 0. By (b), the
randomized strategy has a constant competitive ratio on all the paths in B, which
holds with probability 1. Theorem 5 follows. Notice that the value f and thus c in
(b) depends on the particular strategy Tτ . It follows that the competitive ratio on
any infinite path in the winning set of our player is one according to the definition of
type II.

With regard to the issue of derandomization for type I competitiveness, one may
insist that we compare randomized competitive algorithms with type I deterministic
competitive ones. This would lead to a closed game. In this case, we can use the
closed game constructed for Theorem 1 and use the same cost function as defined
above.

Corollary 6. For any integer K > 0, there exists a closed game for which one
can define an online problem such that there is no computable deterministic type I
competitive strategy but there is a computable randomized strategy that is type I K-
competitive with probability 1− 2−K .

Proof. For simplicity, we first consider adversary strategies that make r1 the first
request. The cost as defined above of each node for the tree Tτ will be as follows:

1. All nodes at even levels have cost 0.
2. There is only one node at level l = 2j + 1 with cost 2j + 1 for j ≤ K, which

is the node on the winning path of the adversary; all other nodes on level l = 2j + 1
have cost 1 for j ≤ K.

3. There are only 2j−K nodes at level l = 2j + 1, with cost 2j + 1 (j ≥ K); all
other nodes on level l = 2j + 1 have cost 1.

Since nodes at even levels will have the same cumulative cost as their parents, we
focus our discussion on nodes at odd levels. Therefore, the cumulative cost of nodes
of the pruned tree Tτ at level k = 2j + 1 (j ≥ K) will be as follows:

1. 2j−K nodes of cumulative cost 1+3+· · ·+(2j−3)+(2j−1)+(2j+1) = (j+1)2;

2. 2j−K nodes of cumulative cost 1 + 2 · · ·+ (2K − 1) +
∑j
t=K 1 = K2 + (j −K);

3. 2j−K+1 nodes of cumulative cost 1 + 2 + · · · + (2K − 3) +
∑j
t=K−1 = (K −

1)2 + (j −K + 1);
· · ·

(i+ 2). 2j−K+i nodes of accumulative cost (K − i)2 + j −K + i, for i : 1 ≤ i < K,
· · ·

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 797

(K + 1). 2j−1 nodes of accumulative cost j + 1.
Therefore, for any deterministic strategy σs of our player, there exists an ad-

versary strategy τs such that (〈τs, σs〉) is in the winning set of the adversary. From
the above, we have OC(〈τs, σs〉k) = (dk/2e)2. Similarly to the proof of Theorem 5,
AC(〈τ, σ〉k) = dk/2e. σs cannot be type I competitive.

The fraction of nodes with cumulative cost (j + 1)2 at level 2j + 1 is 2−K . The
cumulative cost for any other node at level 2j+ 1 is no more than K2 + j−K, which
grows linearly with j as j goes to infinity. On these paths, we have OC(〈τ, σ〉k)− 2 ·
AC(〈τ, σ〉k) ≤ K2−K − j. Since K2−K − j ≤ 0 as j →∞, choosing c = 0, we have
that limk→∞[OC(〈τ, σ〉k)− 2 ·AC(〈τ, σ〉k)] ≤ c holds with probability 1− 2−K .

If the adversary does not make r1 its first request, the analysis is similar and the
same claim holds for j greater than K plus the number of requests before the first
r1.

The above results are for randomized algorithms that are competitive with high
probability. For randomized algorithms that are competitive in expected values, we
have a similar result for type II competitiveness and a slightly weaker result for type I
competitiveness.

Corollary 7. There exists a game on which one can define an online prob-
lem such that there is no computable deterministic type II competitive strategy (no
computable deterministic type I (2K − 1)-competitive strategy) but there is a com-
putable randomized strategy which is type II competitive strategy in the expected value
(a computable randomized type I (K + 2)-competitive strategy).

Proof. For the type II competitiveness, we use the same game and the same cost
function as defined in the proof of Theorem 5. In fact, one may conclude that the
claim holds in the expected value by verifying conditions for the monotone convergence
theorem or Fatou’s lemma [CT] in this case. For completeness, we present a direct
proof. Suppose our player faces an adversary τ which makes its first move r1. The
cost as defined before of each node for the tree Tτ will be as follows:

1. All nodes at even levels have cost zero.
2. There is only one node at level l = 2j+ 1 with cost 2j+ 1 (j ≥ 1), which is the

node on the winning path of the adversary; all other nodes on level l = 2j + 1 have
cost 1.

Therefore, the cumulative cost on nodes of the pruned tree Tτ at level l = 2j + 1
(j ≥ 1) will be as follows:

1. one node of cumulative cost 1+3+ · · ·+(2j−3)+(2j−1)+(2j+1) = (j+1)2;
2. one node of cumulative cost 1 + 3 · · ·+ (2j − 3) + (2j − 1) + 1 = j2 + 1;
3. two nodes of cumulative cost 1 + 3 + · · ·+ (2j − 3) + 1 + 1 = (j − 1)2 + 2;
· · ·

(i+ 1). 2i−1 nodes of cumulative cost (j − i+ 1)2 + i, for i < j;
· · ·

(j + 1). 2j−1 nodes of cumulative cost j + 1.

Therefore, there are 2j−
√
j+1 nodes in level l = 2j + 1 with cumulative cost at

least (j − j +
√
j)2 + j −

√
j + 1. In other words, at level l = 2j + 1, with probability

at most 2−
√
j , the randomized strategy has cumulative cost at least 2j −

√
j + 1

(but less than or equal to (j + 1)2). Therefore, the expected value is bounded by

(j + 1)22−
√
j + (2j −

√
j + 1), which is dominated by the first term 2j as j → ∞.

Since the optimal cost is j, the claim holds in this case.
However, in general, the adversary may start with the first request r0. We prune

Tτ further as follows. Start from the root until a request r1 is encountered, delete the

798 XIAOTIE DENG AND SANJEEV MAHAJAN

branch after that node, and mark this node. Thus the only infinite paths of the newly
pruned tree will contain only request r0. We may, however, have an infinite number
of marked nodes. Now consider all of the nodes at level l = 2j + 1. For each marked
node v at level 2j1, let j2 = j − j1. From the above discussion, the cumulative cost
at a leaf node (of level 2j + 1) in the subtree rooted at v is at most j1 + (j2 + 1)2

according to our cost function. Thus if j2 ≤
√
j, this is bounded by 2j + 1; we again

have a competitive ratio bounded by 2. However, if j2 ≥
√
j, the cumulative cost at

a leaf node (of level 2j + 1) in the subtree rooted at v is at most j1 + 2j2 + 1 ≤ 2j

with probability at least 1−2−
√
j2−1; the cumulative cost for remaining leaf nodes (of

level 2j+ 1) in the subtree rooted at v is at most is (j+ 1)2 (with probability at most

2−
√
j2−1). The competitive ratio of 2 again holds. For nodes at level 2j + 1 with no

ancestors marked, their competitive ratio is 1. The claim for type II competitiveness
follows.

For type I competitiveness, we use the game constructed in Theorem 1. We need
a special cost function. Again, we make all of the nodes at even levels cost 0 and
discuss nodes at odd levels only.

1. For the adversary strategies that start with request r1, the construction chooses
τ0 according to σ0 and takes the (2K + 1)st node N1, K > 1, on the path 〈σ0, τ0〉,
making all of the infinite paths that pass N1 winning paths of the adversary. Along
the path from the root to N1, we assign the first node after the first r1 request a cost
of 20 = 1, the third node a cost of 2, . . . , and the (2i+ 1)th node at odd levels a cost
of 2i, 0 ≤ i ≤ K. Thus the node N1 is assigned a cost of 2K . For any other node
w in the branch that started with the r1 request at the root, its cost is assigned to
be the maximum cost of nodes that we meet when moving down from the root to w.
Thus at level l = 2j + 1 for j ≤ K, there are one node of cost 2j , one node of cost
2j−1, two nodes of cost 2j−2, . . . , 2i−1 nodes of cost 2j−i, . . . , 2j−1 nodes of costs 1.
Let Sj be the sum of the cost at level 2j + 1. Sj = 2j + j2j−1 = (j + 2)2j−1 for
j ≤ K. Let Ej be the expected cumulative cost at level 2j + 1. Thus Ej (j ≤ K)

of the simple randomized algorithm is 1/2j times
∑j
i=0 2j−i · Si since each node at

level 2i+ 1 is used in 2j−i paths leading to level (2j + 1). Thus the expected cost is
(j + 4)(j + 1)/4 for level 2j + 1 (j ≤ K). This is (K + 4)(K + 1)/4 at level 2K + 1
while its optimal cost is K + 1. The competitive ratio is K + 4/4. Then Sj+1 = 2Sj
and Ej2

j + Sj+1 = Ej+12j+1. Thus Ej+1 = Ej/2 + Sj+1/2
j+1 for j ≥ K. As j goes

to infinity, Ej goes to 2 · SK/2K = 2 · (K + 2)2K−1/2K = K + 2. Therefore, the
competitive ratio is K + 2.

2. For adversary strategies that start with r0, we assign a cost of 1 to a node
from the root down until the first r1 request is reached. Then we will use the same
cost function from the r1 request on. The same competitive ratio (K + 2) holds for
the simple randomized algorithm.

On the other hand, any computable strategy will results in a path with all nodes
after a certain node costing 2K , while an optimal path with the same request sequence
will have all nodes costing 1. Thus the competitive ratio cannot be better than
2K − 1.

5. Indeterminacy and randomization. In this section, we digress from our
requirement that our player be restricted to a computable strategy and discuss the
power of randomization in classical indeterminate games.

The result of [BBKTW, RaS] says basically that for a determinate game, when-
ever there is a randomized strategy for Player I which wins with probability 1, there
is a deterministic winning strategy for Player I. If this result can be extended to inde-

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 799

terminate games, it means that for every indeterminate game, there is no randomized
winning strategy for any of the players. The following theorem gives a negative an-
swer to this question. Moreover, the game constructed for our theorem has another
counterintuitive implication. Even though Player I has a randomized strategy that
wins almost surely against all of the deterministic strategies of Player II, that ran-
domized strategy does not necessarily win almost surely against all of the randomized
strategies of Player II.

Theorem 8. Assuming the axiom of choice and the continuum hypothesis, there
is an indeterminate game for which Player I has a randomized winning strategy which
wins almost surely against any deterministic strategy of Player II and vice versa.

The theorem shows that the result of [BBKTW, RaS] is the best possible in the
sense that if we drop the condition that the game be determinate, the derandomization
hypothesis does not always hold. This result assumes the axiom of choice and the
continuum hypothesis. The axiom of choice seems necessary here because it is not
even known if indeterminate games exist in its absence.

Proof of Theorem 8. We assume that each player has two choices at any point in
the game. By the axiom of choice, we can well order Player I’s deterministic strategies
as σα for α < 2ℵ0 and Player II’s deterministic strategies as τβ for β < 2ℵ0 .

Our randomized strategy for either Player I or II (δ and γ, respectively) assigns
a probability of 0.5 to each of the two possible moves. We now construct the winning
set for Player I and the winning set for Player II so that both of these strategies are
winning strategies if the other player uses only deterministic strategies.

We need to satisfy the following conditions:

1. For each deterministic strategy σ of Player I, only countably many paths in
the pruned tree corresponding to σ belong to the winning set of Player I, and the rest
belong to the winning set of Player II.

2. For each deterministic strategy τ of Player II, only countably many paths in
the pruned tree corresponding to τ can belong to the winning set of Player II.

It is clear that if we can satisfy these conditions, then δ wins with probability 1
against any deterministic strategy of Player II, and γ wins with probability 1 against
any deterministic strategy of Player I. (Each path has probability measure 0, and by
the countable additivity of probability measure, countably many such paths will have
measure 0.)

We say a deterministic strategy σ is killed if we can satisfy condition 1 for this σ
(define killing of τ symmetrically). We kill σ’s and τ ’s in stages. At stage α < 2ℵ0 , we
kill σα and then τα, making sure that the winning sets of the two players are disjoint.
We denote the winning set of Player I by A and the winning set of Player II by B.
Initially, they are empty. They are updated in each stage by transfinite induction on
the stages.

At stage α, we put in B all paths of the pruned tree Tσα corresponding to σα
that have not already been put in A. Then we put in A all paths of the pruned tree
Tτα corresponding to τα that have not already been put in B.

This completes the construction. It is easy to see that the disjointness condition
of A and B was automatically satisfied when these sets were constructed. We prove
conditions 1 and 2 by transfinite induction on stages. To verify condition 1, consider
stage α. In the pruned tree Tσα for Player I’s strategy σα, the paths already put in
A are Tσα ∩ A. Since A ⊆ ∪β<αTτβ , Tσα ∩ A ⊆ ∪β<α(Tσα ∩ Tτβ). By the continuum

hypothesis, each α < 2ℵ0 is either finite or countable. Tσα ∩ Tτβ is a single path.
Therefore, Tσα ∩ A ⊆ ∪β<α(Tσα ∩ Tτβ) contains only a countable number of paths.

800 XIAOTIE DENG AND SANJEEV MAHAJAN

This proves condition 1. Condition 2 can be proven similarly.

We notice that the above proof still works with minor modifications even if the
continuum hypothesis is replaced by a strictly weaker axiom, Martin’s axiom. One
of the consequences of Martin’s axiom is that for any cardinal κ strictly between ℵ0

and 2ℵ0 , the union of κ sets (as subsets of R) of Lebesgue measure 0 has Lebesgue
measure 0. The topology that we use for the game tree is similar to the real line, and
the probability measure on the paths induced by γ or δ is similar to the Lebesgue
measure. This consequence thus applies to our case. In fact, we could even replace
Martin’s axiom by the following strictly weaker axiom: the union of κ many sets of
measure 0 has measure 0 for any κ < 2α.

Although the randomized strategy δ for Player I (γ for Player II) wins against all
deterministic strategies of Player II (Player I), it does not win against all randomized
strategies of Player II (Player I). In particular, δ does not win against γ (and vice
versa). Perhaps the power of randomization in this case results from its easy access
to all deterministic strategies at once.

We have addressed the situation when one player uses a randomized strategy and
the other uses a deterministic strategy. What happens when both use randomized
strategies? Is it possible to obtain an equilibrium solution? That is, is there a pair
of randomized strategies of the players such that none can gain by deviating from
this randomized strategy? The problem has long been open when the choice space
is continuous [Mc]. We conjecture that this is true for games with universally mea-
surable winning sets. A set is universally measurable if it is measurable under any
probability measure. Even if the conjecture is confirmed, we still need to know if
there is an indeterminate game which is also universally measurable. For a complete
understanding of the exact power that randomization provides to infinite games, we
need to resolve these problems.

6. Remarks and open problems. While the result of [BBKTW, RaS] is a
first step in understanding the relationship between randomized strategies and deter-
ministic strategies in online problems, our study attempts to obtain a more refined
understanding of this relationship in terms of computability. For the derandomization
hypothesis to hold, we may have to drop in general the computability requirement
for our strategies. The answer to our main question is not very satisfactory since it
comes from an artificially constructed problem. It would be much more interesting
if it could come from natural problems. In [Kn], there is a discussion of computable
strategies in the prisoner’s dilemma, a natural two-person game that has perplexed
game-theorists for years.

Although online problems can be easily formulated as infinite games [BBKTW,
RaS], there is no immediate transformation from the latter to the former. Even though
we tried to construct a game to emulate the behavior of online problems, one may
notice that the construction of the specific game for our main result needs the power
of enumerating all computable strategies, which makes the game noncomputable.
Thus there is still a gap to be filled between our result and the result of [BBKTW,
RaS]. More legitimate candidates for infinite games as online problems are closed
computable games. A closed game is computable if there is a Turing machine that
can test for membership of basic open sets of the winning set of the adversary. We
thus have an immediate question.

1. Does computable derandomization hypothesis hold for all computable closed
games?

For a large class of problems, it has been shown in [BBKTW] that derandomiza-

DERANDOMIZATION, COMPUTABILITY, COMPETITIVENESS 801

tion may cost an extra multiplicative factor of (1 + ε) on the competitive ratio. A
related question is whether or not the result of [BBKTW, RaS] can be strengthened
to apply to all semicomputably determinate games.

2. If there is an α-competitive randomized strategy against an offline adaptive
adversary for a semicomputably determinate game, is there always an α-competitive
computable deterministic strategy?

We know that the k-server game whose winning set is defined by the set of all
those paths which achieve a ratio of less than c for any c < k is semicomputably
determinate from the lower-bound results of [MMS]. We also know from the results
of Koutsoupias and Papadimitriou [KP] that when c ≥ 2k, the k-server game is
semicomputably determinate for every metric space. (Observe that the two-server
game is semicomputably determinate for any c and any metric space since there is a
computable algorithm [MMS] whose competitive ratio is 2).

3. Can we show that the k-server game is semicomputably determinate when c is
in neither of these ranges?

Acknowledgments. We owe many thanks to the anonymous referees. Their
critical readings of the manuscript were very important and allowed the authors to
correct several errors in early drafts. We wish to thank Tiko Kameda for many
discussions, his encouragement, and the support from his grant during the course of
this research. Thanks are also due to Christos Papadimitriou, Prabhakar Raghavan,
and Mike Saks for their many helpful suggestions and comments on the early versions
of this paper and to Randall Dougherty and Gerald A. Edgar for suggesting some of
the references.

REFERENCES

[BBKTW] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power
of randomization in online algorithms, Algorithmica, 11 (1994), pp. 2–14.

[Bi] P. Billingsley, Probability and Measure, John Wiley, New York, 1986.
[BLS] A. Borodin, N. Linial, and M. Saks, An optimal online algorithm for metrical task

systems, J. Assoc. Comput. Mach., 39 (1992), pp. 745–763.
[BRS] A. Blum, P. Raghavan, and B. Schieber, Navigating in unfamiliar geometric terrain,

in Proc. 23rd Annual ACM Symposium on the Theory of Computing, ACM, New
York, 1991, pp. 494–504; SIAM J. Comput., 26 (1997), pp. 110–137.

[CDRS] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, Random walks on weighted
graphs, and application to on-line algorithms, J. Assoc. Comput. Mach., 40 (1993),
pp. 454–476.

[CKPV] M. Chrobak, H. J. Karloff, T. Payne, and S. Viswanathan, New results on server
problems, SIAM J. Discrete Math., 4 (1991), pp. 172–181.

[CL] M. Chrobak and L. L. Larmore, An optimal online algorithm for k servers on trees,
SIAM J. Comput., 20 (1991), pp. 144–148.

[CT] Y. S. Chow and H. Teicher, Probability Theory, Springer-Verlag, New York, 1978.
[DP1] X. Deng and C. H. Papadimitriou, On the complexity of cooperative solution concepts,

Math. Oper. Res., 19 (1994), pp. 257–266.
[DP2] X. Deng and C. Papadimitriou, Exploring an unknown graph, in Proc. 31st IEEE

Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1990, pp. 355–361.

[FRR] A. Fiat, Y. Rabani, and Y. Ravid, Competitive k-server algorithms, J. Comput.
System Sci., 48 (1994), pp. 410–428.

[Fu] C. Futia, The complexity of economic decision rules, J. Math. Econom., 4 (1977),
pp. 289–299.

[Gro] E. F. Grove, The harmonic online k-server algorithm is competitive, in Proc. 21st An-
nual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 260–
266.

802 XIAOTIE DENG AND SANJEEV MAHAJAN

[GS] D. Gale and F. M. Stewart, Infinite games with perfect information, in Contributions
to the Theory of Games, Vol. II, W. H. Kuhn and A. W. Tucker, eds., Ann. Math.
Stud. 28, Princeton University Press, Princeton, New Jersey, 1953, pp. 245–266.

[HT] J. Y. Halpern and M. R. Tuttle, Knowledge, probability, and adversaries, J. Assoc.
Comput. Mach., 40 (1993), pp. 917–960.

[KMRS] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, Competitive Snoopy
caching, Algorithmica, 3 (1988), pp. 79–119.

[Kn] V. Knoblauch, Computable strategies for repeated prisoner’s dilemma, Games
Econom. Behav., 7 (1994), pp. 381–389.

[KP] E. Koutsoupias and C. H. Papadimitriou, On the k-server conjecture, in Proc.
26th Annual ACM Symposium on Theory of Computing, ACM, New York, 1994,
pp. 507–511.

[KS] E. Kalai and W. Stanford, Finite rationality and interpersonal complexity in re-
peated games, Econometrica, 56 (1988), pp. 397–410.

[Ku] K. Kunen, Set theory: An Introduction to Independence Proofs, North–Holland, New
York, 1980.

[Mar] D. A. Martin, Borel determinacy, Ann. Math., 102 (1975), pp. 363–371.
[Mc] J. McKinsey, Introduction to the Theory of Games, McGraw–Hill, New York, 1952.
[MMS] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for

on-line problems, J. Algorithms, 11 (1990), pp. 208–230.
[Mos] Y. N. Moschovakis, Descriptive Set Theory, North–Holland, New York, 1980.
[Ne] A. Neyman, Bounded complexity justifies cooperation in the finitely repeated prisoner’s

dilemma, Econom. Lett., 19 (1985), pp. 227–229.
[Pa1] C. H. Papadimitriou, On games played by automata with a bounded number of states,

J. Game Theory Econom. Behav., 4 (1992), pp. 122–131.
[Pa2] C. Papadimitriou, Game against nature, in Proc. 24th IEEE Symposium on Foun-

dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1983, pp. 446–450.

[PY] C. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theoret. Com-
put. Sci., 84 (1991), pp. 127–150.

[RaS] P. Raghavan and M. Snir, Memory vs. randomization in online algorithms, IBM J.
Res. Develop., 38 (1994), pp. 683–707.

[RiS] R. L. Rivest and R. E. Schapire, Inference of finite automata using homing se-
quences, Inform. and Comput., 103 (1993), pp. 299–347.

[Si] H. Simon, Theories of bounded rationality, in Decision and Organization, R. Radner,
ed., North–Holland, Amsterdam, 1972, pp. 161–176.

[ST] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,
Comm. Assoc. Comput. Mach., 28 (1985), pp. 202–208.

TIGHTER UPPER BOUNDS ON THE EXACT COMPLEXITY OF
STRING MATCHING∗

RICHARD COLE† AND RAMESH HARIHARAN‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 803–856, June 1997 013

Abstract. This paper considers how many character comparisons are needed to find all occur-
rences of a pattern of length m in a text of length n. The main contribution is to show an upper
bound of the form of n + O(n/m) character comparisons, following preprocessing. Specifically, we
show an upper bound of n + 8

3(m+1)
(n −m) character comparisons. This bound is achieved by an

online algorithm which performs O(n) work in total and requires O(m) space and O(m2) time for
preprocessing. The current best lower bound for online algorithms is n + 16

7m+27
(n −m) character

comparisons for m = 16k+ 19, for any integer k ≥ 1, and for general algorithms is n+ 2
m+3

(n−m)

character comparisons, for m = 2k + 1, for any integer k ≥ 1.

Key words. string matching, exact complexity, comparisons, periodicity

AMS subject classifications. Primary, 68R15; Secondary, 68Q25, 68U15

PII. S009753979324694X

1. Introduction. String matching is the problem of finding all occurrences of
a pattern p[1 . . .m] in a text t[1 . . . n]. We assume that the characters in the text
are drawn from a general (possibly infinite) alphabet unknown to the algorithm. We
investigate the time complexity of string matching measuring both the exact number
of comparisons and the time complexity counting all operations. As is standard, the
time complexity refers to operations performed following preprocessing of the pattern;
prepossessing of the text is not allowed. Our goal is to minimize the number of
comparisons while still maintaining a total linear-time complexity and a polynomial-
in-m preprocessing cost.

Note that if the algorithm is permitted to know the alphabet, then there is a finite
automaton which performs string matching by reading each text character exactly
once (which can be obtained from the failure function of [KMP77]). However, in this
case the running time depends on the alphabet size.

Perhaps the most widely known linear-time algorithms for string matching are
the Knuth–Morris–Pratt [KMP77] and Boyer–Moore [BM77] algorithms. We refer to
these as the KMP and BM algorithms, respectively. The KMP algorithm makes at
most 2n −m + 1 comparisons and this bound is tight. The exact complexity of the
BM algorithm was an open question until recently. It was shown in [KMP77] that
the BM algorithm makes at most 6n comparisons if the pattern does not occur in the
text. Guibas and Odlyzko [GO80] reduced this to 4n under the same assumption.
Cole [Co91] finally proved an essentially tight bound of 3n − Ω(n/m) comparisons
for the BM algorithm, whether or not the pattern occurs in the text. Colussi [Col91]
gave a simple variant of the KMP algorithm which makes at most 3

2n comparisons.
Apostolico and Giancarlo [AG86] gave a variant of the BM algorithm which makes at

∗ Received by the editors April 12, 1993; accepted for publication (in revised form) July 19, 1995.
This research was supported in part by NSF grants CCR-8902221 and CCR-8906949.

http://www.siam.org/journals/sicomp/26-3/24694.html
† Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

(cole@cs.nyu.edu).
‡ Department of Computer Science and Automation, Indian Institute of Science, Bangalore

560012, India (ramesh@csa.iisc.ernet.in). This research was performed while this author was at
the Courant Institute of Mathematical Sciences, New York University.

803

804 RICHARD COLE AND RAMESH HARIHARAN

most 2n−m+ 1 comparisons. Crochemore et al. [CCG92] showed that remembering
just the most recently matched portion reduces the upper bound of BM from 3n to
2n comparisons.

Recently, Galil and Giancarlo [GG92] gave a string-matching algorithm which
makes at most 4

3n comparisons. This was the strongest upper bound for string match-
ing known prior to our work. In fact, [GG92] gave this bound in a sharper form as a

function of the period z of the pattern; the bound becomes n + min{1
3 ,

min{z,m−z}+2
2m }

(n−m).
Galil and Giancarlo [GG91] gave a lower bound of n(1 + 1

2m) comparisons. For
online algorithms, [GG91] showed an additional lower bound of n(1+ 2

m+3). An online
algorithm is an algorithm which examines text characters only in a window of size
m sliding monotonically to the right; further, the window can slide to the right only
when all matching pattern instances to the left of the window or aligned with the
window have been discovered. Recently, Zwick and Paterson gave additional lower
bounds, including a bound of 4n

3 for patterns of length 3 in the general case [ZP92].
Our contribution is a linear-time online algorithm for string matching which makes

at most n(1 + 8
3(m+1)) character comparisons. Our algorithm requires O(m) space

and O(m2) preprocessing time and runs in O(m + n) time overall (exclusive of pre-
processing). Independently, Breslauer and Galil discovered a similar algorithm which
performs at most n + O(n logm

m) comparisons [BG92]; this algorithm requires O(m)
preprocessing space and time and runs in linear time. Recently, Hancart [Ha93] and
Breslauer et al. [BCT93] have independently shown an upper and lower bound of
(2 − 1

m)n on the number of comparisons required for string matching when compar-
isons must involve only text characters in a window of size one sliding monotonically
to the right.

Nearly matching lower bounds are given in a companion paper [CHPZ92]. They
show the following bounds: for online algorithms, a bound of n + 16

7m+27 (n − m)
character comparisons for m = 16k + 19, for any integer k ≥ 1; and for general
algorithms, a bound of n + 2

m+3 (n −m) character comparisons, for m = 2k + 1, for
any integer k ≥ 1.

Even if exponential (in m) preprocessing and exponential space are available, it
is not clear that the above upper bound can be achieved (assuming that a result
independent of the alphabet size is sought). The difficulty is that text characters
which are mismatched may need to be compared repeatedly. In order to minimize
the total number of comparisons, this has to be offset by other text characters which
do not need to be compared. The hardest patterns to handle are those which have
proper suffixes which are also prefixes of the pattern. We refer to such substrings as
presufs.1 Our algorithm has two parts: a basic algorithm and a presuf handler. The
basic algorithm handles primary patterns, i.e., patterns with no presufs; this is also
the core of the algorithm for the general case. The presuf handler copes with presufs;
its design constituted the main challenge in this work. Understanding the structure
of the presufs was a key ingredient in its design. Understanding this structure also
led to the new lower bound constructions given in [CHPZ92].

The flavor of the algorithm is as follows. Initially, the pattern is aligned with the
left end of the text. Repeatedly, an attempt to match the pattern against the text
is made. When a mismatch is found or the pattern is fully matched the pattern is
shifted to the right. The goal is to maximize this shift without missing any possible

1 Presufs are also called borders in the literature. Strings without presufs are called primary
strings.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 805

matches. The basic algorithm has the property that the length of each shift is at
least equal to the number of comparisons since the previous shift (or the start of the
algorithm). This results in an algorithm that performs at most n comparisons if the
pattern has no presuf (the algorithms of [GG92] and [CP89] also have this property).

The presuf handler cannot quite match the performance of the basic algorithm
(which is not surprising given that the lower bounds for this problem are larger than
n comparisons). Here the approach is to follow the basic algorithm until a suffix
which is also a prefix is matched. The only possible matches in which a new instance
of the pattern overlaps the current partially (or fully) matched instance arise with
an overlap by a presuf. Ignoring, for the moment, problems introduced by periodic
patterns, it is the case that at most one of these overlapping pattern instances can
result in a match. An elimination is performed to determine which one, if any, of the
overlapping pattern instances might result in a match. Following this elimination,
a further nontrivial sequence of comparisons is made; this can lead to one of two
situations: another match of a suffix which is also a prefix, or a mismatch which
causes a return to the basic algorithm. The presuf handler is invoked at most once for
every m

2 text characters and performs a number of comparisons at most two greater
than the number of characters shifted over. (Actually, there are two possible scenarios:
an invocation after 3

4m text characters and at most two excess comparisons, or an
invocation after m

2 text characters and at most one excess comparison.) Periodic
patterns have the added difficulty that the presuf handler could be invoked more
frequently. In this case, we show the additional fact that if the presuf handler is
invoked after fewer than m

2 text characters, then the number of comparisons is at
most the number of characters shifted over.

This structure of the algorithm of Breslauer and Galil is similar; their analogue
of the presuf handler works in a completely different way, however.

Section 2 provides several definitions. The basic algorithm is described in section
3. In section 4, the presuf handler for nonperiodic strings is presented. Section 5 gives
a technical construction deferred from section 4. Finally, in section 6, the result is
extended to periodic patterns.

We remark here that the properties of strings which we develop in section 4 and
later are mostly new and appropriate references are given otherwise.

2. Definitions and preliminaries. A string v is a presuf of p if it is both a
proper suffix and a proper prefix of p. Let x be the length of the largest presuf of
p. The period of a pattern p with length m is defined to be m − x. x is called the
s-period (or shift period) of p. A string p is cyclic in string v if it is of the form vk,
k > 1. A primitive string is a string which is not cyclic in any string.

A string p is periodic if p = wvk, where w is a (possibly null) proper suffix of v
and k > 1. The smallest such v is called the core of p and the corresponding w is
called the head of p. Note that the core is primitive. A cyclic shift of p is any string vu
where p = uv. |v and v| refer, respectively, to the leftmost and rightmost characters
in string v; on occasion, we will call these characters, respectively, the left end and
right end of v. Two characters are said to be distance d apart if they are separated
by d− 1 other characters.

For the rest of the paper, let p be a pattern with length m. Let the text t have
length n. p[i] denotes the ith character of p, reading from the left end; i is called the
index of p[i] in p. The same notation and terminology is used for string t.

The algorithm will be comparing the pattern with substrings of the text with
which the pattern is aligned; as the algorithm proceeds, the pattern is shifted to the

806 RICHARD COLE AND RAMESH HARIHARAN

s

v′

v

x uuu

uuu

Fig. 1. Periodicity.

right across the text. Each possible alignment of the pattern with the text is called
an instance of the pattern. Note that an instance is not necessarily an occurrence.

For each pair of overlapping instances of the pattern a location at which the two
differ, if any, will be precomputed. This location is called the difference point of the
two instances. Note, however, that for a given pair, a difference point may not exist,
but this can happen only if the pattern has a nonempty presuf. Let p1 and p2 denote
two pattern instances, where p1[i] is aligned with p2[1]; then difi is the difference
point if any; i.e., p1[difi] 6= p2[difi − i+ 1].

Let q be a pattern instance. Those pattern instances to the right of q, overlapping
q, but which do not have a difference point with q are called the presuf overlaps of q.

We quote a few standard results concerning strings.

Lemma 2.1. Let w be a presuf of string v. If |w| > |v|
2 , then v is periodic.

Proof. See Fig. 1. Let s = |v| − |w|. Let v′ denote string v shifted distance
s to the right. Then the portion of v′ overlapping v is presuf w which matches the
corresponding portion of v. Let u denote the suffix of v′ of length s. An easy induction
shows that v = xuk for some k ≥ 2, where x is a proper suffix of u.

The following appear in different forms in [Lo82] (see Propositions 1.3.2, 1.3.4,
and 1.3.5 there).

Lemma 2.2 (see [LS62, FW65]). If x and y are two distinct periods of a string v
such that x+ y ≤ m+ gcd{x, y}, then gcd{x, y} is also a period of v.

Lemma 2.3. Suppose that v = xy, where both x and y are presufs of v. Then v
is cyclic in some string w of length gcd{|x|, |y|}.

Lemma 2.4. If v is periodic and can be expressed both as x1u
k1
1 and x2u

k2
2 , where

xi is a suffix of ui, u1 > u2, and k1, k2 ≥ 2, then either u1 is cyclic in u2 or both u1

and u2 are cyclic in some smaller string.

3. The basic algorithm. The algorithm in this section also appears in [Col91]
and is also exposed in [GG92]. We describe it again for the sake of completeness.

If all the characters in p are identical, then it is easily seen that the KMP algorithm
makes at most n character comparisons. Further, if m = 2 and p consists of two
distinct characters, then the BM algorithm makes at most n character comparisons.
Henceforth, we assume that m > 2 and that p has at least two distinct characters.

The algorithm proceeds by eliminating pattern instances as possible matches. It
repeatedly performs the following two steps: first, it attempts to match the leftmost
surviving pattern instance with the aligned text substring; then, it shifts to the next
leftmost surviving pattern instance.

After a shift occurs, the strategy followed depends on the nature of the shift. The
order in which pattern characters are compared ensures that all the shifts satisfy one
of the following two properties.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 807

1. A shift has size greater than or equal to the number of comparisons made
since the previous shift. This is called a basic shift.

2. When property 1 is not true, a proper prefix x of p is completely matched
with the text after the shift. Moreover, x is also a suffix of p. This is called
a presuf shift.

Following a basic shift, the basic algorithm is continued; a presuf shift results in a
transfer to the presuf handler.

The following observation is the key to the basic algorithm. Consider two overlap-
ping instances of the pattern p. Then comparing either of the two pattern characters
at their difference point with the aligned text character is sure to eliminate one of
the two pattern instances from being a potential match. As long as the overlap is not
a presuf of p, there will be a difference point. This is exactly the notion of duelling
introduced by Vishkin [Vi85].

More formally, let pa and pb be the two leftmost surviving pattern instances,
where pb is not a presuf overlap of pa. Let d be the difference point of pa and pb.
pa[d] is compared with the aligned text character. A match eliminates pb; a mismatch
eliminates pa.

Next, we give the exact sequence of comparisons made by the above strategy. We
precompute the following sequence S. S is the sequence of indices dif2, dif3, . . . , difm
omitting repetitions and undefined indices. Henceforth, where no ambiguity will re-
sult, we will use the sequence S to refer both to the indices it contains and to the
corresponding characters in pa.

The characters in pa are compared with their corresponding text characters in two
passes, stopping if a mismatch is found. In pass 1, those characters in pa contained
in S are compared in sequence. If all of these match, then the remaining pattern
characters are compared from right to left in pass 2.

Lemma 3.1. If a mismatch occurs at the character given by the kth index in S,
then the resulting shift has size at least k.

Proof. Let the kth index in S be difl. Note that k < l. Recall that l ≤ difl ≤ m
and p[difl] 6= p[difl − l+ 1]). Suppose for a contradiction that the shift was of length
j < k. Let pa and pb be the pattern instances as specified in the algorithm above,
before this shift. Note that pb becomes pa after the shift; i.e., pb is pa shifted j units.
But then pa and pb have a difference point and hence difj+1 is defined. difj+1 is the
ith index in S, for some i ≤ j; hence since j < k, difj+1 occurs prior to difl in S.
Therefore, pa[difj+1] would have been matched against the text and one of pa or pb
eliminated before pa[difl] was compared. The contradiction proves the lemma.

Consequently, all shifts resulting from mismatches in pass 1 are basic shifts. When
a basic shift is made, the basic algorithm is restarted. It is easy to see that if all shifts
are basic shifts, then the total number of comparisons made is upper bounded by n.

Next, suppose that all comparisons in pass 1 result in matches.

Lemma 3.2. Suppose pass 2 results in a mismatch at pa[l]. The resulting shift
has length at least l.

Proof. Suppose for a contradiction that the resulting shift has length i, i < l. Let
pb be pa shifted distance i. Then l is a difference point for pa and pb; hence one of pa
and pb would have been eliminated in pass 1, a contradiction.

Consequently, for each shift resulting from pass 2 with length less than the number
of comparisons made since the previous shift, a proper prefix of p (which is also a
suffix of p) is matched with the text; i.e., it is a presuf shift. The main challenge in
minimizing the exact number of comparisons is to handle presuf shifts.

808 RICHARD COLE AND RAMESH HARIHARAN

Preprocessing. The sequence S, as defined above, is not unique. We show that a
particular instance of S can be precomputed in a manner akin to the computation of
the KMP shift function or the BM shift function. The KMP shift function comprises,
for each j, 1 < j ≤ m, a number sj . sj is the largest i, i < j, such that p[1 . . . i− 1] =
p[j − i + 1 . . . j − 1] and p[i] 6= p[j]; note that i = difj−i+1. If no such i exists,
then sj is defined to be zero. Consider the set of all those values of j for which
sj > 0. Furthermore, let this set be ordered by the increasing value of j−sj +1. This
provides the sequence S. For every k, 2 ≤ k ≤ m, if difk is defined, then for some
l ∈ S, k ≤ l ≤ m, p[1 . . . l − k] = p[k . . . l − 1] and p[l − k + 1] 6= p[l]; hence the value
difk occurs in S (though not necessarily indexed by k). Finally, it is straightforward
to compute S in O(m) time.

4. The presuf handler. In this section, the presuf handler for nonperiodic pat-
terns p is described. This presuf handler also deals with some presuf shifts for periodic
p, as specified in the next few paragraphs.

With each presuf shift, we associate a presuf x′1 of p, defined as follows. If p is not

periodic, then x′1 is the longest presuf of p. Otherwise, suppose p = upv
ip
p is periodic

with core vp and head up. Then if the presuf of p matching the text is at least |vp|
long, x′1 = upv

ip−1
p . Otherwise, if the above presuf is shorter than |vp|, then x′1 is

defined to be the longest presuf of p of length less than |vp|.
In this section, we give an algorithm for handling presuf shifts for the case |x′1| <

m
2 . The case |x′1| ≥ m

2 is considered in section 6. Note that |x′1| < m
2 always holds

for nonperiodic p and may hold for periodic p.
Consider the situation immediately following a presuf shift. Some prefix of p,

which is also a presuf, matches the text substring that it is aligned with. It is con-
venient for the presuf handler to assume that the pattern was shifted by m − |x′1|
characters and that x′1 matches the text. Note that this will not be the case if pass 2
in the basic algorithm mismatches before x′1 is completely matched. A simple check
will prevent the declaration of any incorrect complete match that might result from
the above assumption. To facilitate this check, a variable tlast is used. Suppose pass
2 in the basic algorithm ends in a mismatch. Then tlast is set to the index of the text
character where the mismatch occurred. Otherwise, if no mismatch occurs, tlast ← φ.

Since |x′1| < m
2 , p = x′1ux

′
1, for some string u. Let tA be the substring of the

text aligned with the prefix x′1 of p immediately following the presuf shift; note that
x′1 matches tA. Order all the presufs of x′1 by decreasing length and let this order
be x1, x2, x3, . . . , xk, xk+1, where xk is the smallest nonnull presuf of x′1 and xk+1 is
the null string and hence a trivial presuf of x′1. Note that x1 = x′1. Let the future
instances of p (i.e., potential match instances) before its left end slides beyond tA|, in
left to right order, be p1, p2, . . . , pk. Let pk+1 be the pattern instance whose left end
is to the immediate right of tA|. Then pi, 1 ≤ i ≤ k + 1, is the pattern instance with
the prefix xi of p aligned with the suffix xi of tA. xi is said to be the presuf associated
with pi. p1, p2, . . . , pk, pk+1 are called the presuf pattern instances.

Lemma 4.1. If |x′1| < m
2 , then at most one of p1, . . . , pk, pk+1 can lead to a

complete match.
Proof. This is a proof by contradiction. Suppose some two of them, say pi and

pj , i < j, each result in a complete match. It follows that there is a prefix of p of size
m− |xi|+ |xj | that matches a suffix of p. Since |xi| − |xj | < m

2 , m− |xi|+ |xj | > m
2 ;

also, |xi|− |xj | ≤ |x′1|. This implies that p is periodic with core of length at most |x′1|,
contrary to our assumption.

The presuf handler begins by eliminating all but at most one of p1, p2, . . . , pk, pk+1.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 809

This is carried out by a procedure that performs j ≤ k comparisons; at most two of
these comparisons are unsuccessful. We seek to minimize the number of unsuccessful
comparisons because while successful comparisons can be remembered, unsuccessful
comparisons may lead to repeated comparison of some text characters.

The elimination procedure is described in section 4.1. The remainder of the presuf
handler procedure for all but two special cases is given in section 4.2, and its analysis
is presented in section 4.3. The special cases are handled in section 4.4. Finally, data
structure details are described in section 4.5.

4.1. Elimination strategy. Before describing the exact sequence of compar-
isons made by the elimination strategy, we need to understand some structural prop-
erties of these overlapping instances of p.

Lemma 4.2. Suppose xi = uvl is the ith presuf, where u is a proper suffix of v,
v is primitive, and l ≥ 2. Then xi+1 = uvl−1.

Proof. Certainly, uvl−1 is a presuf, so the only question is whether there is a presuf
x between uvl and uvl−1. Suppose there is such an x. Since |uvl−1| < |x| < |uvl| and
since x is a prefix of uvl, the suffix of x of length |v| is a cyclic shift of v. But x is a
suffix of uvl, which implies that a proper cyclic shift of v matches v. By Lemma 2.3,
v is cyclic, contrary to our assumption.

Lemma 4.3. The presuf pattern instances can be partitioned into g = O(logm)
groups2 A1, A2, . . . , Ag. The groups preserve the left-to-right ordering of the pattern
instances ; i.e., the pattern instances in group Ai are all to the left of those in group
Ai+1, for i = 1, . . . , g − 1. Let Bi be the set of presufs associated with the pattern
instances in Ai. Then either Bi = {uivkii , . . . , uiv3

i , uiv
2
i } or Bi = {uivkii , . . . , uivi}

or Bi = {uivkii , . . . , uivi, ui}, where ki ≥ 1 is maximal, ui is a proper suffix of vi, and
vi is primitive.

Proof. The proof is by construction. The groups are constructed in left-to-right
order. Inductively suppose Ai is being built presently and all presuf pattern instances
with associated presufs longer than uiv

ki
i have been placed in groups to the left of Ai.

{uivkii , . . . , uiv2
i } are all added to Bi. uivi is also added if and only if it is not

periodic; otherwise, uivi starts set Bi+1. By Lemma 4.2, all presuf pattern instances
with associated presufs longer than uivi are in group Ai or by induction in a group
to its left. In addition, if ui is empty and vi has no presufs, then ui is also added.

The maximality of ki can be seen as follows. Suppose ki is not maximal; i.e., there
exists a presuf w of the form uiv

ki+1
i , ki+1 ≥ 2. By the inductive hypothesis describing

the construction, this presuf would already be in one of the groups B1, . . . , Bi−1. By
Lemma 4.2, it follows that w is the smallest presuf in Bi−1. w is clearly periodic. By
construction, w = ui−1v

2
i−1 = uiv

ki+1
i , ki + 1 ≥ 2. Then by Lemma 2.4, vi−1 must

be cyclic, which contradicts the assumption that vi−1 is primitive. Thus ki must be
maximal.

This shows that the presuf pattern instances are partitioned into groups. It
remains to show that there are only O(logm) groups. Let xji be the leftmost presuf
in Bi. If xji+1

= uivi, then |xji+1
| ≤ 2

3 |xji |, and otherwise |xji+1
| ≤ 1

2 |xji |. (The
latter claim follows because xji+1

is both a prefix and a suffix of xji and this prefix
and suffix are nonoverlapping.) The O(logm) bound follows immediately.

Lemma 4.4. The groups satisfy the following properties.
Property 1. Consider the presufs xi corresponding to the pattern instances pi in

some group Aj. For j 6= g, all of these presufs xi, except possibly the rightmost one,

2 Actually, a sharper bound of logφm groups is known [KMP77, B94], where φ is the golden ratio.

810 RICHARD COLE AND RAMESH HARIHARAN

are periodic with the same core and head. For j = g, all but the rightmost two presufs
are periodic with the same core and head.

Property 2. Let pi be the rightmost instance in its group. If xi is periodic then
so is xi+1.

Property 3. Suppose pi is the rightmost instance in its group Aj and xi is periodic
with head u and core v; then |xi+2| < |v|. Further, suppose xi+1 = u′(v′)l, where v′

is primitive and u′ is a proper suffix of v′. Then |v′| > |u|.
Property 4. Suppose pi is the rightmost instance in its group Aj, where |Aj | > 1;

further, suppose that xi−1 is periodic with core v and xi is not periodic. Then |xi+1| <
|v|.

Property 5. Both pk and pk+1 are in the group Ag.

Proof. Let pi be in group Aj .

Property 1 is true by definition. To see Property 2, note that since xi is periodic,
xi = uvl, where u is a proper suffix of primitive v and l ≥ 2. But if l > 2, then
the pattern instance corresponding to either presuf uv2 or presuf uv would be the
rightmost item in Aj . Thus l = 2; however, by definition, the pattern instance
corresponding to uv is not in Aj only if uv is periodic. Finally, by Lemma 4.2,
xi+1 = uv.

Property 3 can be seen as follows. As in the previous paragraph, xi = uv2 and
xi+1 = uv. Again uv is periodic; that is, uv = u′(v′)l for some l ≥ 2, where u′ is
a proper suffix of v′ and v′ is primitive. By Lemma 4.2, xi+2 = u′(v′)l−1. Suppose
|v′| ≤ |u|. Since v is primitive, there must be a substring v′ of u′(v′)l = uv which
straddles the boundary between u and v. Thus the substring of u′(v′)l aligned with
the rightmost |v′|-sized substring of u is a proper cyclic shift of v′. But since u is
a suffix of v this substring is also identical to v′. By Lemma 2.3, v′ is cyclic, a
contradiction. Thus |v′| > |u| and hence |xi+2| < |v|.

Property 4 can be seen as follows. As with the previous properties, it follows
that xi = uv, where u is a proper suffix of v and v is primitive. If |xi+1| ≥ |v|, then
|xi+1| > |xi|/2. But xi+1 is a presuf of xi; by Lemma 2.1, xi would be periodic, a
contradiction.

Property 5 can be seen as follows. Since xk is the smallest nonnull presuf of p, no
nonnull prefix of xk matches a suffix of xk. Therefore, all strings in Bg have the form
ugv

l
g, 0 ≤ l ≤ kg, where ug is the null string and vg = xk. Since both xk and xk+1

have this form, Property 5 is true.

Remark. The elimination strategy described below and the algorithm in section
4.2, which uses this elimination strategy to handle presuf shifts, work for most pat-
terns p. However, there are some patterns for which presuf shifts must be handled
differently. The reason for this is made clear in section 5, which gives a technical
portion of the analysis of the algorithm in section 4.2. These exception patterns are
precisely those in which xk, the smallest nonnull presuf, is a single character and g,
the number of groups, is one. Presuf shifts for these exception patterns are handled
separately in section 4.4.

Definition. A clone set is a set Q = {s1, s2, . . .} of strings, with si = uvki ,
where u is a proper suffix of primitive v and ki ≥ 0. A set U of pattern instances is
half-done if |U | ≤ 2 or the set of associated presufs forms a clone set.

The following lemma is the key to our elimination strategy.

Lemma 4.5. Consider three presuf pattern instances pa, pb, pc, a < b < c. (The
order of the indices corresponds to the left-to-right order of the pattern instances.)
Suppose the set {xa, xb, xc} is not a clone set. Then there exists an index d in p1

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 811

tatext

xc

xb

xa

zc

zb

xcxc

xbxb

xaxa

x3x3

x2x2

x1x1

pc

pb

pa

p3

p2

p1

Fig. 2. Overlapping pattern instances.

with the following properties. The characters in p1, p2, . . . , pa aligned with p1[d] are
all equal ; however, the character aligned with p1[d] in at least one of pb and pc differs
from p1[d]. Moreover, m− |xa|+ 1 ≤ d ≤ m; i.e., p1[d] lies in the suffix xa of p1.

Proof. The substrings of p1, . . . , pa aligned with the suffix xa of p1 are all identical
to the string xa. Let the substring of pb (respectively, pc) aligned with the suffix xa
of p1 be yb (respectively, yc). See Fig. 2. It suffices to show that at least one of yb or
yc is not identical to xa. Suppose for a contradiction that yb = yc = xa.

Let yb = zbxb and yc = zcxc. Note that zb is a suffix of zc. Since yb = yc, a simple
induction shows that yb = uvl, where u is a proper prefix of v and l ≥ 1, |v| is either
|xb| − |xc| or some proper divisor of |xb| − |xc|, and v is primitive. Since xa = yb, if
l ≥ 2, xa is periodic with core v.

First, suppose xa is periodic with head u and core v. By Lemma 4.2, if |xb| > |uv|,
xb = uvh for some h, 1 ≤ h < l. If |xb| < |uv|, since |xb| − |xc| is a multiple of |v|,
|xb| = |v| + |xc|, so xb = wv for some string w, |w| < |u|. But then wv is a prefix
of uv, which implies that v is cyclic; this is a contradiction. Thus xb = uvh. Since
|xb| − |xc| is a multiple of |v|, xc = uvj for some j, 0 ≤ j < h, contradicting the fact
that {xa, xb, xc} is not a clone set.

Consequently, xa = uv. If xa is not periodic, then |xb| < |xa|
2 and |v| ≤ |xb|−|xc| <

|xa|
2 . But then |xa| < 2|v| < |xa|, a contradiction. If xa is periodic, xa = u′(v′)k for

some k ≥ 2. Also, |v′| > |u| by Property 3 of Lemma 4.4. Hence |xb| < |v|. But
|xc| ≤ |xb| − |v| < 0, a contradiction. .

Lemma 4.5 implies that a comparison of p1[d] with the aligned text character has
the following effect: if it is a mismatch, all of p1, . . . , pa are eliminated, while if it is
a match, at least one of pb and pc is eliminated.

Lemma 4.5 enables the elimination of essentially all but one group of pattern
instances with at most one mismatch. At each step, for the rightmost d yielded by
Lemma 4.5, p1[d] is compared with the aligned text character. If there is a mismatch,
the surviving set of pattern instances is half-done, as we show in the following lemma.
If there is no such d, the surviving set of pattern instances is half-done by Lemma

812 RICHARD COLE AND RAMESH HARIHARAN

p1

xi1

pi1

y = xo

pi1

p1

x1x1

v

w

y w

v

xi1

Fig. 3. (a) pi1 ∈ A1. (b) pi1 6∈ A1.

4.5. This procedure comprises Phase 1 of the elimination procedure.

Lemma 4.6. If there is a mismatch in Phase 1 of the elimination procedure, the
set X of surviving pattern instances is half-done.

Proof. Suppose it was not; i.e., for some subset {pa, pb, pc} of X, {xa, xb, xc} is
not a clone set. The characters in the xi suffix of p1, for i = a, b, c, match the aligned
substring of pi. Hence the mismatch at p1[d], which created set X, lies to the left of
the suffix xi of p1, for i = a, b, c. However, by Lemma 4.5, at least one of pa, pb, and
pc could have been eliminated by a comparison made within the suffix of p1 of size
max{|xa|, |xb|, |xc|}. This contradicts the choice of d as the rightmost index at which
a comparison eliminates some pattern instance.

The elimination among the remaining half-done set of pattern instances also re-
quires at most one mismatch.

Lemma 4.7. Let O = {pi1 , pi2 , . . . , pil}, l ≥ 2, be an uneliminated half-done set
and let pi1 ∈ Ar. Then xij = uvh−j, where u is a proper suffix of primitive v and
h ≥ l. Further, there exists an index d such that the characters in {pi1 , pi2 , . . . , pil−1

}
aligned with pil [d] are all equal, but differ from the character pil [d]. pil [d] is aligned
with or to the left of pi1 [m]. In addition, if pi1 6∈ A1 then pil [d] is to the right of p1[m]
and within distance |xo|− |xi1 | of p1[m], where po is the rightmost pattern instance in
Ar−1. If pi1 ∈ A1, then pil [d] is to the right of tA and aligned with or to the left of
p1[m].

Proof. Each xij , 1 ≤ j ≤ l, is of the form uvhj , for some hj ≥ 0, where u is a
proper suffix of primitive string v.

See Fig. 3. Let y denote the string pi1 if pi1 ∈ A1 and the string xo otherwise.
Clearly, y cannot be periodic with core v. If pi1 ∈ A1, then let w denote the suffix of
pi1 of length m− |x1|+ |v|. If pi1 6∈ A1, then let w denote the substring of pi1 which
has length |xo| − |xi1 |+ |v| and which overlaps p1 in exactly |v| characters. Note that
w 6= uvh

′
, where h′ > 0; otherwise, by Lemma 2.3 and the fact that v is primitive,

the suffix of y of length |w| − |v| is cyclic in v and therefore y is periodic with core v,
contrary to our assumption.

Let w′ be the smallest suffix of w which is not of the form u′vh
′
, with u′ a suffix

of v and h′ > 0. Define d to be the index in pi1 corresponding to |w′. Clearly,
|w′| > |xi1 | ≥ (l− 1)|v|. Therefore, pi1 [d+ (l− 1)|v|] is a character in w. In addition,
if pi1 ∈ A1, then |w′| > |x1| and therefore pi1 [d + (l − 1)|v|] is aligned with or to the
left of p1[m]. The lemma follows if pil [d] is aligned with pi1 [d + (l − 1)|v|] and the
characters in pi1 , . . . , pil−1

which are aligned with pil [d] are all identical and different

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 813

e′

xc

xb

xa

pc

pb

pa

p1

e

e

vvv

vvvv

vvvvv

Fig. 4. The half-done set is complete.

from pil [d]. We show that these two claims are indeed true.

First, we show that |xij |− |xij+1 | = |v|, for 1 ≤ j < l. Suppose for a contradiction

that there is a pattern instance pb 6∈ O with xb = uvh
′′
, h′′ > 0, and there are pattern

instances pa, pc ∈ O, pa to the left of pb and pc to the right of pb. See Fig. 4. Let
pa[e] be the rightmost character in pa such that the substring of pa which starts at
pa[e] and overlaps p1 is longer than |xa| and not periodic with core v. Consider the
character p1[e′] aligned with pc[e]. The portions of pa, pb, and pc which overlap the
suffix of p1 to the right of e′ are all identical. If Phase 1 had stayed to the right of
e′, then pa, pb, and pc would all have been eliminated by the mismatch at the end
of Phase 1. Thus p1[e′] must have been compared in Phase 1. A mismatch at e′

eliminates pa and pb while a match eliminates pc. Either way, a contradiction results.

Finally, note that the character in pij , 1 ≤ j ≤ l − 1, which is aligned with pil [d]
is precisely the character pil [d + (l − j)|v|]. But pil [d] 6= pil [d + |v|] = pil [d + 2|v|] =
· · · = pil [d+ (l − 1)|v|].

Corollary 4.8. To eliminate all but one of the pattern instances in any half-
done set (in particular, the Phase 1 survivors set) {pi1 , pi2 , . . . , pij}, it suffices to
compare a sequence of characters with the property that any two consecutive characters
in the sequence are distance |v| apart, where v is the core of xi1 . Further, the pattern
instances in this set are eliminated in right-to-left order by this comparison sequence
(i.e., in decreasing value of j).

Let pil be as in Lemma 4.7; the character in pi1 aligned with pil [d] is compared
with the aligned text character. A match eliminates pil ; a mismatch leaves only pil
surviving. Iteration of this step ends with one pattern instance surviving after at
most one mismatch. This comprises Phase 2 of the elimination procedure.

The sequence of comparisons made in Phase 2 is clearly a right-to-left sequence.
If p1 is eliminated in Phase 1, then all comparisons in Phase 2 are made to the right
of the characters compared in Phase 1. Otherwise, if p1 is not eliminated in Phase 1,
all comparisons in Phase 2 are made to the left of the characters compared in Phase
1.

We recapitulate the elimination strategy now. In Phase 1, characters in p1 at in-

814 RICHARD COLE AND RAMESH HARIHARAN

dices given by a precomputed sequence S1 are compared in sequence until a mismatch
occurs or until the sequence is exhausted. Associated with a mismatch at the ith
comparison given by S1 is an auxiliary sequence S2i of indices. If a mismatch occurs
at the ith comparison in S1, Phase 2 begins and comparisons are now made according
to the auxiliary sequence S2i . A mismatch at any index in the relevant auxiliary
sequence completes the elimination process as does the exhaustion of that auxiliary
sequence. In either case, only one pattern instance from the set {p1, . . . , pk, pk+1}
survives.

Let |S1| = j. The sequences S1 and S21
, S22

, . . . , S2j collectively form a tree ET
(the elimination tree). ET is a binary tree. Each internal node x of ET stores an
index indicating the comparison to be made. Each internal node has two children.
The computation continues at the left child if the comparison at x is successful and at
the right child otherwise. The computation starts at the root of ET . Each external
node stores the one pattern instance to survive the two phases of comparisons leading
to that external node. The external nodes are also called terminal nodes. Note that
no pattern instance pi can be the survivor at two distinct terminal nodes of ET . This
is because one of the two outcomes of the comparison at the least common ancestor
of these two nodes in ET is bound to eliminate pi. It follows that the size of ET is
O(k).

The total number of mismatches occurring in the elimination process is at most
two because each phase terminates when a mismatch occurs.

Lemma 4.9. All but at most one of p1, . . . , pk, pk+1 can be eliminated by making
up to k comparisons using the O(k)-sized binary comparison tree ET . At most two
of these comparisons result in mismatches. The sequence of comparisons made by the
elimination strategy consists of two left-to-right sequences. The second sequence is
either entirely to the right or entirely to the left of the first one.

4.2. Strategy for handling presuf shifts. Subsequent to the elimination due
to tree ET , the presuf handler proceeds in a manner reminiscent of the basic algorithm.
That is, there is a current pattern instance, pa, which is being matched and which is
the leftmost surviving pattern instance. The next leftmost surviving pattern instance,
pb, which has a difference point with pa is a candidate for elimination. Indeed, a
comparison of pa with the text is made at the difference point.

The analysis of the presuf handler has the following flavor. With a few exceptions,
comparisons are charged to distinct text characters. To be precise, for each suffix shift,
at most two comparisons are charged to the shift rather than to text characters. Even
more precisely, if two comparisons are charged to the shift, the next presuf shift is at

distance at least 3(m+1)
4 to the right, and otherwise it is at distance at least m+1

2 to
the right. The complexity bound of the algorithm now follows readily.

Theorem 4.10. The algorithm performs at most n + 8
3(m+1) (n −m) character

comparisons.
There are three ways in which text characters are charged:
(i) The character compared is charged.
(ii) The text character aligned with the left end of the pattern instance eliminated

by the comparison is charged.
(iii) The text character to the immediate right of tA| (i.e., aligned with |pk+1) is

charged.
The three charging methods do not interact readily. To ensure that no text

character is charged twice, the switching from one charging method to the other will
occur only at carefully selected points in the algorithm. In addition, mismatches

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 815

are not charged according to rule (i) since the text characters in question may be
compared again.

Basically, charging method (i) is used if a pattern instance is successfully matched
(at least up to a suffix which is a presuf). Charging method (iii) is used only for the
comparison that eliminates the presuf pattern instance which survives the elimination
procedure ET . Charging method (ii) is used otherwise. A partial exception arises for
the characters compared by procedure ET ; this is discussed further below.

Following the use of procedure ET , the aim is to perform comparisons essentially
as in the basic algorithm, that is, to compare the character at the difference point
of the two leftmost surviving pattern instances which are not prefix overlaps of each
other. The analysis ceases to be as straightforward because of the additional j ≤ k
comparisons performed by procedure ET ; indeed, to cope with this, a modified form
of the basic algorithm is needed.

There are two objectives:

1. to avoid repeating comparisons at the text characters successfully compared
by procedure ET ;

2. to perform essentially j fewer comparisons than in the basic algorithm.

Objective 1 is achieved by keeping a record of the successful comparisons in a bit
vector of length roughly m.

The major difficulty, however, is caused by the method used for charging the
j comparisons made by procedure ET . It is natural to charge these comparisons
to the text characters compared. Unfortunately, this may conflict with charging
using method (ii). To avoid this difficulty, a single additional comparison, with text
character tb, is performed before using procedure ET . The following lemma can then
be shown.

Lemma 4.11. For each text character tc compared by procedure ET , with at most
α ≤ 2 exceptions, there is a distinct previously uncharged text character tc′ , with tc′
aligned with or to the left of tc and to the right of |pk+1, such that the pattern instance
qc whose left end is aligned with tc′ mismatches either the text character tb or some
text character matched in procedure ET .

Let β be the number of mismatches performed by procedure ET . Then, in addition,
α+ β ≤ 2.

The lemma is proven by specifying a transfer function f , which associates c with
c′. The form of f depends on the sequence of comparisons performed by procedure
ET . The proof of the lemma is quite nontrivial; it is deferred until section 5.

Lemma 4.11 is used as follows. Let qe be the next pattern instance to match
the text (or at least to have a suffix, which is also a presuf, matching the text).
All pattern instances to the left of qe, eliminated by comparisons made after the
use of procedure ET , are charged used charging method (ii). Using the transfer
function, those comparisons to the left of |qe made by procedure ET are charged to
text characters which are not otherwise charged. By contrast, text characters aligned
with qe are charged using charging method (i). There will be no more than two
comparisons performed by the presuf handler that are not thereby charged to a text
character; these comparisons are charged to the presuf handler itself.

The algorithm requires a total of five subphases, whose details depend on exactly
how qe arises.

It is helpful to distinguish three scenarios that may ensue. To this end, let pe
denote the presuf pattern instance to survive the elimination using tree ET . In
addition, let ta denote the text character tA|.

816 RICHARD COLE AND RAMESH HARIHARAN

The three scenarios follow:

1. All pattern instances overlapping pe are eliminated apart from its presuf over-
laps, and pe or at least a suffix of pe is matched.

2. pe is eliminated. In addition, there is some pattern instance qc overlapping
pe such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched.

3. pe is eliminated, as are all pattern instances overlapping pe. Let qd denote the
leftmost surviving pattern instance in this case.

The first scenario causes no problems from the perspective of the analysis. It
suffices to ensure that none of the successful comparisons made by ET are repeated.
The third scenario is handled by using charging scheme (iii) for the comparison which
eliminates pe and charging scheme (ii) for the remaining comparisons in the post-ET
phase. Lemma 4.11 ensures that for each comparison made by ET (with at most two
exceptions) with a text character strictly between ta and |qd, there is a distinct pattern
instance whose left end lies strictly between |pk+1 and |qd and which is eliminated by
the comparisons made by ET plus the one other comparison at text character tb.
Again, this leads to the desired complexity bound without difficulty.

The second scenario provides the greatest difficulty. In order to avoid unnecessary
comparisons, the locations of successful comparisons are recorded. Then if a difference
point occurs at one of these matched text characters, the present pattern instance pb
(see the first paragraph of the subsection) can be removed without further compar-
isons. However, following a mismatch, it is not clear how to maintain this property:
with only linear storage, it is not clear how to ensure that the current pattern instance
following the mismatch agrees with the text on a previously matched character, at
least if the total work bound is to be linear. (There is no problem if exponential-in-
m space is available for precomputed structures.) To avoid this difficulty, only the
successful comparisons since the last mismatch are recorded.

In fact, this is not quite good enough. It appears necessary to keep track of the
characters compared by procedure ET regardless of how many characters are com-
pared. This avoids subsequent comparison of these characters. Indeed, any pattern
instances mismatching on one or more of these characters are eliminated immediately
after the computation with procedure ET . This is done with the help of precomputed
information.

With this motivation, we proceed with a precise description of the presuf handler
procedure. It proceeds in five steps.

Step 1 (before the use of tree ET). The characters in p1, . . . , pk aligned with p1[m],
the rightmost character in p1, are identical. If the character in pk+1 aligned with
p1[m] is also identical to it, then p1[m] is compared with the aligned text character.
A mismatch eliminates all of p1, . . . , pk, pk+1 and the basic algorithm is restarted with
|pa placed immediately to the right of |pk+1. A match is not immediately beneficial
since it does not eliminate any of p1, . . . , pk, pk+1. However, it ensures the elimination
of sufficiently many appropriate pattern instances for scenarios 2 and 3 described
above.

Step 2. The elimination strategy using tree ET is applied to the pattern instances
p1, . . . , pk, pk+1.

Following Step 2, at most one presuf pattern instance survives. Call it pe. Let
Q denote the set of pattern instances which overlap pe and have their left end to the
right of |pk+1. In the elimination process, some elements of Q may have also been
eliminated from being potential matches. They need not be reconsidered. Indeed,

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 817

since the characters successfully matched in Step 2 must not be compared anew, it
appears that these pattern instances must not be considered anew. To this end, a
subset Qx of Q is associated with each terminal node x in ET .

Let Tx denote the indices of the text characters successfully compared in Steps 1
and 2. Qx contains those pattern instances in Q which match at all the text indices
in Tx, except possibly the last. This seemingly odd exception is necessary in order to
store Qx efficiently. Actually, Qx satisfies further constraints, but they are not needed
for this section. The complete definition of Qx and the method for computing it are
described in section 4.5. Here it suffices to work with the following property: all but
at most two of the comparisons in Steps 1 and 2 are successful and are remembered
by pattern instances in Qx.

Suppose that the elimination process terminates at terminal node x. Let Q′ =
{pe} ∪Qx. The elimination procedure of Step 3 is applied to the pattern instances in
Q′.

Step 3. This step eliminates among the elements of Q′. qc will denote the leftmost
pattern instance to survive Step 3. If qc = pe, then every surviving pattern instance
overlapping qc will be a presuf overlap of qc.

The strategy used here is similar to the one for the basic algorithm. One of two
overlapping pattern instances is eliminated by comparing at the difference point of
the two instances.

To prevent repeated comparisons of text characters to the right of ta, two addi-
tional data structures are used. The first is a bit vector BV [1 . . . 2m]. BV [i] = 1 if
the ith text character to the right of ta has been successfully compared in Steps 1
and 2 or in Step 3 since the last mismatch. The second is a list LBV ; it stores the
indices of the bits in BV set to one in Step 3 since the last mismatch. Initially, LBV
is empty.

The elimination procedure for Step 3 follows. Let qa and qb denote the two
leftmost uneliminated pattern instances in Q′. Suppose that qb lies i units to the
right of qa. The reader is advised to refer to section 2 to review the definition of
difi+1. If difi+1 is undefined, then qb is removed from Q′.

If difi+1 is defined, then the bit in BV corresponding to the text character aligned
with qa[difi+1] is read. If this bit is 1, then qb is removed from Q′. (qb can be
eliminated since it does not match an already compared text character.) Otherwise,
qa[difi+1] is compared with the aligned text character. If the two characters are
equal, the corresponding bit in BV is set, the bit’s index is added to LBV , and qb is
eliminated. If they are not equal, then the bits in BV at all indices currently in LBV
are reset to 0, LBV is reset to empty, and qa is eliminated.

The elimination procedure is iterated until only one pattern instance remains in
Q′. Let qc denote this remaining pattern instance.

Step 4. In this step, either all pattern instances overlapping qc, apart from presuf
overlaps, are eliminated or qc is eliminated.

Let Q′′ be the set of pattern instances whose left end lies to the right of pe| but
not to the right of qc|. The following step is repeated until either qc is eliminated
or Q′′ = φ. Let qd be the leftmost pattern instance in Q′′. Suppose qd lies i units
to the right of qc. If difi+1 does not exist, then qd is removed from Q′′. Otherwise,
the following bit in BV is read: the bit corresponding to the text character aligned
with qc[difi+1]. If this bit is 1, qd is eliminated. If it is 0, qc[i] and the aligned text
character are compared. If they match, then the corresponding bit in BV is set, its
index is added to LBV , and qd is eliminated. Otherwise, qc is eliminated and Step 4

818 RICHARD COLE AND RAMESH HARIHARAN

comes to an end.
If qc is eliminated, then LBV is reset to be empty, BV is reset to 0, and the basic

algorithm is restarted with pa = qd. Otherwise, Step 5 is performed.
Step 5. This step seeks to complete the match of qc. If at least a presuf of qc

is matched, the complete match or the partial match results in a new presuf shift.
Otherwise, the basic algorithm is resumed with |pa immediately to the right of qc|.

Step 5 compares the characters in qc to the right of ta, apart from those matched
in Steps 1 and 2, and those matched in Steps 3 and 4 following the most recent
mismatch. (Incidentally, there was no mismatch in Step 4 since qc survived Step 4 if
Step 5 is performed.) These characters are identified with the help of bit vector BV .
They are matched in right-to-left order until either a mismatch occurs or they are all
matched.

If they all match qc is declared a complete match if either tlast = φ or tlast lies to
the left of |qc. Recall that tlast is the index of the text character mismatched, if any,
immediately prior to the most recent presuf shift (if there was no mismatch, tlast = φ).

Next, BV is reset to zero, LBV is reset to be empty, and tlast is updated as
follows. If the above right-to-left pass results in a mismatch, then tlast is set to the
index of the text character at which the mismatch occurs. Otherwise, tlast retains its
value unless |qc is to its right. In the latter case, tlast := φ.

The present situation is identical to that preceding a presuf shift in the basic
algorithm. This resulting shift is treated in the same way; it too is called a presuf
shift.

4.3. The analysis. The comparison complexity of the algorithm of section 4.2
is given by the following lemma.

Lemma 4.12. If p is not a special case pattern and |x′1| < m
2 for each presuf shift,

then the comparison complexity of the algorithm is bounded by n(1 + 8
3(m+1)).

Proof. We give a charging scheme to account for the comparisons made by the
algorithm. This scheme charges almost every comparison to a distinct text character.
The only exceptions are a few of the comparisons made by the presuf shift handler.
For each presuf shift, depending on the distance between this presuf shift and the next
one, the charging scheme fails to charge for up to two of the comparisons made by the
presuf shift handler. We refer to the number of comparisons which the charging scheme
fails to charge to distinct text characters as the overhead of the presuf shift. If a presuf
shift has an overhead of two, we show that the next presuf shift must occur at least

distance 3(m+1)
4 to the right of the current presuf shift. The comparison complexity of

our algorithm now follows from the fact that any two consecutive presuf shifts must
occur at least distance m+1

2 apart.
Charging scheme. The charging scheme charges in phases. The phases begin and

end at shifts and at reversions to the basic algorithm. There are four types of phases;
for each phase type, a different charging scheme is used:

1. a phase beginning and ending with a basic shift;
2. a phase beginning in the basic algorithm and ending with a presuf shift;
3. a phase beginning with a presuf shift and ending with a reversion to the basic

algorithm;
4. a phase beginning and ending with a presuf shift.

Consider any phase and let q1 and q2 refer to the leftmost surviving pattern
instances at the beginning and end of the phase, respectively. Note that for Type
3 and Type 4 phases, q1 is a presuf overlap of the pattern instance q′, the leftmost
uneliminated pattern instance prior to the presuf shift which initiated this phase.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 819

Specifically, the prefix x′1 of q1 is aligned with the suffix x′1 of q′. (Recall from the
start of section 4 that on a presuf shift, we assume that the suffix x′1 of q1 matches
the text.)

The charging scheme obeys the following properties.

1. At the start of a Type 1 or Type 2 phase, only text characters to the left of q1
have been charged.

2. At the start of a Type 3 or Type 4 phase, only text characters aligned with or
to the left of the prefix x′1 of q1 have been charged.

Type 1 phase. Suppose i comparisons were made in this phase. These i com-
parisons are charged to text characters which are aligned with q1 but to the left of
|q2. By Lemma 3.1, |q2 lies at least i characters to the right of |q1. Thus each text
character aligned with q1 and to the left of |q2 is charged at most once in this process.
Clearly, property 1 holds at the start of the next phase.

Type 2 phase. In each comparison, a distinct character in q1 is compared with
the aligned text character. Each of these comparisons is charged to the text character
compared. Thus each text character aligned with q1 is charged at most once in this
process. Clearly, property 2 holds at the start of the next phase.

The charging scheme for Type 3 and Type 4 phases is more involved. Before
describing the scheme, we mention the ranges of the text characters charged in each
case.

Type 3 phase. The text characters charged lie to the right of the right end of the
prefix x′1 of q1 and to the left of |q2. Each text character in this range is charged at
most once. Clearly, property 1 holds at the start of the next phase.

Type 4 phase. The text characters charged lie to the right of the right end of the
prefix x′1 of q1 and are aligned with or to the left of the rightmost character in the
prefix x′1 of q2. Each text character in this range is charged at most once. Clearly,
property 2 holds at the start of the next phase.

Clearly, the ranges of the text characters charged for different phases are disjoint.
Next, we specify the charging scheme for Type 3 and Type 4 phases and justify the
claims regarding the overhead.

Consider a presuf shift which initiates a new Type 3 or Type 4 phase. Let q′

be the leftmost uneliminated pattern instance immediately before the presuf shift.
Recall that ta is the text character aligned with q′|. Consider the comparisons made
by the current use of the presuf shift handler. If a mismatch occurs in Step 1, the
current phase ends immediately and the basic algorithm is resumed. The presuf shift
in this case has overhead 1 and the next presuf shift occurs at least distance m+ 1 to
the right. Next, suppose that the comparison in Step 1 is successful. Let pe be the
presuf pattern instance that survives the elimination using tree ET in Step 2. After
the presuf shift handler finishes, one of the three scenarios mentioned in section 4.2
ensues. We consider each in turn.

1. All pattern instances overlapping pe are eliminated, apart from its presuf
overlaps, and pe or at least a suffix of pe is matched. This is a Type 4 phase.

All comparisons made by the presuf shift handler, except the unsuccessful com-
parisons in Step 2, are charged to the text characters compared. The bit vector BV
ensures that each of these comparisons involves a different text character. Thus each
text character which lies to the right of ta and is aligned with or to the left of pe| is
charged at most once. At most two comparisons in Step 2 are unsuccessful, so this
shift has overhead at most 2.

820 RICHARD COLE AND RAMESH HARIHARAN

Consider the situation when there are exactly two mismatches in Step 2. p1 is
clearly eliminated in this case. In addition, we show in the next paragraph that if x1

is periodic, with core v and head u, say, then all pattern instances whose associated
presufs have the form uvo, o ≥ 1, are also eliminated. Let xe be the presuf associated
with pe. It follows that x1 = xewxe for some nonempty string w. Since p = x1zx1,
for some nonempty string z, |xe| ≤ m−3

4 . This guarantees that the next presuf shift

occurs at least distance 3(m+1)
4 to the right. If there is just one mismatch in Step 2,

then since |x′1| < m
2 , the next presuf shift occurs at least distance m+1

2 to the right.

To see that two mismatches in Step 2 eliminate all presuf pattern instances with
associated presufs of the form uvo, o ≥ 1, it suffices to show that at most one such
pattern instance survives the first mismatch; the second mismatch will surely eliminate
this pattern instance. Suppose two pattern instances pi1 and pi2 , i1 < i2, i1, i2 6= 1,
xi1 = uvo1 , xi2 = uvo2 , o1, o2 ≥ 1, survive the first mismatch, which occurs at text
character tx, say. The portions of p1 and pi1 to the right of tx match each other while
the characters in p1 and pi1 aligned with tx are different. This implies that p1 and
pi2 have a difference point strictly between tx and tb; more precisely, the character
in p1 which is distance (o2 − o1)|v| to the right of tx is a difference point. Therefore,
either p1 or pi2 would have been eliminated before the first mismatch, which is a
contradiction.

2. pe is eliminated. In addition, there is some pattern instance qc overlapping
pe such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched. This is also a Type 4 phase.

Each comparison in Steps 1 and 2 with a text character to the left of |qc for which
function f is defined is charged to the text character specified by the function f , called
its f value; f values are distinct by definition. Comparisons in Step 3 fall into one of
three categories (see Lemma 4.11 and the following paragraph):

1. comparisons which eliminate pattern instances whose left ends lie to the right
of |pk+1 and to the left of |qc;

2. comparisons which eliminate pattern instances whose left ends are aligned
with or to the right of |qc;

3. the comparison which eliminates pe.

Each comparison in the first category is charged to the text character aligned with the
left end of the pattern instance eliminated. By the definition of the function f , these
text characters do not occur in the range of f values. Comparisons in the second
category, along with the comparisons made in Steps 4 and 5 and those successful
comparisons in Steps 1 and 2 that involve text characters overlapping qc, are charged
to the text characters compared. BV ensures that each of these comparisons involves
a distinct text character. Thus each text character which lies to the right of |pk+1

and is aligned with or to the left of qc| is charged at most once. The comparison that
eliminates pe is charged to the text character aligned with |pk+1. Since all f values lie
to the right of |pk+1 and all pattern instances eliminated by comparisons in the first
category are with left ends to the right of |pk+1, this text character is charged exactly
once. The two comparisons in Step 2 lacking f values constitute the overhead of this
presuf shift. Since pe is eliminated, the next presuf shift occurs at least distance m+1
to the right of the current presuf shift.

3. pe is eliminated, as are all pattern instances overlapping pe. This is a Type 3
phase.

Let qd denote the leftmost surviving pattern instance. All comparisons in Steps
1 and 2 for which function f is defined are charged to their f values. f values are

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 821

distinct by definition. Excluding the comparison which eliminates pe, each comparison
in Steps 3 and 4 eliminates some pattern instance whose left end lies to the right of
|pk+1 and to the left of |qd. Each such comparison is charged to the text character
aligned with the left end of the pattern instance eliminated. These text characters
cannot occur in the range of the function f and hence are charged only once. Thus
each text character which lies to the right of |pk+1 and to the left of |qd is charged
at most once. The comparison that eliminates pe is charged to the text character
aligned with |pk+1. The two comparisons in Step 2 lacking f values constitute the
overhead of this presuf shift. Since pe is eliminated, the next presuf shift occurs at
least distance m+ 1 to the right of the current presuf shift.

The following lemma is shown in section 4.5.
Lemma 4.13. The total space used by the algorithm for the case when |x′1| < m

2 for
all presuf shifts is O(m). Further, for any terminal node x of ET , Qx can be obtained
in O(m) time. The preprocessing required by the algorithm can be accomplished in
O(m2) time.

Lemma 4.14. Suppose that p is not a special-case pattern and |x′1| < m
2 for

all presuf shifts. Then the total time taken by the algorithm is O(n + m), following
preprocessing of the pattern, which takes O(m2) time.

Proof. By Lemma 4.12, the number of character comparisons made is O(n). It
remains to count the time spent in all other operations. The basic algorithm makes
only character comparisons. Next, consider the presuf handler of section 4.2. Steps 1
and 2 make only character comparisons. Following Step 2, computing Qx takes O(m)
time by Lemma 4.13. Steps 3 and 4 take O(m) time because |Q′|, |Q′′| = O(m) and
each of the operations in these steps, except the operations used for resetting BV ,
leads to the removal of a pattern instance from one of Q′′ or Q′. Further, the total
time spent by Steps 3 and 4 in resetting BV is bounded by the time taken by these
steps to set bits in BV , which is O(m). Clearly, Step 5 takes O(m) time. Thus the
total time taken by the presuf handler of section 4.2 is O(m). Since any two presuf
shifts occur at least m−|x′1| > m

2 distance apart, the total time taken by the algorithm
is O(n+m).

4.4. Handling presuf shifts for special-case patterns. As mentioned in sec-
tion 4.1, a different algorithm is needed to handle presuf shifts for patterns for which
|xk| = 1 and g = 1. We give an algorithm which handles presuf shifts for such patterns
when |x′1| < m

2 . (Recall that x′1 for a presuf shift was defined towards the start of
section 4.) The case where |x′1| ≥ m

2 is handled in section 6.
The goal of this algorithm is to reach one of the following two situations:
1. the identification of a pattern instance qc satisfying the following property: no

pattern instance qd which precedes qc survives and a pattern instance overlapping qc
survives only if it is a presuf overlap of qc;

2. a return to the basic algorithm.
Further, this is achieved with at most two mismatches.

Let xk = b. Any character other than b is called a non-b character. Since we
assume that the pattern contains at least two different characters, it contains a non-b
character. Let p[j] be the leftmost non-b character in p and let tc denote the text
character aligned with |pk+1. Let td be the leftmost non-b text character, if any, to
the right of, and including, tc.

By the definition of special-case patterns, all presufs consist solely of b’s. There-
fore, p1[j] lies to the right of ta. Note that no complete match can occur with one of
p[1 . . . j−1] aligned with td. Thus if td lies to the left of p1[j], then the next potential

822 RICHARD COLE AND RAMESH HARIHARAN

match instance of p would have its left end to the right of td. Otherwise, the next
potential match instance of p has p[j] aligned with td. Also notice that if td does
not exist, then there are no more complete matches. These observations lead to the
following three-step procedure.

Step 1. This step locates td and then eliminates all but at most one pattern
instance qc overlapping td. Starting at tc, a left-to-right scan of the text is performed
to locate td (i.e., each text character is compared to b; td is the character at which
the first mismatch occurs). If td does not exist, the algorithm halts. If td exists and
lies to the left of p1[j], then the basic algorithm is restarted with |p placed to the
immediate right of td. Otherwise, qc is chosen to be the pattern instance such that
qc[j] is aligned with td. qc is the next potential match instance to be considered.

Step 2. In this step, either qc is eliminated or all pattern instances overlapping qc,
except for presuf overlaps of qc, are eliminated. This is done using the basic algorithm,
slightly modified to account for the matched prefix. Suppose the leftmost difference
points are used in the sequence S in the basic algorithm, as against any arbitrary
difference points. Then dif2, . . . , difj are all equal to j and difj+1, . . . , difm are all
greater than j, whenever defined. In Step 2, the characters in qc to the right of qc[j]
which are at the indices given by S are compared with the aligned text characters in
the order in which they appear in S. This continues until either a mismatch occurs
or the sequence is exhausted. A mismatch leads to the basic algorithm with |p shifted
to the right of qc by distance at least j − 1 plus the number of comparisons made in
this step. If no mismatch occurs, then Step 3 follows.

Step 3. Characters in qc which are not yet matched are compared from right to
left with their aligned text characters until a mismatch occurs or qc is fully matched.
The present situation is now identical to the situation at the beginning of a presuf
shift and is handled in the same way.

The comparison complexity of the above algorithm is determined by the following
lemma.

Lemma 4.15. If p is a special-case pattern and |x′1| < m
2 for each presuf shift,

then the comparison complexity of the algorithm is n(1 + 2
m+1).

Proof. We give a charging scheme to account for the comparisons made by the
algorithm for handling special-case patterns. The definition of a phase, the charging
scheme for Type 1 and Type 2 phases, and the ranges of text characters charged in
each phase type remain the same as in Lemma 4.12. Only the charging scheme for
Type 3 and Type 4 phases needs to be modified in accordance with the presuf shift
handler for special-case patterns.

Consider a presuf shift which initiates a new Type 3 or Type 4 phase. We show
that it has an overhead of at most one. The comparison complexity of the algorithm
now follows from the fact that |x′1| < m

2 and therefore any two consecutive presuf
shifts must occur at least m+1

2 characters apart.

Charging scheme for the presuf shift handler. Let q′ and q1 be the leftmost une-
liminated pattern instances immediately before and after the presuf shift, respectively.
Recall that ta is the text character aligned with q′|.

We show that presuf shifts have overhead at most one for these patterns. Let qc
be the leftmost pattern instance which survives Step 1. All successful comparisons
in Step 1 are charged to the text characters compared. These text characters lie to
the left of qc[j], where j is the least index such that p[j] differs from p[m]. The lone
unsuccessful comparison in Step 1 constitutes the overhead of this shift. Now consider
two cases.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 823

1. Suppose qc survives Step 2. All comparisons made in Steps 2 and 3 are charged
to the text characters compared. Thus each text character which lies to the right of ta
and is aligned with or to the left of qc| is charged at most once. All future comparisons
will be charged to text characters to the right of qc|.

2. Suppose qc does not survive Step 2. Each successful comparison in Step 2
eliminates some pattern instance lying entirely to the right of qc[j] and is charged to
the text character aligned with the left end of that pattern instance. The unsuccessful
comparison which eliminates qc in Step 2 is charged to the text character aligned with
qc[j]. Thus each text character lying strictly between ta and |qd is charged at most
once, where qd is the leftmost surviving pattern instance at the end of Step 2. All
future comparisons will be charged to text characters aligned with or to the right of
|qd.

Lemma 4.16. Suppose that p is a special-case pattern and |x′1| < m
2 for all presuf

shifts. Then the total time taken by the algorithm is O(n+m), following preprocessing
of the pattern, which takes O(m2) time. The total space used by the algorithm is
O(m).

Proof. The lemma, except for the preprocessing time, is obvious from the above
description. Since no extra preprocessing is required for special-case patterns, the
lemma follows from Lemma 4.14.

Theorem 4.17. Suppose for all presuf shifts that |x′1| < m
2 . Then the total

space used by the algorithm is O(m) and the total time taken by the algorithm, after
preprocessing, is O(n+m). The preprocessing required by the algorithm takes O(m2)
time.

Proof. The proof follows from Lemmas 4.14 and 4.16.

4.5. Data structure details. We prove Lemma 4.13 in this section. The fol-
lowing data structures are used by the algorithm:

1. the array S used in the basic algorithm;
2. an array, indexed by i, storing difi, 2 ≤ i ≤ m, used by the presuf shift

handler;
3. BV and LBV , the bit vector and its associated list;
4. ET , the elimination tree;
5. Qx, for each terminal node x of ET , as defined after Step 2 in section 4.2.

Of these, the first three have size O(m) by definition. By Theorem 4.9, ET
also has size O(m).

It remains to show how to represent Qx, for each terminal node x of ET , using
O(m) space overall. The following definitions are helpful. Let tb be the text character
aligned with p1|. Let Q refer to the set of pattern instances which overlap pk+1, have
left ends to the right of |pk+1 and either match or do not overlap tb.

Before showing how to maintain Qx, it is helpful to recapitulate some structural
properties of ET . ET is a binary tree with each internal node having two children.
At each internal node y, a character cy in p is potentially compared with the text
character tcy. A successful comparison leads to the left child of y while a mismatch
leads to the right child. Comparisons are made starting at the root of ET and
continuing until a terminal node (a leaf) is reached. A node in ET lies in the right
subtree of at most two of its ancestors.

Node x is said to be a failing descendant of node y if x is a proper descendant of
y and lies in the right subtree of y. A terminal node x can be a failing descendant of
at most two nodes in ET . Let p(x) denote the parent of x. For each terminal node
x, let Anc(x) be defined as follows. If both children of p(x) are terminal nodes and

824 RICHARD COLE AND RAMESH HARIHARAN

p(x) is the right child of p(p(x)), then Anc(x) is the set of proper ancestors of p(x).
Otherwise, Anc(x) is the set of proper ancestors of x.

q ∈ Q is said to occur at terminal node x of ET if q ∈ Qx. In section 4.2, we
tentatively defined Qx to be the set of pattern instances in Q which match at all
text characters compared successfully at nodes in Anc(x) (actually, the definition was
not this precise). Now we refine this definition by letting Qx satisfy some additional
constraints. Informally, q should occur at x if it is consistent with all comparisons
made at nodes in Anc(x). This motivates the following characterization of Qx. Let
Y ⊂ Anc(x) consist of those nodes with respect to which x is a failing descendant.
Then Qx is the maximal subset of Q such that each q ∈ Qx satisfies the following
properties:

1. ∀y ∈ Anc(x) − Y , the character in q aligned with tcy, if any, matches the
character cy;

2. ∀y ∈ Y , the character in q aligned with tcy, if any, is different from cy.

ET may have θ(m) terminal nodes. Even though |Qx| < m for each terminal
node x, storing Qx explicitly for each terminal node x could require Ω(m2) space
overall. We show how to store the sets Qx so that O(m) space is used in total and
any particular Qx can be retrieved in O(m) time.

Let l1, l2, . . . , lh, in that order, be the nodes along the leftmost path in ET starting
at the root and ending at the terminal node lh. Define the right subtree of li to be the
subtree rooted at the right child of li. Note that tcl1 , . . . , tclh−1

form a right-to-left
sequence. We show how to maintain Qx, for all terminal nodes x in the right subtrees
of l1, . . . , lh−1, in O(m) space altogether. Only the terminal node lh remains and Qlh
can be stored explicitly in O(m) space.

We mark some of the nodes l1, . . . , lh−1. Node li is marked if its right child is
neither a terminal node nor the parent of two terminal nodes. Thus node li is marked
if Phase 2 could make at least two comparisons following a mismatch at tcli . Let
l′1, . . . , l

′
s, in that order, be the nodes marked.

The following lemmas are helpful.

Lemma 4.18. Consider terminal nodes x1 and x2 of ET and let their least
common ancestor be y. Suppose at most one of the following is true: first, y is the
parent of both x1 and x2, and second, y is the right child of p(y). If q occurs at x1

and at x2, then q does not overlap tcy.

Proof. Clearly, y ∈ Anc(x1) and y ∈ Anc(x2). Suppose q overlaps tcy. Let c be
the character in q aligned with tcy. Without loss of generality, assume that x1 is a
failing descendant of y. Then x2 is not a failing descendant of y. By the definition of
Qx1 , c 6= cy. By the definition of Qx2 , c = cy, a contradiction.

Corollary 4.19. Let i ≥ 1 be the smallest number such that q ∈ Q does not
overlap tcli . q can occur at terminal nodes in the right subtrees of at most one of
l1, . . . , li−1. Further, if q occurs at some terminal node in the subtree rooted at li, it
cannot occur at terminal nodes in the right subtrees of any of l1, . . . , li−1.

Lemma 4.20. Let i ≥ 1 be the smallest number such that q ∈ Q does not overlap
tcli . Suppose q occurs at a terminal node in the subtree rooted at li. Then q occurs
at all terminal nodes in the right subtrees of each of those nodes among li, . . . , lh−1

which are unmarked. Further, q occurs at lh.

Proof. Clearly, the characters in q which overlap tcl1 , . . . , tcli−1
match the charac-

ters cl1 , . . . , cli−1 , respectively. Further, q does not overlap tcli , . . . , tclh−1
. Therefore,

q occurs at lh. In addition, if a terminal node x is in the right subtree of an unmarked
node lj , j ≥ i, then either lj = p(x) or lj = p(p(x)) and p(x) 6∈ Anc(x). From the

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 825

definition of Qx, q must occur at x.

Lemma 4.21. Consider marked node l′i, 1 ≤ i ≤ s, and let j be the smallest
number such that tcl′

i
is to the left of the suffix xj of p1. pj−1 must be the rightmost

pattern instance in its group. In addition, pj is the leftmost presuf pattern instance
to survive a mismatch at tcl′

i
.

Proof. Since l′i is marked, at least three presuf pattern instances must survive
a mismatch at tcl′

i
. Let the leftmost three such pattern instances be pa, pb, and pc

(listed in left-to-right order). Let Aw be the group containing pj . Write xj as uve,
where e ≥ 1, u is a proper suffix of primitive v, and all presufs associated with Aw
have the form uve

′
, e′ ≥ 1.

By Lemma 4.5, successful comparisons within the suffix xj of p1 suffice to elim-
inate all but at most two of the pattern instances in the groups Aw+1, . . . , Ag. (At
most two pattern instances in Aw+1, . . . , Ag can form a half-done set with pj .) There-
fore, pa ∈ Aw and xa = uvea , ea ≥ 1. Since pa, pb, and pc all survive the mismatch
at tcl′

i
, {pa, pb, pc} is a half-done set and therefore ea ≥ 2. It follows that xb = uveb ,

eb ≥ 0, and xc = uvec , ec ≥ 0.

Next, suppose pj−1 is not the rightmost pattern instance in its group. Then
pj−1 ∈ Aw and xj−1 has the form uve+1, e+1 ≥ 2. We show that pb would have been
eliminated by a comparison to the right of tcl′

i
, which is a contradiction. Note that

pj−1 and pa have a difference point, which is aligned with or to the right of tcl′
i

and
aligned with p1. Let pj−1[d] be the rightmost such difference point. Clearly, pj−1[d] is
to the left of the suffix xa of p1. pj−1[d+ (ea− eb)|v|] is a difference point of pj−1 and
pb which is aligned with p1. A match at this difference point would have eliminated
pb.

Finally, suppose pa 6= pj . Then pj and pa have a difference point, which is
aligned with or to the right of tcl′

i
and aligned with p1. Let pj [d] be the rightmost

such difference point. An argument similar to the one in the previous paragraph
shows that pj and pb have a difference point to the right of pj [d] and aligned with
p1; a match at this difference point would have eliminated pb, which is a contradic-
tion.

Corollary 4.22. Consider marked nodes l′i1 and l′i2 , 1 ≤ i1 < i2 ≤ s. Let xi−1

and xj−1 be the smallest suffixes (which are also presufs) of p1 which overlap tcl′
i1

and

tcl′
i2

, respectively. Then i 6= j.

Proof. If i = j, then by Lemma 4.21, pj is the leftmost presuf pattern instance to
survive the mismatches at both tcl′

i1
and tcl′

i2
. But since a pj survives a mismatch at

tcl′
i1

, it cannot survive a match at tcl′
i1

and therefore it cannot survive a mismatch at

tcl′
i2

.

Lemma 4.23. The size of the presuf corresponding to the rightmost pattern in-
stance in Aj, 1 ≤ j ≤ g, is at most m

(3/2)j .

Proof. For j = 1, the claim is clearly true. Assume that the claim is true for Aj−1;
i.e.; the size of the presuf corresponding to rightmost pattern instance pe in Aj−1 is
less than m

(3/2)j−1 . xe has either the form uvv or the form uv, where u is a proper

suffix of v. In the former case, xe+1 = uv, and in the latter case, xe = xe+1zxe+1 for

some nonempty string z (since uv is not periodic). Thus |xe+1| < 2|xe|
3 . The claim

follows.

Lemma 4.24. The number of pattern instances in Q which overlap tb and are
entirely to the right of tcl′

i
is less than m

(3/2)s−i+1 , for all i, 1 ≤ i ≤ s.

826 RICHARD COLE AND RAMESH HARIHARAN

Proof. From Lemma 4.21 and Corollary 4.22, the rightmost presuf pattern in-
stance pj such that the suffix xj of p1 overlaps tcl′

i
must be the rightmost pat-

tern instance in some group Aj′ , j
′ ≥ s − i + 1. The lemma follows from Lemma

4.23.
Consider the right subtrees of l′1, . . . , l

′
s. Note that the comparisons made in

each of these subtrees are aimed at eliminating half-done sets whose leftmost pattern
instances are in distinct groups. Each of these comparisons is made to the right of
p1[m], as described in Lemma 4.7 and Corollary 4.8.

Lemma 4.25. The number of pattern instances in Q which are entirely to the
right of tb and overlap some text character compared in the right subtree of l′i is at
most m

(3/2)s−i+1 , for all i, 1 ≤ i ≤ s.
Proof. Recall from Lemma 4.7 that a half-done set whose leftmost pattern instance

is in group Aj , j > 1, is eliminated in Phase 2 of the elimination strategy by making
comparisons at text characters which are at most distance |xj′−1| − |xj′ | to the right
of tb, where pj′ is the leftmost presuf pattern instance in Aj . From Lemma 4.23,
|xj′−1| < m

(3/2)j−1 , and the lemma follows.

Lemma 4.26. Consider a marked node l′i and the set of terminal nodes in its
right subtree. If a pattern instance q occurs at two of these terminal nodes, say w
and y, then q occurs at all terminal nodes in the subtree rooted at the least common
ancestor z of w and y.

Proof. By Lemma 4.18, q does not overlap the character tcz. Since comparisons
made in the right subtree of l′i constitute a right-to-left sequence, q does not overlap
tcz′ , where z′ is any descendant of z. The lemma now follows immediately from the
definition of the sets Qx.

We are now ready to describe the data structure for storing the Qx’s. The fol-
lowing subsets of Q are required: Z1, . . . , Zh−1, Y1, . . . , Yh−1 and W1, . . . ,Ws. The
Z and the Y sets are used for terminal nodes which lie in the right subtrees of the
unmarked nodes among l1, . . . , lh−1. The W sets are used for terminal nodes which
lie in the right subtrees of marked nodes.

The Z sets are defined first. For each i, 1 ≤ i ≤ h − 1, where li is unmarked,
define Zi to be the set of pattern instances in Q which overlap tc(li) and occur only

at terminal nodes in the right subtree of li. Clearly,
∑h−1
i=1 Zi = O(m).

The Y sets are defined next. For each i, 1 ≤ i ≤ h− 1, define Yi to be the set of
pattern instances q ∈ Q with the following properties.

1. q does not overlap tcli .
2. If i > 1, q overlaps tcli−1

.
3. q occurs at a terminal node in the subtree rooted at li.

Clearly,
∑h−1
i=1 Yi = O(m). Further, each pair of Y sets is disjoint and Zi is disjoint

from Y1, . . . , Yi. The following lemma explains the significance of the Y and Z sets.
Lemma 4.27. If terminal node x is in the right subtree of unmarked node li,

Qx = Y1 ∪ Y2 ∪ · · · ∪ Yi ∪ Zi.
Proof. Suppose q ∈ Qx. If q overlaps tcli then by Corollary 4.19, q ∈ Zi. If q

does not overlap tcli , then clearly q must be in some Yj , j ≤ i.
Next, suppose q ∈ Yj , j ≤ i. By Lemma 4.20, q ∈ Qx. Finally, if q ∈ Zi,

then q ∈ Qx since the only internal node (if any) in the right subtree of li is not in
Anc(x).

Finally, the W sets are defined. For each i, 1 ≤ i ≤ s, Wi consists of those pattern
instances which occur at some terminal node in the right subtree of marked node l′i.
Let W ′i denote the set obtained from Wi by removing those pattern instances which

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 827

do not overlap any of the text characters compared in the right subtree of l′i.

Lemma 4.28.

∑s
i=1 |W ′i | = O(m).

Proof. Split W ′i into two disjoint subsets, W 1
i and W 2

i . W 1
i consists of those

pattern instances which overlap tcl′
i

and W 2
i consists of pattern instances which do

not overlap tcl′
i
.

By Lemma 4.18, pattern instances in W 1
i occur only at terminal nodes in the right

subtree of l′i. Therefore, it suffices to show that
∑s
i=1 |W 2

i | = O(m). From Lemmas
4.24 and 4.25, it follows that

∑s
i=1 |W 2

i | =
∑s
i=1(2 m

(3/2)s−i+1) = O(m).

Consider some i, 1 ≤ i ≤ s. The manner in which Wi is maintained so as to
facilitate the recovery of Qx for each terminal node x in the right subtree of marked
node l′i remains to be shown. Clearly, pattern instances in Wi −W ′i occur at all such
nodes x and can be stored implicitly in constant space by just storing the rightmost
text position compared in the right subtree of l′i. For the terminal nodes x in li’s
right subtree, we show how to store the pattern instances in Qx ∩W ′i using a total
of O(|W ′i |) space (summing over all x). The linear-space bound then follows from
Lemma 4.28.

At each internal node y in the right subtree T of l′i, a set Comy is stored. At
each terminal node x in T , a set Specx is stored. For each q ∈W ′i , if q occurs only at
terminal node x, then it is added to Specx. Otherwise, if q occurs at more than one
terminal node in T , then q is added to the set Comy, where y is the least common
ancestor of those terminal nodes at which q occurs. Clearly, all Com and Spec sets
are disjoint and therefore the total space taken by them is O(|W ′i |). The following
lemma shows how Qx can be retrieved from the Com and Spec sets, for each terminal
node x in T .

Lemma 4.29. For each terminal node x ∈ T , Qx = (Wi − W ′i) ∪ Comy1 ∪
Comy2 ∪ · · · ∪ Comyj ∪ Specx, where y1, . . . , yj are the proper ancestors of x in T .

Proof. The proof follows immediately from Lemma 4.26.

To compute Qx as an ordered list, it suffices to maintain each of the Y , Z,
Com, and Spec sets as ordered lists which are then appended together in O(m) time
according to either Lemma 4.27 or Lemma 4.29, as the case may be.

This concludes the data structure description. We remark that all of the data
structures mentioned at the beginning of this section can be computed using näıve
algorithms in O(m2) time.

5. The transfer function f . Before giving the definition of the function f , we
prove a number of preliminary lemmas.

5.1. Preliminary lemmas. These lemmas describe some properties of periodic
strings and the distribution of text characters compared in Step 2 (the elimination-tree
phase) of the presuf handler described in section 4.2.

Let V = {p1, p2, . . . , pk, pk+1}. Consider the set of pattern instances in V which
are rightmost in their respective groups. Let pi be a pattern instance in this set. We
introduce a function h(xi) which is central to the analysis.

Definition. If i < k, then h(xi) is defined by one of the following three cases:

1. xi is periodic. Then xi+1 is also periodic. Let u and v be the head and core,
respectively, of xi. Let w be the core of xi+1. h(xi) is defined to be the suffix of p1 of
length |v|+ |w|.

2. xi = uvu is not periodic, where |u| is its s-period. Further, xi+1 is periodic
with core w. h(xi) is defined to be the suffix of p1 of length |v|+ |u|+ |w|.

828 RICHARD COLE AND RAMESH HARIHARAN

3. xi = uvu is not periodic, where |u| is its s-period. Further, xi+1 is not periodic.
h(xi) is defined to be the suffix of p1 of length |u|.

If i = k + 1, then h(xi) is defined to be the empty string. Note that i 6= k as pk
and pk+1 are both in the same group.

The first two lemmas consider the case when i < k and xi+1 is periodic with core
w. They show that h(xi) cannot be periodic with core w.

Lemma 5.1. Suppose xi = uv2, where v is the core of xi. Further, suppose
xi+1 = uv = w′wk1 is periodic with core w, |w| < |v|. Then h(xi) is not periodic with
core w.

Proof. w is a suffix of v. Since v is primitive, |v| is not a multiple of |w|. If h(xi)
were periodic with core w, then the prefix of h(xi) of size |w| would have the form
xy, with x a proper suffix of w and y a proper prefix of w. But this prefix of h(xi)
is a suffix of v and hence is the string w. This implies that w is cyclic and cannot be
the core of xi+1, a contradiction.

Lemma 5.2. Suppose xi = uvu is not periodic, where |u| is the s-period of xi.
Suppose the string xi+1 = u = w′wk1 is periodic with core w, |w| < |u|. Then h(xi)
is not periodic with core w.

Proof. w is a suffix of u. vu is primitive; otherwise, xi would be periodic. Suppose
h(xi) is periodic with core w. Then |vu| is not a multiple of |w|. Therefore, the prefix
of h(xi) of size |w| is of the form xy, with x a proper suffix and y a proper prefix of
w. But this prefix of h(xi) is a suffix of u and hence is the string w. This implies that
w is cyclic and cannot be the core of xi+1, a contradiction.

The next lemma describes the order in which pattern instances in a half-done set
are eliminated in Step 2 of the presuf shift handler.

Lemma 5.3. Let pi1 , . . . , pir , r ≥ 3, be pattern instances in V comprising a half-
done set. For any l, 3 ≤ l ≤ r, if pi1 and pil both survive at any instant in Step 2,
then pi1 , . . . , pil−1

also survive at that instant.

Proof. We show that the lemma is true for any instant in Phase 1 and at the end
of Phase 1. For Phase 2, the lemma follows from Corollary 4.8.

Consider the rightmost position e such that pi1 [e] is to the left of tb (recall that
tb is the text character aligned with p1[m]) and different from the character in pil
aligned with it. The portions of pi1 , . . . , pil whose left and right ends are aligned with
pi1 [e + 1] and tb, respectively, are identical and periodic with core v, where v is the
core of xi1 . The portions of pi1 , . . . , pil−1

whose left and right ends are aligned with
pi1 [e] and tb, respectively, are identical. Therefore, a comparison to the right of pi1 [e]
eliminates none or all of pi1 , . . . , pil depending upon whether it succeeds or fails. A
comparison at pi1 [e] eliminates either pil or all of pi1 , . . . , pil−1

. Thus if pi1 and pil
survive at any instant in Phase 1 or at the end of Phase 1, then all comparisons made
until that instant are to the right of pi1 [e]. Each of these comparisons eliminates none
or all of pi1 , . . . , pil .

The next lemma establishes that if all comparisons in the suffix xi of p1 are
successful, then at most two pattern instances to the right of pi survive.

Lemma 5.4. Suppose all comparisons made by S1 within the suffix xi of p1 result
in matches. Then at most two instances in V among those lying to the right of pi
survive. Further, if two instances py and pz survive, then {xi, xy, xz} is a clone set.

Proof. First, suppose xi is periodic. Then by the manner in which groups were
defined, xi has the form uv2. Let pa, pb ∈ V , a, b > i. If {xi, xa, xb} is not a clone set
then by Lemma 4.5, successful comparisons in the suffix xi of p1 suffice to eliminate
one of pa, pb. Thus two or more pattern instances in V to the right of pi can survive

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 829

only if their presufs form a clone set with xi. But the only candidates are the pattern
instances py and pz whose presufs are uv and u, respectively.

Second, suppose xi is not periodic. Then it is of the form uvu, where u is its
s-period. For no two pattern instances py and pz, y, z > i, can {xi, xy, xz} be a clone
set. By Lemma 4.5, one of py, pz, for every such y and z, can be eliminated by a
successful comparison made within the suffix xi of p1. Thus in this case, at most one
pattern instance in V to the right of pi survives.

The next two lemmas establish that if all comparisons within h(xi) are successful,
then at most two pattern instances in V to the right of pi survive.

Lemma 5.5. Suppose xi+1 is periodic with core w and all comparisons made by
S1 within h(xi) result in matches. Then at most two instances in V among those to
the right of xi survive.

Proof. Since the case i = k + 1 is vacuous, we assume that i < k.

The proof is based on Lemmas 5.1, 5.2, 5.3, and 5.4. Let As be the group
containing pi. Let pi+1, . . . , py be the pattern instances in group As+1. Consider
the set V ′ of pattern instances in V which are to the right of pi and which sur-
vive successful comparisons in the suffix xy of p1. By Lemma 5.4, with at most
one exception (call it po), the pattern instances in V ′ form a half-done set. By
Lemma 5.3, the presufs corresponding to the pattern instances in this half-done
set comprise the set {w′wk2, . . . , w′wk3+1, w′wk3}, where k3 equals 0, 1, or 2. Let
V ′ = {pi1 , pi2 , . . . , pij , po}. We show that successful comparisons in h(xi) eliminate
all but at most one of {pi1 , pi2 , . . . , pij}.

Note that {pi1 , pi2 , . . . , pij} is a half-done set. By Lemmas 5.1 and 5.2, the suffix
h(xi) of p1 (and of xi) is not periodic with core w. Let the rightmost suffix of p1 which
is longer than |xi+1| and not periodic with core w begin at p1[e]; p1[e] lies in h(xi).
Consider the largest h, 1 ≤ h ≤ j, such that pih survives all comparisons made to the
right of p1[e]. Then by Lemma 5.3, pi1 , . . . , pih−1

also survive these comparisons while
pih+1

, . . . , pij are eliminated. If h ≤ 1, then we are done. Otherwise, as shown in
the next paragraph, the characters in pi1 , . . . , pih−1

aligned with p1[e] are identical to
each other yet different from p1[e]. Hence there will be a comparison involving p1[e],
which by assumption is a match; this leaves only pih and po uneliminated.

Since the rightmost eligible character is always chosen by the elimination strategy
for comparison, the portions of pi1 , . . . , pih aligned with the suffix of p1 which lies to
the right of p1[e] match that suffix. Suppose for some r, 1 ≤ r < h, a = pir [c] 6= pir [c+
|w|] = b, where pir [c] is aligned with p1[e]. Since pir+1

is |w| units to the right of pir , the
character in pir+1

aligned with pir [c+ |w|] = b is an a, a contradiction. Therefore, the
characters in pi1 , . . . , pih−1

aligned with p1[e] are all equal to the character p1[e+ |w|].
However, from the definition of e, p1[e+ |w|] 6= p1[e]. This proves the lemma.

Lemma 5.6. Suppose xi+1 is not periodic and all comparisons made by S1 within
the suffix h(xi) of p1 result in matches. Then at most two instances in V among those
to the right of pi survive.

Proof. Since the case i = k + 1 is vacuous, we assume that i < k.

By the manner in which groups were defined, xi is not periodic. Since xi+1 is not
periodic, pi+1 is the rightmost instance in its group. Thus xi+1 cannot form a clone
set with any two of its presufs. By Lemma 5.4, at most one pattern instance to the
right of pi+1 survives successful comparisons in the suffix xi+1 = h(xi) of p1.

The following lemma relates the length of the presufs xi and xi+2 with the suffix
h(xi) of p1 for i ≤ k − 1.

Lemma 5.7. |xi+2|+ |h(xi)| ≤ |xi|.

830 RICHARD COLE AND RAMESH HARIHARAN

Proof. First, suppose xi = uvu is not periodic, where u is its s-period. Then
|xi+2| < |u|. If xi+1 is not periodic, then h(xi) = u and |xi+2|+ |h(xi)| < 2|u| < |xi|.
If xi+1 is periodic with core w, then |h(xi)| = |u| + |v| + |w| and xi+2 = |u| − |w|.
This implies that |xi+2|+ |h(xi)| = |xi|.

Next, suppose xi is periodic with core v and head u. Then xi+1 is also periodic, say
with core w. Thus |h(xi)| = |v|+|w| and |xi+2| = |v|+|u|−|w|. Then |xi+2|+|h(xi)| =
2|v|+ |u| = |xi|.

Definitions. Let the term misfit refer to any character that differs from the
rightmost character of p. If |xk| > 1, let ri be the number of pattern instances in
V which lie to the right of pi. Otherwise, if |xk| = 1, let ri be one more than the
number of pattern instances in V which lie to the right of pi and do not belong to the
rightmost group. For convenience, we define ri to be 0 if |xk| = 1 and pi belongs to
the rightmost group.

We provide some lower bounds on the number of occurrences of misfit characters
in the presufs of p and in the cores of periodic presufs.

Lemma 5.8. Let |xk| > 1. Let pj, j ≤ k, be any pattern instance in V . Then xj
contains at least rj instances of the string xk and hence rj misfit characters.

Proof. Since xk is the smallest nonnull suffix of p that matches a prefix of p, no
nonnull suffix of xk matches a prefix of xk. Hence all instances of xk in any string are
disjoint. Since xk itself contains xk and rk = 1, the lemma is true for j = k. Next,
suppose j < k and assume inductively that xj+1 contains at least rj+1 instances of
xk. Then since xj+1 is a proper prefix and a proper suffix of xj , xj must contain at
least rj+1 + 1 = rj instances of xk. Since the first character of xk differs from its last
character, xj has at least rj misfit characters.

Lemma 5.9. Suppose |xk| = 1. Let pj be any pattern instance in V . Then xj has
at least rj misfit characters.

Proof. If pj belongs to the rightmost group, then rj = 0 and the lemma holds
trivially. Therefore, suppose pj is not in the rightmost group. Let py be the rightmost
pattern instance not in the rightmost group. xy contains at least one misfit character;
otherwise, it would be in the rightmost group. Since ry = 1, the lemma is true for
j = y. Next, assume that j < y and assume inductively that xj+1 contains at least
rj+1 misfit characters. Then since xj+1 is a proper prefix and a proper suffix of xj ,
xj must have at least rj+1 + 1 = rj misfit characters.

Lemma 5.10. Let pj be any instance in V and suppose xj is periodic with head
u and core v, |v| > 1. Then v contains a misfit character.

Proof. If v does not contain a misfit character, then xj does not contain a mis-
fit character either. This implies that all the characters in xj are identical. This
contradicts the assumption that |v| > 1.

We conclude this section of lemmas with two key lemmas, the h-suffix mapping
lemma and the half-done set mapping lemma. In the h-suffix mapping lemma, a set
R1(i) of text characters is defined for each i, 1 ≤ i ≤ k − 1, such that pi is the
rightmost instance in its group. In the half-done set mapping lemma, a set R2(O) of
text characters is defined for a half-done set O consisting of pattern instances from
V . These two sets are used as ranges for the f function.

Recall that V = {p1, . . . , pk} and tb is the text character aligned with the right-
most character of p1.

Let i ≤ k−1 and pi be the rightmost instance in its group. Let h′i be the suffix of
length |xi+2| of the prefix xi of p. Let R1(i) be the set of text characters with which
|p is aligned when some misfit character in h′i is aligned with tb.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 831

≥ |xi+2|

p

xi

h′i

h(xi)

tb

Range of R1(i)

text

Fig. 5. The h-suffix mapping lemma.

Lemma 5.11 (the h-suffix mapping lemma). |R1(i)| ≥ ri − 2. All text characters
in R1(i) lie strictly to the left of |h(xi) but within the suffix xi of p1.

Proof. (See Fig. 5.) By Lemmas 5.8 and 5.9, xi+2 and hence h′i contain at least
ri−2 = max{0, ri − 2} misfit characters. Therefore, |R1(i)| ≥ ri − 2. By Lemma 5.7,
the left end of any pattern instance in which h′i overlaps tb is strictly to the left of
|h(xi) and within the suffix xi of p1.

Definition. Let O ⊂ V be a half-done set consisting of the pattern instances
{ph1

, . . . , phj}, j ≥ 3, ph1
= p1. Let the head and core of xh1

be denoted u and v,
respectively. Let v = u′u. Suppose |v| > 1. Further, suppose phi is phi−1

shifted
distance |v| to the right, for 1 < i ≤ j. Let ic, 2 ≤ c ≤ j, be the largest index
such that ph1 [ic] is different from the character in phc aligned with it (such an index
exists by Lemma 4.7). Note that ic − ic−1 = |v|, for all c, 3 ≤ c ≤ j, and that
ph1 [i2] = ph1 [i3] = · · · = ph1 [ij]. The text character tic aligned with ph1 [ic] is called
the characteristic character of phc .

Let d be the leftmost character in the prefix uu′ of p which differs from ph1
[i2].

Define R2(tic), 3 ≤ c ≤ j, to be the text character with which |p is aligned when d is
aligned with tic . In addition, define R2(Oe) to be the set of text characters R2(tic),
3 ≤ c ≤ e ≤ j. For convenience, let R2(O) denote R2(Oj).

Lemma 5.12 (the half-done set mapping lemma). All text characters in R2(Oj)
are distinct. R2(tic) is aligned with or to the left of tic and strictly to the right of
tic−1 , for 3 ≤ c ≤ j. All characters in R2(Oc) are aligned with or to the left of the
characteristic character of phc ; in addition, they are strictly to the right of |pk+1, for
3 ≤ c ≤ j.

Proof. By construction, R2(tic) is aligned with or to the left of tic , 3 ≤ c ≤ j. In
addition, R2(tic) is at most distance |v| − 1 to the left of tic . Since ic − ic−1 = |v|,
R2(tic) is strictly to the right of tic−1

.

The only part of the lemma still unproven is the claim that all characters in
R2(Oj) are strictly to the right of |pk+1. Note that ti3 is distance |v| to the right of
ti2 , R2(ti3) is at most distance |v| − 1 to the left of ti3 , and all characters in R2(Oj)
are aligned with or to the right of R2(ti3). Since ti2 is aligned with or to the right of
|pk+1, the lemma follows.

Note that phc is eliminated by the time a comparison is made strictly to the left
of its characteristic character, for 3 ≤ c ≤ j. Further, if a successful comparison

832 RICHARD COLE AND RAMESH HARIHARAN

eliminates phc , then this comparison must involve its characteristic character.

5.2. The transfer function f . Let C be the set of text characters involved
in comparisons in Steps 1 and 2 of the presuf shift handler of section 4.2. For each
character tc ∈ C, with at most two exceptions, we define f(tc) to be a text character
td satisfying the following properties.

1. td is to the right of |pk+1.
2. td either coincides with tc or lies to the left of tc.
3. The pattern instance whose left end is aligned with td is eliminated as a result

of comparisons in Steps 1 and 2 of the presuf shift handler.
4. For every distinct tc1 , tc2 ∈ C, f(tc1) 6= f(tc2).

Furthermore, the mismatches, if any, are always included among the exceptions. We
refer to the above properties as Properties 1, 2, 3 and 4, respectively.

Since patterns with g = 1 and |xk| = 1 are special-case patterns, we assume that
g > 1 if |xk| = 1. Further, if p1[m] does not match the text, then Steps 1 and 2 of
the presuf shift handler together make at most one comparison. Therefore, we also
assume that p1[m] matches the text. Let pl be the rightmost pattern instance in A1.
Let pr be the rightmost pattern instance in V outside Ag, if any.

We split the sequence C ′ of comparisons made in Steps 1 and 2 of the presuf shift
handler into three disjoint classes as follows.

1. Class 1 consists of the comparison in Step 1. In addition, if |xk| = 1, then
Class 1 contains the comparisons which comprise the smallest prefix of C ′ having
the following property: either the last comparison in this prefix is unsuccessful or
following that comparison, exactly one pattern instance in Ag survives.

2. Class 2 consists of the comparisons in C ′ which follow all Class 1 comparisons
and are made in the suffix h(xl) of p1.

3. Class 3 consists of comparisons in C ′ which follow all Class 2 comparisons.

Note that if Class 1 contains an unsuccessful comparison, then Class 2 is empty
because no further comparisons are made in the suffix h(xl) of p1. Thus Classes 1
and 2 together have at most one unsuccessful comparison. The only other possibly
unsuccessful comparison is the last comparison in Class 3. We do not define an f
value for the last comparison in Class 3. In addition, one other comparison may not
receive an f value. If Classes 1 and 2 contain an unsuccessful comparison, then this
comparison does not receive an f value. If all comparisons in Classes 1 and 2 are
successful, then one successful comparison in one of the three classes may not receive
an f value. All other comparisons receive f values. Thus f values are never defined
for mismatches and at most two comparisons in C ′ do not receive f values.

We define f values for each class in turn. f values for Class 2 comparisons are
always defined using the set R1(l). These f values are aligned with the suffix xl of p1

and to the left of h(xl). f values for Class 3 comparisons are defined in one of three
ways. If all comparisons in Classes 1 and 2 are successful, then these f values are to
the left of the suffix xl of p1. If Class 2 contains a mismatch, then these f values are
defined using the set R1(l). If Class 2 is empty and Class 1 contains a mismatch, then
these f values are aligned with or to the right of the suffix xr+1 of p1. f values for
Classes 2 and 3 are easily seen to be distinct. f values for Class 1 comparisons are
aligned either with the suffix xr of p1 or with the suffix xr−1 of p1; in Lemma 5.17,
we show that these f values do not clash with the f values for Classes 2 and 3.

Classes 2 and 3. We consider three cases.

Case 1. Class 2 contains an unsuccessful comparison.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 833

Classes 2 and 3 together contain at most rl − 1 comparisons in addition to this
unsuccessful comparison. To see this, note that rl − 1 comparisons in addition to the
comparisons in Class 1 suffice to eliminate all but one of the pattern instances in V to
the right of pl. Further, excluding the unsuccessful Class 2 comparison and the last
comparison in Class 3, all other comparisons in Classes 2 and 3 are successful. f is
defined to map the text characters involved in these rl − 2 successful comparisons to
the text characters in R1(l) in some arbitrary order. By the h-suffix mapping lemma
and the fact that all Class 3 comparisons are to the right of p1[m] in this case, all the
text characters in R1(l) lie to the left of all the text characters involved in Class 2
and Class 3 comparisons. Clearly, Properties 2, 3, and 4 are true for these f values.
Property 1 follows from the fact that |xl| ≤ |x1| < m

2 , and hence |pk+1 is to the left
of the suffix xl of p1.

Case 2. All comparisons in Classes 1 and 2 are successful.

There are at most rl comparisons in Class 2, all of which are successful. f is
defined to map the text characters involved in rl − 2 of these rl comparisons to the
text characters in R1(l) in some arbitrary order. As in Case 1, Properties 1, 2, 3, and
4 are satisfied by these f values. This leaves at most s Class 2 comparisons for some
s ≤ 2.

Next, we define f values for Class 3 comparisons and s Class 2 comparisons.
These f values will be defined for all comparisons in Class 3 plus the s comparisons in
Class 2, with at most two exceptions. These f values will be to the left of the suffix
xl of p1 and thus clearly distinct from f values for Class 2 comparisons.

Following Class 2 comparisons, at most min{rl, 2} − s of the pattern instances
to the right of pl survive along with pattern instances in A1. Let O′ denote the
following set of min{rl, 2} pattern instances: those pattern instances to the right of
pl which survive Class 1 and Class 2 comparisons and those pattern instances which
are eliminated by one of the s Class 2 comparisons under consideration. Let O refer
to the largest half-done set consisting of pattern instances in A1 and O′. Redefine
O′ by removing pattern instances in it which are also in O. Considering comparisons
which eliminate pattern instances in O and O′ is equivalent to considering Class 3
comparisons plus the s Class 2 comparisons.

Let O = {ph1 , . . . , phe}. If l = 1, then the number of comparisons in Class 3
plus s is at most 2 − s + s = 2. In this case, we do not define f values for the
comparisons in Class 3 and the s comparisons in Class 2. Therefore, suppose that
l > 1. Each successful comparison which eliminates a pattern instance in O involves
the characteristic character of the pattern instance eliminated. Let v and u be the
core and head, respectively, of xh1 and let v = u′u. |v| > 1 because either |xk| > 1 or
|xk| = 1 and g > 1. By Lemma 5.10, v contains a misfit character.

First, consider successful comparisons which eliminate pattern instances in O. If
|O| ≤ 2, there is at most one such comparison in Class 3 and we do not define an f
value for it. Therefore, suppose |O| > 2. There are two subcases depending on the
location of the characteristic character tie of phe .

Subcase 2a. Either O′ is not empty and tie is strictly to the left of the left end of
the suffix xhe−1

of p1 or O′ is empty and tie is strictly to the left of the left end of the
suffix xhe−2 of p1.

For 3 ≤ c ≤ e, if a successful comparison is made at tic , f(tic) is defined to be
R2(tic). By the half-done set mapping lemma, these f values are strictly to the left
of the suffix xhe−1 of p1 if O′ is not empty and strictly to the left of the suffix xhe−2 of
p1 if O′ is empty. A simple case analysis (O′ equals 0, 1, 2) shows that these f values

834 RICHARD COLE AND RAMESH HARIHARAN

are strictly to the left of the left end of the suffix xl of p1, as claimed. Properties
1, 2, and 4 for these f values follow easily from the half-done set mapping lemma
while Property 3 follows from the definition of the set R2(O). At most one successful
comparison eliminating pattern instances in O does not have an f value: the one
eliminating ph2 .

Subcase 2b. Either O′ is not empty and tie is aligned with some character in the
suffix xhe−1

of p1 or O′ is empty and the characteristic character of phe is aligned with
some character in the suffix xhe−2 of p1.

In the first case, tic , the characteristic character of phc , is aligned with some
character in the suffix xhc−1

of p1, for 2 ≤ c ≤ e. Consider the set R′2 of e − 2 text
characters with which |p is aligned when the rightmost misfit character in the prefix
xhc of p, 1 ≤ c ≤ e− 2, is aligned with tb. Since v contains a misfit character, the cth
leftmost text character in R′2 is aligned with some character in the suffix xhc of p1 and
is strictly to the left of the left end of the suffix xhc+1 of p1. A successful comparison
at tic , 3 ≤ c ≤ e, is mapped by f to the (c− 2)nd leftmost character in R′2. Clearly,
all characters in R′2 are distinct and f(tic) is strictly to the left of tic . All characters
in R′2 are aligned with some character in the suffix x1 of p1. Thus Properties 1, 2,
3, and 4 are satisfied by these f values. These f values are strictly to the left of the
left end of the suffix xhe−1 of p1. Since O′ is not empty, he−1 ≤ l. Therefore, these
f values are strictly to the left of the left end of the suffix xl of p1. Again, the only
successful comparison without an f value, if any, is the one eliminating ph2

.

In the second case, tic , 4 ≤ c ≤ e, is aligned with some character in the suffix xhc−2

of p1. f values are not defined for the two leftmost comparisons under consideration.
The remaining comparisons involve text characters aligned with some character in
the suffix xh2

of p1. A successful comparison at tic , 4 ≤ c ≤ e, is mapped by f to the
(c − 3)rd leftmost character in R′2. Clearly, f(tic) is strictly to the left of tic . As in
the first case, Properties 1, 2, 3, and 4 are satisfied by these f values. All of these f
values are to the left of the left end of the suffix xhe−2

of p1. Since he−2 ≤ l for this
case, these f values are strictly to the left of the left end of the suffix xl of p1. The
only successful comparisons without f values, if any, are those eliminating ph3 and
ph2

. This ends Subcase 2b.

Before we define f values for comparisons which eliminate pattern instances in
O′, we need a lemma which will be used later when Class 3 comparisons are defined.
This lemma can be verified easily from the above description.

Lemma 5.13. If O ⊂ A1 and |O′| ≤ 1, then the f values defined in Subcases 2a
and 2b are to the left of the suffix xl−1 of p1.

Next, consider successful comparisons which eliminate pattern instances in O′.
If |O′| < 2 or no successful comparison eliminates a pattern instance in O′, then no
further f values are defined. Therefore, suppose |O′| = 2 and a successful comparison
is made to eliminate one of the pattern instances in O′. By Lemma 4.5, this com-
parison involves a text character tc which is aligned with some character in the suffix
xhe of p1. f(tc) is defined to be the text character with which |p is aligned when the
rightmost misfit character in the prefix xhe−1 of p1 is aligned with tb. Since v contains
a misfit character, f(tc) is aligned with some character in the suffix xhe−1

of p1 and is
strictly to the left of the suffix xhe of p1. f(tc) is thus to the right of and distinct from
all f values defined previously for comparisons which eliminate pattern instances in
O. Further, f(tc) is to the left of tc because tc is aligned with the suffix xhe of p1.
Since |O′| = 2, l = he, and therefore f(tc) is strictly to the left of the suffix xl of p1,
as claimed. Now Properties 1, 2, 3, and 4 are easily seen to be true for all Class 2

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 835

and 3 comparisons.

Lemma 5.14. For Case 2, f values have been defined for all but two of the com-
parisons in Classes 2 and 3. Further, the omitted comparisons include mismatches, if
any.

Proof. We just need to show that at most two of the comparisons among those
which eliminate pattern instances in O and O′ do not receive f values, for the mis-
matches never receive f values.

If |O| < 2, then there are at most two comparisons which eliminate pattern
instances in O and O′. If O′ is empty, then f values are defined for all but the last
two comparisons which eliminate pattern instances in O. Therefore, suppose O′ is not
empty and |O| ≥ 2. The only possible successful comparisons for which an f value
might not be defined are those which eliminate ph2

or one of the pattern instances in
O′. There are two cases.

First, suppose |O′| = 1. Let O′ = {pz}. The only possible successful comparisons
for which an f value is not defined are those which eliminate ph2

or pz. We show
that if one of these successful comparisons actually occurs, then there can be at most
one mismatch, and if both these successful comparisons occur, then there are no mis-
matches. (Recall that all comparisons in Classes 1 and 2 are successful.) Suppose ph2

is eliminated by a successful comparison. ph1
must be alive immediately before this

comparison and ph3
. . . phe must have been eliminated prior to this comparison. This

implies that no mismatch could have occurred before this comparison and only the
pattern instances ph1 and pz survive this comparison. Therefore, if ph2 is eliminated
by a successful comparison, then there is at most one unsuccessful comparison, and if
both ph2

and pz are eliminated by successful comparisons, then there are no unsuc-
cessful comparisons. Next, suppose pz is eliminated by a successful comparison but
no successful comparison eliminates ph2

. Each of the other comparisons in Class 3
eliminates some pattern instance in O and the first such unsuccessful comparison elim-
inates all but one of the instances in O. Therefore, there is at most one unsuccessful
comparison in this case.

Second, suppose |O| ≥ 2 and |O′| = 2. If one of the pattern instances in O′

is eliminated by a successful Class 2 or 3 comparison, then an f value is defined
for this comparison. From this point onwards, |O| ≥ 2 and |O′| = 1. Therefore, the
argument in the previous paragraph applies. On the other hand, if no successful Class
2 or 3 comparison eliminates a pattern instance in O′, then the first comparison in
Class 3 must be unsuccessful. This comparison leaves at most two pattern instances
uneliminated and thus there are at most two comparisons which eliminate pattern
instances in O and O′.

Case 3. Class 1 contains an unsuccessful comparison.

In this case, |xk| = 1 and Class 2 is empty as mentioned before. We define f
values for all but the last of the comparisons in Class 3. These f values are aligned
with or to the right of the suffix xr+1 of p1. All Class 3 comparisons are made to
the right of p1[m] in this case. Each such successful comparison matches an instance
of the character xk in pr+1 against a text character tc; tc is aligned with a non-xk
character in some pattern instance ps, s > r. f is defined to map a text character tc
matched successfully by a Class 3 comparison to the text character with which |p is
aligned when the leftmost non-xk character in p is aligned with tc. Clearly, these f
values are aligned with or to the right of the suffix xr+1 of p1 and Properties 1, 2, 3,
and 4 are satisfied by these f values.

836 RICHARD COLE AND RAMESH HARIHARAN

This finishes the description of the f function for Classes 2 and 3. The following
lemma is obvious from the above description.

Lemma 5.15. f values for Class 2 and 3 comparisons belong to one of the fol-
lowing sets of text characters:

(i) the set R1(l);
(ii) the set of text characters to the left of the suffix xl of p1 and to the right of
|pk+1;

(iii) the set of text characters aligned with or to the right of the suffix xr+1 of p1.

Further, an f value can be in set (i) only if rl−2 > 0 and in set (iii) only if Class
1 contains an unsuccessful comparison.

Class 1. We consider two cases, |xk| > 1 and |xk| = 1.

Case 1. |xk| > 1.

The only comparison in Class 1 matches tb with p1[m]. f(tb) is defined to be
tb. This mapping satisfies Property 3 because the leftmost character in p is a misfit
character in this case. If g = 1, then all other comparisons in C ′ are made to the left
of tb, and therefore all other f values are to the left of tb. If g > 1, then all other f
values are either to the left of the suffix xl of p1 or to the left of the suffix h(xl) of p1.
Since |h(xl)| ≥ 1 if g > 1, these f values are to the left of tb. Therefore, Property 4
is satisfied by all f values. Properties 1 and 2 are obvious for f(tb).

Case 2. |xk| = 1.

g > 1 by assumption. f values are defined for all comparisons in Class 1 unless
either Class 1 contains an unsuccessful comparison or r = l = 1. If Class 1 contains
an unsuccessful comparison or if r = l = 1, then one comparison in Class 1 does
not receive an f value. However, in these cases, there is at most one comparison in
Classes 2 and 3 for which an f value was not defined earlier. To see this, note that if
the last Class 1 comparison is successful and r = l = 1, then Classes 2 and 3 together
can have at most one comparison, and if the last Class 1 comparison is unsuccessful,
then Class 2 is empty and Case 3 must hold for Class 3 comparisons.

All f values defined for Class 1 comparisons will be to the left of the suffix xr+1

of p1 and aligned with either the suffix xr−1 of p1 or the suffix xr of p1. Clearly, if
pl 6= pr, pr−1, then these f values are distinct from all f values defined earlier for
Class 2 and 3 comparisons. If pl = pr−1, then rl − 2 = 0 and all f values for Class 2
and 3 comparisons are either to the left of the suffix xr−1 of p1 or aligned with or to
the right of the suffix xr+1 of p1. Therefore, f values for comparisons in Class 1 are
distinct from f values for comparisons in Classes 2 and 3 in this case. If pl = pr, then
rl − 2 < 0 and, by Lemma 5.15, all f values for Class 2 and 3 comparisons are either
to the left of the suffix xr of p1 or aligned with or to the right of the suffix xr+1 of p1.
In this case, we show that if an f value for some Class 1 comparison is aligned with
the suffix xr−1 of p1 and to the left of the suffix xr of p1, then all f values for Class 2
and Class 3 comparisons are to the left of the suffix xr−1 of p1. Thus all f values are
distinct.

The following lemma describes the distribution of Class 1 comparisons.

Lemma 5.16. Let d be the rightmost misfit character in p1. Each Class 1 com-
parison involves a text character which is aligned with or to the right of d.

Proof. Suppose two pattern instances pj1 , pj2 ∈ Ag, j1 < j2, are left uneliminated
by comparisons made at or to the right of d. Let cj1 and cj2 be the portions of pj1 and
pj2 , respectively, which overlap the suffix z of p1 starting at d. Then cj1 = cj2 = z.
Consider the characters in pj1 and pj2 aligned with the (j2 − j1)th character to the
right of d in p1. Clearly, the first of these matches xk while the second is a misfit

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 837

tb

d

p
xk

xr+1xr−1

xr

p1

text

Fig. 6. The set R3, r > 1.

character. This is a contradiction.

Note that xr contains a misfit character. Further, its suffix and prefix xr+1

are disjoint. Each contains at least k − r instances of xk. We define a set R3 of
text characters which serves as the range of f values for Class 1 comparisons. The
definition has the following property. All characters in R3 are to the left of the suffix
xr+1 of p1. If all successful Class 1 comparisons are made to the right of d or if r = 1,
then all characters in R3 are aligned with the suffix xr of p1. If a successful Class 1
comparison is made at d and r > 1, then characters in R3 are aligned with the suffix
xr−1 of p1.

First, suppose all successful Class 1 comparisons are made to the right of d. Each
successful comparison matches an occurrence of xk to the right of d against the text.
R3 is defined to be the set of text characters with which |p is aligned when d′, the
leftmost misfit character in p, is aligned with one of the text characters matched by
a Class 1 comparison. Clearly, all characters in R3 are aligned with the suffix xr of
p1. f is defined to map the text characters compared by Class 1 comparisons to the
text characters in R3 in some arbitrary order. Properties 2, 3, and 4 readily follow
for these f values. Property 1 follows from the fact that |xr| ≤ |x1| < m

2 .

Next, suppose a successful Class 1 comparison is made at d. In this case, all
comparisons in Class 1 are successful and there are at most k + 1− r comparisons in
Class 1. R3 is defined differently depending upon whether r = 1 or r > 1.

First, suppose r = 1. R3 is defined to contain the k − r text characters with
which |p is aligned when one of k − r instances of xk to the left of d′ (recall that d′

is the leftmost misfit character in p) is aligned with d. The text characters in R3 are
clearly aligned with the suffix xr of p1. f is defined to map up to k − r of the text
characters compared by Class 1 comparisons to the k − r text characters in R3 in
some arbitrary order. All of these f values are distinct and are aligned with or to
the left of d. Properties 2, 3, and 4 immediately follow for these f values. Property
1 follows from the fact that |xr| ≤ |x1| < m

2 .

Next, suppose r > 1. See Fig. 6. When p is placed with |p aligned with the left
end of the suffix xr−1 of p1, there exist at least 2(k − r) ≥ k − r + 1 instances of xk
to the left of d in p. R3 is defined to be the set of 2(k− r) text characters with which
|p is aligned when one of these 2(k − r) instances of xk is aligned with d. Clearly,
characters in R3 are aligned with the suffix xr−1 of p1. f is defined to map the text
characters compared by Class 1 comparisons to some k − r + 1 of the 2(k − r) text
characters in R3 in some arbitrary order. Properties 2 and 3 readily follow for these f
values. Property 1 follows from the fact that |xr−1| ≤ |x1| < m

2 . The distinctness of
these f values from the f values for Classes 2 and 3 follows from the following lemma.

838 RICHARD COLE AND RAMESH HARIHARAN

Lemma 5.17. If r > 1, pl = pr, and a successful Class 1 comparison is made at
d, then f values for Class 2 and 3 comparisons are to the left of the suffix xr−1 of
p1.

Proof. At most one pattern instance pr′ ∈ Ag survives a successful comparison at
d. Further, Class 1 does not contain an unsuccessful comparison. Since rl = 1, Class
2 contains at most one comparison. If this comparison is unsuccessful, then only pr′
survives; no f values are defined for Class 2 or 3 comparisons in this case. If the sole
Class 2 comparison is a successful one, then Case 2 must hold for all Class 2 and 3
comparisons. Since rl = 1, rl − 2 < 0 and, by Lemma 5.15, no f values are defined
using the set R1(l). Therefore, all f values for Class 2 and 3 comparisons in this case
are defined as in Subcases 2a and 2b. Refer to these subcases. Note that, in this case,
O consists of the pattern instances in A1 and O′ = {pr′}. From Lemma 5.13, all f
values for Class 2 and 3 comparisons are to the left of the suffix xr−1 of p1 in this
case.

This concludes the definition of the f function.

6. Presuf shifts with |x′| ≥
m

. This case can occur only for periodic patterns.

Therefore, assume that p is periodic and has the form upv
ip
p , where vp and up are the

core and head of p, respectively, and ip ≥ 2.
Recall that the lower bound of m+1

2 on the distance between consecutive presuf
shifts was crucial in deriving the comparison complexity for the case where |x′1| < m

2 .
This lower bound does not hold if |x′1| ≥ m

2 . Consecutive presuf shifts can occur
distance |vp| � m+1

2 apart. Even a single mismatch per presuf shift leads to a large
comparison complexity. Since the problem in this case lies only in the frequency of
occurrence of presuf shifts, we use the same basic algorithm, changing only the presuf
shift handler. The new presuf shift handler ensures that either two consecutive presuf
shifts are at least distance m+1

2 apart or no mismatch occurs between consecutive
presuf shifts. In fact, we show the following stronger claim about the performance of
the presuf shift handler. A presuf shift has overhead 0 if the next presuf shift occurs
a distance less than m+1

2 ahead, overhead 1 if the next presuf shift occurs a distance

less than 3(m+1)
4 ahead, and overhead at most 2 otherwise. A comparison complexity

of n(1 + 8
3(m+1)) comparisons follows.

6.1. The presuf shift handler for |x′| ≥
m

. Before describing the presuf
shift handler, we recall some definitions and assumptions made in section 4. Let tA
refer to the portion of the text with which the prefix x′1 of p is aligned following the
shift. We assume that prefix x′1 of p matches tA following a presuf shift and that the
variable tlast has been appropriately set to prevent this assumption from leading to
an incorrect inference. Let ta refer to the rightmost character in tA.

As for the case where |x′1| < m
2 , the presuf shift handler considers all presuf

pattern instances, i.e., those pattern instances in which a prefix (possibly null) of p
matches some suffix of tA. In a presuf pattern instance, the prefix matching a suffix of
tA is a presuf of p and is called the presuf corresponding to this presuf pattern instance.
Presuf pattern instances are of two types. The first type consists of those presuf
pattern instances whose corresponding presufs have the form upv

l
p, 1 ≤ l ≤ ip − 1.

The second type consists of those presuf pattern instances whose corresponding presufs
are less than |vp| in length. We identify a presuf pattern instance p′α of the second
type as follows. If |up| > 0, then p′α is the presuf pattern instance corresponding to
the presuf up. If |up| = 0, then p′α is the presuf pattern instance corresponding to
the null presuf; i.e., |p′α is to the immediate right of ta. The following observation

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 839

enables us to work with only presuf pattern instances of the second type while making
comparisons within a text window γ of length |vp| to the right of ta.

Lemma 6.1. A presuf pattern instance of the first type matches all text characters
in the window γ if and only if p′α matches all characters in that window.

Proof. The portion of p′α which overlaps γ is identical to vp, as is the corresponding
portion of any presuf pattern instance of the first type.

If p′α is eliminated by comparisons in γ, then so are all presuf pattern instances of
the first type. This forces the next presuf shift to occur at least distance m− |vp| ≥
m
2 + 1 to the right. If p′α is not eliminated by comparisons in γ, then presuf pattern
instances of the first type also survive, and therefore the next presuf shift can occur
as little as distance |vp| to the right. In this case, it is important to ensure that no
mismatches are made in γ.

The presuf shift handler has five steps and works broadly as follows. As in the
presuf shift handler of section 4.2, the first two steps identify a presuf pattern instance
p′e with the following property: all presuf pattern instances that survive the first two
steps are presuf overlaps of p′e. This is accomplished by making comparisons in a
manner similar to the presuf shift handler of section 4.2, but with a single difference.
This difference is aimed at ensuring that the first mismatch eliminates p′α. Steps 3,
4, and 5 are, however, identical to the corresponding steps of the earlier presuf shift
handler.

Steps 1 and 2 proceed as follows to determine p′e. They consider only presuf
pattern instances of the second type and eliminate all but one of these. The survivor
determines p′e; i.e., if the survivor is p′α, then p′e is the leftmost presuf pattern instance,
and otherwise p′e is the survivor itself. We show that in order to eliminate among
presuf pattern instances of the second kind, it suffices to consider suitable prefixes of
these presuf pattern instances. We need the following definitions in order to describe
Steps 1 and 2 in detail. Consider the leftmost presuf pattern instance of the second
type and let β be the length of the corresponding presuf. Suppose there are k′′ + 1
presuf pattern instances of the second type. We define p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1 such that p′′j ,

1 ≤ j ≤ k′′+ 1, is the prefix of length m′′ = β+ |vp| of the jth leftmost presuf pattern
instance of the second type. Let x′′j , 1 ≤ j ≤ k′′ + 1, be the presuf corresponding to
the jth leftmost presuf pattern instance of the second type. We call x′′j the presuf
corresponding to p′′j . Let p′′α refer to the length m′′ prefix of p′α and p′′ refer to the
length m′′ prefix of p. The following lemma shows that in order to eliminate all but
one of the presuf pattern instances of the second kind, it suffices to consider only
p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1.

Lemma 6.2. At most one of p′′1 , . . . , p
′′
k′′ , p

′′
k′′+1 matches γ.

Proof. Let x and y be the portions overlapping γ in some two of p′′1 , . . . , p
′′
k′′+1.

Then x and y are different cyclic shifts of vp. If x = y, then vp is cyclic, a contradic-
tion.

Let V ′′ = {p′′1 , . . . , p′′k′′+1}. Note that Lemmas 4.3–4.7 continue to hold if pj , xj ,
V , p, and m are replaced by p′′j , x′′j , V ′′, p′′, and m′′, respectively, for 1 ≤ j ≤ k′′+ 1.
Henceforth, these substitutions are implicit in all references to these lemmas. The
elements in V ′′ are divided into groups A′′1 , . . . , A

′′
g′′ in accordance with Lemma 4.3.

Remark. The presuf shift handler being described does not work for patterns for
which |x′′k′′ | = 1 and g′′ = 1. Presuf shifts for these exception patterns are handled
separately in section 6.5.

With this background, we describe the five steps of the presuf shift handler.

Step 1. The characters in p′′1 , . . . , p
′′
k′′ aligned with p′′1 [m′′], the rightmost character

840 RICHARD COLE AND RAMESH HARIHARAN

in p′′1 , are identical. If the character in p′′k′′+1 aligned with p′′1 [m] is also identical to it,
then p′′1 [m] is compared with the aligned text character. A mismatch eliminates all of
p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1 and the basic algorithm is restarted with |p placed immediately to

the right of |pk′′+1. A match leads to Step 2.

Step 2. All but one of p′′1 , . . . , p
′′
k′′+1 are eliminated in this step by making up to

k′′ comparisons, at most two of which are unsuccessful. Further, p′′α is eliminated by
the first unsuccessful comparison. As in Step 2 of section 4.2, there are two phases.

Phase 1 is identical to Phase 1 of section 4.2; i.e., at every step the rightmost
character c in p′′1 having the following property is compared with the aligned text
character: the character aligned with c in at least one of the surviving elements in V ′′

is different from c. By Lemma 4.6, the outcome of Phase 1 is a half-done set O.

Lemma 6.3. p′′α ∈ O if and only if all of the comparisons in Phase 1 are success-
ful.

Proof. All comparisons in Phase 1 are made in the suffix x′′1 of p1 because, by
Lemma 4.5, successful comparisons in that suffix leave a half-done set uneliminated.
x′′1 is a presuf of p′′1 and therefore a suffix of vp. By the manner in which p′α is defined,
the portion of p′′α that overlaps γ is identical to the string vp. Therefore, a mismatch
in Phase 1 eliminates both p′′1 and p′′α while a match in Phase 1 eliminates neither.
The lemma follows.

If Phase 1 ends with a mismatch or if p′′α = p′′1 , then Phase 2 is identical to
Phase 2 of section 4.2; i.e., all but one of the elements in O are eliminated by making
comparisons according to a right-to-left sequence. Note that in both cases, the first
mismatch eliminates p′′α. Otherwise, if p′′α 6= p′′1 and all comparisons in Phase 1 are
successful, then we modify Phase 2 as follows so as to ensure that the first mismatch
eliminates p′′α.

Phase 2 proceeds exactly as Phase 2 of Step 2 in section 4.2 until p′′α becomes
the rightmost element in O. Any mismatch in this process terminates Phase 2 and
eliminates p′′α and all elements in O to the left of p′′α. If no mismatch occurs in this
process, then let the surviving elements in O be {p′′h1

, . . . , p′′he}, where p′′h1
= p′′1 and

p′′he = p′′α. These elements are eliminated using a left-to-right sequence of comparisons
instead of the right-to-left sequence used in Step 2 of section 4.2. This left-to-right
sequence ensures that a mismatch eliminates p′′α. Let de be the leftmost character in
p′′he such that p′′he differs from the aligned character in p′′he−1

. By Lemma 6.2, de is

aligned with or to the left of p′′1 [m′′] and to the right of ta. If e = 2, then a comparison
at de terminates Phase 2 with a mismatch eliminating p′′he and a match eliminating
p′′h1

. Suppose e > 2. Then x′′h1
is periodic with core, say, v. Let dj , 2 ≤ j ≤ e − 1,

be the character in p′′he which is distance (e − j)|v| to the left of de. The characters
d2, . . . , de are compared with the aligned text characters in sequence until either a
mismatch occurs or the sequence is exhausted. The following lemma shows that at
most one element of O survives these comparisons.

Lemma 6.4. A mismatch at dj leaves only pij−1 uneliminated. A match at dj
eliminates pij−1

.

Proof. If e = 2, then the lemma is clearly true. Suppose e > 2. From the
definition of de, it follows that the prefix of p′′he ending at de is periodic with core
of size |v| while the prefix of p′′he−1

is not; therefore, d2 = d3 = · · · = de 6= de+1,

where de+1 is the character which is distance |v| to the right of de. It follows that the
characters in p′′hj , . . . , p

′′
he

aligned with dj are identical to each other but different from

the character in p′′hj−1
aligned with dj . Therefore, a match at dj eliminates p′′hj−1

. A

mismatch at dj eliminates p′′hj , . . . , p
′′
he

and the preceding successful comparisons at

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 841

d2, . . . , dj−1 eliminate p′′h1
, . . . , p′′hj−2

. The lemma follows.

This completes Step 2. At most k′′ comparisons are made in this step, at most two
of which result in mismatches. Further, p′′α survives only if there are no mismatches.
The sequence of comparisons made in Step 2 can be represented by a tree ET ′′, akin
to the tree ET of section 4.2. The only difference between ET ′′ and ET is that the
sequence corresponding to a portion of Phase 2 may now be a left-to-right sequence
if Phase 1 does not end in a mismatch and p′′α 6= p′′1 . We conclude Step 2 with the
following lemma.

Lemma 6.5. All but at most one of p′′1 , . . . , p
′′
k′′ , p

′′
k′′+1 can be eliminated by making

up to k′′ comparisons using the O(k′′)-sized binary comparison tree ET ′′. At most
two of these comparisons result in mismatches. If p′′α survives, then no comparisons
result in mismatches. Moreover, the sequence of comparisons made by the elimination
strategy consists of two sequences: a right-to-left sequence followed by either another
right-to-left sequence or a left-to-right sequence.

We describe Steps 3, 4, and 5 next. Let p′′e be the only element of V ′′ to survive
Steps 1 and 2. If p′′e = p′′α, then define p′e to be the leftmost presuf pattern instance. If
p′′e 6= p′′α, then let p′e be the presuf pattern instance of which p′′e is a prefix; i.e., p′e and
p′′e have their left ends aligned. Clearly, p′e is the leftmost presuf pattern instance to
survive Steps 1 and 2. Let Q denote the set of pattern instances which overlap p′e and
have their left end to the right of |p′′k′′+1. In the elimination process, some elements
of Q may also have been eliminated from being potential matches. They need not be
reconsidered. To this end, a subset Qx of Q consisting of pattern instances consistent
with comparisons in Steps 1 and 2 is associated with each terminal node x in ET ′′.
The maintenance of Qx is similar to the description in section 4.5 and is described in
section 6.4. Suppose that the elimination process terminates at terminal node x. Let
Q′ = {p′e} ∪ Qx. Steps 3, 4, and 5 are now identical to the corresponding steps in
section 4.2.

6.2. Comparison complexity. In order to determine the comparison complex-
ity, we need to define a transfer function f ′′ akin to the transfer function f defined in
section 5. We state the following lemma describing the properties of f ′′. The proof
of this lemma is deferred to section 6.3.

Lemma 6.6. Let C be the set of text characters involved in comparisons in Steps
1 and 2 of the presuf shift handler of section 6.1. For each character tc ∈ C, with at
most two exceptions, there exists a text character f ′′(tc) = td satisfying the following
properties:

1. td is to the right of |p′′k′′+1.
2. td either coincides with tc or lies to the left of tc.
3. The pattern instance whose left end is aligned with td is eliminated as a result

of comparisons in Steps 1 and 2 of the presuf shift handler.
4. For every distinct tc1 , tc2 ∈ C, f(tc1) 6= f(tc2).

Furthermore, mismatches, if any, are always included among the exceptions.
The following lemma determines the comparison complexity of the algorithm.
Lemma 6.7. If p is not a special-case pattern, then the comparison complexity of

the algorithm is bounded by n(1 + 8
3(m+1)).

Proof. A presuf shift occurs either with |x′1| < m
2 or with |x′1| ≥ m

2 . In the former
case, it was shown in Lemma 4.12 that a presuf shift can have overhead at most two
and that an overhead of two implies that the next presuf shift occurs at least distance
3(m+1)

4 to the right. Further, m+1
2 is a lower bound on the distance between two

consecutive presuf shifts in this case. We show similar properties for presuf shifts

842 RICHARD COLE AND RAMESH HARIHARAN

with |x′1| ≥ m
2 . Specifically, we show that a presuf shift can have overhead at most

two. Further, we show that an overhead of one forces the next presuf shift to occur at
least distance m+1

2 to the right and an overhead of two forces the next presuf shift to

occur at least distance 3(m+1)
4 to the right. We show the above by giving a charging

scheme for the presuf shift handler of section 6.1. The comparison complexity of the
algorithm now follows.

Charging scheme. As in Lemma 4.12, the run of the algorithm is divided into
phases; a phase can be of one of four types. The ranges of the text characters charged
in each phase type remain exactly the same as in Lemma 4.12. The charging scheme
for Type 1 and Type 2 phases also remains exactly the same. Only the charging
scheme for Type 3 and Type 4 phases is modified in accordance with the presuf shift
handler of section 6.1.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 . Let q1 and q2 refer
to the leftmost surviving pattern instances at the beginning and end of that phase,
respectively. Note that q1 is a presuf overlap of the pattern instance q′, the leftmost
uneliminated pattern instance prior to the presuf shift which initiated this phase.
Specifically, the prefix x′1 of q1 is aligned with the suffix x′1 of q′ (recall that on a
presuf shift, we assume that the prefix x′1 of q1 matches the text). Recall that ta is
the text character aligned with q′|.

Consider the comparisons made by the current use of the presuf shift handler of
section 6.1. If a mismatch occurs in Step 1, the current phase ends immediately and
the basic algorithm is resumed. The presuf shift in this case has overhead one and the
next presuf shift occurs at least distance m + 1 to the right. Next, suppose that the
comparison in Step 1 is successful. Let p′e be the presuf pattern instance to survive
the elimination using tree ET ′′ in Step 2. After the presuf shift handler finishes, one
of three scenarios ensues. We consider each in turn.

1. All pattern instances overlapping p′e are eliminated apart from its presuf over-
laps, and p′e or at least a suffix of p′e is matched. This is a Type 4 phase. We consider
two cases, depending upon whether p′e is a presuf pattern instance of the first or the
second type.

First, suppose p′e is of the first type; i.e., it is the leftmost presuf pattern instance.
Then no mismatches are made in Steps 1, 2, 3, 4, or 5. All comparisons made by the
presuf shift handler are charged to the text characters compared. The bit vector BV
ensures that each of these comparisons involves a different text character. Thus each
text character which lies to the right of ta and is aligned with or to the left of p′e| is
charged at most once. In this case, the overhead of this presuf shift is zero.

Next, suppose p′e is of the second type. Then p′′α is eliminated in Step 2. All
comparisons in Steps 1, 3, 4, and 5 and all but at most two comparisons in Step 2
are successful. Each successful comparison is charged to the text character compared.
The bit vector BV ensures that each of these comparisons involves a different text
character. Thus each text character which lies to the right of ta and is aligned with
or to the left of p′e| is charged at most once. At most two comparisons in Step 2 are
unsuccessful, so this shift has overhead at most two. If there are two mismatches
in Step 2, then we claim that p′′1 is eliminated; in addition, if x′′1 is periodic, with
core v and head u, say, then all elements in V ′′ whose associated presufs have the
form uvo, o ≥ 1, are also eliminated. (This can be shown in a manner similar to the
corresponding proof in Lemma 4.12.) Let p′′e be the m′′-length prefix of p′e and let
x′′e be the presuf associated with p′′e . From the above, it follows that x′′1 = x′′ezx

′′
e , for

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 843

some nonempty string z. Since |x′′1 | < |vp|, p′′e = x′′1wx
′′
1 for some nonempty string w.

Therefore, |x′′e | ≤ m′′−3
4 ≤ m−3

4 . This guarantees that the next presuf shift occurs at

least distance 3(m+1)
4 to the right. If there is just one mismatch in Step 2, then since

|x′′1 | < |vp| ≤ m
2 , the next presuf shift occurs at least distance m+1

2 to the right.
2. p′e is eliminated. In addition, there is some pattern instance qc overlapping

p′e, such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched. This is also a Type 4 phase.

Each comparison in Steps 1 and 2 with a text character to the left of |qc for which
function f ′′ is defined is charged to the text character specified by the function f ′′,
called its f ′′ value; f ′′ values are distinct by definition. Comparisons in Step 3 fall
into one of three categories:

1. comparisons which eliminate pattern instances whose left ends lie to the right
of |p′′k′′+1 and to the left of |qc;

2. comparisons which eliminate pattern instances whose left ends lie to the right
of |qc;

3. the comparison which eliminates p′e.
Each comparison in the first category is charged to the text character aligned with the
left end of the pattern instance eliminated. By the definition of the function f ′′, these
text characters do not occur in the range of f ′′ values. Comparisons in the second
category, along with the comparisons made in Steps 4 and 5 and those successful
comparisons in Steps 1 and 2 that involve text characters overlapping qc, are charged
to the text characters compared. BV ensures that each of these comparisons involves
a distinct text character. Thus each text character which lies to the right of |p′′k′′+1

and is aligned with or to the left of qc| is charged at most once. The comparison
that eliminates p′e is charged to the text character aligned with |p′′k′′+1. Since all f ′′

values lie to the right of |p′′k′′+1 and all pattern instances eliminated by comparisons
in the first category have left ends to the right of |p′′k′′+1, this text character is charged
exactly once. The two comparisons in Step 2 lacking f ′′ values constitute the overhead
of this presuf shift. Since p′e is eliminated, the next presuf shift occurs at least distance
m+ 1 to the right of the current presuf shift.

3. p′e is eliminated as are all pattern instances overlapping p′e. This is a Type 3
phase.

Let qd denote the leftmost surviving pattern instance. All comparisons in Steps
1 and 2 for which function f ′′ is defined are charged to their f ′′ values. f ′′ values are
distinct by definition. Excluding the comparison which eliminates p′e, each comparison
in Steps 3 and 4 eliminates some pattern instance whose left end lies to the right of
|p′′k′′+1 and to the left of |qd. Each such comparison is charged to the text character
aligned with the left end of the pattern instance eliminated. These text characters
cannot occur in the range of the function f ′′ and hence are charged only once. Thus
each text character which lies to the right of |p′′k′′+1 and to the left of |qd is charged
at most once. The comparison that eliminates p′e is charged to the text character
aligned with |p′′k′′+1. The two comparisons in Step 2 lacking f ′′ values constitute the
overhead of this presuf shift. Since p′e is eliminated, the next presuf shift occurs at
least distance m+ 1 to the right of the current presuf shift.

6.3. The transfer function f ′′. In this section, we prove Lemma 6.6. The
definition of the function f ′′ is similar to that of the function f in section 5. This is
hardly surprising since the elimination procedure ET ′′ is similar to the elimination
process ET , the only difference between the two being that the former switches to a
left-to-right comparison sequence in some cases.

844 RICHARD COLE AND RAMESH HARIHARAN

First, note that each of the definitions and lemmas in section 5.1 continue to hold
if p′′j , x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replace pj , xj , V , p, A, g, k, and m, respectively,
for 1 ≤ j ≤ k′′ + 1.

Since patterns with g′′ = 1 and |x′′k | = 1 are special-case patterns, we assume that
g′′ > 1 if |x′′k | = 1. If p′′1 [m′′] does not match the text, then Steps 1 and 2 of the presuf
shift handler make at most one comparison. Therefore, we also assume that p′′1 [m]
matches the text. Let p′′l be the rightmost element in A′′1 . Let p′′r be the rightmost
element in V ′′ outside A′′g′′ , if such a pattern instance exists.

As in section 5.2, we split the sequence C ′ of comparisons made in Steps 1 and 2
of the presuf shift handler into three classes as follows.

1. Class 1 consists of the comparison in Step 1. In addition, if |x′′k | = 1, then
Class 1 contains the comparisons which comprise the smallest prefix of C ′ having
the following property: either the last comparison in that prefix is unsuccessful or
following that comparison, exactly one pattern instance in A′′g′′ survives.

2. Class 2 consists of the comparisons in C ′ which follow all Class 1 comparisons
and are made in the suffix h(x′′l) of p′′1 .

3. Class 3 consists of comparisons in C ′ which follow all Class 2 comparisons.

f ′′ values are defined by considering 3 cases.

Case 1. Suppose Phase 1 of Step 2 terminates with a mismatch or p′′α = p′′1 . Then
ET ′′ eliminates among elements in V ′′ exactly as ET eliminates among the elements
of V . Therefore, f ′′ values for comparisons are defined exactly as in section 5.2 with
p′′j , x′′j , V ′′, p′′, A′′, g′′, k′, and m′′ replacing pj , xj , V , p, A, g, k, and m, respectively,
for 1 ≤ j ≤ k′′ + 1.

Case 2. Suppose p′′α = p′′2 or the half-done set left uneliminated by Phase 1 has
at most two elements. The only difference between the way ET ′′ eliminates among
the elements in V ′′ and ET eliminates among elements in V is in the last comparison
of Step 2. Note that in section 5.2, the last comparison in Step 2 is not given an f
value. Therefore, f ′′ values for comparisons in this case are again defined exactly as
in section 5.2 with p′′j , x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replacing pj , xj , V , p, A, g, k,
and m, respectively, for 1 ≤ j ≤ k′′ + 1.

Case 3. Suppose all comparisons in Phase 1 are successful, p′′α 6= p′′1 , p
′′
2 , and the

half-done set which survives Phase 1 has at least three elements. The only difference
between the way ET ′′ eliminates among the elements in V ′′ and ET eliminates among
the elements in V is in the portion of Phase 2 that makes comparisons according to
a left-to-right sequence. As we will show in Lemma 6.11, this left-to-right sequence
involves only text characters to the left of the suffix x′′1 of p′′1 . Consequently, Class 1
and Class 2 comparisons are not affected by this sequence.

f ′′ values for comparisons in Class 1 are defined exactly as in section 5.2 with p′′j ,
x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replacing pj , xj , V , p, A, g, k, and m, respectively, for
1 ≤ j ≤ k′′ + 1. Consider Class 2 comparisons next. At most one element of V ′′ will
survive a mismatch in Class 2, if any, because Phase 1 has no mismatches. Therefore,
if a mismatch occurs in Class 2, then Class 3 is empty and f ′′ values for Class 2
comparisons are defined exactly as in section 5.2 with the appropriate substitutions
mentioned above. Otherwise, if all comparisons in Class 2 are successful, then f ′′

values for all but some s, s ≤ 2, of the comparisons in Class 2 are defined in the
same manner. It remains to define f ′′ values for Class 3 comparisons and s Class 2
comparisons when all comparisons in Class 2 are successful. This involves modifying
only Case 2 of the definition of f values for Class 2 and Class 3 comparisons in section
5.2. We define f ′′ values for all but two of these comparisons. The range of these f ′′

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 845

values is the same as the range of the f values defined for this subcase, i.e., to the
left of the suffix x′′l of p′′1 and to the right of |p′′k+1.

Following Class 1 and 2 comparisons, at most min{rl, 2} − s of the elements of
V ′′ to the right of p′′l survive along with the elements in A′′1 . Let O′ refer to the set
of min{rl, 2} elements in V ′′ which includes elements which survive comparisons in
h(x′′l) and elements which are eliminated by one of the s Class 2 comparisons under
consideration. Let O refer to the largest half-done set consisting of elements in A′′1 and
O′. Redefine O′ by removing pattern instances in it which are also in O. Considering
comparisons which eliminate pattern instances inO and O′ is equivalent to considering
Class 3 comparisons plus s of the Class 2 comparisons. Let O = {p′′h1

, . . . , p′′he}. Let
v and u be the core and head, respectively, of x′′h1

and let v = u′u. |v| > 1 because
either |x′′k | > 1 or |x′′k | = 1 and g′ > 1. By Lemma 5.10, v contains a misfit character.
If l = 1, then the number of comparisons in Class 3 plus s is at most 2 − s + s = 2.
In this case, we do not define an f ′′ value for the comparisons in Class 3 and the s
comparisons in Class 2. Therefore, suppose that l > 1.

The comparisons given by tree ET ′′ in this case form two sequences; the first
sequence which includes Phase 1 and part of Phase 2 is a right-to-left sequence and
the second sequence is a left-to-right sequence. The following lemmas show some
properties which are necessary for defining f ′′.

Lemma 6.8. The portion of p′′α which overlaps the suffix x′′i , 1 ≤ i ≤ α, of p′′1
matches x′′i .

Proof. x′′i is a suffix of vp. The length |vp| substring of p′′α which is to the
immediate right of ta is identical to vp.

Lemma 6.9. p′′α ∈ O and |O| ≥ 3.

Proof. Since all comparisons in Phase 1 are successful, p′′1 survives Phase 1.
By Lemma 6.3, p′′α also survives. If p′′α 6∈ O, then p′′1 and p′′α do not form a half-
done set with any other element in V ′′. Therefore, the cardinality of the half-done
set which survives Phase 1 would be at most 2, which is a contradiction. Thus
p′′α ∈ O. p′′2 must form a half-done set along with p′′1 and p′′α; otherwise, no other
element in V ′′ forms a half-done set with p′′1 and p′′α and, consequently, at most two
elements in V ′′ would survive the successful Phase 1 comparisons. By Lemma 6.8,
p′′1 and p′′α survive successful comparisons in h(x′′l), and then by Lemma 5.3, p′′2 also
survives these comparisons. Therefore, p′′2 ∈ O also. Since p′′α 6= p′′1 , p

′′
2 , the lemma

follows.

Corollary 6.10. The half-done set which survives Phase 1 must be a subset
of O.

Proof. Both p′′1 and p′′α survive successful comparisons in Phase 1 and both are
elements of O. The only elements in V ′′ which can form a half-done set with p′′1 and
p′′α are those in O.

Lemma 6.11. The leftmost character compared by ET ′′ in the first (right-to-left)
sequence is at least distance |v| to the right of the rightmost character compared in
the second (left-to-right) sequence. The rightmost character compared in the latter
sequence is to the left of the suffix x′′1 of p′′1 .

Proof. Let d′′ be the rightmost position in p′′α such that p′′α[d′′] is aligned with
some character in p′′1 and p′′α[d′′] 6= p′′α[d′′ + |v|]. Such an index exists by Lemma 4.7.
All comparisons in the second sequence are aligned with or to the left of p′′α[d′′]. All
characters in the first sequence compared in Phase 2 are aligned with or to the right
of p′′α[d′′ + |v|]. All characters compared in Phase 1 involve characters in the suffix
x′′1 of p′′1 . By Lemma 6.8, p′′α[d′′] is to the left of the suffix x′′1 of p′′1 . The lemma

846 RICHARD COLE AND RAMESH HARIHARAN

follows.

Corollary 6.12. Successful comparisons which eliminate elements of O are
made at least distance |v| apart.

Lemma 6.13. The portion of p′′he that overlaps the suffix x′′he−2
of p′′1 matches

that suffix.

Proof. Since p′′α ∈ O and p′′α 6= p′′1 , p
′′
2 , it follows from Lemma 6.8 that (uu′)2 is

a suffix of p′′[1 . . .m′′ − |x′′1 |]. Therefore, the portion of p′′he that overlaps the suffix
x′′he−2

of p′′1 matches that suffix.

Corollary 6.14. All successful comparisons which eliminate an element of O
are made to the left of the suffix x′′he−2

of p′′1 .

We now define the f ′′ function for this case.

First, consider comparisons which eliminate elements of O′. From Corollary 6.10,
it follows that all elements of O′ must be eliminated by Phase 1 comparisons. These
comparisons have to be successful because all comparisons in Phase 1 are successful.
If |O′| = 2, then, by Lemma 4.5, the first such comparison is made in the suffix
x′′he of p′′1 . If |O′| = 2 or |O′| = 1, then, by Lemma 6.13, the portion of p′′he which
overlaps the suffix x′′he−1

of p′′1 matches that suffix and therefore, by Lemma 4.5, the

last comparison which eliminates an element of O′ is made in the suffix x′′he−1
of p′′1 .

Consider the text characters tc and t′c with which |p′′ is aligned when the rightmost
misfit characters in the prefixes x′′he−1

and x′′he−2
, respectively, of p′′ are aligned with

tb. Since v is a suffix of x′′he−1
and x′′he−2

and since v contains a misfit character, tc
is aligned with the suffix x′′he−1

of p′′1 and to the left of the suffix x′′he of p′′1 while t′c is

aligned with the suffix x′′he−2
of p′′1 and to the left of the suffix x′′he−1

of p′′1 . If |O′| = 2,

then f ′′ is defined to map the text characters involved in comparisons which eliminate
elements of O′ to the text characters tc and t′c. If |O′| = 1, then f ′′ is defined to map
the text character involved in the comparison which eliminates the only element of
O′ to the text character t′c. A simple case analysis (p′′l = p′′he , p

′′
he−1

, p′′he−2
) shows that

these f ′′ values are to the left of p′′l , as claimed. The two f ′′ values are clearly distinct
and to the left of their respective text characters. Further, they are aligned with the
suffix x′′1 of p′′1 . Since |x′′1 | < m′′

2 , these f ′′ values are to the right of |p′′k′′+1.

Next, consider comparisons which eliminate elements of O, excluding the leftmost
and the last such comparison. The remaining comparisons must be successful. f
is defined to map the text character tc involved in such a comparison to the text
character with which |p′′ is aligned when the leftmost character in p′′ which differs
from tc is aligned with tc. Clearly, f ′′(tc) is aligned with or to the left of tc. Since
uu′ contains at least two characters, f ′′(tc) is at most distance |v|− 1 to the left of tc.
It follows from Corollary 6.12 that f ′′(tc) is distinct from the f ′′ values for all other
text characters involved in successful comparisons which eliminate elements of O. By
Corollary 6.14, these f ′′ values are to the left of f ′′ values for successful comparisons
which eliminate elements of O′ and therefore to the left of p′′l . Only the leftmost
text character involved in a comparison which eliminates an element of O is within
distance |v| of ta; the rest are at least distance |v| + 1 to the right of ta. Therefore,
these f ′′ values are to the right of |p′′k′′+1.

This concludes the definition of the transfer function f ′′.

6.4. Data-structure details. It remains to describe the maintenance of the sets
Qx for each terminal node x of tree ET ′′. These sets can be maintained exactly as
described in section 4.5 but with the following difference: the sequence of comparisons
corresponding to Phase 2 in Step 2 of the elimination strategy using ET ′′ is a left-to-

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 847

right sequence if all comparisons in Phase 1 are successful.
As in section 4.5, let l1, . . . , lh be the nodes, in order of appearance, on the

leftmost path from the root of ET ′′. Consider the largest i such that tcli , . . . , tclh−1

(recall from section 4.5 that tcx is the text character compared at node x of ET ′′) is
a left-to-right sequence. For all terminal nodes in ET ′′ which are not in the subtree
rooted at li, the data structure is maintained exactly as in section 4.5. Qlh can be
stored explicitly. It remains to describe the data structure for terminal nodes in the
right subtrees of li, . . . , lh−1.

Note that if a mismatch occurs at tclj , i ≤ j ≤ h − 1, at most two elements in
V ′′ survive. Therefore, for each terminal node x in the right subtree of lj , either p(x)
or p(p(x)) equals lj , where p(x) is the parent of x. From the definition of the sets Qx
in section 4.5, it follows that for terminal nodes x and y in the right subtree of lj ,
Qx = Qy. The following lemma is crucial.

Lemma 6.15. Let terminal node x1 be in the right subtree of lj1 and terminal
node x2 be in the right subtree of lj2 , i ≤ j1, j2 ≤ h − 1, j2 > j1. If q ∈ Qx1

and
q ∈ Qx2

, then q occurs at all terminal nodes in the right subtrees of li, . . . , lj1 .
Proof. Clearly, q cannot overlap tclj1 . Since tcli , . . . , tclh−1

form a left-to-right
sequence, q cannot overlap tci, . . . , tcj1 . Further, since q occurs at some terminal
node in the subtree rooted at li, characters in q which overlap tcl1 , . . . , tcli−1 match
the characters c1, . . . , ch−1, respectively. The lemma follows from the definition of the
sets Qx.

Corollary 6.16. Suppose q occurs at some terminal node in the subtree T
rooted at li. Further, suppose j is the largest number, if any, such that i ≤ j ≤ h− 1
and q does not overlap tclj . Then q occurs at all terminal nodes in the right subtrees
of li, . . . , lj.

Corollary 6.16 immediately gives a linear-space scheme for storing the sets Qx
for terminal nodes x in the subtree T rooted at li. Two sets Comj and Specj are
maintained at each node lj , i ≤ j ≤ h − 1. A pattern instance q is added to Comj

if it occurs at some terminal node in T and overlaps tclj+1
but not tclj . A pattern

instance q is added to Specj if it overlaps tclj and occurs at a terminal node in the
right subtree of lj . Each q can be added to at most one Com set and one Spec set;
thus, the total space used is linear. Qx is readily seen to equal Comj ∪ Comj+1 ∪
· · · ∪ Comh−1 ∪ Specj . Note that each pair of Com sets is disjoint and Comk is
disjoint from Specj , for each j ≤ k ≤ h − 1. In order to obtain Qx as a sorted list,
it suffices to maintain each of the Com and Spec sets as ordered lists which are then
appended together. Thus obtaining any particular Qx takes O(m) time. Qlh is stored
explicitly and hence can be obtained as a list in constant time.

6.5. Presuf shift handler for special-case patterns. We describe the presuf
shift handler for patterns for which |x′′k | = 1 and g′′ = 1. This presuf shift handler
leads to an overhead of at most two per presuf shift. We show that if a presuf shift

has overhead two, then the next presuf shift must occur distance at least 3(m+1)
4 to

the right, and if a presuf shift has overhead one, then the next presuf shift must occur
distance at least m+1

2 to the right. A comparison complexity of n(1+ 8
3(m+1)) follows.

Let b = x′′k . p contains at least two different characters. Therefore, vp and p′′

both contain at least two different characters. Let p′′[j] and p′′[j′] be, respectively,
the leftmost and rightmost characters in p′′ which differ from b. Let tc be the text
character to the immediate right of ta.

We consider two cases, namely |x′′1 | <
|vp|
2 and |x′′1 | ≥

|vp|
2 . The former case has

the advantage that if all presuf pattern instances of the first type (recall that presuf

848 RICHARD COLE AND RAMESH HARIHARAN

pattern instances were classified into two types in section 6) are eliminated, then the

next presuf shift occurs distance at least 3(m+1)
4 to the right. The absence of this

property in the latter case makes it more complicated.

Case 1. |x′′1 | <
|vp|
2 .

Step 1. Step 1 locates the leftmost non-b text character td to the right of ta.
Following Step 1, either the basic algorithm is resumed or p′e, the leftmost surviving
pattern instance, is determined and Step 2 follows. This is done as follows. Text
characters to the right of ta and to the left of p′′α[j] are compared from left to right
with the character b. A mismatch in this process terminates Step 1. If no mismatch
occurs, then p′′α[j] is compared with the aligned text character. A match terminates
Step 1. In case of a mismatch, text characters aligned with or to the right of p′′α[j]
are compared from left to right with the character b. Step 1 then terminates when a
mismatch occurs or when the right end of the text is reached.

One of the following situations now holds:
1. td is to the left of p′′1 [j]. p′′1 , . . . , p

′′
k+1 are eliminated and the basic algorithm is

resumed with |p placed to the right of the text character that mismatched.
2. td is aligned with p′′i [j], i 6= α. p′e is the pattern instance whose left end is

aligned with |p′′i .
3. td is aligned with p′′α[j] and td = p′′α[j]. p′e is defined to be the leftmost presuf

pattern instance.
4. td is aligned with p′′α[j] but td 6= p′′α[j]. The basic algorithm is resumed with |p

immediately to the right of te.
5. td exists but does not satisfy any of the above cases. p′e is the pattern instance

such that p′e[j] is aligned with td.
6. td does not exist. There are no further occurrences of the pattern in the text

and the algorithm terminates.
Steps 2 and 3. Let qc denote p′e. Then Steps 2 and 3 are identical to the corre-

sponding steps in the presuf shift handler for special-case patterns described in section
4.4.

Note that at most two mismatches are made in Step 1 and the first mismatch
eliminates p′′α.

Lemma 6.17. If p is a special-case pattern and |x′′1 | <
|vp|
2 , then the comparison

complexity of the algorithm is n(1 + 8
3(m+1)).

Proof. We give charging strategies to show that a presuf shift can have overhead
at most two. Further, we show that an overhead of one forces the next presuf shift
to occur at least distance m+1

2 to the right and an overhead of two forces the next

presuf shift to occur at least distance 3(m+1)
4 to the right. The lemma follows.

As in Lemma 4.12, the run of the algorithm is divided into phases; a phase can
be of one of four types. The range of text characters charged in each type of phase
remains exactly the same as in Lemma 4.12. The charging scheme for Type 1 and
Type 2 phases also remains exactly the same. Only the charging scheme for Type 3
and Type 4 phases is modified in accordance with the presuf shift handlers described
above.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 .
The charging scheme. Let qc be the leftmost pattern instance which survives Step

1. Note that qc is the leftmost presuf pattern instance if and only if no mismatches oc-
cur in Step 1. All successful comparisons in Step 1 are charged to the text characters
compared. These text characters lie to the left of qc[j] if qc is not the leftmost presuf

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 849

≥ |x′′1 |

p′′α
j′j

text

p′f

tc
ta

Fig. 7. Step 1 of Case 2.

pattern instance and are aligned with or to the left of qc[j] otherwise. If unsuccessful
comparisons occur in Step 1, then these comparisons constitute the overhead of this
shift. Otherwise, if all comparisons in Step 1 are successful, the only possible com-
parison which constitutes the overhead of this shift is the comparison in Step 2 which
eliminates qc. Thus the overhead is at most two. Since the first mismatch in Steps

1 and 2 eliminates all presuf pattern instances of the first type and since |x′′1 | <
|vp|
2 ,

either the overhead is zero or the next presuf shift occurs distance at least 3(m+1)
4 to

the right.
Now consider two cases.
1. Suppose qc survives Step 2. All comparisons made in Steps 2 and 3 are charged

to the text characters compared. Thus each text character which lies to the right of
ta and is aligned with or to the left of qc| is charged at most once over Steps 1, 2, and
3. All future comparisons will be charged to text characters to the right of qc|.

2. Suppose qc does not survive Step 2. Each successful comparison in Step 2
eliminates some pattern instance lying entirely to the right of qc[j] and is charged to
the text character aligned with the left end of that pattern instance. The unsuccessful
comparison which eliminates qc in Step 2 is charged to the text character aligned with
qc[j] if qc is not the leftmost presuf pattern instance. Thus each text character lying
between ta and |qd is charged at most once, where qd is the leftmost surviving pattern
instance at the end of Step 2. All future comparisons will be charged to text characters
aligned with or to the right of |qd.

Case 2. |x′′1 | ≥
|vp|
2 .

There are five steps in the presuf shift handler for this case. At most five mis-
matches are made in these steps. We show that three of these mismatches can be
charged to unmatched text characters; consequently, the overhead of the current pre-
suf shift is at most two. Further, the first mismatch in Step 1 eliminates p′′α and the
second mismatch eliminates all of the presuf pattern instances.

Step 1. Step 1 eliminates all but at most one of p′′1 , . . . , p
′′
k+1 as follows. See Fig.

7. The following sequence of text characters is compared with the aligned characters
in p′′α: tb, followed by the text characters strictly between tb and p′′α[j′] considered
right to left, followed by the text characters strictly between ta and p′′α[j] considered
left to right. Step 1 terminates when the first mismatch occurs or when this sequence
is exhausted.

Let p′e be the leftmost surviving presuf pattern instance following Step 1. Consider
the pattern instance p′f , |p′f aligned with the text character to the immediate right of

850 RICHARD COLE AND RAMESH HARIHARAN

j

j′j

Mismatch (possible) in Step 1

j′j

Mismatch (possible) in Step 1

j

Mismatch in Step 1tcta

j

j′j
p′f

p′′α

Fig. 8. Possible outcomes of Step 1.

tc. Let te be the text character at which the mismatch occurred, if any. Note that

since j ≥ |x′′1 |+ 1 and |x′′1 | ≥
|vp|
2 , by Lemma 6.8, p′f [j] must be to the right of p′′α[j′].

The outcome of Step 1 depends upon which of the following two cases occurs (see Fig.
8).

Case 1.1. p′f [j] is aligned with or to the left of te (first diagram in Fig. 8). Clearly,
p′′α[j′] is to the left of te. We show that a transfer function similar to the function
f ′′ of section 6.1 (see Lemma 6.6) can be used to account for the comparisons made
in Step 1. In this case, the rest of the steps are identical to Steps 3, 4, and 5 of the
presuf shift handler of section 6.1.

Case 1.2. Either there is no mismatch in Step 1 or p′f [j] is to the right of te
(second and third diagrams in Fig. 8). The leftmost surviving pattern instance with
left end to the right of tc has its jth character to the right of tb; we show this claim
in the next paragraph. Step 2 follows in this case.

Recall that p′f [j] is to the right of p′′α[j′]. The mismatch, if any, in Step 1 occurs
to the left of p′f [j]. Therefore, all text characters aligned with or to the right of p′f [j]
and to the left of (and including) tb are identical to b. The claim follows.

Step 2. If p′e does not extend to the right of tb, then no comparisons are made
in this step (this happens if and only if p′e is the leftmost presuf pattern instance).
Otherwise, Step 2 attempts to extend the match of p′e. Characters in p′e to the right
of tb (if any) are compared from left to right until a mismatch occurs or a non-b
character is matched against the text. To see that p′e will have a non-b character to
the right of tb if it extends to the right of tb, note that the distance between tb and
tc equals |vp| − 1 and that p′e has at least two non-b characters distance |vp| apart,
neither of which can be to the left of tc.

The successful comparisons in this step will be charged to the text characters
compared. Clearly, all of these text characters are to the right of the text characters
compared in Step 1.

Step 3. A pattern instance p′g with the following properties is determined in this
step.

1. p′g is the leftmost surviving pattern instance.

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 851

2. All surviving pattern instances which overlap p′g[i] are presuf overlaps of p′g,
where i is defined as follows. If p′g 6= p′e, i = j. If p′g = p′e and p′e is the leftmost presuf
pattern instance, then p′g[i] is the character aligned with tb. Otherwise, if p′g = p′e
and p′e is not the leftmost presuf pattern instance, then p′g[i] is the leftmost non-b
character in p′g which is to the right of tb.

All text characters compared successfully in this step will be distinct from all text
characters compared successfully in Steps 1 and 2. There are two cases depending
upon the outcome of Step 2.

Case 2.1. p′e is eliminated in Step 2. At most two mismatches could have occurred
in Steps 1 and 2. Note that p′e cannot be the leftmost presuf pattern instance in this
case. The leftmost surviving pattern instance must have its left end to the right of
tc. As shown in Step 1, its jth character must be to the right of tb. There are two
subcases.

Case 2.1a. Step 2 terminates in a mismatch at a non-b character th in p′e. Then,
starting at th, a left-to-right pass is made in which each text character is compared
with b. This pass ends when a mismatch occurs or when the right end of the text is
reached. In the latter case, there are no further occurrences of the pattern and the
algorithm terminates. In the former case, p′g is defined to be the pattern instance
in which p′g[j] is aligned with the text character tx at which the mismatch occurs.
Since all text characters strictly between tb and tx are identical to b, p′g is the leftmost
surviving pattern instance and all pattern instances to the right of p′g which overlap
p′g[j] are eliminated. Note that the number of mismatches made in Steps 1–3 is at
most three in this case.

Case 2.1b. Step 2 terminates in a mismatch at a character th in p′e which is a
b. p′g is defined to be the pattern instance in which p′g[j] is aligned with the text
character at which the mismatch occurs. As in the previous case, p′g is the leftmost
surviving pattern instance and all pattern instances to the right of p′g which overlap
p′g[j] are eliminated. The number of mismatches made in Steps 1–3 is at most two in
this case.

Case 2.2. p′e survives Step 2. At most one mismatch could have occurred so far.
There are two subcases.

Case 2.2a. p′e is not the leftmost presuf pattern instance; i.e., it extends to the
right of tb. Let tx be the rightmost text character matched in Step 2. tx must be a
non-b character. Consider the pattern instance p′h, where p′h[j] is aligned with tx.

Clearly, all pattern instances to the right of p′h which overlap tx are eliminated
since each has a b aligned with tx. We claim that all pattern instances strictly between
p′e and p′h have also been eliminated. This is shown as follows. All pattern instances
to the right of p′e which overlap tc have been eliminated in Step 1. Recall from Step
1 that the leftmost surviving pattern instance after Step 1 with left end to the right
of tc has its jth character to the right of tb. Since all text characters to the right of
tb and up to but not including tx are identical to b, the claim follows.

If p′e and p′h lack a difference point or if p′h[j] does not match tx, then p′g = p′e.
Otherwise, if p′e and p′h have a difference point, the character in p′e at that difference
point is compared with the aligned text character and one of p′e and p′h is eliminated;
the difference point itself is to the right of p′h[j]. Let p′g denote the survivor. Clearly, p′g
is the leftmost surviving pattern instance in both cases. Further, all pattern instances
to the right of p′g which overlap tx (note that tx is aligned with pg[i]) have either been
eliminated or are presuf overlaps of p′g.

At most two mismatches are made in Steps 1–3 in Case 2.2a.

852 RICHARD COLE AND RAMESH HARIHARAN

Case 2.2b. Second, suppose p′e is the leftmost presuf pattern instance. Recall that
p′e[m] is aligned with tb. In this case, no comparisons are made in Step 2. Consider
the pattern instance p′h, where p′h[j] is to the immediate right of tb. Recall from Step
1 that p′h is the leftmost surviving pattern instance with left end to the right of tc.
The only surviving pattern instances to the right of p′e which overlap tc are presuf
overlaps of p′e. Therefore, p′h is the leftmost surviving pattern instance, barring p′e
and its presuf overlaps. In addition, note that any pattern instance which overlaps p′e
but not p′′α[j′] and has its jth character to the right of tb is a presuf overlap of p′e.

If |p′h is to the right of p′′α[j′], then p′h is a presuf overlap of p′e as are all pattern
instances to the right of p′h which overlap p′e. Step 5 follows with p′g = p′e in this case.

Otherwise, if p′h overlaps p′′α[j′] then p′h is not a presuf overlap of p′e. The character
p′′α[j′] is then compared with the text. A match eliminates all pattern instances which
overlap p′′α[j′] but are not presuf overlaps of p′e. (This can be seen from the following
two facts: (a) all pattern instances with left end to the right of tc which survive Step 1
have their jth character to the right of p′′α[j′], and (b) all surviving pattern instances
which overlap tc are presuf overlaps of p′e.) Clearly, all surviving pattern instances
which overlap tb are presuf overlaps of p′e. In this case, Step 5 follows with p′g = p′e.
Otherwise, if a mismatch occurs at p′′α[j′], p′e is eliminated as are all its presuf overlaps
which overlap tc. Text characters to the right of tb are now compared from left to
right with the character b until either a mismatch occurs or the right end of the text is
reached. In the former case, Step 4 follows with p′g denoting the pattern instance such
that p′g[j] is aligned with the text character at which the mismatch occurs. Clearly, p′g
is the leftmost surviving pattern instance and all pattern instances which overlap p′g[j]
have been eliminated. In the latter case (i.e., the right end of the text is reached),
the algorithm terminates as there are no further occurrences of the pattern.

At most two mismatches are made in Steps 1–3 in Case 2.2b.

Step 4. In this step, either all surviving pattern instances which overlap p′g are
eliminated (except for presuf overlaps) or p′g is eliminated. In the latter case, the basic
algorithm is resumed with the leftmost surviving pattern instance. In the former case,
Step 5 follows. All comparisons in this step are to the right of all text characters
matched in the previous steps. In addition, the left end of each pattern instance
eliminated in this step is also to the right of any text character matched in one of the
previous steps.

In Step 4, difference-point comparisons are used. This step has a number of
iterations. In each iteration, a different pattern instance overlapping p′g but strictly
to the right of p′g[i] is considered. If it is a presuf overlap of p′g, then nothing is done.
Otherwise, if it is not a presuf overlap of p′g, the character in p′g at the difference
point of the two pattern instances is considered. If the text character aligned with
this character has not been successfully compared earlier (this is ascertained using a
bit vector), the two characters are compared. Step 4 ends when a mismatch occurs or
when all pattern instances overlapping p′g (excluding presuf overlaps) are eliminated.

If no mismatch occurs in Step 4, then all comparisons in this step will be charged
to the text characters compared; otherwise, they will be charged to left ends of the
pattern instances eliminated. In both cases, the text characters charged are to the
right of all text characters matched in previous steps.

Step 5. This step attempts to complete the match of p′g. Characters in p′g which
have not yet been matched are compared with the aligned text characters from right
to left until a mismatch occurs or all of its characters are matched. In either case,
another presuf shift follows. All comparisons in this step will be charged to the text

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 853

characters compared.

Lemma 6.18. If p is a special-case pattern with |x′′1 | ≥
|vp|
2 , then the comparison

complexity of the algorithm is n(1 + 8
3(m+1)).

Proof. We give charging strategies to show that a presuf shift can have overhead
at most two. Further, we show that an overhead of one forces the next presuf shift
to occur at least distance m+1

2 to the right and an overhead of two forces the next

presuf shift to occur at least distance 3(m+1)
4 to the right. The lemma follows.

As in Lemma 4.12, the run of the algorithm is divided into phases; a phase can
be of one of four types. The range of text characters charged in each type of phase
remains exactly the same as in Lemma 4.12. The charging scheme for Type 1 and
Type 2 phases also remains exactly the same. Only the charging scheme for Type 3
and Type 4 phases is modified in accordance with the presuf shift handler described
above.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 .
The charging scheme. We consider two cases.
Case A. Suppose a mismatch occurs in Step 1 at a text character te to the right

of p′′α[j′] and p′f [j] is aligned with or to the left of te (i.e., Case 1.1 in Step 1 holds).
Each successful comparison in Step 1 matches the character b against the text.

The charging scheme for this case is identical to the charging scheme in Lemma 6.7
with the function f ′′ defined as follows. f ′′ is defined to map each text character
compared successfully in Step 1 to the text character which is distance j − 1 to its
left. This definition of f ′′ is easily verified to satisfy all four required properties of
f ′′ stated in Lemma 6.6. Further, only the last Step 1 comparison can possibly be
unsuccessful and might not receive an f ′′ value. From the above charging scheme, it
follows that the overhead of the current presuf shift is at most one.

Case B. Suppose all comparisons in Step 1 are successful or p′f [j] is to the right
of te, the character at which the mismatch in Step 1 occurs (i.e., Case 1.2 in Step 1
holds).

Recall from Step 1 that the leftmost surviving pattern instance completely to the
right of tc must have its jth character to the right of tb. There are three subcases to
consider.

Subcase B1. Suppose p′e (the leftmost of the presuf pattern instances to survive
Step 1) survives Steps 2, 3, and 4.

All successful comparisons in Steps 1, 2, 3, and 4 and all comparisons in Step 5
are charged to the text characters compared. All of these comparisons involve distinct
text characters, and thus each text character which is to the right of ta and aligned
with p′e is charged at most once. Further, at most one mismatch is made in Step 1
and no mismatches are made in Steps 2, 3, and 4 (otherwise, p′e would be eliminated).
In addition, a mismatch in Step 1 eliminates p′′α, thus forcing the next presuf shift to
occur at least distance m+1

2 to the right. Thus the current presuf shift has overhead
at most one and an overhead of one forces the next presuf shift to occur distance at
least m+1

2 to the right.
Subcase B2. Suppose p′e is eliminated in one of Steps 2, 3, and 4; further, suppose

p′e is the leftmost presuf pattern instance.
In this case, the next presuf shift occurs distance at least m+ 1 to the right. We

show an overhead of at most two for this case.
All comparisons in Step 1 are successful and are charged to the text characters

compared. No comparisons are made in Step 2. p′e must be eliminated in Step 3 since

854 RICHARD COLE AND RAMESH HARIHARAN

Step 5 follows directly from Step 3 otherwise (see Case 2.2b in Step 3). All successful
comparisons in Step 3 are charged to the text characters compared. At most two
mismatches are made in Step 3 and these constitute the overhead of this shift. All
text characters matched in Steps 1–3 are to the left of p′g[j]. If p′g survives Step 4,
then all comparisons in Step 4 are charged to the text characters compared. If p′g
does not survive Step 4, then the comparison which eliminates p′g is charged to the
text character aligned with p′g[j] and all other comparisons in Step 4 are charged to
the left ends of the respective pattern instances eliminated. (From the definition of
p′g in Step 3, note that the left ends of these pattern instances are to the right of
p′g[j].) Thus all text characters charged in Step 4 are distinct and are aligned with
or to the right of p′g[j]. All comparisons in Step 5 are charged to the text characters
compared. These text characters are distinct from all text characters matched in the
previous steps. Therefore, if p′g survives Step 4, then each text character to the right
of ta and aligned with or to the left of p′g| is charged at most once. Otherwise, if p′g is
eliminated in Step 4 and p′l is the leftmost surviving pattern instance following Step
4, each text character strictly between ta and |p′l is charged at most once.

Subcase B3. Suppose p′e is eliminated in one of Steps 2, 3, and 4 and p′e is not the
leftmost presuf pattern instance.

In this case, the next presuf shift occurs distance at least m+ 1 to the right. We
show an overhead of at most two for this case.

All successful comparisons in Steps 1 and 2 and all comparisons in Step 5 are
charged to the text characters compared. If p′e does not survive Step 2 (Case 2.1 of
Step 3), then all successful comparisons in Step 3 are charged to the text characters
compared. Otherwise, if p′e survives Step 2 (Case 2.2a of Step 3), there is at most
one comparison in Step 3 and it is accounted for later. If p′g survives Step 4, then all
successful comparisons in Step 4 are charged to the text characters compared. In this
case, each text character to the right of ta and aligned with or to the left of p′g| is
charged at most once. Otherwise, if p′g is eliminated in Step 4, each successful com-
parison in Step 4 (except the one which eliminates p′g) is charged to the text character
aligned with the left end of the pattern instance eliminated by this comparison; this
text character is to the right of p′g[j]. In this case, each text character strictly between
ta and |p′l is charged at most once, where p′l is the leftmost surviving pattern instance
after p′g is eliminated.

At most four comparisons have not yet been accounted for. These include the
mismatch in Step 1, the mismatch in Step 4 (which eliminates p′g), and either the
mismatches in Steps 2 and 3 or the only comparison in Step 3, depending on whether
or not p′e survives Step 2. Note that if mismatches occur in all of Steps 2, 3, and
4, then the text character aligned with p′g[j] is not charged for any comparison. In
addition, we show that the text character aligned with p′′α[j] is also not charged for
any comparison. An overhead of two for the current presuf shift follows immediately.

Clearly, p′′α[j] is not compared in Step 1. All comparisons in Steps 2, 3, and 4 are
made to the right of tb and hence to the right of p′′α[j]. Further, p′g[i] (i as defined
in Step 3) is aligned with or to the right of tb. Therefore, the text character aligned
with p′′α[j] is not charged for any of the comparisons made in Steps 1–4. Consider
Step 5 next. If p′e survives Steps 2 and 3 and is eliminated in Step 4, then the presuf
shift handler terminates after Step 4 and the basic algorithm is resumed. Therefore,
suppose that p′e is eliminated in Step 2 or Step 3. From the definition of p′g in Step
3, p′g 6= p′e and therefore i = j. To show that all comparisons in Step 5 are made to
the right of p′′α[j], it suffices to show that |p′g is to the right of p′′α[j].

EXACT COMPLEXITY OF STRING MATCHING: UPPER BOUNDS 855

We show this by considering two cases. First, suppose p′′α 6= p′′1 . Then, by Lemma
6.8, it follows that the character in p′′ which is to the immediate left of its suffix x′′1
is a b. Since x′′1 is the longest presuf of p′′, it follows that j = |x′′1 | + 1. By Lemma
6.8, p′′α[j′] and hence p′′α[j] are to the left of the suffix x′′1 of p′′1 . Since |p′g[j] is to the
right of tb, |p′g is aligned with or to the right of the suffix x′′1 of p′′1 . The claim follows
for this case.

Next, suppose p′′α = p′′1 . A mismatch occurs in Step 1 since p′e is not the leftmost
presuf pattern instance. Further, this mismatch occurs at some text character te to
the right of p′′α[j] since no comparisons are made to the left of p′′α[j] in Step 1 in this
case. Each comparison in Step 1 compares a text character with b. Since p′g[j] must
be to the right of tb, either |p′g is to the right of te or a b in p′g overlaps te. However,
p′g will not survive in the latter case. The claim follows.

The lemma follows.

Finally, we state the following theorem; the proof is similar to the proof of The-
orem 4.17.

Theorem 6.19. There is a string-matching algorithm with a comparison com-
plexity of n(1+ 8

3(m+1)) comparisons which uses O(m) space and takes O(n+m) time

following preprocessing of the pattern; the preprocessing time is O(m2).

Acknowledgment. We thank Dany Breslauer for a number of comments and
suggestions and in particular for the observation that pk+1 could be viewed as a
presuf pattern instance. This contributed to an improvement of our upper bound

from n+ 3(n−m)
m+1 to n+ 8(n−m)

3(m+1) .

REFERENCES

[AC89] A. Apostolico and M. Crochemore, Optimal canonization of all substrings of a string,
Technical Report TR 89-75, Laboratoire Informatique, Théorique, et Programma-
tion, Université Paris 7, Paris, 1989.

[AG86] A. Apostolico and R. Giancarlo, The Boyer–Moore–Galil string searching strategies
revisited, SIAM J. Comput., 15 (1986), pp. 98–105.

[BM77] R. Boyer and S. Moore, A fast string matching algorithm, Comm. Assoc. Comput.
Mach., 20 (1977), pp. 762–772.

[B94] D. Breslauer, Saving comparisons in the Crochemore–Perrin string matching algo-
rithm, Theoret. Comput. Sci., 158 (1996), pp. 177–192.

[BCT93] D. Breslauer, L. Colussi, and L. Toniolo, Tight comparison bounds for the string
prefix-matching problem, Inform. Process. Lett., 47 (1993), pp. 51–57.

[BG92] D. Breslauer and Z. Galil, Efficient comparison based string matching, J. Complexity,
9 (1993), pp. 339–365.

[Co91] R. Cole, Tight Bounds on the complexity of the Boyer–Moore algorithm, SIAM J.
Comput., 23 (1994), pp. 1075–1091.

[CHPZ92] R. Cole, R. Hariharan, M. Paterson, and U. Zwick, Tighter lower bounds on the
exact complexity of string matching, SIAM J. Comput., 24 (1995), pp. 30–45.

[CCG92] M. Crochemore, A. Czumaj, L. Gasiniec, S. Jarominek, T. Lecroq,

W. Plandowski, and W. Rytter, Speeding up two string-matching algorithms,
Algorithmica, 5 (1994), pp. 247–267.

[Col91] L. Colussi, Correctness and efficiency of pattern matching algorithms, Inform. and
Comput., 5 (1991), pp. 225–251.

[CGG90] L. Colussi, Z. Galil, and R. Giancarlo, On the exact complexity of string matching,
in Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 135–143.

[CP89] M. Crochemore and D. Perrin, Two-way pattern matching, Technical Report, Labo-
ratoire Informatique, Théorique, et Programmation, Université Paris 7, Paris, 1989.

[FW65] N. Fine and H. Wilf, Uniqueness theorem for periodic functions, Proc. Amer. Math.
Soc., 16 (1965), pp. 109–114.

856 RICHARD COLE AND RAMESH HARIHARAN

[GG91] Z. Galil and R. Giancarlo, On the exact complexity of string matching: Lower bounds,
SIAM J. Comput., 6 (1991), pp. 1008–1020.

[GG92] Z. Galil and R. Giancarlo, On the exact complexity of string matching: Upper bounds,
SIAM J. Comput., 3 (1993), pp. 407–437.

[GS80] Z. Galil and J. Seiferas, Saving space in fast string-matching, SIAM J. Comput., 2
(1980), pp. 417–438.

[GO80] L. J. Guibas and A. M. Odlyzko, A new proof of the linearity of the Boyer–Moore
string searching algorithm, SIAM J. Comput., 9 (1980), pp. 672–682.

[Ha93] C. Hancart On Simon’s string searching algorithm, Inform. Process. Lett., 47 (1993),
pp. 95–99.

[KMP77] D. E. Knuth, J. Morris, and V. Pratt, Fast pattern matching in strings, SIAM J.
Comput., 6 (1973), pp. 323–350.

[Lo82] M. Lothaire, Combinatorics on Words, Encyclopaedia of Mathematics and Its Appli-
cations 17, Addison–Wesley, Reading, MA, 1982.

[LS62] R. Lyndon and M. Schutzenberger, The equation am = bncp is a free group, Michigan
J. Math., 9 (1962), pp. 289–298.

[Vi85] U. Vishkin, Optimal parallel pattern matching in strings, Inform. and Control, 67 (1985),
pp. 91–113.

[ZP92] U. Zwick and M. Paterson, Lower bounds for string matching in the sequential com-
parison model, manuscript, 1992.

THE k-STEINER RATIO IN GRAPHS∗

AL BORCHERS† AND DING-ZHU DU†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 857–869, June 1997 014

Abstract. A Steiner minimum tree (SMT) is the shortest-length tree in a metric space intercon-
necting a set of points, called the regular points, possibly using additional vertices. A k-size Steiner
minimum tree (kSMT) is one that can be split into components where all regular points are leaves
and all components have at most k leaves. The k-Steiner ratio, ρk, is the infimum of the ratios
SMT/kSMT over all finite sets of regular points in all possible metric spaces, where the distances
are given by a complete graph. Previously, only ρ2 and ρ3 were known exactly in graphs, and some
bounds were known for other values of k. In this paper, we determine ρk exactly for all k. From this
we prove a better approximation ratio for the Steiner tree problem in graphs.

Key words. Steiner trees, Steiner ratio, approximation algorithms, graph algorithms, graph
theory

AMS subject classifications. 68R10, 05C05, 05C85, 90C27

PII. S0097539795281086

1. Introduction. Given a set of points in a metric space, the Steiner minimum
tree on the point set is the shortest network interconnecting all points in the set. Those
points in the set are called regular points, and vertices other than regular points are
called Steiner points. Computing the Steiner minimum tree in various metric spaces
is NP-hard [12, 7, 8, 10, 6].

A tree interconnecting a regular point set is called a Steiner tree if every leaf is a
regular point. However, a regular point in a Steiner tree may not be a leaf. A Steiner
tree is full if every regular point is a leaf. When a regular point is not a leaf, the tree
can be decomposed into several smaller trees at this point. In this way, every Steiner
tree can be decomposed into smaller trees in each of which every regular point is a
leaf. These smaller trees are called full components of the tree. The size of a full
component is the number of regular points in the full component. For brevity, we will
refer to a full component simply as a component.

A k-size Steiner tree is a Steiner tree with all components of size at most k. The
k-size Steiner minimum tree is the shortest one among all k-size Steiner trees. The
2-size Steiner minimum tree is also called the minimum spanning tree. The k-Steiner
ratio in a metric space E is defined by

ρk(E) = inf
P⊂E

LS(P)

LkS(P)
,

where LS(P) is the length of the Steiner minimum tree for the finite set of points P
and LkS(P) is the length of the k-size Steiner minimum tree for P . The 2-Steiner
ratio is simply called the Steiner ratio. It is known that in the rectilinear plane L1,
ρ2(L1) = 2/3 [11], and in the Euclidean plane L2, ρ2(L2) =

√
3/2 [9, 3].

Every weighted graph can be seen as a metric space with the distance between
two vertices equal to the minimum total length of a path connecting them. Then

ρk = inf
G
ρk(G) = inf

E
ρk(E).

∗ Received by the editors January 31, 1995; accepted for publication (in revised form) July 19,
1995. This research was supported in part by National Science Foundation grant CCR-9208913.

http://www.siam.org/journals/sicomp/26-3/28108.html
† Department of Computer Science, University of Minnesota, Minneapolis, MN 55455 (borchers

@cs.umn.edu, dzd@cs.umn.edu).

857

858 AL BORCHERS AND DING-ZHU DU

That is, the k-Steiner ratio in graphs is the same as the k-Steiner ratio over all metric
spaces. It is a well-known fact that ρ2 = 1/2 [9, 14].

The k-Steiner ratio is important because of Steiner-tree-approximation algorithms.
It was a long-standing open problem [2] whether there exists a polynomial-time ap-
proximation for the Steiner minimum tree in each metric space with a performance
ratio smaller than the inverse of the Steiner ratio. (The performance ratio of an
approximation algorithm is the largest lower bound for the ratio of lengths between
the approximate solution and the Steiner minimum tree for the same set of points.)
Zelikovsky [15] made the first breakthrough. He found a polynomial-time 11/6 ap-
proximation for the Steiner minimum tree in graphs, which beat the inverse of the
Steiner ratio in graphs, ρ−1

2 = 2. By extending Zelikovsky’s idea, Berman and Ra-
maiyer [1] gave a polynomial-time 92/72 approximation for the Steiner minimum tree
in the rectilinear plane, and Du, Zhang, and Feng [4] gave a general solution to the
open problem. They showed that in any metric space, there exists a polynomial-
time approximation with performance ratio better than the inverse of the Steiner
ratio provided that for any set of a fixed number of points, the Steiner minimum
tree is polynomial-time computable. A main part of these works was to establish the
lower bound for the k-Steiner ratio. A better lower bound will give a better perfor-
mance ratio for their approximations. Zelikovsky [15] showed that ρ3 ≥ 3/5. Du [5]
showed that ρ3 ≤ 3/5. Therefore, ρ3 = 3/5. Berman and Ramaiyer [1] proved that
ρ3(L1) = 4/5 and for k ≥ 4, ρk(L1) ≥ (2k − 2)/(2k − 1). Du, Zhang, and Feng [4]
showed that ρk ≥ blog2 kc/(1 + blog2 kc).

In this paper, we determine the k-Steiner ratio in graphs exactly. For k = 2r + s,
where 0 ≤ s < 2r, the k-Steiner ratio is

ρk =
r2r + s

(r + 1)2r + s
.

This value agrees with the lower bound determined by Du, Zhang, and Feng [4] when
k is a power of 2; however, they gave no upper bound for ρk. In section 2, we prove
that this value is an upper bound on ρk, and in section 3, we prove that it is also a
lower bound.

Using these values for ρk and Berman and Ramaiyer’s algorithm, we get a 1.734 . . .
approximation to the Steiner tree problem in graphs, improving on their 1.746 . . .
approximation.

When we talk about a Steiner tree in a graph, the edges of the Steiner tree are
actually shortest paths between vertices of the graph. We could think of the graph
vertices along such a path as degree-2 Steiner points, though normally we do not. The
Steiner points are vertices of the graph, but a vertex can be used more than once as
a Steiner point in different components of the same Steiner tree.

We call a binary tree where every internal vertex has exactly two children a regular
binary tree. A complete binary tree is a regular binary tree where all leaves have the
same depth. A binary tree that is complete except perhaps at the bottom level is a
regular binary tree where all leaves have depth t or t+ 1 for some t.

2. Upper bound for ρk. To prove the upper bound for the k-Steiner ratio, we
consider the following particular metric space Mn based on a weighted tree Bn. Let
Bn be a complete binary tree with n levels of edges and a final bottom level where
each internal vertex has only one child. The edges at level 1 ≤ i ≤ n have length 2n−i

and the edges at the bottom level, level n+ 1, have length 1. See Figure 1.

k-STEINER RATIO IN GRAPHS 859

4

2

1

1 1 1 1 1 1 1 1

1 1 1

4

2

1 1 1 1

2 2

Fig. 1. The weighted tree B3 for the metric space M3.

The points of Mn are the vertices of Bn; the distance between two points is the
length of the shortest path between them in Bn. It is easy to see this forms a metric
space. We can think of edges between two points of Mn as paths between those points
in Bn.

Let the leaves of Bn be the set Pn of regular points. We will calculate the limit
of the ratio LS(Pn)/LkS(Pn) as n→∞. This will give us an upper bound for ρk.

Lemma 2.1. The length of the Steiner minimum tree for Pn is the total length of
Bn; that is, LS(Pn) = (n+ 1)2n.

Proof. The tree Bn interconnects Pn, and it is clear that every edge of Bn must
be used to interconnect all of Pn. Therefore, this is the shortest tree interconnecting
Pn.

In Bn the sum of the lengths of the edges at any fixed level is 2n—this is true at
the bottom two levels, and each level above has half as many edges each with twice
the length. Since there are n+ 1 levels, we get LS(Pn) = (n+ 1)2n.

Lemma 2.2. There is a k-size Steiner minimum tree for Pn where each Steiner
point has degree exactly 3.

Proof. The regular points of a component in any k-size Steiner minimum tree
can be interconnected by a binary tree embedded in Bn, and as in Lemma 2.1, this
must be a shortest tree interconnecting these points. Steiner points of degree 2 can
be removed and the two adjacent edges replaced by a single edge (which is a path in
Bn) between the two adjacent vertices. Therefore, we can assume all Steiner points
in this component tree have degree 3. These components make up the desired k-size
minimum tree.

We think of a component in a k-size Steiner minimum tree for Pn as a regular
binary tree with at most k leaves embedded in Bn, where the edges are paths in Bn.
The root of this component tree is the highest-level degree-2 Steiner point; we will
refer to it as the component root.

Lemma 2.3. There is a k-size Steiner minimum tree for Pn where each Steiner
point has degree 3 and where no point of Bn is used more than once as a Steiner point
or component root of any component.

Proof. Consider a k-size Steiner minimum tree T as described in Lemma 2.2. Let
v be a vertex at the highest level of Bn that is used as a root or Steiner point of two
components, A and B, in T . Let u and w be the children of v. The edges vu and vw

860 AL BORCHERS AND DING-ZHU DU

v

u w

v

u w

A B A A AB B B1 1 2 2 1 1 2 2

Fig. 2. Components A and B share a root or Steiner point.

are used in both components A and B. Let A1 and B1 be the parts of components A
and B, respectively, that lie below u, and let A2 and B2 be the parts that lie below
w. See Figure 2.

Components A and B must be connected by some path in T , but because this is
a tree, the path cannot go through both B1 and B2. Say it does not go through B2.

Remove the edge vw from component B, make B2 a separate component, and
connect B2 to component A by a path from w to a regular point in A2 (a leaf in Bn).
See Figure 2.

Note that in Bn the length of edge vw is the same as the length of the path from
w to a leaf—this follows because the length of the edges doubles at each level up the
tree. Therefore, this change does not increase the length of the Steiner tree; it does
not increase the size of any component; and it does not add any Steiner points, so all
Steiner points are still of degree 3. Vertex w has become the root of a new component,
so we may have added points that are used as roots or Steiner points of more than
one component; however, we have only added them below v.

If we repeat this process, by induction, we can successively remove the Steiner
points or component roots that overlap at vertices of Bn from level to level going
down the tree until there are no such points remaining.

Lemma 2.4. There is a k-size Steiner minimum tree for Pn where each Steiner
point has degree 3 and where every internal vertex of Bn, except at the lowest level,
is used exactly once as a Steiner point or component root of some component.

Proof. We know from Lemma 2.3 that there is a k-size Steiner minimum tree
T where every internal vertex of Bn is used at most once. The lowest-level internal
vertices cannot be component roots or Steiner points because they have only one
child. We will show that 2n − 1 Steiner points and roots are needed to interconnect
all 2n points in Pn, and since there are only 2n − 1 internal vertices of Bn not at the
lowest level, every point must be used exactly once.

Remove the component roots and Steiner points one by one from T . When
a component root is removed, split the tree into two pieces at the root. When a
Steiner point is removed, split the tree into two pieces by disconnecting one of the
two children of the Steiner point. After all points are removed, the 2n regular points
must be completely disconnected. Since removing one point adds only one new piece,
we must have removed 2n − 1 points to create the 2n disconnected pieces.

Theorem 2.5 (upper bound for ρk). For any k, with k = 2r + s, where 0 ≤ s <

k-STEINER RATIO IN GRAPHS 861

2r, we have

ρk ≤
r2r + s

(r + 1)2r + s
.(1)

Proof. Let Tk,n be a k-size Steiner minimum tree on Pn that satisfies Lemma 2.4.
We can think of a component C in Tk,n as a regular binary tree; the internal

vertices of this tree are the component root and the Steiner points. Below each of
these internal vertices are two edges of Bn; all Steiner points have two edges below
them by Lemma 2.2, and the component root must have two edges below it in a
minimum tree. Call these edges of Bn the peak edges of C, and denote them by PC .
Call the rest of the edges used by C the connecting edges of C, and denote them by
CC . Denote all of the peak edges of Tk,n by Pk,n and all the connecting edges by Ck,n.
When we refer to a peak, we mean two peak edges and their common vertex.

We want to show that∑
e∈CC

length(e) ≥
(

2r

r2r + s

) ∑
e∈PC

length(e).(2)

If this is true, then summing over all components of Tk,n gives∑
e∈Ck,n

length(e) ≥
(

2r

r2r + s

) ∑
e∈Pk,n

length(e).(3)

Assume that we have inequality (3). By Lemma 2.4 the Steiner points and com-
ponent roots of Tk,n cover all of the internal vertices of Bn exactly once, except at
the lowest level. Thus the peak edges of Tk,n cover all of the edges of Bn exactly
once, except for the edges at the lowest level. The sum of the lengths of the edges
at the lowest level is 2n, and the sum of the lengths of all edges of Bn is LS(Pn) by
Lemma 2.1. Thus

LS(Pn) = 2n +
∑

e∈Pk,n

length(e).

Then by inequality (3),

LkS(Pn) =
∑

e∈Pk,n

length(e) +
∑
e∈Ck,n

length(e)

≥
(

1 +
2r

r2r + s

) ∑
e∈Pk,n

length(e)

=
(r + 1)2r + s

r2r + s
(LS(Pn)− 2n).

Then

ρk ≤
LS(Pn)

LkS(Pn)

≤ r2r + s

(r + 1)2r + s
+

2n

LkS(Pn)

≤ r2r + s

(r + 1)2r + s
+

1

(n+ 1)

862 AL BORCHERS AND DING-ZHU DU

since ρk is the infimum of LS(P)/LkS(P) and since LkS(Pn) ≥ LS(Pn) = (n+ 1)2n.
Letting n→∞ gives the upper bound for ρk, inequality (1).

To complete the proof of Theorem 2.5, we must establish inequality (2). This
inequality depends on k = 2r + s, but the component C can be k-size or smaller. We
will prove it for a full k-size component in a k-size tree for all k. It is easy to see that
for k′ ≤ k and k′ = 2r

′
+ s′, where 0 ≤ s′ < 2r

′
, we have

2r
′

r′2r′ + s′
≥ 2r

r2r + s
.

From this it follows that inequality (2) is true for any component of size less than k
in a k-size Steiner tree.

Note that we always assume that Steiner points have degree 3, as we can by
Lemma 2.2, so we can always think of a component as a regular binary tree.

We will prove inequality (2) for k-size components by induction on the sum of the
depths of the peaks from the root of the component. We compute the depths of the
peaks by counting edges in Bn, not edges in Mn; and we count each edge the same,
ignoring the lengths of the edges. The sum of the peak depths is minimum when the
peaks form a complete binary tree, except perhaps at the lowest level, so we will treat
this case first.

In a k-size component C whose peaks form a complete binary tree, except perhaps
at the lowest level, we have 2r peak edges at the second to lowest level and 2s peak
edges at the lowest level. Say a peak edge at the lowest level has length w. Then the
peak edges at the lowest level have total length 2sw and at the r higher levels each
level has total length 2r+1w. Thus we get∑

e∈PC

length(e) = 2w(r2r + s).

The connecting edges of C form paths from the lowest-level peak edges down to
regular points at the leaves of Bn. By the construction of Bn, these paths have the
same length as the lowest-level peak edge where they originate. There are 2s such
paths of length w at the lowest level and 2r − s such paths of length 2w one level
higher. Thus ∑

e∈CC

length(e) = 2w · 2r.

In this case, inequality (2) is satisfied; in fact, it is an equality.
Next, we will show that the ratio of the length of the connecting edges to the

length of the peak edges decreases as the sum of the depths of the peaks decreases. In
fact, as we change the shape of the component by moving a peak up, the length of the
connecting edges remains constant, while the length of the peak edges increases. When
the peaks cannot move up any further, the sum of the peak depths is minimum, and
as we just showed, inequality (2) holds. Hence it will hold for any shape component.
Here are the details.

There are two cases in which the sum of the peak depths might not be minimum:
either a peak has a nonpeak edge above it or else there are two bottom-level peak
edges whose depths differ by more than 1. We assume that inequality (2) has been
established for all possible components where the sum of the peak depths is at most N
and that the sum of the peak depths of component C is N + 1, so it is not minimum.

k-STEINER RATIO IN GRAPHS 863

2w 2w 2w

w w w w

C C’

Fig. 3. C has a peak with a nonpeak edge above it.

Case 1. C has a peak with a nonpeak edge above it.
Suppose the peak edges with the nonpeak edge above have length w. Consider the

component C ′ obtained by moving the peak with the nonpeak edge above it up one
level; see Figure 3. This decreases the sum of the peak depths by 1, so our induction
hypothesis applies to C ′.

The sum of the lengths of the connecting edges of C and C ′ are the same—the
connecting edge of length 2w above the peak in C has been replaced by two connecting
edges of length w in C ′. The sum of the lengths of the peak edges of C is less than
that in C ′—the two peak edges of length w in C have been moved up so they each
have length 2w in C ′. Combining this with the induction hypothesis on C ′, we get∑

e∈CC

length(e) =
∑
e∈CC′

length(e)

≥
(

2r

r2r + s

) ∑
e∈PC′

length(e)

>

(
2r

r2r + s

) ∑
e∈PC

length(e).(4)

Case 2. C has two bottom-level peak edges whose depths differ by more than 1.
Consider the lowest and highest bottom-level peak edges in C. The lowest peak

must have two paths to two leaves below it; the highest such peak must have at least
one path to a leaf below it. Say the highest peak edge is of length 2a and the lowest
peak edge is of length b; the paths below these peak edges are also of lengths 2a and
b, respectively, by the construction of Bn.

Consider the component C ′ constructed from C by moving the lowest peak just
below the highest bottom-level peak edge. See Figure 4. This decreases the sum of
the peak depths by at least 1, so our induction hypothesis applies to C ′.

The sum of the lengths of the connecting edges of C and C ′ are again the same—
the connecting path of length 2a below the high peak in C has been replaced by two
connecting paths of length a in C ′, and the two connecting paths of length b below
the lowest peak in C have been replaced by one connecting path of length 2b in C ′.

864 AL BORCHERS AND DING-ZHU DU

2a

2a

2b

b b

bb

2a

a a

a a

2b

b

b

C C’

Fig. 4. C has two bottom-level peak edges whose depths differ by more than 1.

The sum of the lengths of the peak edges of C is less than that in C ′—the two lowest
peak edges of length b in C have been moved up, so they have length a in C ′. Since
the lowest and highest bottom-level peaks differ in depth by at least 2, we know that
indeed b < a.

Combining this with the induction hypothesis on C ′, we again get inequality (4).

These two cases complete the induction step, and so we have proved inequality (2)
and completed the proof of Theorem 2.5.

3. Lower bound for ρk. The proof of the lower bound will follow the same
general outline as the lower bound proof in [4]. We first convert a Steiner tree into
a weighted regular binary tree. Then by labeling the vertices of this binary tree, we
construct r2r + s different k-size Steiner trees and show that one of these trees has
small enough length to give us the lower bound.

We will use the following lemma from that paper.

Lemma 3.1. For any regular binary tree, there exists a one-to-one mapping f
from internal vertices to leaves, such that

(a) for any internal vertex u, f(u) is a descendant of u;

(b) all tree paths p(u) from u to f(u) are edge disjoint.

Proof. First, we add the following additional requirement:

(c) There is a leaf v so that the path from the root to v is edge disjoint from all
other paths p(u).

We prove by induction on the height of the tree that all three conditions can be
met. When the tree has height 0, this is trivially true.

Let T be a tree of height d ≥ 1. T has two subtrees, T1 and T2, each of height at
most d − 1 and rooted at the two children of the root of T . By induction, there are
functions f1 and f2 on the internal vertices of T1 and T2 satisfying (a) and (b). There
are also vertices v1 and v2 in T1 and T2, respectively, satisfying (c). Define f as the
union of f1 and f2 and define f(root of T) = v1. Clearly, f satisfies (a) and (b) and
v2 satisfies (c) for T . This completes the induction.

k-STEINER RATIO IN GRAPHS 865

a

c

d

e

fg

a b c d

e f g

root

b

0

00

Fig. 5. Constructing a regular binary tree from a Steiner tree.

Theorem 3.2 (lower bound for ρk). For any k, with k = 2r+s, where 0 ≤ s < 2r,
we have

ρk ≥
r2r + s

(r + 1)2r + s
.(5)

Proof. We want to prove that for any metric space and any set of points P in
that space,

LS(P)

LkS(P)
≥ r2r + s

(r + 1)2r + s
.(6)

Equation (5) follows immediately because ρk is the infimum of these ratios.
We do this by induction on n, the number of points in P . If n ≤ k, then the

inequality is true since LS(P)/LkS(P) = 1. For n > k, consider the Steiner minimum
tree T on P . If T is not a full Steiner tree, then we can split it at a regular point into
two smaller Steiner trees, each with fewer than n regular points. Say the regular points
of these trees are given by the sets P1 and P2. Then we have LS(P) = LS(P1)+LS(P2)
and LkS(P) ≤ LkS(P1) + LS(P2), and so

LS(P)

LkS(P)
≥ LS(P1) + LS(P2)

LkS(P1) + LkS(P2)
≥ min

{
LS(P1)

LkS(P1)
,
LS(P2)

LkS(P2)

}
≥ r2r + s

(r + 1)2r + s

by our induction hypothesis. Therefore, we only have to consider the case where T is
a full Steiner tree, that is, where all regular points are leaves.

By adding zero-length edges and Steiner points, we first modify T to be a tree
where every Steiner point has degree exactly 3. Then we choose a root in the middle
of an edge to convert T into a weighted regular binary tree; call it T ′. The weight of
each edge is the length of the edge in the metric space. See Figure 5.

We label all internal vertices of T ′ with sets of size exactly 2r chosen from the
numbers {1, 2, . . . , r2r + s}. The labeling of a vertex is determined inductively by the
labeling of the r vertices above it on a path to the root, its r immediate ancestors.

To begin this labeling, we label the vertex on the first level (the root) with the set
{1, 2, . . . , 2r}; we label the two vertices on the second level with the set {2r + 1, 2r +
2, . . . , 2 · 2r}; and in general, we label all vertices on the ith level, for 1 ≤ i ≤ r, with
the set {(i− 1)2r + 1, (i− 1)2r + 2, . . . , i2r}.

866 AL BORCHERS AND DING-ZHU DU

The inductive labeling will maintain the following property, which the labeling of
the first r levels clearly satisfies.

Disjointness property. The label sets of up to r consecutive vertices on a path up
the tree are disjoint.

Assume that the first i levels have been labeled, i ≥ r, and that the disjointness
property holds up to level i. We label the vertices at level i+ 1 by the following two
rules.

Rule 1. Let v be a vertex at level i + 1 − r with label set Sv = {`1, `2, . . . , `2r}.
Label the jth descendant of v on level i+ 1 with the set Sj = {`j , `j+1, . . . , `j+2r−s−1},
where we reduce the subscripts (mod 2r) so that they are in the range 1 to 2r.

Vertex v has at most 2r descendents on level i + 1, so we need at most the sets
S1, S2, . . . , S2r . The sets Sj each have 2r − s elements, and each label `k from Sv
appears in at most 2r − s of the sets, namely `k ∈ Sk, Sk−1, . . . , Sk−2r+s+1, where
again we reduce the subscripts (mod 2r).

To complete the labeling at the (i + 1)st level, we must add s numbers to each
labeling set.

Rule 2. For a vertex at level i+ 1, add to its label set those s labels that are not
in the label sets of any of its immediate r ancestors.

By our disjointness property, the r immediate ancestors of a vertex at level i+ 1
are labeled by r disjoint sets of size 2r, so there must be exactly s numbers from
{1, 2, . . . , r2r + s} unused. Also, the labels added by Rule 2 will be different from the
labels added by Rule 1, so all vertices at level i+ 1 are given exactly 2r labels by the
two rules.

The disjointness property now holds up to level i+1, since a vertex u at level i+1
has labels taken from its rth ancestor’s label set, which by the disjointness property
at level i are unused by u’s r − 1 immediate ancestors, and s other labels, which are
also unused by its r − 1 immediate ancestors.

By induction, we can label the entire tree. See Figure 6 for an example of this
labeling process when k = 5.

Now we use this labeling to give us r2r + s k-size Steiner trees. Each label
` = 1, 2, . . . , r2r+s determines the k-size Steiner tree T`. Each node labeled ` becomes
the component root of a component in T`. In addition, we always have a component
in T` whose component root is the root of T ′, even if the root of T ′ is not labeled by
`. A component that begins at vertex v, the component root, then connects by paths
in T ′ to the first vertices below v that are also labeled by `; call these vertices the
intermediate leaves of the component. From the intermediate leaf u, the component
then follows the path p(u) to the tree leaf f(u), as given by Lemma 3.1. If there are
no vertices labeled ` on a path below v, then the component extends along that path
all the way down to a tree leaf. See Figure 7.

First, we verify that T` is in fact a tree that spans P . (Remember that the points
of P are the leaves of T ′.) This follows by induction on the height of the tree T ′. It
is trivially true when the height is 0. Look at the component at the top of T`, the
component whose component root is the root of T ′; then look at a subtree below an
intermediate leaf of this top component. By induction, T` restricted to this subtree is
a tree spanning those points in P that are leaves of the subtree. The top component,
which is itself a tree, then joins one tree leaf from each of the subtrees below its
intermediate leaves (and any tree leaves of T ′ that are not below any intermediate
leaves) into one large tree.

Now look at a component in tree T` that has component root v. We verify that

k-STEINER RATIO IN GRAPHS 867

1234

5678 5678

1239 2349 3419 4129

5674 6784 7851 8561 5672 6782 7853 8563

1234

1239 2349 3419 4129

Rule 2

5678 5678

1234

5678 5678

1234

123 234 341 412

5678 5678

Rule 1

Fig. 6. Labeling a binary tree when k = 5.

these components are always of size at most k. If a component stops at a tree leaf
before reaching an intermediate leaf, its size will be smaller, so we only look at the
maximum-sized components that have all possible intermediate leaves.

Suppose v is not labeled by `, so v must be the root of the tree T ′ and ` ≥ 2r + 1.
By the initial labeling, 2r + 1, 2r + 2, . . . , r2r appear on all vertices of one of the r− 1
levels below the root, and by Rule 2, the remaining s labels appear on all vertices of
the rth level below the root. Thus the intermediate leaves are all at the rth level or
above, and so it is of size at most 2r ≤ k.

Therefore, we can assume that v is itself labeled by `. By Rule 1 of the labeling
process, we know that s of the descendants of v r levels below are not labeled by `,
and the remaining 2r − s descendants are labeled by `.

Now look at a vertex w that is r levels below the component root v and that is not
labeled by `. Since ` does label v, by the disjointness property, it cannot label any of
the r− 1 vertices on the path from v to w. Since ` does not label w, by Rule 2 of the
labeling process, the children of w must be labeled by ` and they will be intermediate
leaves.

Thus the component rooted at v has 2s intermediate leaves r + 1 levels below
v and 2r − s intermediate leaves r levels below. Therefore, there are 2r + s = k
intermediate leaves, and thus the component is of size k. Hence all components are
of size at most k, and T` is a k-size Steiner tree on the set P of regular points.

In T`, let L` be the sum of the lengths of the paths p(u) from intermediate leaves

868 AL BORCHERS AND DING-ZHU DU

1

1

1

1 1

1

intermediate
leaves

tree leaves

component root

Fig. 7. A component in T1 from the labeling of Figure 6.

u in T` to tree leaves. Consider the sum L1 + L2 + · · ·+ Lr2r+s. Since each internal
vertex u in T ′ is an intermediate leaf in exactly 2r of the k-size Steiner trees, namely
T` for each ` in the label set of u, the length of the path p(u) will be counted exactly
2r times in the sum. Since these paths are disjoint for different intermediate leaves,
the sum of all of the paths in all of the terms of the sum will be at most 2r times the
length of the entire tree T ′, which is the length of the Steiner minimum tree. Thus

L1 + L2 + · · ·+ Lr2r+s ≤ 2rLS(P).

Then there must be a d so that

Ld ≤
2r

r2r + s
LS(P).

Now the entire length of Td is the length of the components from the component
roots to the intermediate leaves plus the length from the intermediate leaves to the
tree leaves. The components from the component roots to the intermediate leaves
cover T ′ exactly once, so this part has length LS(P). The other part has length Ld.
Therefore,

length(Td) = LS(P) + Ld ≤
(

1 +
2r

r2r + s

)
LS(P).

Since LkS(P) ≤ length(Td), we get

LS(P)

LkS(P)
≥ LS(P)

length(Td)
≥ 1

(1 + 2r

r2r+s)
=

r2r + s

(r + 1)2r + s
.

This is equation (6), and so Theorem 3.2 is proved.

4. Discussion. Berman and Ramaiyer [1] showed that their polynomial-time
approximation algorithm has performance ratio

ρ−1
2 −

ρ−1
2 − ρ−1

3

2
− ρ−1

3 − ρ−1
4

3
− · · · −

ρ−1
k−1 − ρ

−1
k

k − 1
.

k-STEINER RATIO IN GRAPHS 869

Our result determined all ρk. It follows that there exists a polynomial-time approx-
imation for the Steiner minimum tree in graphs with performance ratio r for any r
larger than

2−
2− 5

3

2
−

5
3 −

3
2

3
−

3
2 −

13
9

4
− · · · = 1.734

Recently, Zelikovsky [16] gave a polynomial-time approximation for the Steiner
minimum tree in graphs with performance ratio ρ−1

k (1 − log ρ2 + log ρk) which ap-
proaches (1 − log ρ2) = 1.693 . . . as k → ∞. This approximation is better than
Berman and Ramaiyer’s for k sufficiently large; however, for smaller k, Berman and
Ramaiyer’s algorithm still has a better performance ratio. Karpinski and Zelikovsky
[13] have improved the algorithm further to give a 1.644 . . . approximation.

The interesting open question is whether there exists a polynomial-time approxi-
mation for the Steiner minimum tree in graphs with a performance ratio which beats
this value.

REFERENCES

[1] P. Berman and V. Ramaiyer, Improved approximation algorithms for the Steiner tree prob-
lem, J. Algorithms, 17 (1994), pp. 381–408.

[2] M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform. Process.
Lett., 32 (1989), pp. 171–176.

[3] D.-Z. Du and F. K. Hwang, A proof of Gilbert and Pollak’s conjecture on the Steiner ratio,
Algorithmica, 7 (1992), pp. 121–135.

[4] D.-Z. Du, Y.-J. Zhang, and Q. Feng, On better heuristic for Euclidean Steiner minimum
trees, Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1991, pp. 431–439.

[5] D.-Z. Du, On component size bounded Steiner trees, Discrete Appl. Math., 60 (1995), pp.
131–140.

[6] L. R. Foulds and R. L. Graham, The Steiner problem in phylogeny is NP-complete, Adv.
Appl. Math., 3 (1982), pp. 43–49.

[7] M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity of computing Steiner
minimal trees, SIAM J. Appl. Math., 32 (1977), pp. 835–859.

[8] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
J. Appl. Math., 32 (1977), pp. 826–834.

[9] E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math., 16 (1968),
pp. 1–29.

[10] R. L. Graham and F. K. Hwang, Remarks on Steiner minimal trees, Bull. Inst. Math. Acad.
Sinica, 4 (1976), pp. 177–182.

[11] F. K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. Appl. Math., 30
(1976), pp. 104–114.

[12] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tation, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[13] M. Karpinski and A. Z. Zelikovsky, A new approach to approximation of Steiner trees,
manuscript.

[14] H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs,
Math. Japon., 24 (1980), pp. 573–577.

[15] A. Z. Zelikovsky, The 11/6-approximation algorithm for the Steiner problem on networks,
Algorithmica, 9 (1992), pp. 463–470.

[16] A. Z. Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree
problems, manuscript.

A NOTE ON “AN ON-LINE SCHEDULING HEURISTIC WITH
BETTER WORST CASE RATIO THAN GRAHAM’S LIST

SCHEDULING”∗

R. CHANDRASEKARAN† , BO CHEN‡ , GÁBOR GALAMBOS§ , P. R. NARAYANAN† ,

ANDRÉ VAN VLIET¶, AND GERHARD J. WOEGINGER‖

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 870–872, June 1997 015

Key words. combinatorial problems, scheduling, worst-case bounds, on-line algorithms

AMS subject classifications. 90B35, 90C27

PII. S0097539793258775

1. Introduction. This is an erratum for the paper by Galambos and Woeginger
[2]. The proofs of two basic results in [2], Lemmas 4.3 and 4.5, are incorrect. The
flaw in the proof of Lemma 4.3 can be easily fixed, but a rather different approach is
needed in order to prove Lemma 4.5.

2. Corrections.

2.1. Correction to Lemma 4.3. The assertion “L1 > αLm ≥ αC∗” on line 15
of page 352 is incorrect and should be replaced by “L1 > αmin{C∗, Lm}.” Inequality
(8) should be strengthened to

L1 + x ≤ βmin{C∗, Lm}.

Then (9) can be replaced by

L2 + x ≤ (mC∗ − L1 − x)/(m− 1) + x

= mC∗/(m− 1)− L1 + (L1 + x)(m− 2)/(m− 1)

< mC∗/(m− 1) + (β(m− 2)/(m− 1)− α) min{C∗, Lm}
≤ C∗(m+ (m− 2)β − (m− 1)α)/(m− 1).

2.2. Correction to Lemma 4.5. In the proof, the claim “Moreover by the def-
inition of Mj , no other machine received a job between the primed and the unprimed
moment” is incorrect. However, Lemma 4.5 follows directly as a corollary of the
following result.

Lemma 4.5
′. Assume the algorithm enters Step 4. Denote by ai the job assigned

last to machine Mi. Then there exists a k ≥ 2 such that

(a) Lj − aj ≤ L1 ∀j ≥ 2, j 6= k,

(b) Lk − ak ≤ βL1.

∗ Received by the editors November 23, 1993; accepted for publication (in revised form) November
21, 1995.

http://www.siam.org/journals/sicomp/26-3/25877.html
† University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083-0688 (chan-

dra@utdallas.edu, pr@pros.prosx.com).
‡ Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom

(bchen@warwick.ac.uk).
§ Department of Applied Computer Sciences, József Attila University, H-6720 Szeged, Hungary

(h762gal@ella.hu).
¶ ORTEC Consultants B. V., Groningenweg 6-33, 2803 PV Gouda, The Netherlands (andre@

ortec.nl).
‖ Institut für Mathematik, Technische Üniversität Graz, A-8010 Graz, Austria (gwoegi@

figids01.tugraz.ac.at).

870

A NOTE ON “AN ON-LINE SCHEDULING HEURISTIC...” 871

Proof. Choose k ≥ 2 such that Mk is the machine that received its last job
ak earlier than all other machines Mj received their last job aj (j ≥ 2). Since ∼
(L1 + x, L2, . . . , Lm) and L1 ≤ αLm, we have L1 ≤ αβLk and L1 ≤ αβLj .

Proof of (a). Since aj is the last job on Mj , it cannot have been placed in Step
4.1. We consider the cases where aj was placed in Step 2, 3, or 4.2. Let us denote by
L′i the workload of machine Mi, 1 ≤ i ≤ m, just before machine Mj receives its last
job aj .

Suppose that Mj received its last job in Step 4.2. Before Mj received aj , the
current schedule at that time satisfied ∼ (L′1, L

′
2, . . . , L

′
m). Thus

L1 ≥ L′1 ≥
1

β
L′k =

1

β
Lk ≥

1

αβ2
L1.

This contradicts our initial assumption that α ≤ 1
3 and β ≤ 5

4 . Therefore, we conclude
that aj was not placed in Step 4.2.

Suppose thatMj received its last job in Step 3. This means that L′j was the second
smallest workload at that time. Denote the minimum workload at that moment by
L′min. If we had assigned job aj to the machine of minimum workload, then the
schedule would have become similar. This implies that L′k ∼ L′min + aj and L′k ∼ L′j .
Since Lj ∼ Lk, we can write Lj = xLk, where 1

β ≤ x ≤ β. Then

Lj = xLk = xL′k ≤ xβL′j = xβ(Lj − aj).

On the other hand, we have

1

β
Lj − xaj = x

(
1

β
L′k − aj

)
≤ xL′min ≤ xL1 ≤ xαβLk = αβLj .

Combining the above two relations gives us(
1

β
− αβ

)
Lj ≤ xaj ≤

(
x− 1

β

)
Lj ⇒ 1

β
− αβ ≤ x− 1

β
≤ β − 1

β
,

which contradicts the initial assumptions that β+ 1 > β3(α+ 1) and β ≥ 1. We then
conclude that aj was not placed in Step 3.

The only possibility that remains is that Mj received aj in Step 2. This means
that L′j was the smallest workload at that moment. Hence Lj − aj = L′j ≤ L′1 ≤ L1.

Proof of (b). We again need to consider the three cases where ak was placed
in Step 2, 3, or 4.2. If ak was placed in Step 2, then machine Mk had the smallest
workload at that time. Thus Lk − ak ≤ L1. If ak was placed in Step 3, then from
conclusion (a), we know that all other machines had workloads less than or equal
to L1 at that time. Since Mk had the second smallest workload, we conclude that
Lk − ak ≤ L1. The last possibility that remains is that ak was placed in Step 4.2.
Since the schedule was similar just before ak was placed, we conclude that Lk − ak ≤
βL1.

3. Remarks. As we have seen, Lemma 4.5 has been strengthened to Lemma 4.5′.
A claim stronger than Lemma 4.3 that allows us to give the exact worst-case bound
of RLS has also been established. Further investigations of RLS yield an improved
algorithm, RLS2. Interested readers are referred to [1] for details.

872 R. CHANDRASEKARAN ET AL.

REFERENCES

[1] B. Chen and A. van Vliet, On the on-line scheduling algorithm RLS, Report 9325/A, Econo-
metric Institute, Erasmus University, Rotterdam, The Netherlands, 1993.

[2] G. Galambos and G. J. Woeginger, An on-line scheduling heuristic with better worst case
ratio than Graham’s list scheduling, SIAM J. Comput., 22 (1993), pp. 349–355.

[3] P. R. Narayanan, Performance analysis of on-line algorithms under various scheduling criteria,
Ph.D. thesis, University of Texas at Dallas, Dallas, TX, 1992.

AN OPTIMAL PROBABILISTIC PROTOCOL FOR SYNCHRONOUS
BYZANTINE AGREEMENT∗

PESECH FELDMAN† AND SILVIO MICALI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 873–933, August 1997 001

Abstract. Broadcasting guarantees the recipient of a message that everyone else has received
the same message. This guarantee no longer exists in a setting in which all communication is person-
to-person and some of the people involved are untrustworthy: though he may claim to send the same
message to everyone, an untrustworthy sender may send different messages to different people. In
such a setting, Byzantine agreement offers the “best alternative” to broadcasting. Thus far, however,
reaching Byzantine agreement has required either many rounds of communication (i.e., messages had
to be sent back and forth a number of times that grew with the size of the network) or the help of
some external trusted party.

In this paper, for the standard communication model of synchronous networks in which each
pair of processors is connected by a private communication line, we exhibit a protocol that, in
probabilistic polynomial time and without relying on any external trusted party, reaches Byzantine
agreement in an expected constant number of rounds and in the worst natural fault model. In fact,
our protocol successfully tolerates that up to 1/3 of the processors in the network may deviate from
their prescribed instructions in an arbitrary way, cooperate with each other, and perform arbitrarily
long computations.

Our protocol effectively demonstrates the power of randomization and zero-knowledge compu-
tation against errors. Indeed, it proves that “privacy” (a fundamental ingredient of one of our
primitives), even when is not a desired goal in itself (as for the Byzantine agreement problem), can
be a crucial tool for achieving correctness.

Our protocol also introduces three new primitives—graded broadcast, graded verifiable secret
sharing, and oblivious common coin—that are of independent interest, and may be effectively used
in more practical protocols than ours.

Key words. broadcasting, Byzantine agreement, fault-tolerant computation, randomization

AMS subject classifications. 68Q22, 68R05, 68M15, 94A60, 94A99, 94B99

PII. S0097539790187084

1. The problem.
A motivating scenario. We are in Byzantium, the night before a great battle. The

Byzantine army, led by a commander in chief, consists of n legions, each one separately
encamped with its own general. The empire is declining: up to 1/3 of the generals—
including the commander in chief—may be traitors. No radios (sic!) are available:
all communication is via messengers on horseback. To make things worse, the loyal
generals do not know who the traitors are. During the night each general receives
a messenger with the order of the commander for the next day: either “attack” or
“retreat.” If all the good generals attack, they will be victorious; if they all retreat,
they will be safe; but if some of them attack and some retreat they will be defeated.
Since a treasonous commander in chief may give different orders to different generals,
it is not a good idea for the loyal ones to directly execute his orders. Asking the
opinion of other generals may be quite misleading too: traitors may represent their
orders differently to different generals, they may not send any information to someone,

∗ Received by the editors August 30, 1990; accepted for publication (in revised form) July 31,
1995. An earlier version of this work was presented at the 1988 ACM Symposium on the Theory of
Computing (STOC).

http://www.siam.org/journals/sicomp/26-4/18708.html
† Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

02139. Current address: OHR SOMAYACH, 22 Shimon Hatzedik, Jerusalem, Israel.
‡ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

(silvio@theory.lcs.mit.edu). The research of this author was supported in part by NSF grants DCR-
84-13577 and CCR-9121466, ARO grant DAALO3-86-K-0171, and ONR grant NOOO14-92-J-1799.

873

874 PESECH FELDMAN AND SILVIO MICALI

and they may claim to have received nothing from someone else. On the other hand,
should the honest generals always—say—attack (independently of the received orders
and of any discussion), they would not follow any meaningful strategy. What they
need is a way to exchange messages so as to always reach a common decision while
respecting the chief’s order, should he happen to be honest. They need Byzantine
agreement.

Byzantine agreement. As insightfully defined by Pease, Shostak, and Lamport
[32], Byzantine agreement essentially consists of providing “the best alternative” to
broadcasting when all communication is person-to-person (as in an ordinary telephone
network) and some of the people involved are untrustworthy. In order to briefly de-
scribe what this alternative is, we must first sketch its classic underlying communi-
cation model, the most convenient and simplest one in which the need for Byzantine
agreement arises.

Modernizing the motivating scenario a bit, generals are processors of a computer
network. Every two processors in the network are joined by a separate communica-
tion line, but no way exists to broadcast messages. (Thus, though a processor can
directly send a given message to all other processors, each recipient has no way to
know whether everyone else has received the same message.) The network otherwise
has some positive features. Each processor in it has a distinct identity and knows the
identities of the processors on the other end of its lines. The network is synchronous,
that is, messages are reliably delivered in a sufficiently timely fashion: there is a com-
mon clock, messages are sent at each clock tick (say, on the hour) and are guaranteed
to be delivered by the next tick (though not necessarily simultaneously). Each com-
munication line is private, that is, no one can alter, inject, or read messages traveling
along it. Indeed, the only way for an adversary to disturb the communication of two
good processors is by corrupting one of them. We will refer to such a network as a
standard network since it is the one generally adopted for discussing the problem of
Byzantine agreement.1

Now assume that each of the processors of a standard network has an initial value.
Then, speaking informally, a Byzantine agreement protocol should guarantee that for
any set of initial values, the following two properties hold:

1. Consensus: All honest (i.e., following the protocol) processors adopt a com-
mon value.

2. Validity: If all honest processors start with the same value, then they adopt
that value.2

Byzantine faults. Having briefly discussed our communication model, we must
now mention our fault model. Processors become faulty when they deviate from their
prescribed programs. “Crashing” (i.e., ceasing all activities) is a benign way for a
processor in a network to become faulty. The faulty behavior considered in this paper
is instead much more adversarial: faulty processors may deviate from their prescribed
programs in an arbitrary fashion, perform an arbitrary amount of computation, and

1 Standard networks are advantageous to consider in that they allow one to focus on the novel
characteristics of Byzantine agreement without being distracted by legitimate but “orthogonal” con-
cerns. We wish to stress, however, that, while the absence of broadcasting is crucial for the problem
of Byzantine agreement to be meaningful, we shall see in section 9.1 that most of the fine details of
the adopted communication model can be significantly relaxed without affecting our result.

2 Notice that we have stated Byzantine agreement a bit more generally than in the motivating
scenario; namely, the processors are not given their initial values by a distinguished member of their
group but have their own individual sources for these values. Consider, for instance, the case of party
bosses who, before an election, call each other on the phone to select a common candidate to back:
even though their initial choices do not arise from the suggestion of a distinguished boss, they still
need Byzantine agreement.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 875

even coordinate their disrupting actions. Modeling software and hardware faults as
malicious behavior may not be unreasonable when dealing with the interaction of
very complex programs, but it is actually very meaningful, and even mandatory, if
there are people behind their computers. Indeed, whenever we wish to emphasize the
possibility of human control—and thus that of malicious behavior—we do employ the
term “player” instead of processor.

The goal of the faulty players is to disrupt either the consensus or the validity
requirement or simply to delay reaching Byzantine agreement for as long as possible
(as when, say, they prefer the status quo to any of the two alternatives being voted
on). Here is an example of what malicious players may do against a simple-minded
protocol.

Assume that the honest generals of the motivating scenario try to reach agreement
as follows: they send their initial orders to each other and then execute the most
“popular” order. Then the dishonest generals can easily cause disagreement. To
make our example more dramatic, let us suppose that 2/3 of the generals are loyal,
that half of the loyal ones start with the value “attack,” and that the other loyal half
start with “retreat.”3 In this situation, the traitors simply tell every loyal general in
the first half that their initial value is “attack” and every loyal one in the second half
that their value is “retreat.” Consensus is then disrupted in a most dramatic way:
half of the loyal generals will attack and the other half will retreat. Indeed, reaching
Byzantine agreement is a tricky business.4

The significance of Byzantine agreement. Byzantine agreement is widely consid-
ered the standard bearer in the field of fault-tolerant distributed computation. While
it is indisputable that this problem has attracted an enormous amount of attention,
we are skeptical about its relevance in the context of errors naturally occurring in a
distributed computation. In our opinion, Byzantine agreement is relevant to the field
of secure computation protocols, which includes problems such as electronic elections,
electronic negotiations, or electronic bids.

Secure protocols (see [30] for a satisfactory and general definition) is a new and
exciting branch of mathematics that has experienced impressive growth in recent
years. A problem in this field consists of enabling a group of mutually distrustful
parties to achieve, in a interaction in which some of the players do not follow the
rules of the game, the same results that are obtainable by exchanging messages in a
prescribed manner when there is total and honest collaboration. Indeed, it is thanks
to insights from the field of secure protocols that we have succeeded in finding our
optimal probabilistic solution to the synchronous Byzantine agreement problem.

Byzantine agreement plays an important role in secure protocol theory; essen-
tially, it dispenses with the need to hold a meeting when, because of the presence of
adversaries among us, it is useful to establish in a public manner who said what or
what was decided upon. In the simplest secure protocol or in the most complex one,

3 These initial values are not at all unlikely if they represent (as in our motivating scenario) the
individual version of an alleged unique message sent by a dishonest party. In any case, consensus
and validity are very strong requirements: they should hold for any initial values!

4 As we shall mention in the next section, at least t rounds of communications are needed to
reach Byzantine agreement whenever (1) t parties are dishonest and (2) the honest ones follow a
deterministic protocol. This fact immediately yields an alternative way to dismiss the simple-minded
strategy discussed above: it is deterministic and can be implemented in two rounds, no matter how
many players there are and no matter how many of them can be faulty. The same fact allows one to
dismiss a good deal of other simple-minded strategies as well. As we shall see, it is only through a
careful use of randomization that a strong majority of honest players may reach Byzantine agreement
very fast.

876 PESECH FELDMAN AND SILVIO MICALI

the honest players cannot possibly make any progress without keeping a meaningful
and consistent view of the world. This is what Byzantine agreement gives us.

The quality of a Byzantine agreement protocol. Several aspects are relevant in
determining the quality of a Byzantine agreement protocol. As for most protocols,
the amount of local computation and the total number of message bits exchanged
continue to be important. But in this archetypal problem in distributed adversarial
computation, two are the most relevant (and most investigated) aspects: the round
complexity and the fault model.

The round complexity measures the amount of interaction that a protocol requires.5

Since, at each clock tick, a player may send messages to more than one processor (and
their recipients will receive them by the next tick), the round complexity of a protocol
naturally consists of the total number of rounds (i.e., clock pulses and thus “waves”
of messages) necessary for completing the protocol.

The fault model specifies what can go wrong (while still being tolerable somehow)
in executing a protocol, namely the following: How many processors can become
faulty? How much can they deviate from their prescribed programs? How long can
faulty processors compute to pursue their disruptive goals?

In this light, the goal of a Byzantine agreement protocol naturally consists of
simultaneously “decreasing” the round complexity while “increasing” the fault model.

Our solution. We present a probabilistic-polynomial-time protocol that reaches
Byzantine agreement in an expected constant number of rounds (thus minimizing the
round complexity) while tolerating the maximum possible number of faulty players
and letting them exhibit a most malicious behavior.

2. Previous solutions and ours.

2.1. The worst natural fault model. Though several weaker models for Byzan-
tine agreement can be considered (see the excellent surveys of Fischer [19] and Chor
and Dwork [11] for a more comprehensive history of this subject), in this paper, we
concentrate on a most adversarial setting. Speaking informally for now, the worst
(natural) fault model is characterized by the following three conditions:

1. the good players are bound to polynomial-time computation;
2. a constant fraction of the total number of players may become faulty; and
3. the faulty players can deviate from their prescribed instructions in any ar-

bitrary way, perform arbitrarily long computations, and perfectly coordinate their
actions.

The worst fault model is not only the most difficult one to handle but also, in our
opinion, the most meaningful one to consider. Condition 1 essentially expresses that
for a Byzantine agreement protocol to be useful, the computational effort required
by the honest processors should be reasonable. Condition 2 properly captures our
intuition about the nature of faults, independently of whether we consider players as
machines or people controlling machines. Indeed, while we do expect that the number
of faulty players grows with the size of the network, it would be quite counterintuitive
to expect that it grows sublinearly in this size. (For instance, assume that in a network
of n players the number of bad ones is n/ logn. Then this would mean that, while
we expect 1% of a group of 1000 players to be faulty, we expect a smaller percentage
of faulty players in a much larger group.) Condition 3 essentially captures that there
may be people behind their computers: dishonest people follow whatever strategy is

5 In a distributed setting, this is the most expensive resource. Typically, the time invested by the
processors for performing their local computation is negligible with respect to the time necessary to
send electronic mail back and forth several times.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 877

best for them, try much harder than honest ones, and effectively cooperate with one
another. In any case, by successfully taming malicious faults, we would a fortiori
succeed in taming all other more benign—though not necessarily more reasonable—
ones.

Let us thus review the main protocols in this difficult model.

2.2. Previous solutions. Dolev et al. [12] exhibited the first solution in the
worst fault model. Letting n denote the total number of players in the network and
t denote an upperbound on the number of faulty players, they showed that as long
as t < n/3, Byzantine agreement can be reached deterministically in Θ(t) rounds.
Recently, by a different protocol, Moses and Waarts [31] tightened their number of
rounds to be t+ 1 for t < n/8. This is optimal for their choice of t, since Fischer and
Lynch [20] proved that t rounds are required by any deterministic protocol if t faults
may occur in its execution.

In light of the lower bound mentioned, all hope for faster agreement is entrusted to
probabilism. Indeed, since the pioneering work of Ben-Or [5], randomization has been
extensively used for reaching agreement. In particular, Rabin’s notion of a common
coin [34] has emerged as the right version of probabilism for this setting. A network
with a common coin can be described as a network in which a random bit becomes
available to all processors at each round but is unpredictable before then. The interest
of this notion is due to a reduction of Rabin showing that as long as t < n/4, Byzantine
agreement can be reached in expected constant number of rounds with the help of
a common coin. Of course, common coins are not a standard feature of a point-to-
point network; thus this reduction raises a natural and important question: Are there
efficient Byzantine agreement protocols implementable “within the network” and in
the worst fault model?

Prior to our work, no efficient within-the-network Byzantine agreement protocol
was known for the worst fault model. Rabin [34] devised a cryptographic Byzantine
agreement protocol running in an expected constant number of rounds but relying
on a incorruptible party external to the network.6 Bracha [6] exhibited Byzantine
agreement protocols that do not require trusted parties, but his protocols are slow-
ers (they run in expected O(logn) rounds) and are not explicitly constructed (their
existence is proved by counting arguments). Chor and Coan [8] exhibit an explicit
and within-the-network Byzantine agreement protocol, but their solution, though at-
tractively simple, is much slower (their protocol tolerates any t < n/3 faults but
runs in O(t/ logn) rounds; thus it requires expected O(n/ logn) rounds in the worst
fault model). Feldman and Micali [18] explicitly exhibited a cryptographic within-
the-network protocol that, after a preprocessing step consisting of a single Byzantine
agreement (on some specially generated keys), allows any subsequent agreement to be
reached in an expected constant number of rounds.7 While their protocol is actually
very practical after the first agreement has been reached, the first agreement may

6 Rabin’s algorithm uses digital signatures—which implies that dishonest processors are bound
to polynomial-time computation—and a trusted party—i.e., an incorruptible processor outside the
network. In his solution, if the trusted party distributes k pieces of reliable information to the
processors in the networks in preparation, then these processors can, subsequently and without any
external help, compute k common coins. Thus the number of reachable agreements is bounded by the
amount of information distributed by the trusted party in the preprocessing stage. A cryptographic
Byzantine agreement protocol with a trusted party but without the latter limitation was later found
by the authors in [18], in addition to other results mentioned later on.

7 Thus their protocol does not require any preprocessing if a trusted party distributes the right
keys beforehand. The present result can thus be viewed as removing cryptography and preprocessing
from their protocol.

878 PESECH FELDMAN AND SILVIO MICALI

very well be the most important one (i.e., whether or not to hold a meeting).

To complete the picture, let us mention that Dwork, Shmoys, and Stockmeyer
[16] found a beautiful Byzantine agreement protocol running in expected constant
round but not in the worst fault model. (Their algorithm tolerates only O(n/ logn)
faults.)

2.3. Our solution. The main theorem in this paper can be informally stated as
follows:

There exists an explicit protocol P reaching Byzantine agreement in the worst
fault model and running in in an expected constant number of rounds. Protocol P
actually tolerates any number of faults less than one third of the total number of
processors.

Our protocol is probabilistic in the “best possible way”: it is always correct and
probably fast; that is, an unlucky sequence of coin tosses may cause our protocol to
run longer, but when it halts both consensus and validity are guaranteed to hold.
Our algorithm not only exhibits optimal (within a constant) round complexity, but
it also achieves optimal fault tolerance. In fact, Karlin and Yao [28] have extended
the earlier deterministic lower bound of [32] by showing that even probabilistically
Byzantine agreement is unreachable if t = n/3 faults may occur.8

3. Model of computation. As of today, unfortunately, no reasonable treat-
ment of the notion of probabilistic computation in a malicious fault model can be
conveniently pulled off the shelf. (A comprehensive effort in this direction—in the
more general context of secure computation—was made in [30], but this paper has
not yet appeared in print.9) Thus we have found it necessary to devote a few pages
to discuss—though only at a semiformal level— of definitions in what we intended to
be a purely algorithmic paper.

The definitions below, presented only at a semiformal level, focus solely on what
we immediately need to discuss our Byzantine agreement protocol, purposely ignoring
many other subtle issues (addressed in the quoted paper [30]). We only wish to clarify
what it means that, in the execution of an n-party protocol, t of the processors may
make errors (i.e., deviate from their prescribed instructions) in a most malicious way
and that the protocol tolerates these faults.

Basic notation. Below we assume that a proper encoding scheme is adopted.
Thus we can treat a string or a set of strings over an arbitrary alphabet as a binary
string, we may consider algorithms that output (the encoding of) another algorithm,
etc.

We assume that each finite set mentioned in our paper is ordered. If S1, . . . , Sk
are finite sets, we let the instruction ∀x1 ∈ S1 . . . ∀xk ∈ Sk Alg(x1, . . . , xk) stand for
the program consisting of running algorithm Alg first on input the first element of
S = S1 × · · · × Sk, then (“from scratch,” i.e., in a memoryless fashion) on input the
second element of S, and so on.

8 This remains true, as proved by Dolev and Dwork [14], even if one abandons the worst fault
model so as to include cryptographic protocols (against faulty processors with polynomially bounded
resources). Thus the optimality of our algorithm is retained in this setting as well.

9 Byzantine agreement aims only at guaranteeing correctness in the presence of an adversary
(about what was decided upon) but not at keeping secret the original single-bit inputs of the players.
A secure protocol must instead simultaneously ensure that a given computation (on inputs some
of which are secret) is both correct and private, that is, roughly, not revealing the initially secret
individual inputs more than is implicitly done by the desired output of the computation. This is
much more difficult both to handle and to formalize.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 879

The symbol “:=” denotes the assignment instruction. The symbol “◦” denotes
the concatenation operator. If σ is a string and τ is a prefix of σ, we denote by the
expression “σ/τ” the string ρ such that σ = τ ◦ ρ.

If Alg is a probabilistic algorithm, I is a string, and R is a infinite sequence of
bits, by running running Alg on input I and coins R we mean the process of executing
Alg on input I so that, whenever Alg flips a coin and R = b ◦R′, the bit b is returned
as the result of the coin toss and R := R′.

Protocols. To avoid any issue of nonconstructiveness, we insist that protocols be
uniform.

Definition 1. Let n be an integer greater than 1. An n-party protocol is an
n-tuple of probabilistic algorithms, P1, . . . , Pn, where each Pi (which is intended to be
run by player i) satisfies the following property. On any input (usually representing
player i’s previous history in an execution), Pi halts with probability 1 computing
either an n-tuple of binary strings (possibly empty, representing i’s messages to the
other players for the next round) or a triple consisting of an n-tuple of strings (with
the same interpretation as before), the special character terminate, and value v (as
its output).

Notice that each time that Pi is run, one also obtains as “side products” the
sequence of coin tosses actually made by Pi and the sequence of its “future” coin
tosses.

A protocol is a probabilistic algorithm that, for all integers n > 1, on input the
unary representation of n, outputs (the encoding of) an n-party protocol.

In this paper, the expression round denotes a natural number; in the context of
an n-party protocol, the expression player denotes an integer in the closed interval
[1, n].

Executing protocols without adversaries. Let us first describe the notion of exe-
cuting a protocol when all players are honest. Intuitively, each party runs his own
component of the protocol. The only coordination with other parties is via messages
exchanged in an organized fashion. Namely, there is a common clock accessible by all
players, messages are sent at each clock tick along private communication channels,
and they are received by the next tick. The interval of time between two consecutive
ticks is called a round. At the beginning of a round, a player reads the messages
sent to him in the previous round, and then runs (his component of) the protocol to
compute the messages he sends in response. These outgoing messages are computed
by a player by running the protocol on the just-received incoming messages and its
own past “history,” (i.e., an encoding of all that has happened to the player during
the execution of the protocol up to the last round). We now describe this intuitive
scenario a bit more precisely, though not totally formally. In so doing, parties, hard-
ware, private communication channels, and clocks will disappear. However, they will
remain in our terminology for convenience of discourse.

Definition 2. Let n be an integer > 1, P = (P1, . . . , Pn) be an n-party protocol,
p1, . . . , pn be finite strings, and R1, . . . , Rn be infinite binary sequences. Then by
executing P on private inputs p1, . . . , pn and coins R1, . . . , Rn, we mean the process
of generating, for each player i and round r, the quantities

• Hr
i , a string called the history of player i at round r (a triple consisting of (1)

i’s history prior to round r, (2) the messages received by i in round r, and (3) the
coin tosses of i in round r),

• Mr
i→, the messages sent by player i in round r (an n-tuple of strings whose jth

entry, Mr
i→[j], is called the message sent by i to j in round r),

• Mr
→i, the messages received by player i at round r (an n-tuple of strings, whose

880 PESECH FELDMAN AND SILVIO MICALI

jth entry, Mr
→i[j], is called the message received by i from j in round r),

• Cri , the coin tosses of i in round r (a substring of Ri), and

• Rri , the coin tosses of i after round r (a substring of Ri)

by executing the following instructions:

(Start) Set C0
i = ε, R0

i = Ri, M
0
i→ = M0

→i = (ε, . . . , ε), and H0
i = (pi,M

0
→i, C

0
i).

“Only the individual input is available at the start of an execution: no message
has yet been sent or received, and no coin has been flipped.”

(Halt) Say that player i halts at round r (and his output is σ) if r is the minimum
round s for which Pi, on input Hs−1

i and coins Ri, computes a triple whose second
entry is the special character terminate (and whose third entry is σ.) If i halts in
round r, then ∀s > r, Ms

i→ := (ε, . . . , ε), Ms
→i := (Ms

1→[i], . . . ,Ms
n→[i]), Csi := ε,

Rsi := Rri , and Hs
i := (Hs−1

i , Ms
→i, ε).

(Continue) If i has not halted in a round < r, run Pi on input Hr−1
i and coins

Rr−1
i so as to compute either (a) an n-tuple of string M or (b) a triple (M,terminate, v),

where M is an n-tuple of strings, terminate is a special character, and v is a
string. If C is actually the entire sequence of coin tosses that Pi has made in
this computation—and thus C is a prefix of Rr−1

i —then Cri := C, Rri := Rr−1
i /C,

Mr
i→ := M , Mr

→i := (Mr
1→[i], . . . ,Mr

n→[i]), and Hr
i := (Hr−1

i ,Mr
→i, C

r
i).

For simplicity’s sake (since each Pi, on any input, halts with probability 1), above
we have neglected dealing with protocol “divergence.” Also for simplicity, we let a
player, at each round, run his own version of the protocol, Pi, on the just-received
messages and on the entire history of his execution of the protocol. This is certainly
wasteful. In most practical examples, in fact, it suffices to remember very little of the
past history. Also notice that the current round number is not an available input to
Pi, but it can be easily derived from the current history. In our protocols, however,
we make players very much aware of the round number. In fact, we actually spell out
what each Pi should do separately for each round. Notice also that the strings Ri
need not to be given “in full.” It suffices that a mechanism is provided that “retrieves
and deletes” Ri’s first bit.

Adversaries. We now allow malicious errors to occur in the execution of a protocol.
A processor that has made an error is called faulty or bad . To formalize the idea that
faulty processors may coordinate their strategies in an optimal way, we envisage a
single external entity, the adversary, that chooses which processors to corrupt and
sends messages on behalf of the corrupted processors. Since we wish our adversary
to be as strong as possible, we allow it to be a nonuniform probabilistic algorithm.
(In fact, in our protocol, we might as well assume that an adversary is an arbitrary
probabilistic noncomputable function.)

Definition 3. Let n be an integer greater than 1. An n-party adversary is a
probabilistic algorithm that, on any input (usually representing A’s previous activity
in an execution) halts with probability 1 and outputs either an integer in the range
[1, n] (the identity of a newly corrupted player) or a sequence of pairs (j,M), where
j is an integer between 1 and n (the identity of a corrupted player) and M is an
n-tuple of strings (the messages sent by j in the current round). An adversary, A, is
a sequence of n-party adversaries: A = {A(n) : n = 2, 3, . . .}.

Executing protocols with an adversary. We now define what it means for an n-
party protocol P to be executed with an n-party adversary A. A enters the execution
with an initial adversarial history , a string denoted symbolically by H0

A, and an
initially bad set, bad

0 ⊂ [1, n]. String H0
A may contain some a priori knowledge

about the inputs of the players, the result of previous protocols, and so on. Set bad
0

represents the players corrupted at round 0, that is, before the protocol starts. (In

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 881

other words, if P were the first protocol “ever to be executed,” bad
0 would be empty.

If, as we shall see, P were called as a subprotocol, bad
0 would comprise all the players

that have been corrupted prior to calling P .) Adversary A may, at any round, corrupt
an additional processor, j. When this happens, all of j’s history becomes available
to A;10 as for all corrupted processors, all future messages sent to j will be read by
A; and A will also compute all of the messages that j will be sending. Essentially,
j becomes an extension of A. Thus if k ∈ bad

0, k’s private input is what becomes
available to A at the start of P , and A will totally control player k for the entire
execution of P .

Since we want to prepare for the worst, we let the adversary be even more powerful
by allowing rushing; that is, we let the message delivery (which is not simultaneous) be
as adversarial as possible. At the beginning of each round, all currently good players
read the messages sent to them in the previous round and compute the ones that
they wish to send in the present round. We pessimistically assume that the messages
addressed to the currently corrupted processors are always delivered immediately, and
if based on this information the adversary decides to corrupt an additional processor j,
we pessimistically assume that it succeeds in doing so before j has sent any messages to
the currently good players, thus giving A a chance to change these messages. Further,
we consistently “iterate this pessimism” within the same round. That is, once j is
corrupted in round r, we assume that the messages addressed to j by the currently
good processors are immediately delivered, while j has not yet sent any messages to
the remaining good players. This way A may decide whom to corrupt next in the
same round, and so on, until A does not wish to corrupt anyone else in round r.
At this point, A computes all messages sent by the corrupted processors in round r.
These “bad” messages will be read by the good processors (of course, each processor
receives the messages addressed to him), together with all “good” messages, at the
beginning of round r + 1.

The privacy of the communication channels of a concrete network is captured
in the formulation below by the fact that messages exchanged between uncorrupted
processors are never an available input to the adversary algorithm.

The history of a bad player is essentially frozen at the moment in which he is
corrupted because A has essentially subsumed him from that point on.

Definition 4. Let n be an integer > 1, H0
A, p1, . . . , pn be finite strings, RA, R1,

. . . , Rn infinite binary sequences, bad
0 be a subset of [1, n] and good

0 be its comple-
ment, P = (P1, . . . , Pn) be an n–party protocol, and A be an n-party adversary. Then
by executing P with A on initial adversarial history H0

A, inputs p1, . . . , pn, initially
bad set bad

0, and coins RA and R1, . . . , Rn, we mean the process of (i) generating,
for all players i and rounds r, the quantities
• Hr

i , Mr
i→, Mr

→i, C
r
i , and Rri (whose interpretation, as well as their setting for

r = 0, is the same as in Definition 2)
and the new quantities
• Hr

A (a string called the history of the adversary at round r),
• CrA (a binary string called the coin tosses of the adversary at round r),
• RrA (an infinite subsequence of RA called the coin tosses of A after round r),
and
• bad

r and good
r (two sets of players called, respectively, the bad players at

round r and the good players at round r, such that ∀r, good
r = [1, n]− bad

r)

10 This is a clean but pessimistic approach (which makes our result stronger). In practice, though
j may wish to fully collaborate with A by sharing all information he has, he may still have trouble
in remembering—say—all previously received messages or all previously made coin tosses.

882 PESECH FELDMAN AND SILVIO MICALI

by setting C0
A = ε and R0

A = RA and (ii) executing the following instructions for
r = 1, 2, . . . :

0. tempH
r
A := Hr−1

A ; tempR
r
A := Rr−1

A ; tempgood
r := good

r−1; tempbad
r

:= bad
r−1.

“Because A’s history, future coin tosses, and sets of good and bad players
dynamically change within a round, we shall keep track of these changes in
temporary variables. However, their final values within round r, respectively,
Hr
A, RrA, good

r, and bad
r, are unambiguously defined.”

1. “Just as when all processors are honest,” ∀g ∈ good
r−1, generate Mr

g→,
“the messages that g wishes to send in this round (which may be reset if g
is corrupted in this round),” Crg , and Rrg by running Pg on input Hr−1

g and
coins Rr−1

g .
2. ∀g ∈ good

r−1 and ∀b ∈ bad
r−1,tempH

r
A := (tempH

r
A, g, b,M

r
g→[b]).

3. Run A on input tempH
r
A and coins tempR

r
A.

If in this execution of step 3 A has output j ∈ tempgood
r and made the

sequence of coin tosses C, then
• tempbad

r := tempbad
r ∪ {j}, tempgood

r := tempgood
r − {j},

• tempH
r
A := (tempH

r
A, H

r−1
j , Crj , C) “so that from Hr−1

j and Crj A can
reconstruct all of the messages that j wished to send in round r, and
from tempH

r
A and C she can reconstruct why she has corrupted j,”

• tempR
r
A := tempR

r
A/C “adjust A’s future coin tosses,”

• ∀g ∈ tempgood
r, tempH

r
A := (tempH

r
A, g, j,M

r
g→[j]), “i.e., accord-

ing to rushing, A is also given the messages that the currently good
players wish to send to j in this round,” and
• go to step 3 “to corrupt next processor.”

Otherwise, if in this execution of step 3, A has output, ∀b ∈ tempbad
r, a

vector Mb ∈ ({0, 1}∗)n “as b’s round-r messages”11 and made the sequence
of coin tosses C, then
• ∀b ∈ bad

r, Mr
b→ := Mb,

• tempH
r
A := (tempH

r
A, C) “so that she can reconstruct the bad players’

messages of round r,” and
• tempR

r
A := tempR

r
A/C, and “adjust the final round-r quantities as

follows.”
4. Letting C be the sequence of coin tosses A has made since the last execution

of step 2,
• Hr

A := tempH
r
A; CrA := C; and RrA := tempR

r
A;

• good
r := tempgood

r and bad
r := tempbad

r;
• ∀i, j ∈ [1, n], Mr

→i[j] := Mr
j→[i];

• ∀g ∈ good
r, Hr

g := (Hr−1
g ,Mr

→g, C
r
g);

• ∀b ∈ bad
r−1, Hr

b := (Hr−1
b , bad), and ∀b ∈ bad

r − bad
r−1, Hr

b :=
(Hr−1

b , Crb , bad).
Let E be the sequence (of tuples of quantities resulting from the above computa-

tion) so defined:
E = E0, E1, . . . ,

where

Er = (Hr
1 , M

r
1→, M

r
→1, C

r
1 , R

r
i , . . . , H

r
n, M

r
n→, M

r
→n, C

r
n, R

r
n,

Hr
A, C

r
A, R

r
A, bad

r,good
r).

11 By convention, if A’s output is not of this format, then it is assumed that Mb = (ε, . . . , ε)
∀b ∈ tempbad

r.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 883

We call E the execution of P with A on initial quantities H0
A, bad

0, and p1, . . . , pn,
and coins RA and R1, . . . , Rn. The value Er is called round r of E. If R is a positive
integer, by the expression E up to round R, in symbols E[0,R], we mean the finite
subsequence E0, . . . , ER.

(Note: The quantities Hr
i , Mr

i→, Mr
→i, Cri , Rri , Hr

A, CrA, RrA, bad
r, and

good
r may carry an additional superscript or prefix to emphasize the protocol during

the execution of which they have been generated.)

Remark. The ability of an adversary to corrupt players at arbitrary points in
time of a protocol is crucial in a randomized protocol. For a deterministic protocol,
the adversary’s optimal strategy may be calculated beforehand, but it may profitably
change during the execution of a randomized protocol. For example, consider a prob-
abilistic protocol for randomly selecting a “leader,” that is, a processor to be put in
charge of a given task. Depending on the specifics of the protocol, it may be impossi-
ble for the adversary to corrupt a few players beforehand and coordinate their actions
so that one of them is guaranteed to be elected leader. It is, however, very easy for
her to wait and see which processor is selected as leader and then corrupt it! (This
feature models a “real-life” phenomenon: nobody is born a thief, but some may be-
come thieves if the right circumstances arise To capture this realistic feature, we
must allow—and successfully deal with—adversaries that can corrupt players, during
run time, in a dynamic fashion.)

Fractional adversaries. Above we have presented the mechanics of executing
a protocol with an adversary exhibiting what is essentially an arbitrarily malicious
behavior. To keep things meaningful, however, we wish to put a cap on the number
of players that an adversary may corrupt without otherwise limiting its actions in
any way. In fact, we assume that no n-party adversary may corrupt n players in an
execution with an n-party protocol (otherwise, no meaningful property about such an
execution could possibly be guaranteed).

We will actually be focusing on adversaries that may corrupt at most a constant
fraction of the players. Let c be a constant between 0 and 1; we say that an adversary
A is a c-adversary if for all n > 1 and all n-party protocols P , in any execution
with P on an initially bad set with < cn elements, the cardinality of the bad set
always remains < cn. Whenever we consider an execution of an n-party protocol with
a c-adversary, we implicitly assume that the initially bad set contains less than cn
players.

We also assume that no more than one adversary is active in an execution of
a protocol. Actually, because the adversary that never corrupts any processor is a
special type of adversary (indeed, a c-adversary for all possible c ∈ (0, 1)), we shall
assume that in every execution of a protocol there is exactly one adversary active.
Thus the expression “an execution of protocol P” really means “an execution of
protocol P with adversary A, for some adversary A.”

Initial quantities. As we have seen, to run an n-party protocol with an n-party
adversary A, we need to specify, other than the coin tosses of A and the n players, the
following initial quantities: (1) the initial adversarial history H0

A, (2) the initially bad
set bad

0, and (3) the inputs (p1, . . . , pn). For the purpose of defining the mechanics
of executing an n-party protocol with an n-adversary, we define IQn, the set of the
initial quantities (of size n) in a most “liberal” manner; that is, IQn = {0, 1}∗ ×
2{1,...,n} × ({0, 1}∗)n. In an accordingly liberal manner, we let IQ = {IQn : n > 1}
be the set of all (possible) initial quantities.

In general, however, it is meaningful to prove properties of protocols if the ini-
tial quantities of their executions satisfy a given constraint (e.g., reaching Byzantine

884 PESECH FELDMAN AND SILVIO MICALI

agreement on “the message” sent by a given member of a network is meaningful only
if the identity of this sender is a common input to all processors in the network).
We actually prefer to dismiss nonmeaningful initial quantities from consideration al-
together. That is, we define each n-party protocol P (n) together with the set of its
own proper initial quantities, denoted by IQPn , on which—and solely on which—P (n)
can be run. Thus whenever we say that some specific values IQ are initial quantities
for P (n), it is assumed that IQ ∈ IQPn . Also, whenever we refer to an execution of
a protocol P with some specific initial quantities IQ, if IQ ∈ IQn, we actually refer
to an execution of P (n) on initial quantities IQ—quantities which actually belong to
IQPn . (Indeed, it should be noticed that n can easily be computed from any member
of IQn.) In summary, all initial quantities of a protocol are deemed to be proper—and
we shall use the expression “proper” only for emphasis.

Notice that by specifying the proper initial quantities of a given protocol, one
could easily “cheat” by disallowing certain initial adversarial histories or initially bad
sets so as to make protocol design artificially easy. In this paper, however, the proper
initial quantities of a protocol will never in any way constrain the initial adversar-
ial history or the initially bad set, except for its cardinality. Moreover, in this paper,
proper initial quantities will never impose any restrictions on the inputs of the initially
corrupted players. When defining a new protocol, though, we find it convenient to de-
scribe the generic element of its (proper) initial quantities by specifying (in particular)
the inputs of all players, with the understanding that all constraints on the initially
bad players must be dropped; that is, by saying that (H0

A,bad
0, (p1, . . . , pn)) ∈ IQPn ,

we simply mean that the private input of player i is pi if i does not belong to bad
0.

(In other words, if we wish a more extensive notation, an element of IQPn is of the
form (H0

A,bad
0, {(i, pi) : i 6∈ bad

0}).)
Random executions and probabilities.

Definition 5. Let n be an integer > 1, P be an n-party protocol, A be an n-party
adversary, and IQ ∈ IQPn . By randomly executing P with A on initial quantities
IQ, we mean the process consisting of generating the infinitely long bit sequences RA,
R1, . . . , Rn by randomly and independently selecting each of their bits in {0, 1} and
then executing P with A on initial quantities IQ and coins RA, R1, . . . , Rn. We call
the execution resulting from this process a random execution of P with A on initial
quantities IQ.

Thus the probability that an event e occurs in a random execution of P with A
on initial quantities IQ is solely computed over the coin tosses of P and A. (Only if
we have assumed a probability distribution on the private inputs as well—and if we
explicitly say so—we may compute the probability of an event also over the random
choices in selecting the private inputs.) The probabilities of events that are most
important to us are those that are intrinsic properties of our protocols alone; that is,
we shall prove bounds for these probabilities that are valid for any adversaries, any
initial adversarial history, any initially corrupted players, and any players’ inputs.

Fault tolerance. The fault tolerance of a protocol is essentially the highest fraction
of faults it can tolerate.

Definition 6. Let Ψ be a property (i.e., a predicate) and c be a constant between
0 and 1. We say that a protocol P is a c-fault tolerant protocol (or a protocol with
fault tolerance c) with respect to Ψ if Ψ(E) = true for any execution E of P with a
c-adversary.

If the property Ψ is clear from context, we may simply say that P is a protocol
with fault tolerance c rather than with fault tolerance c with respect to Ψ.

Legal shortcuts. For simplicity of discourse, we wish to “legalize” some handy

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 885

notation.

• Highlighting something. When we want to focus only on some of the quantities
determining an execution, we just omit mentioning the others. For instance, the
sentence “Let E be an execution of n-party protocol P with n-party adversary A on
inputs p1, . . . , pn and initial corrupted set bad

0” stands for “Let E be an execution
of n-party protocol P with n-party adversary A on inputs p1, . . . , pn, initially bad set
bad

0, initial adversarial history H0
A, and coin tosses R1, . . . , Rn and RA, for some

string H0
A and bit sequences R1, . . . , Rn and RA.”

• Matching types. If P is an n-party protocol and we say that P is executed
with an adversary A, we implicitly assume that A is an n-party adversary. Any
adversary mentioned in the context of a protocol with fault tolerance c is meant
to be a c-adversary. If P is a protocol and A is an adversary, by saying that n
parties execute P with A, we mean that they execute P (n) with adversary A(n). By
saying that a value IQ represents some initial quantities, we implicitly assume that
IQ ∈ {0, 1}∗×2[1,n]×({0, 1}∗)n for some positive integer n. By saying that a protocol
P is executed with adversary A on initial quantities IQ = (H0

A,bad
0, (p1, . . . , pn)),

we mean executing P (n) with A(n) on initial adversarial history H0
A, initially bad set

bad
0, and inputs p1, . . . , pn. By an execution of protocol P with adversary A, we

mean an execution of P (n) with A(n) for some number of players n (on some proper
initial quantities).

Good, bad, and end. In an execution of a protocol, we say that processor i is
good at round r if the adversary has not corrupted i at a round ≤ r, and say that it
is bad at round r otherwise. When, in an execution, the round under consideration
is not specified, we say that a player i is currently good (respectively, currently bad)
to mean that it is good at round r (respectively, bad at round r) if the round under
consideration is r. We say that i is eventually bad in an execution if it is corrupted
at some round of it, and say that it is always good otherwise. When no confusion can
arise, we may use the simpler expression good (respectively, bad) instead of currently
or always good (respectively, currently or eventually bad).

We say that an execution of a protocol halts at round r if r is the smallest integer
s for which every good processor has halted in a round ≤ s. (Note: If an execution
of an n-party protocol Q has not halted at round r, it continues to be considered
an execution of an n-party protocol after that round, whether or not some of the
good processors have halted by round r and no longer execute the protocol.) Let R
be a constant and P be a protocol; we say that P is an R-round protocol if in all
executions of P every good processor halts at round R. (Note: In every execution of
an R-round protocol, all good processors halt “simultaneously,” but if an execution
of a protocol which is not R-round halts at round R, the good processors may not
halt in the same round of that execution.) We say that P is a fixed-round protocol if
it is an R-round protocol for some value R. All of our protocols, except for the last
one, are fixed-round. We say that a protocol does not halt before round r if in all its
executions no good processor halts at a round ≤ r.

Subprotocols. To facilitate the description of our Byzantine agreement protocol
and to make it possible to use parts of it in other contexts, we have constructed it in
a modular way. We thus need the notion of a subprotocol, that is, a protocol that is
called as a subroutine by another protocol. Fortunately, in this paper, all subprotocols
are fixed-round, they are called at rounds specified a priori by protocols (no execution
of which halts by those rounds), and n-party protocols call only n-party subprotocols.
(This simplifies our formalization somewhat; for instance, it makes it very clear when
the call starts and when it ends.)

886 PESECH FELDMAN AND SILVIO MICALI

Let Q be a > r-round protocol calling an R-round protocol P at a prescribed
round r. Then an execution of Q will be suspended once it reaches round r. At that
point, the input value of each player i, pi, is specified by either P itself (i.e., as when pi
is a constant) or player i’s prior history, Hr−1

i . (If this is the case, we formally assume
that there is a function IPi specified a priori, that, evaluated on Hr−1

i , determines
pi.) The execution of P on these inputs then starts. The good players execute P as if
it were (rather than a subprotocol) “the first protocol they ever execute in their life,”
that is, their execution is independent of their prior histories. The adversary, on the
other hand, is allowed to take advantage of what it has “learned” in the execution of
Q to fine tune its strategy in the execution of P .12 Moreover, should the adversary
corrupt an additional player k during the execution of P , she will get, in addition
to k’s current history in the execution of P , its “suspended” history in Q. When
P ends, each player appends its final “P -history” to its “suspended Q-history,” and
Q’s computation is resumed. Processors corrupted in the execution of P are also
considered corrupted in the resumed execution of Q.

Definition 7. Let n be an integer > 1, A be an adversary, P be an n-party
R-round protocol, Q be an n-party protocol calling P at round r, and R1

A, RPA, R2
A,

RQ1
1 , . . . , RQ1

n , RP1 , . . . , RPn , RQ2
1 , . . . , RQ2

n be infinite binary sequences. By executing
Q with A on initial quantities IQ and coins

R1
A, R

P
A, R

2
A, R

Q1
1 , . . . , RQ1

n , RP1 , . . . , R
P
n , R

Q2
1 , . . . , RQ2

n ,

we mean the following:
1. To execute Q “a first time” with adversary A on initial quantities IQ and

coins R1
A, R

Q1
1 , . . . , RQ1

n “up to round r” so as to generate an execution up to round

R, E1, and thus quantities Hr,Q
A , bad

r,Q, and Hr,Q
i for each player i.

2. (For each player i, we let pi be the input specified by Hr,Q
i .) To generate an

execution up to round R, E2, by running P with A on initial inputs p1, . . . , pn, initial
adversarial history Hr,Q

A , initially bad set bad
r,Q, and coins RPA, R

P
1 , . . . , R

P
n as usual

except for the following. If A corrupts a new player j at a round x, it receives as an
input not only the history of player j in the present execution, Hx,P

j , but also Hr,Q
j

(“j’s suspended history in Q”).
3. To generate an execution E3 by running Q with A on initial adversarial his-

tory HR,P
A , initially corrupted set bad

R,P , and inputs (Hr,Q
1 , HR,P

1), . . . , (Hr,Q
n , HR,P

n).
We let the corresponding execution (of calling protocol Q with A on the above

initial quantities and coins) consist of the sequence E whose first r elements are the
elements of E1, next R elements are those of E2, and remaining elements are those of
E3. (In other words, the execution of a protocol Q that calls an R-round subprotocol
P at round r is obtained by identifying, for each ρ ∈ [1, R], round ρ of P with round
r + ρ of Q.)

The notion of randomly executing a protocol and that of a random execution of
a protocols are extended in the natural way to a protocol that calls a subprotocol at a
prescribed round.

The notion of a subprotocol is immediately generalized to allow nesting of sub-
protocols, that is, to allow Q itself to be a subprotocol. Assume that for 1 ≤ x < k,
protocol Qx has called fixed-round protocol Qx+1 at round rx. Then if protocol

12 For instance, assume that a player j has been corrupted by A during the execution of Q before
P was called. Then it is conceivable that from the Q-history of player j at the time of the call, the
adversary may infer the Q-history at the time of the call of a good player i well enough to predict i’s
input to P . (That is, Q may induce some correlation among the inputs of subprotocol P that need
not to be there if P were executed “from scratch.”)

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 887

Q = Qk calls P at round r, all of the mechanics for calling P , executing P , and
including the result of P ’s execution in the Q-histories remain the same, except that
if a new processor i is corrupted during the execution of P , the “suspended his-
tory” of player i learned by the adversary, rather than simply being Hr,Q

i , is actually

(Hr,Q1

i , . . . , HrkQk
i).

Concurrent protocols. Since it is the goal of this paper to squeeze as much compu-
tation as possible into a few rounds, we need to introduce the notion of concurrently
executing more protocols, each protocol on its own inputs.

Definition. Let R be a positive integer, n be an integer > 1, and L be a finite
set (of labels). Then an (n-party R-round) concurrent protocol is a mapping from L
into the set of n-party R-round protocols.

For each x ∈ L, we denote by P x the image of x under P and by P xi the program
of player i within P x, that is, P x = (P x1 , . . . , P

x
n).

In an execution of a concurrent protocol P , the good players execute each of the
P x’s independently of the others. This restriction does not apply to the adversary,
who can make use of the information learned in the execution of one of the protocols
to choose her actions in the execution of another. Moreover, if the adversary corrupts
player i at round ρ of the execution of a protocol P x, then i becomes corrupted in the
execution of every other protocol in P , but the total number of bad player increases
only by one. Let us now be more precise.

Definition 8. Let R be a positive integer, n be an integer > 1, L be a finite
set, P : x ∈ L → P x be an n-party R-round concurrent protocol, A be an n-party
adversary, H0

A be a string, RA be an infinite binary sequence, bad
0 be a subset of

[1, n], px1 , . . . , p
x
n strings, and Rx1 , . . . , R

x
n be infinite binary sequences. By executing P

(or, equivalently, by concurrently executing ∀x ∈ L P x) with adversary A on initial
adversarial history H0

A, initially bad set bad
0, inputs px1 , . . . , p

x
n, and coins RA and

Rx1 , . . . , R
x
n, we mean performing the following instructions for each player i ∈ [1, n]

and each round r = 0, 1, . . .:
(a) ∀i ∈ good

r−1 and ∀x ∈ L, compute Mr,Px

→i , Mr,Px

i→ , Cr,P
x

i , and Hr,Px

i from

Mr−1,Px

→i , Mr−1,Px

i→ , and Hr−1,Px

i by running P xi so that the kth coin toss of P xi is
the kth bit of Rxi .

(b) Execute Hr
A := Hr−1

A , good
r := good

r−1, bad
r := bad

r−1, and ∀g ∈
good

r, ∀b ∈ bad
r, ∀x ∈ L, Hr

A := (Hr
A,M

r,Px

g→ [b]).
(c) Run A on input Hr

A so that A’s kth coin toss is the k-bit of RA. If C is the
sequence of coin tosses made by A in this execution of step 3, then Hr

A := (Hr
A, C). If

A outputs j ∈ good
r in this execution of step 3, then bad

r := bad
r ∪{j}, good

r :=
good

r − {j}, and ∀g ∈ good
r, ∀x ∈ L, Hr

A := (Hr
A,M

r,Px

g→ [j]), and go to step (c).
Else “A has output for each bad player b and label x an n-message vector Mx

b .”
(d) Letting C be the sequence of coin tosses made by A since the last execution

of step (b), set CrA = C and ∀b ∈ bad
r, ∀x ∈ L, Mr

b→ = Mx
b .

The execution corresponding to the above process is E = E1, . . . , ER, where

Er = (Hr
1 , M

r
1→, M

r
→1, C

r
1 , . . . , H

r
n, M

r
n→, M

r
→n, C

r
n, H

r
A, C

r
A, bad

r,good
r),

where Hr
i = {(x,Hr,x

i) : x ∈ L}, Mr
i→ = {(x,Mr,x

i→) : x ∈ L}, Mr
→i = {(x,Mr,x

→i) : x ∈
L}, and Cri = {(x,Cr,xi) : x ∈ L}. That is, each quantity relative to protocol P x is
labeled with x.

The notions of randomly executing a concurrent protocol and that of a random
execution of a concurrent protocol are obtained in the natural way.

A concurrent protocol P : x ∈ L → P x can be called at a prescribed round r by
another protocol Q very much like an ordinary subprotocol. (In this case, the players

888 PESECH FELDMAN AND SILVIO MICALI

Q-histories at round r must specify, for each x ∈ L, the inputs px1 , . . . , p
x
n on which to

run protocol P x; that is, ∀x ∈ L, each Qri specifies pxi .)

Sequenced protocols. We will also need the notion of a sequenced protocol. This
consists of a pair of protocols (P,Q), where Q is run after P and on the histories of
P . In this paper we actually need to consider only the case of sequenced protocols
(P,Q), where P is R-round. Thus after an execution E of P , for all player i, i’s input
to Q consists of i’s round-R history in E.

Like any other protocol, a sequenced protocol may be called as a subprotocol.
Note that if (P,Q) is a sequenced protocol, then P and Q can never be executed con-
currently. However, if (P1, Q1), . . . , (Pk, Qk) are sequenced protocols, then it might
be possible to concurrently execute P1, . . . , Pk and then concurrently execute subpro-
tocols Q1, . . . , Qn, running each Qi on the history of the execution of Pi.

Message bounds. As we have seen, at each round in the execution of a protocol
P = (P1, . . . , Pn), the adversary sends a message to each currently good player g,
which then feeds it to Pg (among other inputs). Thus by sending g arbitrarily long
messages, the adversary could arbitrarily increase the amount of g’s local computation.
To meaningfully discuss complexity issues, we thus need to modify the mechanics of
protocol execution by introducing message bounds.

The message bound is a variable internal to each processor that at each round
evaluates to a positive integer or to +∞ a special value greater than all positive
integers. If at round r the message bound of a currently good player g is set to
a positive integer k, then g is allowed to compute the k-bit prefix of any incoming
message at round r in k computational steps; only after this truncation will a message
become part of the input to Pg.

A simple and flexible way to specify the message bounds of a player at every round
is to give him a special input, the message-bound input: in any execution in which the
value of this input is v, a player sets to v the message bound of every round. (With an
eye to complexity, these special inputs will be presented in unary; in fact, because we
charge v steps for extracting the v-bit prefix of a string, we do not wish this operation
to be exponential in the message-bound input.) Alternatively, a protocol can specify
the message bound of round r within the code of round r itself—and thus may set
it to a lower value when shorter messages are expected (from the good players). In
either way, if it wishes to keep its own running time under control, a protocol must
set the message bounds of each round to finite values. (If it fails to do so in even
a single round, it will be in that round that the adversary will send extremely long
messages.)

Let us now see what happens to message bounds if a protocol P calls a subprotocol
Q. If Q has message-bound inputs, then P calls Q, specifying the values of these
inputs, as for all other inputs of Q. If Q sets its own message bounds as part of its
code at each round, then it is enough for P to call Q. In either case, throughout the
execution of Q, Q’s message bounds are to be enforced; only after the call is over and
the execution of P is resumed will P ’s message bounds become effective again.

Complexity measures. We now wish to discuss the two notions of round complexity
and local complexity. In so doing, we focus directly on the two cases that are really
relevant to this paper; that is, constant round complexity and polynomially bounded
local computation. We leave to the reader—if she so desires—the task of generalizing
these notions in meaningful ways.

Definition 9. Let P be a protocol with fault tolerance φ. We say that P runs
in an expected constant number of rounds if there exists a positive constant d such
that for all numbers of players n, for all φ-adversaries A, and for all proper initial

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 889

quantities IQ, the expected number of rounds for a random execution of P (n) with
A(n) on IQ to halt is d.

In measuring the amount of local computation in an execution of a protocol P
with an adversary A, we count only the steps taken by the currently good players.
(The adversary attacking the protocol can, of course, compute as much as it wants,
but its steps do not contribute to the local computation of the protocol.) Recall that
we have defined protocols to be uniform programs. Thus before running a protocol
P in an n-size network, the players must first run P on input n so as to compute the
exact n-tuple of programs, P (n), that they should execute. (Player i will, in fact,
execute the ith component of P (n).) We thus also count as P ’s local computation
the steps necessary for the players of an n-size network to compute P (n).

Following the current tradition, we identify efficiency with polynomial-time com-
putation, and we insist that our polynomial-time bounds hold for any possible adver-
sary attacking the protocol.

Definition 10. Let P be a protocol with fault tolerance φ. We say that P runs
in (expected) polynomial time if there exists a polynomial Q such that the following
hold:

1. For all sufficiently large n, the (expected) number of steps for protocol P to
output P (n) = (P1, . . . , Pn) on input n is less than Q(n).

2. For all integers n, for all φ-adversaries A, and for all initial quantities IQ,
if L is the sum of the lengths of the inputs of the players outside the initially bad set,
the (expected) number of protocol steps for a random execution of P (n) with A on IQ
to halt is less than Q(n+ L).

(Here by “protocol step” we mean any step executed by Pg for any currently good
player g.) 13

Notice that to establish the local complexity of a given protocol P , we regard
as an input the size n of the network in which P is run. This is indeed necessary
because we consider the steps used to compute P (n) as local computation, but it is
also reasonable with respect to the rest of P ’s local computation. Indeed, even for
protocols that have no inputs (and thus L = 0, as in the case of our protocol OC of
section 7), we expect that when they are “really” executed among n players, at least
n messages will be sent, which entails that the local computation is at least O(n).14

Notice also that although we have not demanded that a protocol set its message
bounds to finite values for the purpose of defining its local complexity, the amount of
local computation of a protocol P can be small—or just bounded, for that matter—
only if P sets proper message bounds.

4. Presentation and organization. We have chosen to build our Byzantine
agreement algorithm in a modular way. We first introduce graded broadcast, a simple
primitive weakly simulating the capability of broadcasting. We then use this primitive
to build another one: graded verifiable secret sharing. Both primitives are of indepen-
dent interest. Next, we present a technical construction from graded verifiable secret

13 Note that the notion of polynomial time is convenient in that we should not worry too much
about fine tuning the balance between the effort of computing P (n) and that necessary to run the
protocol, nor should we worry about whether the polynomial Q should be evaluated on n + L or—
say—the maximum between n and L, or n times the maximum length of the inputs of the initially
good players. These specific choices would instead be crucial for defining that a protocol runs in a—
say—quadratic amount of time. Similarly, a round complexity that is constant (and thus independent
of all possible quantities affecting the computation) is “more or less uncontroversially defined;”
however, the same cannot be said if the round complexity of a protocol were—say—quadratic.

14 In any case, in a Byzantine agreement protocol each player has a single-bit input, and thus
L = O(n) in a network of size n.

890 PESECH FELDMAN AND SILVIO MICALI

sharing to a special protocol for collectively generating a special coin flip, that is, a
bit that is both sufficiently random and sufficiently often visible by all good players.
Finally, we show that Byzantine agreement is reducible to this special coin-flipping
protocol.

Let us now discuss the additional choices we have made in presenting our proto-
cols.

Proofs. Everything important becomes easy with time, and we believe that this
will be the fate of adversarial computation. However, at this stage of its development,
it is so easy to make mistakes that we have chosen to expand our proofs more than
is legitimate and bearable in a more familiar setting. (Proofs are, after all, social
processes and ought only to be convincing to a given set of researchers at a given
point in time.) We have, however, consistently broken our proofs up into shorter
claims so as to enable the reader to skip what she personally considers obvious.

Steps. As usual, we conceptually organize the computation of our protocols into
steps. The primary reason for grouping certain instructions in a step is clarity of
exposition. As a result, one step may require many rounds to be implemented, while
another may require only one round.

In this paper, we adopt the convention of treating each step as a subprotocol
in itself; that is, executing a step composed of certain instructions means calling a
protocol consisting of those instructions. In view of our mechanism for subprotocol
calling, a consequence of our convention is that each step starts being executed at a
“new” round; that is, a step requires at least one round to be implemented.

The advantage of this convention is that we gain a more immediate correspondence
between steps and rounds. For instance, the number of rounds of a protocol simply
becomes the sum of the number of rounds of its steps; for another example, in our
proofs, it will be quite easy upon encountering the expression “round r” to realize
which is its corresponding step.

A (superficial) disadvantage of our convention is that our protocols “seem longer”
since one round may be artificially added for each step. In fact, whenever the last
round of a given step consists solely of internal computations of the processors, it
can be merged in any practical implementation with the first round of the following
step. This is no great loss, however, since we are not interested in claiming O(1)
improvements in the running times of our protocols.

Random selections. As we have seen, by saying that a player i flips a coin, we mean
that he reads the next unread bit of a stringRi. The use of the expression “flips a coin”
is justified by the fact that we will be focusing on random executions of our protocols,
in which case, since each bit of Ri is independently and uniformly selected, all coin
tosses of i are “genuine” and independent. In describing our protocols, however,
we make use of additional suggestive language. By saying that i “randomly selects
element e in a set S of cardinality k,” we mean that the elements of the set are put
in one-to-one correspondence with the integer interval [0, k− 1] and that the player i
keeps on reading dlog ke consecutive unread bits from string Ri until the “name” of
an element in S is found.15 Thus when executing an instruction of the type “∀y ∈ T
randomly select ey ∈ S”—where both T and S are finite sets—all of the resulting
selections will be random (since no portion of Ri is skipped) and independent (since

15 Thus the possibility that an execution diverges exists here, though we do not “protect” ourselves
against such an event for two reasons. First, handling divergence properly would have translated into
much heavier definitions and notations without adding much to the specific content of this paper.
Second, we focus on random executions, and the probability of divergence in a random execution is
0.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 891

no overlapping portions of Ri are ever used). This notation holds for adversaries as
well.

Hiding message bounds. Only one of our protocols, Gradecast, makes use of
message-bound inputs; all others specify their message bounds at each round in their
codes. To lighten these codes, however, we omit making the message bounds explicit
at any round in which they can be simply computed. For instance, if round r − 1
consists, for all players, of the instruction

“if predicate P is true, then send your name to all players; else send them
the empty word ε,”

then for any good player, the message bound for round r is dlogne, the maximum
length of a player’s name (assuming that the name of a player i is encoded by the
binary representation of integer i).16

Sending and receiving. When processor j is instructed to send a value v to the
processor i, we let v∗ denote the value actually received by i since it can be different
from v in case j is bad. It may happen that such a value v∗ must itself be sent to
other processors. In this case, we may write v∗∗ for (v∗)∗.

It is implicitly understood that whenever a message easily recognizable as not
being of the proper form is sent to a good processor, this interprets it as ε, the empty
string. Any predicate of ε is defined to evaluate to false.

For any string σ, we let distribute σ denote the instruction of sending σ to every
processor.

For every nonempty string σ, the expression tally(σ), which occurs in round r+ 1
of the code for player i of a given protocol, denotes the number of players that sent σ
to i in round r. If P is a predicate, the notation P(tally(x)) is shorthand for “there
exists a nonempty string x such that P(tally(x)).”

Self and others. Variables internal to processor i will sometimes carry the sub-
script i to facilitate the comparison of internal variables of different processors.

Whenever processor i should perform an instruction for all j, this includes j = i.
For example, when i sends a message to all players, he also sends a message to himself.
A distinguished processor follows the code for all players in addition to his special code.

Math. We are concerned only with integral intervals. Thus if x and y are integers,
the expression [x, y] stands for the set of integers {i : x ≤ i ≤ y}.

If S is a set, we let S2 stand for the Cartesian product of S and itself and 2S

stand for the set of subsets of S.

All logarithms in this paper are in base 2 (but we still use the natural base e for
other purposes).

Genders. We will refer to a player as a “he” and an adversary as a “she.”17

Protocols. To describe a protocol P , we just describe P (n), leaving it to the reader
to check that this code can be uniformly generated on input n.

Comments. We interleave the code of our protocols with clearly labeled comments.
Often, we label short comments by writing them within quotation marks. In fact, in
our protocols, all words within quotation marks are comments, not instructions.

Numberings. Definitions and claims that appear within the proof of a lemma or
theorem are not expected to have interest—or even “meaning”—outside of their local

16 Of course, our “English” protocols can be implemented in polynomial time only if a proper
encoding is used. For instance, if for sending the name of a player i we chose to send a string
consisting of 2i 1’s, some of our English protocols would not have a polynomial-time implementation.
However, any “reasonable” encoding would do.

17 This gender assignment has been made at random. (Moreover, any additional motive is no
longer valid.)

892 PESECH FELDMAN AND SILVIO MICALI

context. To emphasize this, while allowing cross-referencing within the same proof of,
say, Theorem X or Lemma Y, claims are given “local” labels, that is, TX-1, TX-2, . . . ,
LY-1, LY-2, General definitions, lemmas, and theorems, however, have “global”
labels that consist of progressive numbers.

QEDs. We end each claim’s proof with the symbol “ ” so that, if you find a
claim obvious, you can easily locate the next and continue reading after it. For
lemmas and theorems, a proof’s end (whether or not the proof is easy) is marked by
the symbol “ ” (per standard SIAM journal style).

5. Graded broadcasting.

5.1. The notion of graded broadcast. Broadcasting is a very useful feature in
a network since a processor receiving a message is guaranteed that all other processors
are receiving the same message.18 Byzantine agreement provides the best “simulation”
of broadcasting when all communication is person-to-person: each time a processor
should broadcast a message, it simply sends it to all other processors, which then reach
Byzantine agreement on its value. On our way towards fast Byzantine agreement,
though, we first need to introduce a new primitive, graded broadcasting; this is a
weaker simulation of broadcasting, but despite its simplicity, it is quite useful.

Definition 11. Let P be a protocol in which every player’s input comprises
the identity of a common distinguished processor, the sender, and a common unary
string, the message bound, while the sender has an additional input string, the sender’s
message, whose length does not exceed the message bound.19

We say that P is a graded broadcast protocol (with fault tolerance c) if, for all
c-adversaries A and for all initial quantities IQ, in every execution of P with A on
IQ, each good player i outputs a pair (valuei, gradei)—where valuei is a string at
most k-bit long and gradei equals 0, 1, or 2—so that the following three properties
are satisfied:

1. If i and j are good players and gradei 6= 0 6= gradej, then valuei = valuej.
2. If i and j are good players, then |gradei − gradej | ≤ 1.
3. If the sender is good, then for every good player i, gradei = 2 and valuei =

the sender’s message.

Remark. A simpler but weaker simulation of broadcasting was provided by cru-
sader agreement, as introduced in [13] and refined by Turpin and Coan [37]. Basically,
sending a message using crusader agreement is like sending a message on a broadcast
channel in which some messages may not get delivered: recipients of the message
are guaranteed that all other recipients receive the same messages. However, recipi-
ents have no guarantee that any other player receives the message. The advantage of
graded broadcast over crusader agreement is that when a good player sends a message
using graded broadcast, each good player can verify that all other good players receive
the same message.

18 The power of broadcasting is well exemplified by the fact that it allows one to reach Byzantine
agreement in a trivial way: each processor (1) broadcasts his input value (the default value being
assumed for those processors who do not broadcast anything) then (2) outputs the majority value
broadcast (with, say, default 0 in case of a tie).

19 That is, specifying the initial quantities in extensive notation, an element of IQPn is a triplet of
the form

(H0
A, bad

0, {(h, k) : i ∈ bad
0 ∪ {h}} ∪ {(h, k, σ) : h 6∈ bad

0}),

where H0
A ∈ {0, 1}∗, bad

0 ∈ 2[1,n], h ∈ [1, n], k ∈ 1∗, and σ is a string whose length is less than k.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 893

5.2. A graded broadcast protocol.

Protocol Gradecast(n)
Input for every player i: h, the identity of the sender, and k, the message bound.
Additional input for sender h: σ, the sender’s message.
1. (for sender h): Distribute σ.
2. (for every player i): Distribute σ∗.
3. (for every player i): If tally(z) ≥ 2n/3, distribute z; otherwise, send no messages.
4. (for every player i):
4.1. If tally(x) ≥ 2n/3, output (x, 2) and halt. Else:
4.2. If tally(x) ≥ n/3, output (x, 1) and halt. Else:
4.3. Output (ε, 0) and halt.

Theorem 1. Gradecast is a four-round, polynomial-time, graded broadcast pro-
tocol with fault tolerance 1/3.

Proof. That protocol Gradecast is four-round and polynomial-time is obvious.
Before proving the remaining properties, let us establish the following simple claim.

Claim T1-1. In any execution of Gradecast with message bound k, no good player
sends a message longer than k.

Proof. A good player may send messages only at steps 1, 2, and 3. If he sends a
message at step 1, then he is the dealer, and the only message he sends in this step
is his input string σ, which is guaranteed to be no longer than k. As for steps 2 and
3, what a good player distributes is a message that he has received at the start of
the same step; thus, due to the message-bound mechanism, such a message is at most
k-bit long.

Let us now show that Gradecast is a graded broadcast protocol with fault tolerance
1/3. First, consider property 1. Let i be a player that is good throughout the entire
execution of the protocol, and assume that gradei > 0. Then because of message
bounding, there must exist a nonempty string X, whose length is at most k, such
that i computes tally(X) ≥ n/3 in step 4. Thus i must receive X from at least a
good player g at the start of round 4. Because X is at most k bits long and because
of Claim T1-1, this implies that g had actually distributed X in round 3. In turn,
this implies that g had received X as the round-2 message from at least 2n/3 players.
Letting w (w < n/3) of these players be bad, because of Claim T1-1, at least 2n/3−w
good players had thus distributed X in round 2. Therefore, at most n/3 good players
could have distributed any value other than X in round 2. Thus for any k-bit string
Y, Y 6= X, at most n/3 good players and hence < 2n/3 players overall could have sent
Y to a good player in round 2. Thus no good player may have distributed Y in round
3, nor—because of Claim T1-1—may a good player have distributed a string Y ′ longer
than k whose k-bit prefix coincides with Y . Hence for all good players, tally(Y) < n/3
at round 4 (which, in particular, implies that valuei is uniquely determined). Now let
j be another player, good until the end of the protocol, whose output has a positive
grade component. Since this implies that there exists a string Z, whose length is at
most k, such that j has received Z from at least n/3 players in step 4, and since
we have just proved that Z cannot be different from X, it must be that in step 4
tally(X) ≥ n/3 also for player j; that is, also valuej = X, which proves property 1.

Property 2 follows from the fact that if a good player i sets gradei = 2, then he
has received a k-bit string X from at least 2n/3 players in round 4. Therefore, by
Claim T1-1, at least n/3 good players distributed X in step 3; thus all good players
must have received X at the start of round 4 from at least n/3 players, and thus all
good players must decide according to 4.1 or 4.2.

894 PESECH FELDMAN AND SILVIO MICALI

Property 3 is easily verified since if h is good, all good players receive and dis-
tribute σ in rounds 2 and 3.

Remarks.

• Protocol Gradecast is still a graded broadcast protocol with fault tolerance 1/3
when it is run on a network whose communication lines are not private (i.e., if the
adversary can monitor the messages exchanged by the good players).

• If all message bounds were dropped from Gradecast, the resulting protocol
would still satisfy properties 1, 2, and 3 of graded broadcast but would no longer be
polynomial-time.

Theorem 1 guarantees that certain relationships hold among internal variables of
good processors whenever protocol Gradecast is executed with a 1/3-adversary. These
variables, being internal, are not observable by the adversary. The following simple
lemma, however, guarantees that the adversary can infer them from her history—
actually, from just a portion of her history, something that will be useful much later
in this paper.

Lemma 1. For any given adversary A, any execution of Gradecast with A is
computable from A’s initial history and coin tosses after round 0 if the sender is bad
at the start of the protocol, and from A’s initial history and coin tosses after round 0
and the sender’s message otherwise.

Proof. As for any determinist protocol, an execution of Gradecast with an ad-
versary is solely determined by (1) the inputs of the initially good players and (2)
the adversary’s history and coin tosses after round 0. Now, for protocol Gradecast,
quantity (1) coincides with the sender’s message if the sender is initially good, and is
empty otherwise.

The use of protocol Gradecast in our paper is so extensive that it is worth estab-
lishing a convenient notation.

Notation. After an execution of Gradecast in which player i is the sender, we use
the following terminology:

• If a player j outputs a pair (v, 2), we say that j accepts i’s gradecast of v, or
accepts v from i. If we do not wish to emphasize the value v, we may simply say that
j accepts i’s gradecast.

• If j outputs (v, x), for x ≥ 1, we say that j hears i’s gradecast of v, or hears v
from i. If we do not want to emphasize the value v, we simply say that j hears i’s
gradecast.

• If j outputs (v, 0) for some value v, we say that j rejects i’s gradecast.

In what follows, we shall make extensive use of Gradecast as a subprotocol. It will
thus be convenient to specify a call to Gradecast at step z of an n-party protocol in a
compact way. In particular, since message bounds are necessary only for guaranteeing
the polynomiality of Gradecast, it will be convenient to keep them in the background
as much as possible. For instance, if we are guaranteed that, when executing Gradecast
at step z of a given protocol, the sender’s message is a single bit, we avoid explicitly
specifying that Gradecast is called with message bound k = 1. More generally:

• If, given the possible choices for string σ, k is the least upper bound to the
length of σ, then

z: (for player i): gradecast σ

means that step z consists of executing Gradecast(n) with sender i, sender’s message
σ, and message bound k.

• If, given the possible choices for the strings σi, k is the least upper bound to

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 895

their length, then

z: (for every player i): gradecast σi

means that step z consists of executing Gradecast concurrently n times, one for each
label i ∈ [1, n], so that in execution i the sender is i, his message is σi, and the message
bound is k.
• If, given the possible choices for the strings σx, k is the least upper bound to

their length, then

z: (for player i): ∀x ∈ S, gradecast σx

means that step z consists of executing Gradecast concurrently, once for each label
x ∈ S, so that in execution x, the sender is i, his message is σx, and the message
bound is k.
• If, given the possible choices for the strings σxi, k is the least upper bound to

their length, then

z: (for every player i): ∀x ∈ S, gradecast σxi

means that step z consists of executing Gradecast concurrently, once for each label
xi, where x ∈ S and i ∈ [1, n], so that in execution xi, the sender is i, his message is
σxi, and the message bound is k.

Any of the above calls can be made dependent on whether a given property
P holds, with the understanding that if P is not true, then the gradecast still takes
place, but the sender’s message is the empty string. For instance, if, given the possible
choices for the strings σx, k is the least upper bound to their length, then

z: (for player i): if P, ∀x ∈ S, gradecast σx

means that step z consists of executing Gradecast concurrently, once for each label
x ∈ S, so that in execution x, the sender is i, the message bound is k, and the sender’s
message is σx if P evaluates to TRUE (in general, on x and i’s current history) and
ε otherwise.

Therefore, step z always consists of four rounds. Indeed, though a bit wasteful, the
above convention is convenient to keep our protocols and subprotocols fixed-round.20

6. Graded verifiable secret sharing. We now need to adapt the earlier and
powerful notion of verifiable secret sharing, developed for a different communication
model, to the present scenario.

6.1. Verifiable secret sharing and collective coin flipping. The somewhat
paradoxical concept of verifiable secret sharing (VSS for short) was introduced by
Chor et al. [9], who also provided its first cryptographic implementation (tolerating
O(logn) faults). Informally, a VSS protocol consists of two stages. In the first stage,
a dealer “secretly commits” to a value of its choice. In the second stage, this value
is recovered. The value is secret at the end of stage 1 in the sense that no subset of
players of suitably small size can guess it better than at random, even if they exchange
all of the information in their possession thus far (which good players never do in the
first stage). The value is committed in stage 1 in the sense that a good player can
verify that there exists a unique (and unknown) value x such that whenever stage 2

20 By adopting more complex mechanics for subprotocol calling, we may interpret the above (con-
ditioned) steps differently, and occasionally save rounds and messages.

896 PESECH FELDMAN AND SILVIO MICALI

is performed, with or without the help of the dealer and no matter what the current
or future bad players might do, all of the good players will recover x. Moreover, this
unique but unknown x is the value originally chosen by the dealer.

Verifiable secret sharing has by now found very sophisticated applications, 21 but
we will be interested in the simpler, original application of [9]: enabling a group of
players, a minority of which may be faulty, to generate a common and random bit.
Informally, VSS allows such players to “collectively flip a coin” as follows. Each player
privately selects his own random bit and secretly commits to it in stage 1 of a VSS
protocol. When all have done so, all of these committed bits are recovered in stage 2
of the corresponding VSS protocol and the common, random bit is set to be the sum
modulo 2 of all the decommitted bits.

Since we have already mentioned that the problem of Byzantine agreement is re-
ducible to that of generating a common random bit, the possibility exists of using VSS
for reaching Byzantine agreement. Indeed, as we shall see, we will use a special ver-
sion of VSS (graded VSS) and a much more special version of the above coin-flipping
algorithm (oblivious common coin) so as to produce a bit that is “common enough”
and “random enough” to reach Byzantine agreement in constant expected time. Why
don’t we use ordinary VSS to collectively flip a coin in the straightforward way? The
reason is simple: we want to use collective coin flipping for reaching fast Byzantine
agreement in our point-to-point communication networks, but all implementations of
VSS prior to our work either made use of broadcasting (an unavailable primitive in
our networks!) or Byzantine agreement (which for us is a goal and not a tool!).

6.2. The notion of graded verifiable secret sharing. We now introduce a
weaker version of VSS that is more easily obtainable on our networks without broad-
casting. We call it graded verifiable secret sharing (graded VSS for short). Informally,
this is a sequenced protocol with two components: Graded Share-Verify, which roughly
corresponds to stage 1 of a VSS protocol, and Graded Recover, which roughly corre-
sponds to stage 2. To properly define graded VSS, we need the notion of a an event
becoming “fixed” at some point of the execution of a protocol.

Definition 12. Let X be an event that may occur only after round r in an
execution of a protocol P , and let E be an execution of P . We say that X is fixed at
round r in E if X occurs in every execution E′ coinciding with E up to round r.

Definition 13. Let P be a sequenced protocol, P = (Graded Share-Verify,
Graded Recover), in which
• all players have a common input consisting of the identity of a distinguished

processor, the dealer, and (the encoding of) a set of integers, called the candidate-
secret set;
• the dealer has an additional input, called the secret, consisting of an element of

the candidate-secret set ; and
• each processor x is instructed to output a value verificationx ∈ {0, 1, 2} at the

end of Graded Share-Verify and an element of the candidate-secret set at the end of
Graded Recover (if this latter component is ever executed on the history of the first
one).

We say that P is a graded verifiable secret sharing protocol with fault tolerance
c if the following four properties hold:

1. Semiunanimity. For all initial quantities (IQ), for all c-adversaries A, and
for all executions of Graded Share-Verify with A on IQ, if a good player i outputs

21 For instance, since [26], it has become the crucial subroutine of all subsequent completeness
theorems for protocols with honest majority, most notably those in [2], [3], [10], [21], and [35].

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 897

verificationi = 2, then verificationj > 0 for all good players j.
2. Acceptance of good secrets. For all IQ c-adversaries A and for all executions

of Graded Share-Verify with A on IQ, if the dealer is always good, then verificationi =
2 for all good players i.

3. Verifiability. For all on IQ c-adversaries A and for all executions E of Graded
Share-Verify with A on IQ, if verificationi > 0 for a good player i, then there exists
a value σ in the candidate-secret set such that the event that all good players output
σ when executing Graded Recover (on their histories in E) is fixed at the end of E.
Moreover, if the dealer is always good in E, σ = the secret.

4. Unpredictability. For all c-adversaries A, for all players h, for all integer
m, and for all cardinality-m set S, if

• s is randomly chosen in S,
• Graded Share-Verify is randomly executed with A, dealer h, candidate-secret

set S, and secret s, and
• dealer h is good throughout this execution, and the adversary outputs a value

a ∈ S (as her “guess” for the secret) at its end,
then Prob(a = s) = 1/m.

Here the probability is taken not only over the coin tosses of P and A but also
over the choice of s. 22

Remarks.
• Notice that simply saying—in the verifiability condition—“all good players out-

put σ in Graded Recover” is not sufficient for our purposes. In fact, although the
adversary cannot prevent the good players from outputting the same value, this for-
mulation still allows her to decide what the value of σ should be while executing
Graded Recover. (An example of this has been constructed by the second author.)
Thus Graded Share-Verify would not model a secret commitment as discussed above.
For this we need the value of σ to be fixed at the end of Graded Share-Verify (when σ
coincides with the dealer’s secret and is totally unpredictable to the adversary if the
dealer is currently good).
• A definition of VSS can be obtained from the above definition of graded VSS

by replacing throughout “verificationi = 2” by “verificationi > 0.” (The definition of
VSS obtained in this way is actually, in our opinion, the most general and satisfactory
one in the literature to date.) Similarly, jumping ahead, from our protocol Graded-
VSS, one can easily derive a verifiable secret sharing protocol with broadcasting by
essentially replacing all gradecast instructions with broadcast instructions. (It is the
transformation of a verifiable secret sharing protocol with broadcasting to a graded

22 An equivalent formulation of Unpredictability that does not require that the secret be chosen
at random in the candidate secret set can be informally described as follows.

Let PS(A, h,H0
A, H

0
−{h}, S, s) denote the probability space over the final histories of A obtained

by first randomly executing Graded Share-Verify with adversary A, dealer h, initial adversarial
history H0

A, initial histories (in a suitable encoding, of all initially good players other than dealer
h) H0

−{h}, candidate-secret set S, and secret s and then outputting the final adversarial history if

dealer h has not been corrupted. Then unpredictability can be reformulated as follows:
4′. For all c-adversaries A, ∀h, ∀H0

A, ∀H−{h}, ∀S, and ∀s1, s2 ∈ S,

PS(A, h,H0
A, H

0
−{h}, S, s1) = PS(A, h,H0

A, H
0
−{h}, S, s2).

(The reason for including the histories of all players except the dealer is that we want to maintain
unpredictability even when Graded Share-Verify is called as a subprotocol. In which case, though the
prior histories of the players do not affect the execution of Graded Share-Verify, they will appear—for
the corrupted players—in the final history of A.)

Personally, we find the above formulation (after properly “cleaning it up”) generally preferable,
but the one in the main text is in a more convenient form for the purposes of this paper.

898 PESECH FELDMAN AND SILVIO MICALI

VSS protocol without broadcasting that proves to be trickier.)

• Let P be a graded verifiable secret sharing protocol with fault tolerance c,
P = (GSV,GR). Then if there are too few players (i.e., if bn · cc = 0), even a single
player (over than the dealer) may at the end of an execution of GSV possess sufficient
information to predict with probability 1 the dealer’s secret. However, this does not
contradict Unpredictability. Indeed, this property demands that no adversary can
predict a good dealer’s secret better than at random, and whenever bn · cc = 0, she
cannot corrupt any player. (The reader who perceives this phenomenon as awkward
may prefer to define graded verifiable secret sharing protocols only when there are
sufficiently many players. Personally, we prefer to define protocols so that any number
of players greater than 1 is admissible, and we find it awkward to make exceptions
for c-fault-tolerant protocols.)

6.3. A graded verifiable secret sharing protocol. This subsection is de-
voted to constructing the first graded VSS protocol. The basis of our construction
was provided by an ingenious VSS protocol developed by Ben-Or, Goldwasser, and
Wigderson [3]. Their protocol runs in O(n) rounds—when there may be O(n) faults—
in a special type of communication network: the standard-plus-broadcast network.
This is a network in which not only each pair of users communicate via their own
private line, but all processors also share a broadcast channel.23 We have adapted
their protocol to our needs in two phases:

1. First, we have improved their result by providing a VSS protocol for standard-
plus-broadcast networks, FastVSS, that (1) runs in a constant number of rounds and
(2) is conceptually simpler.24 (Ben-Or, Goldwasser, and Wigderson have told us that
they have independently found a constant-round version of their result, but it is more
complicated than ours.)

2. Second, we have transformed FastVSS (a protocol for standard-plus-broadcast
networks) into GradedVSS, a constant-round graded VSS rotocol for standard net-
works (i.e., without any broadcasting facilities).

For the sake of conciseness, since the focus of this paper is on standard networks,
we forgo providing an explicit description of FastVSS. (Below we present just the
basic intuition behind it since this can effectively be used for GradedVSS as well.)
Indeed, in our protocol GradedVSS, we have merged the above two steps into a single
one. (The reader can, however, easily reconstruct the code of FastVSS from that of
GradedVSS.) We will, however, provide separate intuition for each of the above two
phases.

Phase 1: FastVSS. In FastVSS, the dealer encodes his own secret in a special and
redundant way. Namely, if the adversary can corrupt at most t players, the dealer
selects a bivariate polynomial f(x, y) of degree t in each variable such that f(0, 0)
equals his secret. He then privately gives to player i the polynomials Pi(y) = f(i, y)
and Qi(x) = f(x, i) as his shares of the secret, an x-share and a y-share. As we shall
see, the shares of any ≤ t players do not betray the secret at all. On the other hand,
as expressed by the following lemma, any t+ 1 genuine x-shares determine the secret
(and the same is true for the y-shares).

23 Actually, they share a bit more powerful means of communication: each recipient of a message
m traveling along this special shared channel is guaranteed not only that all processors receive the
same string m that he does but also that all processors know who the sender of m is.

24 The protocol of [3] made use of Reed–Solomon codes, while our FastVSS does not rely on any
error-correcting codes—or at least it succeeds in hiding them away while remaining self-contained in
a very simple manner.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 899

Our choice of encoding for the dealer’s secret does not guarantee verifiability per
se. In fact, a good player cannot check whether his received x-share is genuine or—
say—a random polynomial of degree t. It is here that the y-shares come into play. In
fact, FastVSS performs several checks centered around the following simple property:
if two players i and j both hold genuine shares, then it should be that Pi(j) = Qj(i).

Unpredictability is guaranteed since FastVSS is constructed so that, in every
check, the information about the secret of a good dealer obtainable by the adversary
can be computed from the shares in her possession—which we have already claimed
to be insufficient to predict the dealer’s secret.

Phase 2: From VSS to graded VSS. Our transformation of FastVSS into Grad-
edVSS possesses a somewhat general flavor: it appears to provide a compiler-type
algorithm that, on input any known VSS protocol for standard-plus-broadcast net-
works, outputs a graded VSS protocol running in a standard network, with the same
fault tolerance of the input protocol and with essentially the same time and number
of rounds.25 This simple transformation is thus potentially useful: one may be able to
turn more efficient VSS protocols developed in the future into more efficient graded
VSS protocols.

Quite intuitively, the essence of our transformation consists of replacing the broad-
cast instructions of the input VSS protocol by gradecast instructions and then of prop-
erly branching on the grade produced by each gradecast. As the expression “properly”
indicates, however, some care is needed in deciding how to branch. Though some de-
gree of freedom is available, it is crucial to exploit the fact that grades are 3-valued.
It should be noticed that after a gradecast instruction of GradedVSS, we sometimes
branch based on whether the gradecast is accepted or not (i.e., on whether the result-
ing grade is 2 or less than 2) and other times based on whether the gradecast is heard
or not (i.e., on whether the resulting grade is ≥ 1 or equal to 0). Now, although some
of these “accepted-or-not” branchings could be replaced by “heard-or-not” branchings
(and vice versa), it can be shown that adopting only a single type of branching does
not work. Carrying VSS from standard-plus-broadcast networks to standard ones
without losing too much meaning is indeed the very reason that we have introduced
our 3-valued graded broadcasting primitive.

(If going from VSS protocols to graded VSS protocols requires a minimum of
attention, the “reverse” transformation is instead quite straightforward. Protocol
FastVSS is in fact immediately obtainable from protocol GradedVSS.)

Before presenting protocol GradedVSS, let us state and prove a variant of the
classic Lagrange interpolation theorem.

Lemma 2. Let p be a prime, t be a nonnegative integer, x1, . . . , xt+1 be distinct
elements in Zp, and Q1(y), . . . , Qt+1(y) be polynomials mod p of degree t. Then there
exists a unique bivariate polynomial F (x, y) of degree t (in each of the variables x and
y) such that

(∗) F (xi, y) = Qi(y) for i = 1, . . . , t+ 1.

Proof. Define (Lagrange interpolation)

F (x, y) =

t+1∑
i=1

Qi(y)

∏
j 6=i

(x− xj)∏
j 6=i

(xi − xj)
·

25 While our transformation works for all known VSS protocols, it is still conceivable that it cannot
be applied to some future “bizarre” one.

900 PESECH FELDMAN AND SILVIO MICALI

Then F (x, y) has degree t and satisfies (∗). We now argue that this polynomial is
unique. Now assume that there exist two different t-degree bivariate polynomials
F1(x, y) and F2(x, y) that satisfy (∗). We will prove that the polynomial

R(x, y) = F1(x, y)− F2(x, y) =
∑
i,j

rijx
iyj

is identically 0. For each k = 1, . . . , t+ 1, we have

t∑
i,j=0

rijx
i
ky
i = R(xk, y)

def.
= F1(xk, y)− F2(xk, y)

(∗)
= Qk(y)−Qk(y) = 0.

That is, for each k = 1, . . . , t+1, the polynomial in y
∑t
j=0(

∑t
i=0 rijx

i
k)yj is identically

0. Thus for each fixed j̄,
∑t

i=0 rij̄x
i
k = 0 for k = 1, . . . , t+ 1, that is, the polynomial∑t

i=0 rij̄x
i evaluates to 0 at the t + 1 points x1, . . . , xt+1. This implies that rij̄ = 0

for all i = 1, . . . , t + 1. Thus R(x, y) is identically 0, which proves the uniqueness of
F (x, y).

Notation for protocol GradedSV. In most of the scientific literature, the upper
bound on the number of corruptable processors, denoted by t, is integral and explicitly
given as an input to a fault-tolerant protocol. Having t as an input to each protocol
would, however, be a bit cumbersome in our case: we have quite a few subprotocol
calls and thus we would need to continuously specify the value of t for each call. Also,
we are primarily interested in the highest possible value of t (i.e., t = b(n − 1)/3c)
and our protocols—with the singular exception of GradedVSS—do not become more
efficient for smaller values of t. However, to allow the reader to appreciate how the
efficiency of GradedVSS decreases with t, we set t = b(n − 1)/3c at its start (rather
than making t an input to the protocol).

Theorem 2. GradedVSS is a graded verifiable secret sharing protocol with fault
tolerance 1/3 that runs in expected polynomial time; GradedSV is a 25-round protocol,
and GradedR is a two-round protocol.

Proof. The claims about the number of rounds of GradedSV and GradedR are
trivially verified. Equally simple to verify is the claim about the running time. (Recall
that our choice of notation allows us to hide our message bounds.) The only difficulty
that perhaps arises is about the computation of the prime p in step 1 of GradedSV(n).
Actually, this prime can be found in deterministic polynomial time. In fact, for all
sufficiently large k, there is a prime in the interval [k, 2k]. Thus, letting k be the
maximum between n and m, we can in poly(k) time (and thus in time polynomial in
n plus the total length of our inputs since h < n and m is presented in unary) consider
all integers in [k, 2k] in increasing order until one is found that is proved prime by
exaustive search of its divisors.

Let us now address the other claims.
Semiunanimity. If any good player G outputs verificationG = 2, he has received

recoverable from at least 2t+ 1 players, of which at least t+ 1 are good. Thus every
other good player g has received recoverable from at least t+ 1 players, so he outputs
verificationg ≥ 1.

Acceptance of good secrets. Let us first show that if the dealer is good (throughout
GradedSV), then no good player gradecasts badshare in step 6. Since in this step a
good player G can gradecast badshare only in three cases, let us show that none of
them can occur.

Case 1. Assume that G has accepted the gradecast of disagree(j) from a player k
in step 4. Then because of property 2 of any gradecast protocol, the dealer has heard

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 901

Protocol GradedSV(n)
Input for every player i: h, the identity of the dealer, and m, a unary string

encoding the candidate-secret interval [0,m− 1].
1. (for every player i): Compute p, the smallest prime greater than n and m,

and set t = b(n− 1)/3c.
Comment. All computations are done modulo p.

2. (for dealer h): Randomly select a t-degree bivariate polynomial f(x, y) such
that f(0, 0) = s. “In other words, set a00 = s, for all (i, j) ∈ [1, t]2 − {(0, 0)},
randomly select aij in [0, p − 1], and set f(x, y) =

∑
i,j aijx

iyj .” For all i,
privately send (Pi, Qi) to player i, where Pi = Pi(y) = f(i, y) and Qi =
Qi(x) = f(x, i).

Comment. f(0, 0) = s, your secret. Pi(j) = Qj(i) for all i and j.
3. (for every player i): For all j, if the dealer has not sent you a pair of t-degree

polynomials mod p, send ε to player j; else, privately send j the value Q∗i (j).
4. (for every player i): For all j, if P ∗i (j) 6= (Q∗j (i))

∗, gradecast disagree (j).
Comment. Either j or the dealer is bad or both are bad.

5. (for dealer h): For all (i, j) ∈ [1, n]2, if you heard disagree (j) from player i
in step 4, gradecast (i, j, Qj(i)).

Comment. i or j is bad or both are bad: what you reveal is already known
to the adversary.

6. (for every player i): For all (k, j) ∈ [1, n]2, if you accepted disagree (j) from
player k in step 4 and
• in the previous step you did not accept from the dealer exactly one value

of the form (k, j, V), where V ∈ [0, p− 1]; or
• you accepted such a value and k = i, “i.e., you are player k,” but
V 6= P ∗i (j); or
• you accepted such a value and j = i, “i.e., you are player j,” but V 6=
Q∗i (k),

gradecast badshare. “The dealer is bad.”
7. (for dealer h): For all i, if you heard badshare from player i in step 6, gradecast

(i, Pi(y), Qi(x)).
Comment. i is bad: what you reveal is already known to the adversary.

8. (for every player i): If
(a) you gradecasted badshare in step 6; or
(b) you accepted badshare from more than t players in step 6; or
(c) for each player j whose gradecast of badshare in step 6 you have accepted,

a step ago you did not accept from the dealer the gradecast of a value
(j, U, V), where U and V are t-degree polynomials, or you accepted such
a value but Q∗i (j) 6= U(i) or P ∗i (j) 6= V (i),

distribute badshare. “The dealer is bad.”
9. (for each player i): If tally(badshare) ≤ t, distribute recoverable.

10. (for each player i):
If tally(recoverable) > 2t, output verificationi = 2.

Comment. The secret is recoverable and all good players know it.
Else: If tally(recoverable) > t, output verificationi = 1.

Comment. You know that the secret is recoverable, but other good players
may not know it.
Else: Output verificationi = 0.

Comment. The secret may or may not be recoverable.

902 PESECH FELDMAN AND SILVIO MICALI

Protocol GradedR(n)
1. (for every player i): Distribute P ∗i and Q∗i .
2. (for every player i):

For each player j, set P ij (y) = P ∗∗j and Qij(y) = Q∗∗j . If you have accepted
badshare from j in step 6 of GradedSV and you have heard (j, U(y), V (x))
from the dealer in step 7, reset P ij (y) = U(y) and Qij(x) = V (x).

Comment. P ij (y) and Qij(x) are your own view of player j’s final shares.

Let counti(j) consist of the number of players k for which P ij (k) = Qik(j).
Comment. If a good player has output verification > 0 in GradedSV, all
good players are given count > 2t + 1. However, a bad player may be
given count > 2t + 1 by some good player and a low count by another
good player.

If possible, select a set of t + 1 players k such that counti(k) ≥ 2t + 1. Let
k1, . . . , kt+1 be the members of this set.

Comment. If a good player has output verification > 0 in GradedSV,
there will be such a set. In this case, although different good players
may select different sets and some of these sets may contain bad players,
each set determines the same bivariate polynomial

Compute the unique bivariate polynomial P(x, y) such that P(kj , y) =
P ikj (y) j ∈ [1, t+ 1] and output P(0, 0) mod m as the dealer’s secret.

k’s gradecast and has thus responded in step 5 by gradecasting (k, j,Qj(k)). Since
the dealer’s gradecast is proper, it is necessarily accepted by G.

Case 2. If G gradecasts disagree(j) in step 4, the dealer accepts this proper grade-
cast and thus properly responds by gradecasting (G, j,Qj(G)), and Qj(G) coincides
with G’s x-share, P ∗G(y), evaluated at point j since for a good dealer P ∗G(j) = PG(j) =
f(G, j) = Qj(G).

Case 3. If G has accepted disagree(G) from k in step 4, the dealer has at least
heard this value and has thus responded by properly gradecasting (k,G,QG(k)). This
value is thus accepted by G; moreover, since the dealer is good, Q∗G(x) = QG(x) and
thus Q∗G(k) = QG(k). Thus if the dealer is good, in no case does a good player
G gradecast badshare in step 6. This implies that no good player can distribute
badshare in step 8 according to conditions 8(a) or 8(b). Moreover, as long as the
dealer continues to be good in step 7, a good player G cannot distribute badshare
because of 8(c) as well. In fact, if G has accepted badshare from j in step 6, the dealer
has at least heard this value and responded by properly gradecasting the polynomials
Pj(y) and Qj(x); since G accepts all proper gradecasts, and because when the dealer
is good P ∗j (i) = Pj(i) = Qi(j) = Q∗i (j) for all i and j, all of G’s checks in steps 8 will
be passed. We conclude that if the dealer is good in GradedSV, only the bad players
may distribute badshare in step 8. Thus, since they are at most t in number, all good
players G will distribute recoverable in Step 9 and output verificationG = 2 in step
10.

Verifiability. Let S be an execution of GradedSV in which at most t < n/3 players
are corrupted and a good player outputs verification > 0, and let R be an execution
of GradedR on the histories of S. We need to show that (1) there exists a value σS
such that the event that all good players output σS in R is fixed at the end of S and
(2) σS coincides with the dealer’s secret if he is always good in S.

To this end, let us establish a convenient notation and a sequence of simple claims
relative to S andR. Recall that, since (GradedVSS, GradedR) is a sequenced protocol,

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 903

any player good in R (actually, in R’s first round) is always good in S.
Local Definition. In an execution of GradedVSS, a player is said to be satisfied

if he is good throughout the execution and does not distribute badshare in step 8.
Claim T2-0. In S, there is a set of t+ 1 satisfied players.
Proof. The proof is by contradiction. Were our claim false, then since there are at

least 2t+ 1 good players in S, at least t+ 1 of them would have distributed badshare
in step 8. Thus no good player would have distributed recoverable in step 9, and no
good player would have output verification> 0 in step 10.

Due to condition 8(a), we also know that a satisfied player does not gradecast
badshare in step 6 either; thus for all satisfied players i and j, P ∗i (j) = Q∗j (i). In view
of Claim T2-0 and Lemma 2, we can thus present the following (local) definition.

Local Definition. In execution S, we let GS denote the lexicographically first
set of t + 1 satisfied players,26 and we let FS denote the unique, bivariate, t-degree
polynomial associated with GS by Lemma 2; that is, F(i, y) = P ∗i (y) ∀i ∈ GS .

Claim T2-1. ∀i ∈ GS , P ∗i (y) = FS(i, y) and Q∗i (x) = FS(x, i).
Proof. Clearly, P ∗i (y) = FS(i, y) ∀i ∈ GS by construction. We now prove the

second set of equalities. Let i ∈ GS ; since we are dealing with polynomials of degree t,
it is enough to prove that FS(x, i) equals Q∗i (x) at t+1 points. Indeed, for all j ∈ GS ,
we have

FS(j, i)
by construction

= P ∗j (i) = Q∗i (j),

where the last equality has been checked to hold by satisfied player j in step 4 since
good player i sent him Q∗i (j) in step 3.

Claim T2-2. Let G and i be good in R, and let i also be satisfied in S. Then
P ∗i = PGi and Q∗i = QGi .

Proof. Informally, we must show that G’s own view of i’s final shares coincides
with that of i himself. Being good in R, i sends P ∗i and Q∗i to G in step 1 of R. Thus
G sets PGi = P ∗i and QGi = Q∗i at the beginning of step 2 of R. Finally, G does not
reset these variables in the remainder of step 2. Indeed, he may reset these variables
only under certain conditions, which include having accepted badshare from i in step
6 of GradedSV; however, no satisfied player gradecasts badshare in step 6.

Claim T2-3. Let G and g be good in R. Then PGg (y) = FS(g, y) and QGg (x) =
FS(x, g).

Proof. We prove only the first equality since the second one is proved similarly.
To this end, it is enough to show that FS(g, y) and PGg (y) agree on every i ∈ GS .
Indeed, by Claim T2-3, we have

∀i ∈ GS , FS(g, i) = Q∗i (g).

We now prove that

∀i ∈ GS , Q∗i (g) = PGg (i).

We break the proof of the above statement into two cases:
(a) G does not reset PGg (y) (i.e., PGg (y) coincides with the polynomial in y that

g sent to G in step 1 of R);
(b) G resets PGg (y) (i.e., PGg (y) is the polynomial in y gradecasted by the dealer

in step 7 of S).

26 Any uniquely specified set of t+ 1 satisfied players in S would do.

904 PESECH FELDMAN AND SILVIO MICALI

Case (a). In this case, PGg (y) = P ∗g (y). We must now argue that if i ∈ GS , then
Q∗i (g) = P ∗g (i). To begin with, notice that since i privately sent value Q∗i (g) to g in
step 3 of S, player g could compare these two values. We now show that P ∗g (i) 6= Q∗i (g)
leads to a contradiction. In fact, if the latter inequality holds, g gradecasts disagree(i)
in step 4 of S. Since i accepts this gradecast, to remain satisfied he must accept
(g, i, Q∗i (g)) from the dealer in step 5 of S. This causes player g to gradecast badshare
in step 6 of S—either because he does not accept the dealer’s answer or because he
accepts exactly the same answer that i does by property 1 of gradecast and thus we
still have Q∗i (g) 6= P ∗g (i). Since i must accept g’s gradecast of badshare, to keep him
satisfied, the dealer must reply by gradecasting g’s x-share and y-share in step 7 of S
in order to have these values accepted by i. Thus these shares are at least heard by
G, who thus resets PGg and QGg . This contradicts the assumption that we are in Case
(a).

Case (b). In this case, G must have first accepted the gradecast of badshare from
g in step 6. Since g is good, this gradecast must have been accepted by good player
i as well. Since i is satisfied, he must also have accepted the value replied by the
dealer, (g, U(y), V (x)). By property 1 of gradecast, U and V are the same values
heard by G and are thus G’s own view of g’s final shares; that is, U(y) = PGg (y) and

V (x) = QGg (x). The reason that now Q∗i (g) = PGg (i) is that i satisfactorily checked
in step 8 that Q∗i (g) = U(i).

Claim T2-4. For all G good in R and for all k, countG(k) ≥ 2t+ 1⇒ PGk (y) =
FS(k, y).

Proof. Since PGk (y) and FS(k, y) are t-degree univariate polynomials, it is suffi-
cient to show that they agree on t+ 1 points. Indeed, if countG(k) ≥ 2t+ 1 and the
bad players are at most t, there must exist t+ 1 good players g such that

PGk (g)
def. of countG= QGg (k)

Claim T2-3
= FS(k, g).

We are now ready to prove that in step 2 of R, every good player G computes the
bivariate polynomial FS and thus outputs FS(0, 0) mod m. To this end, first notice
that there will be at least t + 1 players k such that countG(k) ≥ 2t + 1. In fact, for
all good players g1 and g2, we have

PGg1(g2)
Claim T2-3

= FS(g1, g2)
Claim T2-3

= QGg2(g1).

Thus countG(g1) will be at least 2t + 1, that is, at least the number of good players
g2; since there are at least 2t + 1 such players g1, it will be possible for G to select
t + 1 players for which countG ≥ 2t + 1. Let k1, . . . , kt+1 be the ones he actually
selects—some of them possibly bad. Then G outputs the polynomial P(x, y) such
that

∀l ∈ [1, . . . , t+ 1], P(kl, y) = PGkl (y)
Claim T2-4

= FS(kl, y).

Thus by Lemma 2, P and FS must be equal, and all good players output FS(0, 0) mod
m at the end ofR. BecauseR was just any execution of GradedR on the histories of S,
because FS is determined by execution S, and because FS(0, 0) mod m is guaranteed
to belong to the candidate-secret interval [0,m−1], this shows that the event that all
good players in an execution of GradedR on the histories of S output σS = FS(0, 0)
mod m is fixed at the end of S.

Let us now show that if the dealer is good throughout S, FS actually coincides
with the polynomial f(x, y) originally selected by the dealer in step 2 of S. By

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 905

Lemma 2, it is enough to prove that there are t + 1 distinct values v such that
FS(v, y) = f(v, y). This is our case. In fact, letting G be a fixed good player, for any
good player g, we have

FS(g, y)
Claim T2-3

= PGg (y)
Claim T2-2

= P ∗g (y)
good dealer

= Pg(y)
by def.

= f(g, y).

Because a good dealer chooses f(x, y) so that f(0, 0) coincides with his secret, which
belongs to the candidate-secret interval [0,m − 1], whenever the dealer is good, the
value output by the good players in R, σS = FS(0, 0) mod m, fixed at the end of S,
coincides with the dealer’s secret.

Because S was just any execution of GradedSV in which verificationi > 0 for
some good player i, this completes the proof that Verifiability holds for GradedVSS.

Unpredictability. An appealing, rigorous, and general proof of Unpredictability
is obtainable utilizing the notion of “secure (or zero-knowledge) computation” [30].
As we have remarked, however, such a notion has not yet been published, and it is
too difficult to be quickly summarized here. Therefore, we shall use an ad hoc and
“quick-and-dirty” argument.

Our proof consists of showing that, in an execution of GradedSV in which the
dealer is never corrupted, there exists a special piece of information (a string), in-
dependent of the secret, from which the adversary’s history can be deterministically
computed. Because the adversary cannot but predict the secret on the basis of her
history (and of her coin tosses, which are clearly independent of the secret), this proves
that the adversary cannot predict the secret better than at random.

The existence of such a special piece of information follows in part from the general
mechanics of (any) protocol execution, and in part from the specific characteristics
of our GradedSV protocol. We find it useful to present separately the following two
parts of our argument: we present the first part in claims T2-5 and T2-6 and the
second part in claim T2-8. Let us first establish some convenient notation.

Local definitions. Let P be a protocol, A be an adversary, E be an execution of
P with A, and r be a round in E. Then:

• we say that a player is eventually bad in E if he is corrupted at some point
of it and always good otherwise.
• we denote by MAG→EB

r the set of messages (labeled with their senders and
receivers) sent by the always good players to the eventually bad ones in round
r.
• We refer to the quantities

1. BAD
r

2. the round-r history of A,
3. the round-r histories of the eventually bad players,
4. the coin tosses of A after round r, and
5. the coin tosses of the eventually bad players after round r

as the final quantities of round r. (Thus, the final quantities of round 0
include A’s initial history.) If x is a step of P and r is x’s last round, we refer
to round r’s final quantities as the final quantities of step x.

Claim T2-5. Given a protocol P and an adversary A in an execution of P with
A, the final quantities of a round r (r > 0) are computable from the final quantities
of round r − 1 and MAG→EB

r .

Proof. The proof consists of recalling Definition 4 (i.e., how a protocol is executed
with an adversary) and verifying that one can execute instructions 0–4 of Definition
4 to the extent necessary to compute the desired final quantities.

906 PESECH FELDMAN AND SILVIO MICALI

(In essence, A’s history and coin tosses after each point of the execution of round
r are computable given A’s history and coin tosses after round r − 1 (available by
hypothesis), the history of each newly corrupted processor at the end of round r − 1
(also available by hypothesis), and the message that each currently good processor g
wishes to send to each currently bad processor b in round r. Now, if g is always good,
such a message is among the available inputs, and if g is eventually bad, it can be
computed by running Pg on g’s history and g’s future coin tosses at the end of round
r − 1, both of which belong to the available inputs. The history and coin tosses of
each eventually bad player i after round r can be computed from the corresponding
and available quantities after round r − 1 by running Pi.)

Repeated application of Claim T2-5 immediately yields the following claim.
Claim T2-6. Given a protocol P and an adversary A, in an execution of P

with A, A’s final history is computable from the final quantities of round 0 and
{MAG→EB

r : r = 1, 2, . . .}.
Properties stronger than those of Claim T2-6 hold for our Gradecast and Grad-

edSV protocols. Indeed, Lemma 1 implies that the final quantities of round 0 and only
MAG→EB

0 suffice for reconstructing an entire execution of Gradecast. (Notice that in
fact, in an execution of Gradecast, MAG→EB

0 coincides with the sender’s message
whenever the sender is always good.) As we show below for protocol GradedSV, the
final quantities of round 0 and MAG→EB

1 suffice for reconstructing the final history
of the adversary. (Notice that in an execution of GradedSV, MAG→EB

1 coincides with
the x- and y-shares of the eventually bad players whenever the dealer is always good.)

Claim T2-7. Given an adversary A, in an execution of GradedSV with A in
which the dealer is good, A’s final history is computable from the final quantities of
round 0 and the x- and y-shares of the eventually bad players.

Proof. Let us show how we compute (one by one) the final quantities of each step
of GradedSV from the quantities available by hypothesis. For the reader’s convenience,
we recall (emphasizing it and omitting our comments) each step of GradedSV.

1. (For every player i): Compute p, the smallest prime greater than n and m,
and set t = b(n− 1)/3c.

This step consists of a single round in which no good player sends any message
(i.e., denoting by r the single round of this step, MAG→EB

r is empty). Thus, as per
Claim T2-5, we compute the final quantities of step 1 from the final quantities of
round 0 alone.

2. (For dealer h): Randomly select a degree-t bivariate polynomial f(x, y) such
that f(0, 0) = s. For all i, privately send (Pi, Qi) to player i, where Pi =
Pi(y) = f(i, y) and Qi = Qi(x) = f(x, i).

This step consists of a single round. Denoting it by r, MAG→EB
r coincides with

the x- and y-shares of the eventually bad players (which are available by hypothesis).
Thus, as per Claim T2-5, we can compute the final quantities of step 2 from the final
quantities of step 1 and MAG→EB

r .
3. (For every player i): For all j, if the dealer has not sent you a pair of t-degree

polynomials mod p, send ε to player j; else, privately send j the value Q∗i (j).
This step also consists of a single round. Denote it by r, and let i be an always

good player and j be an eventually bad one. Because the dealer is good, the message
sent by i to j is not ε but Q∗i (j) = Qi(j). Although we do not know Qi, we compute
Q∗i (j) by evaluating polynomial Pj (which is available as the x-share of player j) at
point i. Doing so for each always good player and each eventually bad one, we compute
the entire MAG→EB

r . We compute the final quantities of step 3 from MAG→EB
r and

the final quantities of step 2, as per Claim T2-5.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 907

4. (For every player i): For all j, if P ∗i (j) 6= (Q∗j (i))
∗, gradecast disagree(j).

Step 4 consists of four rounds in which n2 simultaneous executions of Gradecast,
properly labeled, take place.27 Let us now show that for each execution of Gradecast in
which the sender is (currently) good, we readily compute the sender’s message. Let ij
be the label of such an execution (and thus i its good sender). There are two mutually
exclusive cases to consider: (a) j is a currently bad player and (b) j is currently good.
In case (a) the message (Q∗j (i))

∗ sent by j to i in step 3 is contained in A’s history of
the previous round, and thus in the computed final quantities of step 3. In addition,
because both the dealer and i are good, we know that P ∗i (j) = Pi(j) = Qj(i). Thus
we compute Qj(i) by evaluating polynomial Qj (which is available as the y-share of
eventually bad player j) on input i. Consequently, we compute whether i’s message
in this execution of Gradecast is disagree (j). In case (b) we know a priori that j
has sent the proper quantity to i, and thus i will not gradecast disagree (j). In
either case, therefore, whenever the sender is good we compute the sender’s message.
Consequently, as per Lemma 1, we compute all executions of gradecast of step 4.

5. (For dealer h): For all (i, j) ∈ [1, n]2, if you heard disagree (j) from player i
in step 4, gradecast (i, j, Qj(i)).

Because we have computed all executions of Gradecast of step 4, in particular
we have computed, for each label (i, j), whether the dealer has heard disagree (j)
from player i in execution (i, j). That is, we have computed whether execution (i, j)
of Gradecast occurs. Moreover, whenever this is the case we can also compute the
sender’s message of execution (i, j). (The proof of this fact is similar to the corre-
sponding fact of step 4; namely, if both i and j are good, then we know that no
execution of Gradecast labeled ij occurs. Else, if i is good and j is bad, we com-
pute the sender’s message, (i, j, Qj(i)), by evaluating polynomial Qj—available as
the y-share of bad player j—on input i.) Thus, as per Lemma 1, from these sender’s
messages and from the final quantities of step 4, we compute the final quantities of
step 5 as well as the grades and values output by the good players in step 5.

6. (For every player i): For all (k, j) ∈ [1, n]2, if you accepted disagree (j) from
player k in Step 4 and
• in the previous step you did not accept from the dealer exactly one value

of the form (k, j, V), where V ∈ [0, p− 1]; or
• you accepted such a value and k = i but V 6= P ∗i (j); or
• you accepted such a value and j = i but V 6= Q∗i (k),

gradecast badshare.

Because we have reconstructed the grades and values output by the good players
in steps 4 and 5, we easily determine whether a good player gradecasts badshare in
step 6. Thus, as per Lemma 1 and per the computed final quantities of step 5, we
readily compute the final quantities of step 6 as well as all grades and values output
in it by the currently good players.

7. (For dealer h): For all i, if you heard badshare from player i in step 6,
gradecast (i, Pi(y), Qi(x)).

Given the final quantities of step 6 and the grades and values output by the good
players in step 6, we compute per Lemma 1 the final quantities of step 7 as well as
the grades and values output by the good players of step 7.

8. (For every player i): If
(a) you gradecasted badshare in step 6; or
(b) you accepted badshare from more than t players in step 6; or

27 Recall the notation established at the end of section 6.

908 PESECH FELDMAN AND SILVIO MICALI

(c) for each player j whose gradecast of badshare in step 6 you have accepted,
if a step ago you did not accept from the dealer the gradecast of a value
(j, U, V)—where U and V are t-degree polynomials—or, if you accepted
such a value but Q∗i (j) 6= U(i) or P ∗i (j) 6= V (i),

distribute badshare.

This step consists of a single round which we now denote by r. We then compute
MAG→EB
r by computing which good players distribute badshare. This determination

is easily made from the computed senders’ messages, grades, and outputs of step 6
and from the following three facts: (a) If both i and j are good, then i does not
distribute badshare; (b) because the dealer is good, Q∗i (j) = Qi(j) and P ∗i (j) = Pi(j);
and (c) if i is good and j is bad, then both Qi(j) and Pi(j) are computable from the
available x- and y-shares of bad player j. Thus, as per Claim T2-5 and per the final
quantities of step 7, we compute the final quantities of step 8.

9. (For each player i): If tally(badshare) ≤ t distribute recoverable.

Note that we have just computed in step 8 which good players distribute badshare.
Moreover, whether or not in that step a bad player sends badshare to a good player
appears in A’s history of step 8 (computed as part of the final quantities of step
8). Therefore, we compute tally(badshare) for each currently good player and thus
determine which currently good players wish to distribute recoverable in step 9. Thus,
as per Claim T2-5 and the final quantities of step 8, we compute the final quantities
of step 9.

10. (For each player i):
If tally(recoverable) > 2t, output verificationi = 2.
Else, if tally(recoverable) > t, output verificationi = 1.
Else, Output verificationi = 0.

Since in this last step no good player sends any message, given just the final
quantities of step 9, we compute, as per Claim T2-5, the final quantities of step 10.

Because the final history of the adversary is part of the final quantities of step
10, we have established our claim.

We can now easily finish the proof of Unpredictability. In Claim T2-6 we saw that
A’s final history in GradedSV depends solely on (1) the final quantities of round 0 and
(2) the x- and y-shares of the eventually bad players. Now, in a random execution of
GradedSV in which the dealer is always good and the secret s is randomly selected
in [0,m− 1], the value of the secret is clearly independent of quantities (1). Thus, to
prove that no strategy exists for the adversary to guess this secret with probability
greater than 1/m, it is sufficient to show that the dealer’s secret is also independent of
the x- and y-shares of the t′ ≤ t < n/3 players corrupted by A. Since we can modify
any adversary so that she corrupts an additional t− t′ players just prior to finishing
her last round of GradedSV, we can actually limit ourselves to prove our claim for
the case t′ = t. (In fact, if the adversary is such that the x- and y-shares of the first
t′ corrupted players are not independent of the dealer’s secret, then by adding the
shares of t − t′ other players we cannot obtain shares that are independent of the
secret.) Thus, we now want to prove that for any choice of t eventually bad players,
b1, . . . , bt, any choice of 2t t-degree polynomials Pb1(y), Qb1(x), . . . , Pbt(y), Qbt(x), and
any choice of secret s in [0,m− 1], there exists a unique bivariate polynomial F (x, y)
such that

(A) F (bi, y) = Pbi(y) ∀i ∈ [1, t],
(B) F (x, bi) = Qbi(x) ∀i ∈ [1, t], and
(C) F (0, 0) = s.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 909

We first show F ’s existence. Set b0 = 0 and let Pb0(y) be the univariate, t-degree
polynomial passing through the t + 1 points (0, s) and (bi, Qbi(0)), i ∈ [1, t]. Then,
by Lemma 2, there exists a unique bivariate polynomial F satisfying F (bi, y) =
Pbi(y) ∀i ∈ [0, t]. We now show that F enjoys three of the above required prop-
erties:

(A) By construction.
(B) Fix a ∈ [1, t]. We prove that F (x, ba) = Qba(x) by showing that these two

t-degree polynomials are equal at t + 1 points. In fact, by construction we
have ∀j ∈ [1, . . . , t] F (bj , ba) = Pbj (ba) = Qba(bj), and F (0, ba) = P0(ba) =
Qba(0).

(C) By construction, F (0, 0) = P0(0) = s.

The uniqueness of F is thus a consequence of the uniqueness of P0(y). This proves
that “unpredictability” holds for GradedSV and thus completes the proof of Theorem
2.

Remark. We have chosen the VSS protocol of [3] as the basis of our GradedSV
protocol because it relied solely on private and broadcast channels but not on cryptog-
raphy. (Several beautiful cryptographic VSS protocols are available, but our transfor-
mation would have yielded a cryptographic graded VSS protocol, and thus a Byzantine
agreement algorithm tolerating only computationally bounded adversaries.) Another
ingenious VSS protocol for standard networks that, in addition, possess broadcast
channels, was found by Chaum, Crépeau, and Damg̊ard [10]. We could have also
adapted their protocol in our setting, but at the expenses of some additional compli-
cations since their protocol allows a—controllable but positive—probability of error.

Theorem 2 guarantees that whenever protocol GradedSV is executed with a 1/3-
adversary, certain properties hold for the verification values of the good players. These
values, however, are internal to the good players and not directly “observable” by the
adversary at that point. The following simple lemma, however, shows that these
values can be inferred from (a portion of) the adversarial history. We will make use
of this result in the next section.

Lemma 3. At the end of any execution of GradedSV, the verification value output
by each good player is computable from the final history of the adversary.

Proof. If, in an execution of GradedSV, all players are good, then the dealer
must have been good throughout the protocol. Thus, due to property 2 of verifiable
secret sharing (acceptance of good secrets), we do know that every good player must
output 2 as his own verification value. Now assume that one or more players are
bad—including, possibly, the dealer. Then the verification value output by a good
player i at the end of GradedSV is determined by the number of players that sent
him recoverable in step 9. Now, the number of bad players that sent recoverable to
i is immediately evident from the messages sent from bad players to good players
(messages that are part of the final history of the adversary). Moreover, the number
of good players that have sent recoverable to i is immediately computable from the
messages sent from the good players to the bad players (messages that are also part
of the final history of the adversary); in fact, a good player g sends recoverable to i if
and only if he distributes it to all players, including the bad ones.

7. Oblivious common coins. In this section, we want to show that processors
of a network with private channels can exchange messages so that, in the presence
of any 1/3-adversary, the outcome of a reasonably unpredictable coin toss becomes
available to all good players. We start by defining what this means.

910 PESECH FELDMAN AND SILVIO MICALI

7.1. The notion of an oblivious common coin.
Definition 14. Let P be a fixed-round protocol in which each processor x has no

input and is instructed to output a bit rx. We say that P is an oblivious common coin
protocol (with fairness p and fault tolerance c) iff for all bits b, for all c-adversaries
A, and for all initial quantities IQ, in a random execution of P with A on IQ,

Prob(∀ good players i, ri = b) ≥ p.

We will refer to an execution of P as a coin; by saying that this coin is unanimously
b, we mean that ri = b for every good processor i.

Remarks.
• Our notion of an oblivious coin is a strengthening of Dwork, Shmoys, and

Stockmeyer’s persuasive coin [16], which they implemented for at most O(n/ logn)
faults.
• We chose the term oblivious to emphasize that, at the end of the protocol,

the good processors are “unaware” of whether the outcome of the reasonably un-
predictable coin toss is “common.” That is, by following the protocol, each good
processor computes a bit, but it does not know whether the other good processors
compute the same bit. We shall see how to successfully cope with this ambiguity
in section 8, but let us first exhibit an oblivious common coin protocol with fault
tolerance 1/3.

7.2. An oblivious common coin protocol.
Lemma 4. At the end of every execution of steps 1—3 of OC with a 1/3 adversary,

for every good player i and every player j, whether SUMij = bad can be computed
from the final history of the adversary.

Proof. The adversary’s history at the end of step 3 of OC includes the adversary’s
history at the end of step 1. Thus, as per lemma 3, from the latter history we compute
the value verificationhji for all good players i and players j.

Consequently, as per Lemma 1, we compute each entire execution of Gradecast of
step 2 of OC. From this information we readily compute, for each good player i and
player j, whether conditions (3.a), (3.b), and (3.c) apply, and thus whether player ij
(and consequently SUMij) equals bad.

Lemma 5. In every execution of OC with a 1/3-adversary, for all good players g
and G, SUMgG 6= bad.

Proof. This is so because of the following:
(a) By property 3 of graded broadcast, g accepts G’s gradecast of G’s confidence

list.
(b) By the semiunanimity property of GradedSV, |verificationhjg − verificationhjG |

≤ 1 for all labels hj.
(c) By the acceptance-of-good-secrets property of GradedSV, verificationhGG = 2

for each of the n− t good players h.
Lemma 6. For all n > 1, for all executions of OC(n) with a 1/3-adversary, and

for all players j, there exists an integer sumj ∈ [0, n − 1] such that for all good g,
either SUMgj = sumj or SUMgj = bad.

Proof. We distinguish three mutually exclusive cases.
Case 1: Player j looks bad to all good players. In this case, setting sumj = 1

trivially satisfies our claim.
Case 2: j looks okay to a single good player g and bad to all other good players.

In this case, choosing sumj = SUMgj satisfies our claim for the following reasons.
First, notice that SUMgj is a well-defined integer value belonging to the interval

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 911

Protocol OC(n)
Input for every player i: None.

1. (for every player i): For j = 1 . . . n, randomly and independently choose a
value sij ∈ [0, n− 1]. “We will refer to sij as the ith secret assigned to j, or
the secret assigned to j by i.”
Concurrently run GradedSV n2 times, one for each label hj, 1 ≤ h, j ≤ n. In
execution hj, the candidate-secret set is [0, n − 1] “and thus the number of
possible secrets equals the number of players,” the dealer is h, and the secret
is shj , “i.e., the dealer chooses shj to be his secret whenever he is good.”

Let verificationhji be your output of execution hj, “that is, your own opinion
about the existence/recoverability of shj .”

2. (for every player i): Gradecast the value (verification1i
i , . . . , verificationnii).

“This is your confidence list, that is, your own opinion about the exis-
tence/recoverability of each secret assigned to you.”

3. (for every player i): for all j, if
(a) in the last step, you have accepted j’s gradecast of a vector ~ej ∈
{0, 1, 2}n, “i.e., j’s own confidence list—thus if j’s is good, ~ej =

(verification1j
j , . . . , verificationnjj)”;

(b) for all h, |verificationhji − ~ej [h]| ≤ 1, “that is, your opinion about the
recoverability of every secret assigned to j differs by at most 1 from the
opinion that j has gradecasted to you”; and

(c) ~ej [h] = 2 for at least n− t values of h,
set playerij = ok, “meaning that j looks okay to you;” otherwise, set
playerij = bad, “in which case j looks bad to you and he is bad.”

4: (for every player i): “Recover all possible secrets:”
Concurrently run GradedR on the n2 histories of GradedSV that you gener-
ated in step 1, and denote by valuehji your output for execution hj.
If playerij = bad, set SUMij = bad. Else: Set

SUMij =

 ∑
h such that
~ej [h]=2

valuehji

mod n.

“That is, if player j looks okay to i, SUMij equals the sum modulo n of all
those secrets assigned to j that j himself thinks are optimally verified.”
If for some player j, SUMij = 0, output ri = 0; otherwise, output ri = 1.

[0, n − 1]. This is so because each of the addenda contributing to SUMgj is a well-
defined integer (and thus taking the sum of these addenda mod n necessarily yields
a value in [0, n − 1]). Indeed, if valuehjg is an addendum of SUMgj , then in the
confidence list of j accepted by g, ~ej [h] = 2. Moreover, since j looks okay to g,

step 3(b) ensures that verificationhjg > 0. In turn, by the verifiability property of
GradedSV, this guarantees that the corresponding secret is “well shared,” that is,
that the value output by g running GradedR, valuehjg , belongs to the candidate-secret
set [0, n− 1], as we wished to prove.

Case 3: Player j looks okay to more than one good player. Let g and G be any
two such good players—thus SUMgj 6= bad 6= SUMGj . To begin with, notice that the

912 PESECH FELDMAN AND SILVIO MICALI

value ~ej is the same for both g and G due to property 1 of graded broadcast. We now
show that SUM gj = SUMGj . Indeed, we have

SUMGj =

 ∑
h such that
~ej [h]=2

valuehjG

mod n

and

SUMgj =

 ∑
h such that
~ej [h]=2

valuehjg

mod n.

First, notice that the set of values h for which ~ej [h] = 2 are the same for both G and
g—in fact, both g and G accepted j’s gradecast of his own confidence list in step 2
and by virtue of property 1 of any graded broadcast protocol, their accepted lists are
equal. Moreover, corresponding addenda in the two summations are equal. In fact,
since j looks okay to G, ~ej [h] = 2 implies that verificationhjG > 0, which in turn, due
to the verifiability property of GradedVSS, implies that all good players will recover
the same value as the secret of execution hj of GradedSV.

Lemma 7.28 Let n > 1 and let S and G be subsets of [1, n]. Let the set

O = {Ogj ∈ {ok, bad} : g ∈ G, j ∈ [1, n]}

be such that for all j ∈ S, there exists g ∈ G such that Ogj = ok. Then for all 1/3-
adversaries A, in a random execution of OC(n) with A(n) in which G is the set of
always good players and ∀g ∈ G ∀j ∈ [1, n] playergi = Ogj, the values {sumj : j ∈ S}
are uniformly and independently distributed in [0, n− 1].

Before proving Lemma 7, let us consider a simpler but näıve argument. We have
three good reasons for doing so: to use this naive argument as an introduction to our
subsequent proof; to reassure the reader that our subsequent proof, though admittedly
somewhat tedious, at least does not possess any obvious shortcuts; and to bring to
light a subtle point that, unless it becomes known, may become a common as well
as “fatal” logical trap in similar cryptographic contexts. For simplicity, let us state
our näıve argument in a particularly simple case, that is, when S’s cardinality equals
1, S = {1}. In this case, all we have to prove is that the unique sumj is uniformly
distributed in [0, n− 1].

Näıve argument: If SUMgj 6= bad, then sumj = SUMgj = α+ β mod n, where

α =

 ∑
h such that h is good,

verificationhj
j

=2

valuehjg

mod n

28 We condition the uniform and independent distribution of the sumj ’s on a rather rich set of
events. This is so because Lemma 7 will be invoked in rather diverse contexts, each with its own
“conditioning,” and we wish to make it very easy to see that it applies properly.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 913

and

β =

 ∑
h such that h is bad,

verificationhj
j

=2

valuehjg

mod n.

(These two values are well defined at the end of GradedSV, though no good player
knows them because he does not know who else is good.) Value α is uniformly
distributed in [0, n−1] and is, in addition, unpredictable to the adversary at the end of
step 1. Value β is controllable by the adversary (since each secret that contributes to it
might have been chosen by the adversary via a processor h corrupted sufficiently early
in step 1). Nonetheless, since at the end of GradedSV each of the secrets contributing
to SUMgj is fixed, so is β; that is, β is fixed at a point in which α is unpredictable.
“Thus” no matter how much the adversary can control β, α+β is uniformly distributed
in [0, n− 1].

Why is this näıve? The flaw in the above argument is that, in principle, the
unpredictability of α may be consistent with the fact that, say, α + β always equals
0. Indeed, in principle, the adversary may be capable of guarateeing that β = −α
mod n without knowing α nor (necessarily!) β.29 This “magic correlation,” though
possible in principle, is actually impossible to achieve in our protocol due to many of
its specificities, which have been ignored by the above reasoning. For instance, our
protocol is such that the value β is actually “known” to the adversary at the end
of step 1. This and other specificities are indeed an integral part of the following
simulation-based argument, which properly corrects and formalizes the above näıve
argument. The reader who, at this point, finds it obvious can proceed to Theorem 3.

Proof of Lemma 7. The proof is by induction on k, the cardinality of the set
S. For k = 0, our statement is vacuously true. We now prove the inductive step
by contradiction. Assume that our statement holds for k − 1 but not for k. Then a
simple averaging argument implies the following proposition.

Proposition P1. There exist an integer n > 1, a subset G ⊂ [1, n], a set of
values O = {Ogi ∈ {ok, bad} : g ∈ G i ∈ [1, n]}, a subset S′ ⊂ [1, n], whose cardinality
is k − 1, an additional player j 6∈ S′ such that ∀i ∈ S′ ∪ {j}∃g ∈ G Ogi = ok, a set of
k−1 values {vi ∈ [0, n−1] : i ∈ S′}, an additional value v ∈ [0, n−1], a distinguished

29 Mutatis mutandis, consider the following simpler scenario (simpler because it envisages compu-
tationally bounded players and thus the possibility of successfully using uniquely decodable encryp-
tions) in which this is indeed the case. Two players desire to compute a common and random bit in
the following manner. First, player 1 chooses a random bit b1 and announces its encryption E1(b1).
Then player 2 chooses a random bit b2 and announces its encryption E2(b2). Then player 1 releases
his own decryption key, d1, and, finally, player 2 releases his own decryption key, d2. This will enable
both players to compute bits b1 and b2 and thus b, their sum modulo 2. Is such a b a random bit
if, say, player 2 is bad? The answer is no. Player 2 may force bit b to be 0. Although he cannot
predict b1, he may exploit the fact that player 1 announces his encrypted bit first. (Recall that in our
scenario, simultaneity is not guaranteed! Messages arrive by the next clock tick, but the adversary is
allowed “rushing.”) The strategy of player 2 is as follows. First, he announces the same ciphertext
that player 1 does. Then he announces the same decryption key that player 1 does. This is a quite
serious problem and does not have easy solutions. Simply requiring that the second player announce
a different value than the one announced by the first is not a solution. However, discussion of this
point is beyond the scope of this paper. (Let us just say that Micali devised a cryptographic protocol
that enables two mutually distrusting people to announce independent values—but the protocol and
its proof are not at all straightforward. Dolev, Dwork, and Naor [15] have provided a new type of
public-key cryptosystem that would make easy to solve this and similar problems. Neither method,
however, can be applied to the context of this paper, where the adversary is not restricted in the
amount of computation she can perform and thus could break any public-key cryptosystem.)

914 PESECH FELDMAN AND SILVIO MICALI

player G ∈ G such that OGj = ok, a constant ε > 0, a 1/3-adversary A, a string H,
and a subset B ⊂ [1, n], whose intersection with G is empty, such that, in a random
execution of OC(n) with A(n) on initial adversarial history H and initially bad set
B, letting “G = AG” denote the event that the set of always good players coincides
with G and defining

X = (G = AG) ∧ (∀i ∈ [1, n] ∀g ∈ G, playergi = Ogi),

then
(a) Prob(X) > ε;
(b) Prob(∀i ∈ S′, sumi = vi | X) = (1/n)k−1; and
(c) Prob(∀i ∈ S′, sumi = vi ∧ sumj = v | X) > (1/n)k.30

Claim L7-0. Let n, S′, G, O, j, v, G, ε, A, H, B, and X be as in Proposition
P1, and let Y be the event defined as follows:

Y = X ∧ (∀i ∈ S′, sumi = vi).

Then in a random execution of steps 1–3 of OC(n) with A on initial adversarial
history H and initially bad set B in which G is not corrupted, the following holds:

1. Y occurs with positive probability.
2. Whether Y occurs is computable on the following inputs: (2.1) the set of the

always good players, (2.2) the vectors ~ex ∈ {0, 1, 2}n accepted by at least one good
player in step 2, and (2.3) for all good players g and for all players x 6= j, g’s history
of execution gx of GradedSV.

3. If Y occurs (and thus G ∈ G is good), the secret sGj (i.e., the secret—
randomly selected in [0, n − 1]—of execution Gj of GradedSV, where good G is the
dealer) is predictable with probability > 1/n on inputs (2.1), (2.2), and (2.3) above.

Proof of Claim L7-0.1. First, notice that, because G ∈ G, G is not corrupted
whenever X occurs. Thus Prob(Y | G good) = Prob(Y) = Prob(Y | X) · Prob(X).
Now Prob(X) > ε by Proposition P1(a), and Prob(Y | X) = (1/n)k−1 by Proposition
P1(b).

Proof of Claim L7-0.2. Inputs (2.1) and (2.2) are by definition sufficient to de-
termine whether X holds, and if this is the case, ∀i ∈ S′, sumi 6= bad, and thus
sumi = sumgi for some good player g who has accepted i’s gradecast of a vector ~ei in
step 3. Also, inputs (2.3) and (2.4) are more than sufficient to compute which actual
value in [0, n − 1] sumgi takes because this value depends only on ~ei and g’s history
of execution hi of GradedSV, h = 1, . . . , n, none of which coincides with execution Gj
since i ∈ S′andS′ 63 j.

Proof of Claim L7-0.3. If Y occurs, SUMGj 6= bad and, on inputs (2.1), (2.2),
and (2.3), one can compute all addenda that contribute to SUMGj , with the singular

exception of valueGjG . Indeed, for each h 6= G such that ~ej [h] = 2, the occurrence of

Y implies that G is good, that playerGj = ok, that |verificationhjG − ~ej [h]| ≤ 1, and

thus that verificationhjG > 0. In turn, verificationhjG > 0 implies that the secret of each
such execution hj is recoverable no matter what the currently bad players (and those
which may become bad while running GradedR) may do. In particular, the secret of
each such execution hj is recoverable if no more players are corrupted during GradedR
and the bad players do not send any messages during GradedR. Thus when one has
the histories of the currently good players (i.e., those in G) at the end of each such

30 Statement (c) is equivalent to the following statement:
(c̃) Prob(∀i ∈ S, sumi = vi ∧ sumj = v | X) 6= (1/n)k.

In fact, (c) clearly implies (c̃) and the converse can again be established by averaging.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 915

execution hj of GradedSV, one can run GradedR so as to reconstruct valuehjG for each
of the above labels hj. Having done this, one can trivially compute the sum modulo
n of these values; that is, one can compute

ω =

 ∑
h such that h 6= G

~ej[h]=2

valuehjG

mod n

and output v−ω as a prediction for valueGjG = sGj . We now show that Prob(v−ω =

valueGjG) > 1/n. Indeed, given the above notation, in Proposition P1 we can rewrite
inequality (c) as follows:

(c) Prob(sumj = v | Y) · Prob(Y | X) > (1/n)k.
Thus, since Prob(Y | X) = (1/n)k−1, Proposition P1(b) implies that

Prob(sumj = v | Y) > 1/n.

Now, whenever Y occurs, we have, in particular, SUMGj 6= bad, and thus sumj =

valueGjG + ω mod n. Therefore, as we wanted,

Prob(valueGjG = v − ω | Y) > 1/n.

Notice that Claim L7-0 is not (yet!) a violation of the unpredictability of Grad-
edSV.31 To reach such a contradiction, we now show that (letting n, S′, G, O, G, j,
v, ε, A, H, B, and X be as in Claim L7-0 and Proposition P1) Claim L7-0 implies
the existence of a 1/3-adversary for GradedSV, A′ (= A′n,S′,G,O,j,v,G,ε,A,H,B), that
in a random execution with GradedSV(n) succeeds in achieving the following two
goals. First, her random execution with GradedSV(n) coincides with execution Gj of
GradedSV in a random execution of the first three steps of OC(n) with A(n). Second,
she possesses all inputs (2.1), (2.2), and (2.3) relative to said execution of OC(n) with
A(n).

Informal description of A′ (= A′n,S′,G,O,G,j,ε,A,H,B). Although adversaries A′ and
A are different and attack different protocols, they both act on networks with n
players. Thus for any given player i ∈ [1, n], we must specify at all points whether he
is a player executing GradedSV(n) with A′ or a player executing OC(n) with A. We
find it convenient to do so by writing i′ in the first case and i in the second.

Let us now describe the behavior of A′ in a random execution, E′, with GradedSV
when the dealer is G′ and both the adversarial history and the initially bad set are
empty. During E′, A′ orchestrates and monitors portions of a “virtual” execution,
E, of OC(n) with adversary A. (We thus think of adversary A′ as acting in the
actual network N ′—where GradedSV(n) is executed—and of A as acting in the virtual
network N where OC(u) is executed.)

Since we shall only consider n-party executions of protocols GradedSV and OC
(where n is as in Proposition P1) in the proof of our lemma, we may more simply
write GradedSV and OC instead of, respectively, GradedSV(n) and OC(n).

Adversary A′ causes E to start by letting the adversarial history of A be H, the
initially bad set be B (where H and B are as in Proposition P1), and the initial

31 Indeed, for this to be the case, it is necessary that a 1/3-adversary succeed in predicting better
than at random the random secret of a good dealer in a random execution between this adversary and
GradedSV, that is, without assuming that such a random execution is embedded into an execution
of OC for which certain key quantities are an available inputs.

916 PESECH FELDMAN AND SILVIO MICALI

histories of players 1, . . . , n be those of a random execution of OC. As usual, the first
25 rounds of E consist of the concurrent execution n2 times of the 25-round protocol
GradedSV: one execution for each label hj (where h and j are player names and h is
the dealer of execution hj).

For the first 25 rounds, adversary A′ keeps E′ in lockstep with E, identifying
execution Gj (where G and j are as in Proposition P1) with E′. By “lockstep,” we
mean that, for each round ρ > 0, the round-ρ quantities of E′ and E depend on and
are generated after the round-(ρ − 1) quantities of both E′ and E. By “identifying”
E′, with execution Gj of GradedSV in E, we mean that A′ corrupts processors in N ′

while interfering with the delivery of messages in N in the following way. Adversary
A′ corrupts player j′ in network N ′ at round ρ if and only if A corrupts j in network
N at round ρ. (Since the computation of A starts with initially bad set B, adversary
A′ corrupts j′ in network N ′ at round 0 for all j ∈ B.) Let us now discuss how A′

interferes with the delivery of messages in network N . At every round ρ = 1, . . . , 25,
after A has ended her corruption process and computed the messages from each bad
player to each good one for all executions xy of GradedSV, A′ acts as follows:
• For each execution xy 6= Gj, she delivers the proper messages to the proper

recipients in network N .
• For execution Gj, if A outputs m as the message from bad player b to good

player g, then A′ has b′ send m to g′ in network N ′; vice versa, if good player g′ sends
a message m′ to bad player b′ in execution E′, then A′ delivers m′ as the message
from g to b in round ρ of execution Gj.

As we shall prove, after making this description a bit more precise, the virtual
execution E thusly generated is actually a “genuine” random execution of the first
three steps of OC(n) with A. Moreover, A′ will be capable of computing inputs
(2.1), (2.2), and (2.3) specified in Claim L7-0. This will enable her to contradict the
unpredictability property of GradedSV.

More formal description of A′ (= A′n,S′,G,O,G,j,ε,A,H,B). Let us now describe a
bit more precisely the way A′ acts in a random execution of GradedSV(n) in network
N ′, where the dealer is G′, the candidate-secret set is [0, n − 1], the dealer’s secret
is randomly chosen in said candidate-secret set, the initial adversarial history equals
the empty string, and the initially bad set is empty. We have already specified each
player’s version of GradedSV and the mechanics of an execution of an n-party protocol
with an adversary. Thus, choosing the players’ and adversary’s coin tosses at random,
our description of A′ specifies the values taken by all possible players’ quantities Hr

i′ ,
Mr
i′→, Mr

→i′ , C
r
i′ , and Rri′ as well as the values taken by the adversarial quantities

Hr
A′ , C

r
A′ , and RrA′ and by the sets bad

′r and good
′r.

In order to determine her actions in network N ′, adversary A′ will construct only
in part the quantities Hr,xy

i , Mr,xy
i→ , Mr,xy

→i , Cr,xyi , and Rr,xyi , where i ∈ [1, n] and
xy ∈ [1, n]2, but she will construct all of the possible quantities Hr

A, CrA, and RrA and
the sets bad

r and good
r.

She generates these quantities with the same mechanics of a random execution
of the first three steps of protocol OC(n) with adversary A, initially bad set B, and
initial adversarial history H. The quantities generated thusly by A′, however, fall
short of constituting such a random execution because they are incomplete. Indeed,
they miss some Gj-labeled quantities—e.g., Hr,Gj

i whenever i ∈ good
r.32

32 Since the quantities reconstructed by A′ relative to network N do not quite constitute an
execution of OC(n) with A, and since it can be recognized that these quantities can be integrated
so as to yield a virtual execution only after the entire behavior of A′ has been described, it would
be improper during our description to use suggestive expressions—such as “good at round r”—that,

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 917

It will be clear from our description, however, that if there is no r for which
bad

r contains G, then if one were to integrate these missing quantities with the
corresponding quantities of E′ (i.e., the execution of GradedSV(n) with A′ in network
N ′), one would obtain a random execution of OC(n) with A, on initially bad set B
and adversarial history H, in which G is not corrupted.

Notice that A′ is active in network N ′ for 25 rounds because GradedSV(n) is
a 25-round protocol. Notice also that the number of rounds in step 1 of OC(n) is
also 25 if one imagines (as we do) that in each execution xy of GradedSV(n), the
dealer randomly chooses the secret in round 0. Thus for r = 1, . . . , 25 and each label
xy ∈ [1, n]2, the ith round of step 1 is the ith round of an execution of GradedSV.
Indeed, for r = 0, . . . , 25, adversary A′ decides her action at round r in network N ′

“simultaneously” with her generation of round-r quantities in virtual network N (i.e.,
after having generated round-(r − 1) quantities in network N and before generating
round-(r1) quantities in network N).

To facilitate seeing that the round-r quantities generated by A′ for virtual network
N follow the mechanics of an execution of OC(n) with A on initially bad set B and
adversarial history H, we break the instructions for this generation into instructions
1∗–4∗, thus matching the instructions 1–4 that we used in section 3 to describe how
a protocol is executed with an adversary.

Local Definition. Let b1, . . . , bk be the elements of subset B; denote by L the
set of all execution labels of GradedSV in step 1 (i.e., L = {hj : 1 ≤ h, j ≤ n}) and
by L− the set L − {Gj}.

Instructions for round r = 0.
(In virtual network N):
Set H0

A = H, bad
0 = B, good

0 = [1, n]− bad
0, and C0

A = ε. Then construct a
binary string RA by selecting randomly and independently each of its coins, and set
R0
A = RA.33

For all xy ∈ L−, randomly and independently select Sxy in [0, n− 1], and let Cxy
denote the sequence of random bits used for this selection.

For all xy ∈ L− and for all i ∈ [1, n], construct an infinite bit string Rxyi by
choosing each of its bits randomly and independently. 34 Then reset Rxyx := Cxy◦Rxyx .

Finally, for all xy ∈ L− and for all i ∈ [1, n], set C0,xy
i = ε, R0,xy

i = Rxyi , and

M0,xy
i→ = M0,xy

→i = (ε, . . . , ε), and, if i 6= x, H0,xy
i = ((x, n),M0,xy

→i , C
0,xy
i)—otherwise

(i.e., i = x), set H0,xy
i = ((x, n, Sxy),M0,xy

→i , C
0,xy
i).

“In an execution of GradedSV(n) with dealer x, the input for any player other
than x is (x,m), that is, the name of the dealer and an encoding of the candidate-secret
set, [0,m−1]. The private input for x is instead (x,m, s), that is, x is given his secret
as an additional input, unrelated to his sequence of future coin tosses. (Therefore,
should the dealer be corrupted by the adversary at round 1, she would discover his
input secret but not the random choices made to come up with that secret, even if
it were randomly selected.) In any execution xy of GradedSV(n) as a subprotocol of
OC(n), there are two peculiarities. First, m = n (which is easily reflected in the initial
histories of the players in execution xy). Second, the dealer x of execution xy is not
given his secret Sxy as an outside input; rather, he randomly chooses it in [0, n − 1]

though very useful in building up intuition, presuppose that we are already dealing with a genuine
execution. Notice, in fact, that all quantities relative to the virtual network N are constructed using
only a syntactic description. Only in our comments do we use suggestive language.

33 This is expressed thusly for convenience. In reality, each RA will be constructed on an “as-
needed basis.”

34 Again, in reality, each Rxyi will be constructed on an “as-needed basis.”

918 PESECH FELDMAN AND SILVIO MICALI

prior to calling GradedSV(n). Therefore, should the adversary corrupt player x at
round 1 of her execution with OC(n), then, she should be able to discover not only
x’s random secret relative to each execution xy but also the coin tosses that led x
to choose Sxy. This is exactly what is accomplished by the above steps (which also
accomplish giving these secrets suitable names—i.e., Sxy—and making it evident that
all of them (for xy 6= Gj) are known to A′).”

(In network N ′):
Corrupt processors b′1, . . . , b

′
k,

Instructions for r = 1, . . . , 25.
0∗ (in virtual network N):
tempH

r
A := Hr−1

A ; tempR
r
A := Rr−1

A ; tempgood
r := good

r−1; tempbad
r :=

bad
r−1.
1∗ (in virtual network N):
For all g ∈ good

r−1 and for all xy ∈ L−, generate Mr,xy
g→ , “the messages g wishes

to send in this round (which may be reset if g is corrupted in this round),” Cr,xyg , and
Rr,xyg by running GradedSV (n)g on input Hr−1,xy

g and coins Rr−1,xy
g .

2∗ (in virtual network N):
For all xy ∈ L−, for all g ∈ good

r−1, for all b ∈ bad
r−1, tempH

r
A :=

(tempH
r
A, g, b, xy,M

r
g→[b]).

“In other words, for each message m from a good player g to a bad player b
computed by running GradedSV relative to label xy ∈ L−, deliver m to A as usual
(i.e., specifying the name of the sender, the recipient, and the execution label). Then”:

For each message m′ received by a bad player b′ from a good player g′ in network
N ′ at round r, tempH

r
A := (tempH

r
A, g, b,Gj,m

′).
3∗ (in virtual network N):
Run A on input tempH

r
A and coins tempR

r
A.

(In network N ′ and in virtual network N):
If in this execution of step 3 A has output j “as the next player to corrupt,” then

HALT—“both the virtual execution in network N and the real execution in network
N ′ are terminated”—and output a random value in [0, n − 1] as your guess for the
secret of dealer G′. “You will be correct with probability 1/n. Else”:

(In virtual network N):
If A has output q ∈ tempgood

r and made the sequence of coin tosses C, then
tempbad

r := tempbad
r ∪ {q}, tempgood

r := tempgood
r − {q},

tempH
r
A := (tempH

r
A, xy,H

r−1,xy
q , Cr,xyq , C),

tempR
r
A := tempR

r
A/C,

∀xy ∈ L−, ∀g ∈ tempgood
r, tempH

r
A := (tempH

r
A, g, q, xy,M

r,xy
g→ [q]).

(In network N ′):

Corrupt q′ in network N ′, thereby learning his history H
(r−1)
q′ and coin tosses

C
(r−1)
q′ , as well as Mr

→q′ [g
′] for all currently good players g′,

“i.e., as well as each message sent by a currently good player g′ to q′. Note that
a player g′ (respectively, b′) is currently good (respectively, bad) in network N ′ if
g ∈ tempgood

r (respectively, b ∈ tempbad
r) in the virtual network N .”

(In virtual network N):
tempH

r
A := (tempH

r
A, xy,H

r−1
q′ , Cr−1

q′ , C),

∀g ∈ tempgood
r, ∀b ∈ tempbad

r, Mr,Gj
g→ [b] := Mr

g′→[b′].
Go to step 3∗ “to corrupt next processor.”
If “A no longer wishes in this round to corrupt additional players,” if in this

execution of step 3 A has output, for all xy ∈ L and for all b ∈ tempbad
r, a vector

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 919

Mxy
b ∈ ({0, 1}∗)n “as b’s round-r messages” and made the sequence of coin tosses C,

then:

(In virtual network N):

∀xy ∈ L−, ∀b ∈ bad
r, Mr,xy

b→ := Mxy
b ,

tempH
r
A := (tempH

r
A, C) “so that she can reconstruct the bad players’ messages

of round r,”

tempR
r
A := tempR

r
A/C;

(In network N ′):

∀b ∈ bad
r, Mr

b′→ := Mr,Gj
b .

“In other words, for each message m from a bad player b to a currently good
player g in network N relative to execution Gj, have b′ send m to g′ as his round-r
message in network N ′.”

4∗ (In virtual network N):

“Adjust the final round-r quantities as follows.” Letting C be the sequence of
coin tosses that A has made since the last execution of step 2,

Hr
A := tempH

r
A; CrA := C; and RrA := tempR

r
A;

good
r := tempgood

r and bad
r := tempbad

r;

∀xy ∈ L−, ∀k, i ∈ [1, n], Mr,xy
→i [k] := Mr,xy

k→ [i]; and

∀k ∈ [1, n], ∀i ∈ bad
r, Mr,Gj

→i [k] := Mr,Gj
k→ [i];

“Adversary A′ does not know the messages exchanged among good processors
in network N ′ and thus does not construct the corresponding messages in execution
Gj.”

∀xy ∈ L−, ∀g ∈ good
r, Hr,xy

g := (Hr−1,xy
g ,Mr,xy

→g , C
r,xy
g);

“A′ does not know the histories of the good players in N ′ and thus does not
construct Hr,Gj

g .”

∀xy ∈ L, ∀b ∈ bad
r−1, Hr−1,xy

b := (Hr−1,xy
b , bad), and ∀b ∈ bad

r − bad
r−1,

Hr,xy
b := (Hr−1,xy

b , Cr,xyb , bad).

“Thus far, each time that a new round was added to the partial virtual execution
of OC with A, the execution of GradedSV with A′ also progressed one round. At this
point, however, the rounds added to the partial virtual execution only allow A′ to
make additional internal computations and, possibly, additional corruptions, but her
execution with GradedSV remains at round 25.

At the start of the execution of step 2 of OC(n), the prior history of a good player
consists of an n2-vector, {H25,xy

g : xy ∈ L}. But at this point of the computation in the

virtual network N , there is no quantity H25,Gj
g . However, there is a quantity H25,xy

g

whenever g ∈ good
25 and xy ∈ L−. Such a quantity H25,xy

g specifies the quantity
verificationxyi (via some proper input function Isteps2−3

g). Thus for all xy ∈ L− and for
all g ∈ good

25, verificationxyi is computable by A′ because she has already computed
H25,xy
g .”

Additional instructions for round 25.

Local Definition. We denote by steps 2–3 the protocol consisting of steps 2
and 3 of OC(n).

For all g ∈ good
25, set verificationGjg to be the verification value output at round

25 by player g′ in the execution of GradedSV(n) with you in network N ′.

“Although these values are internal to good processors of network N ′ and thus
invisible to you, you can compute them—by virtue of Lemma 3—from your knowledge
of the sets of good and bad players and the messages exchanged between good and
bad players.”

920 PESECH FELDMAN AND SILVIO MICALI

For all g ∈ good
25, set H25,Gj

g = rcGjg , where rcGjg is a reserved character that

(via the input function Isteps2−3
g) specifies verificationGjg .

Execute subprotocol steps 2–3 with A (with the initial adversarial history being
the computed quantity H25

A , the initially bad set being the computed quantity bad
25,

and the prior history of each good player g being the (“thusly completed”) vector
{H25,xy

g : xy ∈ L}), handling corruptions as follows.
“In this execution of Gradecast as a subprotocol, you know the sender, the sender’s

message, the set of initially bad players, the active adversary, and the initial adversar-
ial history. Thus you do not need to know the players’ prior histories exactly in order
to exactly reconstruct all messages exchanged up to the next corruption. Indeed, the
good players do not rely on their prior histories (more than is needed to figure out
which message to gradecast). Once a corruption occurs, however, in order to update
the adversarial history in a proper manner, you need the corrupted player’s prior
history.”

Whenever A corrupts an additional player k, corrupt k′ in network N ′ so as to
find his current history, H ′k. In the current steps 2–3 history of k, replace the reserved

character rcGjk by the string H ′k and deliver the thusly updated history to A (in the
syntactically proper manner).

Instructions for predicting the secret.
“If you have not already predicted the secret of G′ at random, do the following”:
Detect whether event Y “of Claim L7-0” occurs.
“You can do that by virtue of Claim L7-0 because you may compute all inputs

(2.1), (2.2), and (2.3) envisaged in that claim.”
If Y has not occurred, then predict the secret of G′ by outputting a random

number in [0, n− 1].
Else output the value v − ω mod n as your prediction of the secret of G′. “v is

the value of Proposition P1 and Claim L7-0 and

ω =

 ∑
h such that h 6= G

verificationhj
j

= 2

valuehjG ,

 mod n.”

This ends our description ofA′. Notice that Steps 2 and 3 of OC take, respectively,
four rounds and one round. Thus the subprotocol consisting of Steps 1–3 of OC is a
30-round protocol.

Let us now more precisely claim (without proof) that if one replaces the missing
quantities constructed by A′ for the virtual network N with the “corresponding”
quantities that arise in the execution of adversary A′ with GradedSV(n) in network
N ′, one obtains a random execution of Steps 1—3 of OC(n) with A.

Claim L7-1. Let E′ be a random execution of protocol GradedSV (n) with adver-
sary A′ in which the initially bad set is empty, the initial adversarial history is the
empty string, the dealer is G′, the candidate-secret set is [0, n − 1], and the secret is
randomly selected in [0, n− 1].
• For all r = 0, . . . , 25, for all xy ∈ L−, and for all i ∈ [1, n], let Hr,xy

i , Mr,xy
i→ [j],

Mr,xy
→i [j], Cr,xyi , good

r, bad
r, Hr

A, and CrA be the network-N quantities generated by
A′ during E′.
• For all r = 1, . . . , 25 and for all g ∈ good

r, let Hr
g′ , M

r
g′→, Mr

→g′ , and Crg′ , be,
respectively, the round-r history, messages sent, messages received, and coin tosses of
player g′ in E′.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 921

• For all r = 0, . . . , 25 and for all g ∈ good
r, set Hr,Gj

g = Hr
g′ , M

r,Gj
g→ = Mr

g′→,

Mr,Gj
→g = Mr

→g′ , and Cr,Gjg = Crg′ .
35

• For all r = 1, . . . , 25 and for all xy ∈ L, set Hr
i = {Hr,xy

i : xy ∈ L}, Mr
i→ =

{Mr,xy
i→ : xy ∈ L}, Mr

→i = {Mr,xy
→i : xy ∈ L}, and Cri = {Cr,xyi : xy ∈ L}.

• For all r = 26, . . . , 30 and for all i ∈ [1, n] let Hr
i , Mr

i→, Mr
→i, C

r
i , good

r,
bad

r, Hr
A, CrA, and RrA be the network-N quantities generated by A′ when executing

protocol steps 2–3 with A during E′.
Then the sequence of tuples

E = E0, . . . , E30,

where

Er = (Hr
1 , M

r
1→, M

r
→1, C

r
1 , R

r
i , . . . ,

Hr
n, M

r
n→, M

r
→n, C

r
n, R

r
n, H

r
A, C

r
A, R

r
A, bad

r,good
r),

is a random execution (up to round 30) of protocol OC(n) with adversary A, on ini-
tially bad set B and initial adversarial history H, in which player G is not corrupted.

The above claim follows from our description of A′ and by the observation that all
n2 secrets of E have been randomly and independently selected in [0, n − 1]: secrets
sxy for xy ∈ L by construction, and secret sGj (i.e., the secret of G′ in execution E′

of GradedSV (n) with A′) by hypothesis.
Notice that A′ is a 1/3-adversary (because A is a 1/3-adversary and because A′

corrupts a player in E′ if and only if A corrupts the corresponding player in E), that
A′ may compute all inputs (2.1), (2.2), and (2.3) envisaged in Claim L7-0, and that
A′ never corrupts dealer G in an execution with GradedSV (n) when the initially bad
set is empty and the initial adversarial history is the empty string.

Let us now show that A′ can predict the secret of G′ with probability > 1/n.
Indeed, whenever A wishes to corrupt G, A′ halts, outputting a random number
in [0, n − 1] as her prediction of the secret of G′. Thus she will be correct with
probability 1/n in these cases. If A does not corrupt G in E, but neither does event Y
(which A′ detects), then A′ again guesses the secret of G′ at random and is right with
probability 1/n. However, whenever Y occurs, which by virtue of Claims L7-0 and
L7-1 is with positive probability, then A′ (per Claim L7-0) correctly guesses the secret
of G′ with probability > 1/n. Finally, because the event that A does not corrupt G
occurs whenever Y occurs, we have that A′ correctly guesses the secret of G′ with
probability > 1/n. This contradiction of the unpredictability property of GradedSV
establishes Lemma 7.

Theorem 3. OC is an expected-polynomial-time 32-round oblivious common coin
protocol with fairness > .35 and fault tolerance 1/3.

Proof. The claims regarding round complexity and running time are easy to verify.
(Recall that—though in a “hidden” way—we do make use of message bounds.) Let
us thus prove the other claims. We start with some convenient notation.

Let A be a 1/3-adversary and IQ ∈ IQOCn be proper initial quantities for OC.
Then in an execution of OC(n) with a 1/3-adversary on IQ, let C0 denote the event

that the coin is unanimously 0, Cgood
0 denote the event that sumg = 0 for some good

player g (i.e., the coin is unanimously 0 “thanks to a good player”), and C1 denote the

event that the coin is unanimously 1. Correspondingly, let P0, P good
0 , and P1 denote

35 Notice that some of these quantities might have already been computed by A′ for virtual network
N , in which case they would be reset to the same value.

922 PESECH FELDMAN AND SILVIO MICALI

the probabilities of C0, Cgood
0 , and C1, respectively, in a random execution of OC(n)

with A(n) on IQ. (Notice that C0 6= ¬C1, where ¬E denotes the complement of an
event E.)

We are now ready to lower-bound both P0 and P1.
Lower-bounding P0. Since P0 ≥ P good

0 , we lower-bound P0 by lower-bounding

P good
0 .36 If S is a subset of [1, n], let “AG = S” denote the event that the set of

the always good players coincides with S. Notice that if Prob(AG = S) > 0 then
|S| > 2n/3 and that

∑
|S|>2n/3 Prob(AG = S) = 1. (In fact, in any execution with

a 1/3-adversary, there must be at least 2n/3 always good players.) Also notice that
(because for all good players G and g, SUMGg 6= bad by Lemma 5) Lemma 7 implies
that whenever AG = S occurs, the values {sumg : g ∈ S} are independently and
uniformly distributed in [0, n − 1]. Thus, because it is sufficient that any such value
equals 0 for the coin to be unanimously 0, and because of S’s cardinality, we have

Prob(¬Cgood
0 | AG = S) < (1− 1/n)2n/3 < e−2/3.

Hence

Prob(Cgood
0 | AG = S) > 1− e−2/3.

Thus

Prob(Cgood
0) =

∑
|S|>2n/3

Prob(Cgood
0 | AG = S) · Prob(AG = S)

>
∑

|S|>2n/3

(1− e−2/3) Prob(AG = S)

= (1− e−2/3)
∑

|S|>2n/3

Prob(AG = S) = 1− e−2/3.

Lower-bounding P1. If S ⊂ [1, n], let bad 6= S denote the following event: S =
{j ∈ [1, n] : ∀ good g, SUMgj 6= bad}. Notice that if Prob(bad 6= S) > 0, then S’s
cardinality is greater than 2n/3. (Indeed, SUMgG 6= bad for all good players g and
G.) Also notice that

∑
|S|>2n/3 Prob(bad 6= S) = 1. (Indeed, in any of our random

executions, there must be more than 2n/3 good players.)
We now lower-bound P1 as follows.

P1=
∑

|S|>2n/3

Prob(∀j ∈ S sumj 6= 0|bad 6= S) · Prob(bad 6= S)

Lemma 7
=

∑
|S|>2n/3

(1− 1/n)|S| · Prob(bad 6= S)

≥
∑

|S|>2n/3

(1− 1/n)n · Prob(bad 6= S) > e−1 ·
∑

|S|>2n/3

Prob(bad 6= S) = e−1.

Since our lower bounds on P0 and P1 do not depend on n, A, or IQ, we have
proved that the fairness of protocol OC is min(P0, P1) = min(1−e−2/3, e−1) = e−1 >
.35.

36 The bad players may also contribute to raising the probability of the coin being unanimously
0. For instance, it is enough that, for some bad player j, the adversary acts so that for all good
g, SUMGj 6= bad. By Lemma 7, sumj then has a 1/n chance of being equal to 0. Our lower
bound, however, must hold for all possible adversaries; thus we have to disregard this probability
from our computation since it may be 0 for some adversaries. Instead, we must consider and guard
against such possible behavior of the adversary when lower-bounding the probability of the coin
being unanimously 1.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 923

8. Byzantine agreement from oblivious common coins.

8.1. The notion of Byzantine agreement. When Byzantine agreement is
needed, the values to be agreed upon may have arbitrary length. Without loss of
generality, however, we restrict our attention to the case where every initial value is
a single bit; in fact, in [13] and [37], it is proved that general Byzantine agreement is
reducible to the binary case in a constant number of rounds.

Definition 15. We say that a protocol P is a Byzantine agreement protocol
(with fault-tolerance c) if, for all c-adversaries A, any string H0

A, any number of
players n, and any bits b1, . . . , bn, in any execution of P (n) with adversary A on
initial adversarial history H0

A and inputs b1, . . . , bn, there exists a bit d such that the
following two properties hold:

1. Consistency: Every good player that halts outputs d.
2. Validity: If there exists a bit b such that, for all initially good player i, bi = b,

then d = b.

Notice that the above definition does not require that a Byzantine agreement
protocol ever terminate. A Byzantine agreement protocol is most interesting, however,
only if it terminates with positive probability, has high fault tolerance, and requires
only a “moderate computational effort” from the good players.

8.2. An optimal Byzantine agreement protocol. We are finally ready to
construct our Byzantine agreement protocol from our discussed primitives. It consists
of three basic subprotocols: Pr, P1, and P0. Subprotocol Pr includes instructions for
“randomly flipping” an oblivious common coin. Protocols P0 and P1 actually consist
of protocol Pr , where the outcome of the coin flip is forced to be, respectively, 0 and
1. Thus, although the coin flips of subprotocols P0 and P1 are predictable, they have
the advantage that all good processors are “aware” of the result, and this result is
always the same for all good processors.

The goal of protocol Pr is to give the network a chance of reaching an “oblivious
agreement” (i.e., with positive probability, all players adopt the same bit without
knowing that this has happened). The goal of protocols P0 and P1 is to provide
a proof, if all players are in oblivious agreement, that agreement has indeed been
reached, so as to allow everyone to terminate. More precisely, if the good players
obliviously agree on 0 (respectively, 1), an execution of P0 (respectively, P1) makes
them aware that they are in agreement on 0 (respectively, 1) and terminate.

Our Byzantine agreement protocol is not a fixed-round protocol. Rather, each
good player i keeps on executing, in order, subprotocols Pr, P0, and P1 until he
individually terminates. It thus may happen that different good processors terminate
at different rounds. Nonetheless, in a random execution with a 1/3-adversary, our
protocol terminates with probability 1, and when that happens, the outputs of all
good players, though produced at different times, will always satisfy the consistency
and validity requirements.

Theorem 4. BA is a Byzantine agreement protocol with fault tolerance 1/3 and
runs in expected polynomial time and in an expected constant number of rounds.

(More precisely, there exists a polynomial Q and constant c such that, for any
number of players n, any 1/3-adversary A, any initial quantities IQ, and any positive
integer k, the probability that, in randomly executing BA(n) with A on IQ, the
protocol does not halt within Q(n)k BA-steps and ck rounds is less than 2−k.)

Proof. Let us start by establishing a convenient notation.

Local Definitions. In an execution of BA, we call a good player dead if he
has already terminated and alive otherwise.

924 PESECH FELDMAN AND SILVIO MICALI

Protocol BA(n)
Input for player i: bi, a bit. “We actually consider bi as a variable of player i

whose initial value coincides with i’s input bit.”
Code for every P layer i.

0: For all players j, set Bj = 0. “Bj represents the last one-bit message received
from player j.”

(Subprotocol Pr.)
1: Distribute bi.
2: For all j, if b∗j ∈ {0, 1}, then reset Bj := b∗j ; else, reset b∗j := Bj . Let
counti = tally(1).

“In other words, for the purpose of computing tally(1), if you did not
receive a bit from player j, assume that he virtually sent you the same
bit that he really sent you last.”

Run OC(n) and let ri be your output. Then:
(a) If counti ∈ [0, n/3), then reset bi := 0. Else:
(b) If counti ∈ [n/3, 2n/3), then reset bi := ri. Else:
(c) If counti ∈ [2n/3, n], then reset bi := 1.

(Subprotocol P0.)
3: Distribute bi.
4: For all j, if b∗j ∈ {0, 1}, then reset Bj := b∗j ; else, reset b∗j := Bj . Let
counti = tally(1). Then:
(a) If counti ∈ [0, n/3), then output 0, distribute 0 in next round, and

Terminate

“In a round from now, you will be dead and will keep on virtually dis-
tributing 0. Every other good player is either dead and his output is 0,
or will terminate, outputting 0.”

(b) If counti ∈ [n/3, 2n/3), then reset bi := 0. Else:
(c) If counti ∈ [2n/3, n], then reset bi := 1.

(Subprotocol P1)
5: Distribute bi.
6: For all j, if b∗j ∈ {0, 1}, then reset Bj := b∗j ; else, reset b∗j := Bj . Let
counti = tally(1). Then:
(a) If counti ∈ [0, n/3), then reset bi := 0. Else:
(b) If counti ∈ [n/3, 2n/3), then reset bi := 1. Else:
(c) If counti ∈ [2n/3, n], then output 1, distribute 1 in next round, and

Terminate.
“In a round from now, you will be dead and will keep on virtually dis-
tributing 1. Every other good player is either dead and his output is 1,
or will terminate outputting 1.”

Go to step 1.

Let P ∈ {Pr,P1,P0} and b ∈ {0, 1}. Within an execution of BA, we say that at
the start (at the end) of an execution of subprotocol P, the network is in agreement
on b if, for all good players g, either g is dead and his output is b or he is alive and
the current value of variable bg is b.

We say that at the start (at the end) of an execution of P, the network is in
agreement if there exists a bit b such that the network is in agreement on b.

Claim T4-1. For any subprotocol P ∈ {Pr,P1,P0}, any execution of P with a
1/3-adversary, and any alive good players g and G, |countg − countG| < n/3.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 925

Proof. Only the bad processors may send different bits to different players in the
same step. Thus, at any given step, the difference between the tallies (of 1) of two
good players is upper-bounded by the number of currently bad players and thus by
n/3.

Claim T4-2. For all P ∈ {Pr,P1,P0}, for all executions of P with a 1/3-
adversary, and for all bits b, if the network is in agreement on b at the start of
the execution, it is in agreement on b at its end.

Proof. Since each execution of subprotocols P1 and P0 is in essence a special
execution of Pr, it is sufficient to prove our claim with respect to this latter protocol.
Assume that at the start of Pr, the network is in agreement on 0; that is, every
good dead player outputs 0 and, for all good alive players g, bg = 0. Then all good
players (“really” the alive ones and “virtually” the dead ones) distribute 0 in step
1. This implies that only the bad players can distribute 1 in step 1; thus in step
2, for all good alive g, countg < n/3. As a consequence, independently of his own
output of subprotocol OC, at the end of step 2, each good alive player g sets bg := 0
in accordance with instruction 2(a); that is, the network is in agreement on 0 at the
end of Pr. The case in which the network is in agreement on 1 at the start of Pr is
handled similarly.

Claim T4-3. In any execution of BA with a 1/3-adversary, whenever a good
player outputs a bit, the network is in agreement on that bit.

Proof. A good processor generates an output only during the execution of either
subprotocol P1 or subprotocol P0. Let E be the first execution of either P1 or P0

in which a good player produces an output, and let g be one such player. Assume
that E is an execution of P0; then all good players are alive during E, and g must
output 0 at E’s end. Thus at E’s end, countg ∈ [0, n/3). Therefore, by Claim T4-1,
for all good G, countG ∈ [0, 2n/3). This entails that, because of either rule (a) or
rule (b), every good player G resets bG := 0; that is (because there are no dead good
players), the network is in agreement on 0 at the end of E (though only those good
players whose counter belongs to [0, n/3) are aware of this and will thus output 0 and
terminate). If there are no more executions of either P1 or P0 in which a good player
outputs a bit, then we are done. Otherwise, because of Claim T4-2, since the network
is in agreement on 0 at E’s end, it will remain in agreement on 0 thereafter. Thus,
whenever a good player outputs a bit later on, this bit must be 0, in accordance with
our claim. The case in which E is an execution of P1 is argued in the “symmetric”
way.

Claim T4-4. For any random execution of BA with a 1/3-adversary and any
positive integer k, if the network is not in agreement at the start of the kth execution
of subprotocol Pr, then the probability that it will be in agreement at its end is greater
than .35.

Proof. Because of Claim T4-3, our hypothesis implies that all good players
are alive throughout our execution of Pr. Moreover, since by Claim T4-1 we have
|countg − countG| < n/3 for any good players g and G, one of the following two cases
must occur:

(0) ∀good i, counti ∈ [0, 2n/3), or
(1) ∀good i, counti ∈ (n/3, n].

When case (0) occurs, if the oblivious common coin is unanimously 0, then each good
player i resets bi := 0 (if counti ∈ [0, n/3] because of rule 2(a), if counti ∈ (n/3, 2n/3)
because of rule 2(b)) and thus the network is in agreement on 0. Similarly, when case
(1) occurs, if the oblivious common coin is unanimously 1, then every good processor
i resets bi := 1 and thus—since there are no dead good players to worry about—the

926 PESECH FELDMAN AND SILVIO MICALI

network is in agreement on 1. Since either case (0) or case (1) must occur, and since
OC is an oblivious coin protocol with fairness .35, the probability that the network is
in agreement at the end of a random execution of Pr (though the good players may
not be “aware” of this event) is greater than .35.

Claim T4-5. In any execution of BA with a 1/3-adversary, if at the beginning
of an execution of subprotocol P1 (respectively, P0), the network is in agreement on
1 (respectively, 0), then one round after the end of the subprotocol execution, BA
terminates and the output of every good player is 1 (respectively, 0).

Proof. Assume that the network is in agreement on 1 at the beginning of an
execution of P1 (the “0 case” is similarly handled). Then all dead good processors
have output 1 prior to the present execution of P1, and all alive good processors
distribute 1 in the first step of the execution. Thus, since their tallies of 1 belong
to the interval (n/3, n], all good (and alive) processors will perform instruction 4(c)
throughout this execution. Therefore, each one of them outputs 1 and will terminate
in the next round, unless he will get corrupted in the next round, an event that cannot,
in any case, change the output of the still uncorrupted players or the termination of
the protocol since, as usual, BA ends when all good players have terminated.

It is now easy to complete the proof of Theorem 4; we start by proving our
claim about BA’s round complexity and fault tolerance. Pr is a 36-round protocol,
while P0 and P1 are both two-round protocols. Protocol BA iterates the ordered
execution of Pr,P0, and P1 until all good players terminate. Claim T4-4 guarantees
that, no matter what the initial quantities and the strategy of a 1/3-adversary may
be, in a random execution of BA, the probability that an “oblivious” agreement is
not reached after the 2kth execution of Pr is less than (.35)2k < 2−k. Once oblivious
agreement is reached at the end of an execution of Pr, Claim T4-5 guarantees that,
no matter what the actions of the 1/3-adversary may be, protocol BA halts—with
all the good processors “aware” of having reached Byzantine agreement—within the
next five rounds (i.e., at most one round after the end of P1 if the agreement was
on 1). Thus the probability that protocol BA does not reach Byzantine agreement
within 80k + 5 rounds is less than 2−k.

Let us now prove our claim about the amount of local computation of protocol
BA. Having set (hidden) message bounds, the good processors do not waste running
time reading excessively long messages sent by the adversary. Moreover, except for
some occasional random selections, each round of protocol BA can be performed
in fixed polynomial-in-n time. As for those random selections, they consist of the
random choices of elements in integer intervals of the form [0, z − 1]. Now, whenever
z is a power of 2, a random selection in [0, z − 1] can be performed by flipping log z
coins—and thus in fixed (as opposed to expected) polynomial time by a probabilistic
Turing machine. However, if z is not a power of 2, then the adopted strategy for this
task consists of randomly selecting a dlog ze-bit string until a member of the desired
interval is found. Clearly, the probability that more than T such trials are needed is
less than 2−T . Since in each iteration of Pr, P0, and P1, at most Q(n) such selections
(where Q is a given polynomial) must be made by the good players, since the rest
of the computation can be performed in fixed polynomial time, and because of our
recently proven claim about the round complexity of BA, our claim about the running
time of BA easily follows.

Remarks.

• Our reduction of Byzantine agreement to (oblivious) common coins was inspired
by an earlier work of Rabin [34]. His reduction is much simpler, but it assumes a
common coin that not only is externally provided but also is not oblivious (i.e., all

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 927

players are guaranteed to see the same common random bit37), and it requires that
the number of faults is < n/4.
• As we have seen, protocol BA enjoys the property of being always correct and

probably fast ; that is, our use of probabilism introduces some uncertainty of how
long it will take to terminate (a modest uncertainty since we prove that the expected
number of rounds is constant), but no possibility of error in the correctness of the final
agreement. This desirable property implies that one cannot get rid of “expected” in
our round complexity. In fact, an algorithm that reaches a guaranteed agreement in
a fixed number of rounds, no matter what the sequence of its coin tosses may be, is
immediately transformed to a fixed-round, deterministic algorithm. Thus the result
of Fischer and Lynch [20] would imply that at least O(n) rounds are needed if the
number of possible faults is O(n).
• In general, as we have said, the input of a processor is a private value; that is, the

adversary has no way of knowing it unless she corrupts its corresponding processor
or this processor is instructed by the protocol to divulge it. Privacy of the initial
inputs is also a necessary condition for certain protocols to be meaningful. This is
indeed the case, for instance, with protocol GradedVSS—indeed, unless the input of
an honest dealer is secret, there is no hope that an adversary cannot guess it better
than at random. In the case of Byzantine agreement, on the other hand, the privacy
of the initial inputs plays no role in defining the problem, which in fact remains
totally meaningful even if we assume that the players’ initial bits are known to the
adversary.38 Indeed, it should be noted that our protocol BA instructs each good
player to distribute his input bit at the very first step, and it thus works even in the
case in which the adversary knows the input bits of all players in advance.
• As we know, protocol BA relies on subprotocol OC. One may describe this

subprotocol as producing a bit that is “sufficiently random and common.” Such a
description would, however, be quite incomplete. Namely, the output of OC is also
sufficiently unpredictable at the start of each execution of the protocol. In fact, if
the fairness of the coin that OC produces is positive, then we know that in any
random execution both 0 and 1 have a positive probability of being output. It should
be noticed that this unpredictability is used in our Byzantine agreement protocol:
in protocol Pr, “the oblivious coin” is flipped after every processor i distributes his
current value bi; thus in step 1, the adversary must choose which values the bad players
distribute when the oblivious coin is still unpredictable. Actually, the unpredictability
of the oblivious common coin flip is more than merely used in our protocol; it is
actually crucial to it: should the adversary know the result of the coin flips of OC
in advance, she could prevent agreement indefinitely. In fact, a bit more precisely,
it can be shown that if all processors have as a common input—at the beginning
of the protocol—a sequence of truly random and independent (but also, necessarily,
predictable) coin tosses and use these bits instead of the outcomes of OC in subprotocol
Pr, a 1/3-adversary can easily and indefinitely prevent agreement from being reached.

The above discussion can be summarized by saying that our protocol BA relies
heavily on hiding—at least temporarily—information. We will further elaborate on
this crucial point in section 9.2.
• As we have indicated, the good processors need not terminate simultaneously.

Indeed, the adversary can force “staggered termination” if she so desires.
• To avoid staggered termination, one may consider iterating subprotocol Pr a

37 In his scenario, random coin flips are “predistributed” by a trusted party. Thus once they are
“revealed,” all good processors will see the same result.

38 This is a quite plausible scenario since bad guys tend to “know” more than good ones.

928 PESECH FELDMAN AND SILVIO MICALI

prescribed number of times. If this number of times is large enough, upon termination,
agreement would be reached with high probability. However, such a protocol would be
unsatisfactory. First, from a theoretical point of view, it would introduce a probability
of error. (In other words, there would be a chance that upon termination the good
processors may not be in agreement—an event that is not allowed by our definition.)
Second, from a “practical” point of view, to ensure that agreement is reached with
probability 1 − 2−k, the envisaged protocol would have always to run Pr k times.
By comparison, our protocol will run Pr k times only “very seldomly,” that is, with
probability 2−k. (Truly, each time that our protocol runs Pr, it also runs P0 and
P1, but these latter protocols require only two rounds each and are extremely simple.
The brunt of the computation is constituted by Pr alone, which is a quite complex
34-round protocol.)

• It should be noticed that, since some good processors may be alive and some
others may be dead, in some executions of Pr, there may not be a 2/3 majority of
good processors. In fact, the dead ones do not participate in the protocol but simply
“virtually” send a bit at given times. Under these circumstances, the coin tosses of
OC need not to be common or fair in any way. This is not a problem, though. As we
have shown, when a good processor terminates, the processors are in agreement and
agreement cannot be disrupted. Protocol Pr is thus executed at most once without
an honest majority of players; in fact, all alive good processors will terminate one
round after the next execution of either P0 or P1, whose coin toss the adversary does
not control.

9. Adjustments and improvements.

9.1. The model independence of our Byzantine agreement protocol.

Pros and cons of standard networks. In presenting our Byzantine agreement
protocol, following a time-honored tradition, we have chosen standard networks (i.e.,
networks in which every pair of processors is connected by a dedicated and private
communication line) as its underlying communication model. This model has notably
simplified our argument and has helped us to focus on the essential distributed aspects
of the quintessentially distributed problem at hand without getting sidetracked by a
variety of important but quite different issues. (Essence, of course, is in the eyes
of the beholder!) Moreover, the standard-network model is quite realistic in some
contexts—for instance, in the case of computer networks whose processors are not
directly controlled by humans.39 Unfortunately, this is also the context in which,
in our opinion, Byzantine agreement is less meaningful, at least for the extremely
malicious fault model addressed in this paper—which, regrettably, belongs to the
domain of human interactions. As a matter of fact, people being what they are,
private channels may prove to be too much of an abstraction. If a Byzantine agreement
protocol were run in the context of an adversarial negotiation conducted in a computer
network, it would be remarkable that impostors would chivalrously confine themselves
to purely software attacks, refraining from tampering with the network itself. Indeed,
if they did, communication channels would not remain “private” for too long, no
matter how much metal they could be shielded with or how deep they could be
routed. We thus wish to briefly discuss what happens to our algorithm when its
communication model is more... “humanized.”

39 Indeed, when such computers malfunction, they may start running algorithms that are different
from their intended ones, may act—due to Murphy’s law—as if they coordinate their disruptful
efforts, and so on, but they cannot gain access to the dedicated line connecting two properly working
processors!

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 929

Other possible models. If the adversary may prevent messages between good
processors from being delivered, Byzantine agreement would be impossible. However,
we may still trust our network to be asynchronous; that is, the adversary might
delay messages arbitrarily long but cannot prevent them from eventually reaching
their intended recipients. (For a discussion of this model, consult, for instance, [19].)
Fortunately, our Byzantine agreement protocol has been ingeniously extended by
Feldman [17] and Canetti and Rabin [7] to work on asynchronous networks as well.

If the adversary is able to change the messages exchanged between two good pro-
cessors, Byzantine agreement would also be impossible since a single faulty processor
could impersonate as many processors as it likes. Alternatively, the adversary may
be capable of reading messages between good processors but not altering them.40 In
either case, one can still run our protocol using cryptography to simulate the privacy
of such “public” lines (assuming, of course, that the adversary is computationally
bounded). The basic underlying idea is that injecting or altering messages may be
made infeasible by secure digital signatures that are secure in the sense of [25], while
reading messages can be made infeasible by an encryption scheme that is secure in
the sense of [23]. (One caveat, however: for very subtle reasons that exceed the scope
of this paper, this basic strategy is surprisingly hard to implement correctly.)

If the adversary can “disconnect” two good processors, Byzantine agreement
would again be impossible. However, rather than assuming that our network is com-
plete, we may trust that it has some special, uncorruptable nodes that do not perform
any computation but simply reliably route properly labeled messages. (Indeed, this
may allow for quite sparse networks.) In this setting, our protocol would work es-
sentially without any changes and with the same efficiency. Alternatively, one may
consider networks with fewer communication lines but with sufficiently high connec-
tivity. This way, for every set of faulty processors with small enough cardinality, every
two good processors are still connected by a path consisting solely of good processors.
Solving the problem in this new setting would require encrypting each message and
sending it to its recipient through several node-disjoint paths. This, of course, would
increase the running time of our protocol by a “network-topology” factor, but, most
likely, the same increase in running time would be suffered by other protocols.

9.2. Improvements of our results. Our results have been found useful in
several ways.

• As we have already mentioned in subsection 9.1, our Byzantine agreement pro-
tocol has been extended by Feldman [17] to work on asynchronous networks in which
each pair of players is connected by a private channel. His asynchronous protocol
tolerates up to t < n/4 faults. Using cryptography and assuming a computationally
bounded adversary, it regains optimal fault tolerance, t < n/3, in the asynchronous
case as well. Quite recently, Canetti and Rabin [7] have exhibited (for the same net-
works) an asynchronous Byzantine agreement protocol running in expected constant
time and possessing resiliency 1/3 against an adversary with unbounded computa-
tional capabilities—though allowing a probability of error. (Let us note in passing
that the notion of “constant time” must—and can—be meaningfully formulated in
the asynchronous setting.)

• Ben-Or and El-Yaniv [4] have extended our algorithm to to reach Byzantine
agreement in standard networks, in an expected constant number of rounds, for an
entire collection of players’ initial values.

40 This may be the case in an ordinary telephone network, whose lines can be easily eavesdropped,
while the voices of its users may be hard to imitate.

930 PESECH FELDMAN AND SILVIO MICALI

• Using our results and those of [4], Micali and Rabin [29] have obtained a VSS
protocol (i.e., a “nongraded one”!) that works in standard networks (rather than
standard-plus-broadcast ones), runs in polynomial time and an expected constant
number of rounds, and tolerates any n/3 faults in the worst model. They have also
exhibited a nonoblivious common coin protocol, with fairness 1/2 and fault tolerance
1/3, that works in standard networks and runs in expected polynomial time and an
expected constant number of rounds. (Dolev, Dwork, and Yung have informed them
that they have independently found these same protocols.)
• Goldreich and Petrank [27] have shown how to modify our algorithm so as to

keep its expected running time and round complexity, while guaranteeing termination
in the worst case (i.e., with the most unlucky sequence of coin tosses) in t+O(log t)
rounds whenever the upper bound on the number of faulty players is t. (Thus termi-
nation is guaranteed in O(n) rounds in the worst-fault model.)

10. Significance.

10.1. The “right” significance of Byzantine agreement. Until now, we
have been advocating that Byzantine agreement is “the best one can do, in an adver-
sarial scenario, when broadcasting is impossible.” At this point, having gained more
experience with adversarial behavior, we wish to point out that this informal saying
is misleading in that it seems to imply that broadcasting is an available resource,
and only when you are deprived of it should you turn to Byzantine agreement as a
meaningful substitute. The truth is that, in an adversarial setting, closer scrutiny
reveals broadcasting to be “almost always impossible.”

Consider, for instance, a radio network. The recipient of a message in such a
network cannot tell whether a satellite has aimed its signal to his specific geographical
area or to the whole country. Moreover, since imitating (or cutting and pasting
recorded pieces of) one’s voice is quite possible, the recipient of a radio message
cannot have any certainty about the identity of the sender of the message. Indeed, in
an adversarial setting, broadcasting is an abstraction. Thus a natural question arises:

In what “reasonable” communication models can one “concretely implement”
an abstract notion satisfactorily close to that of broadcasting?

It is in light of this question that Byzantine agreement achieves, in our view, its true
significance; namely, it demonstrates that standard networks offer a reasonable com-
munication model to approximate, despite the presence of adversaries, the abstract
notion of a broadcasting. Better said:

We regard Byzantine agreement as showing that the abstraction of broad-
casting can be meaningfully approximated by “simpler” abstractions: strong
honest majority, synchrony, and private channels (and by even simpler ones,
as we have discussed in section 9.1).

10.2. The significance of our results. It is now time to ask ourselves, “What
is the significance of our own result?”

While our simplest primitives—Gradecast and, for small n, GradedVSS—are quite
practical, we do not expect our Byzantine agreement protocol to have a direct practical
impact. In fact, though it does not have any monstrous “hidden constants” and
is actually quite feasible, our protocol starts outperforming prior ones when run in
standard networks (or networks with “simulated standardness,” as discussed in section
9.1) with a few hundred players.41

41 Should standard networks of this size become feasible, our result actually opens the possibility
of artificially increasing the number of players so as to increase the reliability of the network without

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 931

However, our results should have an indirect practical impact. Solving a long-
standing open problem always marks a technical advance in a given field, and it is
reasonable to expect that in our case as well this increased level of understanding will
eventually translate into more practical protocols than ours.

More importantly, our techniques will be quite effective when dealing with much
more complex problems than Byzantine agreement, that is, with those problems for
which the existence of any solution is by itself a blessing and no superpractical answer
can be legitimately expected.42 In fact, it should be appreciated that our protocol
solves a more difficult problem than Byzantine agreement (a fact that may perhaps
excuse some of our complications): it provides a reasonably fair and fault-tolerant
coin-flipping protocol in a quite unmanageable communication and fault model.43

Finally, scientists shall not live by technique alone, and we now wish to argue that
our result is more significant from a purely conceptual point of view.

Probabilism versus determinism. Can randomness speed up computation? This
is one of the most intriguing and fundamental questions of complexity theory. The
celebrated probabilistic algorithms for primality testing of Solovay and Strassen [36]
and Rabin [33] (and the more recent and equally beautiful ones for primality prov-
ing of Goldwasser and Kilian [22] and Adleman and Huang [1]) show that efficient
probabilistic solutions exist for problems for which no polynomial-time solution is yet
known. We cannot, however, prove that no deterministic, polynomial-time primality
algorithm exists. Indeed, the fact that generating a sequence of coin tosses, indepen-
dently from the problem at hand, may help solve our problem much faster is quite
puzzling.

From this point of view, our result takes on a more serious significance. Namely,
contrasting its performance with the quoted t + 1-round lower bound [20] for any
deterministic protocol in which t malicious faults may occur, our Byzantine agreement
protocol offers a dramatic example that, at least in some scenarios, probabilistic
solutions are provably vastly superior to all deterministic ones.

Such a speedup was already demonstrated by Rabin [34], but by making the
additional assumption of a common source of randomness external to the network: a
common coin toss magically available to all processors at every clock tick. We instead
demonstrate that randomness alone (i.e., individual and independent random choices
made by individual processors), without any additional assumptions, suffices to beat
any deterministic Byzantine agreement protocol in a dramatic way.

Privacy versus correctness. Our probabilistic solution to the synchronous Byzan-
tine agreement problem sprung from recent advances in the field of zero-knowledge
computation. Roughly said, this is the science of communication protocols that need
to satisfy both a correctness and a privacy requirement. (For example, following the
original application of Goldwasser, Micali, and Rackoff [24], a zero-knowledge proof
shows that a given statement indeed possesses a correct proof but does not reveal
what this proof might be.)

It should be noticed, however, that while Byzantine agreement has subtle correct-

making the time needed to reach agreement helplessly long. (In fact, if we know that—say—10% of
the players are expected to become faulty during a decade, to ensure that 2/3 of them will be working
properly in such a period, we are better off having a network of hundreds of processors rather than
just a dozen of them.)

42 Indeed, the usefulness of our algorithm for solving the problems mentioned in section 10.1
provides some support for this claim, and it augurs wonderfully for future ventures.

43 Indeed, flipping a coin with adversaries does not get much easier even in friendlier scenarios
than ours.

932 PESECH FELDMAN AND SILVIO MICALI

ness requirements, it has no constraints whatsoever about privacy.44 Nonetheless, the
correctness and speed of our protocol depend in a fundamental way on GradedVSS, a
protocol where privacy is the central issue. We thus wish to advocate a novel role for
privacy: namely, a tool for reaching correctness. This is less puzzling than it sounds.
Our intuition behind it is simple:

Error in computation can be modeled as an adversary, and if your adversary
“knows little,” she can do little to disrupt your computation.

Indeed, we believe that privacy will become a fundamental ingredient in the design
of fault-tolerant protocols. Are we right? Time will tell. But may our journey be
enjoyable in any case.

Acknowledgments. We are particularly grateful to Michael Fischer, Rosario
Gennaro, Nancy Lynch, and David Shmoys for their generous, attentive, and con-
structive criticism.

Special thanks go to Ray Sidney, Tal Rabin, and Philip Rogaway. As we have
already mentioned, the second author has collaborated with Philip Rogaway in mod-
eling computation in the presence of faults in more complicated scenarios than the
present one. The computational model of this paper has benefitted from the insights
gained during that collaboration.

We would also like to acknowledge Michael Ben-Or, Benny Chor, Cynthia Dwork,
Peter Elias, Rosario Gennaro, Oded Goldreich, Shafi Goldwasser, and Michael Rabin
for many wonderful discussions about the Byzantine agreement problem.

Thanks also to two anonymous referees for their wonderful comments. The present
version of our paper corresponds to the point in which one referee lamented that
formalization exceeded intuition and another that intuition outmatched formalization.

Finally, our main motivation for working on the Byzantine agreement problem
came from the beauty and novelty of the ideas of those who preceded us. We have
immensely enjoyed standing on such tall shoulders!

REFERENCES

[1] L. M. Adleman and M. A. Huang, Recognizing primes in random polynomial time, in Proc.
19th ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 462–469.

[2] D. Beaver, S. Micali, and P. Rogaway, The round complexity of secure protocols, in Proc.
22th ACM Symposium on Theory of Computing, ACM, New York, 1990.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for fault-tolerant
distributed computing, in Proc. 20th ACM Symposium on Theory of Computing, ACM,
New York, 1988, pp. 1–10.

[4] M. Ben-Or and R. El-Yaniv, Interactive consistency in constant time, Distrib. Comput.,
1991, submitted.

[5] M. Ben-Or, Another advantage of free choice: Completely asynchronous agreement protocols,
in Proc. 2nd Annual Symposium on Principles of Distributed Computing, ACM, New York,
1983, pp. 27–30.

[6] G. Bracha, An “o(logn)” expected rounds randomized Byzantine generals protocol, in Proc.
17th ACM Symposium on Theory of Computing, ACM, New York, 1985.

[7] R. Canetti and T. Rabin, Fast asynchronous agreement with optimal resilience, in Proc. 25th
ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 42–51.

[8] B. Chor and B. Coan, A simple and efficient randomized Byzantine agreement problem, IEEE
Trans. Software Engrg., SE-11 (1985), pp. 531–539.

[9] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable secret sharing and achiev-
ing simultaneity in the presence of faults, in Proc. 26th Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1985,
pp. 383–395.

44 Indeed, our protocol BA starts by having each good processor distribute his own input value to
all players.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 933

[10] D. Chaum, C. Crepeau, and I. Damgård, Multi-party unconditionally secure protocols, in
Proc. 20th ACM Symposium on Theory of Computing, ACM, New York, 1988.

[11] B. Chor and C. Dwork, Randomization in Byzantine agreement, in Randomness and Com-
putation, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 433–498.

[12] D. Dolev, M. Fischer, R. Fowler, N. Lynch, and H. Strong, An efficient algorithm for
Byzantine agreement without authentication, Inform. and Control, 52 (1982), pp. 257–274.

[13] D. Dolev, The Byzantine generals strike again, J. Algorithms, 3 (1982), pp. 14–30.
[14] D. Dolev and C. Dwork, manuscript, 1987.
[15] D. Dolev, C. Dwork, and M. Naor, Non-malleable cryptography, in Proc. 23rd ACM Sym-

posium on Theory of Computing, ACM, New York, 1993, pp. 542–552.
[16] C. Dwork, D. Shmoys, and L. Stockmeyer, Flipping persuasively in constant expected time,

SIAM J. Comput., 19 (1990), pp. 472–499.
[17] P. Feldman, Optimal algorithms for Byzantine agreement, Ph.D. thesis, Massachusetts Insti-

tute of Technology, Cambridge, MA, 1988.
[18] P. Feldman and S. Micali, Byzantine agreement in constant expected time (and trusting no

one), in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1985, pp. 267–276.

[19] M. Fischer, The consensus problem in unreliable distributed systems (a brief survey), in Proc.
International Conference on Foundations of Computation, 1983.

[20] M. Fischer and N. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183–186.

[21] Z. Galil, S. Haber, and M. Yung, Cryptographic computation: Secure falt-tolerant protocols
and public-key model, in Proc. CRYPTO ’87, Springer-Verlag, Berlin, 1987, pp. 135–155.

[22] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, in Proc. 18th ACM
Symposium on Theory of Computing, ACM, New York, 1986, pp. 316–329.

[23] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270–299.

[24] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-
systems, SIAM. J. Comput., 18 (1989), pp. 186–208.

[25] S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme secure against adaptive
chosen-message attacks, SIAM J. Comput., 17 (1988), pp. 281–308.

[26] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, or a com-
pleteness theorem for protocols with honest majority, in Proc. 19th ACM Symposium on
Theory of Computing, ACM, New York, 1987, pp. 218–229.

[27] O. Goldreich and E. Petrank, The best of both worlds: Guaranteeing termination in fast
randomized Byzantine agreement protocols, Inform. Process. Lett., 36 (1990), pp. 45–49.

[28] A. Karlin and A. Yao, manuscript, 1987.
[29] S. Micali and T. Rabin, Collective coin tossing without assumptions nor broadcasting, in

Proc. CRYPTO ’90, Springer-Verlag, Berlin, 1990, pp. 253–266.
[30] S. Micali and P. Rogaway, Secure computation, in Proc. CRYPTO ’91, Springer-Verlag,

Berlin, 1992; full paper available from authors.
[31] Y. Moses and O. Waarts, Coordinated travel: (t+ 1)-round Byzantine agreement in polyno-

mial time, in Proc. 29th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 246–255.

[32] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults, J.
Assoc. Comput. Mach., 27 (1980), pp. 228–234.

[33] M. Rabin, Probabilistic algorithms for testing primality, J. Number Theory, 12 (1980), pp. 128–
138.

[34] M. Rabin, Randomized Byzantine generals, in Proc. 24th Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983,
pp. 403–409.

[35] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest
majority, in Proc. 21th ACM Symposium on Theory of Computing, ACM, New York,
1989.

[36] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput., 6
(1977), pp. 84–85.

[37] R. Turpin and B. Coan, Extending binary Byzantine agreement to multivalued Byzantine
agreement, Inform. Process. Lett., 18 (1984), pp. 73–76.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION∗

JAMES A. STORER† AND JOHN H. REIF‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 934–949, August 1997 002

Abstract. The problem of communication and computation in the presence of errors is difficult,
and general solutions can be time consuming and inflexible (particularly when implemented with a
prescribed error detection/correction). A reasonable approach is to investigate reliable communica-
tion in carefully selected areas of fundamental interest where specific solutions may be more practical
than general purpose techniques.

In this paper, we study the problem of error-resilient communication and computation in a
particularly challenging area, adaptive lossless data compression, where the devastating effect of
error propagation is a long-standing open problem that was posed in the papers of Lempel and
Ziv in the late 1970s. In fact, the non-error resilience of adaptive data compression has been a
practical drawback of its use in many applications. Protocols that require the receiver to request
retransmission from the sender when an error is detected can be impractical for many applications
where such two-way communication is not possible or is self-defeating (e.g., with data compression,
retransmission may be tantamount to losing the data that could have been transmitted in the mean
time). In addition, bits of encoded data that are corrupted while data is in storage will in general not
be recoverable and may corrupt the entire decompressed file. By error resilience, we mean that even
though errors may not be detected, there are strong guarantees that their effects will not propagate.

Our main result is a provable error-resilient adaptive lossless data-compression algorithm which
nevertheless maintains optimal compression over the usual input distributions (e.g., stationary er-
godic sources). We state our result in the context of a more general model that we call dynamic
dictionary communication, where a sender and receiver work in a “lock-step” cooperation to main-
tain identical copies of a dictionary D that is constantly changing. For lossless data compression,
the dictionary stores a set of strings that have been seen in the past and data is compressed by
sending only indices of strings over the channel. Other applications of our model include robotics
(e.g., remote terrain mapping) and computational learning theory.

Key words. data compression, adaptive algorithm, communication channel, error propagation

AMS subject classification. 68Q25

PII. S0097539792240789

1. Introduction.

1.1. Dynamic dictionary communication. We use the term dynamic diction-
ary communication to refer to the process of transmitting data over a communication
channel that is encoded/decoded with respect to dynamically changing dictionary of
data. As depicted in Figure 1, a sender generates an input stream of characters drawn
from a fixed finite-input alphabet, which are encoded, transmitted over a communi-
cation channel (or saved on a storage device), decoded, and received as the output
stream. The encoder and decoder cooperate to maintain identical copies of a dic-
tionary D that is constantly changing. The encoder reads characters from the input
stream that form an entry of D, transmits the index of this entry, and updates D with
some method that depends only on the current contents of D and the current match.
Similarly, the decoder repeatedly receives an index, retrieves the corresponding entry
of D to write to the output stream, and then performs the same algorithm as the
encoder to update D. Note that although both the encoding and decoding algorithms
refer to their dictionary as D, errors on the communication channel or storage medium

∗Received by the editors November 25, 1992; accepted for publication (in revised form) July 31,
1995.

http://www.siam.org/journals/sicomp/26-4/24078.html
†Computer Science Department, Brandeis University, Waltham, MA 02254 (storer@cs.

brandeis.edu).
‡Computer Science Department, Duke University, Durham, NC 27707 (reif@cs.duke.edu).

934

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 935

Fig. 1.1. Dynamic dictionary communication.

may cause the decoder’s dictionary to differ from that of the encoder. Note also that
D contains a set of entries (so when we talk about adding a new entry to D, we always
mean to add it if it is not already present).

1.2. Applications of dynamic dictionary communication. The major ap-
plication of dynamic dictionary communication that motivates this work is adap-
tive lossless data compression by textual substitution (Storer and Szymanski [1978]),
where the dictionary stores a set of strings that have been seen in the past and data
is compressed by sending only indices of strings over the channel; such compression
algorithms are often called “LZ algorithms” after the work of Lempel and Ziv [1976]
and Ziv and Lempel [1977, 1978]. (See Storer [1988] for an introduction to the subject
and references to the literature.) Other possible applications of dynamic dictionary
communication include computational learning theory and robotics (e.g., reporting of
data by an autonomous remote robot that is mapping unexplored terrain and trans-
mitting coordinates as displacements from previous locations).

1.3. Error resilience. A potential drawback of dynamic dictionary communi-
cation is error propagation; that is, a single error on the communication channel (e.g.,
insertion, deletion, or change of an index sent on the channel) could cause the dic-
tionaries of the encoder and decoder to differ, which in the worst case could corrupt
all data to follow. That is, since decoding is guaranteed to be correct only when the
dictionary remains the same as the one used to encode the data, there is no way to
bound the effects of a single error in the worst case. With one-way communication
channels, where the decoder cannot send messages to the encoder, the problem be-
comes even more critical. In addition, with many existing communication systems
where the full bandwidth of the channel is consumed, even if a two-way channel is
available to let the encoder know that an error has occurred, retransmission of data
can often be tantamount to losing new data that could have been transmitted during
the time used to retransmit the old data. Retransmission can also introduce further
error propagation problems. In addition, a data-storage device where data may be
corrupted during storage can be viewed as a one-way communication channel.

In some sense, dynamic dictionary communication can be viewed as “raising the
stakes” for the effects of errors on a one-way channel; even if the chance of an error
is made very small via a standard error-detection/correction protocol, if an error
does occur on a single data item, it can have the catastrophic effect of corrupting
an unbounded number of additional data items. We present a technique for “error
resilience,” where no attempt is made to detect or correct errors but strong guarantees
are provided that errors do not propagate. This technique can be combined with
standard error-detection/correction protocols to yield one-way dynamic dictionary
communication with a low rate of errors that do not propagate.

1.4. Outline. The next section contains basic definitions; it formally defines
the dynamic dictionary communication model, which assumes several axioms, reviews

936 JAMES A. STORER AND JOHN H. REIF

how data compression by textual substitution fits into the model and shows that the
axioms hold for key methods that are provably optimal for stationary ergodic sources
(the standard assumption in data compression literature), presents a model for errors
on the communication channel, and defines error-resilient communication. Section 3
then presents a scheme for protecting against error propagation from k errors for any
constant k under any distribution of errors; we make no attempt to analyze how this
scheme affects the amount of compression achieved (although it appears to be quite
practical). In section 4, we employ randomized techniques to “expand” the k-error
technique to give propagation protection with very high probability against a fixed
uniformly and independently distributed error rate of probability 1/r; in particular,
for any k ≥ 1, the probability of error propagation can be made less than 1/rk. For
example, an error rate of 1/1012 (a relatively “clean” communication channel with a
low-overhead error-correcting mechanism) can be effectively “damped” to 1/1048 by
choosing k = 4. In addition, the generalized k-error protocol presented in section 4
has no asymptotic affect on the amount of compression achieved. Section 5 discusses
practical considerations.

2. Basic definitions.

2.1. Dynamic dictionary communication. Throughout this paper, when dis-
cussing dynamic dictionary communication with respect to a dictionary D, we use the
following notation:

• |D| = the current number of entries in D.
• |Dmax| = the maximum number of entries that D may contain.
• |s| = the number of characters in the string s.
• BITS(i) = the number of bits needed to write i in binary (i.e., BITS(i) =
blog2(i)c+ 1).

Generic encoding and decoding algorithms for dynamic dictionary communication
are shown below. Indices of D run from 0 to |D| − 1 and are represented using
exactly BITS(|D|−1) bits, although in practice it is often the case that for simplicity
BITS(|Dmax|−1) bits are used for all indices. We refer to codes sent over the channel
that represent indices as pointers.

GENERIC ENCODING ALGORITHM.
1. Initialize the local dictionary D with one entry for each character of the input

alphabet.
2. repeat forever

A. {Get the current match pointer p:}
Use a match method to read a string s from the input.
p = the index of s in D.
Transmit p using BITS(|D| − 1) bits.

B. {Update D:}
Add each of the strings specified by an update method to D.

GENERIC DECODING ALGORITHM.
1. Initialize the local dictionary D by performing step 1 of the encoding algorithm.
2. repeat forever

A. {Get the current match string s:}
Receive BITS(|D| − 1) bits for the current match pointer p.
s = the string in D corresponding to p.
Output s.

B. {Update D:}
Perform step 2B of the encoding algorithm.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 937

The match heuristic reads from the input stream a string that is in the dictionary.
(It must always be possible to read such a string since all strings of length 1 are always
in the dictionary.) After the match has been encoded by the encoder or decoded by
the decoder, “learning” consists of modifying the dictionary by adding one or more
new strings with an update heuristic. Although it is possible to have the update
heuristic employ a deletion heuristic that removes old entries to make room for new
ones (see Storer [1988]), we restrict our attention here to update heuristics that do
nothing once the dictionary is full so that encoding and decoding continue indefinitely
(or until the system is restarted) without any further modification of the dictionary.

The exact choice of the match and update heuristics is not important for the work
described here as long as the following axioms are satisfied. (We shall show shortly
that these axioms hold for a variety of optimal adaptive lossless data compression
methods.)

Succinctness. Except for the dictionary initialization (where entries for each of
the characters of the input alphabet are formed), the string (or strings) added by the
update heuristic at a given step depend only on the current match and the previous
match.

Robustness.

A. There is a constant 1 ≤ ρ such if the update heuristic adds a new match based
on a particular successive pair of matches, it will do so after this successive pair has
occurred at most ρ times.

B. There is a constant 1 ≤ α, called the learning constant, such that the encoder
dictionary reaches size |Dmax| after at most αρ|Dmax| entries have been transmitted.

The succinctness axiom addresses how dictionary entries may be formed. The
robustness axiom allows the system to be “conservative” and to not form a new entry
until it has “proved” itself by appearing a number of times, but not too conservative
because this number of times must be bounded by a constant. In addition, the learning
constant ensures that progress is made toward filling up the dictionary as data is
encoded (and we don’t waste too much effort relearning entries that have already
been added earlier). Note that condition B of the robustness axiom is somewhat
pessimistic because for all of the data-compression methods that we shall consider, if
ρ, α > 1, then the encoder dictionary reaches size |Dmax| after at most (α+ ρ)|Dmax|
entries have been transmitted.

For technical reasons to be discussed shortly, our results will also work for a
variation of the succinctness axiom.

Succinctness, version 2. Except for the entries that contain the characters of the
input alphabet, the string (or strings) added by the update heuristic at a given step
depend only on the current match and the next character.

The second version of the succinctness axiom is similar to the first version except
that it is “one step ahead”; it models certain update heuristics that are important
for proofs of optimality in applications involving data compression. Both versions
have the property that except for the characters of the alphabet, each entry of the
dictionary can be constructed from a pair of pointers to two other entries; this is all
that will really be needed in our construction (and, as we shall see shortly, suffices for
practical data-compression algorithms).

2.2. Applications to data compression. As mentioned earlier, the major
application that motivates this work is data compression by textual substitution. In
this section, we review a number of textual-substitution algorithms and show that

938 JAMES A. STORER AND JOHN H. REIF

they can be modified to satisfy the robustness axiom without sacrificing compression.
Our definition of “optimal” compression is optimal in the information-theoretic sense;
that is, for stationary ergodic sources of entropy H, after processing n characters, the
method in question sends an average of H+ε(n) bits per character, where ε(n) goes to
0 as n goes to ∞. (See Cover and Thomas [1991] or Gallager [1968] for definitions of
entropy, etc.) This asymptotic measure of performance for stationary ergodic sources
is standard throughout the literature. Furthermore, the methods we discuss here work
well in practice for virtually any source. (See Storer [1988] for a detailed presentation
of these methods as well as experimental results.)

Typically, the match heuristic used is the greedy heuristic; that is, read the longest
match possible. Although other heuristics can be used and the greedy match heuristic
does not guarantee the best possible compression on finite strings for any of the update
heuristics to be discussed below (Storer [1988]), it does perform well in practice and
is used in all of the methods that are provably optimal in the information-theoretic
sense. Examples of update heuristics that might be used for data compression are as
follows.

Uncompressed character (UC). Add the current match concatenated with the
next character of the input; the next character of the input is sent along in uncom-
pressed form as part of the current pointer (so that the next match starts after the
character following the current match). This heuristic does not fit exactly into the
generic encoding and decoding algorithms, but they can easily be modified to accom-
modate it by not allowing a match to a single character until it has been sent to the
decoder. (The cost of dictionary entries “wasted” by characters that have yet to be
seen becomes arbitrarily low as the dictionary size increases.) For finite-length strings
and dictionaries of bounded size, UC typically does not perform as well in practice
as the NC or FC heuristics discussed below, but we include it because it reflects the
construction of Ziv and Lempel [1978] that is provably optimal.

Next character (NC). Add the current match concatenated with the next char-
acter of the input. This can be viewed as a more practical implementation of UC. It
also requires modifications of the generic encoding and decoding algorithms because
the next character of the input stream cannot be deduced by the decoder until the
following match is received. (For the special “glitch” where the string matched at the
current step is the one formed at the previous step, the decoder can deduce that the
first and last character of the current match are the same as the first character of
the previous match.) This is the heuristic used by Welch [1984] (upon which UNIX
“compress” command is based) and Miller and Wegman [1985].

First character (FC). Add the last match concatenated with the first character
of the current match. This heuristic performs similarly to NC in practice, but fits
cleanly into the generic encoding and decoding algorithms (and does not have the
decoding “glitch” mentioned above); it is discussed in Storer [1988].

Current match (CM). Add the last match concatenated with the current match.
This heuristic is discussed by Miller and Wegman [1985] and Seery and Ziv [1977,
1978]. A variant of this method is employed by Reif and Storer [1990, 1992] and
Royals et al. [1993] in a massively parallel systolic custom VLSI design.

All prefixes (AP). Add the set of strings consisting of the last match concatenated
with each of the prefixes of the current match. This heuristic has the fast-growing
characteristics of CM but like FC, NC, and UC maintains a dictionary with the prefix
property (if a string is in the dictionary, then so are all of its prefixes); it is discussed
in Storer [1988].

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 939

It is easy to see that the FC, CM, and AP update heuristics satisfy the succinctness
axiom and that the UC and NC update heuristics satisfy version 2 of the succinctness
axiom.

For part A of the robustness axiom, observe that the learning constant is 1 for
the UC and NC heuristics since the greedy match heuristic ensures that the current
match together with the next character of the input stream cannot already be in the
dictionary. The FC heuristic has a learning constant of ≤ 2 since the greedy match
heuristic insures that the only way the last match together with the first character
of the current match can already be in the dictionary is when this is the same as
the current match, which can only happen once. Similarly, it can be argued that the
learning constant for CM and AP is ≤ 2.

Part B of the robustness axiom is satisfied by all of the heuristics listed above for
ρ = 1. In this paper, we will use ρ > 1 in our constructions for error resilience (so that
a successive pair of matches may be seen several times before learning takes place). We
shall not address how this modification affects the amount of compression achieved by
the CM and AP heuristics since they are not provably optimal to start with (Lempel
and Ziv [1990]), although they work well in practice, and restrict our attention to the
FC, NC, and UC heuristics. The UC heuristic is exactly the algorithm shown optimal
in Ziv and Lempel [1978]; a nice proof that it is optimal in the information-theoretic
sense appears in Cover and Thomas [1991]. The essence of this proof is to show that
any method that parses the input stream into distinct phrases (and sends a number of
bits equal to ε(n) of the current number of phrases to the decoder) must be optimal.
Furthermore, as outlined in the appendix, this proof can be modified to show that
a constant-redundant parsing (one where there is a constant that bounds how many
times any phrase may appear in the parsing) is also optimal. Hence a “redundant”
version of UC is optimal. In addition, we also show in the appendix that redundant
versions of FC and NC are optimal.

2.3. Bounded-size dictionaries. Theoretical proofs of optimality such as pre-
sented in Lempel and Ziv [1976] and Ziv and Lempel [1977, 1978] simply assume
that the dictionary grows indefinitely as the infinitely long input stream is processed.
However, a practical strength of the compression methods outlined earlier is that rel-
atively small bounds on the size of the dictionary (e.g., 212 to 216 entries) provide
good performance in practice on virtually all types of data. As mentioned earlier,
we take the same approach here and simply assume that once the dictionary fills,
it remains fixed for the remainder of the data to be processed (so that the update
heuristic is defined to add nothing once the dictionary is full). Although this strat-
egy typically works well on individual files, in practice some method for changing the
dictionary over time after it has filled is usually incorporated into the algorithm. (See
Storer [1988] for discussion of various strategies.) For example, the UNIX compress
command monitors compression and restarts the dictionary-growing process if com-
pression falls off after the dictionary is full. Another simple strategy is a “swapping”
arrangement with two dictionaries, where after the dictionary fills for the first time,
continue using it to compress data but at the same time start forming new entries in
a second dictionary; once the second dictionary is full, it can be used for compression
and the first dictionary reset to be empty, and so on. Since restarting or changing
of dictionaries occurs infrequently, very secure protocols (e.g., several hundred bits to
encode a single bit) can be used to periodically restart the process or to send a swap
bit. Such a protocol can also be used to agree that the dictionaries are now “frozen”
and will not be modified further. We shall not address these issues further in this

940 JAMES A. STORER AND JOHN H. REIF

paper.

2.4. A model for error-resilient communication. We use the term commu-
nication channel to refer to any medium or device over which data is transmitted
and received. We assume that pointers sent from the encoder to the decoder over a
communication channel are subject to the following errors:

• add: An extra pointer, chosen at random, is inserted into the communication
stream.
• delete: A pointer is deleted from the communication stream.
• change: A new pointer, chosen at random from the space of all pointers,

replaces a pointer.
We consider the following classes of error distributions:

• uniform: Errors occur randomly.
• arbitrary: Errors may be arbitrarily correlated.

Note that our results do not apply to the case where an individual bit is inserted or
deleted but do allow individual bits to be changed because this is just a special case
of a change error. (In fact we are only charging a cost of 1 no matter how many bits
of a pointer are changed.)

The goal is to provide guarantees that there is perfect protection against error
propagation due to a specified number of channel errors; that is, there is no further
corruption of the data beyond what is directly due to the channel errors.

3. Protection against k errors. In this section, we present an encoding scheme
which, for any fixed integer constant k ≥ 0, guarantees that k or fewer errors on the
channel will not cause any error propagation. We will not address how this protocol
affects the amount of compression (although it appears reasonable in practice); rather,
this protocol will be an important building block for a more general construction,
presented in the next section, that does guarantee that compression is not affected
asymptotically.

To simplify our presentation, we shall assume that the update heuristic adds at
most one new match (e.g., UC, NC, FC, and CM have this property but AP does not);
at the end of this section, we describe how this encoding scheme can be generalized to
update heuristics that may add more than one new entry. Also, similar modifications
as for the generic encoding and decoding algorithms are discussed for the UC and NC
heuristics.

The two key ideas are as follows:
• Hashing is used to compute where a new entry is to be placed in the dictionary.

For simplicity, throughout this paper, we assume that a truly random hash function
is used; in practice, a 2-universal hash function (see Carter and Wegman [1979]) can
be used. Hashing has the effect of eliminating the dependence between addresses that
is normally present in dynamic dictionary communication so that if a given index is
not used right away, it will have no effect on what indices are used in the future.
• Counts are maintained for all pointer pairs seen thus far and a pair is used by

the match heuristic only if it “warms up” to be a clear winner over pairs that hash
to the same address.

DEFINITION. Suppose that counts (initially 0) are maintained in the encoder for
all pointer pairs sent thus far (i.e., each time a pointer is sent/received, the count of
the pair of pointers it represents is incremented) and in the decoder for all pointer
pairs received thus far. For a sequence S of pointers sent by the encoder, LAG(S)
is the maximum amount that any count in the decoder is incorrectly increased due to
errors on the channel plus the maximum amount any count fails to be increased due

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 941

to errors on the channel. For any integer k ≥ 0, the warming value for k, w(k), is
the smallest integer such that LAG(S) ≤ w(k) over all sequences of pointers with at
most k errors.

LAG THEOREM. For any k ≥ 1, w(k) ≤ 3k.
Proof. Let

S = U0C1U1 . . . CmUm be the sequence of pointers sent by the encoder and

R = U0I1U1 . . . ImUm be the sequence of pointers received by the decoder
where

Ui, 0 < i < m, |Ui| ≥ 1 are blocks of pointers,

Ii, 1 ≤ i ≤ m, |Ii| ≥ 0 are blocks of pointers, and

|
∏m
i=1 Im| ≤ k (the product denotes string concatenation).

That is, S and R are partitions (which are not necessarily unique) of the input and
output streams into blocks of pointers defined as follows. The U ’s are blocks of
pointers that went across the channel unchanged and the C’s are blocks of pointers
that were correctly sent to the communication channel but due to errors on the channel
were received incorrectly by the decoder as the I blocks, where all pointers in a given
I block are incorrect.

Now consider a particular block Ci that is received as Ii. Let
x = the number of pointers that are changed,

y = the number of pointers that are deleted, and

z = the number of pointers that are added
and write

Ci = q1 · · · qx+y,
Ii = r1 · · · rx+z.

Any way of choosing x, y, and z that corresponds to a way to convert Ci to Ii suffices
for our construction. Let p be the last pointer of Ui−1 and s be the first pointer of
Ui+1. The only counts that might not be incremented (but should have been) are due
to the loss of

pq1, q1q2 · · · qx+y−1qx+y, qx+ys,

which in the worst case can increase the lag by x+ y+ 1. The only counts that might
be incorrectly incremented are due to the addition of

pr1, r1r2 · · · rx+z−1rx+z, rx+zs,

which in the worst case can increase the lag by x + z + 1. Note that if i = 1 and/or
i = m, then p and/or s may not exist, and this can only lower the number of counts
that might not be incremented or might be incorrectly incremented. Thus the total
change in lag for the transformation of Ci to Ii is at most 2x + y + z + 2. In fact,
for the case where y = z = 0 (there are only change errors), this upper bound can be
reduced by observing that if

pq1 = q1q2 = · · · qx+y−1qx+y = qx+ys,

then it follows that p = q1 · · · qx+y = s, and so it cannot be that pr1 = r1r2 (or that
pr1 = r1s) or r1 would not be an incorrect pointer, so the lag can be at most 2x+ 1.
Hence we have

LAG(Ci) ≤
{

2x+ 1 if (y + z) = 0,

2x+ y + z + 2 if (y + z) > 0

}
.

942 JAMES A. STORER AND JOHN H. REIF

Let e = x + y + z. For the case where (y + z) = 0, assuming that k > 0 (otherwise,
LAG(Ci) = 0), 2x+ 1 ≤ 2e+ 1 ≤ 3e. For the case where (y + z) > 0:

2x+ y + z + 2 = 2(e− (y + z)) + (y + z) + 2

= 2e− (y + z) + 2

≤ 2e+ 1

≤ 3e.

Hence the warming value for each block of e errors is ≤ 3e, and the theorem follows.
ENCODING ALGORITHM WITH k-ERROR PROTOCOL.
1. Initialize the local dictionary D to have one entry for each character of the

input alphabet and to have an empty hash table that is capable of storing pointer
pairs; let h denote a hash function that maps pointer pairs to the range 0 . . . (|D|−1).

2. repeat forever
A. {Get the current match string s and compute the current match pointer p:}

Read a string s for which there exists pointer pair qr such that
• s = the string corresponding to the pointer pair qr,
• count(qr) > count(uv) + w(k) for all uv such that h(uv) = h(qr).

if s does not exist
then p = the index in D of the next input character
else begin

p = h(qr)
count(qr) = count(qr) + 1
end

Transmit p using BITS(|D| − 1) bits.
B. {Update D:}

for each pair xy produced by the update method do
if xy is not already in the dictionary then count(xy) = 0

DECODING ALGORITHM WITH k-ERROR PROTOCOL.
1. Initialize the local dictionaryD by performing step 1 of the encoding algorithm.
2. repeat forever

A. {Get the current match pointer p and compute the current match string s:}
Receive BITS(|D| − 1) bits for the current match pointer p.
if p represents a single character

then s = the single character corresponding to p
else if there is a pointer pair qr such that

h(qr) = p and count(qr) is largest among all pairs that hash to p
then begin
s = the string corresponding to qr
count(qr) = count(qr) + 1
end

else s = the empty string
Output s.

B. {Update D:}
Perform step 2B of the encoding algorithm.

Given the lag theorem, the generic encoding and decoding algorithms can be
modified, as shown above, to employ the k-error protocol to insure perfect protection
against any k errors; that is, no bytes are corrupted beyond those corrupted by channel
errors.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 943

For correctness of the protocol, observe that for each pointer p in a sequence
S of pointers sent by the encoder, the pointer pair qr that p represents is a clear
“winner” among all pointer pairs that hash to p; that is, the count of qr is greater by
at least LAG(S) than the count of any other pair uv that hashes to p. Hence when
the decoder receives an uncorrupted pointer p, the pointer pair qr with the largest
count that hashes to p must be the correct pair for p because k errors cannot cause
some other pair uv that hashes to p to have a count equal or greater than that of qr.

As mentioned at the beginning of this section, the encoding and decoding algo-
rithms with the k-error protocol can be adapted to the UC and NC heuristics, and to
heuristics such as AP that may add more than one entry. For the UC and NC heuris-
tics, the same modifications as for the generic encoding and decoding algorithms can
be used. For the AP heuristic, or any heuristic that may construct more than one
match from the last match and the current match, we can hash on triples consisting
of the two pointers in question together with an integer that indicates which of the
strings corresponding constructed from this pointer pair is being referenced; this in-
teger can be provided by the match heuristic. The lag theorem can still be used to
verify the protocol because it is still the case that at most one count is incremented
when a pointer is sent by the encoder or received by the decoder.

We leave as an open problem the class of sources for which the k-error protocol
produces a constant-redundant parsing for update heuristics that satisfy the succinct-
ness and robustness axioms. All that has been shown here is that k errors will not
propagate when using the k-error protocol. Because hash conflicts could in theory
cause the counts of two entries that hash to the same location to “race” (so that
neither count sufficiently exceeded the other), it is not clear what effect, if any, the
protocol has asymptotically on the amount of compression obtained with a given
update heuristic (as compared with the same heuristic without the protocol). We
conjecture that in practice, performance will not be significantly affected for small
values of k and reasonably size dictionaries (e.g., 216 or more entries). In the next
section, we make use of the k-error protocol in a way that avoids hash conflicts and
insures constant redundancy.

4. High-probability protection against an error rate. In this section, we
employ probabilistic analysis to examine more carefully the proof of the lag theorem
of the last section. The idea is to show that the k-error protocol actually gives, with
high probability, strong protection against a fixed error rate during the period when
the dictionary is changing and is vulnerable to error propagation. In addition, by
encoding pointers to avoid hash conflicts with high probability, we can guarantee no
asymptotic loss of compression.

We employ the Chernoff bound (see Hagerup and Rub [1989]) on the number
of heads X in a sequence of independent coin tossings with expected value µ (e =
2.7182 . . . denotes the natural logarithm base defined by limn→∞(n

n−1)n):

For x ≥ 0, Prob(X ≥ (1 + h)µ) <

(
eh

(1 + h)(1+h)

)µ
.

To obtain the form of the bound that we shall use here, first we observe that the
right-hand side is

=
1

eµ

(
e

1 + h

)(1+h)u

=
1

eµ

(
(1 + h)µ

eµ

)−(1+h)µ

944 JAMES A. STORER AND JOHN H. REIF

and hence, since e > 1, it follows that

For z > eµ, Prob(X ≥ z) < 1

eµ

(
z

eµ

)−z
<

(
z

eµ

)−z
.

DAMPING THEOREM. If a sufficiently large dictionary is employed with a method
satisfying the succinctness and robustness axioms together with the k-error protocol
of the last section (where w(k) denotes the warming value for k and α denotes the
learning constant) on a channel with a uniform independent error probability of 1/r
(on the average, one error for every r pointers), then the probability that the system
looses stability (i.e., the probability that any errors propagate) is

<
1(r

4eα

)(w(k)
2 +1

) .
In addition, with probability greater than 1− 1/2|D|(1−ε(|D|)), the amount of compres-
sion achieved is within a factor of (1+ε(|D|)) of what would be achieved with the same
method used on a perfect channel without the protocol, where ε(|D|)→ 0 as |D| → ∞.

Proof. To simplify notation, we assume throughout this proof that all logarithms
are base 2.

Although the k-error protocol may work in the presence of hash conflicts, it is
difficult to estimate the effect of the hash conflicts on the performance of the protocol
for the application in question; for example, for data compression, it is not clear how
the compression achieved is affected in the worst case. We avoid this problem by
employing a more complicated hashing scheme that has no conflicts with extremely
high probability. Although this scheme may increase the number of bits in some
pointers, it will have no asymptotic effect on the total number of bits sent.

To store n items in the hash table, we use a table of size n log(n)2. Since at any
time the table contains at most n elements, each time an element is inserted into
the table, the probability that it goes to a bucket that already contains an entry is
at most n/(n log(n)2) = 1/(log(n)2), and thus the expected number of hash conflicts
after inserting all n elements is bounded above by n/ log(n)2. Hence from the Chernoff
bound, with µ = n/ log(n)2 and z = n/ log(n), it follows that the number of hash
conflicts is greater than n/ log(n) with probability

<

(
n/ log(n)

en/(log(n)2)

)−n/(log(n)2)

=

(
log(n)

e

)−n/(log(n)2)

<
1

2n/(log(n)2)
.

Thus it follows that

Prob(number of hash conflicts < n/ log(n)) > 1− 1

2n/(log(n)2)
.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 945

The n/ log(n) conflicting entries can all be hashed again into a table of size n log(n),
the remaining n/(log(n)2) conflicting entries can all be hashed again into a table of
size n, and so on. In general, each pointer is now being represented by a sequence of
indices, each consisting of a number of bits equal to log of the size of the corresponding
hash table followed by a bit that is 0 if the index is the last in the pointer or 1 if
there is another to follow. By summing the bits sent for a sequence of n pointers, we
see that all n pointers use log(n log(n)2) + 1 bits for the first index, at most n/ log(n)
pointers have an additional log(n log(n))+1 bits for the second index, and so on. The
first term is bounded by (1 + ε(n))n log(n), where ε(n) → 0 as n → ∞, the second
term is O(n), and the remaining terms go down geometrically by a factor of log(n).
Hence the total number of bits sent is asymptotically arbitrarily close to the n log(n)
bits that are sent in any case.

Given that we can assume that there are no hash conflicts for the encoder, the
k-error protocol takes care of conflicts at the decoding end. That is, if a pointer is
received whose bits are the prefix of the bits of two or more pointers, the one with
the largest count wins.

We now bound the average value of the following two quantities:

Xij = the number of times that the count of pair i, j is incorrectly increased
by the decoder due to errors on the channel, before the dictionary of the
encoder is full;

Yij = the number of times that the count of a pair i, j fails to be increased
when it would otherwise have been increased if there had been no errors
on the channel, before the dictionary of the encoder becomes full.

Let

E(D) = the expected number of pointers transmitted by the encoder before its
dictionary is full.

From the proof of the lag theorem, we know that each error can cause at most two
counts to incorrectly increase, and hence for each of the E(D)/r pointers that are
corrupted, at most two counts, which are equally likely to be any of at least |Dmax|
pairs, can be incorrectly increased. So the expected value of Xij , which we denote by
µXij , is bounded by

µXij ≤
2E(D)

r|Dmax|
.

By the robustness axiom, E(D) ≤ αw(k)|Dmax|, and hence

µXij ≤
2αw(k)

r
.

Since each error can cause at most two counts to incorrectly fail to increase, similar
to Xij , we can compute

µYij ≤
2αw(k)

r
.

946 JAMES A. STORER AND JOHN H. REIF

Hence the probability that Xij or Yij is ≥ (w(k)
2 + 1) is

>

(
w(k)

2 + 1
2eαw(k)

r

)−(w(k)
2 +1

)

=
1(

r(w(k)+2)
4eαw(k)

)w(k)
2 +1

<
1(

r
4eα

)w(k)
2 +1

.

From the above bound, the theorem follows since a LAG of more than w(k) cannot
occur if no values of Xij or Yij are more than w(k)/2.

Let us now consider the amount of compression achieved. We have already verified
that each of the |D| pointers is encoded with only a factor of 1 + ε(|D|) more bits,
where ε(|D|) → 0 as |D| → ∞. Hence if the method in question is optimal in the
information-theoretic sense, then by the robustness axioms, as |D| → ∞, the same
method with the k-error protocol must also be optimal in the information theoretic
sense (since it is w(k)-redundant).

COROLLARY. For α ≤ 2 (which is the case for all data-compression methods that
we have considered) and r ≥ 1012 (a reasonable assumption in practice for a clean
channel with a low-overhead error-correction mechanism), choosing w(k) ≥ (2.2509k−
2) yields a probability that is

<
1

rk
.

For example, if k = 5, then by using w(k) = 10, an error rate of 1/1012 is effectively
“damped” to 1/1060.

Proof. If we write w(k) = 2xk − 2, we can solve for the minimum value of x by
simplifying the expression above as follows:

≤ 1

rk

(
r
w(k)

2 +1−k

(8e)
w(k)

2 +1

)

=
1

rk
(
rx−1

(8e)x

)k .

The expression rx−1

(8e)x , which is monotonically increasing in x, becomes ≥ 1 when

(r/8e)x ≥ r, which is true when x ≥ log(r)
log(r)−log(8e) . Assuming r ≥ 1012, w(k) ≥

2.2509k − 2 suffices.

5. Practical considerations. The previous section encoded pointers to make
the probability of any hash conflicts arbitrarily small. Although the protocol may
work even in the presence of hash conflicts, this eliminated the need to address the
issue of what affect hash conflicts have on performance of the system (e.g., the amount

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 947

of compression achieved). We leave it as an open problem whether, in the case of data
compression for stationary ergodic sources, performance is affected when hash conflicts
are allowed. Here we mention another strategy that can be viewed as a compromise
between allowing hash conflicts and rehashing to avoid them. With a small number
of extra bits per pointer, we can make the number of hash conflicts small and then
simply not use these entries of the dictionary (thus “wasting” a small fraction of the
dictionary).

A small constant c ≥ 1 extra bits are added to each pointer so that the |Dmax|
dictionary entries are hashed into a space of |Dmax|2c indices. Consider a particular
index i that is used for the first time in a sequence of n pairs that are hashed into the
dictionary. The probability that all other pairs do not hash to index i is

≥
(

1− 1

n2c

)n−1

>

(
1− 1

n2c

)n

=

((
1− 1

n2c

)n2c
)2−c

≥
(

1

e(n)

)2−c

, where e(n) =

(
n

n− 1

)n
,

=

(
1
e

)2−c(
e(n)
e

)2−c

>
1− (2−c)(
e(n)
e

)2−c
, ex =

∞∑
i=0

xi

i!
and for all 0 < x < 1,

1

ex
> 1− x.

Hence the probability that two pairs hash to index i is

≤ 1− 1− (2−c)(
e(n)
e

)(2−c)

< 2−c +

(
1−

(
e

e(n)

)(2−c)
)

since for all n > 1, e(n) > e

= 2−c + ε(n) since e = lim
n→∞

e(n),

where ε(n) goes to 0 as n goes to ∞. Thus the expected number of hash conflicts is
less than

n(2−c + ε(n)),

and by the Chernoff bound it follows that the probability that there are more than
εn hash conflicts is

<

(
ε

e(2−c + ε(n))

)−εn
.

948 JAMES A. STORER AND JOHN H. REIF

For any constant d > 1, this expression can be made less than d−εn if c is made
sufficiently large (by choosing n sufficiently large).

Given that the probability of more than εn hash conflicts can be made arbitrarily
low, a simple approach is the conservative strategy of “throwing out” all indices that
correspond to a hash conflict (even though many or all of these entries may not
cause any problems for the decoder). This construction adds c extra bits to each
pointer, which can be made to have an insignificant effect on compression by using
a very large dictionary (and hence a very large pointer size) but will most likely be
significant for dictionary sizes that are used in practice. However, this effect may
not be unacceptable. For example, if we take |Dmax| = 216 (a common and practical
choice for data compression) and ε = 0.1 (again, a reasonable value in practice), then
we must choose c ≥ 5; taking c ≥ 5 and computing the error term ε(n), we see that
the probability that there are more than ε(n) hash conflicts is < 2−1,500. However, the
cost for this security against many hash conflicts is an extra five bits for every 16-bit
pointer. If we consider a typical example for lossless compression using a dictionary
of size 216, we might expect the compressed data to be 30 percent of the size of the
original data, but now with the extra five bits per pointer, the compressed size will
be 21

1630 ≈ 39 percent of the original size. Although this cost might be reasonable in
practice, it would be nice to avoid it. We conjecture that this cost can be reduced by
a tighter analysis that does not throw out all indices with hash conflicts but rather
throws out only those that delay the dictionary-filling process due to “racing” and
“thrashing” of counts. We leave such analysis (as well as the effect of hash conflicts
on application-dependent performance issues such as compression ratio) as a subject
for future research.

Appendix. Constant-redundant parsings are optimal. The UC heuristic
is exactly the algorithm shown to be optimal in Ziv and Lempel [1978]; a nice proof
appears in Cover and Thomas [1991]. The essence of this proof is to show that any
method that parses the input stream into distinct phrases (and sends a number of
bits equal to log2 of the current number of phrases to the decoder) must be optimal.
This appendix notes how this notion can be generalized and still maintain optimality.

DEFINITION. A τ -redundant parsing of the input stream is one with at most τ
copies of any given phrase.

LEMMA. τ -redundant parsings give optimal data compression for the UC model.
Proof. We refer to the presentation in section 12.10 of Cover and Thomas [1991]

and describe how slight modifications can be made to the formulas. Note that here
c(n) denotes the total number of phrases (with repetition), whereas in the original
presentation phrases are not repeated. Lemmas 12.10.1 and 12.10.2 do not change if
the parsing is τ -redundant. Lemma 12.10.3 (Ziv’s inequality) gets a factor of τ inside
the log on the right side. (The proof is essentially unchanged except that the 1 in
the log on the right side in equation (12.286) becomes τ .) Theorem 12.10.1 (the main
theorem) still holds for a τ -redundant parsing; the proof is essentially the same, with
the following small changes: A factor of τ goes in the denominator inside the log on
the right side of equation (12.288), which is equivalent to adding the term τ log(ρ) to
the right side of equation (12.288). This term of c log(τ) is added to the right side
of equation (12.292) and subtracted from the right side of equation (12.293). Finally,
the error term εk(n) in equation (12.300) is changed to have (c/n) log(τ) added to
it; since c is O(n/ log(n)) by Lemma 12.10.1, the error term still goes to 0 as n goes
to ∞.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 949

COROLLARY. The lemma holds for the FC and NC heuristics as well.
Proof. These heuristics can use a phrase at most τ |Σ| times.

REFERENCES

J. L. Carter and M. N. Wegman [1979], Universal classes of hash functions, J. Comput. System
Sci., 18, pp. 143–154.

T. M. Cover and J. A. Thomas [1991], Elements of Information Theory, John Wiley, New York.
R. G. Gallager [1968], Information Theory and Reliable Communication, John Wiley, New York.
T. Hagerup and C. Rub [1989], A guided tour of Chernoff bounds, Inform. Process. Lett., 33,

pp. 305–308.
A. Lempel and J. Ziv [1976], On the complexity of finite sequences, IEEE Trans. Inform. Theory,

22, pp. 75–81.
A. Lempel and J. Ziv [1990], private communication.
V. S. Miller and M. N. Wegman [1985], Variations on a theme by Lempel and Ziv, in Combi-

natorial Algorithms on Words, A. Apostolico and Z. Galil, eds., Springer-Verlag, Berlin,
pp. 131–140.

J. Reif and J. A. Storer [1990], A parallel architecture for high speed data compression, in Proc.
3rd Symposium on the Frontiers of Massively Parallel Computation, College Park, MD,
IEEE Press, Los Alamitos, CA, pp. 238–243.

J. Reif and J. A. Storer [1992], A parallel architecture for high speed data compression, J.
Parallel Distrib. Comput., 13, pp. 222–227.

D. M. Royals, T. Markas, N. Kanapoulos, J. H. Reif, and J. A. Storer [1993], On the
design and implementation of a lossless data compression and decompression chip, IEEE
J. Solid-State Circuits, 28, pp. 948–953.

J. B. Seery and J. Ziv [1977], A universal data compression algorithm: Description and prelimi-
nary results, Technical Memorandum 77-1212-6, Bell Laboratories, Murray Hill, NJ.

J. B. Seery and J. Ziv [1978], Further results on universal data compression, Technical Memo-
randum 78-1212-8, Bell Laboratories, Murray Hill, NJ.

J. A. Storer [1988], Data Compression: Methods and Theory, Computer Science Press, Rockville,
MD.

J. A. Storer and T. G. Szymanski [1978], The macro model for data compression, in Proc. 10th
Annual ACM Symposium on the Theory of Computing, ACM, New York, pp. 30–39.

T. A. Welch [1984], A technique for high-performance data compression, IEEE Comput., 17,
pp. 8–19.

J. Ziv and A. Lempel [1977], A universal algorithm for sequential data compression, IEEE Trans.
Inform. Theory, 23, pp. 337–343.

J. Ziv and A. Lempel [1978], Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24, pp. 530–536.

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING∗

MAXIME CROCHEMORE† , ZVI GALIL‡ , LESZEK GA̧SIENIEC§ , KUNSOO PARK¶, AND

WOJCIECH RYTTER‖

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 950–960, August 1997 003

Abstract. Given a pattern string of length m for the string-matching problem, we design
an algorithm that computes deterministic samples of a sufficiently long substring of the pattern in
constant time. This problem used to be the bottleneck in the pattern preprocessing for one- and
two-dimensional pattern matching. The best previous time bound was O(log2 m/ log logm). We use
this algorithm to obtain the following results (all algorithms below are optimal parallel algorithms
on a CRCW PRAM):

1. a deterministic string-matching algorithm which takes O(log logm) time for preprocessing and
constant time for text search, which are the best possible in both preprocessing and text search;

2. a constant-time deterministic string-matching algorithm in the case where the text length n
satisfies n = Ω(m1+ε) for a constant ε > 0;

3. a simple string-matching algorithm that has constant time with high probability for random
input;

4. the main result: a constant-expected-time Las Vegas algorithm for computing the period of
the pattern and all witnesses and thus for string matching itself; in both cases, an Ω(log logm) lower
bound is known for deterministic algorithms.

Key words. parallel string matching, randomized algorithms, deterministic samples

AMS subject classifications. 68Q22, 68Q25, 68R15

PII. S009753979528007X

1. Introduction. The string-matching problem is defined as follows: Given pat-
tern P [0..m − 1] and text T [0..n − 1], find all occurrences of P in T . We study
parallel complexity of string matching on a CRCW PRAM. The PRAM (parallel
random-access machine) is a shared-memory model of parallel computation which
consists of a collection of identical processors and a shared memory. Each processor
is a RAM working synchronously and communicating via the shared memory. The
CRCW (concurrent-read concurrent-write) PRAM allows both concurrent reads and
concurrent writes to a memory location, and it has several variants depending on
how concurrent writes are handled. We use the weakest version (called common in
[7]), in which the only concurrent writes allowed are of the same value, 1. A parallel

∗ Received by the editors January 11, 1995; accepted for publication (in revised form) August 3,
1995.

http://www.siam.org/journals/sicomp/26-4/28007.html
† Institut Gaspard Monge, Université de Marne-la-Vallée, 2 Rue de la Butte Verte, F-93160 Noisy

le Grand, France (mac@univ-mlv.fr). The research of this author was supported in part by PRC
“Algorithmique, Modèles, Infographie” and GREG “Motifs dans les séquences.”
‡ Department of Computer Science, Columbia University, New York, NY 10027 (galil@

cs.columbia.edu) and Tel-Aviv University, Tel-Aviv, Israel. The research of this author was supported
in part by NSF grant CCR-90-14605 and CISE Institutional Infrastructure grant CDA-90-24735.
§ Max-Planck Institut für Informatik, Im Stadtwald, Saarbrücken D-66123, Germany

(leszek@mpi-sb.mpg.de). The research of this author was done during the author’s stay at Instytut
Informatyki, Uniwersytet Warszawski, 02-097 Warszawa, Poland and was supported in part by KBN
grant 2-11-90-91-01 and EC Cooperative Action IC-1000 (project ALTEC).
¶ Department of Computer Engineering, Seoul National University, Seoul 151-742, Korea

(kpark@theory.snu.ac.kr). The research of this author was supported by KOSEF grant 951-0906-
069-2.
‖ Instytut Informatyki, Uniwersytet Warszawski, 02-097 Warszawa, Poland (rytter@

mimuw.edu.pl) and Department of Computer Science, Liverpool University, United Kingdom. The
research of this author was done partly while visiting the University of California at Riverside and
was supported in part by KBN grant 8T11C01208.

950

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING 951

Fig. 1. A 3-size DS of x for 8 shifts: A = {2, 3, 5} and f = 6.

algorithm for a problem is optimal if its total work is asymptotically the same as the
minimum possible work for the problem. All optimal algorithms in this paper have
linear work. Most string-matching algorithms consist of two stages. The first prepro-
cesses the pattern and the second uses the data structure constructed in the first to
search the text. For the text search, a constant-time optimal parallel algorithm (fol-
lowing optimal O(log2m/ log logm)-time preprocessing) is known [8]. On the other
hand, an Ω(log logm) lower bound with a linear number of processors is known for
the entire string-matching problem [3].

Let x[0..r− 1] be a string of length r. String x[0..p− 1], 1 ≤ p < r, is a period of
x if x[i] = x[i+ p] for all 0 ≤ i < r − p. The shortest period of x is called the period
of x. We also use the term period for the length of the corresponding string. If the
period of x is shorter than a half (fourth) of x, x is called periodic (4-periodic). A
witness of x against (the periodicity of) i is a position w such that x[w] 6= x[w − i]
[12]. Let p be the period of x. When we say that we compute the period of x, we
mean computing min(p, r/4). When we say that we compute the witnesses of x, we
mean computing the witnesses against all nonperiods i, 1 ≤ i < r/4. The witnesses
of x can be computed in optimal O(log log r) time by [2]. (It is possible to compute
large periods and witnesses using techniques of [1], but we will not need them here.)
Given two strings x and y and a position i of y such that x does not occur at position
i of y, a witness to nonoccurrence at i is a position w such that y[w] 6= x[w − i]. A
substring of x of length i is called an i-block of x. The positions of all strings in this
paper start from 0.

Consider a nonperiodic pattern string x of length m. Align k ≤ m/2 copies of x
one on top of the other so that the ith copy starts above the ith symbol of the first
copy. A deterministic sample (DS) of x for k shifts is an ordered set A of positions
and a number f , 1 ≤ f ≤ k, such that f − 1 consecutive copies of x to the left and
k − f consecutive copies to the right have at least one mismatch with copy number
f of x in the positions of the set A. The size of a DS is the size of the ordered set A.
See Fig. 1. Vishkin [13] introduced the notion of deterministic samples and proved
the existence of a DS of size at most logm for m/2 shifts.

The DS is crucial for very fast optimal parallel search of the pattern in a given
text. During the text search, we maintain a subset of text positions, referred to as
candidates , which can be start positions of pattern occurrences. Assume that we can
somehow reduce the number of candidates to one in every logm-block of the text.
Then for every candidate, we compare the symbols at the positions of the set A of the
DS with the corresponding symbols of the text. If a candidate has mismatches, it is no

952 CROCHEMORE, GALIL, GA̧IENIEC, PARK, AND RYTTER

longer a candidate for an occurrence of the pattern. On the other hand, if a candidate
has matches in all the positions of A, then by the definition of the DS, we can eliminate
all other candidates in an m/2-block of the text. This method was used in a constant-
time optimal text search [8]. Very recently, it was also used in a constant-time two-
dimensional text search [5]. However, the optimal algorithm suggested by Vishkin and
used in [8] for computing the DS was very expensive, taking O(log2m/ log logm) time.
This resulted in two “best” algorithms for string matching: an optimal O(log logm)-
time algorithm for the entire problem [2] (for which an Ω(log logm) lower bound was
also proved [3]) and a constant-time text search with expensive preprocessing that
was dominated by the computation time of the DS. Thus the DS computation has
been the bottleneck.

In section 2, we present a constant-time deterministic algorithm for computing
a DS of logarithmic size. We also show how to compute a constant-size DS for
O(log logm) shifts in constant time. This constant-size DS will be crucial to our
main result in section 4. Since we compute deterministic samples for a part of the
pattern, we can use more than a linear number of processors.

Section 3 contains three applications of the constant-time algorithm for DS. The
first application is that it allows us to have only one best string-matching algorithm
with constant-time search and O(log logm)-time preprocessing. Our new algorithm
achieves the best possible time in both preprocessing and text search. The second
application is a deterministic O(k)-time string-matching algorithm using n processors

for the case where m = O(n1−2−k), i.e., a constant-time string-matching algorithm
using n processors when n = Ω(m1+ε) for a constant ε > 0. The third application is a
simple string-matching algorithm that has constant time with high probability (and
thus constant expected time) for random input.

In section 4, we describe our main result. We present a constant-expected-time
Las Vegas algorithm for computing the witnesses. Together with the constant-time
text search, we obtain a constant-expected-time Las Vegas algorithm for string match-
ing including preprocessing, solving the main open problem remaining in parallel
string matching. Deterministically, an Ω(log logm) lower bound is known for wit-
ness computation and string matching [3]. This algorithm is designed based on the
lower-bound argument; randomization is used to kill the argument. In the special
case where the pattern is periodic and the period of the pattern has only a constant
number of prime divisors, randomization is not needed.

Our algorithms will frequently use without mention the constant-time algorithm
that finds the maximum (or minimum) position of a nonzero entry in an array [7].
Our algorithms will use the constant-time deterministic polynomial approximate com-
paction (PAC) of Ragde [11] and its improvement by Hagerup [9]. A d-PAC is an
algorithm that compacts an array of size n with at most m nonzero elements into a
prefix of size md (assuming that md < n). Ragde gave a (4 + ε)-PAC and Hagerup
gave a (1 + ε)-PAC for any ε > 0.

In many places where we use quantities such as r/2, log r, or log log r as integers,
we mean that any way of rounding them to the nearest integer will do.

2. Constant-time deterministic sampling. Let x be a nonperiodic string
of length r. We construct two kinds of DSs in constant time: a log k-size DS for
k shifts, k ≤ r/2, and a constant-size DS for log log r shifts. We first show how to
construct a log k-size DS of x for k shifts, k ≤ r/2, in constant time using r3 processors
and r2 space. This log-size DS was introduced by Vishkin [13], but its construction
takes O(log2 r/ log log r) time using O(r) operations, which is the bottleneck in the

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING 953

Fig. 2. A DS with A = {q, q + p} and f = 1.

preprocessing of string matching [13, 8]. Consider k-blocks starting at positions i for
0 ≤ i < k. If two k-blocks are identical, we say that x has a periodicity . Note that x
has a periodicity if and only if there are i and j for i < j < k (the start positions of
the two identical blocks) such that x[i..j + k − 1] has a period p = j − i < k ≤ r/2.
Using k3 < r3 processors, the algorithm checks in constant time if x has a periodicity.
If it does, the algorithm finds such i, j, and p = j− i. p is not necessarily the smallest
such period.

Case 1: x has a periodicity in x[i..j + k − 1] with period p. Although p is a
period of x[i..j + k − 1], p cannot be a period of x since x is nonperiodic. That is,
the periodicity with period p cannot extend both all the way to the right and all the
way to the left of x[i..j + k − 1]. If it does not extend to the right, let q > j be the
smallest position such that x[q] 6= x[q + p] (i.e., end of periodicity). The position q
can be found in constant time with r processors. Now the DS is A = {q, q + p} and
f = 1 because in the first copy we have mismatching symbols at positions q, q+p and
in the next k− 1 copies to the right we have matching symbols at the same positions.
See Fig. 2, where k = 8, i = 2, and j = 4 (p = j − i = 2). If the periodicity extends
all the way to the right, let q < i be the largest position such that x[q] 6= x[p + q].
The DS is A = {q, q + p} and f = k.

Case 2: x does not have a periodicity (i.e., all of the k-blocks are distinct).
Consider (for discussion only) the compacted prefix tree T of all the blocks (each
path from the root of T to a leaf corresponds to a block and every internal node has
degree at least 2). Since T has k leaves, there is at least one leaf v of depth ≤ log k.
Let B be the block corresponding to v. The path in T from the root to v hits at most
log k nodes which define at most log k positions; B is different from each of the other
blocks in at least one of these positions. Below we will find such a block B and the
(at most log k) positions in B in constant time using r3 processors and r2 space. Let
b be the start position of B in x. The DS is the derived set of positions in B shifted
by b and f = k − b. For example, consider Fig. 1. For the block B = 01000101, its
start position in x is 2 and f is 6.

To find B and the positions in it, we compute a k × k 0–1 matrix: one row for
each block. The matrix is initially set to 0. With r processors per each pair (i, j),
1 ≤ i, j ≤ k, of blocks, find in constant time the smallest index ` such that the ith
block and the jth block differ at position ` (a node in T). Note that we find in this

954 CROCHEMORE, GALIL, GA̧IENIEC, PARK, AND RYTTER

way exactly all nodes of T (more than once). Set entry ` in the two rows i and j to 1.
Now we only have to find a row with no more than s = log k 1’s and compress their
positions to an array of size s. So we need to solve the following problem for each row
of the matrix. Given a 0–1 array of size k ≤ r and r2 processors, find whether it has
at most s = log k 1’s and, if it does, compress their positions into an array of size s.

Ragde designed a (4 + ε)-PAC [11] and then used it to compress an array of
length k with at most s items (= nonzero entries) into an array of size s in time
O(log s/ log log k). In case the number of items is larger than s, the algorithm fails.
Note that when log s = O(log log k), the time is O(1). So to solve the problem
above, first the jth processor replaces a 1 in the jth entry with j and then Ragde’s
compression is applied in constant time. This compression will succeed with at least
one of the rows of the matrix and will yield the desired DS.

Theorem 2.1. The deterministic algorithm above constructs a log k-size DS for
k shifts, k ≤ r/2, for a nonperiodic string of length r in constant time using r3

processors and r2 space.
Although the DS computation used to be the bottleneck, the algorithm in [8] has

another part of the preprocessing (the hitting set) that does not take constant time:
the part that enables the algorithm to eliminate all but at most one candidate in
every logm-block. The hitting set can be constructed in O(log logm) time. Using
Theorem 1 and an O(log logm)-time construction of the hitting set, the algorithm in
[8] can be transformed into a string-matching algorithm which takes constant time
for text search and O(log logm) time for preprocessing. However, in order to derive
a randomized constant-time algorithm, we cannot afford to compute a hitting set.
Instead of the hitting set, we use the following constant-size DS for O(log logm)
shifts to design an alternative algorithm called CONST-MATCH in section 3.

We now show how to construct a constant-size DS of x for log log r shifts in
constant time with r2 log log r processors. This constant-size DS is new and is crucial
for constant-time randomized string matching in section 4 as discussed above.

Case 1. If there exists position i in x such that x[i] 6= x[i+ j] (or x[i] 6= x[i− j])
for every 1 ≤ j < log r, then we take A = {i} and f = log r (or A = {i} and f = 1)
as the DS for log r shifts (and therefore for log log r shifts as well).

Case 2. Otherwise, every symbol in x occurs very often (with distance shorter
than log r between neighboring ones). So every symbol occurs at least r/ log r times
in x, which implies that there are at most log r different symbols in x. Consider all
substrings of length log log r in the first half of x. Since there are (log r)log log r different
strings of length log log r over log r symbols and since (log r)log log r < r/(2 log log r),
some substrings of length log log r repeat without overlap in the first half of x. Find
such a substring y in constant time using r2 log log r processors. Let z be the substring
between the two copies of y. The substring yzy has a period p = |yz| < r/2. Since x
is nonperiodic, period p has a mismatch in x. Let q be the smallest (largest) position
such that x[q] 6= x[q+ p] to the right (left) of the first copy of y. Then A = {q, q+ p}
and f = 1 (A = {q, q + p} and f = log log r) is a constant-size DS for log log r shifts.

Theorem 2.2. The deterministic algorithm above constructs a constant-size DS
for log log r shifts for a nonperiodic string of length r in constant time using r2 log log r
processors.

3. Applications of constant-time DS. In this section, we present applications
of the constant-time DS computation, and at the same time, we build up procedures
which will be used in the constant-time randomized string-matching algorithm in
section 4. Thanks to a well-known reduction [2], we can assume without loss of

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING 955

generality that the pattern in a string matching problem is non-4-periodic.
The text-search algorithm will maintain candidates, which can still be start posi-

tions of pattern occurrences. All other positions have gotten witnesses to nonoccur-
rences. Consider two candidates i < j such that w is a witness against j − i (i.e.,
P [w] 6= P [w − j + i]).

(a) If T [i+ w] 6= P [w], i+ w is a witness to nonoccurrence at i.
(b) If T [i+ w] 6= P [w − j + i], i+ w is a witness to nonoccurrence at j.

The two tests above are called a duel between i and j [12]. By a duel, we can
remove one or both of the candidates. Given h > 0, we partition the text T into
disjoint h-blocks in the obvious way. If every h-block has at most two candidates, we
say that T is h-good .

Lemma 3.1. If T is h-good and an h-size DS for k shifts is given, then T can be
made k-good in optimal constant time.

Proof. Let A be the ordered set of the h-size DS. For each k-block, there are
initially at most 2k/h candidates and we have h/2 processors per candidate. For
each such candidate in the k-block, make h comparisons with the positions of A. If
a candidate has a mismatch, it provides a witness against the candidate. Find the
leftmost (ls) and rightmost (rs) survivors in the k-block. By the definition of the DS,
every survivor i between ls and rs has at least one mismatch in the DS positions of
ls or rs. For each such i, make 2h comparisons with the DS positions of ls and rs
and find a witness against it.

Lemma 3.2. If T is m1/k-good for k > 1 and the witnesses of the pattern are
given, T can be made m/4-good in time O(log k) with O(n log k) operations.

Proof. Run log k rounds of the following until T is m/4-good. In a round, we
start with at most two candidates per i-block (i-good) and end with at most one
per i2-block (i2-good) by performing at most 4i2 duels in each i2-block. Duels find
witnesses to nonoccurrences. (Note that we actually start each round after the first
with at most one candidate per i-block.)

Given a string x of length r and a number ` ≤ 2
√
r, FIND-SUB finds the first

nonperiodic substring z of length ` and computes witnesses of z if such z exists, and
it otherwise computes the period p of x of length less than `/2 and witnesses against
nonmultiples of p in optimal constant time.

Procedure FIND-SUB:

1. Näıvely check if each of the first `/2 positions is a period of the prefix of x of
length ` and compute witnesses against nonperiods.

2. If none is a period, z is the prefix of x of length `. Stop.
3. If there are periods, find the shortest one p. Find the smallest prefix y of x

such that p is not the period of y.
4. If p is the period of x (y does not exist), witnesses against nonmultiples of p

are easily computed from the witnesses of the first p-block. Stop.
5. Otherwise (y exists, i.e., there is a mismatch with period p), z is the suffix of
y of length `. (z is nonperiodic [8].) Näıvely compute the witnesses of z.

The first application of the constant-time DS computation is a simple string-
matching algorithm with constant-time search and O(log logm)-time preprocessing
called CONST-MATCH. In order to be used in section 4, CONST-MATCH solves the
following problem: Given a (non-4-periodic) pattern P of length m and its witnesses
and text T , find all occurrences of P in T and witnesses to nonoccurrences in optimal
constant time. Initially, T is 2-good.

Procedure CONST-MATCH:

956 CROCHEMORE, GALIL, GA̧IENIEC, PARK, AND RYTTER

1. Find the first nonperiodic substring x of P of length r = m1/3 and the first
nonperiodic substring x′ of x of length 2 log r using FIND-SUB, which also
computes witnesses of x and x′. Steps 2–4 use Lemma 1.

2. Use the constant-size DS of x for log log r shifts to make T log log r-good.
3. Use the log log r-size DS of x′ for log r shifts to make T log r-good.
4. Use the log r-size DS of x for r/2 shifts to make T r/2-good.
5. Perform two rounds of duels to make T m/4-good (Lemma 2). Then check

the surviving candidates by näıve comparisons.

Theorem 3.3. Given the witnesses of the pattern, procedure CONST-MATCH
performs string matching in optimal constant time.

Corollary 3.4. Using CONST-MATCH, we get a string-matching algorithm
with constant-time text search and O(log logm)-time preprocessing.

The second application is a deterministic O(k)-time algorithm for finding a sub-

pattern of length m1−2−k in the text. This application may seem somewhat contrived,
but it is useful in the next two applications. We will twice use the case k = 1. Let

P ′ be a subpattern of P of length m1−2−k . We first compute witnesses of P ′ in O(k)
time by the first k rounds of the preprocessing of [2] and then find all occurrences of
P ′ in the text by CONST-MATCH. (In case P ′ is 4-periodic, we use the reduction of
[2].)

Corollary 3.5. Using CONST-MATCH, we get an O(k)-time algorithm using

n processors for finding all occurrences of a given subpattern of length m1−2−k in
the text, or, stated differently, we get a deterministic O(k)-time algorithm using n

processors for string matching in case m = O(n1−2−k).

The third application is a simple string-matching algorithm that has constant
time with high probability for random input. Let P ′ be the prefix of the pattern of
length

√
m. Compute witnesses of P ′ in constant time. Find all occurrences of P ′

in the text by CONST-MATCH. Being able to match P ′ of length
√
m in constant

time gives us a constant-expected-time parallel algorithm for random text even if we
sequentially check the remaining symbols. The probability that the time is larger
than some small constant is exponentially small.

Corollary 3.6. Using CONST-MATCH, we get a simple string-matching algo-
rithm that has constant time with high probability for random input.

4. Constant-time randomized string matching. The main application of
the constant-time DS computation is a constant-expected-time Las Vegas algorithm
for computing the witnesses of the pattern. Together with CONST-MATCH, we
obtain a constant-expected-time Las Vegas algorithm for string matching including
preprocessing, solving the main open problem remaining in string matching. Thus,
randomization is used to “beat” the deterministic Ω(log logm) lower bound for witness
computation and string matching [3].

We introduce a notion of pseudoperiod (also used in [4]). It has an operational
definition: Given a string x of length r, if we compute witnesses against all i < r/4
except for multiples of q, we say that q is a pseudoperiod of x. It follows from this
definition that if x is 4-periodic, q must divide the period of x. Procedure FIND-
PSEUDO computes a large pseudoperiod of x.

Procedure FIND-PSEUDO:

1. Run FIND-SUB with x and ` = 2
√
r. If the period q of x is <

√
r, stop.

Otherwise, FIND-SUB finds the first nonperiodic substring z of x of length
2
√
r and computes witnesses of z.

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING 957

2. Using CONST-MATCH, find all occurrences of z in x and witnesses to nonoc-
currences.

3. Construct the (r − 2
√
r)-bit binary string x′ such that for 0 ≤ i < r − 2

√
r,

x′[i] = 1 if i is an occurrence of z and x′[i] = 0 otherwise. Compute the
period q of x′ in the case where q < r/4 and, in addition, all witnesses of x′

against nonperiods of x′ smaller than r/4. Note that if q < r/4, all periods
of x′ smaller than r/4 are multiples of q. This computation exploits the
special form of x′; it contains at most

√
r 1’s with distance of at least

√
r

between them since z is nonperiodic and of length 2
√
r. Thus we can compute

witnesses of x′ by considering only the 1’s.
3.1. Divide string x′ into disjoint

√
r-blocks.

3.2. There is at most one 1 in every block. Record the position of the 1 in the
given block in the first element of that block. (Now every processor can
read from the first element of a block the position of 1 in that block.)

3.3. Let t be the position of the first 1 in x′. For position i < t, t is a witness
against t− i. If t ≥ r/4 this substep is done. Note that we already have
all witnesses against i < r/4. Otherwise, consider i ≥ 2t (i.e., i− t ≥ t).
If x′[i] = 0, then i is a witness against i−t. If x′[i] = 1, i−t is a potential
period of x′ since it shifts the first 1 to a 1. Use the

√
r processors of

the block of i to check if i− t is a real period of x′ by checking for all k
such that x′[k] = 1 whether (x′[k+ i− t] = 1 or k+ i− t ≥ r− 2

√
r) and

(x′[k − i + t] = 1 or k − i + t < 0). If all of these tests succeed, i − t is
a period of x′. If the test with k fails, k + i− t or k is a witness against
i− t. Compute q, the smallest period of x′.

3.4. From witnesses of x′, compute witnesses of x. Let w be the witness of
x′ against i. Assume that x′[w] = 0 and x′[w − i] = 1. (The other case
is similar.) Since x′[w] = 0, w is a nonoccurrence of z in x. Let j be
the witness to nonoccurrence of z at w. One can verify that w + j is a
witness of x against i.

Procedure FIND-PSEUDO computes q, which satisfies the following:

P1. If q ≤
√
r, q is the real period of x.

P2. If q >
√
r, then q is a pseudoperiod of x.

Given q integers, let LCMk,q be the minimum of k/4 and the LCM (least common
multiple) of the q numbers. Given a k× q array B of symbols and for every column c
its pseudoperiod qc < k/4 and witnesses against nonmultiples of qc, procedure FIND-
LCM computes LCMk,q of the pseudoperiods and witnesses against nonmultiples of
LCMk,q smaller than k/4 in constant time with kq processors as follows.

Procedure FIND-LCM:

1. Construct a (k/4 − 1) × q array B′: in the cth column of B′, write 1 in the
multiples of the pseudoperiod qc and 0 in other places.

2. For each row that is not all 1’s, any 0 entry provides a witness against the
row number.

3. If there is a row with all entries 1’s, return the smallest such row; otherwise,
return k/4.

Let p be the period of the pattern P . Recall that the main problem is to compute
min(p,m/4) and the witnesses against all nonperiods i, 1 ≤ i < m/4. These nonpe-
riods are exactly all the nonmultiples of p smaller than m/4. In the 4-periodic case,
witnesses against all i, 1 ≤ i < p, are sufficient. The other witnesses against i < m/4
can be computed from them in constant time.

958 CROCHEMORE, GALIL, GA̧IENIEC, PARK, AND RYTTER

We first describe a deterministic O(log logm)-time algorithm for the main prob-
lem. The algorithm consists of rounds and maintains a variable q. The invariant at
the end of a round is that q is a pseudoperiod of x. Initially, q = 1. We describe one
round of the algorithm. A witness against i found during the round is a witness of P
against iq.

1. Divide P into blocks of size q and make an array B of k = m/q rows and q
columns, where column j contains all P [i] for all i ≡ j mod q.

2. For each column c of B, find qc, its pseudoperiod, and witnesses against
nonmultiples of qc using FIND-PSEUDO.

3. If all pseudoperiods are ≤
√
k, all pseudoperiods are real periods. Using

FIND-LCM, compute LCMk,q and witnesses against nonmultiples of LCMk,q

smaller than k/4. The period of P that we compute is q · LCMk,q. Stop.

4. Otherwise, choose a column c with qc >
√
k. Witnesses against nonmultiples

of qc were computed in step 2. q ← q · qc.
5. If q < m/4, then go to the next round; otherwise, stop.

Note that in the first round, we have one column and compute a pseudoperiod
of P by FIND-PSEUDO. In subsequent rounds, q · qc is a pseudoperiod because we
compute witnesses for all nonmultiples of q · qc. Since the new value k is at most

√
k,

there are at most O(log logm) rounds.

This algorithm follows the structure of the lower-bound proof [3]. That proof uses
the notion of “possible period length,” which is the minimum number that can still be
the period of the pattern based on the results of the comparisons so far. The lower-
bound argument maintains a possible period length q ≤ m1−4−i in round i and forces
any algorithm to have at least 1

4 log logm rounds. Here we compute a pseudoperiod q
that may not be a period length but must divide it in case the pattern is 4-periodic.
q > m1−2−i in round i and the algorithm finds the period in at most log logm rounds.

Corollary 4.1. If P is 4-periodic and its period has a constant number of prime
divisors, we can compute witnesses and do string matching in optimal deterministic
constant time.

We now describe an O(1)-expected-time randomized algorithm for the main prob-
lem. Execute the first three rounds of the deterministic algorithm and then execute
round 4 below until it stops. At the beginning of round 4, q is a pseudoperiod of x,
and B is the k × q array, k = m/q, created by step 1 of the deterministic algorithm.
We have q > m7/8 and k = m/q < m1/8.

Round 4:

1. Randomly choose a multiset of s = m/k2 columns from B, i.e., each of s
processors chooses a random column number from the set {1, . . . , q}. Find
the period of each chosen column näıvely with k2 processors. Using näıve
comparisons, also compute witnesses against nonperiods. Using FIND-LCM,
compute h = LCMk,s and witnesses against nonmultiples of h.

2. If h = k/4, the pattern P is not 4-periodic. Stop.
3. Otherwise, check if h is a period of each column of B. If h is a period in all

columns, qh is the period of P ; stop. Otherwise, let C be the set of columns
where h is not a period.

4. Using Hagerup’s (1 + ε)-PAC [9], try to compact C into the set C ′ of size
m3/4. If the compaction fails, again try round 4 starting from step 1.

5. If the compaction is successful, compute all periods of columns in C ′ näıvely
(we have enough processors because m3/4k2 < m). Using näıve comparisons,
also compute witnesses against nonperiods. Using FIND-LCM, compute h′ =

CONSTANT-TIME RANDOMIZED PARALLEL STRING MATCHING 959

LCMk,m3/4 of these periods and witnesses against nonmultiples of h′. The
period of P that we compute is min(m/4, q · LCM(h, h′)).

Lemma 4.2. With a very high probability, the size of C in round 4 is smaller
than m1/2.

Proof. Let Q be the multiset of the q real periods of the columns of B. We call a
period good if it appears in Q at least q1/3 times; otherwise call it bad.

For a good period, the probability that it is not chosen among the s random

choices is at most (1 − q1/3/q)s < e−m
1/6

since s = m/k2 = q2/m > q2/3m1/6.
Thus the probability that there is some good period that was not chosen is at most

qe−m
1/6

< me−m
1/6 � 1.

We showed that with a very high probability only the bad periods will remain in
C. Since there are only k different values for periods, the number of occurrences of
bad periods in Q is at most q1/3k = m/q2/3 < m/m7/12 < m1/2.

It follows from Lemma 3 that the PAC will fail (and as a result round 4 will be
repeated) with a very small probability and the expected number of rounds is smaller
than five.

Lemma 4.3. The randomized algorithm is an optimal Las Vegas parallel algorithm
for computing the period and the witnesses of the pattern P . It has constant time with
high probability.

Theorem 4.4. Together with CONST-MATCH, we have a randomized optimal
Las Vegas parallel algorithm for string matching, including preprocessing. It has con-
stant time with high probability (and thus constant expected time).

5. Conclusion. We have shown how to compute deterministic samples for a
part of the pattern in constant time, and we obtained a deterministic string-matching
algorithm which is probably the best in both preprocessing and text search. We use
them to obtain a simple constant-expected-time algorithm for random input and a
more sophisticated randomized algorithm for string matching with constant expected
time.

The randomized algorithm for string matching leads to constant-expected-time
randomized algorithms for several related problems. If we solve logm (or even more)
string-matching problems at the same time, the expected time is still a constant.
This converts the algorithms for finding all periods, squares, and palindromes [1] into
constant-expected-time randomized algorithms.

We believe that there may be more applications for our superfast deterministic
sampling. The DS can be considered as a deterministic fingerprint. No constant-time
algorithm is known for the conventional fingerprint computation on a CRCW PRAM.
On the EREW PRAM, our algorithm can be translated into an optimal O(logm)-
time algorithm [6]; it works for any alphabet since it only performs comparisons on
the input symbols. The conventional fingerprint has an optimal randomizedO(logm)-
time algorithm on the EREW PRAM and it works only when the alphabet is given and
is of small size [10]. On the other hand, our DS is only for a subpattern, and while it is
computed deterministically, one still needs randomization for computing the witnesses.
(The conventional fingerprint, while randomized, is applied deterministically.)

Acknowledgments. We thank Noga Alon and Yossi Matias for helpful
suggestions.

960 CROCHEMORE, GALIL, GA̧IENIEC, PARK, AND RYTTER

REFERENCES

[1] A. Apostolico, D. Breslauer, and Z. Galil, Optimal parallel algorithms for periods, palin-
dromes and squares, in Proc. 19th International Colloquium on Automata Languages and
Programming, Lecture Notes in Comput. Sci. 623, Springer-Verlag, Berlin, 1992, pp. 296–
307.

[2] D. Breslauer and Z. Galil, An optimal O(log logn) time parallel string matching algorithm,
SIAM J. Comput., 19 (1990), pp. 1051–1058.

[3] D. Breslauer and Z. Galil, A lower bound for parallel string matching, SIAM J. Comput.
21 (1992), pp. 856–862.

[4] B. S. Chlebus and L. Gasieniec, Optimal pattern matching on meshes, in Proc. 11th Sympo-
sium on Theoretical Aspects of Computer Science, Springer-Verlag, Berlin, 1994, pp. 213–
224.

[5] R. Cole, M. Crochemore, Z. Galil, L. Gasieniec, R. Hariharan, S. Muthukrishnan, K.

Park, and W. Rytter, Optimally fast parallel algorithms for preprocessing and pattern
matching in one and two dimensions , in Proc. 34th IEEE Symposium Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 248–258.

[6] A. Czumaj, Z. Galil, L. Gasieniec, K. Park, and W. Plandowski, Work-time optimal
parallel algorithms for string problems, in Proc. 27th ACM Symposium on Theory of
Computing, ACM, New York, 1994, pp. 713–722.

[7] F. E. Fich, P. Ragde, and A. Wigderson, Relations between concurrent-write models of
parallel computation, SIAM J. Comput., 17 (1988), pp. 606–627.

[8] Z. Galil, A constant-time optimal parallel string-matching algorithm, J. Assoc. Comput.
Mach., 42 (1995), pp. 908–918.

[9] T. Hagerup, On a compaction theorem of Ragde, Inform. Process. Lett., 43 (1992), pp. 335–
340.

[10] R. M. Karp and M. O. Rabin, Efficient randomized pattern-matching algorithms, IBM J.
Res. Develop., (1987), pp. 249–260.

[11] P. Ragde, The parallel simplicity of compaction and chaining, J. Algorithms, 14 (1993),
pp. 371–380.

[12] U. Vishkin, Optimal parallel pattern matching in strings, Inform. and Control, 67 (1985),
pp. 91–113.

[13] U. Vishkin, Deterministic sampling–a new technique for fast pattern matching, SIAM J. Com-
put., 20 (1991), pp. 22–40.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA∗

GANESH BALIGA† , SANJAY JAIN‡ , AND ARUN SHARMA§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 961–990, August 1997 004

Abstract. Most theoretical models of inductive inference make the idealized assumption that
the data available to a learner is from a single and accurate source. The subject of inaccuracies
in data emanating from a single source has been addressed by several authors. The present paper
argues in favor of a more realistic learning model in which data emanates from multiple sources,
some or all of which may be inaccurate. Three kinds of inaccuracies are considered: spurious data
(modeled as noisy texts), missing data (modeled as incomplete texts), and a mixture of spurious and
missing data (modeled as imperfect texts).

Motivated by the above argument, the present paper introduces and theoretically analyzes a
number of inference criteria in which a learning machine is fed data from multiple sources, some of
which may be infected with inaccuracies. The learning situation modeled is the identification in the
limit of programs from graphs of computable functions. The main parameters of the investigation
are: the kind of inaccuracy, the total number of data sources, the number of faulty data sources
which produce data within an acceptable bound, and the bound on the number of errors allowed in
the final hypothesis learned by the machine.

Sufficient conditions are determined under which, for the same kind of inaccuracy, for the same
bound on the number of errors in the final hypothesis, and for the same bound on the number of
inaccuracies, learning from multiple texts, some of which may be inaccurate, is equivalent to learning
from a single inaccurate text.

The general problem of determining when learning from multiple inaccurate texts is a restriction
over learning from a single inaccurate text turns out to be combinatorially very complex. Significant
partial results are provided for this problem. Several results are also provided about conditions under
which the detrimental effects of multiple texts can be overcome by either allowing more errors in the
final hypothesis or by reducing the number of inaccuracies in the texts.

It is also shown that the usual hierarchies resulting from allowing extra errors in the final program
(results in increased learning power) and allowing extra inaccuracies in the texts (results in decreased
learning power) hold.

Finally, it is demonstrated that in the context of learning from multiple inaccurate texts, spurious
data is better than missing data, which in turn is better than a mixture of spurious and missing
data.

Key words. inductive inference, machine learning, inaccurate data, multiple sources

AMS subject classifications. 68T05, 68T, 68, 68Qxx, 68Q

PII. S0097539792239461

1. Introduction. A scenario in which an algorithmic learner attempts to learn
its environment may be described thusly. At any given time, some finite data about
the environment is made available to the learner. The learner reacts to this finite
information by conjecturing a hypothesis to explain the behavior of its environment.
The availability of additional data may cause the learner to revise its old hypothe-
ses. The learner is said to be successful just in case the sequence of hypotheses it
conjectures stabilizes to a final hypothesis which correctly represents its environment.

The above model, generally referred to as identification in the limit , originated in
the pioneering work of Putnam [19], Gold [12], and Solomonoff [25, 26]. More recently,
this model has been the subject of numerous studies in computational learning theory

∗ Received by the editors October 26, 1992; accepted for publication (in revised form) August 7,
1995.

http://www.siam.org/journals/sicomp/26-4/23946.html
† Computer Science Department, Rowan College of New Jersey, Mullica Hill, NJ 08024

(baliga@gboro.rowan.edu).
‡ Department of Information Systems and Computer Science, National University of Singapore,

Singapore, Republic of Singapore 119260 (sanjay@iscs.nus.sg).
§ School of Computer Science and Engineering, University of New South Wales, Sydney, NSW

2052, Australia (arun@cse.unsw.edu.au).

961

962 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

(see, e.g., [13, 20, 10, 27, 1]). A problem with this model is the idealized assumption
that the data available to the learner is from a single and accurate source. The subject
of inaccuracies in the data available to a learning machine has been previously studied
by Schäfer-Richter [23], Fulk and Jain [11], Osherson, Stob, and Weinstein [17], and
Jain [14, 15]. Each of these studies, however, also makes the assumption that the
data available to the learner is from a single source. The present paper argues that
in realistic learning situations, data available to a learner is from multiple sources,
some of which may be inaccurate. We discuss these issues in the context of a specific
learning scenario, namely, scientific inquiry modeled as identification of programs from
graphs of computable functions. Although we present our results in the context of
this particular learning task, we note that some of our arguments and techniques can
be applied to other learning situations as well.

Consider a scientist S investigating a real-world phenomenon F . S performs
experiments on F , noting the result of each experiment, while simultaneously conjec-
turing a succession of candidate explanations for F . A criterion of success is for S
to eventually conjecture an explanation which S never gives up and which correctly
explains F . Since we never measure a continuum of possibilities, we could treat S
as performing discrete experiments x on F and receiving back experimental results
f(x). By using a suitable Gödel numbering, we may treat f associated with F as
a function from N , the set of natural numbers, into N . Also, assuming a suitable
neomechanistic viewpoint about the universe, f is computable. A complete and pre-
dictive explanation of F , then, is just a computer program for computing f . Thus
algorithmic identification in the limit of programs for computable functions from their
graph yields a plausible model for scientific inquiry.

Let us consider some common practices in scientific inquiry. Data is usually
collected using different instruments, possibly at different places. (For example, as-
tronomers use data from different telescopes situated at different locations.) In many
cases, experimental errors may creep in or the instruments may simply be faulty. In
some extreme cases, the same instrument may record conflicting readings at different
times. Also, occasionally it may be infeasible to perform experiments (for example,
determining the taste of cyanide). Moreover, the experimental findings of one scien-
tist are generally available to others. All of this tends to suggest that a scientist often
receives data from multiple sources, many of which are likely to be inaccurate. The
present paper incorporates these observations into the standard learning model. We
now proceed formally.

Section 2 presents the notation. Section 3 presents the preliminary notions about
identification in the limit and inaccurate data. Section 4 introduces the main subject
of this paper, viz, learning in the presence of multiple sources of inaccurate data. In
this section, we also discuss some of our results informally. Section 5 presents our
results with proofs.

2. Notation. The recursion-theoretic concepts not explained below are treated
in [22]. N denotes the set of natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the
set of positive integers, {1, 2, 3, . . .}. ∈, ⊆, and ⊂ denote, respectively, membership,
containment, and proper containment for sets.

We let e, i, j, k, l, m, n, r, s, t, u, v, w, x, y, and z, with or without decorations,1

range over N . We let a, b, and c, with or without decorations, range over N ∪ {∗}.
[m,n] denotes the set {x ∈ N | m ≤ x ≤ n}. We let S, with or without

1 Decorations are subscripts, superscripts, primes and the like.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 963

decorations, range over subsets of N and we let A,B,C, and D, with or without
decorations, range over finite subsets of N . min(S) and max(S), respectively, denote
the minimum and maximum element in S (max(S) is undefined if S contains infinitely
many elements). We take min(∅) to be ∞ and max(∅) to be 0. card(S) denotes the
cardinality of S. ∗ denotes unbounded but finite. We let (∀n ∈ N)[n < ∗ < ∞]. So
then “card(S) ≤ ∗” means that card(S) is finite.

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping:
N ×N → N) [22]. λx, y 〈x, y〉 and its inverses are useful for simulating the effect of
having multiple argument functions. π1 and π2 are corresponding projection functions,
i.e., (∀x, y)[π1(〈x, y〉) = x ∧ π2(〈x, y〉) = y].

η and ξ range over partial functions. For a ∈ (N ∪ {∗}), we say that η1 is an
a-variant of η2 (written η1 =a η2) iff card({x | η1(x) 6= η2(x)}) ≤ a. Otherwise, we
say that η1 is not an a-variant of η2 (written η1 6=a η2). domain(η) and range(η),
respectively, denote the domain and range of partial function η. Let A ⊆ N and
c ∈ N . We say that η(A) = c iff for all x ∈ A, η(x) = c. If S1 and S2 are two sets,
then S1∆S2 denotes (S1 − S2) ∪ (S2 − S1).
R denotes the class of all recursive functions of one variable, i.e., total computable

functions with arguments and values from N . f, g, and h, with or without decorations,
range over R. C and S, with or without decorations, range over subsets of R.

We fix ϕ to be an acceptable programming system [21, 22, 16] for the partial
recursive functions: N → N . ϕi denotes the partial recursive function computed by
the ϕ-program with index i. Wi denotes domain(ϕi). Wi is then the r.e. set/language
(⊆ N) accepted (or, equivalently, generated) by the ϕ-program i. We let Φ be an
arbitrary Blum complexity measure [4] associated with an acceptable programming
system ϕ; such measures exist for any acceptable programming system [4]. Wi,s

denotes the set {x | x < s ∧ Φi(x) ≤ s}.
In some contexts p and q, with or without decorations, range over programs. In

other contexts, p and q range over total recursive functions, with the range of p and
q being interpreted as (indexes for) programs. In some contexts P , with or without
decorations, ranges over programs. In other contexts, P ranges over sets of programs.

For any predicate Q, µn Q(n) denotes the minimum integer n such that Q(n) is
true if such an n exists; it is undefined otherwise. For any set A, 2A denotes the power
set of A. Ak denotes the Cartesian product of A with itself k times. The quantifiers

“
∞
∀ ,” “∃!,” and “

∞
∃” mean “for all but finitely many,” “there exists a unique,” and

“there exist infinitely many,” respectively.

3. Preliminaries. The kind of data a scientist handles in the investigation of a
phenomenon F is an ordered pair (x, f(x)), where f is the function associated with F
and f(x) is the result of experiment x on F . At any given time, a scientist conjectures
a hypothesis after seeing a finite sequence of such ordered pairs. We let SEQ denote
the set of all finite sequences of ordered pairs. Finite sequences are also referred to as
initial segments. As already mentioned, a hypothesis is simply a computer program
identified by its index in a given fixed acceptable programming system. Based on
these observations, we describe a learning machine in Definition 3.1 below. We let σ
and τ , with or without decorations, range over SEQ. content(σ) denotes the set of
pairs appearing in σ. The length of σ, denoted by |σ|, is the number of elements in
σ. σ � (x, y) denotes the concatenation of (x, y) at the end of sequence σ.

Definition 3.1. A learning machine is an algorithmic device that computes
a mapping from SEQ into N . We let M, with or without decorations, range over
learning machines.

964 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

Scientific inquiry is a limiting process. There is no fixed order in which exper-
iments may be performed, and a scientist is never sure if any new evidence would
cause a revision of the currently held hypothesis. The notion of a text is described
in Definition 3.2 to model the infinite sequence of experimental data that a scientist
may encounter in the course of investigating a phenomenon.

Definition 3.2.

1. A text is any infinite sequence of ordered pairs. We let T , with or without
decorations, range over texts.

2. The set of pairs appearing in a text T is denoted by content(T).
3. Let a total function f : N → N and a text T be given. T is for f just in case

content(T) = {(x, y) | f(x) = y}.
4. The initial finite sequence of T of length n is denoted by T [n].

Definition 3.3 below describes what it means for a learning machine to converge
on a text.

Definition 3.3. Suppose M is a learning machine and T is a text. M(T)↓
(read: M(T) converges) ⇐⇒ (∃p)(

∞
∀n)[M(T [n]) = p]. If M(T)↓, then M(T) is

defined = the unique p such that (
∞
∀n)[M(T [n]) = p]; otherwise, M(T) is said to

diverge (written: M(T)↑).
Definition 3.4 below describes what it means for a learning machine to successfully

learn a function.
Definition 3.4. (See [12, 3, 8].)
1. M Exa-identifies a total function f (written: f ∈ Exa(M)) ⇐⇒ (∀ texts T

for f)(∃p | ϕp =a f)[M(T)↓ = p].
2. Exa = {S | (∃M)[S ⊆ Exa(M)]}.

Definition 3.4 above models the situation in which a scientist has access to an
accurate source of data. Since totally accurate experimental data is seldom available,
models of scientific inquiry should accommodate inaccuracies. In the paradigm under
discussion, inaccurate data is modeled by inaccurate texts. First, we briefly consider
the kinds of inaccuracies that may arise in experimentation. The subject of inac-
curacies in the data available to a learning machine has been previously studied by
Schäfer-Richter [23], Fulk and Jain [11], Osherson, Stob, and Weinstein [17], and Jain
[14, 15].

• Noisy data: Experimental error, usually caused by faulty equipment, may
result in spurious data that is not representative of the phenomenon under
investigation.
• Incomplete data: It may not be feasible to perform certain experiments ei-

ther due to technological limitations or due to ethical considerations. Such
situations result in incomplete data.
• Imperfect data: In most experimental investigations, the inaccuracies are a

mixture of both noisy and incomplete data. Such situations are said to yield
imperfect data.

The three kinds of inaccuracies discussed above suggest three natural extensions
to the notion of texts defined below.

Definition 3.5. (See [11, 17, 14]; also see [23].) Let a text T and a function
f ∈ R be given. Let a ∈ N ∪ {∗}. Then we define the following:

1. T is said to be a-noisy for f just in case {(x, y) | f(x) = y} ⊆ content(T)
and card(content(T)− {(x, y) | f(x) = y}) ≤ a.

2. T is said to be a-incomplete for f just in case content(T) ⊆ {(x, y) | f(x) = y}
and card({(x, y) | f(x) = y} − content(T)) ≤ a.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 965

3. T is said to be a-imperfect for f just in case card({(x, y) | f(x) =
y}∆content(T)) ≤ a.

Definition 3.6 below describes what it means for a learning machine to learn a
function from inaccurate texts. We give the definition for noisy texts; the corre-
sponding notions for incomplete and imperfect texts (respectively called InaExb and
ImaExb) can be defined similarly.

Definition 3.6. (See [11, 17, 14]; also see [23].) Let a, b ∈ N ∪ {∗}.
1. M NaExb-identifies a total function f (written: f ∈ NaExb(M)) ⇐⇒ (∀
a-noisy texts T for f)(∃p | ϕp =b f)[M(T)↓ = p].

2. NaExb = {S | (∃M)[S ⊆ NaExb(M)]}.

4. Multiple inaccurate texts. The previous section described a paradigm that
models a scientist receiving data from a single, albeit possibly inaccurate, source.
In actual scientific practice, a phenomenon is investigated by a number of different
scientists, each performing their own experiments. In due course of time, the data of
one scientist becomes available to another through scientific journals, word of mouth,
personal communications, etc. Thus a scientist conjectures hypotheses based on data
coming from a number of different sources. This situation could be modeled in the
present paradigm as a machine receiving multiple texts, some or all of which are
inaccurate. It should be noted that the presence of inaccuracies in at least some of
the texts is essential for this model to be different because learning from multiple
texts, each of which are accurate, is equivalent to learning from a single accurate text.

Before we define learning from multiple inaccurate texts, we need to tinker with
the definition of a learning machine to account for data coming from more than one
source. Definition 4.1 below describes learning machines that receive multiple streams
of data.

Definition 4.1. Let k ∈ N+. A learning machine with k streams is an algorith-
mic device that computes a mapping from SEQk into N .

Again, we let M, with or without decorations, range over learning machines with
multiple streams; it will be clear from the context if we mean a learning machine with
a single stream. Definition 4.2 below describes what it means for a learning machine
to converge on multiple texts.

Definition 4.2. Let k ∈ N+. Let M be a learning machine and T1, T2, . . . , Tk
are k texts. M(T1, T2, . . . , Tk)↓ (read: M(T1, T2, . . . , Tk) converges) ⇐⇒ (∃p)(∃n)
(∀n1, n2, . . . , nk | n1 ≥ n, n2 ≥ n, . . . , nk ≥ n)[M(T1[n1], T2[n2], . . . , Tk[nk]) = p].
If M(T1, T2, . . . , Tk)↓, then M(T1, T2, . . . , Tk) is defined = the unique p such that
(∃n)(∀n1, n2, . . . , nk | n1 ≥ n, n2 ≥ n, . . . , nk ≥ n)[M(T1[n1], T2[n2], . . . , Tk[nk]) = p];
otherwise, M(T1, T2, . . . , Tk) is said to diverge (written: M(T1, T2, . . . , Tk)↑).

Definition 4.3 below describes what it means for a learning machine to learn a
function from multiple inaccurate texts. We give the definition for noisy texts; the
corresponding notions for incomplete and imperfect texts may be defined similarly.

Definition 4.3. Let j, k ∈ N+. Let a, b ∈ N ∪ {∗}.
(a) A learning machine M MuljkN

aExb-identifies a total function f (written:

f ∈MuljkN
aExb(M)) ⇐⇒ (∀ k texts T1, T2, . . . , Tk such that at least j out of these

k texts are a-noisy for f)(∃p | ϕp =b f)[M(T1, T2, . . . , Tk)↓ = p].

(b) MuljkN
aExb = {S | (∃M)[S ⊆MuljkN

aExb(M)]}.
So a machine MuljkN

aExb-(MuljkIn
aExb-, MuljkIm

aExb-) identifying a func-
tion f , upon being fed k texts at least j of which are a-noisy (a-incomplete, a-
imperfect) for f , converges to a program for a b-variant for f . Henceforth, when

966 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

discussing MuljkN
aExb, etc., those texts for which the inaccuracy is within the re-

quired bound are referred to as acceptable texts. We next note that the only interesting
cases are those for which the number of acceptable texts is a majority of the total
number of texts.

Consider a collection of recursive functions C. Assume f1, f2 ∈ C to be such that

f1 6=2a f2. Then for all k, we have C 6∈ Mul
b k2 c
k N0Exa. This is because among k

texts there may be bk2 c accurate texts for both f1 and f2. To avoid such problems,
we consider only those cases in which a strict majority of the texts are acceptable.2

We now discuss our results before presenting them with proofs in the next section.
One of our central aims is to investigate the relationship between identification

from a single inaccurate text and identification from multiple inaccurate texts, where
the inaccuracy is of the same kind. For noisy texts, for instance, this question can
be phrased as follows: How does NaExb relate to MuljkN

cExd for various values of
a, b, c, d and j, k? Similar questions can be posed for incomplete and imperfect texts.
This general question turns out to be combinatorially very difficult, and only partial
results are presented in this paper.

First, the following immediate proposition states that for the same bound on the
number of inaccuracies and the same kind of inaccuracy, identification from multiple
inaccurate texts cannot be better than identification from a single inaccurate text,
that is, collections of functions that can be identified from multiple inaccurate texts
can also identified from a single inaccurate text.

Proposition 4.4. Let j, k ∈ N such that k ≥ j. Let a, b ∈ N ∪ {∗}.
1. MuljkN

aExb ⊆ NaExb.

2. MuljkIn
aExb ⊆ InaExb.

3. MuljkIm
aExb ⊆ ImaExb.

The natural question is “When does the above proposition yield an equality?”
That is, we would like to have sufficient conditions for when identification from mul-
tiple texts is no worse than identification from a single inaccurate text. The results in
section 5.1 give some conditions such that—for each kind of inaccuracy (noise, incom-
pleteness, and imperfection)—if a collection of functions can be learned from a single
inaccurate text, then it can also be learned (with the same bound on the number of
errors in the final program) from multiple inaccurate texts, provided the bound on
the number of inaccuracies in at least a majority of the acceptable texts is the same
as the bound on the number of inaccuracies in the single inaccurate text.

The next natural question is under what conditions identification from multiple
texts, some of which may be inaccurate, constitutes a restriction on identification
from a single inaccurate text. More precisely, we would like to answer the following
question: For what relationship between a, b, c, d and j, k is NaExb−MuljkN

cExd 6=
∅? Unfortunately, this question turns out to be very difficult, and we are only able
to provide partial results for identification from three texts, at least two of which are
acceptable (that is, for the case where j = 2 and k = 3). Theorem 5.4 in section 5.2
is a very general result that gives sufficient conditions for a, b, c, and d such that
NaExb−Mul23N

cExd 6= ∅. Unfortunately, these conditions turn out to be somewhat
intricate, but the reader can get a feel for the special cases of these conditions presented

2 It should be noted that if for all f1, f2 ∈ C, f1 =2a f2, then all functions in C are finite variants
of any fixed function in the class. We feel that such cases are not interesting because if at least j
out of k input texts are acceptable for a function f ∈ C, then one can easily find a program p (in the
limit) such that at least j out of k input texts are acceptable for ϕp (though this ϕp may not be in
C).

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 967

in Corollaries 5.5, 5.6, 5.7, and 5.8. These results are presented in section 5.2.
Also in section 5.2, we consider the cases where the restrictive effects of learning

from multiple inaccurate texts can be compensated. More precisely, we identify the
relationship between a, b, c, and d such that NaExb ⊆Mul23N

cExd. This is achieved
by either allowing a greater upper bound on the number of errors tolerated in the final
program (that is, by making d greater than b) or making the quality of acceptable
texts better than the quality of single inaccurate text (that is, by making c smaller
than a). An interesting result along these lines is that for each type of inaccuracy, the
collections of functions identified from a single inaccurate text can also be identified
from three texts, at least two of which are acceptable with the same bound on the
number of inaccuracies as the single text, provided we are prepared to tolerate twice
the number of errors in the final program. This follows from Theorems 5.9, 5.19, and
5.22.

In section 5.3, we consider the effects of increasing the bound on the number
of errors tolerated in the final program-keeping other parameters the same, and the
effects of increasing the bound on the number of inaccuracies in the acceptable texts,
keeping other parameters the same. We are able to show the expected result that for
each inaccuracy type, larger collections of functions become identifiable if we

• increase the bound on the number of errors allowed in the final program
(keeping other parameters the same) or
• decrease the bound on the number of inaccuracies allowed in the input texts

(keeping other parameters the same).
The results discussed so far have been about the same kind of inaccuracies. Fi-

nally, in Section 5.4, we present results that compare one kind of inaccuracy with
another in the context of identification from multiple texts. Our findings show that
noisy texts are better for learnability than incomplete texts. This observation may be
interpreted as saying that spurious data is preferable to missing data. However, we
also show that imperfect texts are worse for learnability than incomplete texts, which
can be seen as saying that a mixture of spurious and missing data is less desirable
than only missing data.

5. Results. We now present results relating various criteria of inference intro-
duced in section 4. Most results in this paper are about the case in which a learning
machine is receiving data from three sources, at least two of which are acceptable.
Section 5.1 presents results about those cases in which learning from multiple texts is
not a restriction on learning power. Section 5.2 presents results in which learning from
multiple texts is a restriction on learning power and also results from cases in which
the deleterious effects of learning from multiple inaccurate texts can be compensated
by either allowing extra errors in the final program or improving the quality of the
acceptable texts. Section 5.3 presents the hierarchy results and section 5.4 presents
some results about the interaction between different kinds of inaccuracies.

From a purely technical point of view, the results presented in section 5.2 are the
most difficult results of this paper. Also, we are able to establish more results for
noisy texts than for incomplete and imperfect texts.

5.1. When identification from multiple texts is not restrictive. We con-
sider cases when learning from multiple inaccurate texts is equivalent to learning from
a single inaccurate text. Parts 1, 2, and 3 of the next result show that for each kind of
inaccuracy, the collections of functions that can be identified from a single text with
a finite number of inaccuracies is exactly the same as the collections of functions that
can be identified (with the same bound on the number of errors allowed in the final

968 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

program) from multiple texts, at least a majority of which have only a finite number
of inaccuracies.

Theorem 5.1. Let j, k ∈ N , k ≥ j > bk2 c. Let a ∈ N ∪ {∗}.
1. MuljkN

∗Exa = N∗Exa.

2. MuljkIn
∗Exa = In∗Exa.

3. MuljkIm
∗Exa = Im∗Exa.

4. MuljkN
0Exa = MuljkIn

0Exa = MuljkIm
0Exa = Exa.

Proof. Given k texts T1, T2, . . . , Tk, construct a text T such that (x, y) ∈
content(T) ⇐⇒ card({i | (x, y) ∈ content(Ti)}) ≥ bk2 c + 1. It is easy to see

that if at least bk2 c+1 of the k texts are ∗-noisy (∗-incomplete, ∗-imperfect, accurate)
for f , then so is T . The theorem follows.

We now introduce a technical notion that is used in later proofs. Let P be a finite
set of programs. Define the program Unify(P) as follows:

begin ϕUnify(P)(x)
Search for i ∈ P such that ϕi(x)↓.
If and when such an i is found, output ϕi(x) (for the first such i found).

end ϕUnify(P)(x)
The next result shows that for a ∈ N ∪ {∗}, the collections of functions for which

an exact program can be identified from a single text with the number of inaccuracies
bounded by a is exactly the same as the collections of functions for which an exact
program can be identified from multiple texts, at least a majority of which have at
most a inaccuracies.

Theorem 5.2. Let j, k ∈ N , k ≥ j > bk2 c. Let a ∈ N ∪ {∗}.
1. MuljkN

aEx = NaEx.

2. MuljkIn
aEx = InaEx.

3. MuljkIm
aEx = ImaEx.

Proof. 1. Proposition 4.4 yields MuljkN
aEx ⊆ NaEx. We now show that

NaEx ⊆MuljkN
aEx.

Let M NaEx-identify C. We show how to Ex-identify f ∈ C from k texts, at
least j of which are a-noisy for f . Let n, S = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , k}, and
P = {pi1 , pi2 , . . . , pij} be such that

(i) for all l ∈ S and m ≥ n, M(Tl[m]) = pl,
(ii) if p, q ∈ P , then card({x | ϕp(x)↓ 6= ϕq(x)↓}) = 0, and
(iii) card(S) = j.

Clearly, such an n, S, and P exist. (Let S ⊆ {i | Ti is a-noisy for f} be a set of
cardinality j; let n be such that for all l ∈ S, M converges on Tl after seeing at most
n inputs; let P = {M(Tl) | l ∈ S}. Then n, S, P satisfy (i), (ii), and (iii).) Clearly, a
machine M′, given texts T1, . . . , Tk, can find such an n, S, and P in the limit. Now
since M on Tl, l ∈ S, converges to pl and card(S) > k − j, there exists an l ∈ S such
that ϕpl = f . This along with (ii) above implies that Unify(P) is a program for f .
This proves part 1.

Parts 2 and 3 can be proved similarly.
The next result shows that for a ∈ N ∪ {∗}, the collections of functions for which

a ∗-error program can be identified from a single text with the number of inaccuracies
bounded by a is exactly the same as the collections of functions for which a ∗-error
program can be identified from multiple texts, at least a majority of which have at
most a inaccuracies.

Theorem 5.3. Let j, k ∈ N , k ≥ j > bk2 c. Let a ∈ N ∪ {∗}.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 969

1. MuljkN
aEx∗ = NaEx∗.

2. MuljkIn
aEx∗ = InaEx∗.

3. MuljkIm
aEx∗ = ImaEx∗.

Proof. 1. Proposition 4.4 yields MuljkN
aEx∗ ⊆ NaEx∗. We now show that

NaEx∗ ⊆MuljkN
aEx∗.

Let M NaEx∗-identify C. We show how to Ex∗-identify f ∈ C from k texts, at
least j of which are a-noisy for f . Let n, S = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , k}, and
P = {pi1 , pi2 , . . . , pij} be such that

(i) for all l ∈ S and m ≥ n, M(Tl[m]) = pl,
(ii) if p, q ∈ P , then card({x | ϕp(x)↓ 6= ϕq(x)↓}) ≤ n, and
(iii) card(S) = j.

Clearly, such an n, S, and P exist. (Let S ⊆ {i | Ti is a-noisy for f} be a set of
cardinality j; let P = {M(Tl) | l ∈ S}; let n be so large that for all l ∈ S, M
converges on Tl after seeing at most n inputs and f =n/2 ϕp for all p ∈ P . Then n,
S, and P satisfy (i), (ii), and (iii).) Clearly, a machine M′, given texts T1, . . . , Tk,
can find such an n, S, P in the limit. Now since M on Tl, l ∈ S, converges to pl and
card(S) > k − j, there exists an l ∈ S such that ϕpl =∗ f . This along with (ii) above
implies that Unify(P) is a program for a finite variant of f . This proves part 1.

Parts 2 and 3 can be proved similarly.

5.2. When identification from multiple texts is restrictive. In this section
we initially tackle the question of when, for the same kind of inaccuracy, learning from
multiple texts, some of which may be inaccurate, is a restriction over learning from a
single inaccurate text. That is, we consider the question: For which values of a, b, c, d
and j, k is NaExb −MuljkN

cExd 6= ∅? As already noted, this turns out to be a
very difficult question. For the case where j = 2 and k = 3, we are able to provide
significant partial answers. These results follow from a very complex diagonalization
argument.

In this section, we then consider the related question of when the restriction of
identification from multiple texts can be compensated. That is, for what values of
a, b, c, d is NaExb ⊆Mul23N

cExd. These results use simulation arguments.
We first present results for noisy texts (section 5.2.1), followed by results for

incomplete texts (section 5.2.2). Only a few results are presented for imperfect texts.

5.2.1. Noisy texts. We present a general theorem (Theorem 5.4) that covers
numerous cases in which identification from multiple noisy texts is a restriction over
identification from a single noisy text. Unfortunately, the conditions in the theorem
turn out to be very complex, and the reader is advised to see the four corollaries
presented immediately after the statement of the theorem for cases in which multiple
texts pose a restriction. However, we first try to present the intuitive motivation of the
theorem. Consider the question of trying to compare identification from a single noisy
text and identification from three texts, at least two of which are noisy. Furthermore,
let

• a be the bound on the noise level of the single text,
• b be the bound on the number of errors allowed in programs inferred from

the single text,
• c be the bound on the noise level of the acceptable texts in the case of iden-

tification from multiple texts, and
• d be the bound on the number of errors allowed in programs inferred from

multiple texts.

970 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

We would like to know when

NaExb −Mul23N
cExd 6= ∅.

Now let us see the effects of altering each of the parameters. Increasing a or decreasing
b makes the class NaExb smaller. Similarly, decreasing c and increasing d makes the
class Mul23N

cExd larger. The following theorem tells us how much we can “stretch”
the parameters a, b, c, and d such that there are still collections of functions that can
be identified from single noisy text but not from three texts, at least two of which are
acceptable.

Theorem 5.4. Let a, b, c, d ∈ N be given. If there exist r, α ∈ N such that
• r − b ≤ α ≤ min({b, r}),
• r ≤ c,
• 2r > a, and
• d < max({b+ α− r

2 , b+ α
3 }),

then NaExb −Mul23N
cExd 6= ∅.

Before giving a proof of the above result, we present corollaries. The first corollary
says that for given a, b, c ∈ N such that a is greater, but not too much greater, than
c (c ≤ a ≤ 2c − 1) and c is no greater than b, there are collections of functions for
which a b-error program can be identified from an a-error text but for which even
a (b + d c2e − 1)-error program cannot be identified from three texts, at least two of
which are c-noisy for the function being learned.

Corollary 5.5. Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, c ≤ b. Then
NaExb −Mul23N

cExb+d
c
2 e−1 6= ∅.

Proof. Take r = α = c in Theorem 5.4.
The next three corollaries are more variations on this theme and give insight into

how much the parameters a, b, c, and d can be stretched.
Corollary 5.6. Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, c

2 ≤ b ≤ 3
4d

a+1
2 e.

Then NaExb −Mul23N
cExd

4b
3 e−1 6= ∅.

Proof. Take r = c and α = b in Theorem 5.4.
Corollary 5.7. Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, a

2 < b ≤ c. Then

NaExb −Mul23N
cExd

3b
2 e−1 6= ∅.

Proof. Take r = α = b in Theorem 5.4.
Corollary 5.8. Let a, b, c ∈ N be such that c ≤ a ≤ 2c−1, max({ c2 ,

3
4d

a+1
2 e}) ≤

b ≤ a
2 . Then NaExb −Mul23N

cExd2b−
a+2
4 e−1 6= ∅.

Proof. Take r = da+1
2 e and α = b in Theorem 5.4.

We now give a proof of Theorem 5.4. The proof turns out to be somewhat complex
because we have to come up with a collection of functions that can be identified from
a single noisy text but which cannot be identified from three texts, at least two of
which are noisy. To design this collection of functions, we employ a technique from
the study of identification from single inaccurate texts [11]. We then employ the
operator recursion theorem [5] to construct a diagonalization argument to show that
this class cannot be identified from three texts, at least two of which are noisy. The
diagonalization technique is an adaptation of the techniques used elsewhere in the
study of inductive inference; we direct the reader to a survey of such techniques [6].

Proof of Theorem 5.4. Assume the hypothesis of the theorem and fix r and α
satisfying the hypothesis.

Let A = {〈0, x〉 | 0 ≤ x < r}.
Consider the following class of functions.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 971

C = {f ∈ R | the following conditions hold:
(1) f(A) = f(〈0, 0〉) ∈ {1, 2, 3};
(2) (∀i ∈ {1, 2, 3} − {f(〈0, 0〉)})[(max({f(〈i, 〈x, 0〉〉) | x ∈ N}) exists) ∧

(ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b f)];
(3) (∀i ∈ {1, 2, 3})(∀x, y, z)[f(〈i, 〈x, y〉〉) = f(〈i, 〈x, z〉〉)]}.

Intuitively, A is the set of points where some coding is done. (A is the only place
where inaccuracies will matter.) a-noise is not enough to spoil the coding in A for
NaExb-identification. However, r-noise is enough to spoil the coding for Mul23N

cExd-
identification.

It is easy to show that C ∈ NaExb. To see this, suppose that T is an a-noisy
text for f ∈ C. Since 2r > a, there exist an i ∈ {1, 2, 3} and x ∈ A such that
(x, i) 6∈ content(T). This along with clause (2) in the definition of C implies that
ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b f . Now max({f(〈i, 〈x, 0〉〉) | x ∈ N}) can be determined in

the limit from T due to cylindrification in clause (3). It follows that C ∈ NaExb.
We now show that C 6∈Mul23N

cExd.
The essential idea for diagonalization is that a machine cannot Exd-identify C if

the coding in A (due to clause (1) in definition of C) is spoiled. So suppose by way of
contradiction that machine M Mul23N

cExd-identifies C.
Then by the operator recursion theorem [5], there exists a recursive, 1–1, and

increasing p, with p(0) > 1, defined as follows in stages.
We define ϕp(i) in stages s ≥ 3. Let xs3 denote the least x such that for all y,

ϕp(1)(〈3, 〈x, y〉〉) is not defined before stage s.
For x < α, let ϕp(1)(〈0, x〉) = 2. For α ≤ x < r, let ϕp(1)(〈0, x〉) = 3. Let

ϕp(1)(〈1, 〈0, 0〉〉) = p(1) and ϕp(1)(〈2, 〈0, 0〉〉) = p(2).
For x < α, let ϕp(2)(〈0, x〉) = 1. For α ≤ x < r, let ϕp(2)(〈0, x〉) = 3. Let

ϕp(2)(〈1, 〈0, 0〉〉) = p(1) and ϕp(2)(〈2, 〈0, 0〉〉) = p(2).
Let σ3

1 , σ
3
2 and σ3

3 be such that

content(σ3
1) = {(x, 2) | x ∈ A}∪{(x, 3) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))},

content(σ3
2) = {(x, 1) | x ∈ A}∪{(x, 3) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))},

content(σ3
3) = {(x, 1) | x ∈ A}∪{(x, 2) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

Intuitively, we will form three (nearly identical) texts T1, T2, and T3 with the
initial segments σ3

1 , σ3
2 , and σ3

3 as defined above. Note that these three texts spoil the
coding in A (since all possible values of the coding are present in two of these texts).
Now the basic idea in the diagonalization below is to either

(1) force infinitely many mind changes by M (see step 4 in the construction)—in
this case T1 and T2 form the c-noisy texts for the diagonalizing function—or

(2) based on what the final program M(T1, T2, T3) does on the inputs from A (see
step 2 in the construction), do an appropriate diagonalization of the same form as
done in Ex-hierarchy theorem in [8] (see steps 5a, 5c, and 6a in the construction). The
diagonalization is done so as to maximize the errors of the final program under the
constraint of keeping the diagonalizing function within the class (see the comments
at the end of step 2 in the construction). Steps 5b and 6b in the construction are
needed since one cannot effectively determine whether program M(T1, T2, T3) halts
on inputs from the set A (we can do it only in the limit).

Let ϕsp(i) denote the part of ϕp(i) defined before stage s. Go to stage 3.
Begin Stage s

972 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

1. Let q = M(σs1, σ
s
2, σ

s
3).

2. Let D1 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) = 1}.
Let D2 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) = 2}.
Let D3 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) ∈ N − {1, 2}}.
Let err1,2 = r − card(D3) + b− α.
Let err2,3 = r − card(D1) + b− r + α.
Let err1,3 = r − card(D2) + b− r + α.
If err1,2 ≤ max({err1,3, err2,3}), then let extra err = b − r + α; otherwise,
let extra err = b− α. If err1,3 > err2,3, then let l = 1 and l′ = 2; otherwise,
let l = 2 and l′ = 1.
Let Xs ⊂ {〈4, x〉 | x ≥ s} denote the (lexicographically least) set of extra err
elements such that for all x ∈ Xs, ϕp(1)(x) is not defined before stage s.
(Note. Let Ti =

⋃
s σ

s
i . D1 (D2, D3) denote the points in A for which ϕq

seems to be correct if T2 and T3 (T1 and T3, T1 and T2) are the acceptable
texts for the function being learned and erri,j denotes the error that we can
force if we chose a function such that Ti and Tj are correct texts for the func-
tion. Informally, an attempt is made at every stage to try and make those two
texts correct so as to maximize the number of errors made by M’s current
output program.)

3. For x ∈ A, let ϕp(s)(x) = l′. Let ϕp(s)(〈3, 〈xs3, 0〉〉) = ϕp(1)(〈3, 〈xs3, 0〉〉) =
ϕp(2)(〈3, 〈xs3, 0〉〉) = p(s). For x ∈ domain(ϕsp(1))−A, let ϕp(s)(x) = ϕp(1)(x).

4. For i ∈ {1, 2, 3}, let σ′i be an extension of σsi such that content(σ′i) =
content(σsi) ∪ {(〈3, 〈xs3, 0〉〉, p(s))}.

5. Dovetail steps 5a, 5b, and 5c until (if ever) one of steps 5a or 5b suc-
ceeds and at least one iteration of the loop at step 5c is completed. If step 5a
succeeds (before step 5b succeeds (if ever)), then complete the then current
iteration of the repeat loop in step 5c and go to step 6a. If step 5b succeeds
(before step 5a succeeds (if ever)), then complete the then current iteration
of the repeat loop in step 5c and go to step 6b.

5a. Search for σ′′i ⊇ σ′i, i ∈ {1, 2, 3}, such that M(σs1, σ
s
2, σ

s
3) 6=

M(σ′′1 , σ
′′
2 , σ

′′
3) and for all j, j′ ∈ {1, 2, 3}, for all x, y, z ∈ N , the following

four conditions hold:
• content(σ′′j)− content(σ′j) = content(σ′′j′)− content(σ′j′).
• for x 6∈ A, if (x, y), (x, z) ∈ content (σ′′j) then y = z.
• If (〈j, 〈x, y〉〉, v) ∈ content(σ′′1) and (〈j, 〈x, z〉〉, w) ∈ content(σ′′1),
then v = w.
• If (x, y) ∈ (content(σ′′1) − content(σ′1)), then [[y = 0 ∧ x 6∈ A]
OR x ∈ Xs OR [for some i ∈ {1, 2, 3}, u, v ∈ N : x = 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) has been defined until now and ϕp(1)(〈i, 〈u, 0〉〉) = y]].

(Remark. This substep looks for one set of suitable extensions of the cur-
rently defined initial segments of the three texts that makes M change
its mind.)

5b. Search for x ∈ A− (D1 ∪D2 ∪D3) such that ϕq(x)↓.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 973

5c. Let Addednew = ∅.
(Note. We use Addednew in order to identify the set of elements for which
we extend ϕp(1) in step 5c. Addednew will be used (in steps 6a and 6b),
provided at least one of steps 5a or 5b succeeds).
Repeat

Let x be the least point not in Xs such that ϕp(1)(x) is not defined
until now. If for some i ∈ {1, 2, 3}, x is of the form 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) is defined until now, then let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = ϕp(1)(〈i, 〈u, 0〉〉); otherwise, let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = 0.
Let Addednew = Addednew ∪ {x}.

Forever

6a. For all x and y such that (x, y) ∈ content(σ′′1) − content(σs1), let
ϕp(1)(x) = ϕp(2)(x) = y. Let σs+1

i be an extension of σ′′i such that

content(σs+1
i) − content(σ′′i) = {(x, ϕp(1)(x)) | x ∈ Addednew}. Go to stage

s+ 1.

6b. Let σs+1
i be an extension of σ′i such that content(σs+1

i) − content(σ′i) =
{(x, ϕp(1)(x)) | x ∈ Addednew}. Go to stage s+ 1.

End stage s
Now consider the following cases.
Case 1. All stages terminate.
Let

f(x) =

{
3 if x ∈ A;
ϕp(1)(x) otherwise.

Clearly, f ∈ C (since α ≤ b, ϕp(1) =b f , and ϕp(2) =b f). Also, M on f makes
infinitely many mind changes since step 5b can succeed at most finitely many times
before step 5a succeeds.

Case 2. Stage s (≥ 3) is the least stage which starts but never terminates.
Let q, err1,2, err2,3, err1,3, D1 , D2, and D3 be as defined in steps 1 and 2 in stage

s. Now max({err1,2, err2,3, err1,3}) ≥ err1,2+err2,3+err1,3
3 ≥ 3b+α

3 . Thus max({err1,2,
err2,3, err1,3}) ≥ b+ α

3 . Also, since err1,2 ≤ r+b−α, we have max({err1,3, err2,3}) ≥
2b−r+2α

2 . Thus max({err1,2, err2,3, err1,3}) ≥ max({b+ α− r
2 , b+ α

3 }).
Case 2a. In step 2 of stage s it was found that err1,2 ≤ max({err1,3, err2,3}).
Let l and l′ be as found in step 2. In this case domain(ϕp(s)) = N −Xs. Let f

be any fixed total extension of ϕp(s) such that for all x ∈ Xs, we have f(x) 6= ϕq(x).

Clearly, f ∈ C (since ϕp(l) =b f , ϕp(s) =b f , and f(〈0, 0〉) = l′). Let T1, T2, and
T3 be extensions of σ′1, σ′2, and σ′3 (as defined in step 4 in stage s), respectively, such
that content(T1) − content(σs1) = {(x, y) | f(x) = y ∧ (∀z)[(x, z) 6∈ content(σs1)]}
and for all j, the [|σ′1| + j]th element of T1, the [|σ′2| + j]th element of T2, and the
[|σ′3| + j]th element of T3 are all the same. Clearly, M(T1, T2, T3) = q (otherwise,
step 5a would succeed).

Now for all x ∈ A−Dl′ , f(x) 6= ϕq(x) (since that was the way Dl′ was chosen in
step 2 of stage s). Thus ϕq 6=max({err1,3,err2,3})−1 f .

Case 2b. In step 2 of stage s it was found that err1,2 > max({err1,3, err2,3}).

974 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

In this case, domain(ϕp(1)) = N −Xs. Let f be a fixed total function such that
the following three conditions hold:

• f(A) = 3,
• f(x) = ϕp(1)(x) for x ∈ domain(ϕp(1))−A, and
• (∀x ∈ Xs)[f(x) 6= ϕq(x)].

Clearly, f ∈ C (since ϕp(1) =b f , ϕp(2) =b f , and f(〈0, 0〉) = 3). Let T1, T2, and T3

be extensions of σ′1, σ′2, and σ′3 respectively, such that content(T1) − content(σs1) =
{(x, y) | f(x) = y ∧ (∀z)[(x, z) 6∈ content(σs1)]} and for all j, the [|σ′1|+ j]th element
of T1, the [|σ′2|+j]th element of T2, and the [|σ′3|+j]th element of T3 are all the same.
Also, it is clear that M(T1, T2, T3) = q (otherwise, step 5a would succeed). Now for
all x ∈ A − D3, f(x) 6= ϕq(x) (since that was the way D3 was chosen in step 2 of
stage s). Thus ϕq 6=err1,2−1 f .

From the above cases, it follows that C 6∈Mul23N
cExd.

The results established so far identified cases where multiple noisy texts are a
restriction over learning from a single noisy text. The natural question that arises
is “What are the cases where the restriction of learning from multiple noisy texts
can be compensated in some way.” That is, for which values of a, b, c, and d is
NaExb ⊆Mul23N

cExd? A quick look at the effects of the various parameters yields
at least two different ways in which the restrictive impact of multiple texts can be
compensated. These are

• by allowing extra errors in the program inferred from multiple texts (that is,
by making d larger than b) and
• by having a reduced bound on the number of noise elements in the multiple

texts (that is, by making c smaller than a).

Theorems 5.9 and 5.10 use the first technique; Theorems 5.12, 5.13, and 5.14 use the
second technique; and Theorem 5.11 can be seen as using a combination of the two
techniques to compensate for the deleterious effects of learning from multiple texts.
The technique used in these simulation arguments is to first collect all the input points
where there is noise in some text. Then construct a program which judiciously chooses
the output on these inputs based on the input texts and outputs of the converging
programs.

Theorem 5.9 below shows that the collections of functions for which a b-error
program can be identified from a single c-noisy text can also be learned from three
texts, at least two of which are c-noisy, provided we are prepared to tolerate up to
twice the number (2b) of errors in the final program.

Theorem 5.9. Let b, c ∈ N . Then NcExb ⊆Mul23N
cEx2b.

Proof. Suppose machine M NcExb-identifies C. We construct M′ such that M′

Mul23N
cEx2b-identifies C.

Let T1, T2, and T3 be the three given texts out of which at least two are c-noisy
for f ∈ C.

Let i and j be distinct and such that M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and
Pj = M(Tj), and card({x | ϕPi(x)↓ 6= ϕPj (x)↓}) ≤ 2b. Let CLASH = {x | ϕPi(x)↓ 6=
ϕPj (x)↓}. Let S ⊆ CLASH be a set of cardinality b card(CLASH)

2 c.
Note that we can easily determine all of the sets defined above and Pi and Pj as

above in the limit from the given texts.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 975

M′ in the limit outputs a program p such that

ϕp(x) =

ϕPi(x) if x ∈ S;
ϕPj (x) if x ∈ CLASH − S;
ϕPi(x) x ∈ N − CLASH ∧ x ∈ domain(ϕPi);
ϕPj (x) x ∈ N − CLASH ∧ x ∈ domain(ϕPj);
↑ otherwise.

Since at least one of Pi and Pj is a b-error program for f , it is clear that p is a

2b-error program for f . Thus M′ Mul23N
cEx2b-identifies f .

In order to prove the rest of the results in this section (Theorems 5.10–5.14),
it is useful to define certain sets and texts. We will require these sets to satisfy
certain assumptions which can be assumed without loss of generality . We state these
definitions and assumptions next, and we assume them without explicitly stating them
in the proofs.

Suppose a machine is trying to Mul23N
cExd-identify f (where c ∈ N). Suppose

the three texts provided as input to the machine are T1, T2, and T3, such that at least
two of these texts are c-noisy for f .

Definitions. Let T1, T2, and T3 be texts.
1. TUNION is a text such that content(TUNION) = {(x, y) | (x, y) ∈

content(T1) ∨ (x, y) ∈ content(T2) ∨ (x, y) ∈ content(T3)}.
2. NOISE POINTS = {x | (∃y, z)[y 6= z ∧ (x, y) ∈ content(TUNION) ∧

(x, z) ∈ content(TUNION)]}.
3. NOISE1,2 = {x | card({y | (x, y) ∈ content(T1)}) = card({y | (x, y) ∈

content(T2)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T3)}) = 1}.
4. NOISE1,3 = {x | card({y | (x, y) ∈ content(T1)}) = card({y | (x, y) ∈

content(T3)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T2)}) = 1}.
5. NOISE2,3 = {x | card({y | (x, y) ∈ content(T2)}) = card({y | (x, y) ∈

content(T3)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T1)}) = 1}.
6. NOISE1,2,3 = NOISE POINTS− (NOISE1,2 ∪NOISE1,3 ∪NOISE2,3).

Assumptions. We make the following assumptions about the notions defined
above.

1. For all i ∈ {1, 2, 3}, card({x | (∃y, z)[y 6= z ∧ (x, y) ∈ content(Ti) ∧ (x, z) ∈
content(Ti)]}) ≤ c (since if the cardinality of noise points is greater than c,
then we know which two texts are c-noisy texts for f).

2. For all i, j ∈ {1, 2, 3} and for all x ∈ NOISE POINTS, card({y | (x, y) ∈
content(Ti)∩ content(Tj)}) ≥ 1. (This is so because otherwise at least one of
Ti and Tj is not a c-noisy text for f , which implies that the remaining text
is a c-noisy text for f .)

3. For all x and y, card({i | (x, y) ∈ content(Ti)}) 6= 1. (Otherwise, surely
f(x) 6= y and we can thus drop (x, y) from consideration.)

Note that if the above assumptions do not hold, then we can convert the texts (in the
limit) to T ′1, T ′2, and T ′3 such that at least two of these texts are c-noisy for f and T ′1,
T ′2, and T ′3 satisfy the assumptions given above.

The next theorem is a variation on Theorem 5.9 in which we compensate for
multiple texts by allowing extra errors in the final program. In this case, instead of
allowing twice the number of errors in the final program, the upper bound on the
number of errors is expressed in terms of the error bound for single text, b, and the
noise level of the single text, c. We would like to note that the simulation carried out
in Theorem 5.10 below is optimal in the following sense. If we keep the bound on the

976 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

number of inaccuracies in the texts the same for the single text and for the acceptable
texts in the multiple case and if c ≤ b, then for all of the collections of functions for
which a b-error program can be identified from a single c-noisy text, a b + d c2e-error
program can also be identified from three texts, at least two of which are only c-noisy.
The optimality of the result is in the sense that this simulation fails if we reduce the
bound on the number of errors allowed in the final program (of the multiple case) by
even one. This was the diagonalization result described in Corollary 5.5.

Theorem 5.10. Let b, c ∈ N . Then NcExb ⊆Mul23N
cExb+d

c
2 e.

Proof. Suppose machine M NcExb-identifies C. We construct M′ such that M′

Mul23N
cExb+d

c
2 e-identifies C. Let T1, T2, and T3 be three given texts out of which at

least two are c-noisy for f .

Let m = min({card(NOISE1,2), card(NOISE1,3), card(NOISE2,3)}).
Let S be a set of cardinality 3m such that card(S ∩ NOISE1,2) = card(S ∩

NOISE1,3) = card(S ∩NOISE2,3).

LetX ⊆ NOISE POINTS−S be a set of cardinality d card(NOISE POINTS)−3m
2 e.

Let i and j be distinct and such that M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and
Pj = M(Tj), and card({x | ϕPi(x)↓ 6= ϕPj (x)↓ ∧ x 6∈ NOISE POINTS}) ≤ 2b.
Let CLASH = {x | ϕPi(x)↓ 6= ϕPj (x)↓ ∧ x 6∈ NOISE POINTS}.

Note that we can easily determine all the sets defined above and Pi and Pj as
above in the limit from the given texts. M′ in the limit outputs a program p such
that

ϕp(x) =

ϕPi(x) if x ∈ X;
ϕPj (x) if x ∈ NOISE POINTS − (X ∪ S);
y if x ∈ CLASH ∧ (x, y) ∈ content(TUNION);
ϕPi(x) if x ∈ N − (NOISE POINTS ∪ CLASH) and

x ∈ domain(ϕPi);
ϕPj (x) if x ∈ N − (NOISE POINTS ∪ CLASH) and

x ∈ domain(ϕPj);
y if x ∈ S ∧ (x, y) ∈ content(T1) ∩ content(T2) ∩ content(T3);
↑ otherwise.

Since at least one of Pi and Pj computes a b-variant of f , the number of errors

committed by the ϕ program p ≤ b+m+ d card(NOISE POINTS−S)
2 e, which is at most

b+ d c2e.
The next theorem uses a combination of increasing the bound on the number of

errors in the final program and having a smaller noise level than in the case of single
text to compensate for the restrictive effects of multiple texts. The theorem shows
that given b, c, d ∈ N such that b is smaller, but not too much smaller, than c (that
is, c

2 ≤ b ≤ c), all of the collections of functions for which a b-error program can
identified from a single (2c − 1)-noisy text can also be identified from three texts,
at least two of which are c-noisy, provided we are prepared to tolerate a bound of
≥ max({ 4b

3 , 2b −
c
2}) on the number of errors in the final program. (Compare the

following theorem with Corollary 5.6.)

Theorem 5.11. Let b, c, d ∈ N, c2 ≤ b ≤ c, be given. Then N2c−1Exb ⊆
Mul23N

cExd if d ≥ max({ 4b
3 , 2b−

c
2}).

Proof. Suppose that machine M N2c−1Exb-identifies C. We construct machine
M′ such that M′ Mul23N

cExd-identifies C. Let T1, T2, and T3 be three texts given
for a function f ∈ C such that at least two of the three texts are c-noisy for f .

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 977

Note that TUNION is a noisy text for f . If TUNION is a (2c− 1)-noisy text for f ,
then M′ can just output the programs output by M on TUNION to identify f with at
most d errors. Thus assume that TUNION so formed contains more than 2c− 1 noisy
elements. A simple calculation shows that the amount of noise in TUNION is bounded

by
3c+card(NOISE1,2,3)

2 . If card(NOISE1,2,3) < c, then TUNION is a (2c − 1)-noisy
text for f . Thus card(NOISE1,2,3) = c. Also, for all x ∈ NOISE1,2,3, we can assume
that there exist distinct yx1 , yx2 , and yx3 such that (x, yx1) ∈ content(T2)∩ content(T3),
(x, yx2) ∈ content(T1) ∩ content(T3), and (x, yx3) ∈ content(T1) ∩ content(T2). (Other-
wise, TUNION contains at most 2c− 1 noisy elements.)

Let i, j be distinct and such that M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj =
M(Tj), and card({x | ϕPi(x)↓ 6= ϕPj (x)↓ ∧ x 6∈ NOISE POINTS}) ≤ 2b. Let
CLASH = {x | [ϕPi(x)↓ 6= ϕPj (x)↓] ∧ [x 6∈ NOISE POINTS]}. For m ∈ {i, j}, let
δm = card({x | x ∈ NOISE POINTS ∧ [(x, ϕPm(x)) ∈ content(Ti)∩content(Tj)]}).
Let δ = min(δi, δj). We can suppose without loss of generality that c − b ≤ δ ≤ b.
(Otherwise, we can determine a text which is guaranteed to be c-noisy for f . For
example, suppose that δ = δi < c− b. Then clearly one of Ti and Tj is not a c-noisy
text for f . This implies that the remaining text is a c-noisy text for f . Other cases are
similar. In any of these cases, M′ can simply input the correct c-noisy text obtained
by the above analysis into M and arrive (in the limit) at a program which is at most
b (≤ d) variant of f .)

We will pick a µ ∈ N , µ ≤ c, depending on δ. Let S ⊆ NOISE POINTS be a
set of cardinality µ. Let X ⊆ NOISE POINTS − S be a set of cardinality d c−µ2 e.

M′ in the limit outputs a program pµ such that the following holds:

ϕpµ(x) =

yxk if x ∈ S ∧ k ∈ {1, 2, 3} − {i, j};
yxi if x ∈ X;
yxj if x ∈ NOISE POINTS − (X ∪ S);
y if x ∈ CLASH ∧ (x, y) ∈ content(TUNION);
ϕPi(x) if x ∈ N − (NOISE POINTS ∪ CLASH) and

x ∈ domain(ϕPi);
ϕPj (x) if x ∈ N − (NOISE POINTS ∪ CLASH) and

x ∈ domain(ϕPj);
↑ otherwise.

Now the number of errors committed by M′ on f is bounded by maxerr =
max({b−µ+ δ, b− δ+µ+ d c−µ2 e}) = dmax({b−µ+ δ, b− δ+µ+ c−µ

2 })e. By choosing

µ = max({0, b 4δ−c3 c}), we have maxerr = dmax({b+ c−δ
3 , b− δ + c

2})e. The value of

maxerr is maximized for δ = c − b. Thus maxerr = dmax({ 4b
3 , 2b −

c
2})e. Thus if

d ≥ dmax({ 4b
3 , 2b−

c
2})e, then N2c−1Exb ⊆Mul23N

cExd.
We now present three theorems that use the technique of making the bound on

the noise level of multiple texts smaller than the bound on the noise level of the single
text to compensate for the restrictive effect of multiple texts.

The result below says that for b, c ∈ N such that b is fairly small compared to c
(that is, b < d c2e), if for some collection of functions a b-error program can be identified
from a single (2c − 1)-noisy text, then a b-error program can also be identified from
three texts, at least two of which are c-noisy.

Theorem 5.12. For b < d c2e, N2c−1Exb ⊆Mul23N
cExb.

Proof. Suppose machine M N2c−1Exb-identifies C. We describe M′ such that M′

Mul23N
cExb-identifies C. Let T1, T2, and T3 be the three given texts out of which at

least two are c-noisy for f ∈ C.

978 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

As in Theorem 5.11, it can be shown that either TUNION is a (2c− 1)-noisy for f
or else there exists a set X of cardinality c and distinct yx1 , yx2 , and yx3 for each x ∈ X
such that (∀x ∈ X)(∀i ∈ {1, 2, 3})(∀y ∈ {yx1 , yx2 , yx3} − {yxi })[(x, y) ∈ content(Ti)].
Now let i ∈ {1, 2, 3} be such that M(Ti)↓. Let M(Ti) = Pi. For j ∈ {1, 2, 3}−{i}, let
Dj = {x ∈ X | ϕPi(x) = yxj }. Let j ∈ {1, 2, 3}−{i} be such that card(Dj) ≤ c

2 . Note
that such a j exists. Now for all x ∈ X, f(x) 6= yxj (since otherwise Ti is a c-noisy
text for f and thus ϕPi should be a b-variant of f). Hence Tj is a c-noisy text for f .
Thus M(Tj)↓ and ϕM(Tj) is a b-variant of f . Clearly, in all the above cases, M′ can
in the limit easily output a program which is a b-variant of f .

Theorem 5.13 is like Theorem 5.12, but it does not require that error bound on
the final program, b, be fairly small compared to the bound on the noise level of the
multiple texts, c. It says that for b, c ∈ N , if for some collection of functions a b-error
program can be identified from a single (2c)-noisy text, then a b-error program can
also be identified from three texts, at least two of which are c-noisy.

Theorem 5.13. Let b, c ∈ N . N2cExb ⊆Mul23N
cExb.

Proof. Suppose machine M N2cExb-identifies C. We construct M′ such that
M′ Mul23N

cExb-identifies C.
Let T1, T2, and T3 be three texts given for a function f ∈ C such that at least two

of the three texts are c-noisy for f . A simple calculation shows that the amount of

noise in TUNION (with respect to the graph of f) is bounded by
3c+card(NOISE1,2,3)

2 .
Noting that card(NOISE1,2,3) is bounded by c, it follows that TUNION is a 2c-noisy
text for f . M′ outputs in the limit whatever is output by M in the limit on the text
TUNION . Thus M′ Mul23N

cExb-identifies f . This proves the theorem.

Using a proof technique similar to the above, we can also establish the following
variation of the above result. Here the bound on the noise level of the single text is
expressed in terms of both the bound in the noise level of the multiple text (c) and
the bound on the number of errors in the final program (b). It says that for b, c ∈ N ,
if for some collection of functions a b-error program can be identified from a single
3c+2b

2 -noisy text, then a b-error program can also be identified from three texts, at
least two of which are c noisy. We omit the proof.

Theorem 5.14. Let b, c ∈ N . Then N
3c+2b

2 Exb ⊆Mul23N
cExb.

5.2.2. Incomplete texts. In this section, we consider the effects of learning
from multiple texts on incomplete data. We first show a result that gives cases in
which identification from multiple incomplete texts is a restriction on identification
from a single incomplete text. We then give results which show the cases where the
restrictive effects of multiple inaccurate texts can be compensated. Unfortunately,
our results about incomplete texts are not as extensive as those for noisy texts.

The following theorem shows that given b and c such that b ≥ c > 1, there are
collections of functions for which a b-error program can be identified from a single
(b 3c2 c−1)-incomplete text but for which even a (b+ d c2e−1)-error program cannot be
identified from three texts, at least two of which are only c-incomplete for the function
being learned.

Theorem 5.15. Let b, c ∈ N, b ≥ c > 1. Then Inb
3c
2 c−1Exb −

Mul23In
cExb+d

c
2 e−1 6= ∅.

Proof. The proof uses ideas similar to those used in the proof of Theorem 5.4.
Suppose b and c are given as in the hypothesis. Let A = {〈0, x〉 | 0 ≤ x < b3c2 c},
A1 = {〈0, x〉 | 0 ≤ x < b c2c}, A2 = {〈0, x〉 | b c2c ≤ x < 2b c2c}, A3 = {〈0, x〉 | 2b c2c ≤
x < 3b c2c}, and A4 = {〈0, x〉 | 3b c2c ≤ x < b

3c
2 c}.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 979

Note that card(A1) = card(A2) = card(A3) = b c2c and card(A4) = 1 if c is odd
and 0 otherwise.

Consider the following class of functions:
C = {f ∈ R | the following conditions hold:

(1) (∀i ∈ {1, 2, 3})(∀x ∈ Ai)[f(x) = f(〈0, (i− 1)b c2c〉) ∈ {0, 1}];
(2) (∃!i ∈ {1, 2, 3})[f(Ai) = 1];
(3) (∀i ∈ {1, 2, 3} | f(Ai) = 0)[(max({f(〈i, 〈x, 0〉〉) | x ∈ N}) exists) ∧

(ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b f)];
(4) (∀i ∈ {1, 2, 3})(∀x, y, z)[f(〈i, 〈x, y〉〉) = f(〈i, 〈x, z〉〉)];
(5) (∀x ∈ A4)[ϕf(x) =b f] }

Clearly, C ∈ Inb
3c
2 c−1Exb. We now show that C 6∈Mul23In

cExb+d
c
2 e−1.

Suppose by way of contradiction that machine M Mul23In
cExb+d

c
2 e−1-identifies

C. Then by the operator recursion theorem [5], there exists a recursive 1–1 increasing
p, p(0) > 1, defined below in stages.

We define ϕp(i) in stages s ≥ 3.
Let xs3 denote the least x such that for all y, ϕp(1)(〈3, 〈x, y〉〉) is not defined before

stage s.
Let ϕp(1)(x) = 0 for x ∈ A1∪A3; ϕp(1)(x) = 1 for x ∈ A2; ϕp(1)(〈1, 〈0, 0〉〉) = p(1);

ϕp(1)(〈2, 〈0, 0〉〉) = p(2); ϕp(1)(x) = p(1) for x ∈ A4.
Let ϕp(2)(x) = 0, for x ∈ A2∪A3; ϕp(2)(x) = 1 for x ∈ A1; ϕp(2)(〈1, 〈0, 0〉〉) = p(1);

ϕp(2)(〈2, 〈0, 0〉〉) = p(2); ϕp(2)(x) = p(2) for x ∈ A4.
Let σ3

1 , σ3
2 , and σ3

3 be initial segments such that

content(σ3
1) = {(x, 0) | x ∈ A1} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

content(σ3
2) = {(x, 0) | x ∈ A2} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

content(σ3
3) = {(x, 0) | x ∈ A3} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

Let ϕsp(i) denote the part of ϕp(i) defined before stage s. Go to stage 3.
Begin stage s

1. Let q = M(σs1, σ
s
2, σ

s
3).

2. Let D1 = {x | Φq(x) ≤ s ∧ ((x ∈ A1 ∧ ϕq(x) = 0) ∨ (x ∈ A2 ∧ ϕq(x) =
1) ∨ (x ∈ A4 ∧ ϕq(x) = p(1)))}. Let D2 = {x | Φq(x) ≤ s ∧ ((x ∈
A1 ∧ ϕq(x) = 1) ∨ (x ∈ A2 ∧ ϕq(x) = 0) ∨ (x ∈ A4 ∧ ϕq(x) = p(2)))}.
If card(D1) ≥ card(D2), then let r = 1 and r′ = 2; otherwise, let r = 2
and r′ = 1. Let Xs ⊂ {〈4, x〉 | x ≥ s} denote the (lexicographically least)
set of b elements such that for all x ∈ Xs, ϕp(1)(x) is not defined before stage s.

3. Let ϕp(s)(x) = 0 for x ∈ A3∪Ar′ ; ϕp(s)(x) = 1 for x ∈ Ar; ϕp(s)(x) = p(r′)
for x ∈ A4; ϕp(s)(〈3, 〈xs3, 0〉〉) = ϕp(1)(〈3, 〈xs3, 0〉〉) = ϕp(2)(〈3, 〈xs3, 0〉〉) = p(s).
For x ∈ domain(ϕsp(1))−A, let ϕp(s)(x) = ϕp(1)(x).

4. Let σ′i be an extension of σsi such that content(σ′i) = content(σsi) ∪
{(〈3, 〈xs3, 0〉〉, p(s))}.

5. Dovetail steps 5a, 5b, and 5c until (if ever) one of steps 5a and 5b suc-
ceeds and at least one iteration of the loop at step 5c is completed. If step 5a
succeeds, (before step 5b succeeds (if ever)), then complete the then current
iteration of the repeat loop in step 5c and go to step 6a. If step 5b succeeds

980 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

(before step 5a succeeds (if ever)), then complete the then current iteration
of the repeat loop in step 5c and go to step 6b.

5a. Search for σ′′i ⊇ σ′i, i ∈ {1, 2, 3}, such that M(σs1, σ
s
2, σ

s
3) 6=

M(σ′′1 , σ
′′
2 , σ

′′
3) and for all j, j′ ∈ {1, 2, 3}, for all x, y, z ∈ N , the following

hold:
• content(σ′′j)− content(σ′j) = content(σ′′j′)− content(σ′j′).
• If (x, y), (x, z) ∈ content (σ′′j), then y = z.
• If (〈j, 〈x, y〉〉, v) ∈ content(σ′′1) and (〈j, 〈x, z〉〉, w) ∈ content(σ′′1), then
v = w.
• If (x, y) ∈ (content(σ′′1) − content(σ′1)), then [x 6∈ A] ∧ [y = 0

OR x ∈ Xs OR [for some i ∈ {1, 2, 3}, u, v ∈ N : x = 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) has been defined until now and ϕp(1)(〈i, 〈u, 0〉〉) = y]].

Intuitively, this substep attempts to look for a mind change.

5b. Search for x ∈ (A1 ∪A2)− (D1 ∪D2) such that ϕq(x)↓.

5c. Let Addednew = ∅.
(Note: We use Addednew in order to identify the set of elements for which
we extended ϕp(1) in this step. Addednew will be used (in steps 6a and
6b), provided at least one of steps 5a or 5b succeeds).
Repeat

Let x be the least point not in Xs such that ϕp(1)(x) is not defined
until now. If for some i ∈ {1, 2, 3}, x is of the form 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) is defined until now, then let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = ϕp(1)(〈i, 〈u, 0〉〉); otherwise, let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = 0.
Let Addednew = Addednew ∪ {x}.

Forever

6a. For all x and y such that (x, y) ∈ content(σ′′1) − content(σs1), let
ϕp(1)(x) = ϕp(2)(x) = y. Let σs+1

i be an extension of σ′′i such that

content(σs+1
i) − content(σ′′i) = {(x, ϕp(1)(x)) | x ∈ Addednew}. Go to stage

s+ 1.

6b. Let σs+1
i be an extension of σ′i such that content(σs+1

i) − content(σ′i) =
{(x, ϕp(1)(x)) | x ∈ Addednew}. Go to stage s+ 1.

End stage s
Now consider the following cases.
Case 1. All stages terminate.
Let

f(x) =

0 if x ∈ A1 ∪A2;
1 if x ∈ A3;
ϕp(1)(x) otherwise.

Clearly, f ∈ C (since c ≤ b, ϕp(1) =b f , and ϕp(2) =b f). Also, M on f makes infinitely
many mind changes since Step 5b can succeed at most finitely many times before Step
5a succeeds.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 981

Case 2. Stage s (≥ 3) is the least stage which never terminates.

In this case, domain(ϕp(s)) = N − Xs. Let q, D1, D2, r, and r′ be as defined
in steps 1 and 2 of stage s. Consider any total extension f of ϕp(s) such that (∀x ∈
Xs)[ϕq(x) 6= f(x)].

Clearly, f ∈ C (since ϕp(r′) =b f and ϕp(s) =b f). Let T1, T2, and T3 be extensions
of σ′1, σ′2, and σ′3 (as defined in step 4 in stage s), respectively, such that content(T1)−
content(σs1) = {(x, y) | f(x) = y ∧ x 6∈ A ∧ (∀z)[(x, z) 6∈ content(σs1)]} and for all
j, the [|σ′1| + j]th element of T1, the [|σ′2| + j]th element of T2, and the [|σ′3| + j]th
element of T3 are all same. First, notice that for all such f and corresponding T1, T2,
and T3, M(T1, T2, T3) = q. (Otherwise, step 5a would succeed.) Second, notice that
for all x ∈ (A1∪A2)− (D1∪D2), ϕq(x)↑. (Otherwise, step 5b would succeed.) Third,
from the choice of r and r′, it follows that program q makes at least d c2e errors on
A1∪A2∪A4. Also, from the way f has been chosen, we have (∀x ∈ Xs)[f(x) 6= ϕq(x)].
Thus ϕq 6=b+d c2 e−1 f .

From the above cases, it follows that C 6∈Mul23In
cExb+d

c
2 e−1.

Theorem 5.15 demonstrated cases in which identification from multiple inaccurate
texts is a restriction over identification from a single inaccurate text. As in the case
with noisy texts, we would like to explore situations in which the deleterious effects of
learning from multiple texts can be compensated. Again as in the case of noisy texts,
this can be achieved in two different ways:

• by increasing the bound on the number of errors in the final program allowed
in identification from multiple texts;
• by increasing the bound on missing data in the single incomplete text (this

has the same effect as decreasing the bound on missing data in the multiple
texts).

Theorem 5.16 below uses the second technique and Theorems 5.19 and 5.20 use the
first technique to compensate for the effects of multiple texts. The technique used in
these simulation arguments is to first collect the input points on which the converging
programs differ, then to construct a program which judiciously chooses the output on
these inputs based on the input texts and outputs of the converging programs.

Theorem 5.16. Inc+b
c
2 cExb ⊆Mul23In

cExb.

Theorem 5.16 says that given b and c, if for a collection of functions a b-error
program can be identified from a single (c + b c2c)-incomplete text, then a b-error
program can also be identified from three texts, at least two of which are c-incomplete
for the function being learned. A proof of this result requires the notion of a stabilizing
sequence, which we introduce next. Let L range over sets of ordered pairs.

Definition 5.17. (See [9].) σ is said to be a stabilizing sequence for M on L
⇐⇒ [content(σ) ⊆ L and (∀τ | σ ⊂ τ ∧ content(τ) ⊆ L)[M(τ) = M(σ)]].

The following lemma is based on a similar lemma by Blum and Blum [3] (see also
Osherson and Weinstein [18]).

Lemma 5.18 (based on a similar lemma in [3, 18]). Suppose M InaExb-identifies
f . Let L be such that L ⊆ {(x, y) | f(x) = y} ∧ card({(x, y) | f(x) = y} − L) ≤ a.
Then there exists a stabilizing sequence for M on L. Moreover, if σ is a stabilizing
sequence for M on L, then ϕM(σ) =b f .

We now give a proof of Theorem 5.16.

Proof of Theorem 5.16. Suppose machine M Inc+b
c
2 cExb-identifies C. We con-

struct M′ such that M′ Mul23In
cExb-identifies C.

Let T1, T2, and T3 be three given texts out of which at least two are c-incomplete
for f ∈ C. Let TUNION be a text such that content(TUNION) = content(T1) ∪

982 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

content(T2) ∪ content(T3). Without loss of generality, we assume that (∀x)[card({y |
(x, y) ∈ content(TUNION)}) ≤ 1]. (If there are x, y, z, i, and j such that (x, y) ∈
content(Ti), (x, z) ∈ content(Tj), and y 6= z, then at least one of Ti and Tj is not
a c-incomplete text for f . Thus the third text is a c-incomplete text for f .) We
can also assume without loss of generality that (∀x)[card(i ∈ {1, 2, 3} | (∃y)[(x, y) ∈
content(Ti)]) 6= 2]. (Otherwise, for such x’s the value of f(x) is known and thus
without loss of generality we can put (x, y) into all three texts.)

In the following, we try to locate a stabilizing sequence for M on an appropriate
subset of {(x, f(x)) | x ∈ N}. If one of the texts has a “high amount of incomplete-
ness,” then this may not be possible (see condition (iii) below); however, in this case,
it is possible to determine the text which has a high amount of incompleteness.

Let n′, n′′ ∈ N , X ⊂ {0, 1, . . . , n′}, and σ ∈ SEQ be such that (i), (ii), and (iii)
below are satisfied.

(i) (∀i ∈ {1, 2, 3})(∀y ∈ N)(∀x ∈ {0, 1, . . . , n′})[(x, y) ∈ content(Ti) ⇒ (x, y) ∈
content(Ti[n

′′])].
(ii) (∀x ∈ X)(∀y ∈ N)[card({i | (x, y) ∈ content(Ti)}) ≤ 1].
(iii)
(A) [(∃j ∈ {1, 2, 3})[card({x | (x ∈ X) ∧ (∀y ∈ N)[(x, y) 6∈ content(Tj)]}) > c]]

OR
(B) [[[content(σ) ⊆ [content(TUNION) ∩ {(x, y) | (y ∈ N) ∧ (x ≤ n′)}] −
[{(x, y) | (x ∈ X) ∧ (y ∈ N)}]] and σ is a stabilizing sequence for M on
L = [content(TUNION) − {(x, y) | (x ∈ X) ∧ (y ∈ N)}]] AND [(∀x ≤ n′)[x 6∈
X ⇒ (∃y)[card({i | (x, y) ∈ content(Ti)}) = 3]]]].

It is easy to see that if such n′, n′′, X, and σ exist, then M′ can find them
in the limit. If in (iii) (A) holds, then clearly M′ can know the two texts which
are c-incomplete for f and thus output in the limit a b-error program for f . If in
(iii) (B) holds, then we claim that M(σ) is a b-error program for f . This would
be the case if card({(x, y) | f(x) = y} − L) ≤ c + b c2c. To prove this, let δi =
card({x ∈ X | (∃y)[(x, y) ∈ content(Ti)]}). Let δ be the median of δ1, δ2, and δ3.
Now card({(x, y) | f(x) = y} − L) ≤ c− (card(X)− δ) + card(X) ≤ c+ δ and δ ≤ c

2 .

To complete the proof, we have to show that such n′, n′′, X, and σ indeed exist.

Case 1. There exists an i ∈ {1, 2, 3} such that card({x | (∀y)[(x, y) 6∈ content(Ti)]})
> c.

Let n′ be such that there exists an i, card({x ≤ n′ | (∀y)[(x, y) 6∈ content(Ti)]}) =
c + 1. Let n′′ be such that (i) above is satisfied. Let X = {x ≤ n′ | card({i |
(∃y)[(x, y) ∈ content(Ti)]}) ≤ 1}. Then it is easy to see that (i), (ii), and (iii) above
are satisfied.

Case 2. There does not exist an i ∈ {1, 2, 3} such that card({x | (∀y)[(x, y) 6∈
content(Ti)]}) > c.

Let X = {x | card({i | (∃y)[(x, y) ∈ content(Ti)]}) ≤ 1}. Now let L = {(x, y) |
f(x) = y ∧ x 6∈ X} and let δi = card({x ∈ X | (∃y)[(x, y) ∈ content(Ti)]}). Let δ
be the median of δ1, δ2, and δ3. Now card({(x, y) | f(x) = y} − L) ≤ c− (card(X)−
δ) + card(X) ≤ c+ δ and δ ≤ c

2 . Thus there exists a stabilizing sequence σ for M on
L. Let n′ = 1 + max(X ∪ {x | (∃y)[(x, y) ∈ content(σ)]}). Let n′′ be chosen so as to
satisfy (i) above. Clearly, n′, n′′, X, and σ satisfy (i), (ii), and (iii).

The above cases prove the existence of σ, X, n′, and n′′ satisfying (i), (ii), and
(iii).

We now present two results that compensate for the restrictive effects of multiple
incomplete texts by allowing a larger bound on the number of errors allowed in the

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 983

final program.
Theorem 5.19. Let b, c ∈ N . Then IncExb ⊆Mul23In

cEx2b.
This result, which is a counterpart of Theorem 5.9, says that the collections of

functions for which a b-error program can be identified from a c-incomplete text can
also be identified from three texts, at least two of which are c-incomplete, provided
we are prepared to tolerate twice (2b) the number of errors in the final program.
This theorem can be proved using a technique similar to the one used in the proof of
Theorem 5.9. We omit the details.

The next result gives a different bound on the number of errors allowed in the
final program.

Theorem 5.20. Let b, c ∈ N, b ≥ c be given. Then IncExb ⊆Mul23In
cExb+d

c
2 e.

Proof. Suppose the hypothesis of the theorem holds. Suppose machine M IncExb-
identifies C. We construct M′ such that M′ Mul23In

cExb+d
c
2 e-identifies C.

Let T1, T2, and T3 be three texts given for a function f ∈ C such that at least two
of the three texts are c-incomplete for f . Without loss of generality, we can assume
that (∀x)[card({y | (x, y) ∈ content(T1)∪content(T2)∪content(T3)}) ≤ 1]. (If there is
such an x, then let y, z, i, and j be such that (x, y) ∈ content(Ti), (x, z) ∈ content(Tj),
and y 6= z. Then at least one of Ti and Tj is not a c-incomplete text for f . Thus the
third text is a c-incomplete text for f .)

Let TUNION be a text such that content(TUNION) = {(x, y) | (x, y) ∈
content(T1) ∨ (x, y) ∈ content(T2) ∨ (x, y) ∈ content(T3)}. Let i and j be
distinct and such that M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj = M(Tj), and
card(CLASH = {x | [ϕPi(x)↓ 6= ϕPj (x)↓] ∨ (∃y)[[(x, y) ∈ content(TUNION)] ∧
[[ϕPi(x)↓ 6= y] ∨ [ϕPj (x)↓ 6= y]]]}) ≤ 3b.

Let V IS IN = CLASH ∩ {x | card({i | (∃y)(x, y) ∈ content(Ti)}) ≤ 1}.
For i ∈ {1, 2, 3}, let INi = V IS IN ∩ {x | (∃y)[(x, y) ∈ content(Ti)]}. Let
m = min(card(IN1), card(IN2), card(IN3)). Let S ⊆ V IS IN be a set of cardinality
3m such that card(S∩ IN1) = card(S∩ IN2) = card(S∩ IN3). Let X ⊆ V IS IN −S
be a set of cardinality d card(V IS IN−S)

2 e.
Machine M′ outputs (in the limit) program p as follows:

ϕp(x) =

ϕPi(x) if x 6∈ CLASH ∧ x ∈ domain(ϕPi);
ϕPj (x) if x 6∈ CLASH ∧ x ∈ domain(ϕPj);
y if x ∈ ((CLASH − V IS IN) ∪ S) and

(x, y) ∈ content(TUNION) ;
ϕPi(x) if x ∈ X;
ϕPj (x) if x ∈ V IS IN − (S ∪X);
↑ otherwise.

Now the number of errors committed by M′ on f is bounded by m +

d card(V IS IN−S)
2 e + b. Observing that c ≥ card(V IS IN) − m, it follows that

M′ Mul23In
cExb+d

c
2 e-identifies C.

We end this section by presenting a somewhat surprising result which says that
for a ∈ N the collection of functions for which a 1-error program can be identified
from a single a-incomplete text is exactly the same as the collection of functions for
which a 1-error program can be identified from three texts, at least two of which are
a-incomplete for the function being learned.

Theorem 5.21. Let a ∈ N . Then, InaEx1 = Mul23In
aEx1.

Proof. The case where a = 1 follows from Theorem 5.16. Suppose a > 1. Suppose
M InaEx1-identifies C. We give an M′ such that M′ Mul23In

aEx1-identifies C. Let

984 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

T1, T2, and T3 be the three given texts out of which at least two are a-incomplete
for f ∈ C. Let TUNION denote a text such that content(TUNION) = content(T1) ∪
content(T2)∪ content(T3). Without loss of generality, assume that for all x, card({y |
(x, y) ∈ content(TUNION)}) ≤ 1. (Otherwise, let y and z, y 6= z, be such that
(x, y) ∈ content(Ti) and (x, z) ∈ content(Tj) (for i, j ∈ {1, 2, 3}). Clearly, at least
one of Ti and Tj is not an a-incomplete text for f . Thus the remaining text is an
a-incomplete text for f ; in this case, M′ can simply input the a-incomplete text for f
to M to obtain a program (in the limit) which is 1-variant of f .) Also, assume that
(∀x, y)[card({i ∈ {1, 2, 3} | (x, y) ∈ content(Ti)}) 6= 2] (since otherwise f(x) = y and
we can assume that (x, y) is in all of the texts). Let i and j be distinct and such that
M(Ti)↓ and M(Tj)↓. (Clearly, for f ∈ C, such i and j exist and M′ can determine
i and j in the limit.) Without loss of generality, let i = 1 and j = 2. (Otherwise,
simply rename the texts.) Let M(T1) = P1 and M(T2) = P2.

Let CLASH12 = {x | [ϕP1
(x)↓ 6= ϕP2

(x)↓] ∨ [ϕP1
(x)↓ ∧ (∃y)[(x, y) ∈

content(T2) ∧ y 6= ϕP1
(x)]] ∨ [ϕP2

(x)↓ ∧ (∃y)[(x, y) ∈ content(T1) ∧ y 6= ϕP2
(x)]]}.

Let CLASH1T3 = {x | [ϕP1
(x)↓ ∧ (∃y)[(x, y) ∈ content(T3) ∧ y 6= ϕP1

(x)]]}. Let
CLASH2T3 = {x | [ϕP2(x)↓ ∧ (∃y)[(x, y) ∈ content(T3) ∧ y 6= ϕP2(x)]]}.

Now consider the following cases. (Note that M′ can also determine in the limit
which of the following cases holds.) In each of the following cases, we either give a
correct text for f or a program for a 1-variant of f . For each of the case numbers
i > 1, we assume without stating that all cases < i do not hold.

Case 1. card(CLASH12) > 2.

In this case, T3 is an a-incomplete text for f .

Case 2. card(CLASH1T3) > 1.

In this case, T2 is an a-incomplete text for f .

Case 3. card(CLASH2T3) > 1.

In this case, T1 is an a-incomplete text for f .

Case 4. card(CLASH12) = 0.

In this case, let p be such that ϕp = ϕP1 ∪ ϕP2 . Then ϕp is a program for a
1-variant of f .

For Cases 5–7, assume without loss of generality that for all x ∈ CLASH12 ∪
CLASH1T3∪CLASH2T3, ϕP1

(x)↓ and ϕP2
(x)↓. (Since CLASH12∪CLASH1T3∪

CLASH2T3 is finite, we can check in the limit if ϕP1
(x), ϕP2

(x) is defined or not. If
it is undefined, then we can assume that it converges to an arbitrary value.) Also, for
all x ∈ CLASH12 ∪ CLASH1T3 ∪ CLASH2T3, we can assume that (∀y)[[(x, y) ∈
content(T1) ⇒ y = ϕP1

(x)] ∧ [(x, y) ∈ content(T2) ⇒ y = ϕP2
(x)]]. (Otherwise we

can assume that y is the value the program converges to.) Note that this assumption
may cause the values of CLASH12, CLASH1T3 and CLASH2T3, as defined above,
to change. It may also cause one of Cases 1, 2, 3, or 4 to hold; however, in this case,
the above analysis also holds.

Case 5. card(CLASH1T3) = card(CLASH2T3) = 1.

Then for all x ∈ N − CLASH12 ∪ CLASH1T3 ∪ CLASH2T3 (∃i ∈
{1, 2})[ϕPi(x)↓ = f(x)]. A simple calculation shows that card(CLASH12 ∪
CLASH1T3 ∪ CLASH2T3) ≤ 3. If a ≥ card(CLASH12 ∪ CLASH1T3 ∪
CLASH2T3), then text T such that content(T) = {(x, y) | x ∈ N − (CLASH12 ∪
CLASH1T3 ∪ CLASH2T3) ∧ (∃i ∈ {1, 2, 3})[ϕPi(x) = y]} is an a-incomplete text
for f . Otherwise, a = 2 and card(CLASH12 ∪ CLASH1T3 ∪ CLASH2T3) = 3.
In this case, if there exists i ∈ {1, 2, 3} such that (∀x ∈ CLASH12 ∪ CLASH1T3 ∪
CLASH2T3)(∀y)[(x, y) 6∈ content(Ti)], then each of the remaining texts are a-

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 985

incomplete for f . Otherwise, let p be a program such that

ϕp(x) =

U(x) if x ∈ N − (CLASH12 ∪ CLASH13 ∪ CLASH23);
y if x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23

∧ (x, y) ∈ content(TUNION),

where U(x) denotes (ϕP1 ∪ ϕP2)(x). Then p is program for a 1-variant of f .
Case 6. card(CLASH1T3) = 1 and card(CLASH2T3) = 0. (The case where

card(CLASH2T3) = 1 and card(CLASH1T3) = 0 is similar.)
Let p be a program such that:

ϕp(x) =

{
U(x) if x ∈ N − CLASH12;
ϕP2(x) otherwise,

where U(x) denotes (ϕP1
∪ ϕP2

)(x). Then p is program for a 1-variant of f . Since
if T2 is an a-incomplete text for f , then this is the case. Otherwise, the number of
errors committed by p is ≤ card(CLASH12− CLASH1T3) ≤ 1.

Case 7. card(CLASH1T3) = card(CLASH2T3) = 0.
In this case, for all (x, y) ∈ content(T3), f(x) = y. This is the case since if T3

is the correct text, then it is certainly so; otherwise, for all x ∈ N − CLASH12,
ϕP1

(x) = f(x) ∨ ϕP2
(x) = f(x). Thus if (x, y) ∈ content(T3), then f(x) = y. Thus

[M(T3)↓] or [card({x | (∀y)(x, y) 6∈ content(T3)}) > a]. Note that we can determine
in the limit one of the clauses above which holds.

Case 7a. card({x | (∀y)(x, y) 6∈ content(T3)}) > a.
In this case, both T1 and T2 are a-incomplete texts for f .

Case 7b. M(T3)↓ = P3.
Let CLASH13 = {x | [ϕP1(x)↓ 6= ϕP3(x)↓]}. Let CLASH23 = {x |
[ϕP2(x)↓ 6= ϕP3(x)↓]}.
Case 7b.1. card(CLASH13) > 2.

In this case, T2 is an a-incomplete text for f .
Case 7b.2. card(CLASH23) > 2.

In this case, T1 is an a-incomplete text for f .
For Cases 7b.3–7b.5, assume without loss of generality that for all x ∈
CLASH12∪CLASH13∪CLASH23, ϕP1(x)↓, ϕP2(x)↓, and ϕP3(x)↓. (Since
CLASH12 ∪ CLASH13 ∪ CLASH23 is finite, we can check in the
limit if ϕP1

(x), ϕP2
(x), ϕP3

(x) is defined or not. If it is not defined, then
we can assume that it converges to an arbitrary value.) Also, for all
x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23, we can assume that (∀y)[[(x, y) ∈
content(T1)⇒ y = ϕP1(x)] ∧ [(x, y) ∈ content(T2)⇒ y = ϕP2(x)]]. (Other-
wise, we can assume that y is the value the program converges to.) Note that
this assumption may cause the values of CLASH12, CLASH13, CLASH23,
CLASH1T3, and CLASH2T3, as defined above, to change. It may also
cause one of Cases 1, 2, 3, 4 , 5, 6, 7b.1, or 7b.2 to hold; however, in this case,
the above analysis also holds.
Case 7b.3. card(CLASH13) = 0.

In this case, let p be such that ϕp = ϕP1
∪ϕP3

. Then ϕp is a program for
a 1-variant of f .

Case 7b.4. card(CLASH23) = 0.
In this case, let p be such that ϕp = ϕP2 ∪ϕP3 . Then ϕp is a program for
a 1-variant of f .

Case 7b.5. 0 < card(CLASH13) < 3 and 0 < card(CLASH23) < 3.

986 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

Then (∀x ∈ N − CLASH12 ∪ CLASH13 ∪ CLASH23) (∃i ∈ {1, 2, 3})
[ϕPi(x)↓ = f(x)]. A simple calculation shows that card(CLASH12 ∪
CLASH13 ∪ CLASH23) ≤ 3. If a ≥ card(CLASH12 ∪ CLASH13 ∪
CLASH23), then text T such that content(T) = {(x, y) | x ∈ N −
(CLASH12 ∪ CLASH13 ∪ CLASH23) ∧ (∃i ∈ {1, 2, 3})[ϕPi(x) = y]}
is an a-incomplete text for f . Otherwise, a = 2 and card(CLASH12 ∪
CLASH13∪CLASH23) = 3. In this case, if there exists i ∈ {1, 2, 3} such
that (∀x ∈ CLASH12∪CLASH13∪CLASH23)(∀y)[(x, y) 6∈ content(Ti)],
then each of the remaining texts are a-incomplete texts for f . Otherwise,
let p be a program such that

ϕp(x) =

U(x) if x ∈ N − (CLASH12 ∪ CLASH13 ∪ CLASH23);
y if x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23

∧ (x, y) ∈ content(TUNION),

where U(x) denotes (ϕP1
∪ ϕP2

∪ ϕP3
)(x). Then p is a program for a

1-variant of f .

5.2.3. Imperfect texts. The study of imperfect texts turns out to be very com-
plex. We only present a simulation result which says that for b, c ∈ N , the collection of
functions for which a b-error program can be identified from a single c-imperfect text
can also be learned from three texts, at least two of which are c-imperfect, provided
we are prepared to tolerate up to twice the number of errors in the final program. A
proof of this result can be worked out along similar lines to our proof of Theorem 5.9;
we omit the details.

Theorem 5.22. Let b, c ∈ N . ImcExb ⊆Mul23Im
cEx2b.

5.3. Hierarchy results. We now turn our attention to hierarchy results for each
of the inaccuracy types. In particular, we show for each inaccuracy type that larger
collections of functions become identifiable if we

• increase the bound on the number of errors allowed in the final program
(keeping other parameters the same) or
• decrease the bound on the number of inaccuracies allowed in the input texts

(keeping other parameters the same).
The following two theorems, which follow from results about identification from

single inaccurate texts [11], yield as corollaries the above hierarchies.
Theorem 5.23. Let b, j, k ∈ N , k ≥ j > bk2 c.
(a) MuljkIm

∗Exb+1 −Exb 6= ∅.
(b) MuljkIm

∗Ex∗ −
⋃
b∈N Exb 6= ∅.

Proof. The proof follows from Theorem 1 in [11] and Theorem 5.1.
Theorem 5.24. (∀b, j, k ∈ N | k ≥ j > bk2 c) [MuljkIm

bEx − [Nb+1Ex∗ ∪
Inb+1Ex∗] 6= ∅].

Proof. The proof follows from Theorem 6 in [11] and Theorem 5.2.
It can be shown that the above two results yield the following two corollaries.
Corollary 5.25. Let a ∈ N ∪ {∗}. Let j, k ∈ N such that k ≥ j > bk2 c. Then

1. MuljkN
aEx0 ⊂MuljkN

aEx1 ⊂ · · · ⊂MuljkN
aEx∗;

2. MuljkIn
aEx0 ⊂MuljkIn

aEx1 ⊂ · · · ⊂MuljkIn
aEx∗;

3. MuljkIm
aEx0 ⊂MuljkIm

aEx1 ⊂ · · · ⊂MuljkIm
aEx∗.

Corollary 5.26. Let a ∈ N ∪ {∗}. Let j, k ∈ N such that k ≥ j > bk2 c. Then

1. MuljkN
0Exa ⊃MuljkN

1Exa ⊃ · · · ⊃MuljkN
∗Exa;

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 987

2. MuljkIn
0Exa ⊃MuljkIn

1Exa ⊃ · · · ⊃MuljkIn
∗Exa;

3. MuljkIm
0Exa ⊃MuljkIm

1Exa ⊃ · · · ⊃MuljkIm
∗Exa.

5.4. Comparison of different types of inaccuracies. Finally, we present
results which shed light on how learning from one kind of inaccuracy compares with
learning from another kind of inaccuracy.

First, we show a very interesting result which implies that in the context of iden-
tification from multiple inaccurate texts, noisy texts are better than incomplete texts.
This parallels previous findings about identification from single inaccurate texts. The
result below shows that the collections of functions that can be identified from mul-
tiple incomplete texts can also be identified from multiple noisy texts, provided the
bound on the number of errors allowed in the final program and the bound on the
number of inaccuracies are the same in both cases (and also provided the cardinality
of multiple texts and of acceptable texts is the same in both cases).

Theorem 5.27. Let a, b ∈ N ∪ {∗} and j, k ∈ N , k ≥ j > bk2 c. Then

MuljkIn
aExb ⊆MuljkN

aExb.

Proof. Let T1, T2, . . . , Tk be the k input texts for f such that at least j of the texts
are a-noisy for f . Note that if f(x) = y, then at least j of the k texts contain (x, y).
Let T ′i be the text formed from Ti such that content(T ′i) = {(x, y) | card({l | (x, y) ∈
content(Tl)}) ≥ j ∧ card({z | (x, z) ∈ content(Ti)}) ≤ 1 ∧ (x, y) ∈ content(Ti)}.
Thus we can easily obtain T ′i ’s from Ti’s in the limit. Also, if Ti was an a-noisy text
for f , then T ′i is an a-incomplete text for f . The theorem follows.

As a contrast to the above result, the next result implies that the collections of
functions which can be identified from multiple noisy texts cannot always be identified
from a single incomplete text (and hence from multiple incomplete texts). The result
shows that there are collections of functions for which a 0-error program can be
identified from any k texts, at least j(> bk2 c) of which are only ∗-noisy, but for which
even a ∗-error program cannot be identified from single 1-incomplete text.

Theorem 5.28. Let j, k ∈ N , k ≥ j > bk2 c. Then MuljkN
∗Ex− In1Ex∗ 6= ∅.

Proof. The proof follows from Theorem 10 in [11] and Theorem 5.1.

The next two results compare identification from multiple incomplete texts and
multiple imperfect texts. As expected, imperfect texts turn out to be worse for iden-
tification than incomplete texts.

The next theorem shows that for i ∈ N , there are collections of functions for
which a 0-error program (best program) can be identified from any k texts, at least
j(> bk2 c) of which are (3i − 1)-incomplete, but for which even a ∗-error program
(worst acceptable program) cannot be identified from any single text which is only
2i-imperfect (a smaller bound on inaccuracies).

Theorem 5.29. Let j, k ∈ N, k ≥ j > bk2 c. Then (∀i ∈ N)[MuljkIn
3i−1Ex −

Im2iEx∗ 6= ∅].
Proof. The proof follows from Theorem 58 in [14] and Theorem 5.2.

Our final theorem is along similar lines to the previous theorem and shows the
detrimental effects of imperfect text over incomplete texts. The result says that there
are collections of functions for which a 0-error program (best possible) can be identified
from any k texts, at least j(> bk2 c) of which are ∗-incomplete (worst kind of missing
data), but for which even a ∗-error program (worst acceptable program) cannot be
identified from any single text which is only ∗-imperfect (least harmless imperfection).

Theorem 5.30. Let j, k ∈ N , k ≥ j > bk2 c. Then MuljkIn
∗Ex− Im∗Ex∗ 6= ∅.

Proof. The proof follows from Theorem 60 in [14] and Theorem 5.2.

988 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

6. Conclusion. We presented arguments against the idealized assumption in
Gold’s paradigm that a learning agent receives data from a single and accurate source.
Gold’s paradigm was suitably extended to account for the possibility that a learning
agent may receive data from multiple sources, some of which may be inaccurate. Re-
sults were presented for the learning task of scientific inquiry modeled as identification
in the limit of computer programs for computable functions from their graphs.

For each kind of inaccuracy, we established sufficient conditions when, for the
same bound on the number of inaccuracies in both the multiple inaccurate texts
and the single inaccurate text, and for the same bound on the number of errors
allowed in the final hypothesis for the multiple and single cases, identification from
multiple sources is not a restriction. We provided significant partial results for the
difficult problem of determining when identification from multiple inaccurate texts is
a restriction over identification from a single inaccurate text. We also demonstrated
cases under which the detrimental effects of multiple inaccurate texts can be overcome
by either allowing more errors in the final program or by decreasing the bound on
the number of inaccuracies. We also established the usual hierarchies for each kind of
inaccuracy in which

• keeping all of the other parameters fixed and increasing the bound on the
number of errors allowed in the final program improves learnability;
• keeping all of the other parameters fixed and increasing the bound on the

number of inaccuracies in the acceptable texts restricts learnability.

Finally, we were able to demonstrate that learning from noisy texts is preferable to
learning from incomplete texts, which in turn is preferable to learning from imperfect
texts.

It should be noted that several of the results presented in section 5.2 can easily
be generalized to the case in which a machine is fed k texts and for at least j of
these texts the inaccuracies are acceptable. Also, the results in this are about a
simple criterion of success, viz, Ex-identification. We can also prove corresponding
results for a more general criterion of learning, viz, Bc-identification (see [8] for a
definition; this is also known as GN∞ [2] in the Russian literature). Additionally, we
would like to note that similar results can also be shown to hold for another learning
task, viz, first-language acquisition modeled as identification in the limit of grammars
for recursively enumerable languages from a text of these languages. The criterion
of success for language acquisition is known as TxtEx-identification (see [7] for a
definition).

Finally, we end this paper on a speculatory note pointing to future research di-
rections. Scientific success is often not limited to the success of a single scientist
receiving data from multiple, possibly inaccurate, sources. In actual practice, a num-
ber of scientists are simultaneously investigating a phenomenon, each receiving data
from multiple, possibly inaccurate, sources. Scientific success is achieved if any one of
these scientists is successful. This scenario could be modeled as a “team” of learning
machines, each member of the team receiving multiple inaccurate texts. The team
is successful if at least one member of the team converges to a correct program for
the function being learned (see Smith [24] for discussion of team identification from a
single and accurate text). However, given our experience with the combinatorial dif-
ficulty of the subject matter of this paper, it is quite likely that a study incorporating
teams and multiple inaccurate environments may turn out to be very complex, and it
is not clear at this stage what additional insights such an investigation may provide.

LEARNING FROM MULTIPLE SOURCES OF INACCURATE DATA 989

Acknowledgments. We would like to thank John Case, Mark Fulk, and Errol
Lloyd for encouragement and advice. Helpful discussions were provided by Sudhir
Jha, Lata Narayanan, and Rajeev Raman. We would also like to thank Andrea Lobo
for careful reading of an earlier draft of the paper.

During the initial stages of this investigation, Ganesh Baliga was in the Depart-
ment of Computer and Information Sciences at the University of Delaware; Sanjay
Jain was in the Department of Computer and Information Sciences at the University
of Delaware and at the Institute of Systems Science at the National University of
Singapore; and Arun Sharma was in the Department of Brain and Cognitive Sciences
at the Massachusetts Institute of Technology.

We would also like to express our gratitude to Prof. S. N. Maheshwari of the
Department of Computer Science and Engineering at IIT-Delhi for making the facil-
ities of his department available to us during the preparation of an early draft of this
paper.

Finally, we would like to thank the referees for valuable comments.

REFERENCES

[1] Proc. 5th Annual ACM Workshop on Computational Learning Theory, ACM, New York, 1992.
[2] J. M. Barzdin, Two theorems on the limiting synthesis of functions, in Theory of Algorithms

and Programs 210, Latvian State University, Riga, Latvia, 1974, pp. 82–88 (in Russian).
[3] L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Inform. and

Control, 28 (1975), pp. 125–155.
[4] M. Blum, A machine independent theory of the complexity of recursive functions, J. Assoc.

Comput. Mach., 14 (1967), pp 322–336.
[5] J. Case, Periodicity in generations of automata, Math. Systems Theory, 8 (1974), pp. 15–32.
[6] J. Case, Infinitary self-reference in learning theory, J. Exper. Theoret. Artif. Intell., 4 (1993),

pp 281–293; also appears in special issue on Analogical and Inductive Inference, 6 (1994),
pp. 3–17.

[7] J. Case and C. Lynes, Machine inductive inference and language identification, in Proc.
9th International Colloquium on Automata, Languages and Programming, M. Nielsen and
E. M. Schmidt, eds., Lecture Notes in Computer Science 140, Springer-Verlag, Berlin, 1982,
pp. 107–115.

[8] J. Case and C. Smith, Comparison of identification criteria for machine inductive inference,
Theoret. Comput. Sci., 25 (1983), pp 193–220.

[9] M. Fulk, A study of inductive inference machines, Ph.D. thesis, State University of New York
at Buffalo, Buffalo, New York, 1985.

[10] M. Fulk and J.Case, eds., Proc. 3rd Annual Workshop on Computational Learning Theory,
Morgan Kaufmann, San Mateo, CA, 1990.

[11] M. A. Fulk and S. Jain, Learning in the presence of inaccurate information, in Proc. 2nd
Annual Workshop on Computational Learning Theory, R. Rivest, D. Haussler, and M. K.
Warmuth, eds., Morgan Kaufmann, San Mateo, CA, 1989, pp. 175–188.

[12] E. M. Gold, Language identification in the limit, Inform. and Control, 10 (1967), pp. 447–474.
[13] D. Haussler and L. Pitt, eds., Proc. 1988 Workshop on Computational Learning Theory,

Morgan Kaufmann, San Mateo, CA, 1988.
[14] S. Jain, Learning in the presence of additional information and inaccurate information, Ph.D.

thesis, University of Rochester, Rochester, NY, 1990.
[15] S. Jain, Program synthesis in the presence of infinite number of inaccuracies, in Proc. 5th

International Workshop on Algorithmic Learning Theory, S. Arikawa and K. P. Jantke,
eds., Reinhardsbrunn Castle, Germany, 1994, Lecture Notes in Artificial Intelligence 872,
Springer-Verlag, Berlin, 1994, pp. 333–348.

[16] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, North–
Holland, New York, 1978.

[17] D. Osherson, M. Stob, and S. Weinstein, Systems that Learn, An Introduction to Learning
Theory for Cognitive and Computer Scientists, MIT Press, Cambridge, MA, 1986.

[18] D. Osherson and S. Weinstein, A note on formal learning theory, Cognition, 11 (1982), pp.
77–88.

990 GANESH BALIGA, SANJAY JAIN, AND ARUN SHARMA

[19] H. Putnam, Reductionism and the nature of psychology, Cognition, 2 (1973), pp. 131–146.
[20] R. Rivest, D. Haussler, and M. K. Warmuth, eds., Proc. 2nd Annual Workshop on Com-

putational Learning Theory, Morgan Kaufmann, San Mateo, CA, 1989.
[21] H. Rogers, Gödel numberings of partial recursive functions, J. Symbolic Logic, 23 (1958), pp.

331–341.
[22] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw–Hill, New

York, 1967; reprint, MIT Press, Cambridge, MA, 1987.
[23] G. Schäfer-Richter, Some results in the theory of effective program synthesis-learning by

defective information, Lecture Notes in Comput. Sci., 215 (1986), pp. 219–225.
[24] C. Smith, The power of pluralism for automatic program synthesis, J. Assoc. Comput. Mach.,

29 (1982), pp. 1144–1165.
[25] R. J. Solomonoff, A formal theory of inductive inference, part I, Inform. and Control, 7

(1964), pp. 1–22.
[26] R. J. Solomonoff, A formal theory of inductive inference, part II, Inform. and Control, 7

(1964), pp. 224–254.
[27] L. G. Valiant and M. K. Warmuth, eds., Proc. 4th Annual Workshop on Computational

Learning Theory, Morgan Kaufmann, San Mateo, CA, 1991.

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS∗

MICHAL WALICKI† AND SIGURD MELDAL†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 991–1005, August 1997 005

Abstract. The article defines algebraic semantics of singular (call-time-choice) and plural (run-
time-choice) nondeterministic parameter passing and presents a specification language in which oper-
ations with both kinds of parameters can be defined simultaneously. Sound and complete calculi for
both semantics are introduced. We study the relations between the two semantics and point out that
axioms for operations with plural arguments may be considered as axiom schemata for operations
with singular arguments.

Key words. algebraic specification, many-sorted algebra, nondeterminism, sequent calculus

AMS subject classifications. 68Q65, 68Q60, 68Q10, 68Q55, 03B60, 08A70

PII. S00975397264317

1. Introduction. The notion of nondeterminism arises naturally in describing
concurrent systems. Various approaches to the theory and specification of such sys-
tems, for instance, CCS [16], CSP [9], process algebras [1], and event structures [26],
include the phenomenon of nondeterminism. But nondeterminism is also a natural
concept in describing sequential programs, either as a means of indicating a “don’t
care” attitude as to which among a number of computational paths will actually be
utilized in a particular computation (e.g., [3]) or as a means of increasing the level
of abstraction [14, 25]. The present work proceeds from the theory of algebraic spec-
ifications [4, 27] and generalizes the theory so that it can be applied to describing
nondeterministic operations.

In deterministic programming the distinction between call-by-value and call-by-
name semantics of parameter passing is well known. The former corresponds to the
situation where the actual parameters to function calls are evaluated and passed as
values. The latter allows parameters which are function expressions, passed by a kind
of Algol copy rule [21], and which are evaluated whenever a need for their value arises.
Thus call-by-name will terminate in many cases when the value of a function may be
determined without looking at (some of) the actual parameters, i.e., even if these
parameters are undefined. Call-by-value will, in such cases, always lead to undefined
result of the call. Nevertheless, the call-by-value semantics is usually preferred in the
actual programming languages since it leads to clearer and more tractable programs.

Following [20], we call the nondeterministic counterparts of these two notions
singular (call-by-value) and plural (call-by-name) parameter passing. Other names
applied to this, or closely related distinction, are call-time-choice vs. run-time-choice
[2, 8] or inside-out (IO) vs. outside-in (OI), which reflect the substitution order cor-
responding to the respective semantics [5, 6]. In the context where one allows non-
deterministic parameters, the difference between the two semantics becomes quite
apparent even without looking at their termination properties. Let us suppose that

∗Received by the editors March 9, 1994; accepted for publication (in revised form) August 7, 1995.
The research of the first author was partially supported by the Architectural Abstraction project
under NFR (Norway), the CEC under ESPRIT-II Basic Research Working Group 6112 COMPASS,
DARPA under ONR contracts N00014-92-J-1928 and N00014-93-1-1335, and Air Force Office of
Scientific Research grant AFOSR-91-0354.

http://www.siam.org/journals/sicomp/26-4/26431.html
†Department of Informatics, University of Bergen, HiB, 5020 Bergen, Norway (michal.walicki@

ii.uib.no, sigurd.meldal@ii.uib.no).

991

992 MICHAL WALICKI AND SIGURD MELDAL

we have defined operation g(x) as “if x = 0 then a else (if x = 0 then b else c)” and
that we have a nondeterministic choice operation t returning an arbitrary element
from the argument set. The singular interpretation will satisfy the formula φ: g(x)
= (if x = 0 then a else c), whereas the plural interpretation need not satisfy this
formula. For instance, under the singular interpretation g(t. {0, 1}) will yield either a
or c, whereas the set of possible results of g(t. {0, 1}) under the plural interpretation
will be {a, b, c}. (Notice that in a deterministic environment both semantics would
yield the same results.) The fact that the difference between the two semantics occurs
already in very trivial examples of terminating nondeterministic operations motivates
our investigation.

We discuss the distinction between the singular and the plural passing of nondeter-
ministic parameters in the context of algebraic semantics, focusing on the associated
reasoning systems. The singular semantics is given by multialgebras, that is, algebras
where functions are set valued and where these values correspond to the sets of possi-
ble results returned by nondeterministic operations. Thus, if f is a nondeterministic
operation, f(t) will denote the set of possible results returned by f when applied to
t. We introduce the calculus NEQ which is sound and complete with respect to this
semantics.

Although terms may denote sets, the variables in the language range only over
individuals. This is motivated by the interest in describing unique results returned
by each particular application of an operation (execution of the program). It gives
us the possibility of writing instead of a formula Φ(f(t)), which expresses some-
thing about the whole set of possible results of f(t), the formula corresponding to
x ∈ f(t) ⇒Φ(x), which express something about each particular result x returned
by f(t). Unfortunately, this poses the main problem of reasoning in the context of
nondeterminism—the lack of general substitutivity. From the fact that h(x) is de-
terministic (for each x has a unique value) we cannot conclude that so is h(t) for an
arbitrary term t. If t is nondeterministic, h(t) may have several possible results. The
calculus NEQ is designed so that it appropriately restricts the substitution of terms
for singular variables.

Although operations in multialgebras are set valued, their carriers are usual sets.
Thus operations map individuals to sets. This is not sufficient to model plural ar-
guments. Such arguments can be understood as sets being passed to the operation.
The fact that, under plural interpretation, g(x) as defined above need not satisfy φ
results from the two occurrences of x in the body of g. Each of these occurrences
corresponds to a repeated application of choice from the argument set x, that is, po-
tentially, to a different value. In order to model such operations we take as the carrier
of the algebra a (subset of the) power set—operations map sets to sets. In this way
we obtain power algebra semantics. The extension of the semantics is reflected at the
syntactic level by introduction of plural variables ranging over sets rather than over
individuals. The sound and complete extension of NEQ is obtained by adding one
new rule which allows for usual substitution of arbitrary terms for plural variables.

The structure of the paper is as follows. In sections 2 and 3 we introduce the
language for specifying nondeterministic operations and explain the intuition behind
its main features. In section 4 we define multialgebraic semantics for singular spec-
ifications and introduce a sound and complete calculus for such specifications. In
section 5 the semantics is generalized to power algebras capable of modeling plural
parameters, and the sound and complete extension of the calculus is obtained by in-
troducing one additional rule. A comparison of both semantics in section 6 is guided

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 993

by the similarity of the respective calculi. We identify the subclasses of multimodels
and power models which may serve as equivalent semantics of one specification. We
also highlight the increased complexity of the power algebra semantics reflecting the
problems with intuitive understanding of plural arguments.

Proofs of the theorems are merely indicated in this presentation. It reports some
of the results from [24] where the full proofs and other details can be found.

2. The specification language. A specification is a pair (Σ,Π), where the
signature Σ is a pair (S,F) of sorts S and operation symbols F (with argument and
result sorts in S). The set of terms over a signature Σ and variable set X is denoted
by WΣ,X . We always assume that, for every sort S, the set of ground words of sort
S, SWΣ , is not empty.1

Π is a set of sequents of atomic formulas written as a1, . . . , an 7→ e1, . . . , em. The
left-hand side (LHS) of 7→ is called the antecedent and the right-hand side (RHS) the
consequent, and both are to be understood as sets of atomic formulas (i.e., the order-
ing and multiplicity of the atomic formulas do not matter). In general, we allow either
antecedent or consequent to be empty, though ∅ is usually dropped in the notation. A
sequent with exactly one formula in the consequent (m = 1) is called a Horn formula,
and a Horn formula with empty antecedent (n = 0) is a simple formula (or a simple
sequent).

All variables occurring in a sequent are implicitly universally quantified over the
whole sequent. A sequent is satisfied if, for every assignment to the variables, one of
the antecedents is false or one of the consequents is true (it is valid iff the formula
a1 ∧ · · · ∧ an ⇒ e1 ∨ · · · ∨ em is valid).

For any term (formula set of formulas) ξ, V[ξ] will denote the set of variables in
ξ. If the variable set is not mentioned explicitly, we may also write x ∈ V to indicate
that x is a variable.

An atomic formula in the consequent is either an equation, t = s, or an inclusion,
t ≺ s, of terms t, s ∈WΣ,X . An atomic formula in the antecedent, written t _ s, will
be interpreted as nonempty intersection of the (result) sets corresponding to t and s.
For a given specification SP = (Σ,Π), L(SP) will denote the above language over the
signature Σ.

The above conventions will be used throughout the paper. The distinction be-
tween the singular and the plural parameters (introduced in the section 5) will be
reflected in the notation by the superscript ∗: a plural variable will be denoted by x∗,
the set of plural variables in a term t by V∗[t], a specification with plural arguments
SP∗, the corresponding extension of the language L by L∗, etc.

3. A note on the intuitive interpretation. Multialgebraic semantics [10, 13]
interprets specifications in some form of power structures where the (nondeterminis-
tic) operations correspond to set-valued functions. This means that a (ground) term
is interpreted as a set of possibilities; it denotes the set of possible results of the corre-
sponding operation. We, on the other hand, want our formulas to express necessary
facts, i.e., facts which have to hold in every evaluation of a program (specification).
This is achieved by interpreting terms as applications of the respective operations.
Every two syntactic occurrences of a term t will refer to possibly distinct applications
of t. For nondeterministic terms this means that they may denote two distinct values.

1This restriction is motivated by the fact (pointed out in [7]) that admitting empty carriers
requires additional mechanisms (explicit quantification) in order to obtain sound logic. We conjecture
that a similar solution can be applied in our case.

994 MICHAL WALICKI AND SIGURD MELDAL

Typically, equality is interpreted in a multialgebra as set equality [13, 23, 12]. For
instance, the formula 7→ t = s means that the sets corresponding to all possible results
of the operations t and s are equal. This gives a model which is mathematically plau-
sible but which does not correspond to our operational intuition. The (set) equality
7→ t = s does not guarantee that the result returned by some particular application
of t will actually be equal to the result returned by an application of s. It merely tells
us that in principle (in all possible executions) any result produced by t can also be
produced by s and vice versa.

Equality in our view should be a necessary equality which must hold in every
evaluation of a program (specification). It does not correspond to set equality but
to identity of one-element sets. Thus the simple formula 7→ t = s will hold in a
multistructure M iff both t and s are interpreted in M as one and the same set which,
in addition, has only one element. Equality is then a partial equivalence relation,
and terms t for which 7→ t = t holds are exactly the deterministic terms, denoted by
DSP,X. This last equality indicates that arbitrary two applications of t have to return
the same result.

If it is possible to produce a computation where t and s return different results—
and this is possible when they are nondeterministic—then the terms are not equal
but, at best, equivalent. They are equivalent if they are capable of returning the same
results, i.e., if they are interpreted as the same set. This may be expressed using the
inclusion relation: s ≺ t holds iff the set of possible results of s is included in the set
of possible results of t, and s _̂ t if each is included in the other.

Having introduced inclusion one might expect that a nondeterministic operation
can be specified by a series of inclusions, each defining one of its possible results. How-
ever, such a specification gives only a “lower bound” on the admitted nondeterminism.
Consider the following example.

Example 3.1.

S: {Nat},
F: 0: → Nat (zero)

s−: Nat → Nat (successor)

−t−: Nat × Nat → Nat (binary nondeterministic choice)

Π: (1) 7→ 0 = 0

(2) 7→ s(x) = s(x)

(3) 1 _ 0 7→ (As usual), we abbreviate sn(0) as n.)

(4) 7→ 0 ≺ 0 t 1 7→ 1 ≺ 0 t 1

The first two axioms make zero and successor deterministic. A limited form of
negation is present in L in the form of sequents with empty consequent. Axiom (3)
makes 0 distinct from 1. Axioms (4) make then t a nondeterministic choice with
0 and 1 among its possible results. This, however, ensures only that in every model
both 0 and 1 can be returned by 0t1. In most models all other kinds of elements may
be among its possible results as well, since no extension of the result set of 0t 1 will
violate the inclusions of (4). If we are satisfied with this degree of precision, we may
stop here and use only the Horn formula. All the results in the rest of the paper apply
to this special case. But to specify an “upper bound” of nondeterministic operations
we need disjunction, the multiple formulas in the consequents. Now, if we write the
axiom

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 995

(5) 7→ 0 t 1 = 0, 0 t 1 = 1,

the two occurrences of 0t 1 refer to two arbitrary applications and, consequently, we
obtain that either any application of 0 t 1 equals 0 or else it equals 1, i.e., that t is
not really nondeterministic but merely underspecified. Since axioms (4) require that
both 0 and 1 be among the results of t, the addition of (5) will actually make the
specification inconsistent.

What we are trying to say with the disjunction of (5) is that every application of
0 t 1 returns either 0 or 1; i.e., we need a means of identifying two occurrences of a
nondeterministic term as referring to one and the same application. This can be done
by binding both occurrences to a variable. The appropriate axiom will be

(5′) x _ 0 t 1 7→ x = 0, x = 1.

The axiom says: whenever 0t 1 returns x, then x equals 0 or x equals 1. Notice that
such an interpretation presupposes that the variable x refers to a unique, individual
value. Thus bindings have the intended function only if they involve singular variables.
(Plural variables, on the other hand, will refer to sets and not individuals, and so the
axiom

(5′′) x∗ _ 0 t 1 7→ x∗ = 0, x∗ = 1

would have a completely different meaning.) The singular semantics is the most
common in the literature on algebraic semantics of nondeterministic specification
languages [2, 8, 11], in spite of the fact that it prohibits unrestricted substitution of
terms for variables. Any substitution must now be guarded by the check that the
substituted term yields a unique value, i.e., is deterministic. We return to this point
in the subsection on reasoning, where we introduce a calculus which does not allow
one, for instance, to conclude 0t 1 = 0t 1 7→ 0t 1 = 0, 0t 1 = 1 from the axiom (5′)
(though it could be obtained from (5′′)).

4. The singular case: Semantics and calculus. This section defines the
multialgebraic semantics of specifications with singular arguments and introduces a
sound and complete calculus.

4.1. Multistructures and multimodels.
Definition 4.2 (Multistructures). Let Σ be a signature. M is a Σ-multistructure

if
(1) its carrier |M| is an S-sorted set,
(2) for every f : S1 × · · · × Sn → S in F, there is a corresponding function

fM : SM
1 × · · · × SM

n → P+(SM).
A function Φ: A→ B (i.e., a family of functions ΦS: SA → SB for every S ∈ S) is a
multihomomorphism from a Σ-multistructure A to B if

(H1) for each constant symbol c ∈ F, Φ(cA) ⊆ cB,
(H2) for every f : S1 × · · · × Sn → S in F and a1 · · · an ∈ SA

1 × · · · × SA
n :

Φ(fA(a1 · · · an)) ⊆ fB(Φ)(ai) · · ·Φ(an)).
If all inclusions in H1 and H2 are (set) equalities the homomorphism is tight; other-
wise it is strictly loose (or just loose).
P+(S) denotes the set of nonempty subsets of the set S. Operations applied to

sets refer to their unique pointwise extensions. Notice that for a constant c: → S(2)
indicates that cM can be a set of several elements of sort S.

Since multihomomorphisms are defined on individuals and not sets they pre-
serve singletons and are ⊆-monotonic. We denote the class of Σ-multistructures by

996 MICHAL WALICKI AND SIGURD MELDAL

MStr(Σ). It has the distinguished word structure MWΣ defined in the obvious way,
where each ground term is interpreted as a singleton set. We will treat such singleton
sets as terms rather than one-element sets (i.e., we do not take special pains to dis-
tinguish MWΣ and WΣ). MWΣ is not an initial Σ-structure since it is deterministic
and there can exist several homomorphisms from it to a given multistructure. We do
not focus on the aspect of initiality and merely register the useful fact from [11].

Lemma 4.3. M is a Σ-multistructure iff for every set of variables X and as-
signment β: X → |M|, there exists a unique function β[−]: WΣ,X → P+(|M|) such
that

(1) β[x] = {β(x)},
(2) β[c] = cM ,
(3) β[f(ti)] = ∪{fM (yi) | yi ∈ β[ti]}.
In particular, for X = ∅ there is a unique interpretation function (not a multiho-

momorphism) I: WΣ → P+(|M |) satisfying the last two points of this definition.
As a consequence of the definition of multistructures, all operations are ⊆-mono-

tonic, i.e., β[s] ⊆ β[t]⇒ β[f(s)] ⊆ β[f(t)]. Notice also that assignment in the lemma
(and in general whenever it is an assignment of elements from a multistructure) means
assignment of individuals, not sets.

Next we define the class of multimodels of a specification.
Definition 4.4 (Satisfiability). A Σ-multistructure M satisfies an L(Σ) sequent

π

ti _ si 7→ pj = rj ,mk ≺ nk,

written M |= π iff for every β: X→ M we have∧
i

β[ti] ∩ β[si] 6= ∅ ⇒
∨
j

β[pj] ≡ β[rj] ∨
∨
k

β[mk] ⊆ β[nk],

where A ≡ B iff A and B are the same one-element set.
An SP-multimodel is a Σ-multistructure which satisfies all the axioms of SP. We

denote the class of multimodels of SP by MMod(SP).
The reason for using nonempty intersection (and not set equality) as the interpre-

tation of _ in the antecedents is the same as using “elementwise” equality ≡ in the
consequents. Since we avoid set equality in the positive sense (in the consequents),
the most natural negative form seems to be the one we have chosen. For deterministic
terms this is the same as equality, i.e., deterministic antecedents correspond exactly
to the usual (deterministic) conditions. For nondeterministic terms this reflects our
interest in binding such terms: the sequent “. . . s _ t . . . 7→ . . .” is equivalent to
“. . . x _ s, x _ t . . . 7→” A binding “. . . x _ t . . . 7→ . . .” is also equivalent to
the more familiar “. . . x ∈ t . . . 7→ . . . ,” so the notation s _ t may be read as an
abbreviation for the more elaborate formula with two ∈ and a new variable x not
occurring in the rest of the sequent.

For a justification of this, as well as other choices we have made here, the reader
is referred to [24].

4.2. The calculus for singular semantics. In [24] we introduced the calculus
NEQ which is sound and complete with respect to the class MMod(SP). Its rules are
as follows:

(R1) 7→ x = x, x ∈ V,

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 997

(R2)
Γx
t2 7→∆x

t2 ; Γ ′ 7→ t1 = t2,∆
′

Γx
t1 ,Γ

′ 7→∆x
t1 ,∆

′ ,

(R3)
Γx
t2 7→∆x

t2 ; Γ ′ 7→ t1 ≺ t2,∆′
Γx
t1 ,Γ

′ 7→∆x
t1 ,∆

′ , x not in a RHS of ≺,

(R4) (a) x _ y 7→ x = y, (b) x _ t 7→ x ≺ t, x, y ∈ V,

(R5)
Γ 7→∆, s � t ; Γ ′, s _ t 7→∆′

Γ,Γ ′ 7→∆,∆′
, (CUT) (� stands for either = or ≺),

(R6) (a)
Γ 7→∆

Γ 7→∆, e
, (b)

Γ 7→∆

Γ, e 7→∆
(WEAK),

(R7)
Γ, x _ t 7→∆

Γx
t 7→∆x

t

, x ∈ V − V [t], at most one x in Γ 7→∆ (ELIM).

Γa
b denotes Γ with b substituted for a. Short comments on each of the rules may be

in order.
The fact that “=” is a partial equivalence relation is expressed in (R1). It applies

only to variables and is sound because all assignments assign individual values to the
(singular) variables.

(R2) is a paramodulation rule allowing replacement of terms which may be de-
terministic (in the case where t1 = t2 holds in the second assumption). In particular,
it allows derivation of the standard substitution rule when the substituted terms are
deterministic and prevents substitution of nondeterministic terms for variables.

(R3) allows “specialization” of a sequent by substituting for a term t2 another
term t1 which is included in t2. The restriction that the occurrences of t2 which are
substituted for don’t occur in the RHS of ≺ is needed to prevent, for instance, the
unsound conclusion 7→ t3 ≺ t1 from the premises 7→ t3 ≺ t2 and 7→ t1 ≺ t2.

(R4) and (R5) express the relation between _ in the antecedent and the equality
and inclusion in the consequent. The axiom of standard sequent calculus, e 7→ e, (i.e.,
s _ t 7→ s � t) does not hold in general here because the antecedent corresponds to
nonempty intersection of the result sets while the consequent to the inclusion (≺) or
identity of one-element (=) result sets. Only for deterministic terms (in particular,
variables) s, t do we have that s _ t 7→ s = t holds.

(R5) allows us to cut both 7→ s = t and 7→ s ≺ t with s _ t 7→∆.
(R7) eliminates redundant bindings, namely those that bind an application of a

term occurring at most once in the rest of the sequent.
We will write Π `CAL π to indicate that π is provable from Π with the calculus

CAL.
The counterpart of soundness/completeness of the equational calculus is as follows

[24].
Theorem 4.5. NEQ is sound and complete with respect to MMod(SP):

MMod(SP) |= π iff Π `NEQ π.

Proof idea. Soundness is proved by induction on the length of the proof Π `NEQ

π. The proof of the completeness part is a standard, albeit rather involved, Henkin-
style argument. The axiom set Π of SP is extended by adding all L(SP) formulas π

998 MICHAL WALICKI AND SIGURD MELDAL

which are consistent with Π (and the previously added formulas). If the addition of π
leads to inconsistency, one adds the negation of π. Since empty consequents provide
only a restricted form of negation, the general negation operation is defined as a set
of formulas over the original signature extended with new constants. One shows then
that the construction yields a consistent specification with a deterministic basis from
which a model can be constructed.

We also register an easy lemma that the set-equivalent terms t _̂ s satisfy the
same formulas.

Lemma 4.6. t _̂ s iff, for any sequent π, Π `NEQ π zt iff Π `NEQ π zs.

5. The plural case: Semantics and calculus. The singular semantics for
passing nondeterminate arguments is the most common notion to be found in the
literature. Nevertheless, the plural semantics has also received some attention. In
the denotational tradition most approaches considered both possibilities [18, 19, 20,
22]. Engelfriet and Schmidt gave a detailed study of both—in their language, IO and
OI—semantics based on tree languages [5] and continuous algebras of relations and
power sets [6]. The unified algebras of Mosses [17] and the rewriting logic of Meseguer
[15] represent other algebraic approaches distinguishing these aspects.

We will define the semantics for specifications where operations may have both
singular and plural arguments. The next subsection gives the necessary extension of
the calculus NEQ to handle this generalized situation.

5.1. Power structures and power models. Singular arguments (such as the
variables in L) have the usual algebraic property that they refer to a unique value.
This reflects the fact that they are evaluated at the moment of substitution and the
result is passed to the following computation. Plural arguments, on the other hand,
are best understood as textual parameters. They are not passed as a single value,
but every occurrence of the formal parameter denotes a distinct application of the
operation.

We will allow both singular and plural parameter passing in one specification. The
corresponding semantic distinction is between power set functions which are merely
⊆-monotonic and those which also are ∪-additive.

In the language, we merely introduce a notational device for distinguishing the
singular and plural arguments. We allow annotating the sorts in the profiles of the
operation by a superscript, like S∗, to indicate that an argument is plural.

Furthermore, we partition the set of variables into two disjoint subsets of singular
X and plural X∗ variables. x and x∗ are to be understood as distinct symbols. We
will say that an operation f is singular in the ith argument iff the ith argument (in
its signature) is singular. The specification language extended with such annotations
of the signatures will be referred to as L∗.

These are the only extensions of the language we need. We may, optionally, use
superscripts t∗ at any (sub)term to indicate that it is passed as a plural argument.
The outermost applications, e.g., f in f(. . .), are always to be understood plurally,
and no superscripting will be used at such places.

Definition 5.1. Let Σ be a L∗-signature. A is a Σ-power structure A ∈ PStr(Σ)
iff A is a (deterministic) structure such that

1. for every sort S, the carrier SA is a (subset of the) power set P+(S−) of some
basis set S−,

2. for every f : S1×· · ·×Sn → S in Σ, fA is a ⊆-monotonic function SA
1 ×· · ·×

SA
n → SA such that if the ith argument is Si (singular), then fA is singular

in the ith argument.

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 999

The singularity in the ith argument in this definition refers not to the syntactic
notion but to its semantic counterpart.

Definition 5.2. A function fA: SA
1 × · · · × SA

n → SA in a power structure A is
singular in the ith argument iff it is ∪-additive in the ith argument, i.e., iff for all
xi ∈ SA

i and all xk ∈ SA
k (for k 6= i), fA(x1 · · ·xi · · ·xn) = ∪{fA(x1 · · · {x} · · ·xn) |

x ∈ xi}.
Thus, the definition of power structures requires that syntactic singularity be

modeled by the semantic one.
Note the unorthodox point in the definition: we do not require the carrier to be the

whole power set but allow it to be a subset of some power set. Usually one assumes a
primitive nondeterministic operation with the predefined semantics as set union. Then
all finite subsets are needed for the interpretation of this primitive operator. Also,
the join operation (under the set inclusion as partial order) corresponds exactly to set
union only if all sets are present (see Example 6.8). None of these assumptions seem
necessary. Consequently, we do not assume any predefined (choice) operation but,
instead, give the user means of specifying any nondeterministic operation (including
choice) directly.

Let Σ be a signature, A a Σ-power structure, X a set of singular variables and
X∗ a set of plural variables, and β an assignment X ∪ X∗ → |A| such that for all
x ∈ X : |β(x)| = 1. (Saying assignment we will from now on mean only assignments
satisfying this last condition.) Then, every term t(x, x∗) ∈ WΣ,X,X∗ has a unique set
interpretation β[t(x, x∗)] in A defined as tA(β(x),β(x∗)).

Definition 5.3 (Satisfiability). Let A be a Σ-power structure and π: ti _ si 7→
pj = rj, mk ≺ nk be a sequent over L∗(Σ, X,X∗). A satisfies π, A |= π, iff for every
assignment β: X ∪X∗ → |A|, we have that∧

i

β[ti] ∩ β[si] 6= ∅ ⇒
∨
j

β[pj] ≡ β[rj] ∨
∨
k

β[mk] ⊆ β[nk].

A is a power model of the specification SP = (Σ,Π), A ∈ PMod(SP), iff A ∈ PStr(Σ)
and A satisfies all axioms from Π.

Except for the change in the notion of an assignment, this is identical to Definition
4.4, which is the reason for retaining the same notation for the satisfiability relation.

5.2. The calculus for plural parameters. The calculus NEQ is extended
with one additional rule:

(R8)
Γ 7→∆

Γx∗
t 7→∆x∗

t

.

Rules (R1)–(R7) remain unchanged, but now all terms ti belong to WΣ,X,X∗ . In
particular, any ti may be a plural variable. We let NEQ∗ denote the calculus NEQ +
R8.

The new rule (R8) expresses the semantics of plural variables. It allows us to
substitute an arbitrary term t for a plural variable x∗. Taking t to be a singular
variable x, we can thus exchange plural variables in a provable sequent π with singular
ones. The opposite is, in general, not possible because rule (R1) applies only to
singular variables. For instance, a plural variable x∗ will satisfy 7→ x∗ ≺ x∗, but this
is not sufficient for performing a general substitution for a singular variable. The
main result concerning PMod and NEQ∗ is as follows.

Theorem 5.4. For any L∗-specification SP and L∗(SP) sequent π :

PMod(SP) |= π iff Π `NEQ∗ π.

1000 MICHAL WALICKI AND SIGURD MELDAL

Proof idea. The proof is a straightforward extension of the proof of Theo-
rem 4.5.

6. Comparison. Since plural and singular semantics are certainly not one and
the same thing, it may seem surprising that essentially the same calculus can be used
for reasoning about both. One would perhaps expect that PMod, being a richer class
than MMod, will satisfy fewer formulas than the latter and that some additional
restrictions of the calculus would be needed to reflect the increased generality of the
model class. In this section we describe precisely the relation between the L and L∗
specifications (section 6.1) and emphasize some points of difference (section 6.2).

6.1. The “equivalence” of both semantics. The following example illus-
trates a strong sense of equivalence of L and L∗.

Example 6.1. Consider the following plural definition:

7→ f(x∗) ≺ if x∗ = x∗ then 0 else 1.

It is “equivalent” to the collection of definitions

7→ f(t) ≺ if t = t then 0 else 1

for all terms t.
In the rest of this section we will clarify the meaning of this “equivalence.”
Since the partial order of functions from a set A to the power set of a set B

is isomorphic to the partial order of additive (and strict, if we take P (all subsets)
instead of P+) functions from the power set of A to the power set of B, [A→ P(B)] '
[P(A) →∪ P(B)], we may consider every multistructure A to be a power structure
A∗ by taking |A∗| = P+(A) and extending all operations in A pointwise. We then
have the obvious lemma.

Lemma 6.2. Let SP be a singular specification (i.e., all operations are singular
in all arguments), let A ∈ MStr(SP), and let π be a sequent in L(SP). Then A |= π
iff A∗ |= π, and so A ∈MMod(SP) iff A∗ ∈ PMod(SP).

Call an L∗ sequent π p-ground (for plurally ground) if it does not contain any
plural variables.

Theorem 6.3. Let SP∗ = (Σ∗,Π∗) be an L∗ specification. There exists a (usually
infinite) L specification SP = (Σ,Π) such that

(1) WΣ,X = WΣ∗,X

(2) for any p-ground π ∈ L∗(SP∗) : PMod(SP
∗
) |= π iff MMod(SP) |= π.

Proof. Let Σ be Σ∗ with all “∗” symbols removed. This makes (1) true. Any
p-ground π as in (2) is then a π over the language L(Σ, X).

The axioms Π are obtained from Π∗ as in Example 6.1. For every π ∗ ∈ Π∗ with

plural variables x∗1 · · ·x∗n, let π = {π ∗ x
∗
1 · · ·x∗n
t1 · · · tn

| t1 · · · tn ∈ WΣ,X}. Obviously, for

any π ∈ L(SP) if Π `NEQ π then Π∗ `NEQ∗ π. If Π∗ `NEQ∗ π then the proof can
be simulated in NEQ. Let π ′(x∗) be the last sequent used in the NEQ∗-proof which
contains plural variables x∗ and the sequent π ′ be the next one obtained by (R8).
Build the analogous NEQ-proof tree with all plural variables replaced by the terms
which occupy their place in π ′. The leaves of this tree will be instances of the Π∗

axioms with plural variables replaced by the appropriate terms, and all such axioms
are in Π. Then soundness and completness of NEQ and NEQ∗ imply the conclusion
of the theorem.

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 1001

We now ask whether, or under which conditions, the classes PMod and MMod are
interchangeable as the models of a specification. Let SP∗, SP be as in the theorem.
The one-way transition is trivial. Axioms of SP are p-ground, so PMod(SP∗) will
satisfy all these axioms by the theorem. The subclass ↓ PMod(SP∗) ⊆ PMod(SP∗),
where for every P ∈↓ PMod(SP

∗
) all operations are singular, will yield a subclass of

MMod(SP).
For the other direction, we have to observe that the restriction to p-ground se-

quents in the theorem is crucial because plural variables range over arbitrary, also
undenotable, sets. Let MMod∗(SP) denote the class of power structures obtained as
in Lemma 6.2. It is not necessarily the case that MMod∗(SP) |= Π∗, as the following
argument illustrates.

Example 6.4. Let M∗ ∈ MMod∗(SP) have infinite carrier, π ∗ ∈ Π∗ be ti _ si 7→
pj = rj , mk ≺ nk with x∗ ∈ V[π ∗], and β: X ∪X∗ → |M∗| be an assignment such
that β(x∗) = {m1 · · ·ml · · ·} is a set which is not denoted by any term in WΣ,X. Let
βl be an assignment equal to β except that βl(x

∗) = {ml}, i.e., β = ∪lβl. Then
M∗ |= β[π∗] iff

M∗ |= β[ti] ∩ β[si] 6= ∅ ⇒ β[pj] ≡ β[rj]∨ . . ∨β[mk] ⊆ β[nk] iff

(a) M∗ |=
⋃
l

βl[ti]∩
⋃
l

βl[sl] 6= ∅ ⇒
⋃
l

βl[pj] ≡
⋃
l

βl[rj]∨ . . ∨
⋃
l

βl[mk] ⊆
⋃
l

βl[nk]

since operations in M∗ are defined by pointwise extension. M∗ ∈ MMod∗(SP) implies
that, for all l

(b) M∗ |= βl[ti] ∩ βl[sl] 6= ∅ ⇒ βl[pj] ≡ βl[rj]∨ . . ∨βl[mk] ⊆ βl[nk].

But (b) does not necessarily imply (a). In particular, even if for all l, all intersections
in the antecedent of (b) are empty, those in (a) may be nonempty. So we are not
guaranteed that M∗ ∈ PMod(SP∗).

Thus, the intuition that the multimodels are contained in the power models is
not quite correct. To ensure that no undenotable sets from M∗ can be assigned to
the plural variables we redefine the lifting operator ∗: MMod(SP)→ PMod(SP) from
Lemma 6.2.

Definition 6.5. Given a singular specification SP and M ∈ MMod(SP), we
denote by � M the following power structure:

(1) | � M| ⊆ P+(|M|) is such that
(a) for every n ∈ |M |: {n} ∈ | � M|,
(b) for every m ∈ | � M| there exists a t ∈ WΣ,X, n ∈ |M| such that:

tM (n) = m.
(2) The operations in � M can be then defined by: f(m)�M = f(t(n))M .
Then, for any assignment β: X∗ → | � M| there exists an assignment θ: X∗ →

WΣ,X (1b) and an assignment α: X → |M | (1a) such that β(x∗) = αθ(x∗)] (2), i.e.,
such that the diagram in Figure 1 commutes.

Since M ∈ MMod(SP), it satisfies all the axioms Π obtained from Π∗ and the
commutativity of the figure gives us the second part of the following.

Corollary 6.6. Let SP ∗ and SP be as in Theorem 6.3. Then

↓ PMod(SP ∗) |= Π, i.e., ↓ PMod(SP ∗) ⊆MMod(SP),

�MMod(SP) |= Π∗, i.e., �MMod(SP) ⊆ PMod(SP ∗).

1002 MICHAL WALICKI AND SIGURD MELDAL

Fig. 1.

The corollary makes precise the claim that the class of power models of a plural
specification SP∗ may be seen as a class of multimodels of some singular specification
SP and vice versa. The reasoning about both semantics is essentially the same because
the only difference concerns the (arbitrary) undenotable sets which can be referred to
by plural variables.

6.2. Plural specification of choice. Plural variables provide access to arbi-
trary sets. In the following example we attempt to utilize this fact to give a more
concise form to the specification of choice.

Example 6.7. The specification

S: { S },
F: { t.− : S∗ → S },
Π: { 7→ t. x∗ _̂ x∗ }

defines t. as the choice operator: for any argument t,t. t is capable of returning any
element belonging to the set interpreting t.

The specification may seem plausible, but there are several difficulties. Obviously,
such a choice operation would be redundant in any specification since the axiom
makes t. t observationally equivalent to t, and Lemma 4.6 allows us to remove any
occurrences of t. from the (derivable) formulas. Furthermore, observe how such a
specification confuses the issue of nondeterministic choice. Choice is supposed to take
a set as an argument and return one element from the set or, perhaps, to convert an
argument of type “set” to a result of type “individual.” This is the intention behind
writing the specification above. But power algebras model all operations as functions
on power sets and such a “conversion” simply does not make sense. The only points
where conversion of a set to an individual takes place is when a term is passed as
a singular argument to another operation. If we have an operation with a singular
argument f : S → S, then f(t) will make (implicitly) the choice from t.

This might be particularly confusing because one tends to think of plural argu-
ments as sets and mix up the semantic sets (i.e., the elements of the carrier of a power
algebra) and the syntactic ones (as expressed by the profiles of the operations in the

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 1003

R8
x _ z∗, y _ z∗ 7→ x t y ≺ z∗

R7
x _ p, y _ p 7→ x t y ≺ p 7→ t ≺ p 7→ p t p ≺ p t p

R3

R7
y _ p 7→ p t y ≺ p 7→ s ≺ p 7→ t t p ≺ p t p

R3
7→ p t p ≺ p 7→ t t s ≺ p t p

R3
7→ t t s ≺ p

Fig. 2.

signature). As a matter of fact, the above specification does not at all express the
intention of choosing an element from the set. In order to do that it would have to give
choice the signature Set(S) → S. Semantically, this would then be a function from
P+(Set(S)) to P+(S). Assuming that semantics of Set(S) will somehow correspond
to the power set construction, this makes things rather complicated, forcing us to work
with a power set of a power set. Furthermore, since Set(S) and S are different sorts,
we cannot let the same variable range over both as was done in the example above.

Example 6.7 and remarks illustrate some of the problems with the intuitive under-
standing of plural parameters. Power algebras, needed for modeling such parameters,
significantly complicate the model of nondeterminism as compared with multialgebras.

On the other hand, plural variables allow us to specify the “upper bound” of
nondeterministic choice without using disjunction. The choice operation can be spec-
ified as the join which under the partial ordering ≺ interpreted as set inclusion will
correspond to set union (cf. [17]).

Example 6.8. The following specification makes binary choice the join operation
wrt. ≺ :

S: { S },
F: { −t− : S× S→ S },
Π: { (1) 7→ x∗ ≺ x∗ t y∗ 7→ y∗ ≺ x∗ t y∗

(2) x _ z∗, y _ z∗ 7→ x t y ≺ z∗ }.

Axiom (2) although using singular variables x, y, does specify the minimality of t
with respect to all terms. (Notice that the axiom x∗ _ z∗, y∗ _ z∗ 7→ x∗ t y∗ ≺ z∗

would have a different, and in this context unintended, meaning.) We can show that
whenever 7→ t ≺ p and 7→ s ≺ p hold (for arbitrary terms) then so does 7→ t t s ≺ p
(see Figure 2). Violating our formalism a bit, we may say that the above proof
shows the validity of the formula stating the expected minimality of join: t ≺ p,
s ≺ p 7→ t t s ≺ p.

Thus, in any model of the specification from Example 6.8 t will be a join. It is
then natural to consider t as the basic (primitive) operation used for defining other
nondeterministic operations. Observe also that in order to ensure that join is the
same as set union, we have to require the presence of all (finite) subsets in the carrier
of the model. For instance, the power structure A with the carrier

SA = { {1}, {2}, {3}, {1, 2, 3} } and

tA defined as xA tA yA = {1, 2, 3} whenever xA 6= yA

will be a model of the specification although tA is not the same as set union.

7. Conclusion. We have defined the algebraic semantics for singular (call-time-
choice) and plural (run-time-choice) passing of nondeterministic parameters. One of
the central results reported in the paper is soundness and completeness of two new

1004 MICHAL WALICKI AND SIGURD MELDAL

reasoning systems NEQ and NEQ∗, respectively, for singular and plural semantics.
The plural calculus NEQ∗ is a minimal extension of NEQ which merely allows unre-
stricted substitution for plural variables. This indicated a close relationship between
the two semantics. We have shown that plural specifications have equivalent (modulo
undenotable sets) singular formulations if one considers the plural axioms as singular
axiom schemata.

Acknowledgments. We are grateful to Manfred Broy for pointing out the in-
adequacy of our original notation and to Peter D. Mosses for the observation that in
the presence of plural variables choice may be specified as join with Horn formulas.

REFERENCES

[1] J. A. Bergstra and J. W. Klop, Algebra of communicating processes, in Mathematics and
Computer Science, CWI Monographs, 1, North-Holland, Amsterdam, l986, pp. 89–138.

[2] W. Clinger, Nondeterministic call by need is neither lazy nor by name, Proc. ACM Symposium
on LISP and Functional Programming, 1982, pp. 226–234.

[3] E. W. Dijkstra, A discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[4] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification, Vol. 1, Springer-Verlag,

Berlin, 1985.
[5] J. Engelfriet and E. M. Schmidt, IO and OI. 1, J. Comput. System Sci., 15 (1977),pp. 328–

353.
[6] J. Engelfriet and E. M. Schmidt, IO and OI. 2, J. Comput. System Sci., 16 (1978),

pp. 67–99.
[7] J. A. Goguen and J. Meseguer, Completeness of Many-Sorted Equational Logic, SIGPLAN

Notices, 17 (1982), pp. 9–17.
[8] M. C. B. Hennessy, The semantics of call-by-value and call-by-name in a nondeterministic

environment, SIAM J. Comput., 9 (1980), pp. 67–84.
[9] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall International Ltd., En-

glewood Cliffs, NJ, 1985.
[10] H. Hussmann, Nondeterministic Algebraic Specifications, Ph.D. thesis, Fakultät für Mathe-

matik und Informatik, Universität Passau, 1990.
[11] H. Hussmann, Nondeterminism in Algebraic Specifications and Algebraic Programs,

Birkhäuser, Basel, Switzerland, 1993.
[12] S. Kaplan, Rewriting with a nondeterministic choice operator, Theoret. Comput. Sci.,

56 (1988), pp. 37–57.
[13] D. Kapur, Towards a Theory of Abstract Data Types, Ph.D. thesis, Laboratory for Computer

Science, MIT, Cambridge, MA, 1980.
[14] S. Meldal, An abstract axiomatization of pointer types, in Proc. 22nd Annual Hawaii Inter-

national Conference on System Sciences, IEEE Computer Society Press, Piscataway, NJ,
1989.

[15] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoret. Comput.
Sci., 96 (1992), pp. 73–155.

[16] R. Milner, Calculi for Communicating Systems, Lecture Notes in Computer Science, Vol. 92,
Springer-Verlag, Basel, Switzerland, 1980.

[17] P. D. Mosses, Unified algebras and institutions, in Proc. LICS ’89, Fourth Annual Symposium
on Logic in Computer Science, Pacific Grove, CA, 1989.

[18] C. E. S. Ore, Introducing Girard’s Quantitative Domains; the Quantitative Domains as a
Model for Nondeterminism, Ph.D. thesis, Dept. of Informatics, University of Oslo, Norway,
1988.

[19] G. Plotkin, Domains, 1983, Lecture notes, Dept. of Computer Science, University of Edin-
burgh, Scotland.

[20] H. Søndergaard and P. Sestoft, Non-Determinacy and Its Semantics, Technical report
86/12, Datalogisk Institut, Københavns Universitet, 1987.

[21] R. L. Schwartz, An axiomatic treatment of ALGOL 68 routines, in Proc. Sixth Colloquium
on Automata, Languages and Programming, Vol. 71, Springer-Verlag, Basel, Switzerland,
1979.

[22] M. B. Smyth, Power domains, J. Comput. System Sci., 16 (1978), pp. 23–36.
[23] P. A. Subrahmanyam, Nondeterminism in abstract data types, in Automata, Languages

and Programming, Lecture Notes in Computer Science, Vol. 115, Springer-Verlag, Basel,

SINGULAR AND PLURAL NONDETERMINISTIC PARAMETERS 1005

Switzerland, 1981.
[24] M. Walicki, Algebraic Specifications of Nondeterminism, Ph.D. thesis, Department of Infor-

matics, University of Bergen, 1993.
[25] M. Walicki and S. Meldal, Multialgebras, power algebras and complete calculi of identities

and inclusions, in Recent Trends in Data Type Specification, Lecture Notes in Computer
Science, Vol. 906, Springer-Verlag, Basel, Switzerland, 1994.

[26] G. Winskel, An Introduction to Event Structures, Lecture Notes in Computer Science,
Vol. 354, Springer-Verlag, Basel, Switzerland, 1988.

[27] M. Wirsing, Algebraic specification, in Handbook of Theoretical Computer Science, Vol. B,
The MIT Press, Cambridge, MA, 1990.

DATA STRUCTURES’ MAXIMA∗

G. LOUCHARD† , CLAIRE KENYON‡ , AND R. SCHOTT§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1006–1042, August 1997 006

Abstract. The purpose of this paper is to analyze the maxima properties (value and position) of
some data structures. Our theorems concern the distribution of these random variables. Previously
known results usually dealt with the mean and sometimes the variance of the random variables.
Many of our results rely on diffusion techniques. This is a very powerful tool that has already been
used with some success in algorithm complexity analysis.

Key words. probabilistic analysis of algorithms, data structures, queuing theory, diffusion
techniques, Brownian bridges

AMS subject classifications. 60J65, 60J70, 60J60, 60K25, 68P05, 68Q25

PII. S0097539791196603

1. Introduction. This paper concerns the maximum size reached by a dynamic
data structure over a long period of time. The notion of “maximum” is basic to
resource preallocation. The expected value of the maximum size has already been
studied in numerous probabilistic papers. Our goal here is twofold:

1. Derive more precise asymptotic expressions for the expected maximum (with
lower-order terms).

2. When possible, find the whole distribution of the maximum size.

Our proofs involve advanced analytic and probabilistic techniques; in particular,
they use Laplace transforms, complex analysis around singularities, diffusion pro-
cesses, and Brownian motions. They rely on some results that are well known in the
world of probabilists. Our hope is to show that diffusion techniques are a powerful
tool for the average-case analysis of algorithms.

Given a dynamic data structure whose size evolves through time with each new
insertion or deletion, the main requirement for formalizing the maximum-size problem
in a mathematical framework is to define the distribution of the sequence of arrivals
(insertions) and departures (deletions). The models that we consider come from three
main sources.

1. Probabilistic model (that is, the world of queuing theory): We study the
M/M/1, M/G/1, G/M/1, M/M/∞, and G/G/∞ queuing systems. For example, in
the M/M/∞ model, the number of servers is infinite so that a client newly arrived
is served right away; there is no waiting time. The interarrivals and service times are
all independent and follow an exponential distribution.

2. Combinatorial models: In the 1970’s, Françon introduced the concept of file
histories, which are beautiful combinatorial objects [17]. A file history is a labeled
path where each elementary step of the path is of the type (x, y)→ (x+ 1, y ± 1) or
(x + 1, y). The x-axis represents time, and the y-axis represents the size of the file.
The relative weights of the paths depend on the type of file history considered (stack,

∗Received by the editors March 11, 1991; accepted for publication (in revised form) August 8,
1995. This research was partially supported by the PRC “Mathématiques et Informatique.”

http://www.siam.org/journals/sicomp/26-4/19660.html
†Laboratoire d’Informatique Théorique, Université Libre de Bruxelles, CP 212, Boulevard du

Triomphe, 1050 Bruxelles (Brussels), Belgium (louchard@ulb.ac.be).
‡LIP, Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 Lyon cedex 07, France

(kenyon@lip.ens-lyon.fr).
§CRIN, INRIA-Lorraine, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy, France

(rene.schott@loria.fr).

1006

DATA STRUCTURES’ MAXIMA 1007

linear list, dictionary, symbol table, or priority file). However, we must remark that
not many real-life situations correspond to the distribution of file histories.

3. Hashing with lazy deletion: In the non-Markovian data structure introduced
by Van Wyk and Vitter [53], the data structure is a separate-chaining hash table, and
the arrivals and lifetimes follow a process of type 1 or 2 above, but the items are not
removed from the table as soon as they “die.” Instead, we wait until there is a new
insertion in a chain of the table before removing the “dead” items from that chain.
This enables to save on the access cost to the table.

The results are as follows.
In the first part of this paper, we study the maximum size reached by a queue

over [0 . . . t] when t goes to infinity for the most classical types of queues.
When there is only one server processing the requests of the arriving customers,

we find expressions describing the distribution for anM/G/1, M/M/1, or G/M/1 pro-
cess. The technique uses Laplace transforms and developments in the neighborhood
of a singularity.

When there are an infinite number of servers, there is no waiting time, and a client
stays in the system only as long as it takes for him to be served. This was studied in
[46], and in [45], there is an equivalent to the expected value of the maximum size in
the M/M/∞ case. In this paper, through a different approach, we get more precise
expressions on the expectation. We also solve the G/G/∞ case. Our proof involves
reducing the problem to an Ornstein–Uhlenbeck diffusion process, whose properties
are well known.

In the second part of this paper, we study some specific kinds of dynamic data
structures.

First, we look at combinatorial objects defined by [17] and by Knuth for modeling
the evolution of dictionaries, stacks, linear lists, priority files, and symbol tables: file
histories. The average value of the maximum was evaluated in [45]. Using sophis-
ticated results on Brownian bridges [14], we show how to get a much more precise
estimate of the maximum with several lower-order terms. As an example, we analyze
priority queues in the standard model.

Second, we study the maximum size of hashing with lazy deletion. In [53], various
models of distribution were suggested. By repeated use of Daniels’s theorem [14], we
get precise estimates of the average maximum in all of the models with lower-order
terms (which are not obtainable by the methods of [45]).

Finally, we look at the limiting profiles of a file history, i.e. what fraction of time
is spent by the data structure at a given level l. Again we show that we can obtain
the asymptotic distributions.

2. Maximum size of a single server queue when ρ < 1. In this section,
we study several classical queuing theory models, M/G/1 and G/M/1, to find the
evolution of the maximum size reached over a long period of time.

Notation.
• ua are interarrival times, assumed to be independent, identically distributed

(i.i.d.) random variables (r.v.’s).
• A(t) is the distribution function (d.f.) of ua.
• 1/λ is the mean of ua.
• σ2 is the variance of ua.
• ub are the service times, assumed to be i.i.d., r.v.’s.
• B(t) is the d.f. of ub.
• 1/µ is the mean of ub.

1008 G. LOUCHARD, C. KENYON, AND R. SCHOTT

• ρ = λ/µ.
• α(s) =

∫∞
o
e−stdA(t) (s ≥ 0).

• β(s) =
∫∞
o
e−stdB(t) (s ≥ 0).

• Q(s) is the queue length.
• M(t) = maxs∈[0,t] Q(s).
• {x} is the fractional part of x.
To solve our problem, three approaches are possible.
First, we can compute the extreme-value distribution of the maximum on a busy

period; we then use renewal theory. Since the queue length is a discrete random value,
classical techniques give upper and lower bounds (see Cohen [10, Chapter VII, Section
4.5] and Aldous [2, Section C.2.6]). However, it is possible to obtain precise limiting
distributions with such an approach; see Heyde [26] for G/M/1.

Second, we can use the clumping heuristic (see Aldous [2]).
Third, we can deal directly with the hitting-time distribution; this gives more

information on the hitting-time behavior and is the approach chosen here. We easily
rederive known theorems on M/M/1 and G/M/1, write an M/G/1 solution, and
analyze the Fourier expansion of the maximum moments.

We obtain a family of distributions for the maximum M(t) depending on the
fractional part of C1 log(t)+C2, where C1 and C2 are constants to be determined later.
This situation is rather similar to other data structures used in computer science; see,
for instance, the number of registers in arithmetic expression evaluation (see Flajolet
and Prodinger [18] and Louchard [38]), binary tries (see Louchard [38], Flajolet and
Steyaert [19], and Jacquet and Szpankowski [32]), digital search trees (see Louchard
[39]), suffix trees (see Jacquet, Rais, and Szpankowski [33]), and approximate counting

(see Flajolet [20]). The extreme-value distribution e−e
−x

frequently appears in this
context. We first analyze the M/G/1 queue and then the G/M/1 queue. (We could
not obtain a G/G/1 limit theorem). The limiting distribution does not exist for
all real values because of the discrete character of M(t). See Anderson [4] and our
remarks after Theorem 2.3.

2.1. The M/G/1 case.
Notation.
• ỹ is the root1 greater than 1 and nearest to 1 of β[(1− ỹ)λ] = ỹ.
• η = j − log t/ log ỹ − logA1/ log ỹ.
• B1 = 1−

∫∞
0
e−(1−ỹ)λtλtdB(t).2

• A1 = −λ(1− ρ)2(ỹ − 1)/B1.
• G1(η) = exp[− exp[−η log ỹ]].
• ψ1(t) = log(A1t)/ log ỹ.
• f1(η) = G1(η)−G1(η − 1).
We note that η = j − bψ1(t)c − {ψ1(t)}.
We obtain the following theorem.
Theorem 2.1. If j is an integer, then

Pr[M(t) ≤ j] ∼ G1(η) as t = Θ(ỹj)→∞.(2.1)

The asymptotic distribution is a periodic function of ψ1(t) (with period 1) given by

log Pr{M(t) ≤ bψ1(t)c+ k}e{ψ1(t)} log(ỹ) → e−k log(ỹ), t→∞.

1By [10, p. 623], this root does exist if s0 < 0, s0 being the abscissa of convergence of β(s), and
if β(s)→s→s0 ∞.

2By [10, p. 623], B1 < 0.

DATA STRUCTURES’ MAXIMA 1009

We also have

Pr[M(t) = j] ∼ f1(η).

Proof.
(i) The departure times lead to an imbedded Markov chain whose states corre-

spond to the number of customers just after a departure.
Notation.
• τj is the hitting time into state j.
• ϕj(s) := E[e−sτj], s ≥ 0.
• [zj]f(z) is the coefficient of zj in the power expansion of f(z).
• y(s) is the root with smallest absolute value of equation z = β(s+ (1− z)λ).
By [10, Chapter II, Section 4.35], we have

ϕj(s) = [y(s)]−j
{

1−
(

1 +
s

λ
− y(s)

)[
zj
](β(s+ (1− z)λ)

β(s+ (1− z)λ)− z

)
·
([
zj
]((

1 +
s

λ
− z
)

β(s+ (1− z)λ)

β(s+ (1− z)λ)− z

))−1
}
.(2.2)

By Takáč’s lemma, y(s) < 1, and by [10, Chapter II, Section 4.40], y(s) = 1 −
s/µ(1− ρ) + o(s). Expanding (2.2) in the neighborhood of s = 0, we derive

ϕj(s) ∼
(

1 +
js

µ(1− ρ)

)[
1 + s

C1,j

C2,j
− s

(
1

λ(1− ρ)

)[
C3,j + sC4,j

C2,j

]]
·
[
1 + s

C1,j

C2,j

]−1

, s→ 0, j →∞,(2.3)

where we use the following notation.
Notation.
• β1(z) := β[λ(1− z)].
• β2(z) := −

∫∞
0
te−λ(1−z)tdB(t).

• C1,j :=
[
zj
]

((1/λ)β1(z)/(β1(z)− z)− z(1− z)β2(z)/(β1(z)− z)2).

• C2,j :=
[
zj
]

((1− z)β1(z)/(β1(z)− z)).
• C3,j :=

[
zj
]

(β1(z)/(β1(z)− z)).
• C4,j :=

[
zj
]

(−zβ2(z)/(β1(z)− z)2).
Equivalents of C1,j , C3,j , and C4,j , j → ∞, are given by an asymptotic analysis

in the neighborhood of z = 1:

C1,j ∼
1

λ(1− ρ)2
,

C3,j ∼
1

1− ρ ,

C4,j ∼
j + 1

µ(1− ρ)2
.

To obtain C2,j and C5,j := [C1,j − (1/λ(1− ρ))C3,j] (which appears as coefficient of s
in the numerator of (2.3)), we observe that the corresponding z-functions are regular
at z = 1. However, the equation that defines ỹ allows an asymptotic analysis in the
neighborhood of z = ỹ. By Darboux’s theorem (see, for instance, Flajolet et al. [23]),

1010 G. LOUCHARD, C. KENYON, AND R. SCHOTT

the behavior of [h(z)]j , j →∞, is related to the behavior of h(z) in the neighborhood
of the dominant singularities of h(z).

Notation.
• s∗1 := λ(1− ρ)2(ỹ − 1)/[ỹjB1].
• T` ≡ τ`−1.
• ε1,` := −ỹs∗1.
Omitting the details, we get C2,j ∼ (1 − ỹ)/[B1ỹ

j] and C5,j ∼ O(ỹ−j). Finally,
from (2.3), we derive

ϕj(s) ∼
1

[1− s
s∗1

]
, s→ s∗1, j →∞.

Then ε1,`T` is asymptotically distributed as an exponential r.v. as `→∞.
(ii) From Pr[T` ≥ t] ∼ e−ε1,`t, we deduce Pr[M(t) < `] ∼ exp[− exp[log t +

log ε1,`]] as t → ∞. Taking ` := j + 1 and A1 := −λ(1 − ρ)2(ỹ − 1)/B1, we readily
obtain the theorem.

Notation.
• s̃∗1 = s∗1[1 +O(ỹ−`)].
• δ is the absolute error on (2.1).
A detailed analysis shows that

ϕ`(s) ∼
1 +O(s`)

1− s
s̃∗1

+O(s2`2)
, s→ s̃∗1, `→∞.(2.4)

We also check that φ`(s) ∼ ỹ−`/|s|`, |s| → ∞. The absolute error is given by δ =
es
∗
1tO(s∗1`).

(iii) As t→∞, we see that the error δ is uniformly small. Thus (2.1) can be put
in the form

sup
j
|Pr[M(t) ≤ j]−G1(η)| −→

t→∞
0,

which is another appropriate form for a limit theorem [2, Equations (A1.a) and
(A10.b)].

The asymptotic moments of M(t) are also periodic functions of ψ1(t). They can
be written as harmonic sums and analyzed with Mellin transforms; see Flajolet et al.
[21].

The asymptotic nonperiodic term in the moments ofM(t) is given by the following
result.

Theorem 2.2. The constant term Ē in the Fourier expansion (in ψ1(t)) of the
moments of M(t) is asymptotically given by

Ē[M(t)− ψ1(t)]i ∼
∫ +∞

−∞
ηi[G1(η)−G1(η − 1)]dη.

It is known (see Johnson and Kotz [34, p. 272]) that the extreme-value distribution

function e−e
−x

has mean γ and variance π2/6. From this, we can derive, for instance,

Ē(M(t)) ∼ ψ1(t) +
1

2
+

γ

log(ỹ)
.(2.5)

The other periodic terms have very small amplitude [21].

DATA STRUCTURES’ MAXIMA 1011

2.2. The G/M/1 model. By the same hitting-time technique, this case leads
to the following result.

Notation.
• z̃ is the (unique) root of z − α[(1− z)µ] inside the unit circle.
• B3 :=

∫∞
o
e−(1−z̃)tµµtdA(t)− 1.

• A3 := −B3(1− z̃)λ.
• η := j − log t/ log(z̃−1)− logA3/ log(z̃−1).
• G3(η) := exp[− exp[−η log(z̃−1)]].
• ψ3(t) := log(A3t)/ log(z̃−1).
Theorem 2.3. If j is an integer, then

Pr(M(t) ≤ j) ∼ G3(η), t = Θ(1/z̃j)→∞.

The last part of Theorem 2.1 is still valid, with ψ1(t) replaced by ψ3(t). Theorem 2.2
is still applicable, as well as (2.5), with log(ỹ) replaced by log(z̃−1).

2.3. Related results.
(i) In the M/M/1 case, Theorem 2.3 can be applied with z̃ ≡ ρ, B3 = −(1−ρ),

and A3 = λ(1 − ρ)2. In this case, the theorem corresponds to the lim inf given in
Anderson [4, example on p. 112].

(ii) [10, Section III, Theorem 7.5] gives upper and lower bounds for the dis-
tribution of M(n) in G/M/1, the maximum number of customers in n busy cycles,
and the lower bound matches our theorem. Here the notations ψ and c1 used in [10]
correspond to ψ ≡ (1 − z̃)µ and c1 ≡ −B3. From [10, Section II, Equation 3.49], we
know that the busy-cycle mean length is ¯̀ := 1/[λ(1 − z̃)]. From renewal theory, we
know that t/n(t) → ¯̀, t → ∞ (where n(t) is the number of busy cycles in [0, t]). By
the second approach described in the beginning of this section, Heyde [26] derived our
theorem.

(iii) In Iglehart [30, Theorem 2], for the G/G/1 queue, a (positive) quantity γ is
defined by E[eγ(ua−ub)] = 1. It is easy to check that here α(γ)/(1− γ/µ) = 1, which
shows that γ ≡ ψ ≡ (1− z̃)µ. [30] then implies [10, Theorems 7.2 and 7.5].

(iv) In a recent report, Sadowsky and Szpankowski [48] analyzed theG/G/s case.
They proved under some regularity condition that the maximum number of customers
on a busy cycle has a geometric tail with parameter w = α(γ) (γ as defined above).
However, the coefficient K of Pr{tail ≥ n} ∼ Kwn has a very complicated form; see

[48, Equation 4.2.6] (with L
(n)
1 replaced by 1{Q̄≥n}). The best way to estimate K

would be by simulation. Moreover, the busy-cycle mean length ` has no explicit form.
In Sadowsky et al. [49], an analysis is derived for Qmax

n . We could of course also use
Heyde’s derivation, but K and ` have no computable forms.

(v) Limit distributions are available when ρ → 1 in some particular sense [51,
52].

3. The infinite-server queue maximum problem. In the models where
there are an infinite number of servers, a customer arriving always finds a server
ready to process its requests. For example, this can model a dynamic data structure
with items being inserted in the structure (i.e., customers arriving), staying in for a
certain length of time (i.e., service time), and finally being deleted and removed (i.e.,
exiting the system after service). We will assume that the interarrivals (as well as the
service times) are independent and that their distribution is known.

To simplify notation, we will assume in this section that µ = 1. A time-scale
change will give the general case.

1012 G. LOUCHARD, C. KENYON, AND R. SCHOTT

3.1. The M/M/∞ case.

3.1.1. Weak convergence. Consider an M/M/∞ queue Qn(t) such that λn =
n, µ = 1. It is well known [27, Theorem 4.1] that

Xn(t) :=
Qn(t)− n√

n
=⇒
n→∞

3 OU(t), t large,

where OU(t) is a Ornstein–Uhlenbeck process, with infinitesimal mean −1, infinitesi-
mal variance 2, and covariance

e−(t−s), t ≥ s.(3.1)

From Appendix B, we see that the convergence is correct as far as

|Xn(t)|3 = o(
√
n)(3.2)

or, equivalently

|Xn(t)| = o(n1/6),(3.3)

i.e., the joint distributions have Gaussian tails (1−N(x)) if x3 = o(
√
n).4

3.1.2. Behavior of λn with respect to λn/µ. In [45], maxt′∈[0,1] Q̄(t′) is
analyzed when the parameters satisfy the following three subcases: logλ′ = o(λ′/µ′),
log λ′ = O(λ′/µ′), log λ′ = Ω(λ′/µ′). This corresponds here to the behavior of λn with
respect to λn/µ. We change the time-scale. Let t′, λ′, and µ′ be the new parameters
(corresponding to [45]). Letting t′ = h(n)t, h(n) ↓ 0, and n→∞, we obtain

λ′ =
λn
h(n)

=
n

h(n)
→∞,

µ′ =
1

h(n)
→∞,

λ′

µ′
= n.

We derive the convergence

Xn(t) :=
Qn(t)− n√

n
⇒ OU

[
t′

h(n)

]
if |Xn(t)| = o(n1/6),

and for the queue Q̄ of [45], we have in this case[
max
t′∈[0,1]

Q̄(t′)

]
∼ n+

√
n

[
max

t∈[0,1/h(n)]
OU(t)

]
(3.4)

The three subcases can be described as follows with n→∞:
(i) log λ′ ∼ (λ′/µ′)g(n) with g(n) ↓ 0. This leads to log n− log[h(n)] ∼ ng(n),

1/h(n) ∼ eng(n)/n, and logn/n = o(g(n)).
(ii) log λ′/n→ σ, (logn− log[h(n)])/n→ σ, 1/h(n) ∼ eσn/n.

(iii) log λ′/n ∼ f(n) with f(n) ↑ ∞, 1/h(n) ∼ enf(n)/n.

3⇒ denotes the weak convergence of random functions in the space of all right-continuous func-
tions that have left limits and are endowed with the Skorohod metric (see Billingsley [9]).

4N(a) is the standard normal distribution function.

DATA STRUCTURES’ MAXIMA 1013

3.1.3. The Ornstein–Uhlenbeck process. From (3.4), we analyze

max
[0,1/h(n)]

OU(t).

Notation.
• mt = [maxs∈[0,t] OU(s)].
• Ta := inf[s : OU(s) = a].

• δ(a) ∼
√

2π ea
2/2/a.

• C(t) := 2 log t.
We shall use two different approaches, each starting from a different probabilistic

property.
Approach 1. Let a� 1. From Keilson [35, Equation 2.31], we know that

Pr[Ta ≥ t] ∼ e−t/δ(a).(3.5)

The clumping heuristic also confirms this expression [2, D.9].

Pr[mt ≤ a] = Pr[Ta ≥ t] ∼ exp

[
− exp

[
log t− a2

2
+ log a− 1

2
log 2π

]]
.(3.6)

To obtain a limiting distribution, set the following in (3.6):

a(t) :=
√
C(t) +

log log t

2
√
C(t)

+
v − 1

2 log π√
C(t)

+ o

(
1√
C(t)

)
, a(t) ↑ ∞.(3.7)

After a few computations, we obtain

Pr[mt ≤ a(t)] ∼ e−e−v (extreme-value distribution), t→∞.(3.8)

This is a classical known result. It is known (see section 1) that this distribution has
mean γ.

Approach 2. Another way of deriving (3.8) is to use Berman’s approach [6] (see
Appendix C). Using his notation, w(a), v(a), Γ′(0), α, u(t), and with a → ∞, [6,
Equations 4.3 and 7.1] give w(a) = f(a)/(1 − F (a)), where F (a) is the stationary
distribution of the process. This gives w(a) ∼ a. Then (3.1) and [6, Section 7] give
u2[1−r(1/v] = 1], where r is the process-correlation function. Here a2(1−e−1/v(a)) =
1, and hence v(a) ∼ a2 (index α = 1 in Berman’s notation).

Notation.
• Γ(x) = P [

∫∞
0
I[Z(s)>0]ds > x].

• Z(s) is the process η − t+
√

2B(t).
• η is exponentially distributed.
• B(·) is the classical Brownian motion.
[6, Equation 14.9] gives

Pr[mt ≥ a]

vt(1− F (a))
→ −Γ′(0).

In Berman [7], it is proved that Γ′(0) = −1. From Berman’s proof, it is easily checked
that if we change

√
2B(t) into σB(t), Γ′(0) does not depend on σ. Here

Pr[mt ≥ a]

a2t(1−N(a))
∼ 1 for fixed t, a→∞.(3.9)

1014 G. LOUCHARD, C. KENYON, AND R. SCHOTT

As a check, return to (3.5) for fixed t:

Pr[mt ≥ a] ∼ 1− e−t/δ(a) ∼ t

δ(a)
∼ at√

2π
e−a

2/2, a→∞.(3.10)

It is well known that

1−N(a) ∼ e−a
2/2

√
2πa

.(3.11)

The identification of (3.10) with (3.9) is immediate.
In [6, Equation 16.9], u(t) is computed from the equation vt[1− F] = 1, t→∞;

here

u2 te
−u2/2

√
2π u

∼ 1,

and after some algebra, we obtain

u(t) ∼
√
C(t) +

log log t− log π

2
√
C(t)

+ o

(
1√
C(t)

)
, t→∞.(3.12)

Finally, [6, Equation 19.2] gives

Pr[w(u(t))[mt − u(t)] ≤ x] ∼ eΓ′(0)e−x , t→∞.

we immediately recover (3.8).

3.1.4. Maxima. From (3.7) and (3.8), we obtain

Pr

[
mt ≤

√
C(t) +

log log t

2
√
C(t)

+
v − 1

2 log π√
C(t)

+ o

(
1√
C(t)

)]
∼ e−e−v , t→∞,

and from (3.4),

M := max
t′∈[0,1]

Qn(t′) ∼ n+
√
nm1/h(n).(3.13)

It is now routine to deduce the following theorem.5

Notation.
• Pr[Z(n) ≤ q(n) + x/

√
2ng(n)] ∼ e−e−x .

• q(n) :=
√

2ng(n) +
log(ng(n))

2
√

2ng(n)
− logn√

2ng(n)
+

1

2

(logn)2

(2ng(n))3/2
− log π/2√

2ng(n)
.

Theorem 3.1. In the M/M/∞ case, if g(n) = o(n−2/3), then subcase (i) leads
to the following result:

M ∼ n+
√
nZ(n) + o

(
1√
g(n)

)
, n→∞.

5The condition on g(n) with (3.3) assures weak convergence to an Ornstein–Uhlenbeck process.

DATA STRUCTURES’ MAXIMA 1015

3.1.5. Subcase (i) with g(n) = Ω(n−2/3). Now assume that

g(n) = ξn−τ , 0 < τ ≤ 2

3
.(3.14)

Notation.
• P (t) := Qn(t)−Qn(0).
• X(t) := (Qn(t)− n)/

√
n.6

As in [6, Equation 3.4], let us first consider

w(u)

[
X

(
t

v

)
− u
]

= w(u)[X(0)− u] + w(u)
P (tv)√
n

conditioned by X(0) > u. P (t/v) for large v is made up of two parts: a Poisson
process with rate n and a death process based on a population of size Q0 and a death
rate of t/v. Since v is large, this simply leads to a binomial r.v. We will see later
(from (3.24)) that (3.14) leads to u = o(

√
n) and X(0)− u = o(1). Thus

E

[
P

(
t

v

)]
∼ nt

v
− [n+

√
nu]

t

v
= −
√
nu

t

v
(3.15)

and

E

[
w(u)

P (tv)√
n

]
∼ −uw(u)t

v
= −t

if we set v = w(u)u. This gives m(t) from [6, Equation 5.9].
Moreover, for large v, we formally have for ζ1 and ζ2 : N (0, 1)7 that

∆P := P

(
∆t

v

)
− E

[
P

(
∆t

v

)]
∼
√
nζ1

√
∆t

v
−
√

(n+
√
nu)

∆t

v
ζ2

∼
√
n√
v

√
2B1(∆t)(3.16)

for a classical Brownian motion B1(t).8 Therefore,

w(u)∆P√
n

∼
√
w2(u)

v

√
2B1(∆t) ∼

√
2B1(∆t)

if we set v = w2(u). We obtain V (t) from [6, Theorem 5.2].
Finally, the exact stationary distribution of M/M/∞ is well known. It is given

by a Poisson distribution with rate ρ. Here ρ = λn/µ = n.

Pr[Q(t) = k] =
e−nnk

k!
.(3.17)

The variance and third centered moment of this distribution are given by n.
It is easily checked that by [6, Equations 4.1 and 4.3], this leads to

(i) w(u) = u if u = o(
√
n) so that v = u2;

6We should write Pn and Xn, but we simplify notation.
7(standard Gaussian random variables)
8This can be rigorously proved by weak convergence.

1016 G. LOUCHARD, C. KENYON, AND R. SCHOTT

(ii) an exponential distribution for w(u)[X(0)− u], X(0) > u.
Thus assumption (i) of [6, Theorem 3.1] is satisfied. Let us remark that the same
arguments lead to

dX(t) = −X(t)dt+
√

2B2(dt)(3.18)

for X(t) = o(
√
n), which is exactly the stochastic differential equation for OU(t).

It remains to derive u from [6, Equation 16.9]. We could start from the stationary
Poisson distribution (3.17) and develop pure analytical asymptotics, but we prefer to
use a more probabilistic large-derivation approach in the spirit of [16], which clearly
leads to successive corrections.

Let

u = αnβ , 0 < β <
1

2
,(3.19)

and Y (t) := Qn(t) − n. It is well known that a Poisson input process with rate n is
asymptotically equivalent to a uniform repartition of a population of ñ := nt0 cus-
tomers on a time interval [0, t0] (with t(n) = o(t0(n))). Therefore, for large t, the size

of the queue at time t is a binomial with parameters ñ and p̃ = (1/t0)
∫ t
o
e−(t−v)dv ∼

1/t0 for large t. [16, Equation 7.3] gives

Ψ(s) ∼ log

{[
1

t0
es +

(
1− 1

t0

)]
e−s/t0

}
.(3.20)

The variance of the binomial is σ̃2 = p̃(1− p̃) ∼ 1/t0.
Following the notation of [16], we have here (x in the notation of [16] is given by

u in the notation of [6]) that

x =
Y

σ̃
√
ñ
∼ Y√

n
= u = αnβ .

(3.20) gives

Ψ′(s) ∼ es − 1

t0
, Ψ′′(s),Ψ′′′(s),Ψ′′′′(s) ∼ es

t0
.(3.21)

[16, Equation 7.8] leads to (es − 1)/t0 = (1/
√
t0)(αnβ/

√
ñ) or es − 1 = αnβ−1/2, i.e.,

s ∼ αnβ− 1
2 (1− αnβ−1/2/2).

[16, Equation 7.14] gives x̄ − x = s
√
ñ e

s

t0
− αnβ = O(n3β−1) so that x2/2 − x̄2/2 =

O(n4β−1) = O(u4/n).
Finally, from [16, Equation 7.28], we derive—instead of (3.11)—the following tail

for the distribution of X(t) := Y (t)/
√
n:

1− F (u) ∼ [1−N(u)] exp

(
λ1u

3

√
n

+O

(
u4

n

))
,(3.22)

where here λ1 = 1/6 by (3.21). If u4 = o(n), [6, Equation 16.9] leads to

u2te−
u2

2 e
u3

6
√
n

√
2πu

= 1.(3.23)

DATA STRUCTURES’ MAXIMA 1017

If we choose g(n) = ξ1n
−2/3, then C(t) ∼ 2ξ1n

1/3. The first approximation in (3.12)

is u(t) ∼
√

2ξ1n1/3, and after a little algebra, (3.23) shows that we must add κ1 :=

(2ξ
3/2
1 /6) to − log π/2 in g(n) in Theorem 3.1 if the mixing conditions are satisfied

(so that we can use [6, Equation 16.9]), i.e., if there is no long-range dependency.
However, as mentioned in [8, p. 21], the mixing property is satisfied in the cases of
diffusion, random walk, and birth and death processes, which cover the present case.
Thus we obtain the following result.

Theorem 3.2. If g(n) = ξ1n
−2/3, then Theorem 3.1 is valid with κ1 = (2ξ1)3/2/6

added to − log π/2 in g(n).
If g(n) = ξ2n

−1/2, we now use [16, Equation 7.29]; an extra term C1u
4/n appears

in (3.23) and a similar analysis would lead to another correction in Theorem 3.1 (we
omit the details). An increasing number of corrections are needed as τ decreases in
(3.14), but we always have:

u(t) ∼
√
C(t) = O(n(1−τ)/2) = o(

√
n),(3.24)

and (3.19) is satisfied with β = (1− τ)/2.
Let us check our result with the clumping heuristic of Aldous. By [2, Equa-

tion D.2b], the clump rate is λu = f(u)µ(u), where by (3.22), the density f(u) ∼
n(u) exp(λ1u

3/
√
n + O(u4/n)), and by (3.18), µ(u) = u. After standard algebra, [2,

Equation D.2c] leads to the theorem.

3.1.6. Subcase (ii) with g(n) = σ. We will see in (3.33) that this subcase
corresponds to u = O(

√
n). Let u = α

√
n (i.e., x in the notation of [16]). [16,

Equation 7.8] leads to es − 1 ∼ α or s ∼ log(1 + α). (3.21) and [16, Equation 7.14]
give

x̄ ∼ log(1 + α)
√
nes/2 ∼

√
n log(1 + α)

√
1 + α.

From [16, Equations 7.11 and 7.23], we derive

1− F (u) ∼ e−
x̄2

2 +ñ[Ψ(s)−sΨ′(s)+ 1
2 s

2Ψ′′(s)]

√
2πx̄

∼ en[α−(α+1) log(1+α)]

√
2π
√
n log(1 + α)

√
1 + α

=
e−nϕ1(α)

√
nϕ2(α)

(say)(3.25)

with ϕ1(α) ≥ 0. (This can also be checked directly from (3.17) or by using a large-
deviation technique based on the binomial-generating function [(1− 1/to) + z/to].)

The corresponding asymptotic density is given by

e−nϕ1(α)

√
2π
√

1 + α
du.(3.26)

(3.25) and [6, Equation 4.3] now lead to

w(u) ∼
√
n log(1 + α).(3.27)

With (3.25), it is easily checked that [6, Equation 4.1] gives an exponential distribution
for w(u)[X(0)− u].

To obtain m(t) as given in [6, Equation 5.9], we compute, with P (t) := Qn(t) −
Qn(0),

E

[
w(u)

P (t/v)√
n

]
∼ −uw(u)t

v
.(3.28)

1018 G. LOUCHARD, C. KENYON, AND R. SCHOTT

This gives −t if we choose

v = w(u)u(3.29)

or, equivalently, v = nα log(1 + α). Now, however, P (t/v) = O(1), so we instead use
v′ = v/c(n) with c(n) increasing and c(n) = o(

√
n). (3.28) becomes −c(n)t.

Again, the Poisson input and the binomial death process lead to

∆P ∼
[
√
nζ1

√
∆t

v′
−
√
n(1 + α)ζ2

√
∆t

v′

]

∼
√

(2 + α)n

v′
B3(∆t).(3.30)

With (3.27) and (3.29), this gives

w(u)
∆P√
n
∼
√

(2 + α) log(1 + α)

α
B3(∆t)

√
c(n),

which depends on α. This gives V (t) from [6, Theorem 5.2].
Here, in the neighborhood of α

√
n, (3.18) becomes

dX(t) = −X(t)dt+
√

2 + αB6(dt)

= −X(t)dt+

√
2 +

X(t)√
nB6(dt)

.(3.31)

The corresponding diffusion has space-dependent infinitesimal variance. From Berman
[5], the limiting distribution for the Maximum exists. With the results of Berman
[6], we check that Γ

′
(0) = −c(n); α remains asymptotically constant during the

clump (w(u)[X(0)− u] is exponential). Therefore, modulo the mixing conditions, [6,
Equation 19.2] leads to

Pr

[
mt < u(t) +

x′

w

]
∼ eΓ

′
(0)e−x

′

, t→∞,

where u(t) is given by [6, Equation 16.9], i.e.,

nα log(1 + α)

c(n)

enσ−log n−nϕ1(α)

√
2π
√
n log(1 + α)

√
1 + α

= 1.(3.32)

Set α0 as the solution of σ−ϕ1(α0) = 0. Then the solution of (3.32) is α0 + ∆α with,
on the first order,

∆α ∼
[log(α0

c(n)
√

2π
√

1+α0
)− 1

2 logn]

(n log(1 + α0))
.

Setting x′ = x+ log(c(n)), this leads to the following result.9

Theorem 3.3. If g(n) = σ (i.e., t = enσ/n), then (3.13) is satisfied, with

Pr

[
m1/h(n) ≤

√
n[α0 + ∆α] +

x√
n log(1 + α0)

]
∼ e−e−x , n→∞.(3.33)

Note that the dominant term
√
nα0 corresponds to Mathieu and Vitter [45].

Again, [2, Equation D.E.b] confirms our theorem. The density is given by (3.26),
the clump rate = α

√
n is given by (3.31), and routine computation leads to (3.33).

9(3.31) entails the mixing property.

DATA STRUCTURES’ MAXIMA 1019

3.1.7. Subcase (iii) with 1/h(n) ∼ enf(n)/n. Let us use the approach of
Aldous. (Berman’s technique leads to the same result.) We have t = enf/n, which
gives log t = nf − logn.10 Set u = α

√
ng(n), where g will be determined later on.

Proceeding as in case (ii), we obtain

1− F (u) ∼ exp[n(αg − log(1 + αg)− αg log(1 + αg))]√
2π
√
n log(1 + αg)

√
1 + αg

=
e−nϕ3(α,g)

√
nϕ4(α, g)

with ϕ3 and ϕ4 defined appropriately, and ϕ′3 = g log(1 + αg), ϕ′′3 ∼ g.
The corresponding density is given by

ψ(u) =
e−nϕ3(α,g)

√
2π
√

1 + αg
.

By (3.31) we now have, in the neighborhood of u = α
√
ng(n),

dX(t) ∼ −X(t)dt+
√
αgB6(dt).(3.34)

We must give the same order of magnitude to the two parts of (3.34). Thus we make
the time-scale change t = gt′. This gives

dX(t′) = −X(t′)gdt′ +
√
αgB6(dt′).

We now proceed to the space-scale change z′ = z/g. The new process Z := X/g
satisfies

dZ(t′) = −X(t′)dt′ +
√
αB6(dt′)

∼ −α
√
ngdt′ +

√
αB6(dt′),

which is again a diffusion stochastic differential equation.
Aldous’s clump rate is given by λb = gψ(u) · α

√
ng, and with t′ = enf/(ng), [2,

Equation D.2.c] leads to

Pr

[
sup
[0,t′]

Z(s) ≤ α
√
n

]
∼ e−λbt′

or

Pr[mt ≤ α
√
ng] ∼ e−λbt′ .(3.35)

To get a limiting distribution, we choose α and g such that log(λbt
′) = −x. We can

set α = 1 + ∆α. The equation for g is given by

n[αg − log(1 + αg)− αg log(1 + αg)] + nf − logn− log g − log(
√

2π)

+
3

2
log g +

1

2
logα+

1

2
logn = −x.(3.36)

10We drop the n dependency to ease notation.

1020 G. LOUCHARD, C. KENYON, AND R. SCHOTT

Set g such that the dominant term (in n) of (3.36) is equal to 0 for α = 1. This leads
to

g − log(1 + g)− g log(1 + g) + f = 0.

After some algebra, we obtain

g =
f

log f

[
1 +

log log f

log f
+O

(
1

log f

)]
.

Note that the full expansion must be used in (3.36). For this value of g, we now
compute ∆α. Then (3.36) gives, on the first order (the other terms can be neglected),

∆α ∼
[
−x+ 1

2 logn− 1
2 [log f − log log f] + log(

√
2π)
]

(−nf)
,

and finally, equation (3.35) leads to the following result.
Theorem 3.4. If 1/h(n) ∼ enf(n)/n, then (3.13) is satisfied with

Pr[m1/h(n) ≤
√
ng(1 + ∆α)] ∼ e−e−x , n→∞.(3.37)

Again, the dominant term
√
nf/ log f corresponds to Mathieu and Vitter [45].

Remark. A similar analysis can be done for M/G/∞, which is not Markovian
but has Poisson arrivals. Note that the analysis of the case ρ = constant is done in
Aldous et al. [3].

3.1.8. The maximum mean. We now turn to the mean

M̄ := E

[
max
t′∈[0,1]

Qn(t′)

]
∼ n+

√
nE[m1/h(n)].

We deduce the following theorem.
Theorem 3.5. In the M/M/∞ case, if g(n) = o(n−2/3), the first subcase leads

to the following result:

M̄ ∼ n+
√
nq(n) +

γ√
2ng(n)

+ o

(
1√
g(n)

)
, n→∞.

Proof.
(i) Let g(n) = ξ1n

−τ , 2/3 < τ < 1. Theorem 3.1 is valid (i.e., we are in the
Gaussian range) if |x|/

√
ng(n) = o(n1/6) (see (3.3)), i.e., if |x| = o(n2/3−τ/2). For

instance, we set

|x| = O(n2/3−τ/2−ε), 0 < ε <
1

6
.(3.38)

Let x1 = −ξ2n2/3−τ/2−ε, 0 < ε < 1/6. Then

P1 := Pr

[
M ≤ n+

√
nq(n) +

x1√
2ξ1n−τ

]
∼ exp

[
−eξ2n2/3−τ/2−ε

]
.

However, nP1 can be made arbitrary small by choosing n sufficiently large. The
contribution to the mean of the lower tail of the distribution of M is asymptotically
negligible.

DATA STRUCTURES’ MAXIMA 1021

(ii) Let us now turn to the upper tail. Begin the process with the stationary
distribution (3.17). Divide the observation interval eng(n)/n into intervals of size

1/n1−τ . This gives eξ1n
1−τ

/nτ intervals. Then

Pr[M ≥ n+
√
nu] ≤ eξ1n

1−τ

nτ
Pr

[
max

s∈[0,n−(1−τ)]
Qn(s) ≥ n+

√
nu

]
.(3.39)

Let x2 = ξ2n
1−τ , which satisfies (3.38).

We know from Theorem 3.1 that q(n) ∼
√

2ξ1n1−τ . Choose ξ2 such that
√

2 +
ξ2/
√

2ξ1 = 4.

We must then analyze the tail Pr[M ≥ n+
√
n4u0] with u0 =

√
ξ1n1−τ .

(ii)a Let us first consider the range [n+
√
n4u0, n(1 +α0)], α0 > 0. Note that u0

is in the Gaussian range. From (3.39), we must consider

Pr

[
max

[0,n−(1−τ)]
Qn(s) ≥ n+

√
n4u0

]
≤ Pr[Qn(0) ≥ n+

√
n2u0]

+ Pr

[
max

[0,n−(1−τ)]
Qn(s) ≥ n+

√
n4u0|Qn(0) = n+

√
n2u0

]
.

By (3.11), the first term on the right-hand side is bounded by

e−2u2
0

√
2π2u0

.

For the second term, by (3.15) and (3.16) (setting v = n(1−τ)), we asymptotically
obtain

Pr

[
max
t∈[0,1]

(
−
√
n2u0t

n1−τ +

√
n
√

2B1(t)

n(1−τ)/2

)
≥
√
n4u0

]

= Pr

[
max
[0,1]

(−
√

2ξ1t+B1(t)) ≥
√
ξ1
2

4n1−τ

]

≤ 2e−4ξ1n
2(1−τ)

√
2π
√

ξ1
2 4n1−τ

.

By (3.39), we finally obtain

P2 := Pr[M ≥ n+
√
n4u0]

≤ eξ1n
1−τ

√
2πnτ

 e−2ξ1n
1−τ

2
√
ξ1n1−τ

+
2e−4ξ1n

2(1−τ)√
ξ1
2 4n1−τ

.
Obviously, n(1 + α0)P2 can be made arbitrary small by taking n sufficiently large.

(ii)b We now analyze the range [n(1 + α0),∞]. Again, from (3.39), we consider

Pr

[
max

[0,n−(1−τ)]
Qn(s) ≥ n+ nα

]
≤ Pr

[
Qn(0) ≥ n+

nα

2

]
+ Pr

[
max

[0,n−(1−τ)]
Qn(s) ≥ n+ nα|Qn(0) = n+

nα

2

]
.

1022 G. LOUCHARD, C. KENYON, AND R. SCHOTT

By (3.25), the first term is bounded by

e−nϕ1(α/2)

√
nϕ2(α2 rgy)

.

With (3.30), the second term is asymptotically given by

Pr

[
max
t∈[0,1]

(
−nαt

2n(1−τ)
+

√
n(2 + α

2)B3(t)

n(1−τ)/2

)
≥ nα

]

= Pr

[
max
[0,1]

(
−αtnτ/2
2
√

2 + α
2

+B3(t)

)
≥ αn1−τ/2√

2 + α
2

]

≤
2e−α

2n2−τ/(2(2+α/2))
√

2 + α
2√

2παn1−τ/2
=
e−ϕ4(α)n2−τ

ϕ5(α)

n1−τ/2 (say).

From (3.39), we finally obtain

P3(α) = Pr(M ≥ n+ nα)

≤ eξ1n
1−τ

nτ

[
e−nϕ1(α/2)

√
nϕ2(α2)

+
e−ϕ4(α)n2−τ

ϕ5(α)

n1−τ/2

]
.

However,
∫∞
α0
P3(α)ndα can be made arbitrary small by choosing some suitable α0

and n large enough.

3.2. The G/M/∞ case. Let us again set λn = n, µ = 1. Assume that A(t)
has a finite variance σ2. By Iglehart [28, Equation 5.3], we know that

Qn(t)− n√
n
√
C1

⇒ OU(t), t large,

where C1 := (1 + σ2)/2. We readily obtain the following result.
Theorem 3.6. In the G/M/∞ case, if g(n) = o(n−2/3), subcase (i) leads to

M ∼ n+
√
nC1 Z(n) + o

(
1√
g(n)

)
, n→∞,

where Z(n) has the same distribution as in Theorem 3.1.

3.3. The G/G/∞ case. Let λn = n, µ = 1. Assume that A(t) has finite
variance σ2. By Iglehart [29, Example 5.2], we know that if B(t) has a continuous
density,11 then

Qn(t)− nh(t)√
n

⇒ X1(t) +X2(t),

where h(t) :=
∫ t
o
[1 − B(τ)]dτ . Here X1(t) is a Gaussian process with covariance

(s ≤ t) ∫ s

o

B(s− τ)[1−B(t− τ)]dτ

11Actually, less severe constraints are sufficient; see [29] for details.

DATA STRUCTURES’ MAXIMA 1023

and

X2(t) :=

∫ t

o

[1−B(t− τ)]
√
σ2B7(dτ),

where B7 is a classical Brownian motion. As s, t→∞, it is easily seen that h(t)→ 1
and the covariance of X1(t) +X2(t) is given by (s ≤ t)

(3.40)

Σ(t− s) ∼ σ2

∫ ∞
o

[1−B(t− s+ τ)][1−B(τ)]dτ +

∫ ∞
o

B(τ)[1−B(t− s+ τ)]dτ.

This is clearly a non-Markovian stationary Gaussian process.

Note that the particular case σ2 = 1 leads to the simple form

Σ(t− s) ∼
∫ ∞
o

[1−B(t− s+ τ)]dτ.

This is true, for instance, for the M/G/∞ case.

Returning to (3.41), we see that for ε → 0, the correlation coefficient of the
limiting process is given by

r(ε) :=
Σ(ε)

Σ2
∼ 1− ε

2

[σ2 + 1]

C2
= 1− r1ε (say),(3.41)

with Σ2 := Σ(0) = 1 + (σ2 − 1)
∫∞
o

[1−B(τ)]2dτ .

(3.41) and [6, Equation 7.2] give a2[1− r(1
v)] = 1, and hence v(a) ∼ r1a

2.

From Berman [7], we can again deduce Γ′(0) = −1. Now [6, Equation 16.9]
computes u(t) from

r1u
2 te
−u2/2

√
2πu

∼ 1,

which leads to

u(t) ∼
√
C(t) +

log log t− log π + 2 log r1

2
√
C(t)

+ o

(
1√
C(t)

)
, t→∞.

(3.7) is still valid if we add log r1/
√
C(t). The mixing condition can be deduced from

Leadbetter et al. [37, Theorem 12.3.5].

We finally derive the following theorem.

Theorem 3.7. In the G/G/∞ case, if g(n) = o(n−2/3) and Σ(t) log t → 0,
t→∞ (Σ(t) is given by (3.41)), subcase (i) leads to

M ∼ n+
√
nC2

[
Z(n) +

log r1√
2ng(n)

]
+ o

(
1√
g(n)

)
, n→∞,

where Z(n) has the same distribution as in Theorem 3.1.

Theorem 3.2 now uses κ1 = µ3,Y (2ξ1)3/2/6.

1024 G. LOUCHARD, C. KENYON, AND R. SCHOTT

4. List structures’ maxima. In this section, we leave the world of queuing
theory models to enter that of combinatorial models for dynamic data structures.
More specifically, we are interested in file histories as invented by Françon and de-
veloped by Flajolet, Françon, and Vuillemin. The size of a dynamic data structure
increases by 1 with each insertion and decreases by 1 with each deletion. The suc-
cessive sizes as a function of time form a path on the plane, which starts at level 0
(the data structure is initially empty) and normally returns to 0 after a sequence of
n operations (insertions, deletions, or queries). A probability distribution is defined
by weighing the paths according to the data structure being studied. File histories
have been studied by Françon, Flajolet, Puech, Vuillemin, and Viennot in particu-
lar, and they have discovered beautiful links with orthogonal polynomials, continued
fractions, and various combinatorial objects. In [40] and [41], Louchard, Schott, and
Randrianarimanana developed a complete probabilistic analysis of these structures.
In [45], the average value of the height of the path (maximum size) was given for some
kinds of file histories. In this section, once again we look at the distribution of the
maximum size. Assume that the operations happen at times 1, 2, . . . , 2n. Our tech-
nique is based on the observation that the process can be decomposed into two simple
components. Let S(t) denote the size of the data structure at time t (1 ≤ t ≤ 2n).
Then S(t) = n(ỹ + Z(t)), where ỹ, the average size of the structure at time t, is a
fairly simple curve (for instance a concave parabola in our first subsection), and Z(t)
is a (small) Gaussian process.

4.1. Daniels’s fundamental result. All of the remaining results are based on
a general theorem by Daniels [14]. We want information about Maxt∈[0,1]Y (t), where
Y is a certain random process. Assume that Y (t) can be written as

Y (t) = z̃(t) + Z(t),

where z̃(t) is a certain deterministic curve and Z(t) is a random Gaussian process, of
covariance C(s, t). Note that z̃(t) is not random. Let M be the maximum of Y (t)
for t ∈ [0, 1] and t∗ be the first time at which the maximum M is reached. Thus we
can look for the hitting time of Z(t) to the absorbing boundary M − z̃(t). Near that
crossing point, Z(t) locally behaves like a Brownian motion (or a variant of one, such
as a Brownian bridge) [15]. It is also known that the hitting time and place densities
for a Brownian bridge can be deduced from the hitting time density for a Brownian
motion (see, for instance, Louchard [41] for a constant boundary and Csaki et al. [12]
for a general proof).

Suppose that we are looking at the maximum size of a data structure over a time
interval [0 . . . 1] when some parameter n goes to infinity (for instance, n might be the
number of operations). We will assume that z̃(t) satisfies

z̃(t) =
√
nz(t),

where z(t) is independent of n. (This assumption will be true for all of the applications
in this paper.) Moreover, assume that z(t) has a unique maximum, reached at time
t, with z(t) = 0. (Up to doing a translation, we can always assume that.)

Daniels has matched the local behavior of C(s, t) with the Brownian bridge covari-
ance near t [14]. From [14] and [13], we can deduce information about the maximum
M and the time t∗ when it is reached.

Notation. Let A and B be the constants defined by

A = [∂sC]t + |[∂tC]t| and B = (−z′′(t))−1/3.

DATA STRUCTURES’ MAXIMA 1025

Let

G(x) =
2−1/3

2πi

∫ i∞

−i∞
esx

ds

Ai(−21/3s)
,

where Ai is the classical Airy function, and let λ be the universal constant defined by

λ =

∫ ∞
−∞

[ex
3/6G(x)−max(x, 0)]dx ∼ 0.99615.

Let

u = n1/3A−1/3B−2(t∗ − t).

Theorem 4.1. With the above assumptions and notations, if [∂tC(s, t)]t ≤ 0 and
[∂sC(s, t)]t > 0, then we have the following:

1. M is asymptotically Gaussian with mean and variance{
E(M) =λBn−1/6A2/3 +O(n−1/3),
σ2(M) =C(t, t) +O(n−1/3).

2. The conditional maximum M |t∗ is asymptotically Gaussian with mean and
variance(M |t∗) =n−1/6A−1/3B

[
[∂sC]t

G′(−u)

G(−u)
+ |[∂tC]t|

G′(u)

G(u)

]
+O(n−1/3),

σ2(M |t∗) =C(t, t) +O(n−1/3).

3. The joined density of M and t∗ is given by

φ(M, t) =
2√

2πC(t, t)
e−M

2/2C(t,t)

{
G(t)G(−t) + n−1/6BA−1/3 M

C(t, t)

[[∂sC]tG(t)G′(−t) + |[∂tC]|tG(−t)G′(t)] +O(n−1/3)

}
.

4. u has density 2G(u)G(−u)[1 +O(n−1/3)].
Proof. A direct new proof is given in Appendix A using modern tools such as the

Radon–Nikodym derivative for some absolutely continuous probability measure (see
Salminen [50]).

4.2. File histories and list structure in the Markov model. A file history
represents the evolution of the size of a dynamic data structure by a path of length
2n = number of operations performed (insertions, queries, or deletions), going from
level 0 to level 0. In [45], the average value of the height of the path (i.e., the maximum
size) was given for some kinds of data structures, but only a rough equivalent was
found.

Here we study the example of priority file histories [22]. Other structures, such as
linear lists or dictionaries, could be analyzed with similar techniques. A priority list is
by definition a data structure on which no queries are performed: only insertions and
deletions occur, and, moreover, deletions happen only for the minimum. Thus when
a new item is inserted in a priority list of size k, there are (k + 1) intervals defined

1026 G. LOUCHARD, C. KENYON, AND R. SCHOTT

by the elements already present and to which the new item may belong, but when an
item is deleted, there is only one possible choice. This is reflected in the weights of
the paths; see [22].

Assume that there are 2n operations performed during the history, n insertions
and n deletions. Let Y (t) be the size of the data structure after the bntcth operations
(0 ≤ t ≤ 2). From Louchard [40], we know that

∀t,
Y (t)− 1

2nt(2− t)√
n

⇒ X(t) when n→∞,

where X(t) is a Markovian Gaussian process with mean 0 and covariance

C(s, t) =
s2(2− t)2

4
when s ≤ t.

The error term can be deduced for the various expansions in [40, Section 4]. It appears
that the relative error in the density is O(1/

√
n) (nonuniform in X). Thus in this

case, using the notations of Daniels’s theorem, we have z(t) = t(2− t)/2− 1/2, with
a maximum at t = 1 and z′′(t) = −1. Since the covariance here is a simple function,
we can easily apply the theorem, and we find the following.

Theorem 4.2. If Yn(t) denotes the size of a random priority file history of length
2n at time bntc, we have

E(MaxtYn(t)) ∼ n

2
+ λn1/3 +O(n1/6),

and, more generally,

MaxtYn(t) ∼ n

2
+
√
nM +O(n1/6)

is reached at time t∗, with M and t∗ given by Daniels’s theorem. We can prove that
the error term in the weak convergence to X(t) is negligible with the error in MaxY .

This is not the first example of applications of diffusion processes to computer
science. Other structures have been analyzed using Brownian excursions [42, 44] or
Brownian meandering; see [38] for height in planar trees and stack structures’ maxima.

5. Limiting profiles of list structures. In the last section, we analyzed the
distribution of the maximum of file histories. We can also get information on the
limiting profile, i.e., on how much time is spent at each level k (for k fixed and
n going to infinity). Our investigations are based on the assumption that the size
Y (bntc) of the list at time nt (with 0 ≤ t ≤ 2) satisfies a weak convergence property:

Y (bntc)− ny(t)√
n

⇒ X(t), 0 ≤ t ≤ 2,

where y is a symmetric function around 1 and X is a Gaussian process with mean
0 and known covariance C. In all applications to either classical or Knuth-type file
histories, this assumption is true.

Let k, the level under study, be fixed, and let t be the time such that y(t) = k/n,
with t < 1. If we consider the time u where Y first hits level k, the density of u is
given by

g(u)du = Pr{min{u′, Y ([nu′]) = k} ∈ du}

= Pr

{
min

{
u′, X(u′) =

√
n

(
k

n
− y(u′)

)}
∈ du

}
,

DATA STRUCTURES’ MAXIMA 1027

and so

u− t = O

(
1√
n

)
.

Thus we examine the behavior of Y near t. Locally, y can be approximated by a
straight line so that if y′(t) denotes the slope of y at t, we have

g(u)du ∼ Pr{min{u′, X(u′) =
√
n(t− u′)y′(t)} ∈ du}.

However, it is known that X behaves locally like a Brownian motion [15]. Using
classical results on the crossing time of a Brownian motion and a straight line (see
Cox and Miller [11, p. 221]) and an asymptotic analysis, we find that the density of
τ :=

√
n(u− t) is

y′(t)√
2πC(t, t)

e−(τy′(t))2/2C(t,t)dτ,

where C is the covariance of X. Thus u is a Gaussian variable centered at t.
We now study the total time spent at level k. Let p(u), q(u), and r(u) be the

probabilities that the next move on the list is an insertion, deletion, and q, respectively,
if we start at Y ([nu]) at time u. The random walk describing the evolution of the
data structure is transient, so the sojourn time is O(1). We can thus replace p(u) by
p(t̄) + O(1/n), etc. All distributions are affected by errors of order O(1/n). In the
neighborhood of t̄, we may consider p(u), q(u), and r(u) to be locally constant and
equal to the probabilities p, q, and r of insertion, deletion, and query at level k.

If the first step leaving level k is a deletion, we are sure of coming back to level
k (since t < 1). If it is an insertion, then the probability of ever returning to level k
is q/p. If we look at the whole file history after hitting level k, the history spends l
steps at level k, i steps inserting from k to k + 1, d steps deleting from k to k − 1,
plus various other operations at other levels.

Thus if F (z, w, v) is the joint multidimensional generating function

F (z, w, v) =
∑
i,d,l

Pr{l, i, d}zlwivd,

we have when n→∞ that

F (z, w, v) = qzvF (z, w, v) + pw

[
q

p
zF (z, w, v) +

(
1− q

p

)]
+ rzF (z, w, v),

which leads to

F (z, w, v) =
(p− q)w

1− qz(v + w)− rz .

All of the distributions that we need can be extracted from this equation. For
instance, the time ` spent at level k is characterized by (letting w = v = 1)

F`(z) =
p− q

1− (2q + r)z
,(5.1)

which shows that ` is a geometric r.v., with mean E(`) = (2q + r)/(p− q). The total
time spent at k has mean Ẽ` := 1 + E(`) = 1/(p− q).

1028 G. LOUCHARD, C. KENYON, AND R. SCHOTT

The number i of insertions steps from k is characterized by (letting z = v = 1)

Fi(w) =
(p− q)w
p− qw =

(1− q
p)w

1− w q
p

.

This gives

P (i = κ) =

(
1− q

p

)(
q

p

)κ−1

(for i ≥ 1)(5.2)

with mean

E(i) =
1

1− q
p

(5.3)

Finally, the number d of deletion steps from k is characterized by (letting z = w = 1)

Fd(v) =
p− q
p− qv =

1− q
p

1− v qp
,(5.4)

which shows that d is a geometric r.v. with mean

E(d) =

q
p

1− q
p

.(5.5)

5.1. Example: Classical priority queues. For priority queues, we have for
the average size at t

y(t) =
1

2
t(2− t),

and the covariance of X is given by C(s, t) = s2(2− t)2/4. Thus t = 1−
√

1− 2k/n,

and y′(t) =
√

1− 2k/n. Now adapting the proof of Lemma 13 in [41], we can prove
that

p = 1− t

2
+O

(
1

n

)
, q =

t

2
+O

(
1

n

)
, r = 0.

Then we find that

E(i) = E(d) =
1√

1− 2 kn

,

Ẽ` = 1 + E(`) =
2√

1− 2 kn

.

6. Hashing with lazy deletion. Hashing with lazy deletion was introduced
in [53] as a data structure suitable for example for line-sweep algorithms on a set of
segments of the plane. When a new item arrives (i.e., the line reaches the extremity of
a new segment), it is inserted in a random bucket of a separate hash table, along with
the x-coordinate of its right extremity. When an item “dies,” i.e., the line goes past
the right extremity of the segment, it is not removed from the data structure right
away but only at the time of a later insertion within the same bucket. This method
presents the advantage of minimizing the number of accesses to the hash table, at the
cost of some extra space used. In [53], several models of distribution are suggested
to analyze the extra space: two nonstationary models (which are quite similar to one
another so that we will only study the first one since we know that the same approach
works also for the other model) and one stationary model.

DATA STRUCTURES’ MAXIMA 1029

6.1. The first nonstationary model. In the first nonstationary model, there
are n segments in [0 . . . 1] drawn independently from the following distribution: seg-
ment s = [min(x, y),Max(x, y)], where x and y are uniform independent r.v.’s in
[0 . . . 1]. Thus the arrival-time density is 2n(1 − u)du and the lifetime z, conditional
on u, has density ndz/(1−u). To remove the conditionality, it is convenient to change
the time scale. Let the new time t be given by 1 − u = e−2t. It is easy to see that
the arrival times now have density 2e−2tdt, and the service times have unconditional
density e−tdt.

Two parameters are of interest here: Need(t), the number of items alive at time
t (which have to be present in the data structure); and Use(t), the number of items
which are actually present in the table at time t. Thus Waste(t) = Use(t) − Need(t)
counts the items that are dead but not yet deleted at time t.

6.1.1. Study of MaxtNeed(t). We note that Need(t) depends on n but not
on H. Our calculations are asymptotic when n, the total number of items, goes to
infinity. From Louchard [43, Theorem 1], we find that as n grows, Need(t) converges
to a Gaussian process:

Need(t)− nzNeed(t)√
n

⇒ Q(t),

where zNeed(t), the probability that a given item is alive at time t, is defined by

zNeed(t) =

∫ t

0

2e−2ue−(t−u)du = 2e−t(1− e−t).

Q(t) is a Gaussian process with mean 0 and covariance

C(s, t) = 2e−t(1− e−s)− 4e−t(1− e−t)e−s(1− e−s)

if s ≤ t. It is easy to check that zNeed(t) is maximized at t = ln 2, where its value is
1/2. Thus we can rewrite the convergence as

Need(t) ∼
√
n

[√
n

2
+Q(t) +

√
n

(
zNeed(t)− 1

2

)]
,

and, applying Daniels’s theorem, we obtain the following result after some algebra.
Theorem 6.1.

MaxtNeed(t) ∼ n

2
+
√
nM +O(n1/6),

where M is characterized by the Theorem 3.1 in section 3.1, with A = 1, B = 1,
C(t, t) = 1/4, [∂sC]t = 1/2 and [∂tC]t = −1/2.

6.1.2. Study of MaxtUse(t). Use(t) depends heavily on the number of buck-
ets. The largerH is compared to n, the more discrepancy there is between MaxtNeed(t)
and MaxtUse(t). We assume that the number H of buckets also goes to infinity, and
there are two cases: either H = rn, with r fixed, or H = α(n)n, with α(n)→ 0.

We must now study M = MaxtUse(t). Let Waste(k) be the time during which
customer k was dead but not yet deleted. The distribution of Waste(k) is known:

Pr{Wastek > t− y} =

[
1− e−2t − e−2y

H

]n−1

.

1030 G. LOUCHARD, C. KENYON, AND R. SCHOTT

If H = rn, this gives

Pr[Wastek ≥ t− y] ∼ e−p(t,y)/r

[
1 +O

(
1

n

)]
,(6.1)

where p(t, y) = e−2t − e−2y.
Modifying the proof of Theorem 1 in [43] slightly (the error term from (6.1) leads

to O(1/n3/2), similar to the other error terms of our proof), we see that

Use(t)− nz(t)√
n

⇒ Q(t),

where Q(t) is a Gaussian process with mean 0 and nz(t) is the average number of
items in use at time t: z(t) is the probability that a fixed item is in use at time t. The
item is alive at time t if it arrived at u < t and lived for more than t − u; it is dead
but not deleted at time t if it arrived at time u, died at time y < t, and was in waste
for longer than t− y. Thus approximating Wastek, we get

z(t) =

∫ t

0

2e−2ue−(t−u)du+

∫ t

0

2e−2udu

∫ t

u

e−(y−u)e−(e−2y−e−2t)/rdy.

The limit process Q(t) has mean 0, and we must calculate its covariance. Let ηi(s)
be the random variable, which is 1 if customer i is in use at time s and 0 otherwise.
Then the number Use(s) of customers in use at time s satisfies

Use(s) =
∑

1≤i≤n
ηi(s).

Thus the covariance is given by

Cov(Use(s)Use(t)) =
∑

1≤i≤n
E(ηi(s)ηi(t)) + 2

∑
i<j

E(ηi(s)ηj(t))− n2z(s)z(t)

for s ≤ t. The first part of the sum can be expressed easily as a sum of integrals. The
second term depends on whether or not i and j are in the same bucket (events which
have probabilities 1/H and 1− 1/H). After careful development in 1/n, we obtain

Cov(Use(s)Use(t))

= n

[
2e−t(1− e−s) +

∫ s

0

2e−2udu

∫ t

u

e−(y−u)e−
e−2y−e−2t

r dy

+ η(s)z(t) + η(t)z(s)− η(s)η(t)

+
1

r

∫ s

0

2e−2udu

∫ t

0

2e−2vdv

∫ s

u

e−(x−u)dx

∫ t

v

e−(y−v)dye−A([xs]∪[yt])/r1[u6∈{y,t}]∩[v 6∈{x,s}]

− 1

r

∫ s

0

2e−2udu

∫ s

u

e−(y−u)e−(e−2y−e−2s)/rdy

∫ t

0

2e−2udu

∫ t

u

e−(y−u)e−(e−2y−e−2t)/rdy

− z(s)z(t)
]

+O(1),

where z(t) is given as above, η(s) is defined by

η(s) =

∫ s

0

2e−2udu

∫ s

u

e−(x−u)e−(e−2x−e−2s)/r e
−2x − e−2s

r
dx,

DATA STRUCTURES’ MAXIMA 1031

and A([xs]∪ [yt]) is the measure of the union of intervals [xs] and [yt] in the distribu-
tion A(x) = 1− e−2x.

To apply Daniels’s theorem, we must find t such that z′(t) = 0. From [53], it is
known that t exists only if r < 0.84.

If r < 0.84, we can apply Daniels’s theorem. If r ≥ 0.84, we know from Iglehart
[30] that Maxs≤tUse(s) is asymptotically distributed as Use(t). Letting t go to infinity
gives an equivalent of the maximum.

Finally, we have the following result.

Theorem 6.2. Assume that H = rn.

1. If r ≥ 0.84, then

MaxtUse(t) ∼ Cn+
√
n
√
C(1− C) + C ′X,

where X = N (0, 1) is the classical Gaussian random variable, C is defined to be

2
∫∞

0
e−x(1 − e−x)e−e

−2x/rdx, and C ′ (which can be evaluated numerically) is given
by

C ′ = 2η(∞)z(∞)− η2(∞)

+
1

r

∫ ∞
0

2e−2udu

∫ ∞
0

2e−2vdv

∫ ∞
u

e−(x−u)dx∫ ∞
v

e−(y−v)dye−A([xs]∪[yt])/rI[[u 6∈ {y, t}] ∩ [v 6∈ {x, s}]]

− 1

r

[
2

∫ ∞
0

e−x(1− e−x)e−e
−2x/rdx

]2

.

2. If r < 0.84, then

MaxtUse(t) ∼ n[2e−t(1− e−t) + r] +
√
nM +O(n−1/6),

where t is the solution of

2

∫ t

0

e−x(1− e−x)e−(e−2x−e−2t)/rdx = r

and M is given by Daniels’s theorem, with B = [4e−3t(1− 2e−t)/r]−1/3, and C(t, t),
[∂sC]t and [∂tC]t can be written in terms of complicated multiple integrals.

In the case where H = α(n)n with α(n)→ 0, the arrival times in a bucket behave
in first approximation like a Poisson process by classical sample distribution analysis.
Our goal here is again to apply Daniels’s theorem. At each step of the calculation, we
write the quantities as power series in α so that we can neglect high powers of α, and
the expressions remain simple enough. Apart from some technical complications, the
approach is the same as for the case where H = rn. Our calculations are accurate if
α(n) = o(1/

√
n). If α(n) decreased more slowly than that, it would still be possible

to get some results, but that would require writing the power series more accurately.

Theorem 6.3. Let H = α(n)n, with α(n) = o(1/
√
n). Then we have

MaxtUse(t) ∼ n
(

1

2
+ α− 2α2 +O(α3)

)
+
√
nM +O(n−1/6),

1032 G. LOUCHARD, C. KENYON, AND R. SCHOTT

where M , given by Daniels’s theorem, is asymptotically Gaussian, with mean

E(M) = 0.99615n−1/622/3 +O(n−1/3).

We have A = 2 +O(α), B = 1 +O(α), and

C(t, t) =
1

4
+ 2α+O(α2),

[∂sC]t = 1 +O(α),

[∂tC]t = −1 +O(α).

Sketch of proof. The local rate of the arrival times Poisson process is given by
2ne−2t/H = 2e−2t/α(n). We must compute t̄ such that z̃′(t̄) = 0; this gives (we
omit the details) t̄ = log 2 + 2α − 2α2 + O(α3) and z̃(t̄) = 1/2 + α − 2α2 + O(α3),
z̃′′(t̄) = −1+8α+O(α2). From this point, the proof is the same as for the case where
H = rn.

6.2. The second nonstationary model. Van Wyk and Vitter [53] suggested
another nonstationary model, in which arrivals and deaths are not symmetric. Here
again n segments in [0 . . . 1] are drawn independently from a given distribution: seg-
ment [x . . . y] is constructed by drawing x uniformly in [0 . . . 1] and then drawing y
uniformly in [x . . . 1]. Up to a change of scale, we can assume that the densities of
the arrival and service times are e−tdt. Henceforth, the proof mirrors that of the
previous subsection. The only difference in the calculations is that the arrival times
have density e−tdt instead of 2e−2tdt so that there is no critical value like 0.84; there
is always a point at which z(t) is maximized.

Theorem 6.4.

MaxtNeed(t) ∼ n

e
+
√
nM +O(n1/6),

where M is characterized by Daniels’s theorem, with A = 2/e, B = (1/e)−1/3,
C(t, t) = (1− 1/e)/e, [∂sC]t = 1/e, and [∂tC]t = −1/e.

Theorem 6.5. If H = α(n)n, with α(n) = o(1/
√
n), then we have

MaxtUse(t) ∼ n
(

1

e
+ α+O(α2)

)
+
√
nM +O(n1/6),

where M is characterized by Daniels’s theorem, with A = 4/e+O(α), B = (1/e)−1/3+
O(α),

C(t, t) =
1

e

(
1− 1

e

)
+ 2α+O(α2),

[∂sC]t = 2/e+O(α), and [∂tC]t = −2/e+O(α).

DATA STRUCTURES’ MAXIMA 1033

7. Conclusion. Diffusion techniques allowed us to derive several new results on
data structures’ maxima. Many problems remain open and are the object of work in
progress. Let us mention the symbol table (the probabilistic properties of which are
unknown), the G/G/∞ case, with ln(λt) = Ω(λ). Let us mention that in a recent
report [3], Aldous, Hofri, and Szpankowski analyzed hashing with lazy deletion in the
stationary case and proved open conjectures introduced in [45] and [53].

Appendix A. A direct computation of Daniels’s formula. Daniels’s results
[13], [14] are based on the following hitting-time density for a Brownian motion X(t).

Let w(t) = m +
√
n f(t), with f(to) = f ′(to) = 0. Daniels obtained the density

(see Daniels and Skyrme [13])

g(t)dt = Pr[min(t′ : X(t′) = w(t′)) ∈ dt] =
e−

[w(t)]2

2t

√
2πt

µ(t) dt,(A.1)

where

µ(t) = n−1/3(2β)1/3F{n1/3[2β]2/3(t̄− t)}(1 +O(n−1/3))

with F given by (4.1), β := f ′′(t̄)/2, and t̄ is such that h′(t̄) = h(t̄)/t̄.
1. We will first extract all dominant terms from (A.1). As in Daniels and Skyrme

[13], set

x = n1/3(2β)2/3(t0 − t) = O(1).

They computed

t̄− to = n−1/2 m

t02β
+O(n−2/3),

so

t̄− t =
xn−1/3

(2β)2/3
+
n−1/2m

2βt0
+O(n−2/3).

Expanding G(x) as given in (4.1), we obtain

G(x) =
1

22/3

∞∑
k=o

e−λkx/2
1/3

A′i(λk)
,

where λk are the zeroes of Ai(x). A detailed expansion of (A.1) now leads to

(A.2)

g(t) =
(2β)1/3

√
2πto 22/3

exp

[
−m2

2t0
+
x3

6

] ∞∑
k=o

exp[−λk
21/3 (x+ m

to(2β)1/3n1/6)]

A′i(λk)
(1 +O(n−1/3)).

2. Such a simple formula as (A.2) should be explained in terms of direct hitting-
time density for a Brownian motion. This will be done with a technique introduced by
Salminen [50]. Let us first remark that to derive (A.2), it is enough to limit ourselves
to a second-order boundary (the error is within O(n−1/3)), so we can simply use

w(t) = m+
√
nβ(t− to)2

1034 G. LOUCHARD, C. KENYON, AND R. SCHOTT

with x̄ = w(0) = m+ β
√
n t2o. Our hitting problem can now be transformed into

g(t)dt = Prx̄[min(t′ : X(t′) = h(t′)) ∈ dt]

with h(t) = −
√
nβ(t − to)2 +

√
nβt2o such that h(0) = 0. This also gives h′(t) =

−2
√
nβ(t− to);h′′ = −2β

√
n.

By Salminen [50, Equations (2.6) and (3.9)], we now obtain

(A.3)

g(t) = 2

(
β
√
n

2

)2/3

exp

[
h′(0)x̄− 1

2

∫ t

o

[h′(s)]2ds

] ∞∑
k=o

eλk(2β2n)1/3t Ai[λk + 2(β
√
n

2)1/3x̄]

A′(λk)
.

However, h′(0) = 2
√
nβto and

−1

2

∫ t

o

[h′(s)]2ds = −
∫ t

o

2nβ2(s− to)2ds

= −2nβ2

[
(t− to)3

3
+
t30
3

]
=
x3

6
− 2nβ2t30

3
.

By Abramowitz and Stegun [1, Equation (10.4.59)] we know that for large z,

Ai(z) ∼
1

2
π−1/2z−1/4e−ξ

(
1 +O

(
1

ξ

))
with ξ := 2

3z
3/2.

From (A.3), we must use

z = λk + 22/3n2/3β4/3t2o + 22/3β1/3mn1/6

so that

ξ =
4

3
nβ2t3o

[
1 +

3

2

m

βt2o
√
n

+
3

8

m2

β2 t4o n
+

3

2

λk
22/3 n2/3 β4/3 t2o

+
3

4

mλk
β7/3 t4o 22/3 n7/6

](
1 +O

(
1

n1/3

))
.

Also, we deduce

λk(2β2n)1/3t = λk(2β2n)1/3to −
λkx

21/3
,

h′(0)x̄ = 2β
√
n tox̄ = 2β

√
nmto + 2nβ2t3o.

The identification of (A.3) with (A.2) is now routine.

Appendix B. Rate of convergence for G/G/∞. We prove that for G/G/∞
the asymptotic stationary distribution of Yn(t) := [Qn(t)−n]/

√
n has a Gaussian tail

(1−N(x)) if x3 = o(
√
n). We also analyze the correction term.

1. Let the renewal process associated with arrivals be An(t) (related parameters
are indexed by A, λA = 1); we count the origin as a renewal. Then it is well known
that the process

T ∗n(t) :=
An(t)− nt√

n

DATA STRUCTURES’ MAXIMA 1035

is asymptotically equivalent to a Brownian motion (with variance σ2
At). However,

we need some rate of convergence. We will detail only the 1/
√
n correction to the

distribution, but all terms could be obtained by the same method. Thus we write
T ∗n(t) as An(t)∑

`=1

(1− uA,`) + Zn(t)

√
n

,

where we set Zn(t) :=
∑An(t)
j=1 uA,j − nt (i.e., the residual waiting time).

By Feller [16, Chapter XI, Equation 4.10], we know that for large n, Zn(t) has a
stationary distribution with mean (1 + σ2

A)/2.
We must compute E[e−θT

∗
n(t)]. Now

Π(x) := Pr[An(t) ≤ r] = Pr[T r ≥ nt]

when T r is the total time for r arrivals and r = nt + x
√
n. Actually, the discrete

character of the process entails some correction. On first order, it is enough to set
r = nt+x

√
n−1/2. (We omit the details; this is similar to Euler summation formula

first correction.) We immediately obtain∫ ∞
0

e−θx
∫ ∞

0

e−wntΠ(x)dxd(nt) =

∫ ∞
0

e−θx
[1− er[ϕ1(−w)−w]]

w
dx,(B.1)

where ϕ1(s) := (1/2)s2σ2
A + (s3/6)µ3,A +O(s4).

(B.1) leads to

1

θw
− e[nt−1/2][ϕ1(−w)−w]

w[θ −
√
n(ϕ1(−w) + w)]

.

Thus the asymptotic Laplace transform ϕ2(θ) =
∫∞

0
e−θxΠ(dx) is given by

ϕ2(θ) = R 1

2πi

∫ c+i∞

c−i∞

[
1

w
+

θe(nt−1/2)[ϕ1(−w)−w]

w[
√
n(ϕ1(−w) + w)− θ]

]
(B.2)

with c to the right of integrand singularities.
The first term leads to 1. By classical residue analysis, the coefficient of (−θ) is

given by m1 ∼ (σ2
A + 1)/2

√
n, we recover Zn(t) mean (see also Feller [16, Chapter

XI, Equation 3.1]). The coefficient of θ2/2 is ∼ σ2
At. The third centered moment is

∼ µ̃3t/
√
n with µ̃3 = m3 − 3σ2

Am1 + 2m3
1 and m3t/

√
n is the coefficient of −θ3/6 in

(B.2). After computation, we obtain µ̃3 ∼ [3σ4
A − µ3,A]. Thus we derive

ϕ2(θ) ∼ exp

[
−θm1 +

θ2σ2
At

2
− θ3µ̃3t

(6
√
n)

+O

(
θ4

n

)]
.(B.3)

2. Let us turn to

Yn(t) :=
Qn(t)− Q̄n(t)√

n
.

We will analyze the stationary distribution, but k-dimensional distributions can be
treated similarly by tedious but routine algebra.

1036 G. LOUCHARD, C. KENYON, AND R. SCHOTT

Each customer arriving at time s induces at time t a survival probability 1−B(t−
s). Set γ := 1−B (γ(0) = 1). Thus the survival process has mean µ1,S := γ, variance
µ2,S := γ(1− γ), and third (centered) moment µ3,S := γ(1− γ)(1− 2γ) (all functions
with argument t− s). Then we can write

(B.4)

E[eiwYn(t)/
√
n]

= E

{
exp

[∫ t

0

[
iwµ1,S(t− s)√

n
− w2

2n
µ2,S(t− s) +

(iw)3

6n3/2
µ3,S(t− s) +O

(
w4

n

)]
dA(s)

− iw
√
n

∫ t

0

µ1(t− s)ds
]}

,

and we replace dA(s) by nds+
√
ndT ∗n(s).

Now using (B.5) in (B.3), we finally obtain for large t

E[eiwYn(t)/
√
n] ∼ exp

{
−w2

2

∫ ∞
0

µ2,S(t− s)ds+
(iw)3

6
√
n

∫ ∞
0

µ3,S(t− s)ds

− σ2
A

2

∫ ∞
0

[
wµ1,S(t− s)− w2

2i
√
n
µ2,S(t− s)

]2

ds

+
i3µ̃3

6
√
n

∫ ∞
0

[wµ1,S(t− s)]3ds+O

(
w4

n

)}
·

· E
[
exp

[
i√
n

∫ ∞
0

wµ1(t− s)dZ(t− s)
]]
.

Of course, we rediscover the classical asymptotic variance of Yn(t), t→∞,

σ2
Y =

∫ ∞
0

µ2,S(t− s)ds+

∫ ∞
0

σ2
Aµ

2
1,S(t− s)ds.

The third centered moment of Yn(t) is given by µ3,Y /
√
n, with

µ3,Y :=

[∫ ∞
0

[µ3,S(t− s) + 3σ2
Aµ1,S(t− s)µ2,S(t− s) + µ̃3µ

3
1,S(t− s)]ds

]
.

The mean
√
nmQ(mQ =

∫∞
0
µ1,S(t − s)ds = 1/µS) of Qn(t)/

√
n is now affected by

an O(1/
√
n) term that we can obtain as follows:

E

[∫ ∞
0

µ1,S(t− s)dZ(t− s)
]

= E

[
Z(t)−

∫ ∞
0

f(t− s)Z(t− s)
]
.(B.5)

Returning to the original scale, we set s = v/n; the last term of (B.5) gives

E

[∫ ∞
0

f
(
t− v

n

)
Z
(
t− v

n

) dv
n

]
,

and by the ergodic theorem, this gives (1/2)E(uA) = 1/2. Also, from [16, Chapter
XI, Equation 4.10], E[Z(t)] ∼ (1 + σ2

A)/2. The final O(1/
√
n) correction to

√
nmQ is

given by

(1 + σ2
A/2)√
n

.

DATA STRUCTURES’ MAXIMA 1037

3. We are now ready for a large-deviation analysis of the tail of the Yn(t) distribu-
tion. We will only consider the situation where Yn(t) is large but o(

√
n). Since we have

the first moments of Yn(t), we can write a Thiele expansion of E[−ξQn(t)/
√
n](ξ > 0)

(the r.v. is positive); this gives e−ξ
√
nmY eϕ3(−ξ), with

ϕ3(s) :=
1

2
s2σ2

Y +
s3

6

µ3,Y√
n

+O

(
s4

n

)
= nΨ

(
s√
n

)
say,

with

Ψ(s) :=
1

2
s2σ2

Y +
s3

6
µ3,Y +O(s4).

We will use Feller’s [16, Chapter XVI] notation, but we cannot proceed as in [16,
Equation 7.6] because we do not deal with a sum of n r.v.’s. Nevertheless, a saddle-
point method will provide an equivalent. Let F̃ be the d.f. of Qn(t)/

√
n. We are

interested in

1− F̃ (xσY +
√
nmQ) = R

(
1

2πi

∫ +i∞

−i∞
[1− e−

√
nmQξ+ϕ3(−ξ)]eξ[

√
nmQ+σY x] dξ

ξ

)
.

Set ξ = −s
√
n. We obtain

R
[

1

2πi

∫ −i∞
+i∞

[e−nmQs − enΨ(s)]e−sσY x
√
n ds

s

]
.(B.6)

We will soon see that our saddle point s∗ is positive and of order x/
√
n.

We write log[−e−nmQs + enΨ(s)] as

nΨ(s) + log[1− e−n[smQ+Ψ(s)]].

The saddle point s∗ of (B.6) is solution of

nΨ′(s∗)−
√
nxσY +

n[mQ + Ψ′(s∗)]e−n[s∗mQ+Ψ(s∗)]

1− e−n[s∗mQ+Ψ(s∗)]
.(B.7)

After a detailed analysis, the solution of (B.7) is checked to be the solution of nΨ′(s∗)−√
nxσY up to exponential small terms O(e−

√
nx), which is exactly equation (7.8) of

[16, Chapter XVI].
By a standard saddle-point analysis, (B.6) finally leads to

e[nΨ(s∗)−
√
ns∗σY x]

√
2πs∗

√
nΨ′′(s∗)

,

which is exactly [16, Equation (7.11)]. (Use the classical Gaussian tail.) Thus [16,
Theorem 2] is still applicable. If x3 = O(

√
n), we can compute a first correction to

the Gaussian tail depending on µ3,Y ; we obtain

1− F̃ (xσY +
√
nmQ) ∼ [1−N(x)] exp

(
µ3,Y x

3

6
√
nσ3

Y

)
.

Appendix C. Sojourns and extremes of stationary processes. The content
of this section is from Berman [6].

1038 G. LOUCHARD, C. KENYON, AND R. SCHOTT

Theorem C.1 (Sojourn limit theorem; [6, Theorem 3.1]). Let X(t), −∞ <
t < +∞, be separable, measurable, and stationary. Suppose that the following two
conditions hold:

(i) There exists a measurable process Z(t), −∞ < t < +∞, with continuous
finite-dimensional distributions and functions v = v(u) and w = w(u), u > 0, with
limu→∞ v(u) =∞ such that the finite-dimensional distributions of the process

w(u)

(
X

(
t

u

)
− u
)
, −∞ < t < +∞,(C.1)

conditioned by X(0) > u converge to those of Z(t).
(ii) The function v satisfies

lim
d→∞

lim sup
u→∞

v

∫ t

d/v

P (X(s) > u | X(0) > u)ds = 0

for 0 < t ≤ T for some T > 0. Define

Γ(x) = P

(∫ ∞
0

1[Z(s)>0]ds > x

)
, x > 0.

Then

lim
u→∞

∫ ∞
x

P (vLt(u) > y)

E(vLt(u))
dy = Γ(x)

at all continuity points x > 0 of Γ for 0 < t ≤ T .
If

lim
u→∞

1− F (u+ x
w)

1− F (u)
= e−x, −∞ < x <∞,

the function w is then necessarily of the form

w(u) =
1− F (u)∫∞

u
(1− F (x))dx

.

If f(x) = F ′(x) exists and is nonincreasing for all sufficiently large x, then w may be
taken as

w(u) =
f(u)

1− F (u)
.

Theorem C.2 ([6, Theorem 5.2]). Let X(t) be a stationary process with the
marginal distribution function F satisfying conditions lim(1−F (u+ x

w))/(1−F (u)) =
e−x; and w(u) = f(u)/(1− F (u)). Consider the process

w ·
(
X

(
t

v

)
−X(0)

)
, −∞ < t < +∞,(C.2)

conditioned by

X(0) = u+
y

w
,

DATA STRUCTURES’ MAXIMA 1039

Suppose that there is a measurable function µ(t, x) of (t, x) such that the following
hold:

(i) There exists a process V (t), −∞ < t < +∞, with continuous finite-dimensional
distributions such that the finite-dimensional distributions of the process

w ·
[
X

(
t

v

)
− µ

(
t

v
;u+

y

w

)]
, −∞ < t < +∞,

suitably conditioned, converge to those of V (t) for any fixed real y.
(ii) There is a function m(t) not depending on y such that

lim
u→∞

w ·
[
µ

(
t

v
, u+

y

w

)
−
(
u+

y

w

)]
= m(t) for −∞ < t, y <∞.

Then the finite-dimensional distributions of process (C.2), conditioned by X(0) =
u+ y

w , converge to those of the process V (t) +m(t), and so Z(t) in the sojourn limit
theorem is of the form

Z(t) = V (t) +m(t) + η,

where η is a random variable with an exponential distribution, and is independent of
the process V .

Let X(t), −∞ < t <∞, be a stationary Gaussian process with mean 0, variance
1, and continuous covariance function r(t). Here F is the standard normal distribution
function Φ and φ(x) is the density function. Φ is in the domain of attraction of the
extreme-value distribution function Λ, and according to (4.3) and the well-known
asymptotic formula for the tail of the normal distribution, we have

w(u) =
φ(u)

1− Φ(u)
∼ u for u→∞.

It follows that the sojourn time theorem is valid for stationary Gaussian processes of
a very general type on an interval [0, t], where t is sufficiently small.

We will assume that 1 − r(t) is regularly varying of index α for some 0 < α ≤ 2
for t→ 0. Define v = v(u) as the largest solution of the equation u2(1− r(1/v)) = 1;
then it follows from the regularity property that

u2

(
1− r

(
t

v

))
→ tα for u→∞.

Under some regularity conditions (which are satisfied by our processes X(t)), the
maximum limit theorem gives

lim
u→∞

P (max[0,t]X(s) > u)

vt(1− F (u))
= −Γ′(0)

For general stationary processes (not necessarily Gaussian), we take u(t) as the solu-
tion of

v(u)t(1− F (u)) = 1.

1040 G. LOUCHARD, C. KENYON, AND R. SCHOTT

Theorem C.3 ([6, Theorem 19.1]). For all sufficiently large t, let u = u(t) and
v = v(t) be defined as above, and let w = w(u(t)) be defined as before and satisfy

lim
u→∞

uw(u) =∞

and

lim
u→∞,u′→∞,u/u′→1

(
w(u)

w(u′)

)
= 1.

Let v satisfy v(u′)/v(u)→ 1, u→∞. Then under some regularity conditions (which
are satisfied by our processes X(t))

lim
t→∞

P

{
w

(
max
[0,t]

X(s)− u
)
≤ x

}
= exp(Γ′(0)e−x),

for every x.

Acknowledgments. We thank Ph. Flajolet for helpful discussions on this topic
and the anonymous referees for pertinent comments. Maple was of great help for
computing complicated expressions.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover, New York, 1965.

[2] D. Aldous, Probability Approximations via the Poisson Clumping Heuristic, Springer-Verlag,
Berlin, 1989.

[3] D. Aldous, M. Hofri, and W. Szpankowski, Maximum size of a dynamic data structure:
Hashing with lazy deletion revisited, SIAM J. Comput., 21 (1992), pp. 713–732.

[4] C. W. Anderson, Extreme value theory for a class of discrete distributions with applications
to some stochastic processes, J. Appl. Probab., 7 (1970), pp. 99–113.

[5] S. M. Berman, Limiting distribution of the maximum of a diffusion process, Ann. Math.
Statist., 35 (1964), pp. 319–329.

[6] S. M. Berman, Sojourns and extremes of stationary processes, Ann. Probab., 10 (1982), pp.
1–46.

[7] S. M. Berman, Sojourns and extremes of a diffusion process on a fixed interval, Adv. Appl.
Probab., 14 (1982), pp. 811–832.

[8] S. M. Berman, Sojourns and Extremes of Stochastic Processes, Wadsworth and Brooks, Bel-
mont, CA, 1992.

[9] P. Billinsley, Convergence of Probability Measures, John Wiley, New York, 1968.
[10] J. W. Cohen, The Single Server Queue, revised ed., North–Holland, Amsterdam, 1982.
[11] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Chapman and Hall, London,

1965.
[12] E. Csaki, A. Földes, and P. Salminen, On the joint distribution of the maximum and its

location for a linear diffusion, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), pp.
179–194.

[13] H. E. Daniels and T. H. R. Skyrme, The maximum of a random walk whose mean path has
a maximum, Adv. Appl. Probab., 17 (1985), pp. 85–99.

[14] H. E. Daniels, The maximum of a Gaussian process whose mean path has a maximum, with
an application to the strength of bundles of fibres, Adv. Appl. Probab., 21 (1989), pp.
315–333.

[15] J. Durbin, The first-passage density of a continuous Gaussian process to a general boundary,
J. Appl. Probab., 22 (1985), pp. 99–122.

[16] W. Feller, Introduction to Probability Theory and Its Applications, Vol. II, John Wiley, New
York, 1971.

[17] P. Flajolet, J. Françon, and J. Vuillemin, Sequence of operations analysis for dynamic
data structures, J. Algorithms, 1 (1980), pp. 111–141.

DATA STRUCTURES’ MAXIMA 1041

[18] P. Flajolet and H. Prodinger, Register allocation for unary-binary trees, SIAM J. Comput.,
15 (1986), pp. 629–640.

[19] P. Flajolet and J. M. Steyaert, A branching process arising in dynamic hashing, trie search-
ing and polynomial factorization, in Proc. 9th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Comput. Sci. 140, Springer-Verlag, Berlin,
1982, pp. 239–251.

[20] P. Flajolet, Approximate counting: A detailed analysis, BIT, 25 (1985), pp. 113–134.
[21] P. Flajolet, M. Regnier, and R. Sedgewick, Some uses of the Mellin integral transform in

the analysis of algorithms, Rapport de Recherche 398, INRIA, Le Chesnay, France, 1985.
[22] P. Flajolet, C. Puech, and J. Vuillemin, The analysis of simple list structures, Inform.

Sci., 38 (1986), pp. 121–146.
[23] P. Flajolet, and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete

Math., 3 (1990), pp. 216–240.
[24] J. Françon, Combinatoire des structures de données, thèse de doctorat d’etat, Université de

Strasbourg, Strasbourg, France, 1979.
[25] J. Françon, B. Randrianarimanana, and R. Schott, Analysis of dynamic algorithms in

Knuth’s Model, Theoret. Comput. Sci., 72 (1990), pp. 147–167.
[26] C. C. Heyde, On the growth of the maximum queue length in a stable queue, Oper. Res., 19

(1970), pp. 447–452.
[27] D. L. Iglehart, Limiting diffusion approximations for the many server queue and the repair-

man problem, J. Appl. Probab., 2 (1965), pp. 429–441.
[28] D. L. Iglehart, Weak convergence in queuing theory, Adv. Appl. Probab., 5 (1973), pp. 570–

594.
[29] D. L. Iglehart, Weak convergence of compound stochastic process I, Stochastic Process. Appl.,

1 (1973), pp. 11–31.
[30] D. L. Iglehart, Extreme values in the GI/G/1 queue, Ann. Math. Statist., 43 (1972), pp.

627–635.
[31] D. Jaeschke, The asymptotic distribution of the supremum of the standardized empirical

distribution function on subintervals, Ann. Math. Statist., 7 (1979), pp. 108–115.
[32] P. Jacquet, B. Rais, and W. Szpankowski, Compact suffix trees resemble particia tries:

Limiting distribution of depth, SIAM J. Discrete Math., 6 (1993), pp. 197–213.
[33] P. Jacquet and W. Szpankowski, Analysis of digital tries with Markovian dependency, IEEE

Trans. Inform. Theory, 37 (1991), pp. 1470–1475.
[34] N. L. Johnson and S. Kotz, Distribution in Statistics: Continuous Univariate Distributions,

John Wiley, New York, 1970.
[35] J. Keilson and H. F. Ross, Passage Time Distributions for Gaussian Markov (Ornstein–

Uhlenbeck) Statistical Processes, Selected Tables in Mathematical Statistics III, AMS,
Providence, RI, 1975.

[36] D. E. Knuth, Deletions that preserve randomness, Trans. Software Engrg., SE-3 (1977), pp.
351–359.

[37] M. R. Leadbetter, G. Lindgreen, and H. Rootzen, Extremes and Related Properties of
Random Sequences and Processes, Springer-Verlag, Berlin, 1983.

[38] G. Louchard, Brownian motion and algorithm complexity, BIT, 26 (1986), pp. 17–34.
[39] G. Louchard, Exact and asymptotic distributions in digital and binary search trees, Theoret.

Inform. Appl., 21 (1987), pp. 479–496.
[40] G. Louchard, Random walks, Gaussian processes and list structures, Theoret. Comput. Sci.,

53 (1987), pp. 99–124.
[41] G. Louchard, R. Schott, and B. Randrianarimanana, Dynamic algorithms in D. E.

Knuth’s model: A probabilistic analysis, Theoret. Comput. Sci., 93 (1992), pp. 201–225.
[42] G. Louchard, Kac’s formula, Levy’s local time and Brownian excursion, J. Appl. Probab., 21

(1984), pp. 479–499.
[43] G. Louchard, Large finite population queuing systems, part I: The infinite server model,

Comm. Statist. Stochastic Models, 4 (1988), pp. 473–505.
[44] G. Louchard and R. Schott, Probabilistic Analysis of Some Distributed Algorithms; Random

Structures Algorithms, 2 (1991), pp. 151–186.
[45] C. Mathieu-Kenyon and J. S. Vitter, General methods for the analysis of the maximum

size of dynamic data structures, SIAM J. Comput., 20 (1991), pp. 807–823.
[46] J. Morrison, L. A. Shepp, and C. J. Van Wyk, A queuing analysis of hashing with lazy

deletion, SIAM J. Comput., 16 (1987), pp. 1155–1164.
[47] B. Randrianarimanana, Complexité des structures de données dynamiques, thèse de doctorat,

Université de Nancy 1, Vandoeuvre-lès-Nancy, France, 1989 (in French).
[48] J. S. Sadowsky and W. Szpankowski, The probability of large queue lengths and waiting

1042 G. LOUCHARD, C. KENYON, AND R. SCHOTT

times in a heterogeneous multiserver queue, part I: Tight limits, Adv. Appl. Probab., 27
(1995), pp. 532–566.

[49] J. S. Sadowsky and W. Szpankowski, Maximum queue length and waiting time revisited:
GI/GI/c queue, Problems Engrg. Inform. Sci., 6 (1992), pp. 157–170.

[50] P. Salminen, On the first hitting time and the last exit time for a Brownian motion to/from
a moving boundary, Adv. Appl. Probab., 20 (1988), pp. 411–426.

[51] R. F. Serfozo, Extreme values of birth and death processes and queues, Stochastic Process.
Appl., 27 (1988), pp. 291–306.

[52] R. F. Serfozo, Extreme values of queue length in M/G/1 and G/M/1 systems, Math. Oper.
Res., 13 (1988), pp. 349–357.

[53] C. J. Van Wyk and J. S. Vitter, The complexity of hashing with lazy deletion, Algorithmica,
1 (1986), pp. 17–29.

ORACLES THAT COMPUTE VALUES∗

STEPHEN FENNER† , STEVEN HOMER‡ , MITSUNORI OGIHARA§ , AND ALAN SELMAN¶

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1043–1065, August 1997 007

Abstract. This paper focuses on complexity classes of partial functions that are computed
in polynomial time with oracles in NPMV, the class of all multivalued partial functions that are
computable nondeterministically in polynomial time. Concerning deterministic polynomial-time re-
ducibilities, it is shown that

1. a multivalued partial function is polynomial-time computable with k adaptive queries to
NPMV if and only if it is polynomial-time computable via 2k − 1 nonadaptive queries to NPMV;

2. a characteristic function is polynomial-time computable with k adaptive queries to NPMV
if and only if it is polynomial-time computable with k adaptive queries to NP;

3. unless the Boolean hierarchy collapses, for every k, k adaptive (nonadaptive) queries to
NPMV are different than k + 1 adaptive (nonadaptive) queries to NPMV.

Nondeterministic reducibilities, lowness, and the difference hierarchy over NPMV are also studied.
The difference hierarchy for partial functions does not collapse unless the Boolean hierarchy collapses,
but, surprisingly, the levels of the difference and bounded query hierarchies do not interleave (as is
the case for sets) unless the polynomial hierarchy collapses.

Key words. computational complexity, complexity classes, relativized computation, bounded
query classes, Boolean hierarchy, multivalued functions, NPMV

AMS subject classifications. 68Q05, 68Q10, 68Q15, 03D10, 03D15

PII. S0097539793247439

1. Introduction. In this paper, we study classes of partial functions that can
be computed in polynomial time with the help of oracles that are themselves partial
functions. We want to know whether there is a difference between computing with
function oracles and computing with set oracles. Specifically, we investigate classes
of partial functions that can be computed in polynomial time with oracles in NPMV
and NPSV, that is, the classes PFNPMV and PFNPSV.

NPMV is the set of all partial multivalued functions that are computed nonde-
terministically in polynomial time, and NPSV is the set of all partial functions in this
class that are single-valued. NPMV captures the complexity of computing witnesses
to problems in NP. For example, let sat denote the partial multivalued function
defined by sat(x) maps to a value y if and only if x encodes a formula of proposi-
tional logic and y encodes a satisfying assignment of x. Then sat belongs to NPMV,
and the domain of sat (i.e., the set of all words x for which the output of sat(x) is
nonempty) is the NP-complete satisfiability problem, SAT. Also, NPMV captures

∗ Received by the editors April 14, 1993; accepted for publication (in revised form) August 17,
1995.

http://www.siam.org/journals/sicomp/26-4/24743.html
† Department of Computer Science, University of Southern Maine, Portland, ME 04103

(fenner@cs.usm.maine.edu). The research of this author was partially supported by National Science
Foundation grants CCR-9209833 and CCR-9501794.
‡ Department of Computer Science, Boston University, Boston, MA 01003 (homer@cs.bu.edu).

The research of this author was partially supported by National Science Foundation grants CCR-
9103055, CCR-9400229, and INT-9123551.
§ Department of Computer Science, University of Rochester, Rochester, NY 14627 (ogihara@

cs.rochester.edu). The research of this author was done while visiting at the Department of Com-
puter Science, State University of New York at Buffalo, Buffalo, NY 14260 and while affiliated with
Department of Computer Science, University of Electro-Communications, Tokyo, Japan and was par-
tially supported by National Science Foundation grants CCR-9002292 and NSF-INT-9116781/JSPS-
ENGR-207.
¶ Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260

(selman@cs.buffalo.edu). The research of this author was partially supported by National Science
Foundation grants CCR-9002292, INT-9123551, and CCR-9400229.

1043

1044 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

the complexity of inverting polynomial-time honest functions. To wit, the inverse of
every polynomial-time honest function belongs to NPMV, and the inverse of every
one–one polynomial-time honest function belongs to NPSV.

The class of partial functions with oracles in NP, namely, PFNP has been well
studied [13], as have been the corresponding class of partial functions that can be
computed nonadaptively with oracles in NP, viz PFNP

tt [15], and the classes of partial
functions that are obtained by limiting the number of queries to some value k ≥ 1,

namely, PFNP[k] and PF
NP[k]
tt [2, 1]. A rich body of results is known about these

classes.

Here we raise the question “What is the difference between computing with an
oracle in NPMV versus an oracle in NP?” The answer is not obvious. If the partial
function sat is provided as an oracle to some polynomial-time computationM , then on
a query x, where x encodes a satisfiable formula of propositional logic, the oracle will
return some satisfying assignment y. However, if the oracle to M is the NP-compete
set SAT, then to this query x, the oracle will only return a Boolean value “yes.” On
the other hand, by the well-known self-reducibility of SAT, M could compute y for
itself by judicious application of a series of adaptive queries to SAT. Indeed, Theorem
2.4 states that unbounded access to an oracle in NPMV is no more powerful than
such an access to an oracle in NP. However, in section 3 we will see that the situation
for bounded query classes is much more subtle. In general, function oracles cannot
be replaced by set oracles—but set oracles are still useful. We will show that every
partial multivalued function in PFNPMV[k] can be computed by a partial multivalued
function of the form f ◦ g, where f is in NPMV and g is a single-valued function
belonging to PFNP[k]. Moreover, most surprisingly, the relationship between access to
an oracle in NPMV and access to an oracle in NP is tight regarding set recognition;
that is, PNPMV[k] = PNP[k]. This means that when we are computing characteristic
functions, k bounded queries to an oracle in NPMV give no more information than
the same number of queries to an oracle in NP.

We will show that the levels of the nonadaptive and adaptive bounded query
hierarchies interleave (for example, k adaptive queries to a partial function in NPMV
are equivalent to 2k − 1 nonadaptive queries to a partial function in NPMV), and we
will show that these bounded query hierarchies collapse only if the Boolean hierarchy
collapses.

In section 4, we study nondeterministic polynomial-time reductions to partial
functions in NPMV. Unlike the case for deterministic functions, we will see that just
one query to an NP oracle can substitute for an unbounded number of queries to
any partial function in NPMV. The hierarchy that is formed by iteratively applying
NP reductions is an analogue of the polynomial hierarchy, and we will show that this
hierarchy collapses if and only if the polynomial hierarchy collapses.

In section 5, we will study the difference hierarchy over NPMV. We define f − g
to be a partial multivalued function that maps x to y if and only if f maps x to y and
g does not map x to y, and we define NPMV(k) = {f1− (f2− (· · ·−fk)) | f1, . . . , fk ∈
NPMV}. Since the properties of the bounded query hierarchies over NPMV are largely
similar to those over NP, one might hope that the same thing happens here—that the
difference hierarchy over NPMV and the difference hierarchy over NP are similar.
However, the contour of this hierarchy is, to our astonishment, totally different than
its analogue for NP. Although BH =

⋃
kNP(k) ⊆ PNP, with no assumption, we will

show that NPMV(2) is included in PFNPMV if and only if PH = ∆P
2 . Also, in this

section, we will introduce the notion of NPMV-lowness, and we will give a complete

ORACLES THAT COMPUTE VALUES 1045

characterization of NPMV-lowness.
Consideration of reduction classes with oracles in NPSV, to be studied in section

6, is motivated in part by a desire to understand how difficult it is to compute sat-
isfying assignments for satisfiable formulas. We take the point of view that a partial
multivalued function is easy to compute if for each input string in the domain of the
function, some value of the function is easy to compute. For this reason, we define
the following technical notions. Given partial multivalued functions f and g, define g
to be a refinement of f if dom(g) = dom(f) and for all x ∈ dom(g) and all y, if y is a
value of g(x), then y is a value of f(x). Let F and G be classes of partial multivalued
functions. Purely as a convention, if f is a partial multivalued function, we define
f ∈c G if G contains a refinement g of f , and we define F ⊆c G if for every f ∈ F ,
f ∈c G. This notation is consistent with our intuition that F ⊆c G should entail that
the complexity F is not greater than the complexity of G. Let PF denote the class
of partial functions that are computable deterministically in polynomial time. The
assertion “NPMV ⊆c PF” means that every partial multivalued function in NPMV
has a refinement that can be computed efficiently by some deterministic polynomial-
time transducer. It is well known that sat ∈c PF if and only if NPMV ⊆c PF if
and only if P = NP [15]. Thus one does not expect that sat ∈c PF. Is sat com-
putable in some larger single-valued class of partial functions? Selman [15] showed
that PF ⊆ NPSV ⊆ PFNP

tt . If sat ∈c NPSV, then the polynomial hierarchy collapses
[11], and it is an open question whether sat ∈c NPSV or whether sat ∈c PFNP

tt .
(Watanabe and Toda [18] have shown that sat ∈c PFNP

tt relative to a random oracle.)

We will consider classes of the form PFNPSV[k] and PF
NPSV[k]
tt , where k ≥ 1, and we

will show that the adaptive and the nonadaptive classes form proper hierarchies unless
the Boolean hierarchy collapses. Thus these classes form a finer classification in which
to study the central question of whether sat has a refinement in some interesting class
of single-valued partial functions.

Finally, we note in passing that the complexity theory of decision problems, i.e.,
of sets, is extremely well developed. Although the computational problems in which
we are most interested are naturally thought of as partial multivalued functions, the
structural theory to support classification of these problems has been slight. By
introducing several natural hierarchies of complexity classes of partial multivalued
functions, with strong evidence supporting these claims, we intend this paper to make
significant steps in correcting this situation.

2. Preliminaries. We fix Σ to be the finite alphabet {0, 1}. < denotes the stan-
dard canonical lexicographic order on Σ∗. Let f : Σ∗ 7→ Σ∗ be a partial multivalued
function. We write f(x) 7→ y (or f(x) maps to y), if y is a value of f on input
string x. Define graph(f) = {〈x, y〉 | f(x) 7→ y}, dom(f) = {x | ∃y(f(x) 7→ y)}, and
range(f) = {y | ∃x(f(x) 7→ y)}. We will say that f is undefined at x if x 6∈ dom(f).

A transducer T is a nondeterministic Turing machine with a read-only input tape
and a write-only output tape and accepting states in the usual manner. A transducer
T computes a value y on an input string x if there is an accepting computation of T on
x for which y is the final content of T ’s output tape. (In this case, we will write T (x) 7→
y.) Such transducers compute partial, multivalued functions. (Since transducers do
not typically accept all input strings, when we write “function,” “partial function” is
always intended. If a function f is total, it will always be explicitly noted.)

• NPMV is the set of all partial, multivalued functions computed by nondeter-
ministic polynomial-time bounded transducers;
• NPSV is the set of all f ∈ NPMV that are single-valued;

1046 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

• PF is the set of all partial functions computed by deterministic polynomial-
time-bounded transducers.

A function f belongs to NPMV if and only if it is polynomially length-bounded
and graph(f) belongs to NP. The domain of every function in NPMV belongs to NP.
These definitions originate in Book, Long, and Selman’s study of restricted-access
relativizations [5].

Now we describe oracle Turing machines with oracles that compute partial func-
tions. For the moment, we assume that the oracle is a single-valued partial function.
Let ⊥ be a symbol not belonging to the finite alphabet Σ. In order for a machine
M to access a partial function oracle, M contains a write-only input oracle tape, a
separate read-only output oracle tape, and a special oracle call state q. When M
enters state q, if the string currently on the oracle input tape belongs to the domain
of the oracle partial function, then the result of applying the oracle appears on the
oracle output tape, and if the string currently on the oracle input tape does not be-
long to the domain of the oracle partial function, then the symbol ⊥ appears on the
oracle output tape. Thus, if the oracle is some partial function g, given an input x
to the oracle, the oracle, if called, returns a value g(x) if one exists and returns ⊥
otherwise. (It is possible that M may read only a portion of the oracle’s output if
the oracle’s output is too long to read with the resources of M .) We shall assume,
without loss of generality, that M never makes the same oracle query more than once,
i.e., all of M ’s queries (on any possible computation path) are distinct. PFNP is the
class of partial functions computed in polynomial time with oracles in NP. PFNP

tt

is the class of partial functions that can be computed nonadaptively with oracles in
NP; that is, a partial function f is in PFNP

tt if there is a deterministic oracle Turing
machine transducer T such that f ∈ PFNP via T with an oracle L in NP and a total
polynomial-time computable function g : {0, 1}∗ 7→ (c{0, 1}∗)∗ such that, for each
input x to T , T only makes queries to L from the list g(x).

If g is a single-valued partial function and M is a deterministic oracle transducer
as just described, then we let M [g] denote the single-valued partial function computed
by M with oracle g.

Definition 2.1. Let f and g be multivalued partial functions. f is Turing
reducible to g in polynomial time, f ≤P

T g, if for some deterministic oracle transducer
M , for every single-valued refinement g′ of g, M [g′] is a single-valued refinement of
f .1

Proposition 2.1. Polynomial-time Turing reducibility, ≤P
T, is a reflexive and

transitive relation over the class of all partial multivalued functions.

Let F be a class of partial multivalued functions. PFF denotes the class of partial
multivalued functions f that are ≤P

T-reducible to some g ∈ F . PFF [k] (respectively,

PFF [log]) denotes the class of partial multivalued functions f that are ≤P
T-reducible

to some g ∈ F via a machine that, on input x, makes k adaptive queries (respectively,

1 A notion of polynomial-time Turing reducibility between partial functions is defined by Selman
[15]. It is important to note that the definition given here is different than the one given there.
Here the oracle “knows” when a query is not in its domain. In the earlier definition, this is not the
case. The authors recommend that the reducibility defined in the earlier paper should in the future
be denoted as ≤PP

T , which is the common notation for reductions between promise problems. We
make this recommendation because conceptually and technically this reducibility between functions
is equivalent to a promise problem reduction. Also, we note that the reducibility defined by Selman
[15] is not useful for our purposes here. In particular, it is easy to see that iterating reductions
between functions in NPMV does not gain anything new unless the oracle is endowed with the
ability to know its domain.

ORACLES THAT COMPUTE VALUES 1047

O(log |x|) adaptive queries) to its oracle.
PFFtt denotes the class of partial multivalued functions f that are ≤P

T-reducible
to some g ∈ F via an oracle Turing-machine transducer that queries its oracle non-
adaptively. That is, a partial multivalued function f is in PFFtt if there is an oracle
Turing-machine transducer T such that f ∈ PFF via T with an oracle g in F and
a polynomial time computable function h : {0, 1}∗ 7→ (c{0, 1}∗)∗ such that, for each
input x to T , T only calls the oracle g on strings in the list h(x).

PF
F [k]
tt denotes the class of partial multivalued functions f that are ≤P

T-reducible
to some g ∈ F via a machine that makes k nonadaptive queries to its oracle, i.e., just
as in the last paragraph, but with h : {0, 1}∗ 7→ (c{0, 1}∗)k.

PF , PF [k], PF [log], PFtt , and P
F [k]
tt , respectively, denote the classes of all charac-

teristic functions contained in PFF , PFF [k], PFF [log], PFFtt , and PF
F [k]
tt .

For a class of sets C, we may say that PFC denotes the class of partial multivalued
functions that are ≤P

T-reducible to the characteristic function of some set in C. PFC[k],

PFC[log], PFCtt, PF
C[k]
tt , PC , PC[k], PC[log], PCtt, and P

C[k]
tt are defined similarly. In partic-

ular, PFNP is the class of partial multivalued functions computed in polynomial time
with oracles in NP, and PFNP

tt is the class of partial functions that can be computed
nonadaptively with oracles in NP. In the current literature, these classes contain
single-valued functions only. The reason is that, heretofore, polynomial-time Turing
reducibility, ≤P

T, has been defined as a binary relation over single-valued objects. To
see that PFNP contains partial functions that are not single-valued, consider the par-
tial single-valued function maxsat that on an input x, where x encodes a formula
of propositional logic, maps to the encoding of the lexicographically largest satisfy-
ing assignment of x, if x ∈ SAT. Clearly, maxsat ∈ PFNP, and sat ≤P

T maxsat by
Definition 2.1, so the partial multivalued function sat belongs to PFNP. Readers are
free to interpret references to PFNP and PFNP

tt with their familiar meaning because
the results that we will state for these classes, and for the corresponding bounded
query classes, remain correct if the classes are replaced with the result of including
only the single-valued partial functions that they contain.

Given a class of partial multivalued functions F , let F/sv denote the class of
single-valued partial functions that F contains.

All the classes of partial multivalued functions that we have defined, other than
NPMV, are closed “backwards” under refinement. That is, with the exception of
NPMV, property (1) below holds for each of these classes F :

f ∈ F ∧ f is a refinement of g → g ∈ F .(1)

Let us say that classes that satisfy property (1) are c-closed. The c-closure of a class
is c-closed. Let us say that a basis for a class F is a subset F ′ of F such that for all
f ∈ F , there is an f ′ ∈ F ′ such that f ′ is a refinement of f . Essentially all interesting
c-closed classes are uncountable, but this is not problematic because they all arise as
the c-closure of classes that are countable and effectively enumerable (that is, they
are indexed by machines of some appropriate type). Property (2) holds for every
class of partial functions F that is Turing reducible in polynomial time to a class of
single-valued partial functions.

f ∈ F → ∃f ′[f ′ is a single-valued refinement of f ∧ f ′ ∈ F].(2)

For example, property (2) holds for PFNP. Property (2) states that the set of single-
valued functions in F is a basis for F . (To use an analogy from lattice theory, if

1048 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

one thinks of the single-valued functions as “atoms,” then property (2) is the “atomic
basis property.”) Also, note that “is a refinement of” is reflexive and transitive over
the class of all partial multivalued functions.

Proposition 2.2. If F satisfies property (1), then g ∈c F ↔ g ∈ F and G ⊆c
F ↔ G ⊆ F .

Thus ∈c is identical to class containment and ⊆c is identical to class inclusion for
the classes we have defined.

Proposition 2.3. If F satisfies property (2) and G satisfies property (1), then
F/sv ⊆ G/sv ↔ F ⊆ G.

Beigel [2] observed that for all k ≥ 1, PFNP[k]/sv ⊆ PF
NP[2k−1]
tt /sv. Using Propo-

sition 2.3, it follows that PFNP[k] ⊆ PF
NP[2k−1]
tt . This example illustrates that known

inclusion results for the classes we are considering remain true under the new interpre-
tation that these classes contain multivalued functions. Thus passing to multivalued
functions does not disturb our current understanding of previously studied function
classes. We are recasting the definitions in no small part because we will be dealing
with many classes that (most likely) do not satisfy property (2), and hence our results
are strictly more general.

Obviously, PFNP ⊆ PFNPMV. Conversely, for a function f ∈ NPMV, define f ′ to
be a function such that f ′(x) = min{y | f(x) 7→ y}. The function f ′ is a single-valued
refinement of f and in PFNP, so NPMV ⊆ PFNP by Proposition 2.2. This implies

that PFNPMV ⊆ PFPFNP

= PFNP since ≤P
T is transitive. Therefore, the following

theorem holds.

Theorem 2.4. PFNPMV = PFNP.

Theorem 2.4 states that unbounded access to an oracle in NPMV is no more
powerful than such an access to an oracle in NP.

The following examples, the first of which was pointed out by Buhrman [3], illus-
trate the power of PFNPMV and PFNPMV

tt . Consider the partial multivalued function
maxTsat defined as follows:

maxTsat(x) 7→ y if y is a satisfying assignment of x with the maximum
number of trues.

Obviously, maxTsat belongs to PFNPMV. Let f be a function that maps a pair
(x, n) to y if and only if y is a satisfying assignment of x with n trues. Since the number
of variables in a formula is bounded by its length, it holds thatmaxTsat(x) = f(x, nx),
where nx is the largest n, 1 ≤ n ≤ |x|, such that (x, n) ∈ dom(f). This implies that
maxTsat ∈ PFNPMV

tt .

Similarly, the partial multivalued function maxclique that on input a graph G
outputs a clique of maximum size belongs to PFNPMV

tt . The function MaxEdge-
WeightClique that is defined over edge-weighted graphs and that outputs a clique
of maximum weight, if G has a clique, belongs to PFNPMV but may not belong to
PFNPMV

tt because weights may grow exponentially.

We should note that several of the classes we investigate here seem to capture
the complexity of finding witnesses to NP-optimization problems. This observation is
explored by Chen and Toda [9] and by Wareham [17].

3. Bounded query classes. In this section, we prove a number of basic results
clarifying the structure of the bounded adaptive and nonadaptive query hierarchies
over NPMV, both for computing functions and for set recognition. The new hier-
archies are mostly analogous to those over NP, but there are some interesting and
subtle differences. General techniques developed in this section are reminiscent of the

ORACLES THAT COMPUTE VALUES 1049

“mind-change” technique [2, 19]. We will use them first to compare PFNPMV[k] and

PF
NPMV[k]
tt with PFNP[k] and PF

NP[k]
tt , respectively.

The following two propositions are central to the rest of the paper and will be
used in several places later on: Theorems 3.3, 3.5, 3.7, and 3.8, Lemma 5.10, and
Proposition 6.6. Each proposition abstracts the general idea, common to all these
results, that we can replace the oracle queries in any PFNPMV computation by non-
determinism in a way that preserves information about outputs of the computation.
Proposition 3.1 deals with computations making adaptive queries; Proposition 3.2
deals with nonadaptive queries. After we prove them we will discuss briefly how they
are used.

Proposition 3.1. Let t ∈ PF. Let f be in PFNPMV be computed by a determin-
istic oracle Turing-machine transducer M with g ∈ NPMV as the oracle. Suppose
that M on x makes t(x) queries to its oracle. Then there is an NPMV function
s[M, g] : Σ∗ × Σ∗ 7→ Σ∗ that satisfies the following conditions.

1. λx.[s[M, g](x, 0t(x))] is total, single-valued, and polynomial-time computable.
2. For every x, there uniquely exists ax ∈ Σt(x) such that

(a) for every a ∈ Σt(x), (x, a) ∈ dom(s[M, g]) if and only if a ≤ ax,
(b) f(x) is undefined if and only if s[M, g](x, ax) maps to 0, and
(c) for every y, if s[M, g](x, ax) maps to 1y, then f(x) maps to y.

Proof. Let t, f , M , and g be as in the hypothesis. The idea of the proof is as
follows: given an input x, say that a string a ∈ Σt(x) is okay if there is a legitimate
computation path of M(x) where the ith query is in dom(g) if and only if the ith bit of
a is 1. The “magic” string ax that we seek will be the lexicographically maximum okay
string. Computing the function s[M, g] involves, among other things, guessing if there
is an okay string no smaller than the given input string a ∈ Σt(x). This must be done
indirectly since one cannot necessarily verify—even nondeterministically—whether a
given string is okay.

Let N be a polynomial-time nondeterministic Turing machine witnessing that
g ∈ NPMV. Define U to be the following machine: On input x and b ∈ Σt(x), U
simulates M on input x in the following manner:

• For each i, 1 ≤ i ≤ t(x), when M makes its ith query qi, U behaves as follows:
— If the ith symbol in b is a 0, then U assumes that the answer is ⊥.
— If the ith symbol in b is a 1, then U simulates N on qi. If N on qi does

not accept, then U halts without accepting, and if N on qi outputs some
zi, then U assumes that the answer is zi.

• When M enters a halting state, U behaves as follows:
— If M rejects, then U outputs 0.
— If M outputs y, then U outputs 1y.

Let r be the NPMV function defined by U . For every x, U on (x, 0t(x)) makes
no nondeterministic guesses. So U on (x, 0t(x)) always has a unique output and
λx.[r(x, 0t(x))] is polynomial-time computable.

For a given x, let bx be the largest b ∈ Σt(x) such that U on (x, b) has an output,
and let π be an arbitrary computation path of U on (x, bx) that leads to an output.
Suppose that along path π, U generates query strings q1, . . . , qt(x) in this order and
computes the answers to them as z1, . . . , zt(x), respectively. By definition, for every
i such that zi 6= ⊥, g(qi) 7→ zi. Furthermore, we claim that for every i such that
zi = ⊥, qi 6∈ dom(g). This is seen as follows: Assume that there is some i such that
zi = ⊥ and qi ∈ dom(g). Let j be the smallest such i. By the minimality of j, there
exist some c and some computation path π′ of U on (x, c) such that along path π′,

1050 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

(i) U has an output,
(ii) the first j queries U computes are q1, . . . , qj ,

(iii) the first j − 1 answers U computes are z1, . . . , zj−1,
(iv) the jth answer U computes is not ⊥, and
(v) π and π′ agree until qj .

Let bx = u0w with |u| = j − 1. By (ii), (iii), and (iv), we have c = u1v for some v.
Thus c > bx. By (i), U on (x, c) has an output. So by the maximality of bx, bx ≥ c,
which contradicts c > bx. Therefore, for every i such that zi = ⊥, qi 6∈ dom(g).

Thus we see that all the answers z1, . . . , zt(x) are correct. Define g′ to be a single-
valued refinement of g that is defined by path π. U on (x, bx) along path π correctly
simulates M [g′] on x. Thus it holds that

x ∈ dom(f)↔ M [g′] has an output

↔ U on (x, bx) along path π outputs a string of the form 1y, and

x 6∈ dom(f)↔ M [g′] does not have an output

↔ U on (x, bx) along path π outputs 0.

Therefore, U on (x, bx) along path π outputs 0 if and only if f(x) is undefined, and if
U on (x, bx) along path π outputs 1y, then f(x) maps to y.

Now define V to be the machine that, on input (x, a) with |a| = t(x), behaves as
follows:

• if a = 0t(x), then V simulates U on (x, a), and
• if a 6= 0t(x), then V guesses b ∈ Σt(x) with b ≥ a and simulates U on (x, b).

Let s be the NPMV function defined by V . We claim that s is the desired function.
Since V and U are the same on input (x, 0t(x)), λx.[s(x, 0t(x))] is total, single-valued,
and polynomial-time computable. Let ax be the largest a ∈ Σt(x) such that (x, a) ∈
dom(s). It is not hard to see that ax = bx. Since bx is the largest b such that
(x, b) ∈ dom(r), and V on (x, a) simulates U on (x, b) for all b ≥ a except when
a = 0t(x), it holds that

(i) for every a > ax, (x, a) 6∈ dom(s),
(ii) for every a ≤ ax, (x, a) ∈ dom(s),

(iii) x 6∈ dom(f) if and only if s(x, ax) 7→ 0, and
(iv) if s(x, ax) 7→ 1y, then f(x) 7→ y.

Hence all the required properties are satisfied. This proves the proposition.
Proposition 3.2. Let t ∈ PF. Let f in PFNPMV

tt be computed by a deter-
ministic oracle Turing-machine transducer M with g ∈ NPMV as the oracle. Sup-
pose that M on x makes t(x) queries. Then there is an NPMV function s[M, g] :
Σ∗ × {0, . . . , t(x)} 7→ Σ∗ that satisfies the following conditions:

1. λx.[s[M, g](x, 0)] is total, single-valued and polynomial-time computable,
2. for every x and 0 ≤ m ≤ n ≤ t(x), if (x, n) ∈ dom(s[M, g]), then (x,m) ∈

dom(s[M, g]),
3. for every x, f(x) is undefined if and only if s[M, g](x, nx) maps to 0, and
4. for every x and y, f(x) maps to y if and only if s[M, g](x, nx) maps to 1y,

where nx is the largest n ∈ {0, . . . , t(x)} such that (x, n) ∈ dom(s[M, g]).
Proof. Let t, f , M , and g be as in the hypothesis and let N be a nondeterministic

Turing machine witnessing that g ∈ NPMV. The idea of this proof is analogous to,
but simpler than, that of the last proposition. The “magic” number nx that we seek
will be the number of queries of M(x) that are in dom(g).

Let h be the function defined by the following machine U : On input x and
n ≤ t(x), U behaves as follows:

ORACLES THAT COMPUTE VALUES 1051

(A) U first computes all the query strings q1, . . . , qt(x) of M on x.
(B) If n = 0, then for every i, U assumes that the answer to qi is ⊥. If n > 0,
then U does the following:
• For each i, U simulates N on qi. If N does not accept qi, then U assumes

that the answer to qi is ⊥, and if N outputs w on qi, then U assumes
that the answer to qi is w. After doing this, if the number of answers
obtained as ⊥ is larger than t(x)− n, then U halts without accepting.

(C) U simulates M on x using the answers computed in (B). If M rejects,
then U outputs 0, and if M outputs z, then U outputs 1z.

We claim that h is the desired function.

For every x, U on (x, 0) runs deterministically and always has an output. So
λx.[h(x, 0)] is total, single-valued, and polynomial-time computable. Suppose 0 <
m ≤ n ≤ t(x) and (x, n) ∈ dom(h). Then U must have an accepting path in step (B),
where it obtains at most t(x)−n query answers as ⊥. The same set of query answers
will also allow U to accept on input (x,m).

For each x, let nx be the maximum n such that (x, n) ∈ dom(h). For every x,
nx coincides with the number of queries of M on x that are in dom(g). Let π be
any computation path of U on (x, nx) leading to an output. Let z1, . . . , zt(x) be the
answers that U computes along path π for queries q1, . . . , qt(x), respectively. Then
by the maximality of nx, for every i, zi = ⊥ if and only if qi 6∈ dom(g) and if
zi 6= ⊥, then g(qi) maps to zi. So the output along path π is 0 if and only if f(x) is
undefined, and if the output is 1y, then f(x) maps to y. Therefore, h is the desired func
tion.

We will use Propositions 3.1 and 3.2 in three ways. First, we can simulate the
behavior of a PFNPMV (respectively, PFNPMV

tt) computation on input x purely non-
deterministically, provided we know ax (respectively, nx). Such a simulation s[M, g]
always accepts, tells us whether M(x) outputs a value, and, if so, provides us with
an output. Second, dom(s[M, g]) is such that we can find ax (respectively, nx) by
binary search with an NP oracle. Third, the fact that s[M, g](x, 0t(x)) (respectively,
s[M, g](x, 0)) can be computed deterministically saves us an NP query so that we can
get an exact connection between bounded adaptive and nonadaptive NPMV queries
in Theorem 3.5.

Let f and g be partial multivalued functions. f ◦ g denotes the function h such
that for every x,

• h(x) maps to y if and only if there exists some z such that g(x) maps to z
and f(z) maps to y.

Let F and G be classes of partial multivalued functions. F ◦ G denotes {f ◦ g | f ∈ F
and g ∈ G}.

Although composition is a natural operator and an important tool in our inves-
tigations, we should caution that the classes we consider tend not to be closed under
composition, and the composition of two easy-to-compute functions may be very dif-
ficult. To see this, consider the functions r and s defined as follows: r(x) 7→ 1 for
all x 6= 0, and r is undefined at x = 0; s(x) 7→ 0 for all strings x, and s(x) 7→ 1 if
x ∈ K, where K is a complete recursively enumerable set. The partial multivalued
functions r and s have refinements in PF, but dom(r ◦ s) = K, so r ◦ s does not have
a refinement in PF.

The following theorem relates computing with an oracle in NPMV[k] to computing
with an oracle in NP[k]. In particular, we see that every partial multivalued function

in PFNPMV[k] can be computed by a partial multivalued function of the form f ◦ g,

1052 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

where f is in NPMV and g is a single-valued function in PFNP[k].
Theorem 3.3.

(1) For every k ≥ 1, PFNPMV[k] ⊆c NPMV ◦ (PFNP[k]/sv).

(2) For every k ≥ 1, PFNPMV[k] ⊆ NPMV ◦ PFNP[k].

Proof. Let f ∈ PFNPMV[k] via a deterministic oracle Turing-machine transducer
M with g ∈ NPMV as the oracle. Let h = s[M, g] be the function defined in Propo-
sition 3.1. Let V be a machine witnessing that h ∈ NPMV. Define b to be a function
that maps x to ax, where ax is the largest a ∈ Σk such that (x, a) ∈ dom(h). Recall
that b(x) is defined for every x. A binary search algorithm over Σk − {0k} computes
b in polynomial time with oracle dom(h). The number of questions is exactly k, so

b ∈ PFNP[k]/sv. Now define f ′ to be a function that maps x to (x, b(x)). Define V ′ to
be a machine that on input (x, a) simulates V on (x, a) and does not accept if either
V does not accept or V outputs 0, and outputs y if V outputs 1y. Let h′ be the
partial multivalued function defined by V ′. Then h′ ∈ NPMV.

Now define r(x) = h′(f ′(x)). It is easy to see that r(x) is undefined if and only
if f(x) is undefined, and if r(x) maps to y, then f(x) maps to y. Therefore, r is a

refinement of f and is in NPMV ◦ PFNP[k]/sv. This proves (1).
To prove (2) we proceed exactly as above except that instead of f ′ we use a new

function f ′′ defined so that for all x and y, f ′′(x) maps to (x, y) if and only if either
1. y = b(x), or
2. y = 0k1z for some z such that f(x) maps to z.

Note that f ′ is a refinement of f ′′, so f ′′ ∈ PFNP[k] by Proposition 2.2. Define V ′′

to be a machine that on input (x, a) first checks if a is of the form 0k1z for some
z. If so, V ′′ outputs z and halts. Otherwise, V ′′ behaves exactly as V ′ above. Let
h′′ be the function defined by V ′′. We have h′′ ∈ NPMV as before. Now defining
r′(x) = h′′(f ′′(x)), we show that r′ = f , completing the proof.

Suppose f(x) maps to z. Then f ′′(x) maps to (x, 0k1z) and h′′(x, 0k1z) maps
to z, so r′(x) maps to z. Conversely, suppose r′(x) maps to z. Then it must be the
case that either f ′′(x) maps to (x, b(x)) and h′′(x, b(x)) maps to z, or f ′′(x) maps
to (x, 0k1z) and h′′(x, 0k1z) maps to z. In the latter case, f(x) maps to z by the
definition of f ′′. In the former case, V (x, b(x)) must output 1z, and thus f(x) maps
to z.

Selman [15] showed that PFNP[log] 6= PFNP
tt unless P = FewP and R = NP.2 The

next two theorems are interesting because they imply that (i) composing on the left
with NPMV is enough to absorb the difference between the two reduction classes and
(ii) the NPMV analogue of Selman’s result is false.

Theorem 3.4. For each k ≥ 1, NPMV ◦ PFNP[k] = NPMV ◦ PF
NP[2k−1]
tt .

Proof. NPMV◦PFNP[k] ⊆ NPMV◦PF
NP[2k−1]
tt follows immediately from PFNP[k] ⊆

PF
NP[2k−1]
tt [2]. (Recall the comment that follows Proposition 2.3.)

Now we show NPMV ◦ PF
NP[2k−1]
tt ⊆ NPMV ◦ PFNP[k]. Let f = g ◦ h ∈

NPMV ◦ PF
NP[2k−1]
tt with g ∈ NPMV and h ∈ PF

NP[2k−1]
tt . Let g ∈ NPMV via

a nondeterministic Turing machine N and let h′ be a single-valued refinement of h
that is computed by a deterministic oracle Turing-machine transducer M with oracle
A ∈ NP. Define s to be a function that maps x to the number of queries in A that M

2 Actually, it was shown there that PFNP[log]/sv 6= PFNP
tt /sv unless P = FewP and R = NP, but

the two forms of the statement are equivalent by Proposition 2.3. This result also follows by directly
modifying a proof of Beigel [1, Theorem 9].

ORACLES THAT COMPUTE VALUES 1053

makes on input x. s is a total, single-valued function. Define B = {〈x, n〉 | s(x) ≥ n}.
Clearly B belongs to NP. Since s is total and 0 ≤ s(x) ≤ 2k − 1, a binary search
algorithm over {1, . . . , 2k − 1} computes s in polynomial time with oracle B. The

number of queries is exactly k, so s ∈ PFNP[k]. Define s′ to be a multivalued function
that maps x to 〈x, n〉 if and only if either

1. n = s(x), or
2. n = 2k + w for some w such that h(x) maps to w.

Clearly, s′ has a refinement in PFNP[k], so s′ ∈ PFNP[k] by Proposition 2.2.
Let A ∈ NP be witnessed by a machine D and define E to be the machine that

on input 〈x, n〉 behaves as follows:
(1) If n ≥ 2k, then E sets w = n− 2k and goes to step (6).
(2) E computes the set Q of all query strings of M on x.
(3) E nondeterministically guesses R ⊆ Q of size n.
(4) For each y ∈ R, E simulates D on y. If D on y does not accept for some
y ∈ R, then E halts without accepting.
(5) E simulates M on x answering a query q ∈ Q affirmatively if and only
if q ∈ R. If M halts without accepting, so does E. Otherwise (M has an
output), E computes the output w.
(6) E simulates N on w. If N outputs a string z, then so does E, and if it
does not accept, then E halts without accepting.

Let t ∈ NPMV denote the partial multivalued function that E computes. We fix x
and z in what follows. Suppose f(x) maps to z. Then by definition there is a w such
that h(x) 7→ w and g(w) 7→ z, but in this case we know that s′(x) 7→ 〈x, 2k + w〉 and
t(x, 2k + w) simulates N on w so t(x, 2k + w) maps to z. Thus t ◦ s′ maps x to z.

Conversely, suppose s′(x) maps to some 〈x, n〉 and t(x, n) maps to z. If n ≥ 2k,
then it must be that both n = 2k+w such that h(x) 7→ w, and g(w) maps to z (t(x, n)
just simulates N on w = n − 2k). Thus f(x) maps to z in this case. If n ≤ 2k − 1,
then n = s(x). We have t(x, s(x)) 7→ z if and only if there exist w and a set R ⊆ A
consisting of s(x) query strings of M on x such that (i) given affirmative answers to
all strings in R and negative answers to all strings in Q−R, M on x computes w and
(ii) N on w outputs z on some computation path. Since s(x) is exactly the number of
query strings in A, t(x, s(x)) = g(h′(x)). Since g ◦ h′ is a refinement of f , if t(x, s(x))
maps to z, then f(x) maps to z.

Therefore, f = t ◦ s′ ∈ NPMV ◦ PFNP[k].
Remark. If we restrict s′ in the above proof so that s′(x) only maps to 〈x, s(x)〉,

then s′ is single-valued and t ◦ s′ is a refinement of f . This shows that NPMV ◦
PF

NP[2k−1]
tt ⊆c NPMV ◦ (PFNP[k]/sv).
The left-to-right inclusion in the next theorem is completely analogous with the

NP case, given by Beigel [2].

Theorem 3.5. For every k ≥ 1, PFNPMV[k] = PF
NPMV[2k−1]
tt .

Proof. Let f ∈ PFNPMV[k] be computed by a deterministic oracle Turing-machine
transducer M with g ∈ NPMV as the oracle. Let h = s[M, g] in Proposition 3.1.
Define D to be the machine with oracle h that on input x behaves as follows:

(1) D deterministically computes w(0k) = h(x, 0k).
(2) For each a ∈ Σk−{0k}, D sets w(a) to the answer to h(x, a). The number
of queries to h is 2k − 1.
(3) D sets b to the largest a such that w(a) 6= ⊥.
(4) If w(b) = 0, then D rejects x, and if w(b) = 1y for some y, then D out-
puts y.

1054 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

By Proposition 3.1, for every x, D(x) rejects if and only if x 6∈ dom(f), and if D(x)

outputs y, then f(x) 7→ y. So D computes a refinement of f . Thus f ∈ PF
NPMV[2k−1]
tt .

This proves that PFNPMV[k] ⊆ PF
NPMV[2k−1]
tt .

Now let f ∈ PF
NPMV[2k−1]
tt be computed by a deterministic oracle Turing machine

transducer M with g ∈ NPMV as the oracle. Let h = s[M, g] in Proposition 3.2.
Define D to be the machine with oracle h that on input x behaves as follows:

(1) D deterministically computes w(0) = h(x, 0).
(2) By using a binary search over [1, 2k − 1] with oracle h, D computes
m = max{n ∈ {0, . . . , 2k − 1} | h(x, n) has an output}. While doing this, D
keeps the answers obtained from the oracle and sets w(m) to the answer to
h(x,m).
(3) If w(m) = 0, then D rejects x, and if w(m) = 1y for some y, then D
outputs y.

By Proposition 3.2, for every x, D(x) rejects if and only if x 6∈ dom(f), and if D(x)
outputs y, then f(x) 7→ y. So D computes a refinement of f . Since the number of

queries to h is k, we have f ∈ PFNPMV[k]. Thus PF
NPMV[2k−1]
tt ⊆ PFNPMV[k], which

proves the theorem.
The above theorems yield the following corollary.

Corollary 3.6. For every k ≥ 1, PFNPMV[k] = PF
NPMV[2k−1]
tt ⊆c NPMV ◦

(PFNP[k]/sv) ⊆ PFNPMV[k+1] = PF
NPMV[2k+1−1]
tt .

By Proposition 2.2, PFNPMV[k] ⊆ PFNPMV[k+1]. For general bounded query
classes, it is not known whether PFNPMV[k] ⊆ PFNP[k]. But for reduction classes of
sets, this type of equivalence holds.

Theorem 3.7. For every k ≥ 1, PNPMV[k] = PNP[k].
Proof. Let k ≥ 1. It suffices to show that PNPMV[k] ⊆ PNP[k]. Let A ∈ PNPMV[k].

Then f = χA is in PFNPMV[k]. Let M and g ∈ NPMV be a machine and a partial
multivalued function witnessing this property, respectively. Informally, we will show
that f ∈ PNP[k] by using Proposition 3.1 to compute f . Namely, by letting h = s[M, g]
be the NPMV function given in Proposition 3.1 and letting ax be the largest a in Σk

such that h(x, a) is defined, we will show that k queries to an NP oracle suffice both to
find ax and to compute h(x, ax) = 1f(x). Assume without loss of generality that M
always outputs exactly one bit for all oracles. For simplicity, we fix x in the following
discussion.

Let ax be the largest a ∈ Σk such that h(x, a) is defined. The function λx.[h(x, ax)]
is total and single-valued, x ∈ A if and only if h(x, ax) = 11, and x 6∈ A if and only if
h(x, ax) = 10. Let b ∈ Σ such that 1b = h(x, 0k) and ρx be the largest r ∈ Σk−1 such
that either h(x, r0) or h(x, r1) maps to 1b. It is not hard to see that h(x, ax) = 1b if
and only if

(a) for every a > ρx1, h(x, a) maps to neither 10 nor 11, and
(b) h(x, ρx1) does not map to 1b′, where b′ = 1 if b = 0 and 0 otherwise.

Since ρx ≥ 0k−1 and graph(h) ∈ NP, it is easy to see that ρx is computed by making
k−1 questions to an NP oracle: we perform a binary search over Σk−1 in order to find
the largest r ∈ Σk−1 such that either h(x, r0) 7→ 1b or h(x, r1) 7→ 1b. After ρx is found,
conditions (a) and (b) can be tested by a single question to an NP oracle. Therefore,
by making k queries to an NP oracle, h(x, ax) is computed. Since h(x, ax) = 11 if and
only if x ∈ A, this implies that A ∈ PNP[k]. This proves the theorem.

Note that Theorem 3.7 holds even if k is replaced by any polynomially bounded
function. This means, remarkably, that in any polynomial-time computation of a set

ORACLES THAT COMPUTE VALUES 1055

relative to NPMV, the queries to NPMV can be replaced one for one with queries to
NP.

Theorem 3.8. For every k ≥ 1, P
NPMV[k]
tt = P

NP[k]
tt .

Proof. Let k ≥ 1. It suffices to show that P
NPMV[k]
tt ⊆ P

NP[k]
tt . Let A ∈ P

NPMV[k]
tt .

Then f = χA is in PF
NPMV[k]
tt . Let M and g ∈ NPMV be a machine and a partial

multivalued function witnessing this property, respectively. We assume without loss
of generality that M outputs 0 or 1 for all oracles and inputs. We will use Proposi-
tion 3.2 to compute f . Namely, we let h = s[M, g] be the NPMV function given in
Proposition 3.2, and fixing an input x, we let nx be the largest n in {0, . . . , k} such
that h(x, n) is defined. We will show that k nonadaptive queries to an NP oracle
suffice to compute h(x, nx) = 1f(x). The informal idea of the proof is as follows:
we first compute b, the output of M(x) where all query answers are ⊥. Then we
use nonadaptive NP queries to inspect sequences of query answers to M(x) which
are plausible, i.e., where all non-⊥ answers are verifiably legitimate outputs of the
oracle function but where each ⊥ answer may or may not be correct. We look for
m, the largest number of non-⊥ query answers in any plausible sequence of query
answers where M outputs b. Actually, computing m exacty uses all our allotted NP
queries without telling us the real output of M , so instead we only compute which of
the pairs {2i, 2i + 1} m belongs to. This uses only about k/2 nonadaptive queries.
Simultaneously, for each pair {2i, 2i + 1}, we ask NP if either there is any plausible
sequence with more than 2i+ 1 non-⊥ answers or M outputs 1− b for some plausible
sequence containing exactly 2i + 1 non-⊥ answers. The answer to this NP question
for the pair containing m immediately tells us whether M outputs b or 1− b for any
correct sequence of query answers. This uses up the remaining k/2 NP queries.

We now present an exact version of the sketch above, showing that f ∈ P
NP[k]
tt .

Note that the value of h(x, 0) encodes the output of M(x) with all queries answered
with ⊥, and h(x, n) for n > 0 simply encodes the possible outputs of M(x) over all
plausible sequences of queries with at least n non-⊥ answers. Also, nx is the exact
number of non-⊥ entries in any sequence of correct query answers. We are assuming
that M outputs exactly one bit for all possible sets of query answers, so h outputs
nothing but 10 or 11.

By Proposition 3.2, λx.[h(x, nx)] is total and single-valued, x ∈ A if and only
if h(x, nx) = 11, and x 6∈ A if and only if h(x, nx) = 10. Let b ∈ Σ be such that
1b = h(x, 0), and d = bk/2c. Define two predicates S and T as follows:

S(x, r) if and only if either h(x, 2r) or h(x, 2r + 1) maps to 1b.
T (x, r) if and only if
• h(x, n) is defined for some n > 2r + 1, or
• h(x, 2r + 1) maps to 1b′, where b′ = 1− b.

Note that S and T are NP-predicates, S(x, 0) = true, and if k is even, then T (x, d) =
false. Define ρx to be the largest r ∈ {0, . . . , d} such that S(x, r) = true. It is not
hard to see that h(x, nx) = 1b if and only if T (x, ρx) = false.

Our goal is to compute h(x, nx) without making more than k queries to some
NP oracle. Our method to accomplish this is to partition the domain {0, . . . , k}
into successive pairs. For each pair {2r, 2r + 1}, we make two queries of the form
“S(x, r) = true?” and “T (x, r) = true?”. As observed above, S(x, 0) = true, and if
k is even, T (x, d) = false. So we need exactly k queries to S or T . Since S and T
are NP-predicates, a single set in NP can answer both types of questions. Thus by
making k nonadaptive queries to an NP oracle, we determine whether h(x, nx) = 1b

or not. Since h(x, nx) = 11 if and only if x ∈ A, this implies that A ∈ P
NP[k]
tt . This

1056 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

proves the theorem.

Our next goal is to show that bounded query hierarchies probably do not collapse.

Lemma 3.9. Let k ≥ 1. If PFNPMV[k+1] = PFNPMV[k], then for every ` ≥ k,
PFNPMV[`] = PFNPMV[k].

Proof. Let k be as in the hypothesis, let m ≥ 0, and let f ∈ PFNPMV[k+1+m] be
computed by a deterministic oracle Turing-machine transducer M with g ∈ NPMV
as the oracle. We will show that f ∈ PFNPMV[k+m].

Let N be an oracle transducer that on input x with oracle g outputs an ID of M
on x just after obtaining the answer to its mth query to g. Clearly, N makes at most
m queries to g, and if g is single-valued, then N [g] is total and single-valued. Define
D to be the machine such that, given an ID I of M , (1) D attempts to simulate the
computation of M starting from ID I by making at most k + 1 queries to its oracle,
and (2) if M halts without an output, then so does D and if M outputs a string y,
then so does D.

It is not hard to see that D with oracle g defines a function r such that for
every x and single-valued refinement g′ of g, f(x) is defined if and only if r maps
the ID N [g′](x) to some output y. And if the latter holds, then f(x) also maps to

y. Moreover, it is clear that r ∈ PFNPMV[k+1] = PFNPMV[k]; thus there is an oracle
transducer Q such that for every single-valued refinement g′ of g, Q[g′] computes
a refinement of r making only k queries to g′. Now we combine the machines N
and Q by taking the output of N as the input to Q. The resulting machine with
oracle g′ computes a refinement of f and makes at most k + m queries to g′. Thus
f ∈ PFNPMV[k+m] by Proposition 2.2.

By applying this argument repeatedly, we have PFNPMV[`] = PFNPMV[k] for every
` ≥ k.

Lemma 3.10. Let k ≥ 1. If PF
NPMV[k+1]
tt = PF

NPMV[k]
tt , then for every ` ≥ k,

PF
NPMV[`]
tt = PF

NPMV[k]
tt .

Proof. Let k ≥ 1 and suppose that PF
NPMV[k+1]
tt = PF

NPMV[k]
tt . Let m ≥ 0

and f ∈ PF
NPMV[k+1+m]
tt . We will show that f ∈ PF

NPMV[k+m]
tt . By applying the

argument repeatedly, for every ` ≥ k, we have PF
NPMV[`]
tt = PF

NPMV[k]
tt .

Let f ∈ PF
NPMV[k+1+m]
tt be computed by a deterministic oracle Turing-machine

transducer M with g ∈ NPMV as the oracle. For x, let q1(x), . . . , qk+1+m(x) denote
the queries of M on x. Define c to be the function that maps x to (y1, . . . , yk+1) so
that for every i, 1 ≤ i ≤ k + 1, yi is a value of g(qi(x)) if qi(x) ∈ dom(g) and yi = ⊥
otherwise. Obviously, c ∈ PF

NPMV[k+1]
tt , so by our supposition, c ∈ PF

NPMV[k]
tt . Let c

be computed by a deterministic oracle Turing-machine transducer N with h ∈ NPMV
as the oracle. Then we can easily construct a machine that computes f by making

k queries to h and m queries to g. Therefore, f ∈ PF
NPMV[k+m]
tt . This proves the

lemma.

The Boolean hierarchy over NP is defined by Wagner and Wechsung [19] and has
been studied extensively [6, 7, 8, 12]. We denote the kth level of the Boolean hierarchy
as NP(k). By definition,

1. NP(1) = NP, and
2. for every k ≥ 2, NP(k) = NP−NP(k − 1).

The Boolean hierarchy over NP, denoted by BH, is the union of all NP(k), k ≥ 1.

Kadin [12] proved that the Boolean hierarchy collapses only if the polynomial-time
hierarchy collapses.

Theorem 3.11. Let k ≥ 1. If PFNPMV[k+1] = PFNPMV[k], then BH collapses to

ORACLES THAT COMPUTE VALUES 1057

its 2kth level.
Proof. Suppose that PFNPMV[k+1] = PFNPMV[k]. By Lemma 3.9 and Theo-

rem 3.5, for every m > k, PFNPMV[m] ⊆ PFNPMV[k] = PF
NPMV[2k−1]
tt . So by Theo-

rem 3.7 and results by Köbler, Schöning, and Wagner [14], we have, for every m > k,

PNP[m] = P
NP[2k−1]
tt ⊆ NP(2k). Thus BH = NP(2k).

The following theorem is proved in a similar manner.

Theorem 3.12. Let k ≥ 1. If PF
NPMV[k+1]
tt = PF

NPMV[k]
tt , then BH collapses to

its (k + 1)st level.

Proof. Suppose that PF
NPMV[k+1]
tt = PF

NPMV[k]
tt . By Lemma 3.10, for every m >

k, PF
NPMV[m]
tt ⊆ PF

NPMV[k]
tt . So by Theorem 3.8 and results by Köbler, Schöning,

and Wagner [14], we have, for every m > k, P
NP[m]
tt = P

NP[k]
tt ⊆ NP(k + 1). Thus

BH = NP(k + 1).
Analogous to the theorems stated so far, the following theorems hold for reduction

classes that make logarithmic many queries to partial functions in NPMV. We see
in these theorems a different behavior when computing partial multivalued functions
with bounded queries to NPMV than when computing partial functions with bounded
queries to NP. To wit, in contrast to the following results, Selman [15] shows that

PFNP[log] = PFNP
tt only if P = FewP and R = NP. The reason seems to be, as we

showed in Theorems 3.3 and 3.5, that the mind-change argument [2, 19] works for
PFNPMV (as it does for PNP) but apparently does not work for PFNP.

Theorem 3.13.

1. PFNPMV[log] = PFNPMV
tt ⊆ NPMV ◦ PFNP[log] = NPMV ◦ PFNP

tt .

2. NPMV ◦ (PFNP[log]/sv) ⊆ PFNPMV[log].

3. PFNPMV[log] ⊆c NPMV ◦ (PFNP[log]/sv).

4. NPMV ◦ (PFNP[log]/sv) ⊆ NPMV ◦ (PFNP
tt /sv).

5. NPMV ◦ (PFNP
tt /sv) ⊆c NPMV ◦ (PFNP[log]/sv).

Proof. Note that for any function t such that t(x) ≤ c log |x|, 2t(x)−1 is polynomi-
ally bounded and that for any polynomial p, log p(|x|) ≤ c log |x| for some constant c.

Therefore, a proof similar to that of Theorem 3.5 shows that PFNPMV[log] = PFNPMV
tt ,

and a proof similar to Theorem 3.3(2) shows that PFNPMV[log] ⊆ NPMV ◦ PFNP[log].

A proof similar to that of Theorem 3.4 yields NPMV ◦ PFNP[log] = NPMV ◦ PFNP
tt .

Thus (1) holds.
Inclusion (2) follows by a straightforward simulation, and (3) follows by adapting

the proof of Theorem 3.3(1). Using a technique of Buss and Hay [4], for any set A,
logarithmically many adaptive queries to A can be simulated by polynomially many
nonadaptive queries to A, so PFNP[log]/sv ⊆ PFNP

tt /sv. Thus NPMV◦(PFNP[log]/sv) ⊆
NPMV ◦ (PFNP

tt /sv). Hence (4) holds. Inclusion (5) follows by adapting the remark
following the proof of Theorem 3.4.

Theorem 3.14. PNPMV[log] = PNPMV
tt = PNP[log] = PNP

tt .
The proof is similar to those of Theorems 3.7 and 3.8.

4. Nondeterministic polynomial-time reductions. We define nondetermin-
istic reductions between partial functions so that the access mechanism is identical
to that for deterministic reductions. Namely, let g be a single-valued partial function
and N be a polynomial-time nondeterministic oracle Turing machine. N [g] denotes
a multivalued partial function computed by N with oracle g in accordance with the
following mechanism:

• when N asks about y ∈ dom(g), g returns g(y), and

1058 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

• when N asks about y 6∈ dom(g), g answers a special symbol ⊥.

Definition 4.1. Let f and g be partial multivalued functions. We say that f
is nondeterministic polynomial-time Turing reducible to g, denoted by f ≤NP

T g, if
there is a polynomial-time nondeterministic Turing machine N such that for every
single-valued refinement g′ of g, N [g′] is a refinement of f .

Thus for every x and for every single-valued refinement g′ of g,

• x ∈ dom(f) if and only if x ∈ dom(N [g′]), and
• if N [g′] maps x to y, then f maps x to y.

Let F be a class of partial multivalued functions. NPMVF denotes the class
of partial multivalued functions that are ≤NP

T -reducible to some g ∈ F . NPMVF [k]

denotes the class of partial multivalued functions that are ≤NP
T -reducible to some

g ∈ F via a machine that makes k adaptive queries to its oracle.

For a class of sets C, we write NPMVC to denote the class of multivalued partial
functions that are computed by a nondeterministic Turing machine relative to an
oracle in C. NPMVC[k] is defined similarly.

It is easy to see that every nondeterministic polynomial-time reduction to partial
functions is replaceable by a reduction that makes nonadaptive queries to its oracle
and that preserves the number of queries. For this reason, we do not distinguish

classes NPMVFtt or NPMV
F [k]
tt .

For k ≥ 1, ΣMVk denotes NPMV·
··

NPMV︸ ︷︷ ︸
k

.

Lemma 4.1. For every k ≥ 1, ΣMVk = NPMVΣP
k−1[1] and for every f ∈ ΣMVk,

dom(f) ∈ ΣP
k .

Proof. The proof is by an induction on k. The statement trivially holds for k = 1.
Let k = 2. We show that NPMVNPMV ⊆ NPMVNP[1]. Let f ∈ NPMVNPMV via a
machine M and a function g ∈ NPMV. Let N be a machine witnessing g ∈ NPMV.
Define A to be the set of all (y1, . . . , ym), m ≥ 1, such that y1, . . . , ym 6∈ dom(g).
Obviously, A ∈ co-NP. Consider a nondeterministic Turing machine T that on input
x simulates M on x in the following way:

• When M queries about string w, T simulates N on w. If N on w outputs a
string z, then T assumes that the answer from the oracle is z and if N on w
does not accept, then T assumes that the answer from the oracle is ⊥.
• When M enters a halting state, T enumerates all the queries w for which

the answer from the oracle are assumed to be ⊥. T sets y1, . . . , ym to the
enumeration.

— If (y1, . . . , ym) 6∈ A, then T rejects,
— if (y1, . . . , ym) ∈ A and M rejects, then T rejects, and
— if (y1, . . . , ym) ∈ A and M outputs some string z, then T outputs z.

It is not hard to see that for every x and z, f(x) maps to z if and only if there is a
computation of M relative to g that outputs z if and only if there is a computation
of T relative to A that outputs z. Thus T relative to A computes a refinement of
f . Furthermore, T is polynomial-time bounded and T makes only one question to
A. So f ∈ NPMVNP[1]. Thus NPMVNPMV = NPMVNP[1]. Moreover, by the above
discussions, for every function f ∈ NPMVNPMV, dom(f) ∈ ΣP

2 .

Now let k ≥ 2 and suppose that the claim holds for every k′ ≤ k. Since the above

proof is relativizable, for any class C of sets, we have NPMVNPMVC ⊆ NPMVNPC [1]. So

NPMVΣMVk = NPMVNPMV
ΣP
k−1

[1]

(by induction hypothesis) ⊆ NPMVNPMV
ΣP
k−1 ⊆

ORACLES THAT COMPUTE VALUES 1059

NPMVNP
ΣP
k−1 [1] = NPMVΣP

k [1]. This proves the lemma.

This lemma yields the following theorem.

Theorem 4.2. Let f be a partial multivalued function. For every k ≥ 1, the
following statements are equivalent:

(i) f is in ΣMVk;
(ii) f has a polynomially length-bounded refinement g such that dom(g) ∈ ΣP

k ,
and graph(g) ∈ ΣP

k ;
(iii) f has a polynomial length-bounded refinement g such that graph(g) ∈ ΣP

k .

Theorem 4.3. For every k ≥ 1, ΣMVk+1 = ΣMVk if and only if ΣP
k+1 = ΣP

k .

Proof. First, suppose that ΣP
k+1 = ΣP

k . Let f be any function in ΣMVk+1. By
Theorem 4.2(ii), there is a polynomially length-bounded refinement g of f such that
dom(g), graph(g) ∈ ΣP

k+1, so by our supposition, dom(g), graph(g) ∈ ΣP
k . Therefore,

f is in ΣMVk. Hence ΣMVk+1 = ΣMVk.

Next, suppose that ΣMVk+1 = ΣMVk. Let A be ≤P
m-complete for ΣP

k+1. Define
χ0
A to be the function that χ0

A(x) = 1 if x ∈ A and undefined otherwise. Obviously, χ0
A

is in ΣMVk+1, so by our supposition, χ0
A ∈ ΣMVk. On the other hand, dom(χ0

A) = A.
Thus we have A ∈ ΣP

k . Since A is complete for ΣP
k+1, we have ΣP

k+1 = ΣP
k .

Thus these classes form function analogues of the polynomial hierarchy, and,
unless the polynomial hierarchy collapses, they form a proper hierarchy.

5. The difference hierarchy. Let F be a class of partial multivalued functions.
A partial multivalued function f is in coF if there exist g ∈ F and a polynomial p
such that for every x and y,

• f(x) maps to y if and only if |y| ≤ p(|x|) and g(x) does not map to y.

Let F and G be two classes of partial multivalued functions. A partial multivalued
function h is in F ∧ G if there exist partial multivalued functions f ∈ F and g ∈ G
such that for every x and y,

• h(x) maps to y if and only if f(x) maps to y and g(x) maps to y.

A partial multivalued function h is in F∨G if there exist partial multivalued functions
f ∈ F and g ∈ G such that for every x and y,

• h(x) maps to y if and only if f(x) maps to y or g(x) maps to y.

F − G denotes F ∧ coG.

NPMV(k) is the class of partial multivalued functions defined in the following
way:

1. NPMV(1) = NPMV, and
2. for k ≥ 2, NPMV(k) = NPMV −NPMV(k − 1).

Lemma 5.1. For every k ≥ 1, f ∈ NPMV(k) if and only if f is polynomially
length-bounded and graph(f) ∈ NP(k).

Proof. The proof is by an induction on k. For k = 1, the claim trivially holds.
Let k ≥ 2 and suppose that the claim holds for all k′ < k. Let f ∈ NPMV(k).
There are functions g ∈ NPMV and h ∈ NPMV(k − 1) such that for every x and
y, f maps x to y if and only if g maps x to y but h does not map x to y. So
graph(f) = graph(g)− graph(h). By our hypothesis, graph(h) belongs to NP(k− 1).
Since graph(g) ∈ NP, we have graph(f) = NP(k).

On the other hand, let f be a polynomially length-bounded function whose graph
is in NP(k). There are sets A ∈ NP and B ∈ NP(k− 1) such that graph(f) = A−B.
Define g and h to be functions such that graph(g) = A and graph(h) = B. By our
hypothesis, g ∈ NPMV and h ∈ NPMV(k − 1). Therefore, f ∈ NPMV(k). This
proves the lemma.

1060 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

We use the above lemma to obtain the following theorem.

Theorem 5.2. For every k ≥ 1, NPMV(k + 1) = NPMV(k) if and only if
NP(k + 1) = NP(k).

Despite the similarity in appearance, the difference hierarchy over NPMV is prob-
ably much stronger than both the difference hierarchy over NP and the bounded query
hierarchy over NPMV. For example, it is well known that maxsat is complete for
PFNP = PFNPMV [13]. Nonetheless, we have the following.

Proposition 5.3. maxsat ∈ NPMV(2).

Proof. Let f ∈ NPMV be the function that maps x to y if and only if there is a
z > y such that z is a satisfying assignment for x. Clearly, for all x, maxsat(x) = y
if and only if sat(x) maps to y and f(x) does not map to y. Therefore, maxsat ∈
NPMV(2).

Proposition 5.4. co(co-NPMV) = NPMV.

Proof. Let f ∈ NPMV. Let p be a polynomial such that for every x and y, if
f(x) maps to y, then |y| ≤ p(|x|). Let g be the complement of f with respect to p
such that for every x and y, g(x) maps to y if and only if f(x) does not map to y
and |y| ≤ p(|x|). Furthermore, let h be the complement of g with respect to p such
that for every x and y, h(x) maps to y if and only if g(x) does not map to y and
|y| ≤ p(|x|). For every x and y, h(x) maps to y if and only if f(x) maps to y. This
implies h = f . Therefore, NPMV ⊆ co(co-NPMV).

Conversely, let f ∈ co(co-NPMV). There exist g ∈ co-NPMV and a polynomial
p such that for every x and y, f(x) maps to y if and only if g(x) does not map to
y and |y| ≤ p(|x|). Moreover, since g ∈ co-NPMV, there exist h ∈ NPMV and a
polynomial q such that for every x and y, g(x) maps to y if and only if h(x) does
not map to y and |y| ≤ q(|x|). For every x and y, f(x) maps to y if and only if
either (h(x) maps to y and |y| ≤ p(|x|)) or (q(|x|) < |y| ≤ p(|x|)). Let M be a
nondeterministic Turing machine that computes h. Define N to be the machine that
on input x (1) nondeterministically guesses b ∈ {0, 1}, (2) if b = 0, then simulates
M on input x and outputs y if M outputs y and |y| ≤ p(|x|), and (3) if b = 1,
then nondeterministically guesses y, q(|x|) < |y| ≤ p(|x|) and outputs y. Clearly, N
computes f . So co(co-NPMV) ⊆ NPMV.

Theorem 5.5. The following statements are all equivalent.

(a) NP = co-NP.
(b) NPMV ⊆ co-NPMV.
(c) co-NPMV ⊆ NPMV.

Proof. By Proposition 5.4, (b) is equivalent to (c). So it suffices to show that
(a) is equivalent to (c). First, suppose that co-NPMV ⊆ NPMV. Define f to be the
function that maps x to each of the three strings λ, 0, and 1 if x ∈ SAT and undefined
otherwise. Obviously, f ∈ NPMV. Let p be a polynomial such that p(n) = 1 for all n.
By taking the complement of f with respect to p, we obtain a function g ∈ co-NPMV
that maps x to λ, 0, 1 if x 6∈ SAT and undefined otherwise. So dom(g) = SAT. Now
by our supposition, we have g ∈ NPMV, so dom(g) ∈ NP. This implies SAT ∈ NP,
and thus NP = co-NP.

Conversely, suppose that NP = co-NP. Let f ∈ co-NPMV. There exist g ∈
NPMV and a polynomial p such that for every x and y, f(x) maps to y if and only
if g(x) does not map to y and |y| ≤ p(|x|). The set of all (x, y) such that g(x) does
not map to y and |y| ≤ p(|x|) is in co-NP, so by our supposition, it is in NP. Thus
graph(f) ∈ NP, so f ∈ NPMV. Hence co-NPMV ⊆ NPMV.

Define a function f to be NPMV-low if NPMVf ⊆c NPMV.

ORACLES THAT COMPUTE VALUES 1061

Theorem 5.6. A function f is NPMV-low if and only if f ∈c NPMV with
dom(f) ∈ NP ∩ co-NP.

Proof. Let f be NPMV-low. Since f ∈ NPMVf and NPMVf ⊆c NPMV, f ∈c
NPMV. So dom(f) ∈ NP. Let A = dom(f). We wish to show that A belongs to NP.
Define M to be a machine that on input x queries f(x) and outputs 1 if f(x) = ⊥
and 0 otherwise. The function h that M computes is the characteristic function of A.
Since f is NPMV-low and h is single-valued, h ∈ NPMV, so A ∈ NP.

Conversely, let f ∈c NPMV with dom(f) ∈ NP
⋂

co-NP. Define A to be the set
of all (y1, . . . , ym),m ≥ 1, such that y1, . . . , ym 6∈ dom(f). By our supposition, A ∈
NP

⋂
co-NP. Let g ∈ NPMVf via a machine M . By the proof of Lemma 4.1, there is

a polynomial-time nondeterministic Turing machine N that computes a refinement of
g by making at most one query to A per computation path. Since A ∈ NP

⋂
co-NP,

the query to A can be simulated nondeterministically. So g ∈c NPMV. Therefore, f
is NPMV-low.

Proposition 5.7. For every k ≥ 1 and f ∈ NPMV(k), dom(f) ∈ ΣP
2 .

Proof. By Lemma 5.1, f is polynomially length bounded and graph(f) ∈ NP(k) ⊆
ΣP

2 . There is a polynomial p such that for all x,

x ∈ dom(f)↔ (∃y)[|y| ≤ p(|x|) ∧ y ∈ graph(f)].

Thus dom(f) ∈ ΣP
2 .

We show next that Proposition 5.7 is tight, even when k = 2.
Proposition 5.8. Let A be in ΣP

2 via a polynomial p and a set B in co-NP so
that for every x,

x ∈ A↔ (∃y : |y| ≤ p(|x|))[(x, y) ∈ B].

Let f be a function such that for every x and y,

f(x) 7→ y ↔ |y| ≤ p(|x|) ∧ (x, y) ∈ B.

Then f ∈ NPMV(2). (Note that dom(f) = A.)
Proof. Let A, p, B, and f be as in the hypothesis. Define f1 to be a function that

maps x to each string y in Σ≤p(|x|), and define f2 to be a function that maps x to
each string y in Σ≤p(|x|) such that (x, y) 6∈ B. Obviously, f1, f2 ∈ NPMV. For every
x and y, f(x) maps to y if and only if f1(x) maps to y and f2(x) does not map to y.
So f ∈ NPMV(2).

By Theorem 5.2, the difference hierarchy for partial multivalued functions rises or
falls in accordance with the difference hierarchy for sets. Since the difference hierarchy
for sets sits entirely within ∆P

2 , one might anticipate that the NPMV(k) hierarchy
lies within the second level of the polynomial-time hierarchy for partial multivalued
functions. The following striking theorem shows that this can be true if and only if
the polynomial-time hierarchy collapses.

Theorem 5.9. NPMV(2) ⊆ PFNPMV if and only if ΣP
2 = ∆P

2 .
Proof. First, suppose that NPMV(2) ⊆c PFNPMV. Let A be in ΣP

2 . By the
above proposition, there is a function f ∈ NPMV(2) such that dom(f) = A. By our
supposition, f ∈c PFNPMV. So there exist a polynomial-time deterministic Turing
machine M and a function g ∈ NPMV such that for every x, x ∈ A if and only if
M(x) relative to g has an output. By modifying M slightly, we have a machine M ′

such that for every x, M ′(x) relative to g outputs 1 if x ∈ A and 0 otherwise. Thus
A ∈ PNPMV, and thus A ∈ PNP. Hence ΣP

2 = ∆P
2 .

1062 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

Next, suppose that ΣP
2 = ∆P

2 . Let f ∈ NPMV(2). By Lemma 5.1, there exist
f1, f2 ∈ NPMV such that graph(f) = graph(f1)−graph(f2). Define A to be the set of
all pairs (x, y) for which there is some z ≥ y such that (x, z) ∈ graph(f1)−graph(f2).
Define g to be the partial function that maps x to the largest y such that (x, y) ∈ A
if x ∈ dom(f). It is not hard to see that g is a single-valued refinement of f and g
is polynomial-time computable with oracle A by an obvious binary search algorithm.

By definition, A ∈ ΣP
2 . So A ∈ ∆P

2 . Therefore, g ∈ PF∆P
2 = PFPNP

= PFNP. Thus
f ∈c PFNPMV.

Theorem 5.9 raises a question: “How powerful is the difference hierarchy?” The
following results provide some answers to this question.

Lemma 5.10. PF
NPMV[k]
tt ⊆c NPMV(2k + 1).

Proof. Let f ∈ PF
NPMV[k]
tt via a polynomial-time deterministic Turing machine M

that makes nonadaptive queries to a function g ∈ NPMV. Let p be a polynomial such
that for every x, each query string of M on x is of length ≤ p(|x|). Let h = s[M, g]
defined in Proposition 3.2. For each x, let nx be the largest n ∈ {0, . . . , k} such that
h(x, n) is defined. Then for every x,

• either h(x, nx) maps only to 0 or h(x, nx) maps only to strings of the form
1z, and

• if h(x, nx) maps to 0, then x 6∈ dom(f) and if h(x, nx) maps to some 1z, then
f maps x to z.

For each i ∈ {0, . . . , k}, define Hi to be the function that maps x to y if and only if
h(x, i) maps to 1y. For each i ∈ {1, . . . , k}, define Gi to be the function that maps x
to each string in Σ≤p(|x|) if for some j > i, (x, j) ∈ dom(h) and undefined otherwise.
These functions are obviously in NPMV. Note the following:

(1) for every i > nx, Hi(x) is undefined;
(2) for every i ≥ nx, Gi(x) is undefined; and
(3) for every i < nx, Gi(x) maps to every y ∈ Σ≤p(|x|).

Define F by

graph(F) = graph(Hk) ∪
(⋃

0≤i≤k−1(graph(Hi)− graph(Gi))
)
.

Then dom(f) = dom(F) and if F (x) maps to y, then f(x) maps to y. Therefore, F
is a refinement of f . Since Hi and Gi are in NPMV,

graph(F) ∈ NP ∨NP(2) ∨ · · · ∨NP(2)︸ ︷︷ ︸
k

.

So graph(F) ∈ NP(2k + 1). Therefore, f ∈c NPMV(2k + 1).

Since PF
NPMV[2k−1]
tt = PFNPMV[k], we have the following theorem.

Theorem 5.11. PFNPMV[k] ⊆c NPMV(2k+1 − 1).
By Theorem 5.2, the levels of the difference hierarchy of partial functions are

distinct if and only if the same levels of the Boolean hierarchy are distinct. Yet,
whereas the Boolean hierarchy resides entirely within PNP, by Theorem 5.9, this is
unlikely to be true of the difference hierarchy of partial functions.

6. Reduction classes to NPSV. In this section, we set down some results
about reduction classes to NPSV. With two notable exceptions, all of our results
are corollaries of theorems that we already proved, and our interest is primarily in
Corollaries 6.4 and 6.5 below, which demonstrate that bounded query hierarchies with
oracles in NPSV do not collapse unless the Boolean hierarchy collapses.

ORACLES THAT COMPUTE VALUES 1063

The following proposition is easy to prove.
Proposition 6.1.

1. PFNP = PFNPSV (by Theorem 2.4).

2. PFNP[k] ⊆ PFNPSV[k] ⊆ PFNPMV[k] and PFNP[log] ⊆ PFNPSV[log] ⊆ PFNPMV[log].
3. PF

NP[k]
tt ⊆ PF

NPSV[k]
tt ⊆ PF

NPMV[k]
tt .

4. PNP
tt = PNPSV

tt (by Theorem 3.14).
5. PNP = PNPSV (by Theorem 2.4).
6. PNP[k] ⊆ PNPSV[k] ⊆ PNPMV[k] and PNP[log] ⊆ PNPSV[log] ⊆ PNPMV[log].
7. P

NP[k]
tt ⊆ P

NPSV[k]
tt ⊆ P

NPMV[k]
tt .

Corollary 6.2. For every k ≥ 1, PNPSV[k] = PNP[k].
Proof. By Proposition 6.1(6), PNP[k] ⊆ PNPSV[k] ⊆ PNPMV[k]. By Theorem 3.7,

PNPMV[k] = PNP[k]. So PNPSV[k] = PNP[k].
Corollary 6.3. For every k ≥ 1, P

NPSV[k]
tt = P

NP[k]
tt .

Corollary 6.4. If PF
NPSV[k+1]
tt = PF

NPSV[k]
tt for some k ≥ 1, then BH collapses

to its (k + 1)st level.

Proof. Suppose PF
NPSV[k+1]
tt = PF

NPSV[k]
tt . Then we have P

NPSV[k+1]
tt = P

NPSV[k]
tt .

Therefore, by Corollary 6.3, we have P
NP[m]
tt = P

NP[k]
tt for every m. Since PNP[k] ⊆

NP(k + 1), BH collapses to its (k + 1)st level.

Corollary 6.5. If PFNPSV[k+1] = PFNPSV[k] for some k ≥ 1, then BH collapses
to its 2kth level.

Proof. Suppose PFNPSV[k+1] = PFNPSV[k]. Then we have PNPSV[k+1] = PNPSV[k].
Therefore, by Corollary 6.2, we have PNP[m] = PNP[k] for every m. Since PNP[k] ⊆
NP(2k), BH collapses to its 2kth level.

The following proposition, which is the NPSV version of Theorem 3.5, requires a
somewhat different proof from the NPMV case. It is interesting that our techniques
seem insufficient to prove the reverse inclusion.

Proposition 6.6. For every k ≥ 1, PFNPSV[k] ⊆ PF
NPSV[2k−1]
tt .

Proof. Let f ∈ PFNPSV[k] via an oracle transducer M making k many queries to
an oracle partial function g ∈ NPSV computed by an NPSV machine N . We may
assume that f is single-valued. Let r be the NPMV function defined by the machine
U in the proof of Proposition 3.1, where t(x) = k. Since g is single-valued, it follows
that r is also single-valued, and hence r ∈ NPSV. Moreover, we have that λx.[r(x, 0k)]
is total and polynomial-time computable, and if bx is the lexicographically greatest
string b ∈ Σk on which r(x, b) is defined, then

r(x, bx) =

{
0 if x 6∈ dom(f),
1y if f(x) = y.

We compute f(x) by querying r in parallel on the 2k − 1 values {(x, a) | a 6= 0k},
recovering f(x) from r(x, a) as above, where a is lexicographically largest such that
r(x, a) returns a value.

The equality in the following theorem depends heavily on the fact that NPSV
functions are single-valued, and we do not believe it holds for oracles in NPMV. The
first inclusion was found independently by E. Hemaspaandra [16].

Theorem 6.7. PFNPSV[log] ⊆ PFNPSV
tt = PFNP

tt .
Proof. The first inclusion arises immediately from adapting the proof of Proposi-

tion 6.6. We now show that PFNPSV
tt ⊆ PFNP

tt . The reverse inclusion is obvious.
If h is any single-valued partial function, define code(h) to be the set of all (x, i, b)

such that the ith bit (left to right) of h(x) exists and is b. Suppose f ∈ PFNPSV
tt is

1064 S. FENNER, S. HOMER, M. OGIHARA, AND A. SELMAN

computed by a deterministic oracle transducer M running in time p(n) and making
parallel queries to an oracle g ∈ NPSV, which itself is computed by a machine N
running in time q(n) (p and q are polynomials). We may assume f is single-valued.
Let g′ be the function that maps x to 1y if g(x) maps to y and is undefined otherwise.
Clearly, code(g′) ∈ NP, and since g′ is single-valued, at most one of the tuples (x, i, 0)
and (x, i, 1) is in code(g′), for all x and i.

Given an input x, we compute f(x) by making parallel queries to code(g′) as
follows: let q1, . . . , qs be the oracle queries made by M(x). We query code(g′) on
all the tuples (qi, j, b) for 1 ≤ i ≤ s, 0 ≤ j ≤ q(p(|x|)), and b ∈ {0, 1}. Since
dom(g′) = dom(g) and g′(q) never maps to the empty string, qi ∈ dom(g) if and only
if one of (qi, 0, 0) and (qi, 0, 1) is in code(g′). For each qi ∈ dom(g), we recover g(qi)
in the usual way by reading from code(g′) all but the 0th bit of g′(qi). Query answers
in hand, we continue simulating M to obtain f(x).

The next corollary was proved independently from scratch by L. Hemaspaandra
[10].

Corollary 6.8. PNPSV
tt = PNP

tt = PNP[log] = PNPSV[log].

Proof. The first equation follows from Theorem 6.7 by considering only charac-
teristic functions. Also by Theorem 6.7, we have PNPSV[log] ⊆ PNP

tt = PNP[log] ⊆
PNPSV[log], so the last equation holds.

Recall from the introduction that it is not known whether sat belongs to PFNPSV[k]

for any k. We know that maxsat is complete for PFNPMV [13]. Thus by Corollary 6.5,

if for any k ≥ 1, maxsat ∈ PFNPSV[k], then the Boolean and polynomial hierarchies
collapse.

Although PFNPMV[log] = PFNPMV
tt (Theorem 3.13), we do not know whether

PFNPSV[log] and PFNPSV
tt are equal. In particular, whereas, PFNPSV

tt = PFNP
tt (The-

orem 6.7) is easy to prove, apparently PFNPSV[log] and PFNP[log] are not equal, for

NPSV ⊆ PFNPSV[1] ⊆ PFNPSV[log], while NPSV ⊆ PFNP[log] implies P = UP [15].

Thus PFNPSV[log] ⊆ PFNP[log] implies P = UP. Similarly, PFNPMV[1] ⊆ PFNP[log]

implies P = NP.

REFERENCES

[1] R. Beigel, NP-Hard Sets Are P-Superterse unless R = NP, Technical Report 88-04, Depart-
ment of Computer Science, Johns Hopkins University, Baltimore, MD, 1988.

[2] R. Beigel, Bounded queries to SAT and the Boolean hierarchy, Theoret. Comput. Sci., 84
(1991), pp. 199–223.

[3] H. Buhrman, private communication, 1992.
[4] S. Buss and L. Hay, On truth table reducibility to SAT, Inform. and Comput., 91 (1991), pp.

86–102.
[5] R. Book, T. Long, and A. Selman, Quantitative relativizations of complexity classes, SIAM

J. Comput., 13 (1984), pp. 461–487.
[6] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and

G. Wechsung, The boolean hierarchy I: Structural properties, SIAM J. Comput., 17
(1988), pp. 1232–1252.

[7] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and

G. Wechsung, The boolean hierarchy II: Applications, SIAM J. Comput., 18 (1989), pp.
95–111.

[8] J. Cai and L. Hemachandra, The Boolean hierarchy: Hardware over NP, in Structure in
Complexity Theory, Lecture Notes in Comput. Sci. 223, Springer-Verlag, Berlin, 1986, pp.
105–124.

[9] Z. Chen and S. Toda, On the complexity of computing optimal solutions, Internat. J. Found.
Comput. Sci., 2 (1991), pp. 207–220.

[10] L. Hemaspaandra, private communication, 1993.

ORACLES THAT COMPUTE VALUES 1065

[11] L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman, Computing solutions uniquely
collapses the polynomial hierarchy, SIAM J. Comput., 25 (1996), pp. 697–708.

[12] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM
J. Comput., 17 (1988), pp. 1263–1282.

[13] M. Krentel, The complexity of optimization problems, J. Comput. Systems Sci., 36 (1988),
pp. 490–509.

[14] J. Köbler, U. Schöning, and K. Wagner, The difference and truth-table hierarchies for NP,
RAIRO Inform. Théor. Appl., 21 (1987), pp. 419–435.

[15] A. Selman, A taxonomy of complexity classes of functions, J. Comput. Systems Sci., 48
(1994), pp. 357–381.

[16] E. Hemaspaandra, private communication, 1993.
[17] H. Wareham, On the Comptutational Complexity of Inferring Evolutionary Trees, Master’s

thesis, Department of Computer Science, Memorial University of Newfoundland, St. John’s,
NF, Canada, 1992.

[18] O. Watanabe and S. Toda, Structural analysis of the complexity of inverse functions, Math.
Systems Theory, 26 (1993), pp. 203–214.

[19] G. Wechsung and K. Wagner, On the boolean closure of NP, in Proc. International Con-
ference on Fundamentals of Computation Theory, Lecture Notes in Comput. Sci. 199,
Springer-Verlag, Berlin, 1985, pp. 485–493.

FAST DISCRETE POLYNOMIAL TRANSFORMS WITH
APPLICATIONS TO DATA ANALYSIS FOR DISTANCE

TRANSITIVE GRAPHS∗

J. R. DRISCOLL† , D. M. HEALY, JR.‡ , AND D. N. ROCKMORE§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1066–1099, August 1997 008

Abstract. Let P = {P0, . . . , Pn−1} denote a set of polynomials with complex coefficients.
Let Z = {z0, . . . , zn−1} ⊂ C denote any set of sample points. For any f = (f0, . . . , fn−1) ∈ Cn,
the discrete polynomial transform of f (with respect to P and Z) is defined as the collection of

sums, {f̂(P0), . . . , f̂(Pn−1)}, where f̂(Pj) = 〈f, Pj〉 =
∑n−1

i=0
fiPj(zi)w(i) for some associated weight

function w. These sorts of transforms find important applications in areas such as medical imaging
and signal processing.

In this paper, we present fast algorithms for computing discrete orthogonal polynomial trans-
forms. For a system of N orthogonal polynomials of degree at most N − 1, we give an O(N log2 N)
algorithm for computing a discrete polynomial transform at an arbitrary set of points instead of the
N2 operations required by direct evaluation. Our algorithm depends only on the fact that orthog-
onal polynomial sets satisfy a three-term recurrence and thus it may be applied to any such set of
discretely sampled functions.

In particular, sampled orthogonal polynomials generate the vector space of functions on a distance
transitive graph. As a direct application of our work, we are able to give a fast algorithm for
computing subspace decompositions of this vector space which respect the action of the symmetry
group of such a graph. This has direct applications to treating computational bottlenecks in the
spectral analysis of data on distance transitive graphs, and we discuss this in some detail.

Key words. fast Fourier transform, FFT, discrete polynomial transform, orthogonal polynomi-
als, three-term recurrence, distance transitive graph

AMS subject classifications. Primary, 42C05, 42C10, 42-04, 33C90; Secondary, 65T20, 62-04,
62-07, 05C99

PII. S0097539792240121

1. Introduction. The efficient decomposition of a function into a linear combi-
nation of orthogonal polynomials is a fundamental tool which plays an important role
in a wide variety of computational problems. Applied science abounds with computa-
tions using such decompositions, along with the related computational techniques for
calculation of correlation or projection of data onto a family of polynomials. To cite
just a few examples, this sort of approach is used in spectral methods for solving dif-
ferential equations [Bo, Te], data analysis [D], signal and image processing [OS], and
the construction of Gauss quadrature schemes [Ga1]. In most cases, the choice of a
particular family of polynomials is determined by some special property or underlying
symmetry of the problem under investigation.

∗Received by the editors October 16, 1992; accepted for publication (in revised form) August 22,
1995.

http://www.siam.org/journals/sicomp/26-4/24012.html
†Driscoll Brewing, 81 Oakwood Drive, Murray Hill, NJ 07974 (driscoll@cs.dartmouth.edu). The

research of this author was partially supported by DARPA as administered by the AFOSR under
contract AFOSR-90-0292.
‡Departments of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755

(healy@cs.dartmouth.edu). The research of this author was partially supported by DARPA as ad-
ministered by the AFOSR under contract AFOSR-90-0292 and by ARPA as administered by the
AFOSR under contract DOD-F4960-93-056.
§Departments of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755

(rockmore@cs.dartmouth.edu). The research of this author was partially supported by an NSF
Mathematical Sciences Postdoctoral Fellowship and by ARPA as administered by the AFOSR under
contract DOD-F4960-93-056.

1066

FAST DISCRETE POLYNOMIAL TRANSFORMS 1067

Perhaps the most familiar example is the representation of a discrete data se-
quence as a linear combination of phase polynomials. In this case, the decomposition
is known as the discrete Fourier transform (DFT) and is accomplished both efficiently
and reliably through the use of the well-known fast Fourier transform algorithms
(FFT) (cf. [ER] and the references therein). The DFT is a particularly simple orthog-
onal polynomial transform which corresponds to the projection of a data sequence
f = (f0, . . . , fN−1) onto the family of monomials Pl(x) = ml(x) = xl evaluated at
the roots of unity zk = e2πik/N , k = 0, 1, . . . , N − 1. Thus the DFT is the collection
of sums

f̂(l) =
N−1∑
k=0

fkPl(z
k) =

N−1∑
k=0

fke
2πikl/N(1.1)

for the discrete frequencies l = 0, 1, . . . , N − 1. The monomials form an orthogonal
set whose properties account for the well-documented usefulness and algorithmic ef-
ficiency of the FFT algorithms. In particular, these algorithms allow the projections
in (1.1) to be computed in O(N logN) operations as opposed to the N2 operations
that a direct evaluation would require [ER]. (We assume a standard model in which
a single complex multiplication and addition are defined as a single operation.)

In this paper, we are concerned with the development of efficient algorithms
for computing more general discrete polynomial transforms. Specifically, let P =
{P0, . . . , Pn−1} denote a set of polynomials with complex coefficients. Let Z =
{z0, . . . , zn−1} ⊂ C denote any set of sample points. If f = (f0, . . . , fn−1) is any
data vector (often thought of as a function with known values at the sample points),
then the discrete polynomial transform of f (with respect to P and Z) is defined as

the collection of sums, {f̂(P0), . . . , f̂(Pn−1)}, where

f̂(Pj) = 〈f, Pj〉 =

n−1∑
i=0

fiPj(zi)w(i).(1.2)

The function w is some associated weight function, often identically 1. Familiar
examples of discrete polynomial transforms include the DFT (already mentioned) as
well as the related discrete cosine transform (DCT). In fact, both may be obtained as
particular cases of discrete monomial transforms—i.e., discrete polynomial transforms
in which Pj = mj is the monomial of degree j. Beyond such special cases, we know of
no prior general algorithm for computing discrete polynomial transforms which has
complexity less than O(n2).

Inspection of equation (1.2) shows that direct computation of the discrete poly-
nomial transform requires n2 operations. For large n, this cost quickly becomes pro-
hibitive. The main result of this paper is an algorithm which computes general discrete
orthogonal polynomial transforms in O(n log2 n) operations. This relies primarily on
the three-term recurrences satisfied by any orthogonal polynomial system and as such
our algorithms also obtain for computing transforms over any set of spanning functions
which satisfy such a recurrence. Related techniques have already found a number of
applications attacking computational bottlenecks in problems in areas such as medical
imaging, geophysics, and matched filter design [DrH, MHR, HMR, HMMRT].

Our original motivation for studying these sorts of computations comes from prob-
lems which arise in performing spectral analysis of data on distance transitive graphs.
This analysis is effectively the combinatorial analogue of the more familiar case of
spectral analysis on continuous spaces like the circle or the 2-sphere. For instance,

1068 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

functions defined on distance transitive graphs admit a spectral decomposition which
mirrors that of integrable functions on the 2-sphere. In particular, recall that the
algebra of functions on the 2-sphere is generated by functions constant on circles of
fixed distance from the north pole (circles of latitude), the so-called “zonal spherical
functions” for the 2-sphere [He]. For each nonnegative integer m, there is a uniquely
defined (up to a constant) spherical function of degree m and the translates of this
function under the action of SO(3) (the symmetry group of the 2-sphere given by the
group of rotations in 3-space) span a subspace of the vector space of functions on the
2-sphere which is invariant under the action of SO(3). Similarly, distance transitive
graphs have an associated symmetry group. After the choice of a distinguished vertex,
analogous to the choice of a “north pole” on the 2-sphere, the algebra of functions on
a distance transitive graph is generated by analogously defined spherical functions.
(Here distance on the graph is the usual shortest path distance between vertices.) It
turns out that these discrete functions are sampled orthogonal polynomials. Spectral
analysis of data on a distance transitive graph, naturally viewed as a function on
the graph, requires the expansion of the function in terms of a basis generated by
the discrete spherical functions. The expansion may be reduced to the computation
of discrete spherical transforms which are, in fact, discrete orthogonal polynomial
transforms.

The spectral approach to data analysis, as described by Diaconis [D], is motivated
by the observation that it is often appropriate and useful to view data as a function
defined on an suitably chosen group or, more generally, some homogeneous space of
a group. The choice of a “natural” group in any given situation depends on various
symmetries of the problem. The group-theoretic setting of spectral analysis allows for
the techniques of Fourier analysis to be applied. In particular, a data vector will have
a natural decomposition into symmetry-invariant components which are calculated
by computing the projections of the data vector into the various symmetry-invariant
subspaces.

A familiar illustration of this approach comes from digital signal processing. Here
the standard analysis of stationary signals proceeds by decomposing the signal as a
sum of sines and cosines with coefficients determined by usual abelian FFT. The sines
and cosines of a given frequency determine subspaces of functions which are invariant
under translation of the origin.

For a possibly less familiar example (due to Diaconis [D]), consider the California
Lottery game. Each player chooses a six-element subset of {1, . . . , 49}. Every such
subset corresponds to a coset of S49/(S6 × S43). (Here S6 × S43 is identified with the
subgroup of S49 that independently permutes the subsets {1, . . . , 6} and {7, . . . , 49}.)
The vector space of functions defined on the cosets S49/(S6 × S43) is denoted as
M (43,6). Each “run” of the game gives rise to a function f ∈ M (43,6) such that f(x)
is the number of people picking 6-set x.

A spectral analysis approach to analyzing such a data vector is to decompose the
vector into symmetry-invariant components, where here a natural choice of symmetry
group is the symmetric group S49. Standard analysis from the representation theory of
the symmetric group shows that M (43,6) has a unique finest decomposition into seven
S49-invariant components, M (43,6) = S(49)⊕S(48,1)⊕ · · · ⊕S(43,6). This decomposition
has a natural data-analytic interpretation. The invariant subspace S(49) measures the
constant contribution. The other invariant subspaces S(49−j,j) naturally measure the
“pure” contribution of the popularity of the various j-sets (that is, the number of
people including a given j-set in their 6-set). Computation of the projections onto

FAST DISCRETE POLYNOMIAL TRANSFORMS 1069

these subspaces can be reduced to computing the relevant spherical transforms, which
in this case turn out to be certain discrete Hahn polynomial transforms. The methods
of this paper allow these transforms to be computed efficiently.

The California Lottery example is, in fact, an example of data on a distance
transitive graph. More generally, the k-sets of an n-set comprise a distance transitive
graph by joining any two k-sets which differ by only a single element. This graph
possesses certain Hahn polynomials as its spherical functions (cf. [St3, section II.3]).
Other examples include the n-gon graph with dihedral group symmetry as well as the
n-dimensional hypercube with hyperoctahedral group of symmetries. In the former
case, the spherical functions are obtained from the Chebyshev polynomials, Tn(x) =
cos(n arccos(x)) [Bi], and in the latter case, the Krawtchouk polynomials give the
spherical functions (cf. [St3, section II.2]).

As we shall see in section 3, in general, the problem of finding an FFT for distance
transitive graphs may be reduced to that of the efficient computation of the projection
onto the spherical functions for the graph, which are an orthogonal family of special
functions on the graph. In many important examples (cf. [St1, St3] and the many
references therein), these spherical functions are actually sampled orthogonal polyno-
mials, and the spherical transform amounts to projection onto these polynomials in a
weighted `2 space.

The organization of the paper is as follows. Section 2 discusses fast orthogo-
nal polynomial transforms, beginning with previously known results for monomial
transforms and concluding with our main computational result, which is an efficient
discrete orthogonal polynomial transform. This material is elementary and relies
on nothing more than the recurrence relations satisfied by the polynomials in ques-
tion. Section 3 treats our main application of interest: fast algorithms for projection
onto spherical functions on distance transitive graphs. We include here the necessary
group-theoretic background and notation and give explicit examples of the algorithm
for spherical functions on several graphs of interest. The fast spherical transform
algorithm may be modified in order to provide a fast inverse transform, and from
this we also obtain a fast convolution algorithm for functions on distance transitive
graphs. Section 4 discusses the connection of these results to the computation of
isotypic projections required for spectral analysis. We close in section 5 with some
final remarks.

2. Fast polynomial transforms. The goal of this section is to produce al-
gorithms for fast evaluation of polynomial transforms with an eye to their eventual
application to the efficient computation of spherical transforms. The general algo-
rithm proceeds in two steps. The initial phase is an efficient projection onto the
monomials. From here we are able to use the three-term recurrence to obtain a
divide-and-conquer approach for relevant fast polynomial transforms. In general, our
approach is to formulate the initial problem as a particular matrix–vector multiplica-
tion and then present the fast algorithm as a particular matrix factorization.

We proceed by first recalling the fast monomial transform. This is obtained by
writing it as the transpose of multiple-point polynomial evaluation and then formu-
lating a well-known efficient algorithm for the latter process (cf. [BM, Chapter 4]) as
a structured matrix factorization. We explain the full algorithm next and then close
this section with an example.

2.1. Fast monomial transforms. The simplest polynomial transform problem
that we could consider is the projection of a vector f = (f0, . . . , fn−1) onto the family

1070 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

of monomials evaluated at the finite point set {z0, . . . , zn−1},

f̂(k) = 〈f, zk〉 =
n−1∑
`=0

f`(z`)
k (k = 0, . . . , n− 1).(2.1)

Note that viewed as a matrix–vector multiplication, this is the evaluation of multipli-
cation of the suitably defined Vandermonde matrix times the vector of samples. That
is,

〈f, zk〉 = (V · f)k,

where

V = V (z0, . . . , zn−1) =

1 1 · · · 1
z0 z1 · · · zn−1

...
...

z0
n−1 z1

n−1 · · · zn−1
n−1

 .(2.2)

The familiar example of the abelian DFT is obtained by taking the evaluation
points to be the nth roots of unity in C, z` = exp(2πi`/n). This projection may be
obtained by the familiar FFT divide and conquer strategy in O(n logn) operations as
opposed to the obvious O(n2). General references include [BM, ER, N, TAL].

Notice that the abelian FFT gives rise to our first efficient spherical transform,
corresponding to the n-gon graph. This is a fast discrete Chebyshev transform with
samples at the Chebyshev points, cos 2π`/n. This can be obtained by applying the
usual FFT to a real-valued data sequence.

Our fast monomial transform is based on the formulation of the FFT which con-
siders the transpose of projection and develops the algorithm as polynomial evaluation
at the roots of unity,

f̂(k) = (V t · f)k =
n−1∑
`=0

f`(zk)`

for zk = exp(2πik/n). This version of the FFT is achieved by efficient recursive
application of the division algorithm (cf. [BM]).

An advantage of this perspective is that it allows an easy generalization to the
direct evaluation of polynomials at n real points. We now review a well-known
O(n log2 n) algorithm for polynomial evaluation which we may formulate as a fac-
torization of the matrix V t into block-diagonal matrices with Toeplitz blocks of ge-
ometrically decreasing size. It is this structure which permits the fast computation
of the matrix–vector product. Consequently, we obtain a corresponding factoriza-
tion of the transpose, V and hence, an algorithm for projection which also requires
O(n log2 n) operations. For ease of exposition, we assume n is a power of 2.

Lemma 2.1. Let n = 2k and let V be the Vandermonde matrix for the set of com-
plex points z0, z1, . . . , zn−1, as defined in (2.2). The matrix–vector product V t · f , for
f ∈ Cn (corresponding to the evaluation of the polynomial f0 +f1z+ · · ·+fn−1z

n−1 at
the points z0, z1, . . . , zn−1) may be accomplished in O(n log2 n) operations. Likewise,
the product V · f for f ∈ Cn (corresponding to projection of a sampled function f
onto the monomials sampled at z0, z1, . . . , zn−1) may be accomplished in O(n log2 n)
operations.

FAST DISCRETE POLYNOMIAL TRANSFORMS 1071

Fig. 2.1. Tree for evaluating a polynomial φ(z) at n = 2k points. Note that it has k = logn levels.

Proof. Let φ(z) =
∑n−1
i=0 fiz

i, n = 2k, with k ≥ 0. We may evaluate φ at any of
the zj , j = 0, 1, . . . , n−1 by the division algorithm because φ(zj) = φ(z) mod (z−zj).
The division may be done in O(n logn) for a given zj , but to proceed this way for
each of the zj separately is prohibitively expensive.

Instead, we use a familiar divide-and-conquer strategy, simultaneously reducing
the original polynomial modulo each linear factor (z − zj) in k = logn stages, as
shown in Figure 2.1. Notice that fast polynomial arithmetic algorithms allow for the
various moduli to be precomputed in O(n log2 n) operations (cf. [BM, section 4.3]).

Each downward edge in the tree in Figure 2.1 represents the reduction of a polyno-
mial p(x) modulo another polynomial of form mS(z) = Πzj∈S(z − zj), corresponding
to a certain subset S of the evaluation points z0, . . . , zn−1. To move down this edge
of the tree, we need an algorithm to efficiently compute the remainder rS(x), and
incidentally q(x), in the division algorithm representation

p(x) = q(x)mS(x) + rS(x).

The input p is a remainder from a previous stage and has degree d− 1, where d is a
power of 2. The precomputed modulus mS has degree d/2. Therefore, rS has degree
d/2− 1.

The key point is that in this tree, rS is equivalent mod mS not only to its im-
mediate ancestor p but also to every ancestor of p, all the way back to the original
polynomial φ. Indeed, p was itself obtained as a remainder modulo mS̃ from its ances-

1072 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

tor P, and Figure 2.1 shows that always S ⊂ S̃, so mS |mS̃ . Therefore, mS |(rS − P).
So upon reaching the leaves of the tree, we have actually computed φ(z) modulo the
linear factors (z − zj) as desired.

To see how to compute the basic reduction steps efficiently, we write the division
algorithm representation r = p − qm in matrix form. It is natural to split this
equation into a high-order and a low-order part, due to the vanishing of the higher-
order coefficients of r, corresponding to powers d/2, . . . , d−1. The low-order equation
involving the nonzero coefficients of r looks like

r d
2−1

...

...

...
r0

 =

p d
2−1

...

...

...
p0

−

m0 m1 · · · · · · m d
2−1

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . m1

0 · · · · · · 0 m0

q d
2−1

...

...

...
q0

 .(2.3)

The upper triangular Toeplitz matrix in (2.3) is comprised of the lower-order coeffi-
cients of the polynomial m; for future reference, we call this matrix M.

Now the higher-order terms of r are zero, so the high-order equation reduces to

pd−1

...

...

...
p d

2

 =

m d
2

0 · · · · · · 0

m d
2−1

. . .
. . .

...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

m1 · · · · · · m d
2−1 m d

2

q d
2−1

...

...

...
q0

 .(2.4)

Since md/2 = 1, the lower triangular Toeplitz matrix in (2.4) is invertible. Its
inverse, G, is also lower triangular and Toeplitz and may be computed in O(d log d)
operations by a Newton iteration and then prestored (cf. [BM, Chapter 4] and Remark
3 following this proof). Insert the result into equation (2.3). This gives

 r d
2−1

...
r0

=

 p d
2−1

...
p0

−MG

 pd−1

...
p d

2

=

 |
−MG | Id/2

|

pd−1

...
p d

2−−−
p d

2−1

...
p0

.

(2.5)

Here Id/2 is the d/2× d/2 identity matrix.
Here we must briefly recall that standard techniques using the FFT allow Toeplitz

matrices of dimension b to be multiplied by an arbitrary vector of length b in at most

FAST DISCRETE POLYNOMIAL TRANSFORMS 1073

O(b log b) operations. This is done by framing the computation as the convolution
of two sequences. More specifically, the Toeplitz matrix of order b is extended to
a circulant matrix of order 2b. A zero-padded version of the original data vector is
then multiplied by this matrix in order to obtain the appropriate product. The new
matrix–vector multiplication is precisely the circular convolution of two sequences
of length 2b and as such is performed efficiently by computing the FFTs of each of
the sequences, performing the pointwise multiplications of the resulting sequences
and finally computing an inverse Fourier transform (requiring one more FFT) of
this sequence. Thus a total of three FFTs are required as well as one pointwise
multiplication of a sequence of length 2b. If 2b = 2r, then an FFT of length 2b
requires at most 3/2 · 2b · r = 3br operations (cf. [BM, p. 84]). Consequently, the
multiplication of a Toeplitz matrix of order b = 2r−1 by an arbitrary vector requires
at most 3 · 3br + 2b operations or O(b log b) operations.

Since M and G are both Toeplitz, the above discussion shows that the product

M ·G ·

 pd−1

...
p d

2

can be computed in at most 2(9 · (d/2)r+ 2 ·d/2) = 9dr+d operations, where d = 2r.
This is effected by first performing the multiplication

G ·

 pd−1

...
p d

2

and then multiplying this result by M . This means then that the multiplication in
(2.5) may be accomplished in 9dr+ d+ d/2 = 9dr+ 3d/2 operations. The additional
term of d/2 comes from the multiplication of the identity subblock against the low-
order coefficients. Note that this is the cost of a single reduction in a single stage of
the algorithm.

Looking back at the tree (see Figure 2.1), we see that the first stage of the
algorithm consists of two reductions from order n = 2k to order n/2 by two polynomial
divisions. Consequently, if we let T (n) denote the number of operations required to
compute the order n problem, then we obtain the following recurrence:

T (n) = 2T
(n

2

)
+ 2 ·

(
9nk +

3

2
n

)
= 18n logn+ 3n.(2.6)

Iteration of the recurrence (2.6) yields

T (n) ≤ 18n log2 n+ 3n logn,(2.7)

which shows that the entire computation can be performed in O(n log2 n) operations.
This sequence of reductions can be encoded as a structured matrix factorization

of V t. Let Ml,i denote the upper triangular Toeplitz matrix associated (in the sense
of (2.3)) with the polynomial which gives the ith modulus at level l of the tree in
Figure 2.1. Thus M1,0 is associated with (z − z0) · · · (z − zn/2−1), M1,1 is associated
with (z− zn/2) · · · (z− zn−1), M2,0 is associated with (z− z0) · · · (z− zn/4−1), and, in
general, Ml,i is associated with the product (z − zi(n/2l)) · · · (z − z(i+1)(n/2l)−1).

1074 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Similarly, let Gl,i denote inverse of the lower triangular Toeplitz matrix associated
(in the sense of (2.4)) with the polynomial which gives the ith modulus at level l of
the tree in Figure 2.1. As discussed above, Gl,i is itself lower triangular and Toeplitz.

Define the matrices Rl,i as in (2.5) by

Rl,i =

 |
−Ml,iGl,i | I2k−l

|

 ↑
2k−l

↓
← 2k−l → ← 2k−l →

(2.8)

for 1 ≤ l ≤ k = logn and 0 ≤ i < 2l. Then the previous discussion shows that V t has
a factorization into k = logn factors as the matrix product

 Rk,0
−−−
Rk,1

 © Rk,2
−−−
Rk,3

. . .

©

Rk,n−2

−−−
Rk,n−1

· · ·

R2,0

− − −
R2,1

 ©

©

R2,2

− − −
R2,3

R1,0

− − −

R1,1

.

By transposition, a similarly structured factorization of V is then also obtained.
The reversal of order obviously does not change the complexity of the sequence of mul-
tiplications; each matrix is still block diagonal, with the blocks themselves comprised
of products of triangular Toeplitz subblocks as before.

Remarks. 1. As mentioned previously, Lemma 2.1 is a restatement of what is
now a classical result of the complexity for polynomial evaluation. For variations on
this algorithm as well as pointers to the more recent literature, we refer the reader to
the survey article of Pan [P] and the extensive bibliography contained therein.

2. Our proof treats only the case of n equal to a power of 2 but may be extended
to the general case in a straightforward manner with the same asymptotic result.

3. Notice that the above algorithm requires O(n logn) storage. To see this,
recall that the matrix–vector multiplications involving the matrices Ml,i and Gl,i are
effected by extending these matrices to the appropriate circulant matrices of twice
the size and then performing the subsequent matrix–vector multiplications as circular
convolutions using the FFTs of the associated sequences. The matrices Ml,i and Gl,i

FAST DISCRETE POLYNOMIAL TRANSFORMS 1075

are of dimension 2k−l (where n = 2k) and thus are extended to circulants of size
2k−l+1. We need only store the DFT of a single row of this circulant, so in total we
require 2n logn storage to keep the necessary data from the all of the Ml,i’s and Gl,i’s.

To generate this initial data structure, we require O(n log2 n) operations. For this,
we first note that to generate the necessary DFTs from all of the Ml,i’s and Gl,i’s we
require at most O(n log2 n) operations, assuming that we have constructed the Ml,i’s
and Gl,i’s. The Ml,i’s and the G−1

l,i ’s are obtained from the polynomial coefficients of
the various supermoduli in the division tree of Figure 2.1. These may be generated
recursively from the bottom of the tree up using efficient polynomial multiplication
routines which require O(m logm) operations to multiply two polynomials of degree
m (cf. [BM, p. 86]). Thus at most O(n log2 n) operations are needed to generate all
of the Ml,i’s and G−1

l,i ’s (cf. [BM, p. 100]). Finally, to invert any particular G−1
l,i in

order to obtain Gl,i, an additional O(l 2l) is needed (cf. [BM, p. 96]) so that in total
we require O(n log2 n) operations to precompute the necessary data structure.

4. Notice that one direct result of an efficient monomial transform is that we
can obtain an FFT at nonuniformly spaced frequencies. This amounts to evaluating
the polynomial above at n nonuniformly spaced points on the unit circle and can be
accomplished in O(n log2 n) operations. An application of this to fast scanning for
MRI is discussed in [MHR], as are issues of stability of the fast algorithm.

Nonuniform FFTs also immediately provide anO(n log2 n) Chebyshev polynomial
transform on the uniform grid {k/n− 1|k = 0, . . . , 2n− 1} in [−1, 1] by applying the
nonuniform Fourier transform to a real data sequence f at the points exp(iθk) with
cos(θk) = k/n. This turns out to be useful, and we will explore it in more detail later.

Lemma 2.1 has many applications. We record some here for later use.
Corollary 2.2. Each of the following three computations can be obtained in

O(n log2 n) operations:
(1) the `2 projections of a discrete function onto the monomials sampled at the

points x0, x1, . . . , xn−1 in R,

n−1∑
k=0

fkxk
l, l = 0, . . . , n− 1,

(2) the `2 projections of a discrete function onto the Chebyshev polynomials Tn(x)
sampled uniformly at the points{

uk = 2
k

n
− 1
∣∣∣k = 0, . . . , n− 1

}
⊂ [−1, 1],

n−1∑
k=0

fkTl(uk), l = 0, . . . , n− 1;

(3) the `2 projections of a discrete function onto the shifted Chebyshev polynomi-
als T ∗n(x) = Tn(2x− 1) on the regular grid{

vk =
k

n

∣∣∣k = 0, . . . , n− 1

}
⊂ [0, 1].

Proof. (1) This is an immediate application of the lemma.

1076 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

(2) Take θk = arccos(uk) in [0, π], k = 0, . . . , n−1. Define points zj , j = 0, . . . , 2n−
1 in the unit circle by

zj =

{
eiθj if 0 ≤ j < n− 1,
ei(θj−n−π) if n ≤ j < 2n.

Then

n−1∑
k=0

fkTl(uk) =

n−1∑
k=0

fk cos(lθk)

=

n−1∑
k=0

1

2
fk(zlk + zlk)

=

2n−1∑
j=0

F (zj)z
l
j ,

where F (z0) = f0; F (zk) = (1/2)fk, k = 1, . . . , n − 1; F (zn) = 0; and F (z) = F (z).
The result follows by applying Lemma 2.1 to this last expression.

Alternatively, one may apply Lemma 2.1 separately to the real and imaginary
parts of f, evaluating at the points zj , j = 0, . . . , n− 1, and taking the real part.

(3) This follows from (2) by a change of variables.
For reasons of numerical stability, the projections described in the last two parts

of the corollary provide a useful alternative to projection onto monomials on uniform
grids. Even though the Chebyshev polynomials are not discretely orthogonal on
the uniform grid, they still are much better conditioned than the monomials [Ga2,
Hi]. It should also be noted that certain modifications of the resulting algorithm
for projection onto the Chebyshev polynomials are required for stable computation.
These modifications do not affect the efficiency of the algorithm in any appreciable
way (cf. [MHR]).

2.2. Three-term recurrence relations and fast projection. We wish to
extend the results of section 2.1 to obtain an algorithm for the fast projection onto
functions other than the monomials or the Chebyshev polynomials. In particular, we
are interested in doing this for the spherical functions for distance transitive graphs.
These functions satisfy three-term recurrence relations, which permits us to make an
efficient change of basis from monomials or Chebyshev polynomials. The following
theorem demonstrates this in a case of interest for the current paper. It is evident
that the argument can be applied in more general situations.

Theorem 2.3. Let n = 2k and let Φi(x), i = 0, . . . , n − 1 comprise a family of
functions defined at the positive integers x = 0, 1, . . . , n−1 and satisfying a three-term
recurrence there:

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x),

with initial conditions Φ0 = 1, Φ−1 = 0. Then the projections of a data vector f =
(f0, . . . , fn−1) defined by

f̂(l) =
n−1∑
j=0

fjΦl(j)wj = 〈f,Φl〉,

FAST DISCRETE POLYNOMIAL TRANSFORMS 1077

where w is a weight function, can be computed for all l < n in O(n log2 n) operations.

Proof. Without loss of generality, we may assume that wi = 1 for each i. (In the
more general case, the weights could be absorbed immediately into f .) By Lemma 2.1,
we can effect the projection onto the monomials of degree less than n sampled at the
points x = 0, 1, . . . , n − 1 in O(n log2 n) operations. We now use the three-term
recurrence to transform these into the desired projections onto the Φl.

Define the sequence Zl for each l = 0, 1, . . . , n− 1 by

Zl(k) = 〈f, xkΦl〉 =

n−1∑
j=0

fjj
kΦl(j)(2.9)

for k = 0, 1, . . . , n − 1. Our goal is to obtain the values Zl(0) = 〈f, x0Φl〉. However,
what we may compute efficiently from the initial data are the values Z0(k) = 〈f, xk〉.

In terms of the Zl, the recurrence

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x)(2.10)

translates into

Zl+1(k) = al〈f, xk+1Φl〉+ bl〈f, xkΦl〉+ cl〈f, xkΦl−1〉
= alZl(k + 1) + blZl(k) + clZl−1(k).

(2.11)

Observe that the weights in (2.11) do not depend on the k index. That is, the
sequence Zl+1 is obtained by adding scalar multiples of the sequences Zl, Zl−1, and
a shifted version of Zl.

According to Lemma 2.1 and, specifically, equation (2.7), we can compute the
sequence Z0 in 18n log2 n + 3n logn operations. Setting Z−1 = 0, the recurrence
(2.11) gives Z1 in at most 2n additional operations. In particular, this gives the

value Z1(0) = f̂(1). Proceeding in this direct fashion, one could successively build
the sequences Zl and the obtain the values Zl(0). Of course, this yields no savings,
requiring n operations of length 2n and thus O(n2) in total.1

Instead, following [DrH], we are able to use a divide-and-conquer approach to solve
the problem more efficiently. To explain this, it is instructive to view the computation
graphically. For this, consider the coordinate grid in Figure 2.2 with the l-axis in
the horizontal direction and the k-axis in the vertical direction. We can consider
the function Z defined on the grid with values Z(l, k) = Zl(k). Using recurrence
(2.11), one sees immediately that the computation of Zl(k) (for k < n − l) only
requires the prior computation of Zi(j) for (i, j) in the triangle defined by the vertices
(l, k), (0, k), (0, l + k).

Our goal is to compute the values Zl(0) for 0 ≤ l ≤ n − 1. As discussed above,
initial computation of the first two columns, {Zj(k) | j = 0, 1 and 0 ≤ k ≤ n− 1} can
be obtained in 18n log2 n + 3n logn + 2n operations. In particular, the values Z0(0)
and Z1(0) are obtained.

To compute the remaining Zl(0)’s we wish to rewrite the recurrence (2.11) as a
matrix equation. For any complex numbers α, β, and γ, define a 2n × 2n matrix

1Strictly speaking, the recurrence can be applied to the initial sequence Z0 to obtain the correct
values of Zl(k) for k < n− l. For example, to get Z1(n− 1) with equation (2.11) requires the value
of Z0(n), which we do not have. This “edge effect” propagates as l increases but does not affect the
values of the sequences that we actually need for the algorithm.

1078 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.2. Computation of Z6(4) depends only on the computation of Zi(j) for (i, j) in the
shaded triangle.

Tn(α, β, γ) by

Tn(α, β, γ) =

(
0 I
γI βI + αN

)
,

where I denotes the n× n identity matrix and N denotes the n× n nilpotent matrix
with ones on the superdiagonal and zeros elsewhere. Note that Tn(α, β, γ) is a block
matrix composed of four n×n Toeplitz blocks. With this notation, recurrence (2.11)
may be rewritten as (

Zl
Zl+1

)
= Tn(al, bl, cl) ·

(
Zl−1

Zl

)
.(2.12)

Iteration of the recurrence is then realized as a product of such matrices, and so
for any m, (

Zl
Zl+1

)
= Rn(l −m− 1, l) ·

(
Zl−m−1

Zl−m

)
.(2.13)

The product

Rn(l −m− 1, l) = Tn(αl, βl, γl) · · ·Tn(αl−m−1, βl−m−1, γl−m−1)

is still a block matrix made up of four n × n Toeplitz blocks. Consequently, the
values of Zl−1 and Zl can be computed from those of Zl−m−1 and Zl−m by a single
matrix–vector multiplication using a 2n× 2n matrix with n× n Toeplitz blocks.

FAST DISCRETE POLYNOMIAL TRANSFORMS 1079

In particular, (
Zn

2

Zn
2 +1

)
= Rn

(
0,
n

2

)
·
(
Z0

Z1

)
.(2.14)

Recalling the discussion within the proof of Lemma 2.1, multiplication of an n × n
Toeplitz matrix by a vector may be performed by standard FFT techniques using
at most 9n(1 + logn) + 2n operations. Four such matrix–vector multiplications are
required to compute (2.14) so that an additional 36n(1 + log n) + 8n operations are
required to compute Zn

2
and Zn

2 +1 and, in particular, Zn
2

(0) and Zn
2 +1(0) from our

initial data of Z0 and Z1.
The point of this is to decompose the problem into two half-sized subproblems;

we shall compute the Zl for l > n/2+1 by applying equation (2.13) to Zn
2

and Zn
2 +1.

As we indicated previously in Figure 2.2, the values Zl(0) for l > n/2+1 depend only
on the initial half-segments of the sequences Zn

2
and Zn

2 +1. Similarly, the values Zl(0)
for l < n/2 may be computed by applying the recurrence to the initial half-segments
of the sequences Z0 and Z1. This is reexhibited in Figure 2.3, in which the diagonal
lines display the dependence of the desired output Zl(0) on the various “subtriangles”
in the grid for a problem of size n = 16.

Consequently, we see that to continue to obtain the remaining Zl(0)’s, we need
only keep Zj(k) for 0 ≤ k < n/2 and j = 0, 1, n/2, and n/2 + 1. Thus step 2 proceeds
by throwing away half of each of the sequences Z0, Z1, Zn

2
, and Zn

2 +1 and then
computing Zn

4
(k) and Zn

4 +1(k) (0 ≤ k < n/2) from the truncated sequences Z0 and
Z1 and computing Z 3n

4
(k) and Z 3n

4 +1(k) (0 ≤ k < n/2) similarly from the truncated
sequences Zn

2
and Zn

2 +1.
At the end of step 2, we own the first halves of the sequences Z0, Z1; Zn

4
, Zn

4 +1;
Zn

2
, Zn

2 +1; Z 3n
4
, Z 3n

4 +1. Again, we throw away the latter halves of each (half-) se-
quence and continue by performing four multiplications by Toeplitz matrices of size
n/4, and so on.

All of this is illustrated again by Figure 2.3 for a problem of size n = 16 in which
we have indicated which values in the grid we have obtained after each step in the
algorithm. Thus it shows that step 0 results in the sequences Z0 and Z1. After step
1, we have also obtained the sequences Z8 and Z9, which we then truncate in half
while also cutting the sequences Z0 and Z1 in half. From this subset of data, we can
then compute one quarter of the sequences Z4, Z5, Z12, and Z13 and, after truncating
each of the previous data sequences in half, a quarter of the sequences Z0, Z1, Z8,
and Z9 as well. Finally, in the last step, we obtain the remaining pieces, one eighth
of the sequences Z2, Z3, Z6, Z7, Z10, Z11, Z14, and Z15.

The complexity of the algorithm follows easily from an argument similar to that
of Lemma 2.1. The process of “throwing away” is just a standard projection, so even
if we include it in our estimate, it requires at most an additional 4n operations at
the first step. Having cut the vectors Z0, Z1, Zn/2, and Zn/2+1 in half, we now have
two identical subproblems that are half the size of the original problem, in which we
computed Zn/2 and Zn/2+1 from Z0 and Z1. Thus if we let T (n) denote the number
of operations needed to compute the elements Zj(0) from the initial data of Z0 and
Z1, we obtain the recurrence

T (n) = 36n(1 + logn) + 8n+ 4n+ 2T
(n

2

)
= 48n+ 36n logn+ 2T

(n
2

)
.(2.15)

Iterating (2.15) yields

T (n) ≤ 48n logn+ 36n log2 n.(2.16)

1080 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.3. Computation of the Zl(0) for l < n by a cascade of convolutions of decreasing size.
The relevant ranges of Z are highlighted, and the step in which they are calculated is indicated.

Finally, throwing in the operations needed to initially compute Z0 and Z1, we see
that at most 48n logn+ 36n log2 n+ 9n(1 + logn) + 2n = O(n log2 n) operations are
needed to compute the projections.

Remarks. 1. As regards the storage requirements of the precomputed data struc-
ture, it is clear that all that is needed are the various Toeplitz matrices in the array:

Rn

(
0,
n

2

)
Rn

2

(
0,
n

4

)
Rn

2

(
n

2
,

3n

4

)
Rn

4

(
0,
n

8

)
Rn

4

(
n

4
,

3n

8

)
Rn

4

(
n

2
,

5n

8

)
Rn

4

(
3n

4
,

7n

8

)
...

R4(0, 2) R4(4, 6) R4(n− 4, n− 2) .

In fact, each should be suitably augmented to circulant matrices in order to effect
an efficient matrix–vector multiplication. Analysis similar to that used in Remark 3

FAST DISCRETE POLYNOMIAL TRANSFORMS 1081

following the proof of Lemma 2.1 shows that this will require O(n logn) storage.
2. The Toeplitz matrices in the array above may be generated in O(n log2 n)

operations. The idea here is to build the larger R matrices at the top of this array
from the smaller matrices lower down, which will have already been computed.

We start by filling in the bottom level of the array, building all of the matrices of
the form R4(2j, 2j + 2). Notice that we actually only need every other one of these
for the lowest level of our data structure, but the rest are required for building the
next level. These matrices may be combined pairwise, as detailed below, in order
to obtain the matrices at the next level. Explicitly, we combine R4(4j, 4j + 2) with
R4(4j+2, 4j+4) to obtain R8(4j, 4j+4). Again, only half of these results are needed
to fill out the second level of the data structure, and the rest are required for building
the third level. Continuing in this fashion, we end up with all of the matrices that we
need, up to Rn(0, n/2).

The basic step is as follows: given matrices Rp(j, j +m) and Rp(j +m, j + 2m),
determine R2p(j, j + 2m) efficiently. To see this, it is helpful to note that each of the
four Toeplitz blocks of one of these matrices, say Rp(j, j + m), may be written as
a polynomial expression in the powers of the nilpotent matrix N of degree no more
than m. The blocks are completely determined by the coefficients of these polynomials,
and multiplication of a pair of R matrices corresponds to 2-by-2 matrix multiplication
using polynomial arithmetic on the entries. Thus the entries of R2p(j, j + 2m) may
be computed from those of Rp(j, j +m) and Rp(j+m, j+ 2m) using fast polynomial
arithmetic for polynomials of degree no more than m. Therefore, this may be done in
O(m logm) operations.

The complexity of obtaining the entire array is now determined as in several
similar calculations that we have done earlier; at the lth level (starting at the bottom)
of log n levels, we have n/2l matrices to compute at O(l2l) complexity each. This leads
to the given complexity of O(n log2 n) for the entire array.

2.3. Some practical considerations and an example. The approach of sec-
tion 2.2, while theoretically interesting, is, in fact, numerically rather suspect. Part
of the problem comes from the step of first projecting the data vector onto the mono-
mials. These functions, while linearly independent in exact arithmetic, are so close
to being dependent as to be nearly useless in practice. See, for example, [Ga2] for
a discussion of the condition number of expansions of polynomial functions in the
monomial basis and other bases. Numerical experiments confirm that when the al-
gorithm presented above is implemented in floating-point arithmetic, it can produce
very unreliable answers for problems of modest size.

To treat this potential problem, we now prove a slight generalization of the re-
currence technique of the last section that permits us to replace the monomials with
other polynomial bases that satisfy simple constant coefficient recurrence relations.
In particular, we have in mind the shifted Chebyshev polynomials. They satisfy the
recurrence

T ∗n+1 = (4x− 2)T ∗n(x)− T ∗n−1(x).(2.17)

Such a recurrence can be run in either the forward direction or the backward direction,
in which case we obtain

T ∗n−1(x) = (4x− 2)T ∗n(x)− T ∗n+1(x).

Consequently, we see that running the recurrence backwards from 0 allows the def-
inition of T ∗−k(x) = T ∗k (x) for all values of k. Notice that, in general, T ∗k (x) is a

1082 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

polynomial of degree |k|. Equality for negative and positive indices follows from the
fact that the recurrence is the same in either direction.

More generally, any constant coefficient recurrence can be run in either direction,
producing polynomials of degree |k| for index k, assuming initial conditions that
dictate polynomials of degree 0 and 1 for indices 0 and 1, respectively. For example,
if a system satisfies the recurrence

pk+1(x) = (αx+ β)pk(x) + γpk−1(x),

then we obtain the “backward recurrence”

pk−1(x) = − 1

γ
(αx+ β)pk(x) +

1

γ
pk+1(x).

This simple observation allows us to couple our algorithm with polynomials that
satisfy such recurrences.

Theorem 2.4. Suppose that the polynomial families {pk(x)| − n ≤ k < n} and
{Φl(x)|l = 0, . . . , n− 1} satisfy three-term recurrences

pk+1(x) = (αx+ β)pk(x) + γpk−1(x),(2.18)

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x),(2.19)

with deg(pk) = |k| and Φ0 = 1, and set Φ−1 = 0. Suppose that the projections 〈f, pk〉
are known, −n ≤ k < n. From this, the projections 〈f,Φl〉, l = 0, . . . , n − 1, can be
computed in O(n log2 n) operations.

Proof. Again, we may assume without loss of generality that the weight function
is identically 1. Define the sequence Zl for each l = 0, 1, . . . , n− 1 by

Zl(k) = 〈f, pkΦl〉(2.20)

for k = −n, . . . , 0, 1, . . . , n − 1. Our goal is to obtain the values Zl(0) = 〈f, p0Φl〉.
Instead, we have the values Z0(k) = 〈f, pkΦ0〉. We hope to proceed by convolution as
in Theorem 2.3 and push up from Z0 to the higher sequences Zl.

Recurrence (2.19) for the Φl shows that for l > 0,

Zl+1(k) = al〈f, xpkΦl〉+ bl〈f, pkΦl〉+ cl〈f, pkΦl−1〉
= al〈f, xpkΦl〉+ blZl(k) + clZl−1(k).

Now use recurrence (2.18) for the pk’s to see that

〈f, xpkΦl〉 =
1

α
〈f, pk+1Φl〉 −

β

α
〈f, pkΦl〉 −

γ

α
〈f, pk−1Φl〉

=
1

α
Zl(k + 1)− β

α
Zl(k)− γ

α
Zl(k − 1).

Therefore,

Zl+1(k) =
al
α

[
Zl(k + 1) +

(
α

al
bl − β

)
Zl(k)− γZl(k − 1)

]
+ clZl−1(k)(2.21)

= ulZl(k + 1) + vlZl(k) + wlZl(k − 1) + clZl−1(k).(2.22)

FAST DISCRETE POLYNOMIAL TRANSFORMS 1083

Fig. 2.4. The computation of Z7(6) depends only on the computation of Zi(j) for (i, j) in the
shaded triangle.

Observe that the weights in expression (2.22) are independent of k. As in the
case of Theorem 2.3, the sequence Zl+1 is obtained from the sequences Zl and Zl−1

by convolving each with a fixed mask and then adding the resulting vectors. However,
there is a difference. To describe this, it is again instructive to view the computa-
tion graphically. Following Theorem 2.3, we consider a function Z defined on a grid
described by the l- and k-axes such that Z(l, k) = Zl(k). From this point of view,
recurrence (2.22) indicates that a given value Zl+1(k) depends on knowing only any
two adjacent vertical lines of data contained within the triangle determined by the
vertices (l, k), (0, k + l), and (0, k − l). Figure 2.4 is an example.

Because in this case recurrence (2.22) “reaches” both down and up in k, slight
modifications to the proof of Theorem 2.3 are required. Since the complexity counts
are very similar, we will only point out the major changes and leave the details to the
interested reader.

In analogy with Theorem 2.3, our goal is to express the full computation as a

1084 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.5. Computation of the Zl(0) for l < 16 by a cascade of convolutions of decreasing size.
The relevant ranges of Z are highlighted, and the step in which they are calculated is indicated.

divide-and-conquer algorithm. Figure 2.5 indicates how this can be accomplished.
Starting with the full data of Z0 and Z1, we will construct Zn

2
and Zn

2 +1. The values
Zj for j < n/2− 1 depend on only half of the sequences Z0 and Z1, and similarly for
Zn

2 +j , Zn
2

, and Zn
2 +1. Thus by keeping only the relevant values of these two pairs

of sequences, we will have divided the original computation into two computations of
half of the original’s size. Continuing in this fashion, we ultimately obtain all values
Zl(0). We need show only that the “divide” portion of the algorithm can be performed
efficiently—that is, in O(j log j) operations for a problem of size j.

Again, we need the initial data of Z0 and Z1. We assume that Z0 is given. By
definition,

Z1(k) = 〈f, pkΦ1〉
= 〈f, (a0x+ b0)pk〉
= a0〈f, xpk〉+ b0Z0(k).

FAST DISCRETE POLYNOMIAL TRANSFORMS 1085

Notice that by using recurrence (2.18) for pk+1, we may build the first summand out
of at most three shifted copies of Z0. Thus as a first step, a total of at most an
additional 3n operations are needed to compute Z1 from Z0.

To compute the remaining Zl’s, we wish to rewrite recurrence (2.22) as a matrix
equation. We can do this—up to “edge effects”—as we will now explain. For any
complex numbers w, y, and z, let Cn(w, y, z) denote the 2n × 2n circulant matrix
determined by setting the second row equal to w, y, z, 0, . . . , 0,

Cn(w, y, z) =

y z 0 · · · 0 0 w
w y z · · · 0 0 0
0 w y · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · w y z
z 0 0 · · · 0 w y

.(2.23)

Using the convention that

Zl =

Zl(n− 1)

...
Zl(0)

...
Zl(−n)

 ,

consider the vectors Z ′l and Z ′l+1 defined by the expression(
Z ′l
Z ′l+1

)
=

(
0 I2n

clI2n Cn(wl, vl, ul)

)
·
(
Zl−1

Zl

)
.(2.24)

Notice that Z ′l = Zl but that Z ′l+1 differs from Zl+1 by at worst the entries Zl+1(n−1)
and Zl+1(−n). This is precisely the aforementioned “edge effect.” If we define

An(l) =

(
0 I2n

clI2n Cn(wl, vl, ul)

)
,(2.25)

then we can make the following more general statement: a product of matrices of
the form of An(l+ r) · · ·An(l) will still be composed of four 2n× 2n circulant blocks,
and the edge effects incurred when by multiplying this product by the vector (Zl

Zl+1
)

will still affect only (at most) the r − 1 outermost values of Zl+r−1 and Zl+r. More
precisely, a simple inductive argument yields the following claim.

Claim. Let 0 ≤ r < n. Define Z ′l+r−1 and Z ′l+r by(
Z ′l+r−1

Z ′l+r

)
= An(l + r) · · ·An(l) ·

(
Zl−1

Zl

)
.

Then Z ′i(j) = Zi(j) for j = −(n− r − 2), . . . , n− r − 2 and i = l + r − 1, l + r.
The import of the claim is that if we compute the product R · (Z0

Z1
), where

R = An(0) · · ·An
(
n

2
− 1

)
,(2.26)

then we will correctly compute the values Z n
2+i

(j) for i = 0, 1 and −(n/2− 1) ≤ j ≤
n/2− 1. Notice that this is precisely the data we need in order to effect the “divide”

1086 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

portion of this algorithm (cf. Figures 2.4 and 2.5). The matrix R is composed of four
2n× 2n circulant blocks, and thus the matrix–vector multiplication (2.26) requires at
most 64n(1 + logn) + 16n operations (cf. the discussion in the proof of Theorem 2.3).
We continue by throwing away the upper and lower quarters of the vectors Z0, Z1, Z ′n

2
,

and Z ′n
2 +1, forming two new subproblems of size n/2, and repeating the procedure.

The analysis now follows that of the proof of Theorem 2.3.
Remark. Notice that if initially only the projections onto the pk’s for positive k

were given, then the projection onto the pk’s for negative k could obtained efficiently
by using Theorem 2.3 applied to the backwards recurrence.

In particular, the shifted Chebyshev polynomials satisfy all of our requirements:
they have a constant coefficient recurrence relation, fast projection is possible by
Corollary 2.2, Tk = T−k, and they possess relatively salutary numerical properties,
even on a uniform grid. We have applied them in the case of the Hahn polynomial
transforms with a great improvement in numerical accuracy over the method of The-
orem 2.3.

Example 1: Fast Hahn polynomial transform. To illustrate Theorem 2.4 we pro-
ceed with an example and discuss its application to the specific case of the Hahn
polynomials, a well-known discrete orthogonal polynomial family. This is, in fact,
the relevant family of orthogonal polynomials for the California Lottery example dis-
cussed in section 1, and it provides the spherical functions for the k-sets of n-set
graph. We begin by summarizing the relevant properties of the Hahn polynomials.
We follow Stanton’s notation of [St1], wherein a good bibliography for further sources
is also contained. For general facts about orthogonal polynomials, Chihara’s book [C]
provides a friendly introduction to the subject.

The Hahn polynomials

Qj(x;α, β,N) =

j∑
i=0

(−j)i (1 + α+ β + j)i (−x)i
i! (1 + α)i (−N)i

are defined on the finite set x = 0, 1, . . . , N for j = 0, 1, . . . , N. They are orthogonal
with respect to the hypergeometric distribution

W (j;α, β,N) =

(
−1− α
−β + N

)(
−1− j
β

)
,

which is positive in the cases that we consider, α, β < −N.
For the purpose of our calculations, we scale things so that all of the action takes

place on the uniform grid in [0, 1],
{
k/(N + 1)

∣∣k = 0, . . . , N
}
. For fixed α, β, and N ,

define

Q∗n(x) = Qn((N + 1)x;α, β,N)

for x in the grid. Then we have the three-term recurrence

Q∗n+1(x) =

(
bn + dn − (N + 1)x

bn

)
Q∗n(x)− dn

bn
Q∗n−1(x)(2.27)

derived from that for Hahn polynomials, with

bn =
(n+ α+ β + 1)(n+ α+ 1)(N − n)

(2n+ α+ β + 1)(2n+ α+ β + 2)

FAST DISCRETE POLYNOMIAL TRANSFORMS 1087

and

dn =
n(n+ β)(n+ α+ β +N + 1)

(2n+ α+ β)(2n+ α+ β + 1)
.

The calculation begins with projections of the data vector f onto the shifted
Chebyshev polynomials T ∗n(x). The projections are taken as l2 inner products on the
uniform grid in [0, 1], weighted by the hypergeometric distribution W on the grid. For
the balance of this example, we will use this weighted l2 inner product.

As described in Corollary 2.2, all of these projections may be done in O(N log2N)
time. We now think of these as projections onto the functions T ∗nQ

∗
0 and employ the

techniques described in Theorem 2.4 for efficiently changing this information into the
desired projections onto the Q∗n’s.

We use the coefficients of recurrence (2.17) to construct the convolution masks
described in Theorem 2.4. In practice, we also normalize the recurrences by the l2

norms of the Hahn polynomials. Define

Zl(k) =
1

‖Q∗l ‖
〈f, T ∗kQ∗l 〉, −N ≤ k < N,

with T ∗k = T ∗−k. Then

Zl(k) = Al−1Zl−1(k) +Bl−1 {Zl−1(k − 1) + Zl−1(k + 1)}+ Cl−1Zl−2(k),

with

Al =
bl + dl − N+1

2

bl

‖Q∗l ‖
‖Q∗l+1‖

.

One-step convolution coefficient masks for producing a sequence Zl from lower in-
dex sequences Zl0 and Zl0+1 may be generated by an appropriate recursion. In the
derivation that follows, Mj and Nj denote the one-step convolution masks for obtain-
ing Zj+1 from Zj and Zj−1; in the present case, Mj = {. . . , 0, Bj , Aj , Bj , 0, . . .} and
Nj = {. . . , 0, 0, Cj , 0, 0, . . .}. Then

Zl+1 = Ml ∗ Zl + Nl ∗ Zl−1

=Ml ∗ (Ml−1 ∗ Zl−1 +Nl−1 ∗ Zl−2) + Nl ∗ Zl−1

= (Ml ∗Ml−1 +Nl) ∗ Zl−1 + (Ml ∗Nl−1) ∗ Zl−2

= Ml (2) ∗ Zl−1 + Nl (2) ∗ Zl−2.

Likewise we can continue all the way down to Zl0 and Zl0+1:

Zl+1 = Ml (l − l0) ∗ Zl0+1 +Nl (l − l0) ∗ Zl0
with multistep masks Ml (j) and Nl (j) defined recursively by

Ml (j + 1) = Ml (j) ∗Ml−j +Nl (j),

Nl (j + 1) = Ml (j) ∗Nl−j
with initial conditions

Ml (1) = Ml, Nl (1) = Nl.

Using this, we generate and prestore the various multistep masks as described in
Theorem 2.4, and run the tree of convolutions. Figure 2.6 shows the resulting steps
of a small calculation, starting with Z0 and Z1, and then filling out the various other
sequences in the tree.

1088 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.6. Stages in the computation of the Zl for the Hahn polynomials. Z0 is projection
onto the Chebyshev polynomials. The desired transform values are the Zl(0)’s. This example is the
transform of Q∗8.

3. Fast spherical transforms for distance transitive graphs. We now em-
ploy the various results of the last section to obtain results leading up to a fast Fourier
transform for distance transitive graphs. As mentioned, these results are of interest in
several problems of data analysis, such as the California Lottery example mentioned
in section 1.

Briefly, the setting is as follows. Let G be a finite group acting as isometries on
a finite graph X with distance function d(·, ·) given by the usual measure of shortest
path. Recall that X is distance transitive (for G) if given any two pairs of points
(x, y), (x′, y′) ∈ X such that d(x, y) = d(x′, y′), there exists s ∈ G such that (sx, sy) =
(x′, y′). Let L2(X) denote the vector space of complex-valued functions on X. Then
L2(X) affords a linear representation of G by left translation. In this case, L2(X)
may be decomposed into irreducible subspaces

L2(X) = V0 ⊕ · · · ⊕ VN ,

where N is the maximum distance between two points in X.
Fix a basepoint x0 ∈ X and let H be the stabilizer of x0 in G. Then X is in

a natural 1:1 correspondence with G/H and L2(G/H) is the vector space of right
H-invariant functions on G. If Ωk denotes the sphere of radius k about x0, then the
algebra of functions constant on each Ωk is isomorphic to the algebra of H-biinvariant
functions on G, denoted L2(H\G/H).

The fact that L2(X) is multiplicity free is equivalent to the existence in each Vk of
a unique function φk, constant on each Ωk and normalized by φk(x0) = 1. Classically,

FAST DISCRETE POLYNOMIAL TRANSFORMS 1089

the function φk is called the kth spherical function on X (cf. [He] and the references
therein, as well as the remarks at the close of section 3.1.)

Let xj ∈ Ωj . Then in analogy with the classical case (see, e.g., [He, Chapter 4]),
we define for any function f constant on each Ωk the spherical transform of f at φi
to be the sum

f̂(φi) =
N∑
j=0

f(xj)φi(xj)|Ωj |.

The discrete spherical transform (DST) of f is the collection of transforms {f̂(φi)}i.
Direct computation of the DST requires O(N2) operations. For large N , this cost

quickly becomes prohibitive. In this section, we give an algorithm that computes the
DST for spherical functions from distance transitive graphs inO(N log2N) operations.
By the same techniques, we may also invert the transform in the same number of
operations and consequently obtain an O(N log2N) algorithm for convolution of two
H-biinvariant functions.

Section 4 will show that the problem of finding an FFT for distance transitive
graphs may be reduced to that of finding an efficient projection onto the spherical
functions, an orthogonal family of special functions on the graph. This section dis-
cusses the fast DST. We begin by giving an expanded review of the group theoretic
background (section 3.1), sufficient to present the fast algorithm in section 3.2.

3.1. Background and notation. In the interest of making this paper as self-
contained as possible, we sketch the group-theoretic background and notation. We
mainly follow Stanton’s expositions [St1, St3], which are very accessible and provide
a wealth of references. For the necessary graph-theoretic terminology—with special
attention paid to distance transitive graphs—see Biggs [Bi]. Serre’s book [S] provides
a nice introduction to the representation theory of finite groups.

Throughout, X is a distance transitive graph. Thus X is a finite metric space
with integer-valued distance d (taken to be the usual distance of the shortest path
on the graph) with G a group of isometries of X (acting on the left) satisfying the
property of two-point homogeneity:

If x, y, x′, y′ ∈ X are such that d(x, y) = d(x′y′), then there exists g ∈ G such that
gx = x′ and gy = y.

In this case, X is also said to be a two-point homogeneous space (with respect to
G and d).

It is perhaps instructive at this point to recall the analogy here with the usual
2-sphere in R3. In this case, we know that any pair of points on the sphere which are
a fixed distance apart can be moved into any two other such points by a rotation—or
isometry of R3. Thus the rotation group SO(3) acts two-point homogeneously on the
2-sphere. Stanton’s papers [St1, St3] do a terrific job of spelling out these analogies.

Thus since d(x, x) = 0 = d(x′, x′) for every x, x′ ∈ X, there is a g ∈ G such
that gx = x′, i.e., G acts transitively on X. Let x0 ∈ X denote a fixed basepoint
and H = {g ∈ G | gx0 = x0} denote the stabilizer subgroup of x0. Since G acts
transitively on X, any element x ∈ X can be written as x = sx0 for some s ∈ G and
if sx0 = x = tx0, then s−1tx0 = x0 and hence s−1t ∈ H and t ∈ sH. Thus there is a
natural correspondence between X and the coset space G/H, associating any element
x = sx0 with the coset sH. Keeping in mind the analogy with the 2-sphere, consider
the subgroup H = SO(2) < SO(3) of rotations that fix the north pole. Cosets are
represented by circles of latitude, with coset representatives in 1:1 correspondence

1090 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

with a choice of points at all possible latitudes. Any two points of the same latitude
differ by only a rotation about the north pole.

Under the correspondence between points in X and cosets in G/H, the vector
space of complex-valued functions on X, L2(X), is isomorphic to the vector space of
complex-valued functions on G/H, L2(G/H), by defining

f(sH) ≡ f(sx0).

Any function on G/H then naturally extends to f̃ , a function defined on the entire
group G, by declaring it to be constant on cosets,

f̃(s) ≡ f(sH).

It is not hard to check that f̃ is well defined and that

f̃(sh) = f̃(s).(3.1)

Thus f̃ is a (right) H-invariant function on G. Conversely, it is easy to see that for
any subgroup H < G, the subspace of L2(G) satisfying (3.1)) is equivalent to the
L2(G/H). Following along the analogy with the 2-sphere, L2(SO(2)\SO(3)/SO(2))
can be identified with the subspace of functions on the 2-sphere which are constant
on latitudes.

The action of G on X gives rise to a representation of G in L2(X) by translation.
More precisely, for every s ∈ G and f ∈ L2(X), a new function ρ(s)f ∈ L2(X) can
be defined by

[ρ(s)f](x) ≡ f(s−1x).

In this manner, each ρ(s) defines a linear operator on L2(X) such that ρ(st) = ρ(s)ρ(t)
and thus is a representation of the groupG. This representation is, in general, reducible
in the sense that there exist proper subspaces of W1, . . . ,Wr such that each Wi is G-
invariant (i.e., ρ(s)Wi ⊂ Wi for all s ∈ G) and L2(X) = W1 ⊕ · · · ⊕Wr. A subspace
W is G-irreducible if it contains no proper G-invariant subspaces. For L2(X), an
irreducible decomposition can be understood by considering the action of H.

Let Ωk denote the sphere of radius k about x0,

Ωk = {x ∈ X | d(x, x0) = k}.(3.2)

Then the Ωk’s are exactly the H-orbits in X. That is, X is the disjoint union of the
Ωk’s and if x, y ∈ Ωk, then hx = y for some h ∈ H and, conversely, if hx = y, then
x, y ∈ Ωk for some k. In the case of the 2-sphere, the associated “Ωk’s” are the circles
of latitude.

A subspace W of L2(X) is H-invariant if for all f ∈W , ρ(h)f ∈W for all h ∈ H.
Thus a function constant on each of the Ωk’s is H-invariant and vice versa. Hence if N
is the maximum distance occurring in X, then the subspace of H-invariant functions
in L2(X) is of dimension N+1. This may be immediately translated into a statement
about functions onG: under the association of L2(X) with right H-invariant functions
on G, the H-invariant functions of L2(X) become functions which are both left and
right H-invariant, i.e., functions f ∈ L2(G) such that

f(h1sh2) = f(s)

FAST DISCRETE POLYNOMIAL TRANSFORMS 1091

for all h1, h2 ∈ H. Such H-biinvariant functions are then naturally associated with
the space of functions constant on double cosets H\G/H and thus are denoted as
L2(H\G/H). Hence we see that L2(H\G/H) is of dimension N + 1.

Note that the subspaces L2(X) and L2(H\G/H) are, in fact, algebras under
convolution: if f, g ∈ L2(X), then define f ? g ∈ L2(X) by

f ? g(x) =
∑
s∈G

f̃(s)g(s−1x),(3.3)

where f̃ is the function on G derived from f by extending it to be constant on cosets
of H as in (3.1). It is easy to check that if f and g are H-invariant, then their
convolution is as well.

As a complex representation space for a finite group G, L2(X) may be decomposed
into G-irreducible subspaces (cf. [S, section 1.4, Theorem 2]). In the general situation
of decomposing the permutation representation arising from a finite group G acting
transitively on a set X, this irreducible decomposition need not be unique. However,
under the assumption of distance transitivity, an irreducible decomposition is indeed
unique.

Theorem 3.1 ([St1, Theorem 2.6]). Let all notation be as above. Then as a
representation of G, the space L2(X) has a unique decomposition into irreducible
subspaces as

L2(X) = V0 ⊕ V1 ⊕ · · · ⊕ VN ,

where the Vi are all pairwise inequivalent—that is, the representation of G in L2(X)
is multiplicity-free.

The proof of this theorem is not crucial for the main results, but it is worth re-
marking that it depends only on the fact that G acts two-point homogeneously on
X and as such is a general fact about permutation representations (cf. [W, Chapter
5, section 29]). In this context, a proof follows from the fact that Theorem 3.1 is
equivalent to the statement that the intertwining algebra of the permutation repre-
sentation is commutative. (The intertwining algebra is the algebra of linear operators
T that commute with the permutation representation ρ—i.e., the set of T such that
Tρ(s) = ρ(s)T for all s ∈ G.) To show this commutativity, choose a basis for L2(X)
consisting of “delta functions” or point masses concentrated at single points. For
0 ≤ k ≤ N , define the |X| × |X| matrices Dk by

Dk(x, y) =

{
1 if d(x, y) = k,
0, otherwise.

(3.4)

Straightforward combinatorial arguments (e.g., [St1, St3]) show that the Dk’s
commute and span the intertwining algebra, which must then be of dimension N + 1.
Moreover, the algebra is generated by D1 since the Dk’s satisfy the following three-
term recurrence [St1, St3],

D1Di = ci+1Di+1 + aiDi + bi−1Di−1,(3.5)

where

ci+1 = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i+ 1,

ai = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i,

bi−1 = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i− 1.

1092 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Consequently, Di is a polynomial in D1,

Di = pi(D1).(3.6)

Since D1 is real symmetric and generates an algebra of dimension N + 1, it has
distinct real nonzero eigenvalues {λ0 < · · · < λN}. Also, sinceD1 is in the intertwining
algebra for the representation ρ and the intertwining algebra is commutative, the λi
eigenspaces must be the G-irreducible subspaces.

The importance of Theorem 3.1 is that it shows that in this special case, the
isotypic and irreducible decompositions coincide so that the irreducible decomposition
is independent of the choice of basis. It is a direct consequence of Theorem 3.1 that
in each Vi there exists a unique one-dimensional H-fixed subspace (e.g., see [D, p. 54,
Theorem 9]). We choose a basis vector φi for this subspace by demanding that
φi(x0) = 1. Note that this is possible since the previous reference—or Frobenious
reciprocity (cf. [S])—shows the existence of some nonzero H-fixed element (hence
constant on each of the Ωk) φi ∈ Vi. Since

D1φi = λiφi(3.7)

and φi is constant on each Ωk, the fact that φi is not identically zero implies that
φi(x0) 6= 0. Hence φi can be normalized so as to assume φi(x0) = 1.

Note that φi may be viewed as either an H-invariant function on X or an H-
biinvariant function on G. As an H-invariant function on X, it is constant on the
spheres Ωk. We call φi the ith spherical function. By counting, we see that the
spherical functions give a basis for the H-invariant functions on X.

For distance transitive graphs, the polynomial nature of the spherical functions is
derived from the self-same property of the commuting algebra for the representation
of G in L2(X).

As shown in [St1], by evaluating the eigenvalue equation (3.7) at Ωk, we move
recurrence (3.5) to the φi’s:

λiφi(Ωk) = γkφi(Ωk+1) + αkφi(Ωk) + βkφi(Ωk−1),(3.8)

where for any x ∈ Ωk,

γk = |{z : z ∈ Ωk+1 and d(x, z) = 1}|,
αk = |{z : z ∈ Ωk and d(x, z) = 1}|, and

βk = |{z : z ∈ Ωk−1 and d(x, z) = 1}|.

An examination of the combinatorics yields

|Ωk|φi(Ωk) = pk(λi).(3.9)

The orthogonality relations for the spherical functions take on the form

1

|X|

N∑
k=0

φi(Ωk)φj(Ωk)|Ωk| = δij
1

dim(Vj)
,(3.10)

where φi(Ωk) makes sense since φi is constant on Ωk. In addition, we have a “dual
orthogonality relation,”

1

|X|

N∑
i=0

φi(Ωk)φi(Ωj) dim(Vi) = δkj
1

|Ωk|
.(3.11)

FAST DISCRETE POLYNOMIAL TRANSFORMS 1093

We summarize this with the following theorem.
Theorem 3.2. Let X be a finite distance transitive graph with respect to a group

of isometries G. Let

L2(X) = V0 ⊕ · · · ⊕ VN
be the isotypic and hence irreducible decomposition of L2(X) so that N is the max-
imum distance occurring in X. Let φi be the spherical function for Vi and λi as in
(3.7) and Ωk as in (3.2). Then

|Ωk|φi(Ωk) = pk(λi)

for some set of orthogonal polynomials {pk(x) | 0 ≤ k ≤ N} such that pk is of degree
k and the polynomials satisfy a three-term recurrence (3.5).

Remarks. 1. It is worth noting that while the spherical functions φi are deter-
mined by the polynomial functions described above, Theorem 3.2 does not say that
φi(Ωk) is polynomial in k (i.e., equal to some fixed polynomial evaluated at N + 1
fixed points). Rather, this is a statement that the dual functions pk are an orthogonal
polynomial system with respect to the weights dim(Vi), although for many examples
this will also be true of the spherical functions (cf. section 4). As a consequence, in
general the inverse spherical transform is always a projection onto polynomials and
would thus benefit from general results on fast projection onto polynomials. In fact,
such an algorithm can then be transposed to obtain an algorithm for the direct trans-
form with the same complexity, whether or not the direct transform is obtained by
projection onto polynomials.

2. The existence of spherical functions depended only on the fact that the permu-
tation representation of G on L2(G/H) was multiplicity free. This is often summarized
by saying that (G,H) form a Gelfand pair. Gelfand pairs have been much studied of
late. See Gross [Gr] for a survey with applications to number theory and Diaconis
[D] for applications to statistics and probability as well as an extensive bibliography.
Helgason’s book [He] gives a thorough introduction to the study of spherical functions
for compact and locally compact groups with a full bibliography.

As remarked, the polynomial nature follows from the polynomial relation of the
Di’s. This is true in a slightly more general setting than distance transitive graphs. It
can be extended to finite two-point homogeneous spaces in which the metric satisfies
some technical properties (cf. [St1, p. 90]).

Spherical functions may also be computed by character-theoretic methods. Travis
[Tr] generalizes this approach to construct “generalized” spherical functions attached
to any pair of characters ψ and χ for representations of a finite group G and subgroup
H, respectively.

3. While the existence of the spherical functions depends only on the multiplicity-
free nature of the representation, their expression as certain sampled values of or-
thogonal polynomial sets and consequent relations via the recurrence (3.8) use the
integer-valued property of the metric.

4. We should point out that many of the problems and results discussed here
may be phrased in the language of association schemes. Bannai and Ito [BI] give a
beautiful treatment of this subject. We have not pursued this connection.

3.2. Fast spherical transforms on distance transitive graphs. The termi-
nology is that of section 3.1. In particular, recall that H < G is the isotropy group
of a fixed basepoint x0 ∈ X so that L2(H\G/H) is identified with the subspace of
L2(X) of functions constant on spheres around x0.

1094 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Theorem 3.3. For distance transitive graphs with maximum distance N , the
spherical transform and its inverse can be computed in at most O(N log2N) opera-
tions.

Proof. Let f ∈ L2(H\G/H). Then the components of f̂ are

f̂(φi) =
N∑
k=0

f(Ωk)φi(Ωk)|Ωk| =
N∑
k=0

f(xk)pk(λi)(3.12)

using

|Ωk|φi(Ωk) = pk(λi)

from section 3.1.
This has the form of polynomial evaluation, or multiplication by the transpose

of the generalized Vandermonde matrix associated with the polynomials pk and the
evaluation points λi:

f̂(φ0)

f̂(φ1)
...

f̂(φN)

 =

p0(λ0) p1(λ0) · · · pN (λ0)
p0(λ1) p1(λ1) · · · pN (λ1)

...
... · · ·

...
p0(λN) p1(λN) · · · pN (λN)

f(Ω0)|Ω0|
f(Ω1)|Ω1|

...
f(ΩN)|ΩN |

 = P (Λ)tfΩ.

Likewise, the inverse spherical transform can be written in terms of (P (Λ)t)t =
P (Λ) itself; by the dual orthogonality equation (3.11),

f(Ωk) =
1

|X|

N∑
i=0

f̂(φi)φi(Ωk) dim(Vi).

Using equation (3.10), we rewrite this as

|Ωk|f(Ωk) =
|Ωk|
|X|

N∑
i=0

f̂(φi)pk(λi) dim(Vi).

Up to scaling, this has the form of projection onto the polynomials pk, or multiplica-
tion by the generalized Vandermonde matrix P (Λ). The three-term recurrence relation
is already known explicitly; consequently, the methods of section 2 apply directly to
this computation. Thus the inverse spherical transform can be done in O(N log2N)
operations.

We can also conclude that the transpose problem, the direct spherical transform, is
also fast. This follows, for instance, from the results of Bshouty et al. [BKK]. Roughly
speaking, they observe that if a straight-line algorithm can compute a matrix product
M · v in time O(T (n)) (where M is an n× n matrix and v is a column vector), then
there exists an algorithm computing the transposed product M tv in the same time.
They note that any such algorithm may be encoded in a directed graph and in this
context the “transposed” algorithm is essentially given by reversing all arrows on the
graph.

In our case, this has a concrete interpretation in matrix language. Namely, the
inverse spherical transform algorithm amounts to a factorization of the matrix P (Λ).
The order reversed and transposed factors comprise a factorization of P (Λ)t, which

FAST DISCRETE POLYNOMIAL TRANSFORMS 1095

effects the direct transform by matrix multiplication. The individual factors have
block structure with Toeplitz blocks, and this does not change upon their transposi-
tion. Therefore, the direct transform is computed with the same complexity as the
inverse.

Finally, consider the convolution of two functions f, g ∈ L2(H\G/H). Recall that
this is simply the convolution over G (cf. equation (3.3)) of H-biinvariant functions
which is again H-biinvariant. As such, it makes sense to compute the DST of the
convolution. It can be shown that for such functions,

|X|f̂ ? g(φi) = f̂(φi)ĝ(φi),

with a quick proof using the multiplicative properties of a Fourier transform on a
finite group and the fact that a spherical function is a particular matrix coefficient
for the symmetry group (cf. [D, pp. 54–56]). Thus we obtain the following result.

Theorem 3.4. Let f, g ∈ L2(H\G/H). Given as initial input the spherical

transforms {f̂(φi)}i, the function f may be recovered in O(N log2N) operations. The
convolution f ? g can be computed in at most O(N log2N) operations. The implied
constants here are universal and depend only on the universal constant for the FFT.

Example 2: Two particular distance transitive graphs.
1. K-sets of an N -set. This is the collection of size-K subsets x ⊂ {1, 2, . . . , N},

|x| = K, with metric d(x, y) = K−|x∩y|, SN as the symmetry group. The K-sets are
made into a graph in the usual way: put edges between those K-sets whose distance
is 1. Assuming that 2K < N, the largest distance is K, occurring for disjoint K-sets.
Picking a basepoint K-set x0, the stabilizer is ∼= SK ×SN−K , so we may identify this
graph with SN/(SK × SN−K).

This is a distance transitive graph of size (NK). The weights in the spherical func-
tion orthogonality relations are the sizes of the spheres at fixed distances from the
basepoint: |Ωj | = (N−Kj). Recall that the spherical functions satisfy

|Ωj |φi(Ωj) = pj(λi)

for a family of orthogonal polynomials defined on the collection of eigenvalues for
the adjacency operator. We saw that the spherical functions are eigenvectors of the
adjacency operator and that this provides the three-term recurrence from which the
λi’s and pj ’s may be determined:

λipj(λi) = j2pj−1(λi) + (K − j)(N −K − j)pj+1(λi)

+ [K(N −K)− j2 − (K − j)(N −K − j)]pj(λi).

This is the recurrence for the Eberlein or dual Hahn polynomials. From the case
where j = 1, we get λi = K(N−K)− i(N+1− i). We can now compute the spherical
functions as

φi(Ωj) = c
i∑
l=0

(N −K − i+ 1)l
(−K)s

(
K − j
l

)(
j

−i− l

)
.

This is the Hahn polynomial Qi(j;K − N − 1,−K − 1,K) [KM, St1]. As we have
already seen, these are orthogonal polynomials satisfying a three-term recurrence
(2.27). The norms can be determined from dimVi = (Ni)− (N

i−1).
In this case, we have the recurrence relation needed to make the forward spherical

transform fast, as discussed in Example 1 of the last section. On the other hand, we

1096 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

know that in every case we have the recurrence relation for the pk’s needed to make
the inverse transform fast.

2. The hypercube: The hypercube ZN2 has the Hamming metric and symmetries
consisting of the hyperoctohedral group, the semidirect product Z2 wr SN . This is
a distance transitive graph. The three-term recurrence from the adjacency operator
eigenequation is

λipj(λi) = jλipj−1(λi) + (N − j)pj+1(λi),

from which we determine the eigenvalues λi = N − 2i and the spherical functions

φi(Ωj) = c
i∑
l=0

(
j

l

)(
N − j
i− l

)
(−1)i−l.

Again, these are orthogonal polynomials with respect to weights |Ωj | = (Nj) = dimVj ,

known as the Krawtchouk polynomials Ki(j, 1/2, N). This is a particularly nice case
in that the dual polynomials and the spherical polynomials are the same up to a
constant. Thus the forward spherical transform and its inverse are effectively the
same, and can be done fast using the three-term recurrence as before.

4. Computation of isotypic projections. As remarked in section 1, a fast
DST algorithm has applications in spectral analysis for data on distance transitive
graphs. In this section, we wish to explain this in a little more detail. Diaconis’ book
[D, especially Chapter 8] is an excellent introduction to these ideas and also gives
many pointers to the existing literature. (See [DR] for a more thorough account of
the following discussion as well as for other approaches to this problem.)

In general, let G be a finite group acting transitively on a set

X = {x0, x1, . . . , xn}.

The action of G on X then determines the associated permutation representation ρ
of G in L2(X) given by translation,

(ρ(s)f)(x) = f(s−1x).

If η and η′ are two representations of G, then we will write η ∼ η′ if η is equivalent
to η′. Recall that the isotypic decomposition of L2(X),

L2(X) = V0 ⊕ · · · ⊕ VN ,

is defined by the following:
(1) Each Vi is G-invariant.
(2) If ρ(i) := ρ |Vi , then

ρ(i) ∼ miηi,

where the ηi’s are irreducible representations of G, mi is some positive integer, and
i 6= j implies that ηi 6∼ ηj.

The isotypic decomposition is canonical in the sense that it is independent of the
choice of basis for L2(X).

In appropriate settings, data on a such a finite homogeneous space X is viewed as
a vector f ∈ L2(X). The relevant statistics then become the projections of f onto the

FAST DISCRETE POLYNOMIAL TRANSFORMS 1097

isotypic components. To state things a bit more sharply, the computational problem
is as follows:

Given as input f = (f(x0), . . . , f(xn)), compute for i = 0, . . . , N the projection
of f into the ith isotypic, denoted f (i)(∈ Vi), as

f (i) = (f (i)(x0), . . . , f (i)(xn)).

One way to proceed here is via character theory. Let χi be the character corre-
sponding to ηi. Then [S, Theorem 2.7],

f (i)(x) =
χi(1)

|G|
∑
s∈G

χi(s)f(s−1x).(4.1)

This gives a näıve upper bound of |X||G| operations to compute all projections.
Note that in the example of the California Lottery of section 1, this would give 49!(49

6)
operations, which is beyond the capabilities of any machine.

Careful analysis of this formula permits significant speedups, even in the general
case.

Theorem 4.1 ([DR, Theorem 2.4]). For any fixed i, the projection onto the ith
isotypic can be computed in at most |X|2 operations. Consequently, all projections
can be computed in at most (N + 1)|X|2 operations.

Let us now specialize the case of interest, in which L2(X) has a multiplicity-free
decomposition so that the isotypic decomposition is actually an irreducible decom-
position. As previously, let H denote the isotropy subgroup of the chosen basepoint
x0 and let {s0 = 1, . . . , sn} denote a fixed set of coset representatives. Let {φi}Ni=0

denote the corresponding spherical functions. In this case, the character formula (4.1)
can be rewritten as

f (i)(xk) =
|H|
|G|χi(1)

N∑
j=0

fk(Ωj)φi(Ωj)|Ωj |,(4.2)

where

fk(Ωj) =
1

|Ωj |
∑
x∈Ωj

f(s−1
k x).(4.3)

The computation of the fk is a preprocessing of the original data whose complexity
will depend on the geometry of X. In any event, this may always be done in at most
|X|2 additions.

Finally, using the notation of the previous sections, we rewrite (4.2) as

f (i)(xk) =
|H|
|G|χi(1)f̂k(φi).

Consequently, using the results of section 3, we have the following result.
Theorem 4.2. Let X be a distance transitive graph for G with maximum distance

N . Then the set of projections f (i) ∈ Vi (i = 0, . . . , N) may be computed in at most

O(|X|2 + |X|N log2N)

operations.
Remark. In some cases, the projections can also be computed combinatorially

using variations of the discrete Radon transform (cf. [D, DR, BDRR]).

1098 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

5. Final remarks. Of course, distance transitive graphs are not the only source
of orthogonal polynomials. Another example closely related to this setting is the
construction of orthogonal polynomial systems from group actions on posets [St2]. If
P is a ranked poset, then L2(P) has a natural decomposition into “harmonics.” In
[St2], Stanton shows that under certain assumptions about the automorphism group
G of P , the space of functions on the maximal elements of P gives a multiplicity-
free representation of G. Again these functions can be written in terms of discretely
sampled orthogonal polynomials.

More generally, one might consider other special function systems satisfying re-
currence relations that arise in a continuum setting. Results similar to those of this
paper can be obtained, provided that an appropriate sampling theorem is available to
reduce the computations to finite ones. Some initial work along this line for the case
of the homogeneous space SO(3)/SO(2) may be found in [DrH]. Maslen has recently
extended these ideas to more general compact groups [M].

Beyond the example of spectral analysis, we are actively seeking other applications
for the techniques presented here. A recent book by Nikiforov, Suslov, and Uvarov
[NSU] cites a large number of tantalizing possibilities.

Acknowledgments. We would like to thank the referees for their suggestions
following a careful reading of the manuscript. We also thank Peter Kostelec and Doug
Warner for their help with the final typesetting.

REFERENCES

[BI] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Ben-
jamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.

[BDRR] R. Bailey, P. Diaconis, D. Rockmore, and C. Rowley, Representation Theory
and ANOVA, Technical Report, Department of Mathematics, Harvard University,
Cambridge, MA, 1994.

[Bi] N. Biggs, Algebraic Graph Theory, Cambridge Tracts in Mathematics 67, Cambridge
University Press, Cambridge, UK, 1974.

[BM] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric
Problems, Elsevier, New York, 1975.

[Bo] J. Boyd, Chebyshev and Fourier Spectral Methods, Springer-Verlag, New York, 1989.
[BKK] N. Bshouty, M. Kaminski, and D. Kirkpatrick, Addition requirements for matrix

and transposed matrix products, J. Algorithms, 9 (1988), pp. 354–364.
[C] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New

York, 1978.
[D] P. Diaconis, Group Representations in Probability and Statistics, Institute for Math-

ematical Statistics, Hayward, CA, 1988.
[DR] P. Diaconis and D. Rockmore, Efficient computation of isotropic projections for

the symmetric group, in DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 11, L. Finkelstein and W. Kantor, eds., AMS, Providence,
RI, 1992, pp. 87–104.

[DrH] J. R. Driscoll and D. Healy, Computing Fourier transforms and convolutions on
the 2-sphere, Adv. Appl. Math., 15 (1994), pp. 202–250.

[ER] D. F. Elliott and K. R. Rao, Fast Transforms: Algorithms, Analyses, Applications,
Academic Press, New York, 1982.

[Ga1] W. Gautschi, On the construction of Gaussian quadrature rules from modified mo-
ments, Math. Comp., 24 (1970), pp. 245–260.

[Ga2] W. Gautschi, Questions of numerical condition related to polynomials, in Studies in
Numerical Analysis, G. Golub, ed., MAA, Washington, DC, 1984, pp. 140–177.

[Gr] B. Gross, Some applications of Gelfand pairs to number theory, Bull. Amer. Math.
Soc., 24 (1991), pp. 277–301.

[HMR] D. Healy, S. Moore, and D. Rockmore, Efficiency and Stability Issues in the Nu-
merical Computation of Fourier Transforms on the 2-Sphere, Technical Report

FAST DISCRETE POLYNOMIAL TRANSFORMS 1099

PCS-TR94-222, Department of Mathematics and Computer Science, Dartmouth
College, Hanover, NH, 1993.

[HMMRT] D. Healy, D. Maslen, S. Moore, D. Rockmore, and M. Taylor, Applications of
FFT’s on the 2-sphere, manuscript.

[He] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
[Hi] N. J. Higham, Fast solution of Vandermonde-like systems involving orthogonal poly-

nomials, IMA J. Numer. Anal., 8 (1988), pp. 473–486.
[KM] S. Karlin and J. L. McGregor, The Hahn polynomials, formulas and an application,

Scripta Math., 26 (1961), pp. 33–46.
[M] D. Maslen, Fast Transforms and Sampling for Compact Groups, Ph.D. thesis, De-

partment of Mathematics, Harvard University, Cambridge, MA, 1993.
[MHR] S. Moore, D. Healy, and D. Rockmore, Symmetry stabilization for polynomial eval-

uation and interpolation, Linear Algebra Appl., 192 (1993), pp. 249–299.
[NSU] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials

of a Discrete Variable, Springer-Verlag, New York, 1991.
[N] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Springer-

Verlag, New York, 1982.
[OS] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice–Hall, En-

glewood Cliffs, NJ, 1989.
[P] V. Pan, Matrix and polynomial computations, SIAM Review, 34 (1992), pp. 225–262.
[S] J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York,

1986.
[St1] D. Stanton, Orthogonal polynomials and Chevalley groups, in Special Functions:

Group Theoretical Aspects and Applications, R. Askey, T. Koornwinder, and W.
Schempp, eds., Reidel, Dordrecht, The Netherlands, 1984, pp. 87–128.

[St2] D. Stanton, Harmonics on posets, J. Combin. Theory Ser. A, 40 (1985), pp. 136–149.
[St3] D. Stanton, An introduction to group representations and orthogonal polynomials, in

Orthogonal Polynomials, P. Nevai, ed., Kluwer Academic Publishers, Norwell, MA,
1990, pp. 419–433.

[Te] C. Temperton, On scalar and vector transform methods for global spectral models,
Monthly Weather Review, 119 (1991), pp. 1303–1307.

[TAL] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and
Convolution, Springer-Verlag, New York, 1989.

[Tr] D. Travis, Spherical functions on finite groups, J. Algebra, 29 (1974), pp. 65–76.
[W] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.

DOUBLY LOGARITHMIC COMMUNICATION ALGORITHMS FOR
OPTICAL-COMMUNICATION PARALLEL COMPUTERS∗

LESLIE ANN GOLDBERG† , MARK JERRUM‡ , TOM LEIGHTON§ , AND SATISH RAO¶

SIAM J. COMPUT c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1100–1119, August 1997 009

Abstract. In this paper, we consider the problem of interprocessor communication on parallel
computers that have optical communication networks. We consider the completely connected optical-
communication parallel computer (OCPC), which has a completely connected optical network, and
also the mesh-of-optical-buses parallel computer (MOB-PC), which has a mesh of optical buses as its
communication network. The particular communication problem that we study is that of realizing
an h-relation. In this problem, each processor has at most h messages to send and at most h
messages to receive. It is clear that any 1-relation can be realized in one communication step on an
OCPC. However, the best previously known p-processor OCPC algorithm for realizing an arbitrary
h-relation for h > 1 requires Θ(h+ log p) expected communication steps. (This algorithm is due to
Valiant and is based on earlier work of Anderson and Miller.) Valiant’s algorithm is optimal only
for h = Ω(log p), and it is an open question of Geréb-Graus and Tsantilas whether there is a faster
algorithm for h = o(log p). In this paper, we answer this question in the affirmative and we extend
the range of optimality by considering the case in which h ≤ log p. In particular, we present a
Θ(h+ log log p)-communication-step randomized algorithm that realizes an arbitrary h-relation on a
p-processor OCPC. We show that if h ≤ log p, then the failure probability can be made as small as
p−α for any positive constant α. We use the OCPC algorithm as a subroutine in a Θ(h+ log log p)-
communication-step randomized algorithm that realizes an arbitrary h-relation on a p× p-processor
MOB-PC. Once again, we show that if h ≤ log p, then the failure probability can be made as small
as p−α for any positive constant α.

Key words. parallel algorithms, randomized algorithms, routing, optical networks

AMS subject classifications. 68Q22, 68R05

PII. S0097539793259483

1. Introduction. The p-processor completely connected optical-communication
parallel computer (p-OCPC) consists of p processors, each of which has its own local
memory. The p processors can perform local computations and can communicate with
each other by message passing. A computation on this computer consists of a sequence
of communication steps. During each communication step, each processor can perform
some local computation and then send one message to any other processor. If a given
processor is sent one message during a communication step, then it receives this

∗Received by the editors December 9, 1993; accepted for publication (in revised form) August
22, 1995. A preliminary version of this paper appeared in Proc. 5th Annual ACM Symposium on
Parallel Algorithms and Architectures, ACM, New York, 1993, pp. 300–309.

http://www.siam.org/journals/sicomp/26-4/25948.html
†Department of Computer Science, University of Warwick, Coventry CV4 7AL, England

(leslie@dcs.warwick.ac.uk). The research of this author was performed at Sandia National Labo-
ratories and was supported by Department of Energy contract DE-AC04-76DP00789.
‡Department of Computer Science, University of Edinburgh, The King’s Buildings, Edinburgh

EH9 3JZ, United Kingdom (mrj@dcs.ed.ac.uk). This work was performed while this author was
visiting the NEC Research Institute, Princeton, NJ. The research of this author was supported by
UK Science and Engineering Research Council grant GR/F 90363 and by the ESPRIT Working
Group “RAND.”
§Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139 (ftl@math.mit.edu). The research of this author was supported by
Air Force contract AFOSR-F49620-92-J-0125 and DARPA contracts N00014-91-J-1698 and N00014-
92-J-1799.
¶NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (satish@research.

nj.nec.com).

1100

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1101

message successfully, but if it is sent more than one message, then the transmissions
are garbled and it does not receive any of the messages.

Eshaghian [Esh88], [Esh91] first studied the computational aspects of parallel
architectures with complete optical interconnection networks. The OCPC model is
an abstract model of computation which formalizes important properties of such ar-
chitectures. It was first introduced by Anderson and Miller [AM88] and Eshaghian
and Kumar [EK88] and has subsequently been studied by several authors, includ-
ing Valiant [Val90], Geréb-Graus and Tsantilas [GT92], and Gerbessiotis and Valiant
[GV92] (though not always under the name OCPC). The feasibility of the OCPC from
an engineering point of view is discussed in [AM88], [GT92], and [Rao92]. See also
the references in [McC93].

In the first part of this paper, we study the problem of interprocessor communi-
cation on an OCPC. In particular, we study the problem of realizing h-relations. This
problem arises in both the direct implementation of specific parallel algorithms [AM88],
and the simulation of shared-memory models, such as the PRAM, on more realistic
distributed-memory models [Val90]. An h-relation [Val90] is a communication prob-
lem in which each processor has up to h messages that it wishes to send to other
processors (assumed distinct). The destinations of these messages can be arbitrary
except that each processor is the destination of at most h messages. The goal is to
design a fast p-OCPC algorithm that can realize an arbitrary h-relation. Anderson
and Miller [AM88] have observed that an h-relation can easily be realized in h commu-
nication steps if all of the processors are given total information about the h-relation
to be realized.1 A more interesting (and perhaps more realistic) situation arises if we
assume that initially each processor knows about only the messages that it wants to
send and the processors learn about the h-relation only by receiving messages from
other processors. This is the usual assumption, and it is the one that will be made
here.

An OCPC algorithm for realizing h-relations is said to be direct if it has the
property that the only messages that are exchanged by the processors are the original
messages of the h-relation and these messages are sent only to their destinations. In
this paper, we prove the following:

1. The expected number of communication steps taken by any direct algorithm
for realizing h-relations on a p-OCPC is Ω(h+ log p).

2. An arbitrary h-relation can be realized on a p-OCPC in Θ(h+ log log p)
communication steps with high probability. (Valiant has shown that an arbitrary h-
relation can be realized in Θ(h+ log p) communication steps, which deals with the case
where h ≥ log p; our algorithm (see Theorem 1) covers the case of sublogarithmic h.)

It is easy to see that any 1-relation can be realized in one communication step
on an OCPC. Anderson and Miller [AM88] were the first to consider the problem
of realizing h-relations for h > 1. They discovered a direct p-OCPC algorithm that
runs for Θ(h) communication steps and delivers most of the messages in an arbitrary
h-relation. In particular, the expected number of messages remaining after Anderson
and Miller’s algorithm is run is O(p). Anderson and Miller were interested in the
special class of h-relations in which each of the messages with a given destination has
a unique label ` in the range 1 ≤ ` ≤ h. For this class of h-relations, Anderson and
Miller also discovered a deterministic Θ(h+ log p)-communication-step algorithm that

1To see this, model the communications between the p processors viewed as sources and the
p processors viewed as destinations as the edges of a bipartite graph of order 2p. Since the graph
has maximum degree h, it is edge colorable with h colors, which can be interpreted as time steps.

1102 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

delivers all of the messages in any h-relation that contains only O(p) messages. Thus
their algorithms can be combined to obtain an algorithm that realizes an arbitrary
h-relation from their special class in Θ(h+ log p) expected communication steps.

Valiant [Val90] considered the general problem of realizing h-relations for h > 1.
He discovered a Θ(h+ log p)-expected-communication-step p-OCPC algorithm that
realizes an arbitrary h-relation. Valiant’s algorithm consists of the first phase of
Anderson and Miller’s algorithm followed by a second phase which redistributes the
remaining O(p) messages using parallel prefix, sorts them, and then sends them to
the correct destinations. The second phase of Valiant’s algorithm takes Θ(h + log p)
communication steps.

Prior to this work, Valiant’s algorithm was the fastest known OCPC algorithm
that can realize an arbitrary h-relation for h > 1. It is not direct, however. The
fastest known direct OCPC algorithm for realizing arbitrary h-relations is due to
Geréb-Graus and Tsantilas [GT92] and runs in Θ(h+ log p log log p) expected com-
munication steps. In this paper, we show that every direct OCPC algorithm for
realizing h-relations takes Ω(h+ log p) expected communication steps. Furthermore,
we describe a Θ(h+ log log p)-communication-step p-OCPC algorithm that can real-
ize an arbitrary h-relation and we show that if h ≤ log p, then the failure probability
can be made as small as p−α for any positive constant α. (The Θ notation does not
hide any large constants in the running time of our algorithm.)

In this paper we also consider a model of computation known as the mesh-of-
optical-buses parallel computer (MOB-PC). The p×p MOB-PC consists of p2 proces-
sors, organized in a p× p array. The processors can perform local computations and
can communicate with each other by message passing. As in the case of the OCPC, a
computation on this computer consists of a sequence of communication steps. During
each communication step, each processor can perform some local computation and
then send one message. Unlike the OCPC, the MOB-PC has the restriction that the
destination of each message must be in the row or the column of its sender. (The
reason for considering the MOB-PC is that this restriction makes it much easier to
build than a p-OCPC (see [Rao92]).) As in the case of the OCPC, if a given processor
is sent one message during a communication step, then it receives this message suc-
cessfully, but if it is sent more than one message, then the transmissions are garbled
and it does not receive any of the messages.

The p × p mesh of optical buses is a member of a class of networks studied by
Wittie [Wit81] and suggested by Dowd as a method for optical interconnects [Dow91].
Rao studied the MOB-PC in [Rao92] and used a result of Leighton and Maggs to show
that for h ≥ log p, an arbitrary h-relation can be realized on a p× p MOB-PC in θ(h)
communication steps. In this paper, we describe a Θ(h+ log log p)-communication-
step randomized algorithm that realizes an arbitrary h-relation on a p× p MOB-PC,
and we show that if h ≤ log p, then the failure probability can be made as small as
p−α for any positive constant α.

The following experiment gives the intuition underlying our lower bound for direct
OCPC algorithms and our OCPC algorithm (which is a subroutine in our MOB-PC
algorithm). Suppose that two processors Pi and Pj of an OCPC are both trying
to send messages to a third processor Pd and that they adopt the following direct
strategy. During each communication step, processors Pi and Pj both flip fair coins.
If Pi’s coin comes up “heads,” then Pi sends its message to Pd. Similarly, if Pj ’s coin
comes up “heads,” then Pj sends its message to Pd. On any given communication step,
Pd has probability 1

2 of successfully receiving a message. Therefore, the probability

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1103

that Pd has not received any messages after t communication steps is 2−t. Now
suppose that we use a similar strategy to realize a 2-relation in which each processor
is the destination of two messages. After t communication steps, we will expect to
have p 2−t processors that have received no messages at all. Therefore, it will take
Ω(log p) communication steps to realize the 2-relation.

Intuitively, the reason that so much time is needed is that the events are “too
independent.” In particular, the fact that most of the other messages are already
delivered will not make it easier for Pi and Pj to send their messages to Pd. In order
to obtain a sublogarithmic OCPC algorithm, we adopt the following strategy. We
divide the set of p destinations into disjoint “target groups.” During the first part of
our algorithm, we send each message in the h-relation to a randomly chosen processor
within the target group containing its destination. As more and more messages are
delivered to a given target group, the probability that any remaining message is
successfully delivered to the group in one communication step increases. Once all of
the messages have been delivered to their target groups, we solve the smaller problem
of realizing an h-relation within each target group.

Our OCPC algorithm consists of four procedures. The first three procedures
deliver the messages to their target groups and the last procedure realizes smaller
h-relations within the target groups.

The methods that we use to deliver messages to target groups rely upon the
fact that the number of messages being sent to each group is small compared to the
size of the group. The first procedure of our algorithm (the “thinning” procedure)
establishes this condition by delivering most of the messages in the h-relation to their
final destinations. The thinning procedure is a direct OCPC algorithm and it is
based on Anderson and Miller’s algorithm. Proving that it satisfies the appropriate
conditions requires a probabilistic analysis of dependent events. To do the analysis,
we use the “method of bounded differences” [McD89], [Bol88]. Note that Matias and
Vishkin’s “thinning out” procedure [MV91] is similar to one step of our “thinning”
procedure; in their case, just one step suffices since the density of messages is much
lower.

After the thinning procedure has terminated the number of messages remaining
will be O(p/(h log log p)) with high probability. The purpose of the second procedure
(the “spreading” procedure) is to redistribute these messages so that each sender has
at most one message to send. After the spreading procedure terminates, the third
procedure delivers the remaining messages to their target groups. The bulk of the
messages are delivered using a probabilistic tool called “approximate compaction.”
After the approximate compaction terminates, the number of messages that have
not been delivered to their target groups will be O(p/ log2 p) with high probability.
Each remaining message is copied log p times and the processors are reallocated so
that log p processors can work together to send each message to its target group.
(The approximate compaction technique and the copying technique were first used in
PRAM algorithms such as those described in [CDHR89] and in [GM91] and [MV91].
In this work, we require a smaller failure probability for approximate compaction than
previous authors because our target groups are only polylogarithmic in size and we
need to bound the probability of failure in any group.)

At the end of the third procedure, the communication problem that remains
consists of one h-relation within each target group. These h-relations could be realized
in Θ(h+ log log p) communication steps by simultaneously running the second phase
of Valiant’s algorithm within each target group, substituting a deterministic EREW

1104 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

sorting algorithm such as Cole’s parallel merge sort (see [Col88]) for the randomized
sorting algorithm that Valiant uses.

Our fourth procedure is an alternative algorithm for realizing the h-relations
within the target groups. It does not rely on efficient deterministic O(log p)-time
EREW sorting and it is therefore likely to be faster in practice. The algorithm is
as follows. Each target group is subdivided into disjoint subgroups. Our “thinning,”
“spreading,” and “deliver to target group” procedures are run simultaneously in each
target group to deliver the messages in that group to the appropriate subgroups. The
communication problem remaining with each subgroup is an h-relation, and this h-
relation is realized using the second phase of Valiant’s algorithm, in which the sorting
is done by Bitonic sort. With high probability, the proportion of target groups for
which this strategy delivers all of the messages is at least 1−1/ logc p for a sufficiently
large constant c. The processors from these target groups are then reallocated and
used to help the unsuccessful target groups finish realizing their h-relations. After
the processors are reallocated, each unsuccessful target group sorts its messages using
an enumeration sort due to Muller and Preparata [MP75] which is fast in practice as
well as in theory. The sorted messages are then delivered to their destinations.

The structure of this paper is as follows. In section 2, we describe the OCPC
algorithm in detail. We demonstrate that it uses Θ(h+ log log p) communication
steps, and we prove that if h ≤ log p, then the probability that any messages are left
undelivered can be made as small as p−α for any positive constant α. In section 3, we
give the proof of the lower bound for direct OCPC algorithms. Finally, in section 4,
we describe the MOB-PC algorithm. We demonstrate that it uses Θ(h+ log log p)
communication steps, and we prove that if h ≤ log p, then the probability that any
messages are left undelivered can be made as small as p−α for any positive constant α.

2. The OCPC algorithm. In this section, we prove the following theorem.
Theorem 1. Suppose that h ≤ log p. There is a randomized algorithm that

realizes an arbitrary h-relation on a p-OCPC in θ(h+ log log p) communication steps.
The failure probability of the algorithm is p−α. The constant α > 0 may be chosen
arbitrarily.

Before we can define the OCPC algorithm, we must describe the partition of the
set {P1, . . . , Pp} of processors into disjoint “target groups.” The size of each target
group will be a polynomial in log(p). To be precise, let c1 denote a sufficiently large
integer (the size of c1 will depend upon the failure probability that we wish to obtain)
and let k denote dlogc1 pe. We will divide the p processors into approximately p/k
target groups, each of size about k. To simplify the presentation, we will assume that k
divides p2 and we will define the `th target group for ` in the range 0 ≤ ` < p/k to be
the set {Pk`, . . . , Pk`+k−1}. We will define the target group of any given message to
be the target group containing the destination of the message, and we will say that
the message is destined for that target group.

The algorithm consists of the following four procedures:
• Thinning. At the beginning of the algorithm, the number of messages des-

tined for any given target group may be as high as hk. The goal of the thinning
procedure is to deliver most of the messages to their final destinations so that
by the end of the procedure the number of undelivered messages destined for
any given target group is at most k/(hdc2 log log pe) for a sufficiently large

2The case in which k does not divide p presents no real difficulty. In this case, the target groups
should be defined in such a way that all but one of the groups has size k and the size of the remaining
group is between k and 2k.

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1105

constant c2. If h ≤ log p, then this can be done in Θ(h+ log(h) log log log(p))
steps with probability at least 1− p−α, where the constant in the running
time depends upon α and c2.

• Spreading. At the end of the thinning procedure, there will be only O(p/
(h log log p)) undelivered messages. However, some senders may have as many
as h undelivered messages. The spreading procedure spreads these out so that
each sender has at most one to send. This can be done in Θ(h+ log log p)
communication steps with probability at least 1− p−α, where the constant
in the running time depends upon α.

• Deliver to target groups. This procedure delivers all of the undelivered mes-
sages to their target groups. After it terminates, each sender will have at
most two undelivered messages to send and the destination of each undeliv-
ered message will be within the target group containing its sender. The proce-
dure can be implemented in Θ(log log p) communication steps with probability
at least 1− p−α, where the constant in the running time depends upon α.
• Deliver within target groups. This procedure delivers all messages to their

final destinations. It can be implemented deterministically in Θ(h+ log log p)
steps by running the second phase of Valiant’s algorithm twice in each target
group. However, this implementation may be slow in practice. In section 2.4,
we describe an alternate implementation which runs in Θ(h+ log log p) com-
munication steps and succeeds with probability at least 1− p−α. (The con-
stant in the running time depends upon α.)

We will use the following tool in the implementation of our algorithm. (For similar
tools, see [CDHR89], [GM91], and [MV91].)

Definition 1. The (s, β,∆) approximate compaction problem is defined as fol-
lows. Given
• a p-OCPC in which at most s senders each have one message to send and
• a set of βs receivers which is known to all of the senders,

deliver all but up to ∆ of the messages to the set of receivers in such a way that each
receiver receives at most one message. (During the delivery, messages may only be
sent from the original senders to the βs receivers.)

Lemma 1. For any positive constant α, there is a positive constant c2 such that
the (s, dc2 log log pe, ∆) approximate compaction problem can be solved in O(log log p)
communication steps with failure probability at most α−

√
s + s−α(∆+1).3

Using the (s, β,∆) approximate compaction algorithm, we can accomplish a vari-
ety of tasks. For example (following [CDHR89] and [GM91]), we use the algorithm to
allocate blog pc processors to each message once the number of undelivered messages

is reduced to p/blog pc2. In the proof of Lemma 1, we use Lemma 2 (see below) and
the following definition.

Definition 2. The (s, β,∆) approximate collection problem is defined to be
the same as the (s, β,∆) approximate compaction problem except that we remove the
requirement that each receiver receives at most one message.

Lemma 2. For any positive constant α, there is a positive constant c′2 such that
the (s, 36,∆) approximate collection problem can be solved in at most dc′2 log log pe
communication steps with failure probability at most α−

√
s + s−α(∆+1).

Proof of Lemma 1. Let α be any positive constant and let c2 = 36c′2 + 1, where

3In fact, there is a positive constant c2 such that the (s, c2,∆) approximate compaction problem
can be solved in O(log log s) communication steps with small failure probability, but Lemma 1 is
sufficient for our purposes.

1106 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

c′2 is the constant associated with α in Lemma 2. Suppose that we are given an
instance of the (s, dc2 log log pe, ∆) approximate compaction problem. Partition the
set of receivers into dc′2 log log pe disjoint sets R1, R2, . . . , each of size at least 36s.
Since by Lemma 2 the (s, 36,∆) approximate collection problem can be solved in
at most dc′2 log log pe communication steps with failure probability at most α−

√
s +

s−α(∆+1), there is an algorithm with this failure probability that delivers all but up
to ∆ of the messages to the receivers in R1 in only dc′2 log log pe steps. To solve
the (s, dc2 log log pe, ∆) approximate compaction problem, simply run this algorithm,
substituting the set Ri for R1 on the ith communication step of the algorithm, thus
guaranteeing that each receiver receives at most one message.

Proof of Lemma 2. We say a sender is active initially if it contains a message.
Our algorithm proceeds in a number of similar communication steps, where in step i
each active sender sends its message to a random location in the set of receivers. Each
sender that successfully transmitted a message is considered inactive.

Let m denote 36s. We must show that there are at most ∆ active messages when
the algorithm terminates. We use the following claim.

Claim 1. Let c be a positive integer. If there are at most m/r active senders left
at step i, then the probability that there will be f = max{dm/r3/2e, ∆ + 1} or more
active senders left at step i+ 2c is at most (2e/

√
r)cf .

We prove Claim 1 by imagining that in a certain step the m/r active senders
make their random choice of destination in some fixed order. For there to be f
active senders that do not transmit their message, there must be df/2e times at
which a sender chooses the same receiver as one chosen by a previous sender in this
order. The probability of choosing the same receiver as a previous sender is at most
(m/r)/m = 1/r. Thus the probability of df/2e such events occurring is bounded
above by (

bm/rc
df/2e

)(1

r

)df/2e
≤
(2em

rf

)df/2e(1

r

)df/2e
≤
(

2em

r2 max
{
dm/r3/2e, ∆ + 1

})df/2e
≤
(2em

r2(m/r3/2)

)f/2
≤
(2e√

r

)f/2
.

We proceed by computing the probability that f active senders remain after
2c steps. It is easy to verify that the probability that f senders remain active after
2c steps in our algorithm is less than the probability that f senders remain active if
each of the 2c successive steps is implemented by sending from all of the processors that
were active at the initial step. In this situation, the successive steps are independent;
thus the probability that there are f senders that never got a message through on any
of the steps is at most the probability above raised to the 2cth power. This proves
Claim 1.

Now we define r0 = 36, rj = r
3/2
j−1, fj = max

{⌈
m/r

3/2
j

⌉
, ∆ + 1

}
, and t = min{j :

fj = ∆ + 1}. The algorithm will run for t+ 1 “supersteps” 0, 1, . . . , t, each superstep
consisting of 2c steps as described above, with c a constant to be chosen later. Observe
that the number of supersteps, and hence the total number of steps, is O(log log s)
and is therefore O(log log p).

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1107

We say that superstep j is successful if, starting with at most m/rj active
senders, it finishes with (strictly) fewer than fj active senders. Note that if supersteps
0, 1, . . . , j are all successful, then the number of active senders remaining at the end
of superstep j is strictly less than fj . If all t + 1 supersteps are successful, then the
number of active senders remaining at the end is at most ∆, as required.

Using Claim 1, we can bound the probability that some superstep fails by

t∑
j=0

(2e
√
rj

)cfj
.

Notice that each term where rj ≤ m1/3 is at most (e/3)6c
√
s, and every other term

is at most (16e6/(9s))c(∆+1)/6. Thus the probability that some superstep fails is at
most

(t+ 1)
{(e

3

)6c
√
s

+
(16e6

9s

)c(∆+1)/6}
.

Observe that t+ 1 = O(log log s), so if c is chosen to be big enough relative to α, this
is at most α−

√
s + s−α(∆+1), as required.

We proceed by describing the implementation of the various steps of the algorithm.

2.1. Thinning. The thinning procedure is a direct OCPC algorithm which is
based on Anderson and Miller’s algorithm [AM88]. It consists of log h+ 1 phases.
Intuitively, the goal of the ith phase is to reduce the problem of realizing an h/2i−1-
relation to the problem of realizing an h/2i-relation. That is, the ith phase should
get so many of the messages delivered that the remaining communication problem
is “essentially” an h/2i-relation. After the last phase, the h-relation will be mostly
realized, except that there will be a small number (at most k/(hdc2 log log pe)) of
undelivered messages destined for each target group. (Recall that k denotes dlogc1 pe.)

Let c3 be a sufficiently large constant (depending on c1 and c2 and the constant α
in the desired failure probability) and let ti denote c3dh/2i−1 + log h+ log log log pe.
(ti denotes the number of communication steps in phase i.) Before phase i, it will be
the case that each participating sender has at most h/2i−1 undelivered messages to
send. During phase i, each participating sender executes the following communication
step ti times:

Choose an integer j uniformly at random from the set {1, . . . , h/2i−1}.
If there are at least j undelivered messages to be sent,

send the jth undelivered message to its destination.

After each communication step, there is an acknowledgment step in which every re-
ceiver that receives a message sends an acknowledgment back to the sender indicating
that the message was delivered successfully. At the end of phase i, any sender that
has more than h/2i undelivered messages left to send stops participating.

We will prove the following theorem.
Theorem 2. Suppose that h ≤ log p. Then with probability at least 1 − p−α,

the number of undelivered messages destined for any given target group is at most
k/(hdc2 log log pe) after the thinning procedure terminates.

In order to prove Theorem 2, we will use the following notation. We will say that
a given message is “participating” at any point in time if it is undelivered at that time
and its sender is participating. We will say that a receiver is “overloaded” in phase i
if at the start of phase i the number of participating messages with that destination

1108 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

is more than h/2i−1. We will say that the receiver becomes overloaded in phase i if
it is not overloaded in phases 1 through i but it is overloaded in phase i+ 1. We will
say that a sender is “good” in phase i if it does not have a message to send to an
overloaded receiver. For every target group T , let S(T) denote the set containing all
senders in the h-relation with messages destined for T and let N(T) denote the set
containing all destinations of messages from processors in S(T). Finally, let S(N(T))
be the set containing all senders with messages destined for members of N(T). (Note
that |S(T)| ≤ h |T |, |N(T)| ≤ h2|T |, and |S(N(T))| ≤ h3|T |.) The theorem follows
from the following lemma.

Lemma 3. Suppose that h ≤ log p. Let i be an arbitrary phase of the thinning
procedure and let T be any target group. With probability at least 1− p−(α+ 1),

1. at most |N(T)|/(h6dc2 log log pe) receivers in N(T) become overloaded in
phase i;

2. at most |S(T)|/(h6dc2 log log pe) good senders in S(T) stop participating at
the end of phase i.

Proof of Theorem 2. To see that the theorem follows from Lemma 3, note that
the number of target groups is at most p/k and the number of phases is O(logh), so
with probability at least 1− p−α, conditions 1 and 2 hold for all phases i and target
groups T . Suppose that this is the case and consider any particular target group T .
A message that is destined for T will be delivered by the thinning procedure unless
either (1) there is a phase in which its sender is not good (in which case the sender
could possibly stop participating) or (2) its sender stops participating even though
it is good. The number of messages that are destined for T and are not delivered is
therefore at most

log(h)× (h2|N(T)|/(h6dc2 log log pe) + h|S(T)|/(h6dc2 log log pe)).

This is at most k/(hdc2 log log pe).
The proof of Lemma 3 will use the following “independent bounded differences

inequality” of McDiarmid [McD89]. (The inequality is a development of the “Azuma
martingale inequality”; a similar formulation was also derived by Bollobás as [Bol88].)

Theorem 3 (McDiarmid). Let x1, . . . , xn be independent random variables, with
xi taking values in a set Ai for each i. Suppose that the (measurable) function f :∏
Ai → R satisfies |f(x)− f(x′)| ≤ ci whenever the vectors x and x′ differ only in

the ith coordinate. Let Y be the random variable f(x1, . . . , xn). Then for any t > 0,

Pr
(
|Y − E(Y)| ≥ t

)
≤ 2 exp

(
−2t2

/∑n
i=1 c

2
i

)
.

Proof of Lemma 3. Suppose that h ≤ log p, let i be an arbitrary phase of the
thinning procedure, and let T be any target group. Let xa denote the sequence of
integers randomly chosen by processor Pa during phase i.

We will start by proving that with probability at least 1− p−(α+2), at most
|N(T)|/(h6dc2 log log pe) receivers in N(T) become overloaded in phase i.

Let Y = f({xa | Pa ∈ S(N(T))}) be the number of receivers in N(T) that become
overloaded during phase i. Let R be any receiver in N(T) that is not overloaded in
phases 1 through i, and let sj denote the number of participating messages that are
destined for R at the jth communication step of phase i. (Note that these messages are
not necessarily sent on the jth communication step.) The probability that R receives

a message on this step is at least sj (2i−1/h) (1− 2i−1/h)
sj−1

. There is a positive
constant ρ such that this probability is greater than or equal to ρ for every sj that

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1109

is greater than or equal to h/2i. (Note that R cannot become overloaded in phase i
if sj is ever less than h/2i.) Therefore, the probability that R becomes overloaded is
at most

h/2i−1∑
b=0

(
ti
b

)
ρb(1− ρ)

ti−b.

Furthermore, as long as c3 is sufficiently large (i.e., ti is sufficiently large compared
to b), there is a constant c4 > 1 such that the above sum is at most c−ti4 . Therefore, the
expected number of processors in N(T) that become overloaded in phase i is at most
|N(T)| c−ti4 , which is at most |N(T)|/(2h6dc2 log log pe) as long as c3 is sufficiently
large.

If the value of xa changes for any a, then Y changes by at most h. Therefore,
by the bounded differences inequality of Theorem 3, the probability that Y is greater
than |N(T)|/(h6dc2 log log pe) is at most

2 exp(−2 |N(T)|2/(4h12 dc2 log log pe2 |S(N(T))|h2)).

This is at most p−(α+2) as long as the constant c1 is sufficiently large (i.e., the target
groups are sufficiently large). (Here we use the fact that h ≤ log p.)

We now prove that with probability at least 1− p−(α+2), at most

|S(T)|/(h6dc2 log log pe)

good senders in S(T) stop participating at the end of phase i.
Let Y = f({xa | Pa ∈ S(N(T))}) be the number of good senders in S(T) that

stop participating at the end of phase i.
Let S be any good sender in S(T) that participates in phase i, and let sj denote

the number of participating messages that S has to send at the jth communication
step of phase i. Let d`,j denote the number of participating messages at the jth
communication step that have the same destination as the `th message that S has
to send. (Since S is good, each d`,j is less than or equal to h/2i−1.) The proba-
bility that S sends a message successfully on the jth communication step is at least∑sj
`=1(2i−1/h) (1− 2i−1/h)

d`,j−1
. As before, there is a positive constant ρ such that

this probability is greater than or equal to ρ for every sj that is greater than or equal
to h/2i. Therefore, the probability that S stops participating is at most

h/2i−1∑
b=0

(
ti
b

)
ρb(1− ρ)

ti−b.

As in the proof of the first part of the lemma, we conclude that the expected
number of good senders in S(T) that stop participating at the end of phase i is at
most |S(T)|/(2h6dc2 log log pe).

If the value of xa changes for any a, then Y changes by at most h2. Therefore,
by the bounded differences inequality of Theorem 3, the probability that Y is greater
than |S(T)|/(h6dc2 log log pe) is at most

2 exp(−2 |S(T)|2/(4h12 dc2 log log pe2 |S(N(T))|h4)).

This is at most p−(α+2) as long as the constant c1 is sufficiently large (i.e., the target
groups are sufficiently large). (Once again, we use the fact that h ≤ log p.)

1110 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

2.2. Spreading. Let α be any positive constant and let c2 be the constant
associated with α that is defined in Lemma 1. At the end of the thinning procedure,
there will be at most p/(hdc2 log log pe) undelivered messages. We wish to spread these
out so that each sender has at most one to send. To do this, we observe that there are
at most p/(hdc2 log log pe) senders with undelivered messages. Suppose (without loss
of generality) that h divides p and partition the set of p receivers into h disjoint sets
R1, . . . , Rh of size p/h. Perform a (p/(hdc2 log log pe), dc2 log log pe, 0) approximate
compaction to send the first message from each sender to a unique processor in R1.
(The probability that this will succeed is at least

1− α−
√
p/(hdc2 log log pe) − (p/(hdc2 log log pe))−α.)

Finally, send the remaining messages to R2, . . . , Rh in Θ(h) communication steps with
no contention using the following strategy. If the first message of sender i was sent
to the jth cell of R1 by the approximate compaction, then send the `th message of
sender i to the jth cell of R` for 1 < ` ≤ h.

2.3. Deliver to target groups. Let α be any positive constant and let c2 be
the constant associated with α that is defined in Lemma 1. At the end of the spreading
procedure, each sender will have at most one undelivered message to send and each
target group will have at most k/(hdc2 log log pe) undelivered messages to receive.
(Recall that k = dlogc1 pe.) Our goal is to deliver the messages to the target groups.
After this procedure terminates, each processor will have at most two undelivered
messages to send and the destination of each undelivered message will be within the
target group containing its sender.

We have two methods for implementing this procedure in Θ(log log p) communi-
cation steps. The simpler method (which we describe here) involves making copies of
messages but the other method does not. The simpler of the two methods consists of
two phases.

We first describe phase 1. Consider any target group T . At the start of the
procedure, there are at most k/dc2 log log pe senders, each of which has one message
to send to the target group. Let ` denote blog pc. We send all but up to k/`2 of these
messages to T in O(log log p) steps by doing a (k/dc2 log log pe, dc2 log log pe, k/`2)
approximate compaction. We can do this in parallel for each target group, and the
probability that it fails for any target group is at most

p
k (α−

√
k/dc2 log log pe + (k/dc2 log log pe)−α(k/`2+1)

),

which is sufficiently small as long as the constant c1 in the definition of k is sufficiently
large.

We will use the phrase “completely undelivered” to describe all messages that
were undelivered before phase 1 and were not delivered to their target groups during
phase 1. At the end of phase 1, each sender has at most one completely undelivered
message to send, each member of each target group has received at most one message,
and the number of completely undelivered messages is at most p/`2. Choose ` disjoint
sets R1, . . . , R` of size bp/`c from the set of p receivers and let Qj denote the set con-
sisting of the jth receiver from each of R1, . . . , R`. Next, send all of the completely
undelivered messages to R1 by performing a (p/`2, dc2 log log pe, 0) approximate com-

paction. (This fails with probability at most α−
√
p/`2 + (p/`2)

−α
.) Finally (for each

j in parallel), the processors in Qj copy the message received at the jth receiver in R1

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1111

(if there is one) to the other processors in Qj . (This takes Θ(log log p) communication
steps.)

At this point, each completely undelivered message is stored at each of the `
processors in Qj (for some j) and each processor stores at most one completely unde-
livered message. The following communication step is now performed in parallel by all
processors. If the ith processor in Qj has a completely undelivered message to send,
then it chooses an integer uniformly at random from the set {γ | (1 ≤ γ ≤ k) and
(γ mod ` = i)} and it sends the message to the γth processor in its target group.
The probability that the ith processor in Qj is unsuccessful is at most 1/`, and this
probability is independent of the probability that the other processors in Qj succeed,
so the probability that there is a completely undelivered message that is not delivered
at least once to its target group in this communication step is at most p`−`, which is
sufficiently small.

For each j, in parallel the processors in Qj perform parallel prefix to select one
of the delivered copies. They then send messages “cancelling” any other copies that
were delivered to their target group. This takes Θ(log log p) communication steps.
Note that each processor receives at most two messages during the procedure — one
in phase 1 and one in phase 2.

2.4. Deliver within target groups. When this procedure begins, each sender
has at most two undelivered messages to send and the destination of each undelivered
message is within the target group containing its sender. Our goal is to deliver all of
the undelivered messages.

This procedure can be implemented deterministically in Θ(h+ log log p) steps
by running the second phase of Valiant’s algorithm [Val90] twice within each target
group. The algorithm within each target group is as follows. First, we consider only
one undelivered message per sender. These messages are sorted by destination in
Θ(log log p) communication steps using an EREW sorting algorithm such as Cole’s
parallel merge sort [Col88].4 Then the sorted messages are delivered to their destina-
tions without contention in Θ(h) communication steps. Next, the process is repeated
for the remaining undelivered messages.

In this section, we describe an alternative implementation of the procedure. It
does not rely on efficient deterministic O(log p)-time EREW sorting and it is therefore
likely to be faster in practice.

The main idea is as follows. We start by subdividing each target group into
target subgroups. We then run the “thinning,” “spreading,” and “deliver to target
group” procedures within each target group to deliver the messages to their target
subgroups. If these three procedures succeed within a target group, then each sender
in the group will have at most two undelivered messages to send and the destination
of each undelivered message will be within the target subgroup of its sender. We can
now run the second phase of Valiant’s algorithm twice within each target subgroup
to deliver the messages in the target group to their final destinations. Since the
subgroups are very small, we can use Bitonic sort (which is fast in practice) to do
the sorting. With high probability, the proportion of target groups for which the
“thinning,” “spreading,” or “deliver to target group” procedures fail will be O(k−3).
We now allocate a group of k2 extra processors to each of these target groups, and

4Valiant uses a randomized parallel sorting algorithm instead of using parallel merge sort. We
cannot do that here because we want to be able to claim that (with high probability) the messages
are successfully (and quickly) sorted in all of our target groups.

1112 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

we use these extra processors to sort the messages using a counting sort that is fast
in practice as well as in theory.

We now describe the procedure in more detail. The communication problem
within each target group can be viewed as the problem of realizing an h-relation on a
k-OCPC. Therefore, we can run the “thinning,” “spreading,” and “deliver to target
group” procedures simultaneously within each target group. Before we can do that,
we must partition each target group into target subgroups. Let the size of the target
subgroups be k′ = dlogc5 ke, where c5 is a constant that is sufficiently large that the
probability that the “thinning,” “spreading,” and “deliver to target group” procedures
fail within a target group is at most k−3. (In order to simplify the presentation, in
this section, we will assume that k′ divides k. The case in which k′ does not divide k
is no more difficult—it is simply messier. Similarly, we will assume that k3 divides p.)
After the “deliver to target group” procedure terminates within each target group,
run the second phase of Valiant’s algorithm twice within each target subgroup, using
Bitonic sort to do the sorting. (This takes Θ(h+ log2 k′) communication steps.) If the
“thinning,” “spreading,” and “deliver to target group” procedures succeeded within
a target group then all of its messages are now delivered. (This will happen with
probability at least 1− k−3.)

We now describe the second part of the procedure — the allocation of extra pro-
cessors to help target groups that have not finished. Partition the set of target groups
into p/k2 disjoint sets S1, . . . , Sp/k2 . Each set S` contains k target groups and is
called a target supergroup. Partition the set of target supergroups into k disjoint sets
C1, . . . , Ck. Each set C` contains p/k3 target supergroups (and therefore p/k2 target
groups) and is called a collection of target supergroups. Note that with probability
at least 1 − k exp(−p/3k5), each collection of target supergroups contains at most
2p/k5 unfinished target groups. Suppose that this is the case. Each target group and
each target supergroup performs a parallel prefix to determine whether or not it has
finished. (This takes Θ(log log p) communication steps.) Next, each processor that is
part of an unfinished target group attempts to find a finished target supergroup. In
particular, if the processor is the jth member of the target group, then it chooses a
target supergroup uniformly at random from Cj and it sends a message to the first
processor in the target supergroup asking whether the target supergroup is finished.
The probability that a given member of a given unfinished target group fails to find
a finished supergroup is at most 3/k. (The probability that the supergroup chosen is
not finished is at most 2/k2 and the probability that the query is sent to the same des-
tination as some other query is at most 2/k.) Furthermore, the queries from any given
target group are independent of each other, so the probability that every processor in
a given unfinished target group fails to find a finished supergroup is at most (3/k)

k

and the probability that there exists an unfinished target group that fails to find a
finished supergroup is at most p(3/k)

k
, which is sufficiently small. Each unfinished

target group then performs a parallel prefix to choose a single finished supergroup.

At this point, each unfinished target group has identified a single finished super-
group containing k2 processors. Consider the k2 processors to be organized in a k by k
matrix. We now run Valiant’s algorithm twice in each unfinished target group. The
messages are sorted using Muller and Preparata’s algorithm [MP75], which works as
follows. The ith processor of the unfinished target group sends its message (if it has
one) to all of the processors in the ith row. (This takes Θ(log log p) communication
steps.) If the processor in the ith row of the ith column gets a message, then it sends
this message to all of the processors in the ith column and the processors in the ith

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1113

column perform parallel prefix to determine its rank. (Again, this takes Θ(log log p)
communication steps.) Finally (in one communication step), the message with rank i
is sent to the ith processor in the unfinished target group.

3. A lower bound for direct OCPC algorithms. The algorithm described
in the previous section often sends a message to a processor other than its final desti-
nation, i.e., the algorithm is not direct. Using a nondirect strategy in a network that
allows direct routing may seem strange at first, and one might question its necessity.
In this section, we prove a lower bound that demonstrates that any sublogarithmic
OCPC algorithm must necessarily use nondirect routing.

Theorem 4. Let A be any direct (randomized) OCPC algorithm that can realize
any 2-relation with success probability at least 1

2 . Then there is a 2-relation which A
takes Ω(log p) communication steps to realize.

Proof. Consider any direct randomized OCPC algorithm that runs for t ≤
b 1

3 log pc steps. We shall construct a 2-relation ρ such that the probability that the
algorithm successfully realizes ρ is exponentially small (in p). In the 2-relation ρ, each
processor has at most one message to send.

Consider a processor Pi that is not itself the destination of any messages and has
a single message to send to Pd but is blocked every time it attempts to transmit.
Since Pi receives no external stimulus, we can imagine that Pi selects its transmission
strategy at random in advance of the first time step. A strategy for Pi to transmit
to Pd (under the blocking regime) can be coded as a binary word of length t, where
a 1 in position t′ indicates that Pi is to attempt to send its message at time step t′.

For convenience, assume that p is divisible by 4. The 2-relation ρ is the union of
p/4 subrelations, each consisting of a pair of sending processors attempting to send a
single message each to a common destination. The 3p/4 processors in the 2-relation
are distinct. The p/4 subrelations will be selected sequentially. Note that at any
stage, there will be f ≥ p/4 “free” processors from which the next pair of senders
may be selected. To make the selection, first choose a free destination processor Pd.
Observe that since the number of possible transmission strategies is 2t, there must
exist a strategy σ ∈ {0, 1}t such that the expected number of free senders that choose
strategy σ to send to Pd under the blocking regime is at least f2−t. Thus there is a
free sender, say Pi, that chooses strategy σ with probability at least 2−t ≥ p−1/3 and
a different free sender, say Pj , that chooses σ with probability at least

(f2−t − 1)/(f − 1) ≥ 2−t − f−1 ≥ p−1/3 − 4p−1,

which is at least 1
2p
−1/3 for p ≥ 24. Now add to ρ the subrelation that requires

Pi and Pj each to send a single message to Pd.
Note that Pi and Pj select strategies independently, so the probability that they

both select σ is at least 1
2p
−2/3; thus the probability that Pi and Pj fail to get rid

of their messages is also at least 1
2p
−2/3. Since there are p/4 subrelations forming ρ,

the probability that ρ is successfully realized is at most (1− 1
2p
−2/3)p/4, which is less

than exp(−p1/3/8).
It may be observed from the proof that a direct algorithm requires a logarithmic

number of steps to achieve even inverse polynomial success probability.

4. The MOB-PC algorithm. In this section, we describe a θ(h + log log p)-
communication-step algorithm that realizes an arbitrary h-relation on a p× p MOB-
PC. We show that if h ≤ log p, then the failure probability can be made as small as
p−α for any positive constant α.

1114 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

Since each row and each column of a p×p MOB-PC is itself a p-OCPC, we start by
considering a p-OCPC. As in section 2, we divide the p processors into target groups of
size k = dlogc1 pe. A target-group h-relation is defined to be a communication problem
in which each processor has up to h messages that it wishes to send. The destinations
of these messages are target groups, and each target group is the destination of at
most hk messages. We will use the following lemma.

Lemma 4. Suppose that h ≤ log p and let α be any positive constant. Then
there is a p-OCPC algorithm that can realize an arbitrary target-group h-relation in
O(h+ log log p) steps with failure probability 3p−α.

Proof. Suppose that we are given a target-group h-relation. As in section 2, we
will let S(T) denote the set containing all senders that have messages destined for
target group T . Let M(S(T)) denote the set of messages that are to be sent by these
senders. Let each message choose a destination uniformly at random from within its
target group. Let h′ = 8eh+log log p and let h′′ = h′/2. We will say that a message is
externally bad with respect to a target group T if the message has the same destination
as at least h′′ other messages that are not sent from senders in S(T). We will say
that a message is internally bad with respect to a target group T if it has the same
destination as at least h′′ other messages that are sent from senders in S(T). We will
say that a sender is initially good unless one or more of its messages is (externally or
internally) bad. We will prove the following claim.

Claim 2. With probability at least 1 − p−α, every set S(T) contains at most

k/(2h′
2dc2 log log pe) senders that are not initially good.

Suppose that every set S(T) contains at most k/(2h′
2dc2 log log pe) senders that

are not initially good and that we start to deliver messages to their destinations by
running the thinning procedure from section 2.1 using h′ as the value of the vari-
able “h”. It is easy to see that we can modify the proof of Lemma 3 to obtain the
following. (The following lemma is the same as Lemma 3 except for the factor of 2 in
the denominator.)

Lemma 3′. Suppose that h′ ≤ log p. Let i be an arbitrary phase of the thinning
procedure and let T be any target group. With probability at least 1− p−(α+1),

1. at most |N(T)|/(2h′6dc2 log log pe) receivers in N(T) become overloaded in
phase i;

2. at most |S(T)|/(2h′6dc2 log log pe) good senders in S(T) stop participating at
the end of phase i.

We conclude that with probability at least 1−2p−α, the number of messages that
are not delivered to a given target group is at most the sum of

1. k/(2h′dc2 log log pe) (these messages may not be delivered because their sender
is not initially good);

2. k/(2h′dc2 log log pe) (these messages may not be delivered because their sender
stops participating or stops being good during the thinning).

We conclude that with probability at least 1− 2p−α, the number of undelivered
messages destined for any given target group is at most k/(h′dc2 log log pe) after the
thinning procedure terminates. Therefore, we can deliver the rest of the messages to
their target groups using the “spreading” procedure from section 2.2 and the “deliver
to target groups” procedure from section 2.3. In the remainder of this section, it
will be important to have our algorithm for realizing target-group h-relations behave
symmetrically with respect to the different destinations within a target group. We can
achieve this goal by modifying the “deliver to target group” procedure from section 2.3
as follows.

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1115

1. In the first part of the procedure, we deliver messages to their target groups
using “approximate collection” rather than “approximate compaction.”

2. In the second part of the procedure (the part involving copies), the “winner”
is chosen uniformly at random (rather than arbitrarily) from amongst the successfully
delivered copies.

We now finish the proof of Lemma 4 by proving Claim 2. Let T be any tar-
get group. We will show that the probability that M(S(T)) contains more than

k/(4h′
2dc2 log log pe) externally bad messages is at most 1

2p
−α (k/p). Then we will

show that the probability that M(S(T)) contains more than k/(4h′
2dc2 log log pe)

internally bad messages is at most 1
2p
−α (k/p).

First, we consider externally bad messages. We will say that a processor P is
externally crowded with respect to a target group T if there are at least h′′ messages
which are not in M(S(T)) and have destination P . A set of b members of a target
group are all externally crowded only if at least bh′′ messages have destinations in the
set. Therefore, the probability that there is a set of b members of a target group that
are all externally crowded is at most

(p
k

)(k
b

)(
kh

bh′′

)(
b

k

)bh′′
.

We can use Stirling’s approximation to show that for b = k/h′′6 this quan-

tity is at most (p/k)2−k/h
′′5

. Therefore, with probability at least 1 − (p/k)2−k/h
′′5

,
every target group has at most k/h′′6 processors which are externally crowded with
respect to T . Suppose that this is the case. Then the probability that a message
in M(S(T)) chooses a destination which is externally crowded with respect to T
is at most h′′−6. Using a Chernoff bound, we see that with probability at least
1 − exp(−|M(S(T))| / (3 × h′′6)), at most 2 |M(S(T))|/h′′6 messages in M(S(T))
choose a destination which is externally crowded with respect to T . Note that as
long as p is sufficiently large, 2 |M(S(T))|/h′′6 ≤ k/(4h′

2dc2 log log pe). Also, as long

as |M(S(T))| ≥ k/(4h′
2dc2 log log pe), h′ ≤ log p, and the constant c1 is sufficiently

large, the sum of (p/k)2−k/h
′′5

and exp(−|M(S(T))| / (3×h′′6)) is at most 1
2p
−α (k/p).

We now consider internally bad messages. We start by calculating an upper bound
on the probability that a message is internally bad. This probability is at most

hk−1∑
j=h′′

(
hk − 1

j

)
1

kj

(
1− 1

k

)hk−1−j
.

We can use Stirling’s approximation to show that this sum is O(2−h
′′
). So the expected

number of messages in M(S(T)) which are internally bad is O(|M(S(T))|2−h′′).
Let xi be a random variable which denotes the destination of the ith message

in M(S(T)) and let Y be a random variable denoting the number of internally bad
messages in M(S(T)). (Y is a function of x1, . . . , x|M(S(T))|.) If we change one of the
xi’s, then we change Y by at most h′′ + 1. Therefore, by Theorem 3 (the bounded
differences inequality),

Pr(Y ≥ k/(4h′2dc2 log log pe))

≤ 2 exp

(
−2

(
k

4h′2dc2 log log pe
− E(Y)

)2/
(|M(S(T))| (h′′ + 1)

2
)

)
.

1116 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

Since E(Y) ≤ k/(8h′2dc2 log log pe) (for big enough p), the probability is at most

2 exp(−k/(32h′
4dc2 log log pe2h2(h′′ + 1)

2
)).

This quantity is at most 1
2p
−α (k/p) as long as c1 is sufficiently large and h′ is at

most log p.
Now that we have proved Lemma 4, we are ready to describe our algorithm for

realizing h-relations on a p×p MOB-PC. We have already observed that each row and
each column of a MOB-PC is a p-OCPC. We will divide each row and each column of
the MOB-PC into target groups of size k. A block of the MOB-PC is defined to be a
k× k sub-MOB-PC in which each row is a row target group of the original MOB-PC
and each column is a column target group of the original MOB-PC. We will use the
phrase column of blocks to refer to a collection of p/k blocks which together make up
k columns of the MOB. Finally, we will subdivide each column of blocks into p/k2

superblocks in which each superblock consists of k blocks. (As in section 2.4, we will
simplify the presentation by assuming that k3 divides p. We will also assume that
h ≤ log p.)

The algorithm has five steps:
1. On each row: Each message picks a random row target group and the mes-

sages are routed to the target groups.
2. On each column: Each message chooses as its immediate destination the

column target group that intersects the row of its final destination. The messages are
routed to the target groups.

3. Within each block: Each message chooses an immediate destination uniformly
at random from its row. The messages are routed to their immediate destinations
using the OCPC algorithm in each row. Each message that was successfully delivered
to its immediate destination chooses as its new immediate destination the processor
which is in its column and in the row of its final destination. The messages are routed
to their immediate destinations using the OCPC algorithm in each column. If the
block contains a message that was not successfully delivered to the row of its final
destination, then we say that the block failed. Every processor in the block is notified
of the failure.

4. If any block of a superblock failed, then we say that the superblock failed.
Every processor in the superblock is notified of the failure. Each failed block attempts
to allocate a superblock which has not failed from within its column of blocks. After
allocating a superblock, the failed block copies all of its messages to each of the blocks
in the superblock. Each of these blocks then repeats step 3. If there is a block in
the superblock which does not fail, then the first such block copies the (delivered)
messages back to the original failed block.

5. On each row: Each message is routed to its final destination.
We will conclude the section by considering each of the five steps. For each step,

we will discuss the method that is used to implement the step and also the failure
probability of the method.

At the beginning of step 1, each processor has at most h messages. Each message
then picks a random row target group. Using a Chernoff bound, we see that the
probability that a given target group is the destination of more than 2hk messages
is at most e−hk/3, so the probability that there is such a target group is at most
p × (p/k) × e−hk/3, which is at most p−α as long as c1 is sufficiently large. Suppose
that every target group is the destination of at most 2hk messages. Then we can use
the method described in the proof of Lemma 4 to deliver the messages to their target

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1117

groups in O(h + log log p) steps. The probability that this method fails is at most
3p−α for any positive constant α.

At the beginning of step 2, each processor has at most h2 messages, where h2 is
h plus the number of time steps used in step 1. If it is also true that every target
group is the destination of O(hk) messages in step 2, then we can use the method
described in the proof of Lemma 4 to deliver the messages to the target groups in
O(h+ log log p) steps. We will conclude our discussion of step 2 by showing that with
high probability each target group is the destination of O(hk) messages.

Let T be any column target group and let C be the column of T . There are at
most hkp messages which have final destinations in rows which intersect T . These are
the only messages which could be destined for T in step 2. We will refer to them as
the set of “potentially relevant” messages. Each potentially relevant message will be
destined for T in step 2 if and only if it is delivered to column C in step 1. Therefore,
our goal is to prove that with high probability only O(hk) of the potentially relevant
messages are delivered to column C in step 1.

We start out by using a Chernoff bound to prove that with probability at least
1− exp(−hk2/3), only 2hk2 of the potentially relevant messages select target groups
that intersect C in step 1. We refer to these messages as “relevant” messages. Our
goal is to prove that with high probability only O(hk) of the relevant messages are
delivered to column C in step 1.

We will use the following theorem of Hoeffding, which is included in McDiarmid’s
paper [McD89].

Theorem 5 (Hoeffding). Let the random variables X1, . . . , Xp be independent,
with 0 ≤ Xi ≤ 1 for each i. Let X = 1

p

∑
iXi and µ = E[X]. Then for 0 ≤ t < 1−µ,

Pr(X ≥ t+ µ) ≤
[[

µ

µ+ t

]µ+t[
1− µ

1− µ− t

]1−µ−t
]p
.

To apply Hoeffding’s inequality, let Xi be h−1
2 times the number of relevant mes-

sages that are delivered to row i of column C in step 1. Observe that 0 ≤ Xi ≤ 1 and
that the Xi’s are independent. Note that X is (h2p)

−1
times the number of relevant

messages that are delivered to column C in step 1. Recall that the algorithm for real-
izing target-group h-relations behaves symmetrically with respect to the destinations
forming a particular target group; thus the expected number of relevant messages de-
livered to column C in step 1 is k−1 times the expected number of relevant messages.
Therefore, µ is at most 2hk/(h2p). Let t denote 4hk/(h2p). Observe that t ≥ 2µ
and that 0 ≤ t < 1− µ. By Hoeffding’s inequality, the probability that X is at least
6hk/h2p is at most[[

µ

µ+ t

]µ+t[
1− µ

1− µ− t

]1−µ−t
]p
≤ 3−tpetp = e−Ω(tp).

We conclude that with high probability at most 6hk messages are destined for
any target group during step 2. In this case, the messages can be delivered in O(h+
log log p) steps using the method described in the proof of Lemma 4.

At the beginning of step 3, each processor has at most h3 messages, where h3 is
h plus the number of time steps used in steps 1 and 2. Using a Chernoff bound (as
in step 1), we see that with probability at least 1 − p × (p/k) × e−hk/3, each row of

1118 L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO

each block is the destination of at most 2hk messages in step 3. We now consider
each particular block. Following Rao [Rao92], we can use a Chernoff bound to show
that with probability at least 1−k2 exp(−h3/3), the communication problem on each
row is a 2h3 relation. Similarly, with high probability the communication problem on
each column is a 2h3-relation. Therefore, the probability of failure can be made as
small as k−3. The processors in the block use parallel prefix to notify each other of
failure. Similarly, the processors in each superblock use parallel prefix to notify each
other of failure.

The implementation and analysis of step 4 closely follows that of section 2.4. The
probability that there is a failed block that fails to allocate a superblock is at most
(p2/k2)(3/k)

k
. The probability that there is a superblock in which every block fails

when it repeats step 3 is at most (p2/k3)(1/k3)
k
.

If steps 1–4 are successful, then at the start of step 5, all of the messages will be
in the correct row. Furthermore, there will be at most h5 messages at any processor,
where h5 is h plus the number of time steps used in steps 1–4. Since the communication
problem is an h-relation, each processor will be the destination of at most h messages.
Therefore the p-OCPC algorithm described in section 2 can be used to deliver the
messages on each row. The probability that this algorithm fails is at most p (the
number of rows) multiplied by the probability that the p-OCPC algorithm fails, which
is at most p−α for any positive constant α.

In the introduction to this paper, we pointed out that the MOB-PC is easier to
build than an OCPC because it restricts the number of processors that a given pro-
cessor can send to directly. Nevertheless, we have provided an algorithm for realizing
h-relations on a MOB-PC which is asymptotically as fast as the fastest known algo-
rithm for realizing h-relations on an OCPC. Similarly, we could define a new machine
by replacing each row and each column of a p× p MOB-PC with a p1/2 × p1/2 MOB-
PC. Our algorithm could be used recursively to realize h-relations in O(h+ log log p)
steps on the new machine. Clearly, this recursion could be carried out to any constant
depth.

REFERENCES

[AM88] R. J. Anderson and G. L. Miller, Optical communication for pointer based algo-
rithms, Technical Report CRI 88-14, Computer Science Department, University
of Southern California, Los Angeles, 1988.

[Bol88] B. Bollobás, Martingales, isoperimetric inequalities and random graphs, in Com-
binatorics, A. Hajnal, L. Lovász, and V. T. Sós, eds., Colloq. Math. Soc. János
Bolyai 52, North–Holland, Amsterdam, 1988, pp. 113–139.

[CDHR89] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New simulations between
CRCW PRAMs, in Proc. Foundations of Computation Theory 7, Lecture Notes
in Comput. Sci. 380, Springer-Verlag, Berlin, 1989, pp. 95–104.

[Col88] R. Cole, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770–785.
[Dow91] P. W. Dowd, High performance interprocessor communication through optical wave-

length division multiple access channels, in Proc. 18th ACM International Sym-
posium on Computer Architecture, ACM, New York, 1991, pp. 96–105.

[Esh88] M. M. Eshaghian, Parallel computing with optical interconnects, Ph.D. thesis, Uni-
versity of Southern California, Los Angeles, 1988.

[Esh91] M. M. Eshaghian, Parallel algorithms for image processing on OMC, IEEE
Trans. Comput., 40 (1991), pp. 827–833.

[EK88] M. M. Eshaghian and V. K. P. Kumar, Optical arrays for parallel processing, in
Proc. 2nd International Symposium on Parallel Processing, IEEE Press, Piscat-
away, NJ, 1988, pp. 58–71.

[GT92] M. Geréb-Graus and T. Tsantilas, Efficient optical communication in parallel com-
puters, in Proc. 4th ACM Symposium on Parallel Algorithms and Architectures,

DOUBLY LOGARITHMIC OPTICAL COMMUNICATION 1119

ACM, New York, 1992, pp. 41–48.
[GV92] A. V. Gerbessiotis and L. G. Valiant, Direct bulk-synchronous parallel algorithms,

in Proc. 3rd Scandinavian Workshop on Algorithm Theory, Lecture Notes in Com-
put. Sci. 621, Springer-Verlag, Berlin, 1992, pp. 1–18.

[GM91] J. Gil and Y. Matias, Fast hashing on a PRAM, in Proc. 2nd ACM–SIAM Sympo-
sium on discrete algorithms, SIAM, Philadelphia, 1991, pp. 271–280.

[MV91] Y. Matias and U. Vishkin, Converting high probability into nearly-constant time:
With applications to parallel hashing, in Proc. 23rd ACM Symposium on Theory
of Computing, ACM, New York, 1991, pp. 307–316.

[McC93] W. F. McColl, General purpose parallel computing, in Lectures on Parallel Computa-
tion, in Proc. 1991 ALCOM Spring School on Parallel Computation, A. M. Gib-
bons and P. Spirikas, eds., Cambridge University Press, Cambridge, UK, 1993,
pp. 337–391.

[McD89] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics,
London Math. Soc. Lecture Notes Ser. 141, Cambridge University Press, Cam-
bridge, UK, 1989, pp. 148–188.

[MP75] D. E. Muller and F. P. Preparata, Bounds to complexities of networks for sorting
and for switching, J. Assoc. Comput. Mach., 22 (1975), pp. 195–201.

[Rao92] S. B. Rao, Properties of an interconnection architecture based on wavelength divi-
sion multiplexing, Technical Report TR-92-009-3–0054-2, NEC Research Insti-
tute, Princeton, NJ, 1992.

[Val90] L. G. Valiant, General purpose parallel architectures, in Handbook of Theoretical
Computer Science, J. van Leeuwen, ed., Elsevier, New York, 1990, Chapter 18
(see especially p. 967).

[Wit81] L. D. Wittie, Communication structures for large networks of microcomputers, IEEE
Trans. Comput., C-30 (1981), pp. 264–273.

THE ROBOT LOCALIZATION PROBLEM∗

LEONIDAS J. GUIBAS† , RAJEEV MOTWANI‡ , AND PRABHAKAR RAGHAVAN§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1120–1138, August 1997 010

Abstract. We consider the following problem: given a simple polygon P and a star-shaped
polygon V, find a point (or the set of points) in P from which the portion of P that is visible
is translation-congruent to V. The problem arises in the localization of robots equipped with a
range finder and a compass—P is a map of a known environment, V is the portion visible from
the robot’s position, and the robot must use this information to determine its position in the map.
We give a scheme that preprocesses P so that any subsequent query V is answered in optimal time
O(m+logn+A), where m and n are the number of vertices in V and P and A is the number of points
in P that are valid answers (the output size). Our technique uses O(n5) space and preprocessing
in the worst case; within certain limits, we can trade off smoothly between the query time and the
preprocessing time and space. In the process of solving this problem, we also devise a data structure
for output-sensitive determination of the visibility polygon of a query point inside a polygon P. We
then consider a variant of the localization problem in which there is a maximum distance to which
the robot can “see”—this is motivated by practical considerations, and we outline a similar solution
for this case. We finally show that a single localization query V can be answered in time O(mn) with
no preprocessing.

Key words. robotics, localization, computational geometry, geometric algorithms

AMS subject classifications. 65Y25, 68U05

PII. S0097539792233257

1. Introduction. We consider the following problem: A robot is at an unknown
position in an environment for which it has a map. It “looks” about its position, and
based on these observations, it must infer the place (or set of places) in the map where
it could be located. This is known as the localization problem in robotics [8, 22].

Aside from being an interesting and fundamental geometric problem, this task
has several practical applications. As described in [8], localization eliminates the
need for complex position-guidance equipment to be built into factories and buildings.
Unmanned spacecraft require localization for the following reason [18, 20]: A rover
lands on Mars, a map of whose terrain is available to it. It looks about its position and
then infers its exact position on the Martian surface. Another application comes from
robots that follow a planned path through a scene: the control systems that guide
such a robot along the planned path gradually accumulate errors due to mechanical
drift. Thus it is desirable to use localization from time to time to verify the actual
position of the robot in the map, and apply corrections as necessary to return it to
the planned path [22].

We assume that the robot is in an environment such as an office or factory, with
flat vertical walls and a flat floor—thus the problem we address is for polygonal
workspaces in two dimensions. The subject of this paper is localization using a range

∗ Received by the editors June 24, 1992; accepted for publication (in revised form) August 23,
1995.

http://www.siam.org/journals/sicomp/26-4/23325.html
† Department of Computer Science, Stanford University, Stanford, CA 94305-2140 (guibas@

cs.stanford.edu). The research of this author was supported by NSF grants CCR-9215219 and
IRI− 9306544, the Stanford OTL fund, the SIMA Stanford Consortium, and the Mitsubishi Corpo-
ration.
‡ Department of Computer Science, Stanford University, Stanford, CA 94305-2140. (ranjeev@cs.

stanford.edu). The research of this author was supported by an Alfred P. Sloan Research Fellowship,
an IBM Faculty Development Award, an OTL grant, NSF grant CCR-9010517, and NSF Young
Investigator Award CCR-9357849, with matching funds from IBM, the Schlumberger Foundation,
the Shell Foundation, and the Xerox Corporation.
§ IBM Almaden Research Center/K53, 650 Harry Road, San Jose, CA 95120 (pragh@almaden.

ibm.com).

1120

THE ROBOT LOCALIZATION PROBLEM 1121

finder [19], a device commonly used in real robots [8, 9, 10, 19]. A range finder is
a device that emanates a beam (laser or sonic) and determines the distance to the
first point of contact with any object in that direction. This is similar to the finger
probe model [7, 21] studied in computational geometry. In practice, a robot sends out
a series of beams spaced at small angular intervals about its position, measuring the
distance to points at each of these angles. The discrete “points of contact” are then
fitted together to obtain a visibility polygon V with m vertices (in general, the number
of beam probes will be much larger than m).

The robot has a map of its environment: a polygon P (possibly containing holes)
having n vertices. We assume that the robot has a compass: its representations of P
and V have a common reference direction (say north). We wish to solve the following
problem: given P and V, determine all of the points p ∈ P such that the visibility
polygon of p is translation-congruent to V; see Figure 1.

Fig. 1. The setting for our robot localization problem.

Because the map is likely to be fixed for a given environment, our main interest
is in preprocessing the map so that subsequent queries can be answered quickly. Our
main contribution is a scheme for preprocessing a simple polygon P so that any query
V can be answered in time O(m+ logn+ A), where A is the size of the output (the
number of places in P at which the visibility polygon would match V); this query
time is the best possible. Our preprocessing takes O(n5) time and space (section 5).
We also exhibit a smooth tradeoff between the query time and the preprocessing cost,
within certain limits. In these bounds, n5 is really n4r, where r is the number of
reflex vertices in P. Better bounds hold for polygons where the number of mutually
visible vertices is smaller than O(n2) and/or which do not have collinear sides.

The development of our scheme involves the study of a fundamental property of
simple polygons—the visibility cell decomposition—that has several other applications.
Sections 2, 3, and 4 study some properties of this decomposition. An interesting
application of these ideas is to the construction of a data structure for the output-
sensitive determination of the visibility polygon of a query point (see section 6.4).
This requires a query time of O(logn + m) using O(n2r) preprocessing and space,
where m is the size of the visibility polygon. Once again, we can trade off between
the query time and the space requirement.

In section 6, we consider variants of the basic problem. We first describe the
effect of holes in the map polygon. Next, we consider a variant motivated by a
property of some range finders—that a distance measurement is obtained only if
there is a wall within a certain maximum distance D, and otherwise no reading is
obtained (indicating only that the distance to the nearest wall is greater than D
in that direction). We show how our approach can be modified to deal with this
feature without increasing the query time, but with additional preprocessing. We

1122 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

then address the following question: Given no preprocessing, what is the complexity
of answering a single query? We provide an algorithm running in time O(mn) by
applying results on ray shooting.

Independently of our work, Bose, Lubiw, and Munro [2] obtained some of the
results presented here. In particular, they provided a scheme for preprocessing a
simple polygon so as to compute the vertices of the polygon that are visible from a
query point in time O(logn + m) time. The machinery developed for this purpose
includes some of the visibility cell decomposition structure theorems described below.

1.1. Overview of our scheme. We now give a brief overview of our scheme
to motivate the study of the visibility cell decomposition in sections 2, 3, and 4. We
approach the problem by partitioning the map polygon into regions such that within
a region, the visibility polygon of any point is roughly the same; in section 2, we call
this rough view a skeleton. An intuitive definition of the skeleton of V is that it is a
contraction of V so that the skeleton boundary contains exactly those vertices from V
that can be certified to be vertices of P. We provide a data structure which quickly
identifies all of the regions that have the same skeleton as the query V. We then check
the candidate regions to see if they contain any points that have exactly the same
view as V. Some difficulties that arise are the following:

(a) Due to occlusions by reflex vertices, an edge of the map polygon may have
neither or only one of its endpoints visible from a point inside the polygon. Our
characterization of a skeleton must cater to these incomplete edges.

(b) If the line segments forming several edges of the polygon are collinear, it is
possible that a “window” in the map allows the robot to see only an interior portion of
one of these edges. Further, it cannot easily identify which of these collinear edges it
sees. The problem is compounded when there are several such windows and collections
of collinear edges. In fact, this is one source of complexity in our preprocessing. In
the case where the map P has no collinear edges, the preprocessing space can be
improved to O(n3r); see section 5.

(c) There can be regions that match the skeleton but contain no point whose
visibility polygon is congruent to V . Thus we must still pinpoint those visibility
regions (from all of the ones that share this skeleton) that contain a point whose
visibility polygon exactly matches V. We must do so in time proportional to A, so we
cannot check each candidate region individually. We reduce this problem to a form
of point location in a planar subdivision.

2. Visibility polygons and skeletons. Let P denote a polygon with n sides.
We will refer to P as the map polygon. Let P denote the boundary of P. We first
assume that P has no holes, deferring this general case to section 6.1. Henceforth, all
polygons will be assumed to be oriented with respect to a common reference direction.

Two points in P are visible to each other if the straight line joining them meets
P only at these endpoints. The visibility polygon V(p) for any point p ∈ P is the
polygon consisting of all points in P that are visible from p. Assume that the number
of vertices in V(p) is m.

Let V (p) denote the boundary of V(p). Assume that p does not lie on P , and
hence it does not lie on V (p). In general, there will be edges and vertices in V (p)
which do not coincide with edges and vertices in P . To deal with such cases, we
define the notion of spurious edges and vertices. Informally, an edge or a vertex is
nonspurious if the view from p provides a guarantee that this edge or vertex is on the
boundary of P.

Definition 1. An edge of V (p) is spurious if it is collinear with p.

THE ROBOT LOCALIZATION PROBLEM 1123

Fig. 2. Visibility polygons and their skeletons.

Definition 2. A vertex v ∈ V (p) is spurious if it lies on a spurious edge (u, v) ∈
V (p) and the other endpoint u is closer to p.

Some of these notions are illustrated in Figure 2.

This definition may label as spurious an edge (or a vertex) which actually lies
on P . This happens only if that edge is collinear with p. In that case, the closer of
the two endpoints of the edge may be visible from p, but it will then block the view
of any other point on the edge. Thus, although the edge (u, v) is in V (p), the robot
sitting at point p cannot infer this from its localized view. Similarly, the definition
of a spurious vertex assumes that if a ray from p goes through vertices u and v of P ,
in that order, then u is an obstacle to the visibility of v from p. As the next lemma
shows, the nonspurious components of V (p) are invariant under any modifications to
P \ V(p). The proof is an easy consequence of the above definitions.

Lemma 2.1. An edge e or a vertex v in V is nonspurious if and only for each
choice of P and p ∈ P such that V(p) = V , e and v lie on P .

A reflex vertex in P is a vertex which subtends an angle greater than 1800 inside
P. It is the existence of reflex vertices which creates obstacles to viewing the points
inside P. Note that a spurious vertex can never be a reflex vertex in V (p).

Definition 3. A reflex vertex v in V (p) is a blocking vertex if at least one edge
incident on v in P does not intersect V(p).

It is now easy to establish the following lemma.

Lemma 2.2. If a vertex in V (p) is a nonblocking reflex vertex, then both its
incident edges in V (p) must be nonspurious.

The next lemma follows from the observation that each spurious edge can be
extended to pass through p. Thus no two spurious edges of V (p) can meet each other
except at p, and by assumption p does not lie on the boundary of V(p).

1124 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

Lemma 2.3. No two spurious edges can be adjacent in V (p).
For each spurious edge, the endpoint closer to p is a blocking reflex vertex and

the other endpoint is a spurious vertex.
Lemma 2.4. Let e ∈ V (p) be a nonspurious edge and e′ be the edge of P on which

it lies. Then e is the only portion of e′ visible from p and the edge e is of one of the
following three types:

• full edge: the endpoints of e are the same as those of e′;
• half-edge: one endpoint of e is spurious and the other is an endpoint of e′;
• partial edge: both endpoints of e are spurious vertices.

We now conclude that the spurious vertices and edges in V (p) can occur only
in certain specific patterns. Consider a clockwise traversal of V (p) starting with
an arbitrary blocking (and therefore reflex) vertex. (If no such vertex exists, then
V(p) = P, trivializing the whole problem, so from now on we assume the existence
of such a vertex.) The sequence of vertices seen in this traversal can be decomposed
into chains of consecutive nonspurious vertices alternating with chains of consecutive
spurious vertices; call this the vertex chain decomposition of V (p).

Lemma 2.5. The vertex chain decomposition of V (p) has the following proper-
ties:

1. A nonspurious chain can contain blocking vertices only as its endpoints.
2. A spurious chain is of length at most 2.
3. Consider a spurious chain with only one vertex v. Let x be the last vertex of

the preceding chain and y be the first vertex of the succeeding chain. Then
one of x and y is a blocking vertex joined to v by a spurious edge, while the
other is nonblocking and is joined to v by a half-edge.

4. Consider a spurious chain with two vertices u and v, in that order. Let x be
the last vertex of the preceding chain and y be the first vertex of the succeeding
chain. Then both x and y are blocking vertices with spurious edges going to
u and v, respectively, and the edge (u, v) is a partial edge.

Fix a canonical blocking reflex vertex vo of V (p) as the origin with reference to
which we specify all other points. For example, vo can be the leftmost blocking reflex
vertex of V (p). Let V ∗(p) be the polygon induced by the nonspurious vertices of V (p)
ordered by a clockwise traversal of starting at vo. In V ∗(p), if two adjacent vertices
are from the same chain in V (p), then their edge is the same as in V (p), and this
must be a nonspurious edge. Otherwise, the two vertices are endpoints of neighboring
chains in V (p) and their edge in V ∗(p) is a newly introduced artificial edge.

Every artificial edge e′ of V ∗(p) corresponds to some half or partial edge e of V (p).
The edge e is one of the edges of V (p) which connect the two chains whose endpoints
are the vertices of e′. We will label each artificial edge e′ with a characterization of
the line on which the corresponding edge e lies. This line characterization will be the
coefficients of the linear equation that defines the line containing e, with the origin
at vo.

Definition 4. The skeleton V ∗(p) of a visibility polygon V(p) is the polygon
induced by the nonspurious vertices of V (p). Each artificial edge of V ∗(p) is labeled
with the line equation and the type of the corresponding half- or partial edge.

The skeleton of a visibility polygon can also be looked upon as a polygon induced
by all of the full edges in V (p) such that the chains of edges are tied together by
artificial edges. It is important to keep in mind that a skeleton is a labeled polygon
as described above.

Definition 5. The embedding of a skeleton V ∗(p) is a 1–1 mapping h from the
vertices in the skeleton into the vertices of P such that the following hold:

THE ROBOT LOCALIZATION PROBLEM 1125

Fig. 3. A bad case for localization.

1. For each vertex v in V ∗(p), the location of h(v) relative to h(vo) is identical
to the location of v relative to vo in V (p).

2. There is a full edge between vertices u and v in V ∗(p) if and only if there is
an edge of P with h(u) and h(v) as endpoints.

3. Let l′ be the line labeling an artificial edge between vertices u and v in V ∗(p).
Then there is an edge e of P lying on a line l whose equation (with h(vo) as
origin) is that of l′, and there is a point of e visible from both u and v.

Does V ∗(p) have enough information to uniquely determine the point p? Unfor-
tunately not: the information about the endpoints of a half- or partial edge e in V (p)
is absent from the labels of the corresponding edge e′ in V ∗(p). (The reason for this
imprecise labeling will become clear later when we describe our search mechanism.)
Thus a single embedding may have several candidate edges in P for the edge e. These
candidate edges must all be collinear. For instance, in Figure 2, the partial edge on
the left visible from p and that visible from q are collinear. Note that the skeletons
of p and q come out to be the same.

Let r denote the number of reflex vertices in P.

Theorem 2.6. Given a visibility polygon V(p), its skeleton V ∗(p) has at most r
embeddings in P and this bound is best possible.

Proof. Let us label any embedding h of V ∗(p) in P by the vertex h(vo), where vo
is the origin vertex in V ∗(p). We claim that there can be at most one embedding with
the label v for any vertex v in P . This follows from the observation that the location
of every vertex in V ∗(p) is fixed with reference to the origin vertex. Having specified
the location of the origin as being at v immediately fixes the location of every other
vertex and thus uniquely determines the embedding h itself.

Since vo is a reflex vertex, there are at most r distinct labels for the embeddings
of V ∗(p). It follows that number of distinct embeddings cannot exceed r.

To see that this bound is tight to within constant factors, consider the polygon
P and the visibility polygon V(p) in Figure 3. It is clear that the origin of V ∗(p) can

1126 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

be mapped to any of the vertices marked with o in P . Clearly, there are Θ(r) such
embeddings.

The location of the point p is fixed with reference to the origin vertex vo of
V ∗(p). Thus the only possible locations of the point p are the (at most r) locations
corresponding to the different embeddings of the skeleton. Notice that an embedding
of V ∗(p) may not correspond to an embedding of V (p), although the converse is always
true.

Corollary 2.7. The number of solutions in P to a localization query V is at
most r.

3. Visibility cell decomposition. We now describe the subdivision of the map
polygon into visibility cells such that the points in each cell have essentially the same
visibility polygon. The subdivision is created by introducing lines into the interior
of the map polygon. Each line partitions P into two regions, one where a vertex v
is not visible due to the obstruction created by vertex u and another region where
u cannot block the view of v. Each such line starts at a reflex vertex u and ends at
the boundary of P. It is collinear with a vertex v which is either visible from u or
adjacent to it in P . This line is said to be emanating from v and anchored at u.

It is convenient to give each of the interior lines a direction and consider the
interior of the map polygon to be dissected by a collection of such rays. A ray
determined by vertex v as emanating vertex and vertex u as anchor vertex proceeds
from u into P away from v. It forms the boundary between regions that can locally
see v and others that cannot. We will classify this ray as a left or right ray for v
according to whether the obstruction defining the anchor u is to the left or the right
of the ray from the point of view of an observer sitting on v and looking along the
ray. Note again that a ray starts at the anchor vertex and proceeds away from the
emanating vertex.

Theorem 3.1. In the visibility cell decomposition of the map polygon P,

1. the number of lines introduced in the interior of P is O(nr), and this bound
is the best possible;

2. each cell in the decomposition is a convex polygonal region inside P.

Proof. It easy to see that there are at most O(nr) interior lines in the decompo-
sition since each interior line is generated by a pair of anchor and emanating vertices,
and each pair of vertices generates at most two interior lines. It is also quite easy to
construct examples where the upper bound is achieved.

For the second part, let C be a visibility cell which is nonconvex and let w be a
reflex vertex on the boundary of C. We first claim that w cannot be a vertex from the
boundary of P. Otherwise, the edges incident on w would be extended into interior
lines, and these interior lines would subdivide C. On the other hand, no interior
vertex can be a reflex vertex for its bordering visibility cells since it is formed by the
intersection of two interior lines which start and end at the polygon boundary. This
gives a contradiction.

Since we can have Θ(nr) lines forming the cell decomposition, an obvious bound
on the total complexity of the cells in the decomposition is O(n2r2). However, the
structure of our problem can be exploited to obtain the following tighter bound.

Theorem 3.2. The number of visibility cells in a given map polygon, as well as
their total complexity, is O(n2r), and this bound is best possible.

Proof. We will show that the number of subdivision vertices is O(n2r). There are
a total of O(nr) rays, and each ray gives rise to one boundary vertex only. Therefore,
it suffices to count nonboundary vertices for the asymptotic bound in the theorem.

THE ROBOT LOCALIZATION PROBLEM 1127

Fig. 4. A type 4 vertex of the visibility decomposition.

The simplest proof of this theorem consists of considering each of these O(nr)
rays separately. Let R be such a ray in the subdivision, anchored at A and emanating
from a. Suppose we walk along this ray, starting at A and going away from a. During
this walk, there can be at most 2n changes in the set of visible vertices. This is
because in a simple polygon, once a vertex disappears from view when we walk in
the polygon along a straight line, it will never become visible again (otherwise, the
occluder in between represents a hole in the polygon). This implies that the ray R
has O(n) vertices on it. Since the number of rays is O(nr), we get the desired bound.

However, we now present a more involved proof whose structural aspects will be
useful in arguments later on.

Consider a vertex of the subdivision which does not lie on the boundary P . There
must be two rays whose intersection gives rise to this vertex v. Let the first ray
emanate from the vertex a with the anchor vertex A and the second ray emanate
from b with the anchor B. Consider the two lines containing the given rays; they
divide the plane into four “quadrants.” Notice that if both rays are of the same
orientation (i.e., both left or both right), then the corresponding anchors must lie in
adjacent quadrants. In the case where the two rays have different orientations, the
corresponding anchors lie in either the same quadrant or opposite quadrants.

Label each vertex of the subdivision that does not lie on the boundary of P by
the pair of vertices that the two rays determining the vertex emanate from, as well as
by the two bits specifying the relative placement of the two anchors in the quadrants
defined above. The two bits classify the subdivision vertices into four types. Type 1
vertices are determined by two left rays and have the anchors in adjacent quadrants;
type 2 vertices are analogous except that the rays are both of the right orientation.
Type 3 vertices have the anchors in the same quadrant, while type 4 vertices have the
anchors in opposite quadrants. Figure 4 illustrates a type 4 vertex.

The hardest case to deal with is that of the type 4 vertices—when the two anchors
lie in opposite quadrants. Consider a type 4 vertex v determined by two rays, say a
ray from a with right anchor A and a ray from b with left anchor B. Suppose we take
the portion of the boundary of P from A to B not containing a or b and replace it
with the interior segments Av and vB. We have not eliminated any vertices of our
subdivision with the same label as v because in the eliminated part of P , at least one
of a of b is not visible. In the remaining part of P, there cannot be any other type 4
vertex labeled by a and b which uses either A or B as an anchor for the two rays.
Thus there can be at most r vertices with this label. Since the total number of labels

1128 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

Fig. 5. Labels with two left anchors are unique.

Fig. 6. A polygon with a large visibility cell decomposition.

is O(n2), we have the desired bound.

There are three other cases to consider. In each case, a simple topological ar-
gument shows that only a unique vertex can possess that label. See, for example,
Figure 5, which shows the situation for two left rays. Thus there can be a total of
O(n2r) interior vertices of our subdivision, and so the number of cells is similarly
bounded.

For a lower bound, consider a polygon P that has Ω(r) small bays (each say of
three sides) lying roughly along a straight line and facing a convex chain of Ω(n) sides
that is visible from all of them; see Figure 6. Then within each bay, we can get Θ(n2)
regions corresponding to the visible subchain of the convex chain. This gives a total
of Θ(n2r) subdivision vertices in total.

THE ROBOT LOCALIZATION PROBLEM 1129

4. Visibility from a cell. We now examine the visibility polygons for all of the
points in a particular cell and extract some common features from these views. We
must be careful about the assignment of the points on the interior lines to the cells in
the decomposition. Consider an interior ray emanating from vertex u and anchored
at vertex v. The cells bordering this ray are divided into classes: those which can see
u and those which cannot. The boundary edges determined by this ray are assumed
to be a part of the latter kind of cells only. Using this rule, each interior vertex gets
assigned to a unique cell as well.

The following theorem ties together the notions of a skeleton and a visibility cell.
Theorem 4.1. For any visibility cell C and points p, q ∈ C, V ∗(p) = V ∗(q).
Proof. Consider the straight line joining p and q; call this line l. Clearly, l is

totally contained in C, even when p and q are boundary points. Further, no interior
line of the decomposition intersects l. Suppose s is the point on l which is the closest
to q such that it has a different visibility skeleton than V ∗(q).

First, consider the case where V ∗(s) and V ∗(q) do not have the same underlying
polygon, i.e., they have a different set of vertices. Assume without loss of generality
that the difference between the two skeletons is that a vertex of P , say x, is visible
from s but is not visible from q. Then there must exist a reflex vertex y ∈ V ∗(q)
such that it is an obstruction for q viewing x. Then the ray emanating from x and
anchored at y must intersect l between s and q, giving a contradiction. Therefore,
the underlying polygon for the skeleton is invariant over the entire cell.

Any difference in the skeletons V ∗(q) and V ∗(s) must then be in the labeling of
the edges. It is fairly easy to verify that the locations of full edges and artificial edges
must be the same in both cases, as must be the labelings of the artificial edges as
corresponding to either half- or partial edges. The difference, if any, must be in the
line characterizations that label some artificial edge. In that case, there must exist
two edges of P , say es and eq, such that s can see some portion of es but cannot see
eq at all, and q can see some portion of eq but cannot see es at all. We then conclude
that there is some point between s and q on l which sees a vertex not visible from
q. This contradicts the assumption that s was the closest point of l to q which has a
different skeleton.

Thus there can be no point s on l which has different visibility skeleton
from q.

This theorem allows us to make the following definition.
Definition 6. For any visibility cell C, the visibility skeleton of the cell V ∗(C)

is the common visibility skeleton for all points contained in C.
The exact choice of an edge e of P for any half- or partial edge is also invariant

over the cell, although the portion of e that can be seen varies from point to point
in the cell. However, Theorem 4.1 does not guarantee that if two points have the
same visibility skeleton, then they are in the same visibility cell. In fact, a visibility
skeleton can have r embeddings and could have several distinct visibility cells in its
kernel, all with the same skeleton (as was already discussed; see Figure 2). This is
because there could be several collinear edges of P that are all candidates for being
the half- or partial edge corresponding to a particular artificial edge of the skeleton.
If we assume that P contains no collinear edges, then there can be only one relevant
visibility cell in the kernel of each embedding of the skeleton.

Definition 7. The binary relation “≡” over the visibility cells in the decompo-
sition is such that for any two cells, C1 ≡ C2 if and only if V ∗(C1) = V ∗(C2).

It is easy to verify that this is an equivalence relation over the cells such that
each equivalence class of cells is associated with a unique visibility skeleton. Let Ei

1130 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

for 1 ≤ i ≤ t be the equivalence classes for P, and denote by V ∗i the visibility skeleton
of the cells in the ith equivalence class. Also, let ei denote the total size of all visibility
cells in Ei.

Before we embark on explaining our searching data structures, we would like to
characterize the complexity of a visibility cell in terms of the complexity of its visibility
skeleton. Recall that each side of a cell arises from a ray anchored at an endpoint of
an artificial edge.

Theorem 4.2. Let C be a visibility cell whose visibility skeleton has s artificial
edges. Then the complexity of C is O(s).

Proof. Each side of the polygon C is determined by a ray anchored at one of the
blocking reflex vertices. Each such blocking vertex can have at most two rays which
bound C. Since the number of blocking reflex vertices is O(s), the result follows.

5. Data structures and search algorithms. We now describe the construc-
tion of the data structures and algorithms for query processing. In the first step of
preprocessing, we compute the visibility cell decomposition of the map polygon and
the visibility skeleton for each cell. Each skeleton polygon of size s is represented as an
O(s)-dimensional real vector. These vectors are stored in a multidimensional search
tree, each of whose leaves indexes an equivalence class of cells with the same skeleton.
Given V(p), we extract the visibility skeleton V ∗(p) and query this data structure to
identify the equivalence class of cells where p must be located. The last and most
nontrivial stage of the search is concerned with identifying the possible locations of p
within the equivalence class. This reduces to a search problem in a planar subdivision.

5.1. Computing cells and their skeletons. The visibility cells and their skele-
tons are computed by the following steps: (i) for each reflex vertex, identify the vertices
of P that are visible from it—each such vertex can give rise to a line in the arrange-
ment with one endpoint at that reflex vertex; (ii) compute the arrangement of all of
these lines inside P; (iii) compute for each cell in the arrangement the visibility poly-
gon (and hence the skeleton). This last computation can be done in an incremental
fashion as we walk along a line of the arrangement; the visibility polygon incurs only
one change from one vertex on a line to the next vertex. Let C denote the number of
visibility cells and N denote the number of visibility cell vertices; note that C and N
are always O(n2r).

Theorem 5.1. The preprocessing time and space for computing the visibility cell
decomposition are O(nr logn+ nN).

Proof. By standard results in ray shooting in simple polygons [15] and the con-
struction of arrangements via sweepline methods [11], steps (i) and (ii) above can
together be completed in O(nr logn+N logn) time and O(nr+N) space. To bound
the complexity of step (iii), we note that the visibility skeletons of adjacent regions
differ in at most a constant number of contiguous edges. Thus we may generate the C
visibility skeletons by the following procedure that walks along the lines forming the
arrangement. We assume for simplicity of description that there are no degeneracies
in the arrangement, i.e., at most two lines intersect at any point of the arrangement
except at vertices of P. Assume that every vertex of the arrangement that is not
a vertex of P is labeled by the emanating and anchor vertices of the two lines that
intersect to form that vertex.

We first compute the visibility polygons of the r reflex vertices in time O(nr) [14].
Call this set ρ.

We begin at the (reflex) anchor vertex of the first line (call it `) in the arrange-
ment; given ρ, we can in time O(n) obtain the visibility skeleton of the cell of the

THE ROBOT LOCALIZATION PROBLEM 1131

arrangement that contains ` and its anchor and lies to the right of `. We then walk
on the arrangement along `; at each new vertex w of the arrangement, a vertex v of
P either becomes visible or invisible. Indeed, v is the emanating vertex of the other
line that intersects ` at w. From this we can in O(n) time and space read off and
write down the visibility skeleton of the region bounded by line ` and vertex w and
lying to the right of `. We repeat this for all the lines forming the arrangement, for a
total of O(Nn) time and space.

By combining the complexities of all three steps, the result follows.
Let Ri, 1 ≤ i ≤ C, be the regions/cells in the subdivision. Define ri to be the

complexity of Ri, mi to be the complexity of the V ∗(Ri), and si to be the number of
blocking vertices in these skeletons. Note that ri is O(si) and that si ≤ mi.

5.2. Locating the equivalence class. Assume that we have obtained a subdi-
vision of P into C visibility cells and have computed a visibility polygon for one point
in each of the cells. We start by showing how to compute the equivalence classes.

Given a visibility polygon of complexity m, the corresponding skeleton can be
computed in O(m) time. We will encode each of the C skeletons as an M -dimensional
real vector, where M = O(m). The encoding fixes an origin of the skeleton at a
canonical reflex vertex (as described earlier) and specifies the position of every other
vertex relative to the origin using 2m real numbers. Further, we store the edge labels
using another 2m components. The ordering of the vertices and edges in the skeleton
is specified implicitly by the ordering of the components of the encoding. This entire
process takes O(m) time.

A crucial property of the representation is that two cells have the same skeleton
if and only if their representations are identical. This motivated the definition of a
skeleton and is vital to constructing and searching the equivalence classes.

We first partition the cells according to the number of vertices in their visibility
skeletons. Now consider the Ts cells whose skeletons have size s. We construct a
multidimensional search tree [17] for the vectors corresponding to the skeleton repre-
sentations of these cells. These search trees can be constructed in O(sTs + Ts log Ts)
time and space and support exact match queries in time O(s + log Ts). The various
skeletons whose vector representations are identical will reach the same leaf of this
search tree. Thus the leaves are in 1–1 correspondence with the equivalence classes
of cells in this collection. (In practice, it would be more efficient to recompute the
equivalence search trees using one representative from each equivalence class, after
having computed the equivalence classes as above.)

We have at most n different search trees corresponding to the different values of
s. Given a query V, we can easily determine which tree to search and thence the
correct equivalence class.

Theorem 5.2. The t equivalence classes, Ei, can be computed in O(nN) time
using the equivalence search trees. The n search trees can all be constructed in O(nN)
time and space, and answer queries in time O(s+log n), where s is the query skeleton
size.

5.3. Searching within an equivalence class. It remains to specify how we
search within an equivalence class of visibility cells for all the possible locations of the
query point p. We will have one data structure for each of the at most n equivalence
classes, associated with the corresponding leaf of the equivalence tree.

We now fix our attention on any one equivalence class Ei. Let V ∗ be the skeleton
corresponding to Ei. Each cell in Ei can be identified with a distinct embedding of V ∗.
The cell must lie in the kernel of that embedding. For each embedding, there could be

1132 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

several cells in the kernel, but these must be disjoint convex polygonal regions. (Recall
that there will be only one cell per embedding if P contains no collinear sides.) Let
the class Ei consist of cells from k different embeddings. The complexity of any one
cell in Ei is at most m, the size of V(p). The following theorem bounds the overall
complexity ei of all the cells in Ei.

Theorem 5.3. The total number of cells in any equivalence class Ei, as well as
their total complexity ei, is O(n2). This bound is best possible.

It turns out to be much easier to prove a stronger version of Theorem 5.3.
Definition 8. The class Cm of cells in the decomposition consists of all cells

whose skeletons contain m nonspurious vertices.
We will show that the total complexity of the cells in the class Cm is O(n2). This

implies that the total complexity of the cells in an equivalence class is also O(n2) since
these cells must all belong to Cm for some m.

Theorem 5.4. The overall complexity of the cells in Cm is O(n2).
Proof. The longer proof of Theorem 3.2 will prove useful here. Recall that in that

proof each vertex of the subdivision was given a label determined by the two rays on
which it lies. The label consists of the names of the two emanating map vertices, as
well as two bits specifying the layout of the anchor vertices with respect to these rays.
There are four types of vertices corresponding to the four possible layouts. There
could be as many as n vertices of type 4 which carry the label of a particular pair of
map vertices. It is the latter kind of vertices which can be large in number. Overall,
there are only O(n2) vertices which are of types 1–3 or lie on the boundary of the
map polygon.

We must now do a careful assignment of the edges and vertices of the subdivision
to the visibility cell. The rays determining a vertex create four quadrants, one of which
is the region where the two emanating vertices are blocked from view by the anchors.
The vertex is assigned to the incident cell which lies in this quadrant. Similarly, each
edge lies on a ray on one side of which the emanating vertex is hidden from view by
the anchor vertex. The edge is assigned to the adjacent cell which lies on that side of
the ray. Thus each edge/vertex is assigned to only one cell, but it still bounds all its
neighboring cells.

This assignment of edges and vertices is motivated by our definition of visibility.
Consider a ray emanating from v and anchored at w. From the view of any point p
on this ray, the vertex v is not visible. Thus in the skeleton V ∗(p), there will be a
spurious edge from w to v, and v will be considered a spurious vertex.

Now consider the edges which bound the cells in Cm. Some of these edges could
be portions of the boundary of the map polygon. There are at most nr rays in
the subdivision, and each ray will create one additional subdivision vertex on the
boundary P . The number of subdivision edges lying on P cannot exceed the number
of subdivision vertices on P , and these are at most nr+ n in number. We will ignore
all such edges from now on since our goal is to prove a bound of O(n2).

Consider any particular ray R emanating at the vertex v and anchored at the
vertex w. This ray starts at w and proceeds away from v until it hits the boundary P .
We will assume that the ray is directed away from v. There may be several subdivision
vertices on the ray, besides its endpoints, and this will divide R into a sequence of
edges which bound some cells. We will think of these edges as open intervals separated
by the vertices on R.

Assume that from the point of view of an observer sitting at v and looking in the
direction of the ray, the anchor w lies to the left. We will argue only for the case of
such “leftist” rays since the case of the “rightist” rays is similar. Each edge on the

THE ROBOT LOCALIZATION PROBLEM 1133

ray will be assigned to the cell lying to its left. However, we will have to count each
such edge as contributing to the complexity of both the cell to its right and the cell
to its left.

As we trace along the ray from w to the boundary of P , we will traverse the edges
on the ray in order. If the cell bounded by an edge (i.e., the cell to its right) is in
Cm, then the edge will contribute to the complexity of Cm. Consider the vertices on
this ray. Think of the ray as a vertical line which is directed towards the north. Each
vertex x on this ray is caused by another ray, call it R′, whose anchor may lie to the
left or right of R—and this does not really matter. The anchor for R′ may lie below
it; in this case the vertex is called an incrementing vertex. This means that as we
cross v, a new vertex comes into view, and this vertex is the emanating vertex for R′.
Similarly, a vertex is called decrementing if its anchor lies above R′. Upon crossing
such a vertex, the emanating vertex falls out of view. The key observation is that a
type 4 vertex must be a decrementing vertex, and moreover its anchor must lie to the
right of R.

Consider the sequence of edges we see that bound cells (to the right) which are
in Cm. Note that since all of these edges are not assigned to the cells to the right,
the cells will have v in their skeleton. Thus any two consecutive Cm edges will be
separated by a collection of vertices (including their endpoints) which contains an
equal number of incrementing and decrementing vertices. We will label each Cm edge
with the nearest incrementing vertex which lies below it. Since no two Cm edges are
adjacent on R, each such edge gets assigned a unique label except possibly the first
such edge on R. The crucial point here is that none of the labels can be a vertex of
type 4.

Each vertex can label at most four Cm edges since it lies on two rays and can be
used as a label for at most two Cm edges on each of these two rays—one each when
we are considering the cells to left or to the right of R. Since none of the labels is
of type 4, the number of distinct labels is O(n2). Moreover, the number of unlabeled
Cm edges is at most nr, i.e., one per ray. We conclude that the number of edges
contributing to the complexity of cells in Cm is O(n2).

It is easy to see that this bound can be reached in the example which proves the
tightness of the O(n3) bound on the complexity of the subdivision.

Consider any one embedding h of V ∗ and all of the cells in the kernel of the
embedded skeleton which belong to Ei. Let h(p) denote the point in P which has the
same location relative to h(vo) as p has to vo. The following theorem states that if
h(p) lies in one of the cells with skeleton V ∗, then h(p) is a valid answer to the query
V(p).

Theorem 5.5. Let h be any embedding of V ∗(p) and h(p) be the corresponding
location of p. Then V (h(p)) = V(p) if and only if V ∗ (h(p)) = V ∗(p).

Proof. Clearly, if h(p) and p have the same visibility polygon, then they have the
same skeleton. The nontrivial part is to show that if they have the same skeleton then
they have the same visibility polygon.

Since the two points have the same skeleton, all of the nonspurious vertices are
identically laid out in the two visibility polygons, as are all the full edges. Now
consider any fixed artificial edge e′ of their skeleton. Suppose that e′ is labeled as
being in correspondence with a half-edge. Then in the visibility polygon, there is
a spurious edge se which is adjacent to this half-edge. The spurious edge starts at
the same reflex vertex in both visibility polygons and is collinear with p. Thus the
only difference between the two visibility polygons could be in the location of the
spurious vertex where se meets the half edge. However, one endpoint of the half edge

1134 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

is nonspurious and has the same location in both visibility polygons. Moreover, the
line characterization of the half edge is the same in both cases. Therefore, the location
of the spurious vertex must also be identical in the two cases.

The other case to be considered is where the artificial edge e′ is in correspondence
with a partial edge. In this case, there are two spurious edges in the visibility polygon
which meet the partial edge. By an argument similar to the one above, it is easy to
see that the location of the two spurious vertices must also be identical in the two
visibility polygons.

We conclude that the relative location of all the spurious vertices must be identical
in V (h(p)) and V(p), and hence the two polygons must be identical.

Thus to verify if p could have been in any particular embedding, it suffices to check
if h(p) lies in a cell with the same visibility skeleton. Let k denote the total number
of valid embeddings. Note that in general each embedding may contain multiple cells
with the same visibility skeleton V ∗, as we are seeking. Our problem reduces to the
following: given a collection of k families of disjoint convex polygons (one for each
embedding) of total complexity e, we wish to identify the polygon(s) (if any) where
a point q is located. When k is large, searching independently in each embedding’s
cells would require time at least k, which may be much larger than A (the output
size). However, observe that all of the embeddings are congruent and have the same
location of p with respect to the origin. The only difference between the embeddings
is in the visibility cells therein which have V ∗ as their skeleton. The cells in different
embeddings are possibly totally unrelated to each other.

Our solution is to consider all embeddings at once by overlaying all of their cells
into one embedding of the skeleton. Thus with reference to the origin of V ∗, we have
k collections of convex polygons of total complexity ei that are overlaid to create a
planar subdivision. The problem is now that of performing a point location in this
subdivision; each region is labeled by the set of visibility cells that intersect to create
it. The overall complexity and time to compute this subdivision is at most O(e2i).

Using data structures for point location in planar subdivisions due to Kirk-
patrick [16] or Edelsbrunner, Guibas, and Stolfi [12], we can perform point location in
time O(logn) with preprocessing and space O(e2i). When we sum over all equivalence
classes, our total cost will be

O

(
t∑

i=1

e2i

)
= O

(
n2

t∑
i=1

ei

)
= O(n2N)

by Theorem 5.4. In most cases, this will be the dominant preprocessing cost of our
final algorithm.

There is actually one more problem to be overcome in implementing this approach:
with each region in these subdivisions that we compute, we need to associate a list of
the visibility cells whose intersection creates that region. This could blow up the space
requirement by as much as another factor of n. To avoid this extra cost, we proceed
as follows. Consider a particular subdivision S obtained by the overlay of congruent
visibility skeletons in class Ei and let G be the dual graph of that subdivision whose
vertices are a set of canonical points, chosen one per region of S. Now double each
edge in G and consider an Eulerian tour τ of this new G (which must exist since
each vertex has even degree and can be computed in linear time in the size of G).
Break the tour at some region covered by no cell (e.g., any infinite region of S). The
resulting path, τ ′, can enter and exit each original cell multiple times, but its overall
complexity will still be only e2i . Each passage of τ ′ through a cell can be thought of

THE ROBOT LOCALIZATION PROBLEM 1135

an interval. Let us construct an interval tree on this collection of e2i known intervals.
We can determine the cells covering any point of the path τ ′ by standard interval-tree
searching methods, improved by fractional cascading [6], in total time O(logn + A),
where A is the size of the answer. We can do the same for any point in S since its
coverage will be the same as for the canonical point selected in the region of S where
it falls.

So we finally have our theorem.
Theorem 5.6. The localization problem can be solved with preprocessing time

and space of O(n2N) and a query time of O(m+ logn+A).
Note that if we want any one solution, the query time drops to O(m+ logn).
Also, if we assume that P contains no collinear sides, then we can get a better

preprocessing bound. Let equivalence class Ei contain si cells of total complexity ei;
each cell must come from a different embedding in this case. The cells are convex, and
thus their overlay can have complexity at most O(siei) and can be computed within
the same time bound [1]. Since each si is at most r, in this case, the overall space
and preprocessing time needed drops to O(rN).

We can also reduce the space in general at the expense of increased query time.
Moreover, we can smoothly trade off the query time with the preprocessing time and
space.

Theorem 5.7. Let 1 ≤ f(n) ≤ n. The localization problem can solved in
O(n2N/f(n)) space and preprocessing and query time O(m+ f(n) log n+A).

Proof. Consider any particular equivalence class Ei. Pick γ = n2/f(n) and
consider the embeddings whose complexity is at most γ each. These can be partitioned
into groups of embeddings such that each group has complexity roughly γ. The idea
is to overlay the cells from the embeddings in a particular group, using a total space
of O(γ2) for each such group. The number of such groups cannot exceed O(n2/γ)
since the overall complexity of all the embeddings is bounded by O(n2). The total
space required by these groups is O(n2γ). Searching independently in each group’s
planar subdivision requires time O(n2 logn/γ).

The embeddings of complexity at least γ each are also searched independently.
Their total space requirement is O(n2). Moreover, since they cannot be more than
O(n2/γ) in number, it requires O(n2 logn/γ) time to search them. Thus our to-
tal space requirement for this equivalence class is O(n2γ) and the query time is
O(n2 logn/γ). This implies the desired result.

The next result is obtained when we perform an independent point location in
each distinct embedding.

Theorem 5.8. The localization problem can be solved with O(nN) space and
preprocessing and a query time of O(m+ r logn+A).

6. Extensions and variants. We briefly outline below how the methods above
can be extended to work in a number of additional cases.

6.1. Map polygons with holes. When the map polygon has holes, the size
and complexity of the visibility cell decomposition can be higher. In this case, we
have a tight bound of Θ(n2r2) on the number of visibility cells. Although we do not
have the space to develop this here, we merely mention that when all of the holes
are convex, the increase in the number of visibility cells can be bounded in terms of
the number of holes. This also applies to the increase in the preprocessing and space
bounds.

6.2. The limited-range version. We now consider a feature of range finders
that arises in practice: they can reliably obtain range readings only up to some

1136 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

distance D [19]. Beyond this distance, the noise levels are too high to measure the
distance, and we learn only that the distance is greater than D. Our approach to
preprocessing P can be modified to work even in this case. The set of points within
distance D of an edge of P is an oval region. Now consider the arrangement of the
oval regions defined by all the edges of P; since any two ovals intersect at most at
four places, this arrangement partitions the plane into O(n2) subdivisions. Within
each cell of this subdivision, the set of edges of P that are within distance D is
invariant. Intersecting this arrangement with our visibility cell decomposition, we
obtain a modified decomposition with the property that in each subdivision, the
(redefined) skeletons are the same. Our search process is now applied to this modified
decomposition to obtain the same query time.

6.3. The single-shot query problem. Now consider the problem of answering
a single query V. Here the cost of any preprocessing must be included in the cost
of answering the query. We present an algorithm running in time O(nm) based on
some results in ray shooting. Suppose we wish to determine at each vertex of P where
the ray going in a fixed direction first hits P again. This problem is equivalent to
trapezoidalizing P using lines parallel to the shooting direction. This can be done
in linear time [5, 13] given a triangulation of the polygon P. The recent result of
Chazelle [4] shows that the triangulation itself can be computed in linear time.

Theorem 6.1. Given a map polygon P and a visibility polygon V, the set of valid
locations of p can be determined in time O(nm).

Proof. First, for each of the O(m) spurious edges in V, we determine the trape-
zoidalization of P in the direction of that spurious edge. This requires a total of
O(nm) time. Now we try each possible embedding of V in P, of which there are at
most n. In each potential embedding case, we can determine its validity by using
the information from the trapezoidalizations queries. Effectively, we are trying to
trace a fixed placement of V in P; we do this by following edges of P and using the
trapezoidalizations to implement in constant time ray-shooting queries when we need
to walk along a spurious edge of V. Thus the time to verify an embedding is O(m)
and the total time is O(nm).

When the range finder has a limited range D, we can answer a single query in
O(n2) time.

6.4. Visibility query processing. Consider the problem of preprocessing a
polygon P so that a visibility query can be efficiently answered. A visibility query is
a point p ∈ P, and we are required to compute the edges and vertices of P visible
from p. An interesting side effect of our results is the construction of an efficient
data structure for this problem. The obvious approach is to compute the visibility
cell decomposition and store in each cell a modified skeleton for the cell. This new
skeleton records the (circular) list of the visible edges and vertices for that cell, which
is constant over the cell. A query can now be answered by performing a point location
in this cell decomposition. However, this is inefficient in its use of space since we must
store the skeletons for each cell separately.

We now sketch an idea for making the space requirement linear in the complexity
of the cell decomposition. The idea is to avoid storing the full visibility list at each
cell. Instead, at each interior line we store the change in the visibility as we cross it.
Borrowing from an idea of Chazelle [3], we actually store the visibility skeleton only
at those cells where the visibility is a “local” minimum (i.e., those cells that see less of
P than any of their neighbors). These are the cells where crossing any boundary edge
leads to additional vertices/edges becoming visible. To compute the visibility in any

THE ROBOT LOCALIZATION PROBLEM 1137

cell, we perform a walk to a minimal visibility cell, keeping track of the changes in
visibility as we cross interior lines. If we are not at a minimal cell, there is always a cell
boundary such that crossing it will cause the number of visible vertices to decrease.
The length of the walk cannot exceed the size of the output.

Furthermore, the number of these minimal visibility cells is O(n2). This is because
there cannot be two adjacent type 4 vertices on the boundary of such a minimal cell.
One way to see this is to use the analysis in the proof of Theorem 5.4, except that
we apply it to edges that bound a minimal visibility cell rather than to edges that
bound cells in Cm, as was the goal in that theorem. In particular, consider traversing
a ray away from the anchor which (say) lies to the left of the ray; then a minimal cell
bounded by an edge e lying on this ray must also lie to the left of the ray. Further, the
first endpoint of e that is encountered must be a decrementing vertex (and possibly
of type 4), but the second endpoint of e must be incrementing and hence cannot be
of type 4. It follows that each minimal cell has at least one vertex not of type 4, and
we charge the minimal cell to this vertex. In this fashion, each vertex can be charged
at most four times. By recalling that the number of vertices that are not of type 4 is
O(n2), we get the following result.

Theorem 6.2. Using O(n3) space and preprocessing, a visibility query can be
answered in time O(logn+m), where m is the size of the output visibility polygon.

7. Further work.

• The single-shot problem resembles a classic string-matching problem, and it
is likely that an algorithm running in time o(mn) can be devised using techniques
from that field.

• We assumed that the robot has a compass and thus V is oriented with respect
to P. What if this assumption were removed?

• In any real-life situation, the data obtained from the sensor is likely to be
noisy. How can se solve this problem when we seek only approximate congruence
between V and the visibility polygon of a point in P?

• A hard but natural extension of our problem is to the case of three-
dimensional polyhedral terrains. Here the robot’s viewing mechanism would be a
camera which would deliver two-dimensional images.

Acknowledgments. We gratefully acknowledge useful discussions with Bernard
Chazelle, John Hershberger, Simeon Ntafos, and Emo Welzl.

REFERENCES

[1] B. Aronov, M. Bern, and D. Eppstein, Arrangements of polytopes, manuscript, 1991.
[2] P. Bose, A. Lubiw, and J. I. Munro, Efficient visibility queries in simple polygons, in Proc.

4th Canadian Conference on Computational Geometry, ACM, New York, 1992, pp. 23–28.
[3] B. Chazelle, An improved algorithm for the fixed-radius neighbor problem, Inform. Process.

Lett., 16 (1983), pp. 193–198.
[4] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),

pp. 485–524.
[5] B. Chazelle and J. Incerpi, Triangulation and shape-complexity, ACM Trans. Graph., 3

(1984), pp. 135–152.
[6] B. Chazelle and L. Guibas, Fractional cascading I: A data structuring technique, Algorith-

mica, 1 (1986), pp. 133–162.
[7] R. Cole and C-K. Yap, Shape from probing, J. Algorithms, 8 (1987), pp. 19–38.
[8] I. J. Cox, Blanche: An experiment in guidance and navigation of an autonomous robot vehicle,

IEEE Trans. Robotics Automat., 7 (1991), pp. 193–204.

1138 L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN

[9] I. J. Cox and J. B. Kruskal, On the congruence of noisy images to line segment models,
in Proc. 2nd International Conference on Computer Vision, 1988, IEEE, Piscataway, NJ,
pp. 252–258.

[10] I. J. Cox and J. B. Kruskal, Determining the 2- or 3-dimensional similarity transformation
between a point set and a model made of lines and arcs, in Proc. 28th IEEE Conference on
Decision and Control, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 1167–
1172.

[11] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoret-
ical Computer Science, Vol. 10, Springer-Verlag, Heidelberg, Germany, 1987.

[12] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone sub-
division, SIAM J. Comput., 15 (1986), pp. 317–340.

[13] A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,
ACM Trans. Graph., 3 (1984), pp. 153–174.

[14] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear time algorithms
for visibility and shortest path problems inside simple polygons, in Proc. 2nd Annual ACM
Symposium on Computational Geometry, ACM, New York, 1986, pp. 1–13.

[15] L. Guibas, M. Overmars, and M. Sharir, Intersecting line segments, ray shooting, and
other applications of geometric partitioning techniques, in Proc. 1st Scandinavian Work-
shop Algorithm Theory, Lecture Notes in Comput. Sci. 318, Springer-Verlag, Berlin, 1988,
pp. 64–73.

[16] D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983),
pp. 28–35.

[17] K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and Compu-
tational Geometry, Springer-Verlag, Berlin, 1984.

[18] D. P. Miller, D. J. Atkinson, B. H. Wilcox, and A. H. Mishkin, Autonomous navigation
and control of a Mars rover, in Automatic Control in Aerospace: Selected Papers from the
IFAC Symposium, Pergamon Press, Oxford, UK, 1989, pp. 111–114.

[19] G. L. Miller and E. R. Wagner, An optical rangefinder for autonomous robot cart navigation,
in Autonomous Robot Vehicles, I. J. Cox and G. T. Wilfong, eds., Springer-Verlag, Berlin,
1990.

[20] C. N. Shen and G. Nagy, Autonomous navigation to provide long distance surface traverses
for Mars rover sample return mission, in Proc. IEEE International Symposium on Intelli-
gent Control, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 362–367.

[21] S. S. Skiena, Geometric probing, Ph.D. thesis, Report UIUCDCS-R-88-1425, Computer Science
Department, University of Illinois at Urbana–Champaign, Champaign, IL, 1988.

[22] C. Ming Wang, Location estimation and uncertainty analysis for mobile robots, in Autonomous
Robot Vehicles, I. J. Cox and G. T. Wilfong, eds., Springer-Verlag, Berlin, 1990.

A FAST ALGORITHM FOR OPTIMALLY INCREASING THE EDGE
CONNECTIVITY∗

DALIT NAOR† , DAN GUSFIELD† , AND CHARLES MARTEL†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1139–1165, August 1997 011

Abstract. Let G = (V,E) be an undirected, unweighted graph with n nodes, m edges and
edge connectivity λ. Given an input parameter δ, the edge augmentation problem is to find the
smallest set of edges to add to G so that its edge connectivity is increased by δ. In this paper, we
present a solution to this problem which runs in O(δ2nm+ δ3n2 + nF (G)), where F (G) is the time
to perform one maximum flow on G. In fact, our solution gives the optimal augmentation for every
δ′, 1 ≤ δ′ ≤ δ, in the same time bound. By introducing minor modifications to the solution, we can
solve the problem without knowing δ in advance, and we can also solve the node-weighted version
and the degree-constrained version of the problem. If δ = 1, then our solution is particularly simple;
it runs in O(nm) time, and it is a natural generalization of the algorithm in [K. Eswaran and R. E.
Tarjan, SIAM J. Comput., 5 (1976), pp. 653–665] for the case where λ + δ = 2. We also solve the
converse problem in the same time bound: given an input number k, increase the connectivity of G
as much as possible by adding at most k edges. Our solution makes extensive use of the structure of
particular sets of cuts.

Key words. graph algorithms, graph connectivity, network flow, minimum cuts

AMS subject classifications. OSC40, OSC75, OSC85, 68R10, 68Q25

PII. S0097539792234226

1. Introduction. Consider an undirected, unweighted graph G = (V,E) with n
nodes, m edges, and edge connectivity λ. Given a parameter δ, the edge augmentation
problem is to find a smallest set of edges to add to G so that its edge connectivity is
increased to (λ+ δ) = C.

The edge augmentation problem is a fundamental problem in graph theory. It has
direct applications in the design of reliable networks [14, 15, 16] and indirect applica-
tions in problems of statistical data security [19]. More abstractly, the problem is of
interest as a demonstration of the algorithmic power that comes from understanding
and exploiting subtle graph-theoretic structure. Any solution to this problem must
add at least C − λ′ new edges across any cut of size λ′, λ′ < C. Hence to obtain an
efficient solution, one must make extensive use (explicitly or implicitly) of the under-
lying structure of the set of cuts of size up to C in G, and one must derive and use
this structure efficiently.

In this paper, we give a solution to the edge augmentation problem which runs
in O(δ2nm+ δ3n2) + nF (G) time, where F (G) is the time to perform one maximum
flow in G. For the case of δ = 1, our solution is particularly simple and runs in
O(nm) time. The edge augmentation problem was first shown to be solvable in
polynomial time by Watanabe and Nakamura [36], who gave an algorithm that works
in O((λ + δ)2n4((λ + δ)n + m)) time, and this was improved by Watanabe [35] to

∗ Received by the editors July 15, 1992; accepted for publication (in revised form) August 23,
1995. This research was supported by National Science Foundation grants CCR-8803704 and CCR-
9023727. A preliminary version of this paper appears in Proc. 31st Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 698–
707.

http://www.siam.org/journals/sicomp/26-4/23422.html
† Department of Computer Science, University of California at Davis, Davis, CA 95616

(dnaor@math.tau.ac.il, gusfield@cs.ucdavis.edu, martel@cs.ucdavis.edu). First author’s current ad-
dress, IBM Haifa Research Lab, Tel-Aviv Annex, IBM Building, 2 Weizmann Street, Tel-Aviv 61336,
Israel (dalit@haifa.vnet.ibm.com).

1139

1140 D. NAOR, D. GUSFIELD, AND C. MARTEL

O((λ+δ)2n3((λ+δ)n+m)). Cai and Sun [5] also considered the problem and described
a solution but did not provide any time analysis. An initial version of our algorithm
appeared in [30]. Independently, using a quite different approach, Frank [9] gave
an O(n5) algorithm for the problem which extends to a more general augmentation
problem where local connectivities may be prescribed. A new implementation of our
algorithm, which uses a poset representation for minimum cuts, was given by [11].

The edge augmentation problem is a particular instance of the general graph aug-
mentation problem. This general area was first investigated by Eswaran and Tarjan [7],
who gave a polynomial-time algorithm for the problem of augmenting an unweighted
graph to make it 2-edge-connected (bridge-connected). In our terminology, this is the
special case of λ + δ = 2. They also showed that the corresponding weighted case
is NP-complete. Later, Fredrickson and JáJá [10] showed that the 2-edge-connected
weighted problem remains NP-complete even if the initial graph is a tree and gave an
approximation algorithm for the problem. The problem of optimal strong augmenta-
tion of a mixed graph (a graph with both undirected and directed edges) was given
an efficient solution by Gusfield [17]. Kajitani and Ueno [22] and Ueno, Kajitani, and
Wada [34] solved the unweighted problem for all graphs which are trees, directed and
undirected (a special case of λ = 1). Their method is polynomial, but no time bounds
are stated explicitly in their papers. Both [36] and [5] deal with the general edge
augmentation problem and show its polynomiality. These papers are very long, and
the methods described therein are quite involved. The method of Frank [9] solves the
edge augmentation problem for both directed and undirected graphs and is based on
a different approach. It extends to a more general problem when local connectivities
may be prescribed, and it generalizes to a strongly polynomial algorithm. Its exten-
sion by [3] applies to mixed graphs. In [11], the directed and undirected versions are
considered. All methods allow, and often require, the addition of parallel edges. For
the vertex analogue of the problem (i.e. adding edges to increase the vertex connec-
tivity), much less in known; see [7, 32, 37, 20, 21] for results on the special case where
λ+ δ = 2 or 3.

The main result in this paper is a solution to the edge augmentation problem for
undirected, unweighted graphs for any initial edge connectivity λ and any increment
δ. Our method is faster than the previous methods: its running time is O(δ2nm +
δ3n2), with an initial cost of nF (G) (when δ > 1), where F (G) is the best time
to compute a maximum flow in an unweighted graph. (The best F (G) known is
O(min{n2/3m,m3/2}) for simple graphs and O(m3/2) for multigraphs [8, 2].) This
is a considerable improvement over the O((λ+ δ)2n3((λ+ δ)n+m)) method of [35],
and when δ is not very large (δ < n), it improves the O(n5) method of [9]. Our
method is also simple and intuitive and allows a self-contained exposition. It can be
easily adapted to solve the augmentation problem even without the knowledge of a
target increment δ in advance, and yet it produces a solution that is optimal for any
intermediate increment. It can therefore be used to solve the converse problem: given
a number k, what is the highest connectivity that can be achieved by adding at most
k new edges to the graph? It can also be adapted to solve two other variations on
the problem which were suggested and first solved by Frank [9]: the node-weighted
version and the degree-constrained version. In the node-weighted version, each node x
has a weight cost(x); the goal is to find a minimum-weight set of edges that solve the
augmentation problem, where the weight of adding an edge (x, y) is cost(x) + cost(y).
In the degree-constrained version, each vertex v has an upper bound g(v) on its degree;
the task is to solve the augmentation problem subject to the constraint that for every

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1141

vertex v, its degree in the final graph does not exceed g(v).

For the case where the increase in connectivity is one (δ = 1), our method is
particularly simple, and is a natural generalization of the algorithm of [7] for the
2-edge connectivity case (λ + δ = 2). Its running time is O(nm), compared with
the O(λ2n3(λ + m)) of [35] or O(n5) of [9]. Note that O(nm) is also the best time
bound, in terms of n and m, for computing the connectivity value alone [31] (also
described in [1]), [26]. (Nagamochi and Ibaraki [27] achieved a better bound of O(m+
min{λn2, pn+ n2 logn}) for computing the connectivity, p being the number of pairs
of vertices that are connected by an edge; when expressed only in terms of n and m,
it reduces to O(nm). Gabow [11] achieved O(m+ λm log(n2/m)).) Hence within the
same best time bound for computing just the connectivity value, we can optimally
increase the edge connectivity by one. (The implementation of our algorithm in [11],
which uses a poset representation of cuts, runs in O(m+ λ2n log(n/λ)) for δ = 1 and
in O(m+ (λ+ δ)2n logn) for δ > 1.)

Given the efficiency and simplicity of the solution for δ = 1, a natural approach to
the problem of general δ is to successively (and optimally) increase the connectivity
by steps of one until connectivity λ+ δ is reached. Unfortunately, it is not true that
every optimal set of edges which increases the connectivity by one can be extended to
an optimal solution to increase the connectivity by δ > 1. This approach even fails for
δ = 2 and λ = 1, as demonstrated in Figure 1. The graph G in Figure 1 becomes 3-
edge-connected if the edges {(1, 11), (2, 12)} are added. G becomes 2-edge-connected
if the edge (6, 8) is added (which is an optimal augmentation by one), but then two
more edges must be added to make G 3-edge-connected (say, {(1, 11), (2, 12)}). So
for the general problem, a less myopic method is needed. Though not every optimal
augmentation by one can be extended to an optimal augmentation by δ > 1, it is true
that there exists an optimal solution for the case where δ > 1 consisting of a sequence
of δ augmentations where each augmentation successively increases the connectivity
by one using the minimum number of edges. Such a sequence is given in [35] as an
improvement over the algorithm in [36]. Our solution also finds such sequence. In
fact, the sequence of δ optimal augmentations by one found by our algorithm also has
the property that it is optimal for any intermediate δ′ ≤ δ, and hence the target δ
need not be specified in advance. In order to construct this sequence, the algorithm
needs to select each optimal augmentation by one with the future augmentations “in
mind.”

The approach employed by our algorithm is similar at its high level to the one
used in [36]. It also uses similar results to prove the correctness of the algorithm. See
section 4.6 for further discussion. However, we obtain substantially better running
times by using a better algorithm for augmenting by one and by improving the time
to do successive augmentations. The successive augmentations are sped up by using
improved algorithms, data structures, and structural properties of the graph.

A crucial component of our solution is the use of compact structures which im-
plicitly represent various information about sets of cuts. We use three such structures.
The first is the Gomory–Hu equivalent flow tree [13], the second is one that we call
the extreme-sets tree, and the third is a compact representation of the set of all con-
nectivity cuts in a graph, where a connectivity cut is an edge cut of size λ. This
representation is described by [6]. The use of this relatively unknown structure (at
least in the West) is one of the keys to our faster solution.

This paper is organized as follows. In section 2, we describe the compact repre-
sentation of the connectivity cuts. Section 3 contains the O(nm)-time solution for the

1142 D. NAOR, D. GUSFIELD, AND C. MARTEL

����

����

����
����

����
����

����
����

����
����

����

����

2

1

4

3

6

5

8

7

10

9

12

11

��
��

HHHH

HH
HH

����

�
�
��@
@
@@ �

�
��@
@
@@

Fig. 1. An example where an optimal augmentations by one cannot be extended to yield an
optimal augmentation by two.

edge augmentation problem where δ = 1. In section 4, the solution for any δ is given.
Section 5 refers to other variations on the problem: the no-target augmentation prob-
lem, the node-weighted version, and the degree-constrained problem. Finally, section
6 suggests as open questions a few possible extensions, in particular, the augmentation
problem with no parallel edges.

2. Representing all connectivity cuts. We start by describing an elegant,
compact representation for the sets of all connectivity cuts. In a graph G = (V,E)
with n nodes, m edges, and connectivity λ, a connectivity cut is a set of λ edges whose
removal from the graph disconnects it into two sets of nodes, A and A. We denote
such a cut by (A,A). The connectivity cut might not be unique; however, there can
be only O(n) of them if λ is odd and O(n2) of them if λ is even (we refer to [6, 23]
and, indirectly, [4]).

The set of all connectivity cuts can be compactly represented by a simple edge-
weighted graph H(G) of O(n) nodes and edges [6], and this representation can be
constructed in O(nm) time [24] (see also [28, 29]). Each vertex in G maps to exactly
one node in H(G) so that any node in H(G) corresponds to a subset (possibly empty)
of vertices from G. A cut (S, S) in H(G) defines a cut (A,A) in G, where A consists
of all the vertices from G that are mapped into nodes of S. Each minimal cut (a cut
such that no proper subset of its edges is also a cut) in H(G) is also a λ-cut (a cut
of total edge weight λ) in H(G), and it corresponds to a connectivity cut in G; each
connectivity cut in G corresponds to one or more λ-cuts (or minimal cuts) in H(G).
Hence the minimal cuts in H(G) compactly represent the connectivity cuts in G.

If λ is odd, then H(G) is particularly simple—it is a tree, all its edges are of
weight λ, and any minimal cut in H(G) is obtained by removing one of its edges. If λ
is even, then H(G) is called a cactus—it can contain cycles, but any two cycles have
at most a single vertex in common, so no edge is in more than one cycle. Every edge
in a cycle is called a cycle edge and is given weight λ/2; every other edge is called a
tree edge and is given weight λ. Hence minimal cuts in H(G) are of exactly two types:
a cut of the first type is obtained by removing a tree edge, and a cut of the second
type is obtained by removing any pair of cycle edges that lie on the same cycle. Every
tree is a cactus with no cycles; hence to unify our discussion, we always refer to H(G)
as a cactus. Throughout the paper, we use the term “vertex” to denote a vertex in
G and the term “node” to denote a node in H(G). In Figure 2 we give an example of
a graph G with connectivity 4, and its connectivity cuts are represented by H(G).

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1143

f f f
f f f
f f

3 2 1

4 8 7

5 6

G

#
#
##

c
c
cc

#
#
##

c
c
cc

c
c
cc

#
#
##

c
c
cc

m m m m m
m m m m m

3 2 1

4 5 8 6 7

H(G)

T
T
T

�
�
�

x10 x9 x6 x4 x1

x8 x7 x5 x3 x2

Fig. 2. A graph G and its cactus representation H(G) (λ = 4). The weight of a solid edge in
H(G) is 2, and the weight of a dashed edge is 4.

3. Increasing connectivity by one. Our solution to the augmentation prob-
lem for δ = 1 uses the representation H(G) and is a natural generalization of the
method in [7] for the 2-edge-connectivity augmentation problem (λ + δ = 2). To see
that our solution generalizes the solution in [7], note that if the graph is originally
1-edge-connected, i.e., λ = 1, then the representation of all 1-cuts in the graph is well
known: it is the tree obtained by contracting each of the 2-edge-connected compo-
nents into a single node. The augmentation algorithm in [7] finds this representation
for the 1-cuts and optimally augments it by one using a depth-first numbering of the
tree leaves. Our method finds the cactus representationH(G) for any λ and augments
it by one using a depth-first traversal of the cactus that generalizes the one of [7].

Definition. We say that a node u is a leaf in a cactus if either u is connected
by a single tree edge or u is in a cycle and has degree exactly 2. Note that if there
are no cycles in the graph, then this is the usual definition of a leaf (in Figure 2, the
nodes x1, x2, x3, x5, x7, x8, x10 are leaves).

Let u1, . . . , uk be the leaves of H(G) and Ui be vertices in G which map to ui,
and let (U1, U1), . . . , (Uk, Uk) be the λ-cuts of G defined by these leaves, i.e., either
by the removal of the single incident tree-edge or by the removal of the two incident
cycle-edges.

Lemma 3.1. If H(G) has k leaves, then at least dk/2e edges must be added to
increase the connectivity of G by one.

Proof. First, note that none of the leaves of H(G) can be empty subsets of
vertices from G since otherwise they would not correspond to a λ-cut in G. Hence
every ui defines a λ-cut (Ui, Ui) in G, so at least one new edge must go across each
Ui, 1 ≤ i ≤ k. Since the Ui’s are disjoint, a new edge can satisfy at most two of these
requirements. Hence at least dk/2e edges are needed.

We now show that this bound is achievable. We first need to define a special type
of depth-first-search (DFS) traversal in a cactus. This traversal consists of two stages.
The first stage assigns different colors to the different simple cycles in the cactus so
that all cycle edges of the same cycle are assigned the same color. Since every cycle
edge is in exactly one cycle, such a coloring procedure is possible. It can be done
efficiently, in O(n + m) time, by adapting any procedure that finds the articulation
points in a graph (see, for example, [25, 33]). The second stage is a DFS traversal
that starts at an arbitrary node and obeys the following rule: if a node u is visited for
the first time via a cycle edge that is colored red (say), then traverse all other edges
incident at u before traversing the other red edge incident to u. Note that if the graph

1144 D. NAOR, D. GUSFIELD, AND C. MARTEL

has no cycles, then this is the usual DFS tree traversal.

An alternative presentation of the above DFS traversal is as follows: if every tree
edge in the cactus is replaced by a pair of parallel edges, then the cactus becomes an
Eulerian graph. The DFS traversal essentially finds some Eulerian tour in the graph.

We can now fully describe our solution to the problem of augmenting the connec-
tivity of a graph by one.

Algorithm Aug-1

(1) Construct H(G), the representation of all connectivity cuts.
(2) Traverse H(G) in the modified DFS manner described above and enumerate

its leaves u1, . . . , uk in the order in which they are first encountered in the DFS
traversal.

(3.a) Form the pairs {(Ui, Ui+dk/2e) : 1 ≤ i ≤ bk/2c}, where Ui is the set of vertices
from G that map to the leaf ui of H(G).

(3.b) For each pair (Ui, Ui+dk/2e), 1 ≤ i ≤ bk/2c, pick an arbitrary vertex from G
in Ui and an arbitrary vertex from G in Ui+dk/2e and connect them by an edge. If k
is odd, then connect some vertex in Udk/2e to a vertex in an arbitrary different leaf
Uj .

Note that the nonuniqueness of the solution comes from step (3.b) since it does not
specify which vertex from G in Ui and Ui+dk/2e should be connected by the edge. This
will be important in the solution for the case where δ > 1. To prove the correctness
of the algorithm, we need the following lemma.

Lemma 3.2. If the leaves of H(G) are numbered in the order they are first
encountered in the above DFS traversal then, for every λ-cut (S, S) of H(G), all the
leaves in S have consecutive numbers, and all the leaves in S have consecutive numbers
(under the definition that 1 succeeds k).

Proof. Recall the two types of λ-cuts in H(G). First, suppose that (S, S) is
obtained by the removal of a tree edge of weight λ from H(G). In this case, the claim
follows directly since it is the fundamental property of a DFS leaves enumeration
in a tree. Now suppose that (S, S) is obtained by the removal of two cycle edges
(from the same cycle), each of weight λ/2. Let c1, . . . , cp be the vertices on this cycle,
and without loss of generality, suppose that c1 is the first vertex of this cycle to be
visited in the DFS traversal. Then c1, . . . , cp must be visited in either this order or
the counterclockwise order since any ci can be reached from c1 only via the cycle.
Also, our DFS-traversal rule implies that for every ci, the subgraph that is attached
to ci by edges not from this cycle is traversed before ci+1. Hence since (S, S) splits
the cycle into two consecutive parts, the leaves on both sides must have consecutive
numbers.

Theorem 3.3. Algorithm Aug-1 optimally increases the connectivity of G by
one and can be implemented in O(nm) time.

Proof. We first show that at least one new edge crosses every λ-cut in H(G) (and
thus crosses every λ-cut in G). Let (S, S) be a λ-cut in H(G). By Lemma 3.2, the
leaves in each side of the cut have consecutive DFS numbers (where 1 succeeds k).
Without loss of generality, assume that S contains less than or equal to k/2 leaves,
and let ui ∈ S (S must contain at least one leaf). If i < dk/2e, ui+dk/2e must lie in S,

so the edge (ui, ui+dk/2e) crosses it. If i > dk/2e, ui−dk/2e must lie in S, so the edge
(ui, ui−dk/2e) crosses it. Finally, if i = dk/2e, the new edge attached to ui crosses S
since it is connected to a leaf different than ui. Hence the connectivity of the new
graph has increased by at least one. This is also an optimal augmentation since by
Lemma 3.1, dk/2e is a lower bound on the number of edges that must be added, and

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1145

this method achieves this bound. Since H(G) can be constructed in O(nm) time and
can be traversed in O(n + m) time, the total running time of algorithm Aug-1 is
O(nm).

Example. Consider the graph G in Figure 2, and apply algorithm Aug-1 to G.
The DFS traversal visits the leaves of H(G) in the following order: x1, x2, x3, x5, x7,
x8, x10. The pairs formed are (x1, x7), (x2, x8), and (x3, x10). Since in this example
every leaf contains exactly one vertex from G, these pairs immediately translate to the
edges (1, 5), (7, 4), and (6, 3). Finally, leaf x5 is connected to x1 (this is an arbitrary
decision), so the last edge added is (8, 1).

4. Increasing connectivity by δ. The method for δ > 1 is considerably more
complicated than the solution for the case where δ = 1. Given that a simple solution
for the δ = 1 case exists, one approach to the δ > 1 case is to successively augment
by one for δ steps by applying algorithm Aug-1 δ times. We show that this approach
can yield an optimal solution if some caution is taken at each step of the application.
Recall that the method of algorithm Aug-1, which augments optimally by one, does
not necessarily produce a unique solution: it specifies pairs of leaves in H(G) that
are to be connected by an edge, without suggesting which vertex from G in each leaf
should become the endpoint of the edge; hence if the leaf is not a singleton, various
choices exist. We take advantage of this “freedom.” We show that by looking deeper
“inside” these leaves to find cuts of higher values that will have to be augmented later,
we can find an optimal solution to the augmentation by one that can be extended
to an optimal solution for δ. That is, we make a more “intelligent” choice in step
(3.b) of algorithm Aug-1 when choosing the current solution. By showing that this
is possible, we in fact provide another proof to the result of [35] which states that
there is an optimal solution to the case where δ > 1 which consists of a sequence of δ
optimal solutions to the problem of augmenting by one.

We start with section 4.1, which establishes an obvious lower bound on the num-
ber of edges that must be added to augment a graph. Next, in section 4.2, we define
a partition, called the extreme-sets partition, used to guide the search for an “intelli-
gent” choice at each stage of augmenting by one. Section 4.3 describes the complete
algorithm that finds an optimal solution by using the extreme-sets partition together
with successive applications of algorithm Aug-1. Finally, in sections 4.4 and 4.5, we
prove the optimality of the algorithm and its running time.

4.1. The lower bound. We now state a lower bound from [36, 5, 9] on the
number of edges that must be added for any increment δ. It is used to prove the opti-
mality of our algorithm. For U ⊂ V , denote by d(U) the number of edges connecting
vertices in U and vertices in V \ U . We call d(U) the degree of U .

Let P be any partition of V into disjoint subsets P1, . . . , Pk. Define Φ(P), the

edge demand of P , as Φ(P) =
∑k
i=1 max{0 , (λ+ δ)− d(Pi)}.

Observation 4.1. (See [36, 5, 9].) For any partition P , at least dΦ(P)/2e edges
must be added to increase the connectivity of G by δ.

Proof. If for some subset Pi, d(Pi) < λ+δ, then at least (λ+δ)−d(Pi) new edges
that have one endpoint in Pi and cross (Pi, Pi) must be added. Since the subsets of
P are all disjoint, each edge can satisfy at most two of the requirements. Hence at
least dΦ(P)/2e edges are needed.

Corollary 4.1 (The lower bound). The minimum number of edges that must
be added to a graph to make it (λ + δ)-edge-connected is greater than or equal to
maxP{dΦ(P)/2e} over all partitions P. Also, any augmentation which for some par-

1146 D. NAOR, D. GUSFIELD, AND C. MARTEL

tition P makes the graph λ+ δ edge-connected by adding dΦ(P)/2e edges is optimal.

As shown in [36, 5, 9], this lower bound is achievable. Moreover, the minimum
number of edges that are needed equals the ceiling of half of the demand of some
partition and hence equals the ceiling of half of the maximum edge demand over all
partitions (a min–max relation).

4.2. The extreme-sets partition. We define a partition of the vertices of G,
called the extreme-sets partition, denoted ES, and later show that the number of edges
added by our algorithm always equals dΦ(ES)/2e, where Φ(ES) is the edge demand
of the partition ES, thus proving that ES has the maximum edge demand over all
partitions.

Definition. A set U ⊂ V is k-extreme if and only if its degree k is strictly
smaller than the degree of each of its proper subsets, i.e., if and only if d(U) = k and
for any W ⊂ U , d(W) > k.

Lemma 4.2. If X is k-extreme, Y 6= X is l-extreme, and k ≤ l, then either
Y ⊂ X or X and Y are disjoint.

Proof. Clearly, X 6⊂ Y since otherwise Y is not an extreme set. Suppose that X
and Y properly intersect. There can be two cases: either X∪Y = V or X∪Y ⊂ V . If
X ∪ Y = V , then X ⊂ Y ; but d(X) = d(X) = k (since the graph is undirected), and
k ≤ l, contradicting the fact that Y is l-extreme. If X and Y properly intersect and
X ∪ Y ⊂ V , then V is divided into four nonempty quadrants X ∩ Y , X ∩ Y , X ∩ Y ,
and X ∩Y . We number them as quadrants 1, 2, 3, and 4, respectively, and denote by
dij the number of edges between quadrant i and quadrant j, 1 < i, j < 4 (dij = dji).
See Figure 3.

Since X and Y are both extremes, d(X ∩ Y) > k and d(X ∩ Y) > l, so

d(X ∩ Y) + d(X ∩ Y) > k + l.(1)

Also, d(X) = k = d14 + d13 + d24 + d23 and d(Y) = l = d12 + d13 + d24 + d43; hence
d14 + d24 + d23 ≤ k and d12 + d24 + d43 ≤ l. Note that d(X ∩ Y) = d21 + d24 + d23

and d(X ∩ Y) = d14 + d24 + d34, so

d(X ∩ Y) + d(X ∩ Y) = d12 + d23 + d34 + d14 + 2d24 ≤ k + l,(2)

but (2) contradicts (1). In summary, X cannot properly intersect with Y , and X 6⊂ Y ;
hence the lemma follows.

Lemma 4.2 is the key to defining the extreme-sets partition. Define the set of
vertices V to be a 0-extreme set, and note that any single vertex u is d(u)-extreme,
where d(u) is the degree of u. By Lemma 4.2, the collection of extreme sets in G has
the property that either any two sets are disjoint or one is contained in the other (a
hierarchical structure). Such a collection can be represented by a tree in a natural
way. In this tree, every leaf corresponds to a vertex in V , and the root corresponds
to the set V ; every other node in the tree corresponds to an extreme set, and a node
y is an ancestor of another node x if and only if the extreme set associated with node
y contains the extreme set associated with node x. We call this tree the extreme-sets
tree, denoted EST.

Since we have a hierarchical structure of sets, we can now use a definition that
was proposed in [36]: for any node x in the extreme-sets tree, let X be the set of
vertices in G that correspond to x (the leaves in the subtree rooted at x). Starting
at the leaves, for each node x other than the root, recursively define Φ(x) as the edge

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1147

&%
'$

&%
'$

&%
'$

&%
'$

X ∩ Y

X ∩ Y

X ∩ Y

X ∩ Y

�
�
�
�
�
�
�

@
@

@
@
@
@
@

d14

d23

d12 d34

d13 d24

(Y, Y)

(X,X)

Fig. 3. The four nonempty quadrants generated by two crossing cuts (X,X) and (Y, Y).

demand of x,

Φ(x) = max

0, (λ+ δ)− d(X),
∑

y child of x

Φ(y)

 ,

and the edge-demand of the root r as Φ(r) =
∑

y child of r Φ(y). Intuitively, Φ(x) is a
lower bound on the number of edges that need to be attached to vertices in X in order
to increase the connectivity of G by δ; if d(X) < (λ+ δ), then at least (λ+ δ)− d(X)
edges need to be attached to vertices in X, and this argument holds recursively for
any subset of X. (The children of x correspond to disjoint subsets of X.)

If r is the root of the extreme-sets tree EST, then the recursive procedure Find
Part(r) finds a partition of V into subsets X1, . . . , Xk such that the edge demand of
this partition equals the edge demand of r. This partition is called the extreme-sets
partition and is denoted by ES = X1, . . . , Xk. Find Part(r) finds a set of nodes in
the tree as close to the root as possible such that the edge-demand of each node is
either zero or (if greater than zero) strictly greater than the sum of the edge demands
of its children. Initially, ES is empty.

Find Part(x)
If x is a leaf, then ES ← ES ∪ {X}.
Else, f̄or every child y of x,

If Φ(y) = 0 or Φ(y) >
∑

z child of y Φ(z), then ES ← ES ∪ {Y }
Else Find Part(y)

Clearly, ES is a partition of V and is uniquely defined by the tree and the edge
demands of its nodes. Also, if ES = {X1, . . . , Xk}, then Φ(r) =

∑k
i=1 max{0, (λ +

δ)− d(Xi)} since if a child y of the root did not contribute its corresponding set Y to
the partition ES, then Φ(y) =

∑
z child of y Φ(z), and this property holds recursively.

Hence Φ(ES) = Φ(r).
Figure 4 shows the extreme-sets tree of the graph G depicted in Figure 1. If

δ = 2, then Φ(x5) = Φ(x6) = Φ(x7) = Φ(x8) = 0, Φ(x4) = 0, Φ(x2) = Φ(x3) = 1, and
Φ(x1) = 2. The left and the parts of the tree are symmetric; hence Φ(r) = 4. The
extreme-sets partition is therefore ES = {1}, {2}, {3, 4, 5, 6}, {7, 8, 9, 10}, {11}, {12}
and Φ(ES) = 4.

1148 D. NAOR, D. GUSFIELD, AND C. MARTEL

���

��� ���

��� ��� ��� ��� ��� ���

������������ ������������

r

x1 x9

x2 x3 x4 x10 x11 x12

x5 x6 x7 x8 x13 x14 x15 x16

1 2 11 12

3 4 5 6 7 8 9 10

�����������

PPPPPPPPPPP

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

�
��
L
LL

@
@
@

�
�
�

�
��
L
LL

@
@
@

Fig. 4. The extreme-sets tree of the graph G from Figure 1.

Extreme sets play an important role in the augmentation problem. First, note
that λ-extreme sets are the immediate children of the root of EST and that a set U
of vertices in G is λ-extreme if and only if it is a leaf in the representation H(G). Let
the set U ⊂ V be a leaf in the representation H(G), and let (A,A) be any λ-cut such
that A ∩ U is nonempty. Then U ⊆ A since by the definition of H(G), any λ-cut
that puts some vertex i from U in one of its sides must contain the entire set U in
the same side. Hence the degree of a leaf in H(G) is λ (since (U,U) is a λ-cut), and
the degree of any subset of it is greater than λ since otherwise there will be another
λ-cut that is completely contained in it, a contradiction to the above. Recall that
the new edges that are added to increase the connectivity of G by one in algorithm
Aug-1 connect only vertices from G that are in some leaf in H(G). Hence for the case
where δ = 1, if the λ-extreme sets are augmented appropriately, then no other cuts
have to be augmented. In general, suppose that U is k-extreme and k < λ + δ. We
can “expect” U to be a leaf in the representation of the augmented graph when the
augmented connectivity is k since no subset of it is of degree k or less. This intuitive
reasoning will be stated more precisely later.

4.3. The algorithm. The algorithm that optimally augments G by δ works in
δ phases. At phase i, 1 ≤ i ≤ δ, a graph Gi is constructed, and its connectivity is
λ + i. As we shall prove, every intermediate graph Gi is an optimal solution for the
problem of increasing the connectivity of G by i. At each phase, we basically apply
algorithm Aug-1 (the algorithm that optimally augments by 1) to the graph Gi−1

and obtain Gi. However, whenever there is more than one optimal way to augment
Gi by one, we use the extreme-sets tree ESTi of the graph Gi to make the right choice
among the various possibilities. Once ESTi is known, the rule for choosing the right
solution is easy to implement.

The following is a high-level description of phases 1, 2, . . . , δ of the algorithm.
Initially, we assume that G0 ≡ G, and that EST0, the extreme-sets tree for G, is
known.

Algorithm Aug-δ

(1) Repeat steps (1)–(3.a) of algorithm Aug-1 on the graph Gi, i.e., find its
connectivity cuts representation H(Gi), traverse and enumerate its leaves in the DFS

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1149

manner described earlier, and form the pairs of leaves of H(Gi) that are to be con-
nected by new edges.

(2) The following steps replace step (3.b) in the algorithm Aug-1:
(2.a) For each leaf Ua in H(Gi), find the node ua in the tree ESTi that corresponds

to the set Ua. (Ua is a (λ+ i)-extreme set in Gi, so the node ua must exist.) Find a
node wa of ESTi in the subtree of ua, possibly ua itself, with the following properties:
(i) Φ(wa) > 0; (ii) Φ(z) = 0 for every child z of wa. (If ua is a leaf in ESTi, then
wa ≡ ua.)

(2.b) Construct the graph Gi+1 by adding the following edges to Gi: for any pair
(Ua, Ub) of leaves in H(Gi) that is formed in step (1), pick an arbitrary vertex from
G which is a leaf in the subtree of wa in ESTi and an arbitrary vertex from G which
is a leaf in the subtree of wb in ESTi and connect them by an edge.

(3) Compute the extreme-sets tree ESTi+1 for the graph Gi+1 by updating ESTi.
Handling the case of an odd number of leaves in H(Gi). If the number of leaves

in H(Gi) is odd at some phase other than the last one (that is, i < δ), then at the
end of step (1), there will be some leaf Ua that participates in two different pairs (i.e.,
two new edges have to be attached to Ua). Note that Φ(ua) ≥ 2 since this is not the
very last stage of the algorithm. For this leaf, in step (2.a) we select two nodes, wa1

and wa2
, from the subtree of ua and associate each one with a different pair. Then

step (2.b) can be performed as before. wa1
and wa2

are selected as follows: First, find
a node wa in the subtree of ua such that (i) Φ(wa) ≥ 2 and (ii) Φ(z) < 2 for every
child z of wa. (Since i < δ − 1, Φ(ua) ≥ 2, so this is always possible.) If wa is a leaf,
then define wa1 ≡ wa and wa2 ≡ wa. Otherwise, let z1 and z2 be two children of wa
with the largest edge demand among wa’s children: for j = 1, 2, find a node waj in
the subtree of zj , possibly zj itself, such that (i) Φ(waj) > 0 and (ii) Φ(z) = 0 for
every child z of waj . This is similar to the rule of (2.a). Note that only three cases
are possible: (a) Φ(z1) = 0, Φ(z2) = 0; (b) Φ(z1) = 1, Φ(z2) = 0; (c) Φ(z1) = 1,
Φ(z2) = 1. This fact will be important later.

4.4. Optimality of the algorithm.
Theorem 4.3. Starting with any graph G and edge connectivity λ, the connec-

tivity of Gδ at the end of algorithm Aug-δ is λ+ δ.
Proof. At each phase i of the algorithm, 1 ≤ i ≤ δ, the set of new edges that are

added to Gi−1 is a set of edges which could have been added by algorithm Aug-1
when applied to Gi−1. Hence the connectivity of the resulting graph Gi has increased
by one, so the connectivity of Gδ is λ+ δ.

Theorem 4.4. Let Φ(ESi) be the edge demand of the partition ESi defined by
the extreme-sets tree of Gi. The number of edges added by algorithm Aug-δ is exactly
dΦ(ES0)/2e.

Proof. We will show in Theorem 4.9 that if li new edges are added at the ith
phase of the algorithm, i = 1, . . . , δ − 1, then Φ(ESi) = Φ(ESi−1)− 2li. At the last
phase, lδ = dΦ(ESδ−1)/2e since at most one endpoint (the last one) may be added
without satisfying a demand. Applying the argument repeatedly, we get that the total
number of edges that are added over all phases is dΦ(ES0)/2e.

The key to the optimality of algorithm Aug-δ is therefore Theorem 4.9, which
states that the edge demands of successive extreme sets trees are decreased by the
“right” amount, i.e., by twice the number of edges added at each phase. The cor-
rectness of this theorem follows from a sequence of lemmas that are also used for
the derivation of the running time of the algorithm. We now state and prove these
lemmas.

1150 D. NAOR, D. GUSFIELD, AND C. MARTEL

���� ����
����

���� ����
����

W

U

. . . W

U

. . .
�
�
�
�
��

�
�
�
�
��

k → k + ε k → k + 2

k + ε→
k + ε k + 1→

k + 1 or
k + 2case (a) case (b)

Fig. 5. Lemma 4.6; W and U are represented as nodes in the tree.

Observation 4.2. Every nonextreme set Z ⊂ V such that d(Z) = k contains a
k′-extreme set W , where k′ ≤ k.

Proof. Z is nonextreme; therefore, it contains a subset Z ′ ⊂ Z with d(Z ′) ≤ k.
If Z ′ is extreme, then the lemma follows (W ≡ Z ′); otherwise, repeat this argument
on Z ′. The process terminates and eventually finds a subset of Z which is also an
extreme set since a singleton is by definition an extreme set.

Observation 4.3. If W is an extreme set in Gi−1, then at the end of the ith
phase of Aug-δ, the degree of W can increase by at most 2.

Proof. First, suppose that the number of leaves in H(Gi−1) is even. Every leaf
in H(Gi−1) gets one new endpoint attached to it, so the degree of every (λ+ i− 1)-
extreme set in Gi−1 is increased by one by the end of the ith phase. If W is extreme,
then by Lemma 4.2, it can be contained in at most one (λ + i − 1)-extreme set. If
W is not contained in any (λ + i − 1)-extreme set, then its degree does not change;
otherwise, its degree increases by one only if the endpoint of the new edge is also
in W , and it remains unchanged otherwise. If the number of leaves in H(Gi−1) is
odd, then exactly one leaf gets two new endpoints attached to it; the same arguments
follow in this case.

The next two lemmas are cornerstones in the proof of optimality and the time
analysis of the algorithm.

Lemma 4.5. If U is an extreme set in Gi+1, then it must have been an extreme
set in Gi.

Lemma 4.6. A set U is k-extreme in Gi but not extreme in Gi+1 if and only if
one of two cases (summarized in Figure 5) occurs:

(a) in Gi there is a (k+ ε)-extreme set W , W ⊂ U , ε = 1 or 2, such that in Gi+1

the degree of U is k + ε, but the degree of W remains k + ε.
(b) in Gi there is a (k+ 1)-extreme set W , W ⊂ U , such that in Gi+1 the degree

of U is k + 2, but the degree of W either remains k + 1 or changes to k + 2.
The proofs of these lemmas assume without loss of generality that i = 0, and we

denote by G and G′ the graphs G0 and G1, respectively. Also, for X ⊂ V , denote by
d(X) and d′(X) the degrees of X in G and G′, respectively.

Proof of Lemma 4.5. We show the contraposition of the lemma. That is, we show
that if U is nonextreme in G, then U contains a subset W ⊂ U such that in G′,
d′(W) ≤ d′(U); hence U must remain nonextreme in G′.

Clearly, only new edges that are added to G at the current step may change the
degree of U relative to its subsets. Also, if all new edges that are attached to vertices
in U are connected across U , i.e., their other endpoint is not in U , then the degree
of any subset of U can increase by at most the degree increase of U ; so U , which is
nonextreme in G, remains nonextreme in G′. Therefore, we need consider only the

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1151

case where there is at least one new edge (x, y), x, y ∈ U .
Let S be the λ-extreme set that the edge (x, y) crosses such that d′(S) = d(S)+1.

Recall that a new edge always connects two λ-extremes, and since the degrees of all
but one λ-extreme are increased by one, such an S must exist. By the definition of
S and U , S ∩U 6= ∅, and also U 6⊆ S (since (x, y) crosses S but not U). Hence either
S ⊂ U or S and U properly intersect.

1. S ⊂ U : this is an easy case since S is a subset of U with degree d′(S) = λ+ 1,
but d′(U) ≥ λ+ 1 (the connectivity of G′ is λ+ 1), so U is not extreme in G′.

2. S properly intersects U : again, there are two cases to consider.
2.1. If S ∪ U = V , then d′(U ∩ S) = d′(S) = λ + 1; but d′(U) ≥ λ + 1 and

(U ∩ S) ⊂ U , so U is not extreme in G′.
2.2. If S ∪U ⊂ V , then V is divided into four nonempty quadrants S ∩U , S ∩U ,

S ∩ U , and S ∩ U . We number them as quadrants 1, 2, 3, and 4, respectively, and
let dij be the number of edges between quadrant i and quadrant j, 1 < i, j < 4
(dij = dji). See Figure 3, replacing X with S and Y with U .

Since S is an extreme set in G, d(S ∩ U) > d(S), or

d21 + d23 + d24 > d14 + d13 + d42 + d23

=⇒ d21 > d14 + d13,

which implies that

d21 > d14 − d13

since all dij ’s are nonnegative. Adding (d24 + d34), we get

d21 + d24 + d34 > d14 − d13 + d24 + d34

or

d21 + d24 + d13 + d34 > d14 + d24 + d34,

that is, d(U) > d(S ∩ U). Hence S ∩ U is a subset of U with degree (in G) strictly
smaller than U . The only new edges that can make the degree of S ∩ U greater or
equal to the degree of U are the ones that cross S ∩ U but not U , i.e., edges between
S ∩U and S ∩U . But these edges also cross S, and we know that there is exactly one
new edge that crosses S (since d′(S) = d(S) + 1). Therefore, there can be at most
one new edge between S ∩ U and S ∩ U , so d′(U) ≥ d′(S ∩ U). This shows that U is
not extreme in G′.

Proof of Lemma 4.6. Let U be an extreme set in G which is no longer extreme
in G′ and d(U) = k; that is, there exists Z ⊂ U with d′(Z) ≤ d′(U), but since U is
extreme in G, d(Z) > d(U). For that to happen, the degree of U must increase; but
by Observation 4.3, it can increase by at most 2. Consider all possible cases.

d′(U) = k + 1: Since d(Z) > k and d′(Z) ≤ k + 1, d(Z) = d′(Z) = k + 1. (d(Z)
was not increased at that phase.) We now show that case (a) of the lemma with ε = 1
must hold. If Z itself is a (k + 1)-extreme set in G, then we are done; otherwise, by
Observation 4.2, Z contains an extreme set W with d(W) ≤ k + 1. But W is also a
subset of U , and U is k-extreme, so d(W) = k + 1, and the claim follows.

d′(U) = k+ 2: Since d(Z) > k and d′(Z) ≤ k+ 2, either d(Z) = k+ 2 and no new
edges are attached to Z or d(Z) = k + 1 and zero or one new edges are attached to
Z. We now show that either case (a) with ε = 2 or case (b) of the lemma must hold.

1152 D. NAOR, D. GUSFIELD, AND C. MARTEL

If d(Z) = k + 2 and Z is extreme in G, then case (a) with ε = 2 holds; if Z is not
extreme, it contains an extreme set W with d(W) ≤ k + 2. But U is k-extreme and
W is also contained in U , so d(W) = k + 1 or d(W) = k + 2; since no new edges are
attached to W , cases (a) or (b) hold. If d(Z) = k+ 1, then case (b) holds since either
Z is extreme or Z contains an extreme set W with d(W) = k+ 1 in G; in both cases,
the degree of the extreme set increases by 0 or 1.

Constructing ESTi+1 from ESTi. Lemmas 4.5 and 4.6 show how to obtain
ESTi+1 from ESTi. They show that no new nodes can be created (Lemma 4.5)
and that the rule for removing nodes from ESTi+1 is simple (Lemma 4.6). Given
ESTi and the set of new edges that are added at step i, first compute the new degrees
of all sets that are tree nodes; then traverse ESTi from the root downwards and look
for any degree violation of the form described in Lemma 4.6, namely, either case (a)
or (b) in Figure 5. If such a violation is detected at node u of the tree, then u is
removed and its children are attached to its parent; this operation is called a node re-
moval. The rest of the tree remains the same. Note that all we do is check the degrees
of nodes in the tree, without considering other subsets of V , and this observation is
what makes the (dynamic) computation of successive extreme-sets trees much more
efficient than recomputing a new tree at each iteration.

Relating Φ(ESi) to Φ(ESi−1). Let T and T ′ be the extreme-sets trees of Gi−1

and Gi, respectively, where r and r′ are their corresponding roots. Also, for every set
X ⊂ V , d(X) and d′(X) are the degrees of X in Gi−1 and Gi respectively. For a node
x in a tree, Φ(x) is the edge demand of x in Gi−1 and Φ′(x) is the edge demand of x
in Gi. First, assume that Φ(ES0) is even so that every new edge satisfies a demand
of some extreme set. We will handle the odd case later.

Lemma 4.7. If x is a node in T other than the root and ε new edges are attached
to vertices in X (ε = 0, 1, 2), then

Φ′(x) =

{
0 if Φ(x) = 0,
Φ(x)− ε if Φ(x) > 0.

Proof. For any node x other than the root, if a new edge is attached to some
vertex in X, then its other endpoint is not in X. This is true since a new edge
always connects two vertices that belong to two different leaves in H(Gi−1), and all
the vertices in X belong in the same leaf in H(Gi−1). Hence the quantity λ+δ−d(X)
decreases by ε. This fact is used below.

The lemma is proved by induction on the distance of x from the bottom of the
tree. For a leaf x, if ε = 0, 1, then the lemma follows immediately since Φ(x) =
max{0, λ+ δ − d(X)}; if ε = 2 for a leaf x, then Φ(x) ≥ 2, so the lemma also follows.

For an internal node x, let y1, y2, . . . be its children, so Φ(x) = max{0, λ + δ −
d(X),

∑
i Φ(yi)}. Clearly, if Φ(x) = 0, then Φ′(x) = 0; otherwise, Φ(x) = max{λ +

δ − d(X),
∑
i Φ(yi)}.

First, consider the case where only one edge is attached to X (ε = 1). If the
new edge is attached to a vertex in yj for some j and Φ(yj) = 0, then

∑
i Φ(yi) = 0

(since by the rule of step (2.a), if Φ(yj) = 0 and ε = 1, then the demand of all of yj ’s
siblings must also be zero). Hence Φ(x) = λ+ δ− d(X) and clearly Φ′(x) = Φ(x)− ε.
Otherwise, if Φ(yj) > 0, then by the induction hypothesis Φ′(yj) = Φ(yj) − ε, so∑

i Φ′(yi) =
∑
i Φ(yi) − ε. Combining the two cases, we get that Φ′(x) = max{λ +

δ − d′(X),
∑
i Φ′(yi)} = Φ(x)− ε.

Now suppose that two edges are attached to X (ε = 2). This will happen only if
Φ(x) ≥ 2. If both edges were attached to vertices in yj for some j, then it must be that

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1153

Φ(yj) ≥ 2, so by induction Φ′(x) = max{λ + δ − d′(X),
∑
i Φ′(yi)}. If the edges are

attached one to a vertex in yj and the other to a vertex in yk for some j 6= k so that
Φ(yj) = 1 but Φ(yk) = 0 or Φ(yj) = Φ(yk) = 0, then

∑
i6=j,k Φ(yi) = 0. (Refer to the

paragraph following step (3) of algorithm Aug-δ.) Therefore, Φ(x) = λ + δ − d(X),
so
∑
i Φ′(yi) = 0 and Φ′(x) = {λ+ δ− d′(X)} = Φ(x)− ε. If Φ(yj) + Φ(yk) ≥ 2, then

the lemma follows inductively.
If Φ(ES0) is even, then every node x which is an immediate child of the root that

gets a new edge attached to it must be a leaf in the cactus. The demand of a cactus
leaf is always at least one; moreover, if Φ(ES0) is even and two edges are attached
to some cactus leaf, then it must be that its demand is at least two. (In fact, the
only case where two edges are attached to a cactus leaf but its demand is one is when
Φ(ES0) is odd and the very last edge is attached.) Hence Φ(x) ≥ ε for every node x
which is an immediate child of the root. Therefore, a corollary of Lemma 4.7 is that
Φ′(r) = Φ(r)−2li, where li is the number of new edges added by the algorithm at the
ith phase. The edge demand of the root is defined as the sum of the demands of its
children, and every new endpoint reduces the demand of some child by one; the total
decrease in the demand of T is therefore 2li. We now show that the total decrease in
the demand of T ′ is also 2li.

Lemma 4.8. Φ′(r′) = Φ′(r).
Proof. T ′ is obtained from T by a sequence of node-removal operations. Let

α(x) = (λ+ δ)− d′(X). By Lemma 4.6, x is in T but not in T ′ if it has a child w (in
T) such that d′(W) ≤ d′(X), so α(w) ≥ α(x). Hence∑

y child of x in T

Φ′(y) ≥
∑

y child of x in T

α(y) ≥ α(w) ≥ α(x).

Since Φ′(x) = max{α(x),
∑
y child of x Φ′(y)} and

∑
y child of x Φ′(y) ≥ α(x), we get

that Φ′(x) =
∑
y child of x Φ′(y). Hence the removal of x from T does not change the

edge demand of its parent since x’s children are attached to its parent. In general,
node removals do not affect the edge demand of any of the remaining nodes, including
the root, so Φ′(r) = Φ′(r′).

Theorem 4.9. Assume that either Φ(ES0) is even or we are at any phase i < δ.
If Φ(ESi) is the edge demand of the partition ESi defined by the extreme-sets tree of
Gi and li new edges are added at the ith phase of algorithm Aug-δ, then Φ(ESi) =
Φ(ESi−1)− 2li.

Proof. Lemma 4.7 implies that Φ′(r) = Φ(r) − 2li, and by Lemma 4.8, Φ′(r) =
Φ′(r′), so Φ′(r′) = Φ(r) − 2li. Since the edge demand of the partition defined by a
tree equals the edge demand of its root, the theorem follows.

Now assume that Φ(ES0) is odd. In this case, the very last edge that is added at
phase i = δ does not satisfy a demand of a leaf in the cactus. Hence at that phase,
Φ(ESi) = 0, and Φ(ESi−1)+1 = 2li, so over all phases we have Φ(ES0)+1 =

∑
i 2li.

4.5. Time analysis of algorithm Aug-δ. Algorithm Aug-δ repeatedly ap-
plies algorithm Aug-1 to the graph and maintains the correct extreme-sets tree at
each phase. The major issue is therefore the computation of the tree in each phase.
In section 4.4, we showed that ESTi+1 can be obtained from ESTi by a sequence of
node-removal operations. A node that needs to be removed is identified by a simple
criteria based on the degrees of its children in the tree, namely that the minimum
degree of its children is greater than its own degree. Hence ESTi+1 can be computed
from ESTi by two traversals of the tree: the first, a bottom-up traversal, updates the
new degrees of the tree nodes, and the minimum degree of the children is propagated

1154 D. NAOR, D. GUSFIELD, AND C. MARTEL

upwards; then in a top-down fashion, if a node is to be removed, its children are
attached to its parent. Note that the new degrees need not be recomputed from the
graph but only updated, i.e., the addition of an edge (u, v) increases the degree of u
and v by one. This information is propagated towards the upper nodes during the
tree traversal, so it takes time linear in the size of the tree. The top-down traversal
may redirect every edge in the tree exactly once; hence it also takes time linear in the
size of the tree. In summary, ESTi+1 can be obtained from ESTi in linear time (the
size of the tree is O(n)).

We now show how to compute EST0. The definition of extreme sets does not lend
itself to an efficient computation since it requires the inspection of the degrees of all
of its subsets. Fortunately, it turns out that extreme sets are highly structured and
closely related to another type of sets, maximal-edge-connected components, which
can be found relatively easily.

Define C(i, j) as the minimum cut value between vertices i and j inG. We say that
a set U is a maximal l-edge-connected component if and only if (i) l = mini,j∈U C(i, j)
and (ii) for any v 6∈ U , i ∈ U , C(i, v) < l.

Lemma 4.10. Every k-extreme set U (d(U) = k) is a maximal l-edge-connected
component for some l. (There is no relation between l and k.)

Proof. Let U be a k-extreme set, let v 6∈ U and i ∈ U , and define l = mini,j∈U C(i, j).
If l > k, then since (U,U) is a cut that separates v from i for any v 6∈ U and i ∈ U and
since d(U) = k < l, C(i, v) < l, so U is a maximal l-edge-connected component. The
more difficult case is when l ≤ k. Define (X,X) to be some cut of size l that separates
two vertices i, j ∈ U . (Such a cut exists since l = mini,j∈U C(i, j).) Since X 6⊂ U
(otherwise, U is not k-extreme) yet X splits U , U and X must properly intersect.
Also, X ∪ U 6= V since otherwise d(U ∩ X) = d(X) = l ≤ k, (U ∩ X) ⊂ U , which
contradicts our assumption that U is not k-extreme.

In summary, X and U must properly intersect and their intersection divides V
into four nonempty quadrants, X ∩ U , X ∩ U , X ∩ U , and X ∩ U , numbered 1, 2, 3,
and 4 respectively. As before, let dij , 1 ≤ i, j ≤ 4, be the number of edges between
quadrants i and j. We will now show that d(U ∩ X) < l and that d(U ∩ X) < l.
Hence for any v 6∈ U (v is either in (U ∩X) or in (U ∩X)), there exists a cut of size
< l that separates it from any i ∈ U , so the claim follows.

Note that since U is k-extreme, we have d(U ∩X) > k,

d12 + d13 + d14 > k = d12 + d13 + d42 + d43

=⇒ d14 > d42 + d43

=⇒ d14 − d42 > d43

=⇒ d14 + d42 ≥ d14 − d42 > d43,(3)

and also d(U ∩X) > k,

d14 + d24 + d34 > k = d12 + d13 + d42 + d43

=⇒ d14 > d12 + d13

=⇒ d14 − d13 > d12

=⇒ d14 + d13 ≥ d14 − d13 > d12.(4)

Adding d31 + d32 to both sides of equation (3), we get

d(U ∩X) = d34 + d31 + d32 < d14 + d42 + d31 + d32 = d(X) = l,

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1155

that is, d(U ∩X) < l. Adding d23 + d24 to equation (4), we get

d(U ∩X) = d12 + d23 + d24 < d14 + d13 + d23 + d24 = d(X) = l,

that is, d(U ∩X) < l.
A subset U is simply called a maximal component if it is a maximal l-edge-

connected component for some l. Note that while we have shown that all extreme
sets are maximal components, it is not the case that all maximal components are
extreme sets. Lemma 4.10 is the key to efficiently computing the initial extreme-sets
tree EST0 since maximal components are relatively easy to find. Maximal components
form a hierarchical structure that can be represented by a tree, the MCC tree, since
any two maximal components are either disjoint or contained in one another. This
hierarchical structure is implied, for example, by the famous result of Gomory and
Hu [13], as explained in the next paragraph. MCC is a rooted tree whose leaves are
the vertices of G. Each node u in the tree represents a subset U ⊆ V which consists
of the leaves in the subtree of the u. u is a node in MCC if and only if U is a maximal
l-edge-connected component for some l.

One can efficiently compute the MCC tree from an equivalent-flow tree of G. An
equivalent-flow tree is a weighted tree whose vertex set is V , and for any i, j ∈ V , the
minimum weight edge on the path from i to j in the tree is the value of the minimum
cut between i and j in G. An equivalent-flow tree can be constructed with n − 1
max-flow computations [13, 18]. The next procedure finds the MCC tree of G from
an equivalent-flow tree of G. As it builds MCC it keeps at each node u of the tree
built so far a partial equivalent flow tree Tu (the equivalent flow tree of the vertices
in U).

• Initially, MCC contains a single node r (root) that corresponds to V , the
vertex set of G. V is a λ-maximal edge-connected component. Associate with this
node the equivalent-flow tree of the entire graph, Tr.

• Let u be a node in MCC that contains more than one vertex from V , U ⊆ V
be the set of vertices in u, and Tu be the equivalent-flow tree associated with U .
Remove from Tu all edges with the smallest weight, and let Tu1

, Tu2
, . . . be the subtrees

created as a result of this operation. Ui ⊂ U is the set of vertices in Tui . For each
subset Ui, create a new tree node ui that contains vertices Ui, and make it a child of
u in MCC. Ui is now a k-maximal edge-connected component, where k is the smallest
edge weight in the subtree Tui , and the equivalent-flow tree associated with ui is Tui .

• Repeat this process until all tree nodes contain singletons (which are the
leaves of MCC).

By Lemma 4.10, if U is extreme, then it must be a maximal edge-connected
component and hence must appear as a node u in MCC. By Observation 4.2, if U is
a maximal k-edge-connected component but is not extreme, then it must contain an
extreme set W such that d(W) ≤ d(U), so W is also a maximal k′-edge-connected
component for some k′ > k. Therefore, W must appear as a node in the subtree of
u in the MCC tree and indicates that u and its corresponding set U is not extreme.
Note that every leaf in MCC is a singleton and hence an extreme set.

In summary, EST0 is a partial tree of MCC, i.e., some of MCC’s internal nodes
are missing from it. To find and remove these internal nodes, compute the degrees
d(W) of all nodes w in MCC. Then in a bottom-up fashion, determine for each
internal node u whether all nodes in its subtree are of degrees greater than d(U); if
not, then remove u from the tree and attach its children to u’s parent. The resulting
tree is EST0. Since the computation of MCC is dominated by the n − 1 maximum-
flow computations required to construct the equivalent-flow tree and since EST0 can

1156 D. NAOR, D. GUSFIELD, AND C. MARTEL

be constructed from MCC in O(nm) time (the degrees of the tree nodes must be
computed), we get the following result.

Corollary 4.11. Let G be a simple graph. The extreme-sets tree EST0 of
G can be computed in O(nF (G)) time, where F (G) is the time to compute a single
maximum flow in G. Since G is undirected and unweighted, the time to compute
EST0 is O(m3/2n) [8, 2].

The next lemma is an extension of the edge connectivity algorithm of [31] to
multigraphs. It also implies that the edge connectivity of an undirected, edge-weighted
graph is computable in O(Pm) time, where P =

∑
v∈V p(v) and p(v) is the maximum

capacity of all edges incident at v, provided that the weights are integers. Note that
in a simple graph, P = n, yielding the original result of [31]. The proof of the lemma
is included in Appendix A since it is not directly relevant to the paper.

Lemma 4.12. For vertices u and v, let c(u, v) be the number of edges between u
and v, and p(v) = maxu∈V {c(u, v)}. Define P =

∑
v∈V p(v). Let m be the number of

pairs of vertices which are connected by some edge in G. The edge connectivity of G
and its representation H(G) can be computed in time O(Pm).

Theorem 4.13. For any δ > 0, algorithm Aug-δ optimally solves the edge
augmentation problem in time O(δ2nm+ δ3n2 + n5/3m).

Proof. Let P ′, p′, and m′ be the corresponding values of P , p, and m at the current
phase of the algorithm. If the initial graph G is simple, then at the end of algorithm
Aug-δ, p′(v) ≤ δ + 1 for all v. This is because at each iteration, algorithm Aug-1
adds at most one new edge between a fixed pair of vertices (that is, for some pair u, v,
Aug-1 will never add two or more edges between them). Hence at the end of the
algorithm, P ′ =

∑
v∈V p

′(v) ≤ n(δ+1) ≤ 2δn. Also, the algorithm adds at most δn/2
new edges throughout the phases (at most n/2 at each phase), so at the end of the
algorithm, m′ ≤ m+δn/2. By Lemma 4.12, the construction of H(Gi) at each phase is
bounded by O(P ′m′) = O(δnm+δ2n2), yielding O(δP ′m′) = O(δ2nm+δ3n2) overall.
Computing the initial extreme-sets tree EST0 requires O(nF (G)) time, and ESTi can
be computed from ESTi−1 in O(n) time. Hence we get O(nF (G)) = O(n5/3m) for
the initial computation, plus O(δ2nm + δ3n2) for the computations throughout the
phases.

4.6. Relation between algorithm Aug-δ and Watanabe and Nakamura’s
algorithm. In the presentation of the algorithm in this paper, we have discussed
some of its similarities to the algorithm of Watanabe and Nakamura (as presented in
[36, 35]). In this section, we elaborate on the similarities and differences between the
two approaches.

(i) Watanabe and Nakamura [36] provided the first polynomial algorithm for
the general augmentation problem. This algorithm adds an edge at a time and tests
(according to a well-defined criteria) that this edge can be extended to an optimal
solution. Later, in his technical report, Watanabe [35] proved that the algorithm can
be sped up by finding at once a set of edges which optimally increase the connectivity
by one and which can be extended further.

The main idea employed by our algorithm Aug-δ is to extend the simple and effi-
cient approach developed in algorithm Aug-1 (section 3) in order to solve the general
problem of augmentation by δ. Section 4 shows that the idea can be implemented
correctly and efficiently.

Hence both approaches find successive optimal augmentations by one until they
reach the desired connectivity. However, they differ in the method by which they select
an optimal augmentation by one that can be extended further. Moreover, we were

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1157

specifically interested in those augmentations by one that can be found by algorithm
Aug-1 via the use of the cactus graph and the DFS enumeration.

(ii) The hierarchical structure of maximal connected components, which we call
MCC in the paper, is used in both algorithms. However, the MCC is a major com-
ponent in the algorithm of Watanabe and Nakamura, whereas in our algorithm it is
used only as an auxiliary tool to efficiently construct the main data structure in our
algorithm, the EST tree (in fact, only to construct EST0).

Specifically, extreme sets, and the extreme-sets tree, are key objects in our algo-
rithm. (Note that they are not defined or used in [36, 35].) They can be intuitively
related to the notion of edge demand, and our algorithm uses them extensively to
guide the selection at each phase of our algorithm. Unfortunately, the definition of
extreme sets does not lend itself to a practical implementation since it requires test-
ing the degrees of all subsets of a given set. By observing the relationship between
extreme sets and maximal connected components (section 4.5), we were able to use
the MCC tree in order to devise an efficient method to construct the first extreme sets
tree EST0. This relationship also implies that various properties of extreme sets (for
example, the one proved in Lemma 4.2) can also be proved indirectly via maximal
connected components.

(iii) Finally, at a high level, our proof method resembles the proof method of
[36]. Both follow the following steps: (1) use the lower bound observation to derive
a lower bound that is implied by some partition; in our case, we use the extreme-
sets partition. This is also the first step in the proofs of [9, 5]. For that we use the
definition of Φ(x) which was introduced in [36]. (2) show that the addition of x new
edges to the graph decreases this lower bound by x. (3) show that at the end of the
algorithm, the connectivity has gone up by the desired amount.

5. Variations on the edge augmentation problem.

5.1. The no-target problem. Suppose that the target connectivity is not known
or given in advance; instead, the goal is to augment the graph, possibly several times,
so that for any intermediate connectivity, the augmentation is optimal. Our solution
can be adapted to solve the augmentation problem even if the target increment δ is
not known in advance by introducing a simple modification to step (2.a) of algorithm
Aug-δ. In both cases, the algorithm first finds the node ua that corresponds to the
set Ua which is a leaf in H(Gi) and then selects a vertex in Ua to be the endpoint of
the new edge. The algorithms differ in the criteria by which this vertex is selected.
If the target δ is known in advance, then the vertex in Ua is selected according to
criteria A as follows:

Start at node ua. As long as the edge demand of the current node is
positive and the current node is not a leaf, pick a child whose edge
demand is positive and make it the current node. If no such child
exists and the current node is not a leaf yet, pick an arbitrary leaf in
its subtree.

If the target δ is not known, then the vertex in Ua is selected according to criteria B
as follows:

Start at node ua. As long as the current node is not a leaf, pick the
child with the smallest degree and make it the current node.

Observation 5.1. Let G be a graph with connectivity λ. For any δ ≥ 1, if
K ≡ λ + δ and u is a node in the extreme-sets tree, then Φ(u) > 0 if and only if
d(U) < K.

1158 D. NAOR, D. GUSFIELD, AND C. MARTEL

Proof. The proof is by induction on the height of the subtree rooted at u. For a
leaf u, the claim follows immediately since Φ(u) = K − d(U). For an internal node
u, if d(U) < K, then clearly Φ(u) ≥ K − d(U) > 0. Now suppose that Φ(u) > 0
but d(U) ≥ K: for any child w of u, d(W) ≥ d(U) ≥ K since W is a subset
of U and U is an extreme set. Hence by the induction hypothesis, Φ(w) = 0, so
Φ(u) = max{0,K − d(U),

∑
w Φ(w)} = 0, a contradiction.

Theorem 5.1. Criteria B correctly modifies algorithm Aug-δ to solve the edge
augmentation problem when δ is not known.

Proof. Suppose that the algorithm is run using criteria B, stops when a connec-
tivity K = λ+ δ is reached (for any δ), and adds a set of new edges E′. We show that
the algorithm that uses criteria A and δ as a target could have picked exactly the
same set of new edges E′. Since the latter was shown to be correct and optimal, the
modified algorithm is also correct and optimal for any connectivity value it reaches.

Starting at ua, follow the path chosen according to criteria B without knowing δ.
Let u be the current node along this path and w1, w2, . . . be its children. Suppose that
wj is the child with the smallest degree among u’s children and therefore is picked
to be the next node on the path. If d(wj) ≥ K, then d(wi) ≥ K for any wi, so by
Observation 5.1, Φ(wi) = 0 for all i. In that case, according to criteria A, any leaf in
the subtree of u can be picked; hence the (entire) remaining path chosen by criteria B
could have been chosen by criteria A. If d(wj) < K, then Φ(wj) > 0; but according
to criteria A, any child whose edge demand is positive may be picked, so the choice of
wj is valid in both cases. Hence the entire path could have been picked according to
criteria A, so the endpoint of the new edge is properly chosen. This argument applies
for any new edge in E′.

The converse problem. The solution to the problem of increasing the connectivity
of G as much as possible by adding at most k edges is now immediate. Apply the
modified version of Aug-δ using criteria B (with no δ in mind) until k new edges are
used. The connectivity at that point is the solution to the converse problem.

5.2. The node-weighted problem. Frank [9] first formulated and solved the
following variant of the edge augmentation problem. Suppose that there is a non-
negative cost c(v) associated with every vertex v ∈ V and that the cost of adding
a new edge (x, y) to G is c(x) + c(y). The goal is to find the minimum-cost set of
edges to add to G in order to make it (λ + δ)-edge-connected. The solution in [9]
was proved using polymatroid theory, and it extends to more general instances of the
problem. We now show that algorithm Aug-δ can be adapted in a very natural way
to optimally solve the node-weighted version of the edge augmentation problem for
undirected graphs. Since the edge demand Φ(X) of any subset of vertices X ⊂ V
must be satisfied, dΦ(ES)/2e, the lower bound defined by the extreme-sets partition
on the number of edges that need to be added to G, still holds. We establish a lower
bound on the cost of the solution to the node-weighted problem and then show how
to find a set of edges whose cost equals this lower bound. It will be shown that the
minimum node-weighted solution is also optimal with respect to the number of edges
it adds, i.e., it is the minimum node-weighted solution among all possible solutions
that add exactly dΦ(ES)/2e new edges.

Let x be a node in the extreme-sets tree, X ⊂ V be the set of vertices in G that
are leaves in the subtree of x, and Φ(x) be its edge demand. Recursively define Ψ(x),
the min-cost edge demand of x, as

Ψ(x) =
∑

y child of x

Ψ(y) + max

{
0,

(
λ+ δ − d(X)−

∑
y child of x

Φ(y)

)}
Cmin(X),

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1159

where Cmin(X) = minv∈X{c(v)} (the minimum node cost among all vertices in X).
The min-cost edge demand of the root r is defined as Ψ(r) =

∑
y child of r Ψ(y).

Intuitively, Ψ(x) is a lower bound on the cost of the edges that are “missing” from X:
every subset Y of X that requires Φ(y) edges contributes at least Ψ(y) to the total
cost; the rest of the missing edges from X, max{0, (λ+δ−d(X))−

∑
y child of x Φ(y)},

may be connected to any vertex in X, so they contribute at least Cmin(X) per edge.
Note that if c(v) = α for every v, then Ψ(r) = αΦ(r).

Clearly Ψ(ES) is a lower bound on the cost of the optimal solution, where ES is
the extreme-sets partition of G. This lower bound can be achieved if the following
criteria, criteria C, is employed instead of the original criteria A in step (2.a) of
Algorithm Aug-δ:

Start at node ua in the tree. As long as the edge demand of the
current node is positive and the current node is not a leaf, pick a
child whose edge demand is positive, and make it the current node;
otherwise, pick the minimum-cost leaf in the subtree of the current
node.

Since criteria C is a restricted version of criteria A, the solution obtained by
running Aug-δ with criteria C is also optimal with respect to the number of new
edges it adds.

Theorem 5.2. Criteria C correctly modifies algorithm Aug-δ to solve the node-
weighted version of the edge-augmentation problem.

Proof. We have to show that at each phase Ψ(ESi) drops by the total cost of the
new edges added in that stage. The proof is essentially similar to the one given in
section 4.4. The analogue of Lemma 4.7 is that if c(εx) is the total cost of the new
endpoints attached to X, then Ψ′(x) = Ψ(x) − c(εx); to prove the analogue lemma,
one needs to observe that in the bottom of the induction, if x is a leaf in T , then
c(εx) = εc(x), where ε is the number of new endpoints attaches to X. The analogue
of Lemma 4.8 replaces Φ with Ψ, and the proof is similar. The corollary is that the
total cost of the solution is Ψ(ES), and hence it is the minimum-cost solution.

5.3. The degree-constrained problem. We now show that our algorithm can
be extended in a natural way to solve another variant of the edge augmentation
problem which was first formulated and solved by Frank [9]. Suppose that there are
constraints g(v) and f(v) associated with the degree of every vertex v ∈ V . The
degree-constrained augmentation problem is to add the smallest number of edges to
the graph and increase its connectivity by δ, subject to the constraints that the degree
of v in the resulting graph does not exceed g(v) and is not below f(v). There is not
always a solution to this problem. Frank gave a necessary and sufficient condition
for this problem and an O(n5)-time algorithm to solve it. We consider a restricted
case of this problem, where only the g(v) is specified, i.e., f(v) = 0 for all v, and
give a necessary and sufficient condition for the problem to be solvable, expressed in
terms of our algorithm. If the condition is met, then a minor addition to algorithm
Aug-δ produces a solution to the degree-constrained version. The running time of
the modified algorithm remains O(δ2nm + δ3n2). Recall the extreme-sets partition
ES defined by the extreme-sets tree EST of G. Clearly, dΦ(ES)/2e is a lower bound
on the number of edges required to solve the problem.

Theorem 5.3. Let Φ(x) be the edge demand of x, and let x1, . . . , xr be the
immediate children of the root of the EST tree. The degree-constrained augmentation
problem is solvable if and only if

1160 D. NAOR, D. GUSFIELD, AND C. MARTEL

1. for every node x in EST,∑
v∈X

g(v)− d(v) ≥ Φ(x),

2. if Φ(ES) is odd, then∑
v∈S

g(v)− d(v) ≥ Φ(ES) + 1,

where S = {v ∈ Xi, i = 1, . . . , r|Φ(xi) > 0}.
Moreover, if the problem is solvable, then the optimal solution adds dΦ(ES)/2e

new edges.
Proof. If for some X ⊂ V ,

∑
v∈X(g(v) − d(v)) < Φ(x), then no solution can

satisfy the edge demand of X under the degree constraints, so the necessity of this
condition is obvious. Also, if Φ(ES) is odd, then dΦ(ES)/2e edges must be added,
so the total degree increment (on all vertices) must be at least Φ(ES) + 1. Since
Φ(ES) =

∑r
i=1 Φ(xi), we get that the allowed amount of degree increment among

vertices in x1, . . . , xr must be at least Φ(ES) + 1.
Suppose that condition 1 above initially holds for every node x in EST0, and

consider the first phase of algorithm Aug-δ. First, assume that either Φ(ES) is even
or Φ(ES) is odd and we are not at the last phase of the algorithm. When applying
the algorithm, in step (2.a), start at ua; then repeat following a child whose edge
demand is positive until no such child exists. Let x be the current node. Note that
Φ(x) > 0 since the addition of every edge, other than the last edge when Φ(ES) is
odd, always satisfies some demand. If x is a leaf, simply pick it to be the endpoint
of the new edge; otherwise, instead of picking an arbitrary leaf from the subtree of x,
choose a leaf v with g(v) > d(v).

Observe that if x is a leaf, then g(x) − d(x) ≥ Φ(x) > 0, so g(x) > d(x), and a
new edge can be attached to x. If x is not a leaf, then

∑
v∈X(g(v)−d(v)) ≥ Φ(x) > 0,

so there must be some v ∈ X with g(v) > d(v), and a new edge can be attached to v.
Hence if condition 1 above holds, then the current phase of the (modified) algorithm
can be applied without violating the degree constraints. It now needs to be shown
that at the end of the current phase, conditions 1 and 2 still hold, i.e., for every node x
in the new tree, if d′(x) = d(x)+ε is its new degree, then

∑
v∈X(g(v)−d′(v)) ≥ Φ′(x),

and also
∑
v∈S g(v)−d′(v) ≥ Φ′(ES)+1 if Φ(ES) is odd. This is true since by Lemma

4.7, if Φ(x) > 0, then

Φ′(x) = Φ(x)− ε ≤
(∑
v∈X

g(v)− d(v)

)
− ε =

∑
v∈X

g(v)− d′(v),

which also implies that

Φ′(ES) + 1 =

r∑
i=1

Φ′(xi) + 1 ≤
∑
v∈S

g(v)− d′(v).

Hence if the condition holds initially, then by applying algorithm Aug-δ (with the
minor addition), the necessary condition is maintained throughout, so the algorithm
terminates.

Now consider the last phase of the algorithm when Φ(ES) is odd. Without loss of
generality, let xi be the root’s child for which

∑
v∈Xi g(v)−d(v) ≥ Φ(xi)+1 (condition

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1161

2 assures that such an xi exists). We add the following detail to the last phase of
the algorithm: In step (1) of algorithm Aug-δ, enumerate the leaves of the cactus by
assigning the number 1 to xi. (xi is necessarily a leaf in the cactus since it is a child
of the root at the last stage.) In addition, attach the last endpoint of the last edge
to some vertex v∗ ∈ Xi for which g(v∗) > d(v∗). Note that (i) there must be such
v∗ ∈ Xi and (ii) the last endpoint of the last edge can be attached to a vertex in any
leaf of the cactus other than to a vertex in the dk/2e’s leaf, where k ≥ 2 is the number
of leaves in the cactus. Since v∗ is in the first leaf, this requirement is satisfied. Hence
condition 2 of the theorem guarantees that the last phase of the algorithm can be
completed properly.

The modified algorithm adds dΦ(ES)/2e new edges, since it produces a solution
which could have been chosen for the unconstrained problem. But since this is also a
lower bound on the number of edges needed, the solution is optimal.

6. Open problems.
The augmentation problem with no parallel edges. No polynomial solution is

known for the edge augmentation problem if parallel edges are not allowed. (Our
algorithm, as well as all previous algorithms, may add parallel edges.) The state of
this problem is an interesting question.

Clearly, any λ-edge-connected graph with λ > n − 1 must have parallel edges.
At the other extreme, an unconnected graph can be made 1-edge-connected without
adding parallel edges by linking its connected components to a tree of components.
Hence if the target connectivity is either 1 or greater than n − 1, then the answer is
known. For the intermediate values, the following preliminary observations can be
made.

If the graph G is either 1- or 2-edge-connected, then many of the known algo-
rithms, such as those of [7, 36, 37], can augment it to be 3-edge-connected by selecting
nonparallel edges. This is also true for our solution: if λ = 1, 2, then any pair of leaves
in the cactus which are singletons that are connected by an edge in the graph must
also be adjacent in the DFS enumeration; but our algorithm adds edges between only
nonconsecutive leaves.

However, this is not true in general, as shown by the following sequence of graphs.
For any 3 ≤ λ ≤ n− 1, define Gλ = (Vλ, Eλ) as follows:

Vλ = {a1, . . . , aλ, b1, . . . , bλ, bλ+1, . . . , bp}

for p > λ+ 1 and

Eλ = {(ai, aj)|1 ≤ i < j ≤ λ} ∪ {(bi, bj)|1 ≤ i < j ≤ p} ∪ {(ai, bi)|i = 1, 2, . . . λ}.

That is, Gλ consists of two cliques, one of size λ and the other of size p > λ+1, together
with a set of λ edges between the cliques. The edge connectivity of Gλ is λ, and H(Gλ)
is a star with an empty node in the middle and leaves a1, a2, . . . , aλ, {b1, . . . , bp}. The
graph G3 with p = 5 is shown in Figure 6. If λ ≥ 3, then any optimal solution that
increases the connectivity of Gλ by one (i.e., adds dλ+1

2 e edges) must add a new edge
of the type (ai, aj), which already exists in Gλ.

Theorem 6.1. Any 0-, 1- or 2-edge-connected graph with ≥ 4 vertices can be
optimally augmented to a 3-edge-connected graph without adding parallel edges.

For any λ ≥ 3, there is a family of λ-edge-connected graphs on n vertices, n ≥
λ + 2, which require the addition of parallel edges when optimally augmenting to a
(λ+ 1)-edge-connected graph.

1162 D. NAOR, D. GUSFIELD, AND C. MARTEL

G3 :

(p = 5)

m
m

m
m
m

m

m

m
a1

a2

a3

b1

b2

b3

b5

b4

�
��

@
@@

�
��

@
@@

��
��
��

HHHHHH�
�
�
�
�
�A

A
A
A
A
A

H(G3) : m
m

m

m

��
��

a2

a1

a3

b1
b2b3b4
b5

�
��

@
@@ �

��

@
@@

Fig. 6. An example where an optimal augmentation by one requires parallel edges (G3 with
p = 5).

The final lemma characterizes a broad class of graphs which can be optimally
augmented by one without parallel edges. Its proof is included in Appendix B.

Lemma 6.2. If λ, the connectivity of G, is smaller than the minimum degree of
G, then G can be augmented by one without parallel edges.

Appendix A. Finding edge connectivity in a multigraph. The algorithm
of [31] finds the edge connectivity of an uncapacitated simple graph in O(nm) time.
We now show how to extend the analysis of this algorithm to multigraphs, i.e., graphs
with parallel edges. Let m be the number of pairs of vertices which are connected by
some edge. Let p(v) be the maximum number of parallel edges between v and any one
of its neighbors, and define P =

∑
v∈V p(v). Then the running time of the algorithm

is O(Pm). Note that for simple graphs, P = n; hence we obtain the original O(nm).
The algorithm of [31] for simple graphs is described and analyzed in [1] (see [12]).

The algorithm of [31]. Let v1, . . . , vn be an arbitrary ordering of the vertices of
G. Gi is the graph obtained from G by contracting the set {v1, . . . , vi} into a single
node called v0. It is easy to see that if Ci is the minimum cut between vi+1 and v0 in
Gi, then λ, the edge connectivity of G, is the smallest of all Ci. The ith phase of the
algorithm computes Ci; at the beginning of that phase, any edge of the form (v0, vj)
in Gi (vj 6= v0) is assumed to be marked, as well as the vertex vj .

Ci is computed in two stages. First, all paths of length 1 or 2 from vi+1 to v0,
which are called short paths, are found and each contributes one unit of flow to Ci.
The short paths are found by scanning the adjacency list of vi+1: every edge (vi+1, v0)
is a path of length one; an edge (vi+1, vj), where vj is a marked node, followed by a
marked edge (vj , v0) is a path of length 2. These paths remain untouched. Then all
paths of length three or more between vi+1 and v0, which are called the long paths,
are found. This is done using the original Ford–Fulkerson algorithm by successively
building residual graphs while ignoring the edges on the short paths found earlier,
finding augmentation paths, and augmenting the flow by one unit for each such path.
Observe that since every edge on a short path is connected to either v0 or vi+1, there
is never a need to undo the flow on this edge; it is therefore allowed to ignore these
edges in building the residual graphs.

At the end of the computation of Ci, Gi+1 is constructed: vi+1 is contracted with
v0, adjacency lists are updated, and all edges (vi+1, vj), vj 6= v0, that participated in
some long path are marked (including vj).

Time analysis for multigraphs. We now extend the analysis in [31] to multigraphs.
The short paths in phase i are found by scanning vi+1’s adjacency list. Hence the
total time to find all short paths over all phases is O(C), where C is the number of

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1163

edges in the graph, since every edge is scanned twice. Similarly, the time to build
G1, . . . , Gn−1 and mark the edges and vertices during all phases is O(C). Clearly,
C ≤ Pm. We now show that the time to search for the long paths is bounded by
O(Pm).

Suppose that w appears for the first time as the second vertex on a long path
during phase i and that there are xi such long paths. At the end of that phase, vi+1

is contracted with v0, w becomes adjacent to v0 from then on, and xi of its edges
are marked. Now suppose that w appears again as the second vertex on some path
during phase j, j > i. If the number of these paths is not greater than xi, then they
all must be short paths (since they will use the edges that were marked during phase
i). If the number of these paths is greater than xi, then xi of them must be short,
and the remaining xj paths will be long paths. However, xi + xj is bounded by the
number of edges between w and vj+1 and hence bounded by p(w). This argument
can be applied repeatedly, every time w appears as a second vertex on some path, so
the total number of long paths that contain w as the second vertex is at most p(w).
Therefore, the number of long paths found during the entire algorithm is bounded by
P . Since the time to search for a long path is linear in the size of the residual graph,
i.e., O(m), the long paths are found in O(Pm).

Appendix B. Augmentation with no parallel edges. We now prove Lemma
6.2, which states that a certain class of graphs can be optimally augmented by one
without parallel edges.

Lemma B.1. Let G be a graph with no parallel edges and connectivity λ > 1, and
let A, |A| > 1, be a leaf in H(G); that is, A is λ-extreme. There exists a vertex v ∈ A
whose neighbors all belong to A.

Proof. Since A is λ-extreme, d(A) = λ and d(v) > λ for any v ∈ A. If min(A) =
minv∈A{d(v)} is the minimum over all degrees of the vertices in A, then min(A) > λ.
We have

λ|A| < min(A)|A| ≤
∑
v∈A

d(v) ≤ d(A) + 2(# edges within A)

= λ+ 2(# edges within A) ≤ λ+ |A|(|A| − 1)

Hence λ|A| < λ + |A|(|A| − 1) or λ(|A| − 1) < |A|(|A| − 1). Therefore, |A| > λ
since we assumed that |A| > 1. If |A| > λ, then there must be a vertex v ∈ A that
is connected only to vertices in A since the number of edges going out of A is λ, and
this proves the lemma.

Lemma B.2. If λ, the connectivity of G, is smaller than the minimum degree of
G, then G can be augmented by one without parallel edges.

Proof. If λ is smaller than the minimum degree of G, then there are no λ-extreme
sets that are singletons. Hence Lemma B.1 assures that any pair of leaves in the
cactus H(G) can be connected by a new edge (i.e., not from the original set of edges).
Therefore, algorithm Aug-1 can always select a set of nonparallel edges that optimally
augment G by one.

Acknowledgments. We would like to thank one of the referees for pointing out
the problem with an earlier version of Theorem 5.3. We would also like to thank Prof.
Lou Hakimi for preliminary discussions on the augmentation problem.

1164 D. NAOR, D. GUSFIELD, AND C. MARTEL

REFERENCES

[1] G. M. Adelson-Velskii, E. A Dinits, and A. V. Karzanov, Flow Algorithms, Nauka,
Moscow, 1976 (in Russian).

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[3] J. Bang-Jensen and B. Jackson, Minimal augmentation and vertex splitting in mixed graphs,
Preprints 5, Institut for Matematik og Datalogi, Odense Universitet, Odense, Denmark,
1992.

[4] R. E. Bixby, The minimum number of edges and vertices in a graph with edge connectivity n
and m n-bonds, Networks, 5 (1975), pp. 253–298.

[5] G. R. Cai and Y. G. Sun, The minimum augmentation of any graph to a k-edge-connected
graph, Networks, 19 (1989), pp. 151–172.

[6] E. A. Dinits, A. V. Karzanov, and M. L. Lomosonov, On the structure of a family of
minimal weighted cuts in a graph, in Studies in Discrete Optimization, A. A. Fridman, ed.,
Nauka, Moscow, 1976, pp. 290–306 (in Russian).

[7] K. Eswaran and R. E. Tarjan, Augmentation problems, SIAM J. Comput., 5 (1976), pp.
653–665.

[8] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507–518.

[9] A. Frank, Augmenting graphs to meet edge connectivity requirements, SIAM J. Discrete Math.,
5 (1992), pp. 25–53.

[10] G. N. Fredrickson and J. JáJá, Approximation algorithms for several graph augmentation
problems, SIAM J. Comput., 10 (1981), pp. 270–183.

[11] H. N. Gabow, Applications of a poset representation to edge connectivity and graph rigid-
ity, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1991, pp. 812–821.

[12] A. V. Goldberg and D. Gusfield, Book review: Flow Algorithms, by G. M. Adelson-Velskii,
E. A Dinitz, and A. V. Karzanov, SIAM Rev., 33 (1991), pp. 306–314.

[13] R. E. Gomory and T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961),
pp. 551–560.

[14] M. Grotschel, C. Monma, and M. Stoer, Polyhedral approaches to network survivability,
Report 189, Institut fur Mathematik, Universitat Augsburg, Augsburg, Germany, 1990.

[15] M. Grotschel, C. Monma, and M. Stoer,Computational results with a cutting plane algo-
rithm for designing communication networks with low-connectivity constraints, Oper. Res.,
40 (1992), pp. 309–330.

[16] M. Grotschel, C. Monma, and M. Stoer, Facets of polyhedra arising in the design of com-
munication networks with low-connectivity constraints, Technical Report 90-40, DIMACS,
Rutgers University, Piscataway, NJ, 1990.

[17] D. Gusfield, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987), pp. 599–612.
[18] D. Gusfield,Very simple methods for all pairs network flow analysis, SIAM J. Comput., 19

(1990), pp. 143–155.
[19] D. Gusfield, A graph theoretic approach to statistical data security, SIAM J. Comput., 17

(1988), pp. 552–571.
[20] T. S. Hsu and V. Ramachandran, On finding a smallest augmentation to biconnect a graph,

Technical Report TR-91-12, University of Texas at Austin, Austin, TX, 1991.
[21] T. S. Hsu and V. Ramachandran, A linear time algorithm for triconnectivity augmenta-

tion, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1991, pp. 548–559.

[22] Y. Kajitani and S. Ueno, The minimum augmentation of a directed tree to a strongly k-edge-
connected directed graph, Networks, 16 (1986), pp. 181–197.

[23] A. Kanevsky, Graphs with odd and even edge connectivity are inherently different, Technical
Report TAMU-89-10, Texas A&M University, College Station, TX, 1989.

[24] A. V. Karzanovand E. A. Timofeev, Efficient algorithm for finding all minimal edge cuts
of a nonoriented graph, Kibernet., 2 (1986), pp. 8–12 (in Russian); Cybernetics, 2 (1986),
pp. 156–162 (in English).

[25] U. Manber, Introduction to Algorithms: A Creative Approach, Addison–Wesley, Reading, MA,
1989.

[26] D. Matula, Determining edge connectivity in O(nm), in Proc. 28th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1987, pp. 249–251.

[27] H. Nagamochi and T. Ibaraki, A linear time algorithm for finding a sparse k-connected

OPTIMALLY INCREASING THE EDGE CONNECTIVITY 1165

spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.
[28] D. Naor, The structure of minimum cuts with applications to edge-augmentation, Ph.D. thesis,

Department of Computer Science, University of California at Davis, Davis, CA, 1991.
[29] D. Naor and V. V. Vazirani, Representing and enumerating edge connectivity cuts in RNC,

in Algorithms and Data Structures, Proc. 2nd Workshop WADS, F. Dehne, J. R. Sack, and
N. Santaro, eds., Lecture Notes in Comput. Sci. 519, Springer-Verlag, Berlin, pp. 273–285.

[30] D. Naor, D. Gusfield, and C. Martel, A fast algorithm for optimally increasing the edge-
connectivity, in Proc. 31st Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 698–707.

[31] V. D. Podderyugin, An algorithm for finding the edge connectivity of graphs, Vopr. Kibernet.,
2 (1973), p. 136.

[32] A. Rosenthal, and A. Goldner, Smallest augmentation to biconnect a graph, SIAM J. Com-
put., 6 (1977), pp. 55–66.

[33] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp.
146–160.

[34] S. Ueno, Y. Kajitani, and H. Wada, Minimum augmentation of a tree to a k-edge-connected
graph, Networks, 18 (1988), pp. 19–25.

[35] T. Watanabe, An efficient augmentation to k-edge-connect a graph, Technical Report C-23,
Department of Applied Mathematics, Hiroshima University, Hiroshima, Japan, 1988.

[36] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, J. Comput. Sys-
tem Sci., 35 (1987), pp. 96–144.

[37] T. Watanabe and A. Nakamura, 3-connectivity augmentation problems, Proc. 1988 IEEE
International Symposium on Circuits and Systems, IEEE Computer Society Press, Los
Alamitos, CA, 1988, pp. 1847–1850.

GRAPH DECOMPOSITION IS NP-COMPLETE: A COMPLETE
PROOF OF HOLYER’S CONJECTURE∗

DORIT DOR† AND MICHAEL TARSI†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1166–1187, August 1997 012

Abstract. An H-decomposition of a graph G = (V,E) is a partition of E into subgraphs
isomorphic to H. Given a fixed graph H, the H-decomposition problem is to determine whether an
input graph G admits an H-decomposition.

In 1980, Holyer conjectured that H-decomposition is NP-complete whenever H is connected and
has three edges or more. Some partial results have been obtained since then. A complete proof of
Holyer’s conjecture is the content of this paper. The characterization problem of all graphs H for
which H-decomposition is NP-complete is hence reduced to graphs where every connected component
contains at most two edges.

Key words. graph, decomposition, NP-completeness

AMS subject classifications. 03D15, 68R10, 05C70

PII. S0097539792229507

1. Introduction. Given a graph H, the H-decomposition problem is stated as
follows: Can the edge set of an input graph G be partitioned into subgraphs isomorphic
to H?

Holyer [10] conjectured the NP-completeness [8] of H-decomposition whenever
H consists of at least three edges. In that wide form, the conjecture was known
to be false (assuming P 6= NP) even before it was stated. Brouwer and Wilson [4]
presented a polynomial-time algorithm for the case where H is the union of t disjoint
edges (H = tK2). Independently, Alon [1] obtained the same result after the case
of H = 3K2 was studied in details by Bialostocki and Roditty [3]. Later, Preisler
and Tarsi [15] presented a polynomial algorithm for the union of a single path of two
edges and t disjoint edges, H = P3

⋃
tK2. The case where H = P3

⋃
K2 was solved

previously by Favaron, Lonc, and Truszczynski [7]. Recently, Lonc [12] proved the
existence of a polynomial-time algorithm for the case where H = sP3 is the union of
s vertex disjoint, two-edges-long paths.

In all of the above, polynomial algorithms were found for H-decomposition in
which each connected component of H is either a single-edge- or two-edge-long path.
This led to a relaxed version of Holyer’s conjecture, restricted to graphs H which
contain a connected component with three edges or more.

Several partial results in that direction have been obtained during the last decade.
Holyer [10], [9] proved his conjecture for (H =) complete graphs, for simple paths, and
for simple circuits. Leven (unpublished) presented a proof for the case where H is a
star (a complete bipartite graph K1,n). Cohen and Tarsi [17] generalized those results
to a family of graphs which contains the set of all trees. Masuyama and Hakimi [18]
proved NP-completeness for all graphs which include a vertex of degree 1.

A related topic is the factorization problem, which is the analogous problem for
vertex partition: Determine for a fixed graph H whether an input graph G = (V,E)
contains vertex-disjoint subgraphs, isomorphic to H, such that the union of their

∗ Received by the editors April 7, 1992; accepted for publication (in revised form) August 31,
1995.

http://www.siam.org/journals/sicomp/26-4/22950.html
† School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel (ddorit@math.

tau.ac.il, tarsi@math.tau.ac.il).

1166

GRAPH DECOMPOSITION IS NP-COMPLETE 1167

vertex sets is V . Kirkpatrick and Hell [11] proved that this problem is NP-complete
(NPC) if and only if H contains at least three vertices in a connected component.

The content of this paper is a complete proof of Holyer’s conjecture, that is, a
proof of the following result.

Theorem 1.1. H-decomposition is NPC whenever H contains a connected com-
ponent with three edges or more.

We conclude this section with some notational remarks.
• Let G = (V,E) be a graph G with vertex set V = V (G) and edge set E =
E(G). For another graph G′ = (V,E′), we use G − G′ or G − E′ to denote
(V,E−E′), and for a set V ′ of vertices, we define G−V ′ = (V −V ′, E−{e ∈
E : e is incident to a vertex of V ′}).
• The graph G = (V,H) is k-connected if G− V ′ is connected for any (k − 1)-

element subset V ′ of V , and it is k-separable if it is not (k + 1)-connected.
• An H-subgraph of G is a subgraph of G which is isomorphic to H.
• If G admits an H-decomposition D, then we refer to each graph in D as a
D-part.
• Let D be an H-decomposition of G and let H ′ be a D-part. Since H ′ is

an H-subgraph, there exists an isomorphism f : V (H ′) → V (H) (select a
certain isomorphism if there are more than one). For v ∈ V (H ′) ⊆ V (G) and
x ∈ V (H), the relation x = f(v) is denoted by v = x(H ′). We also say in
this case that v plays the role of x in H ′.

2. Methodological overview. Our proof of Theorem 1.1 is rather long and
technical—not to say cumbersome. This section can be read as a stand-alone extended
abstract which draws the overall picture without coping with all technical details.
Yet it is also an integrated part of the proof, setting the general frame, whereas the
following sections fill in the empty squares.

One major difficulty faced in previous attempts to prove Theorem 1.1 lies in its
wide nature. Apparently, it is rather easy to custom tailor the necessary machinery
for a given graph H. It is a much harder task to design a suit that fits all graphs.
For example, if G is H-decomposable, then the degree of each vertex of G is the sum
of certain vertex degrees of H. This leads to the following definition of the graph
parameter g(H).

Definition 2.1. Let H = (V,E) be a graph. The greatest common divisor of the
degrees d(x) over all vertices x ∈ V is denoted by g(H).

Clearly, the set of H-decomposable graphs is reached when g(H) = 1, and indeed
the graphs H treated in [17] and in [18] all have g(H) = 1. For a uniform general
proof, a family of simply structured graphs is required, where H-decomposable graphs
can be found regardless of the specific graph H at hand. Such a family is merely the
set of complete graphs Kn due to the following theorem by Wilson [14], which is
considered to be the key theorem of graph-decomposition theory.

Wilson’s theorem. For every graph H = (V,E), the conditions |E| divides (n2)
and g(H) divides (n− 1), which are obviously necessary for the complete graph Kn to
be H-decomposable, are also sufficient if n is larger than some constant n0(H).

With complete graphs as the basic building blocks, we still use three different
main proof schemes, each designed for a certain family of graphs H. It is observed in
[17] that if C-decomposition is NPC, where C is a connected component of H, then
H-decomposition is also NPC. It then suffices to consider connected graphs H.

Graph decomposition is basically a partition of a set into disjoint subsets taken
from a given collection. It seems natural to consider a similar problem, known to be

1168 D. DOR AND M. TARSI

Connection

to another block

Connection

to another
blockex

ey

ez
BLA

Connection

to another block

Connection

to another

block

Fig. 1. A part of GH(I) where A = {x, y, z}.

NPC, as a starting point for a polynomial reduction. (H-decomposition is clearly in
NP; our task here is to prove NP-hardness.) The problem selected for our first two
schemes is the following.

Definition 2.2. An instance of k-XC (k-eXact Cover) is a pair I = (U,A), where
U is a finite set and A is a collection of k-element subsets of U . The k-XC problem
on I is to decide whether there exists a partial collection X ⊆ A of pairwise-disjoint
sets such that |U | = k · |X| and

⋃
A∈X A = U .

For every integer k ≥ 3, k-XC is known to be NPC (k-dimensional matching is a
restricted version of k-XC).

To prove that H-decomposition is NPC, for every instance I = (U,A) of k-XC
(for some constant k ≥ 3), we construct a graph GH(I) in polynomial time such that
H-decomposition of G(I) is equivalent to k-XC on I.

2.1. First scheme: Blocks with isolated boundary edges. Let I = (U,A)
be an instance of k-XC. To represent each k-tuple A ∈ A, we design an “all-or-
none” building block. This should be a graph BLA, which contains k incidence edges,
e1, . . . , ek, each representing the inclusion of an element x ∈ U in A. Both graphs
BLA and BLA − {e1, . . . , ek} should be H-decomposable.

The graph GH(I) is formed by merely grouping the blocks together such that
every element x ∈ U is represented by an incidence edge ex, shared by all blocks
BLA, for which x ∈ A. Other than that, the blocks are vertex disjoint.

An exact cover X of I easily translates into an H-decomposition of GH(I) as
follows: Decompose BLA for every A ∈ X and BLA − {e1, . . . , ek} for the other k-
tuples A, which are not in X. Since X is an exact cover, given any x ∈ U , the common
incidence edge ex is “used” by one of the blocks and hence an H-decomposition of
GH(I) is indeed formed (see Figure 1).

To meet the “only if” requirement of the reduction, the block should be designed
such that any H-decomposition of GH(I) would impose an H-decomposition on either
BLA or BLA − {e1, . . . , ek} for every A ∈ A. For clear discussion of that aspect, we
introduce some further notation.

Definition 2.3.

• A module M = (V,E,B) is a connected graph on vertex set V and edge set E,
which contains a prespecified subgraph B, called its boundary. The vertices
(respectively, edges) of B are the boundary vertices (respectively, boundary
edges) of M . The edges of M − B(M) are the interior edges of M and the
interior vertices are those incident to no boundary edge.

GRAPH DECOMPOSITION IS NP-COMPLETE 1169

• A modular extension of a module M is a graph G which contains M as an
induced subgraph such that no edge in G−M is adjacent to an interior vertex
of M . We also say in that case that M is a modular subgraph of G.

• Let G be a modular extension of M . A subgraph T of G which includes an
interior edge of M as well as an edge of G −M is called split (with respect
to M).

We can use now the new terminology to summarize the scheme as a lemma.
Lemma 2.1. H-decomposition is NP-complete, if H allows the existence of a

block module BLH whose boundary B consists of k vertex-disjoint edges for some
integer k ≥ 3 and it satisfies the following conditions:

1. BLH and BLH −B are both H-decomposable.
2. Any H-decomposition of a modular extension of BLH contains an H-decom-

position of either BLH or BLH −B.
It is straightforward to verify that condition 2 indeed provides the “only if” di-

rection to complete the reduction described above. The explicit construction of block
modules is presented in section 3.

2.2. Second scheme: Boundary cliques. There exists an inherent flaw in the
use of Lemma 2.1 related to the graphic parameter g(H).

An obviously necessary condition for H-decomposability of a graphG is g(H)|g(G).
Consequently, if a graph G and a subgraph G′ of G are both H-decomposable, then
g(H)|g(G − G′). Consider the block module BLH of Lemma 2.1 and its subgraph
BLH −B. Both graphs are H-decomposable and the difference between them is the
boundary B consisting of vertex-disjoint edges. Clearly, g(B) = 1 and hence this
scheme is applicable only for graphs H with g(H) = 1.

The isolated boundary edges of the first scheme are replaced in the second by
m-cliques. The value of m depends on the graph H at hand and is specified in section
4. For reasons that will become clear later, we define d = m− 1.

Given an instance I = (U,A) of 3d-XC, a graph GH(I) is constructed as follows:
For every A = {x1, . . . , x3d} ∈ A, we construct a grouping module GRA, which
replaces the block module of the first scheme. The boundary of GRA consists of 3d

arms denoted by K+
1 , . . . ,K

+
3d

and 3d antiarms denoted by K−1 , . . . ,K
−
3d

. Each arm
and each antiarm is an m-clique and they are all vertex disjoint. The module GRA
is built to make both subgraphs GRA − {K+

1 , . . . ,K
+
3d
} and GRA − {K−1 , . . . ,K−3d}

H-decomposable. For every x ∈ U , let all grouping modules GRA for which x ∈ A
share a common boundary arm Ex.

The antiarms are taken care of by means of another module, the r-alternator,
r-AH . Its boundary consists of r edge-disjoint m-cliques K1, . . . ,Kr, such that the
graph obtained by deleting any r − 1 of them is H-decomposable. We refer to each
of these cliques as an arm of the alternator.

For each element x included in A1, . . . , At (Ai ∈ A), we construct a t-alternator
AEx, each arm of which is an antiarm of one of GRA1 , . . . , GRAt . The graph obtained
is GH(I) (see Figure 2).

Let D−A and D+
A denote an H-decomposition of GRA−{K+

1 , . . . ,K
+
3d
} and GRA−

{K−1 , . . . ,K−3d}, respectively. An exact coverX ⊂ A easily provides anH-decomposition

of GH(I) as follows: Take the union of the decompositions D+
A for every A ∈ X and

D−A for every A /∈ X. Consider an element x ∈ U which belongs to sets A1, . . . , At.
Since X is an exact cover, the common arm Ex is covered by exactly one of the D+

Ai
’s,

for which Ai ∈ X and t−1 arms of the t-alternator AEx are covered, each by a decom-
position D−Aj , Aj /∈ X. The remaining “one-armed alternators” are H-decomposable

1170 D. DOR AND M. TARSI

Fig. 2. A part of GH(I) where x ∈ A,B,C ∈ A.

and thus complete an H-decomposition of GH(I).

Our construction of the grouping module is based on the existence of the Holyer
graph Hm,3, which is defined in [10] (see also section 5), where the following is proven.

Lemma 2.2. There are exactly two distinct Km-decompositions of Hm,3: K+ =

{K+
i }3

m−1

i=1 and K− = {K−i }3
m−1

i=1 , each consisting of 3m−1 m-cliques.

The grouping module GRA consists of a copy of the Holyer graph Hd+1,3, where

each (d + 1)-clique in K+ = {K+
i }3

d

i=1 and K− = {K−i }3
d

i=1 is an arm of one of 2 · 3d
2-alternator modules. The other 2 · 3d arms of these alternators, 3d for K+ and 3d

for K−, are the arms and antiarms of GRA, respectively.

Due to our definition of the alternator and Lemma 2.2, the subgraphs obtained
from GRA by deleting either all of its arms or all of its antiarms are indeed H-
decomposable. It remains to assure that any H-decomposition of GH(I) would impose
an exact cover on I. This mission is much more involved and relies on a careful design
of the alternator modules, which is left to section 4.

2.3. Third scheme: Triangular graphs. Due to technical reasons that are
explicitly stated in section 4.2, our second scheme fails when H is a graph of a certain
type, which we call triangular. This is basically a triangle, where each of the three
edges is replaced by any connected component.

Definition 2.4. A graph G = (V,H) is called triangular by three of its vertices
v0, v1, v2 ∈ V if it is the union of three connected components C0, C1, C2 and V (Ci)∩
V (Ci+1) = {vi} for i ∈ {0, 1, 2}, addition modulo 3 (see Figure 3).

Fortunately, Holyer’s proof [10] for the case where H is a triangle can be modified
to cover all triangular graphs. Holyer’s method and its application to triangular
graphs is described in section 5.

2.4. Case listing. We conclude this preliminary section with a “checklist” of
the various families of graphs for which different versions of the proof are given.

• 3-connected graphs with g(H) = 1 are treated in section 3.1.
• 2-connected, 2-separable graphs with g(H) = 1 are treated in section 3.2.
• 5-connected graphs with g(H) > 1 are treated in section 4.1.

GRAPH DECOMPOSITION IS NP-COMPLETE 1171

C0

C1C2

v0

v1

v2

Fig. 3. A triangular graph.

• 2-connected, 4-separable, nontriangular graphs with g(H) > 1 are treated in
section 4.2.
• 1-separable, nontriangular graphs are treated in section 4.3.
• Triangular graphs are treated in section 5.

One can easily verify that the list above indeed covers all connected graphs H.
After considering the last two cases in the list, it remains to consider 2-connected,
nontriangular graphs. Such graphs with g(H) = 1 are treated in the first two cases
and graphs with g(H) > 1 are treated in the next two. Despite some overlapping,
none of the cases is redundant.

3. Explicit construction of BLH . Block modules which comply with Lemma
2.1 are made up of smaller modules, which we call chains.

Definition 3.1. A chain module related to a connected graph H is a module
CH = (V,E,B) whose boundary contains two edges and which satisfies the following
conditions:

1. A path in CH which includes both boundary edges is at least k+ 2 edges long.
2. Once either one of the boundary edges is deleted from CH , the remaining

graph is H-decomposable.
3. If G is a modular extension of CH which admits an H-decomposition D, where

no D-part includes both boundary edges of CH , then no D-part is split.

Lemma 3.1. Let H be a connected graph with k ≥ 3 edges. The H-decomposition
problem is NP-complete if H allows the existence of a chain module CH = (V,E,B).

Proof. A block module LBH is formed of a copy H ′ of H, every edge of which
is a boundary edge of one of k chain modules, which are otherwise vertex disjoint.
The other boundary edges of the chains will be denoted by e1, . . . , ek and serve as
boundary edges of the block.

We now show that BLH meets the requirement set in Lemma 2.1.

The graph LBH − H ′ is the union of k chains with one boundary edge deleted
from each. The same holds for LBH−{e1, . . . , ek}. Condition 2 of Definition 3.1 then
implies that both LBH and LBH − {e1, . . . , ek} are H-decomposable, as condition
1 of Lemma 2.1 requires. Let G be a modular extension of LBH and let D be an
H-decomposition of G. Condition 1 of Definition 3.1 makes the boundary edges of
a chain too far apart for one H-subgraph to include both of them, and no shortcut
in G is possible due to the structure of the block. Then no H-subgraph of G exists
which includes both boundary edges of a chain. By condition 3 of Definition 3.1, no
D-part is split with respect to any of the chains. By condition 2, the number of edges
in a chain is 1 (modk). Consequently, D contains a decomposition of each one of the
chain modules with either one of its boundary edges deleted. The only H-subgraph

1172 D. DOR AND M. TARSI

e2

e1
KN

Knc

d

v

Fig. 4. The link module.

which includes an edge of H ′ with no edge interior to a chain is H ′ itself. Hence if
H ′ ∈ D, then D contains a decomposition of BLH . If H ′ /∈ D, then a subset of D
decomposes BLH − {e1, . . . , ek}. Hence condition 2 of Lemma 2.1 is met.

We proceed by constructing chain modules which satisfy the conditions stated in
Definition 3.1. The chain is formed by concatenation of smaller modules, which we
call links. Each link module includes two boundary edges, the removal of either one
of which provides an H-decomposable graph. Several links are chained, each sharing
one boundary edge with each neighbor, to form a chain module, where the boundary
edges are far apart from each other, as required by condition 1 of Definition 3.1. As
pointed out in section 2, this technique is restricted to graphs H where g(H) = 1. We
assume first that H is 3-connected, which makes condition 3 very easy to meet. The
structure of the link module is later modified to fit to the case where H is 2-connected
and 2-separable. The case where H is 1-separable is treated in section 4.3 using a
different scheme.

3.1. Constructing the chain module where H is 3-connected.

The link module LH . In accordance with Wilson’s theorem, select an integer n
such that Kn and Kn+1 are both H-decomposable. (Notice that g(H) = 1 is necessary
for the existence of such an n.) Apply Wilson’s theorem one more time to choose an
integer N such that KN is Kn+1-decomposable. Select a vertex v of the complete
graph KN and delete n− 1 of the edges incident to v. Also, select c and d, two of the
vertices which remain adjacent to v. The graph obtained with boundary edges (v, d)
and (v, c) is the link module LH .

Proposition 3.2. The subgraph obtained from LH by deleting either one of its
boundary edges e1 = (v, c), or e2 = (v, d), is H-decomposable.

To verify the proposition, start with a Kn+1-decomposition D of KN , where the
(n + 1)-clique, on v, c, and the n − 1 vertices which then become nonadjacent to
v, is a D-part. Once all of the edges incident to v in this clique (including (v, c))
are deleted, the remaining edges form a copy of Kn. Since Kn and Kn+1 are both
H-decomposable, the partition obtained can be refined into an H-decomposition of
LH − {(v, c)} (see Figure 4). The same argument holds for LH − {(v, d)}.

The chain module CH . A sequence (L1, L2, . . . , L2k) of 2k copies of LH is con-
catenated into a chain module CH by means of identifying the edge (vi, di) (that is,
the edge (v, d) of Li) with the edge (ci+1, vi+1) and their corresponding end vertices
(vi with ci+1 and di with vi+1) for every 1 ≤ i ≤ 2k − 1. The two edges (c1, v1) and
(v2k, d2k) serve as the boundary edges of CH (see Figure 5).

It remains to show that CH indeed satisfies the conditions of Definition 3.1. Con-
dition 1 is satisfied since the boundary edges of the chain are located 2k links apart

GRAPH DECOMPOSITION IS NP-COMPLETE 1173

d2 = v3 = c4

L1

L5

L7

L2

L4

L6

L3

d1 = v2 = c3

d3 = v4 = c5

The boundary edges

Fig. 5. The chain module, CH .

from each other. Condition 2 is a straightforward corollary of Proposition 3.2. Any
split subgraph with at most k edges disconnects at the two end vertices of a boundary
edge. The 3-connectivity of H then implies condition 3.

3.2. Constructing the chain where H is 2-connected and 2-separable.
3-connectivity is essential for the last argument. The link module LH is almost a
complete graph, and many copies of any graph H of lower connectivity are split among
chains, violating condition 3 of Definition 3.1. To avoid this, we focus on a D-part
which includes a boundary edge of a link module. We construct a sparse modified link
where the connection of this D-part with the rest of the graph is “minimal.” When
the modified link module L′H replaces LH as the basic brick of a chain, the conditions
of Definition 3.1 are met for 2-connected, 2-separable graphs. This mission requires a
deeper look into the structure of 2-separable graphs.

Definition 3.2. A separating pair (SP) of a 2-connected graph H is a pair of
vertices {x, y} ⊂ V such that the graph H−{x, y} = (V −{x, y}, E−{e|e is incident to
either x or y}) is not connected. An {x, y}-component is a subgraph of H induced by
the union of {x, y} with a connected component of H −{x, y}. All {x, y}-components
then share vertices x and y (and an edge (x, y) if it exists), and they are otherwise
disjoint. An SP -sequence of H is a sequence ({x1, y1}, . . . , {xt, yt}) of distinct (not
necessarily disjoint) SP ’s such that all {xj , yj} for j > i are included in the same
{xi, yi}-component.

The modified link L′H . Let H = (V,E) be a 2-connected, 2-separable, graph with
g(H) = 1 and |E| = k ≥ 3. Let S = ({x1, y1}, . . . , {xt, yt}) be an SP-sequence
of H of maximum length t. Also, let S be selected such that the degree d(xt) is
minimum among all SP-sequences of length t. From an {xt, yt}-component which
does not contain {xt−1, yt−1}, select a vertex z 6= yt adjacent to xt (see Figure 6). In
accordance with Proposition 3.2, we start with anH-decomposition D of LH−{(v, c)}.
Let Hv be the D-part which includes (v, d). Recall that D is formed by decomposing
complete graphs and hence no constraint holds regarding the roles of c, d, and v in Hv.
We take advantage of this freedom to select v = xt(Hv), d = z(Hv), and c /∈ V (Hv).
From Hv we construct Hv′ , a new copy of H, as follows: For every u ∈ V (Hv) such
that (u, z = d) 6∈ E(Hv), we replace u in Hv by a new vertex u′. That is, every edge
(u,w) is deleted and (u′, w) is inserted instead. Also, a new vertex v′ is added to
replace v in Hv′ in the role of xt. We define D′ = (D−{Hv})

⋃
{Hv′}. The modified

link L′H is the union of all T ∈ D′ and the edge (v′, c) with boundary edges (v′, c)
and (v′, d). The H-subgraph Hv′ is called the kernel of L′H (see Figure 6).

The modified link is meant to satisfy the following stronger version of Proposi-
tion 3.2.

1174 D. DOR AND M. TARSI

y′1

Hv′

x′1

y′t

c

d = z(Hv′)

v′ = xt(Hv′)

Fig. 6. The modified link module L′H .

Proposition 3.3.

1. The subgraph obtained from L′H by deleting either one of its boundary edges
(v′, c) or (v′, d) is H-decomposable.

2. Let L be an L′H modular subgraph of a graph G, where either {v′, c} or {v′, d}
is an SP of any split H-subgraph. If D is an H-decomposition of G, then
there exists a D-part H(L) entirely contained in L such that the degree of
v′(L) in L−H(L) is at most 1.

Proof. Obviously, D′ is an H-decomposition of L′H − {(v′, c)}. Furthermore, the
neighborhood of (the set of vertices adjacent to) c in LH is identical to that of d. The
vertex d in Hv plays the role of z ∈ V (H). The neighbors of this vertex, except for
v, were not changed and c /∈ V (Hv). Consequently, the neighborhoods of c and d are
also identical in L′H . Thus, switching the roles of c and d in each T ∈ D′, we also
obtain an H-decomposition for L′H − {(v′, d)}. Condition 1 is then satisfied.

Let G and L be as stated in part 2 of Proposition 3.3. Let Hv′ be the kernel
of L and let S′ = ({x′1, y′1}, . . . , {x′t = v′, y′t}) be the copy in Hv′ of the maximal
SP-sequence S as defined above. The modified link is designed to make “most of”
its kernel Hv′ be “separated” from the rest of the link, to which it is connected only
through the farthest {xt, yt}-component. Accordingly, the sequence S′ is also an SP-
sequence of L and of G. Select an edge e from an {x′1, y′1}-component which does
not contain the other members of S′. Let H(L) be the D-part which contains e.
Clearly, S′ is also an SP-sequence of H(L). If H(L) contains an edge out of L, then
{v′(L), d(L)} or {v′(L), c(L)} is an SP of H(L), which can be appended to S′ to form
a longer SP-sequence — a contradiction. This implies that H(L) ⊂ L. Regarding
the degree of v′(L), this vertex belongs to the tth SP of S′. The sequence S was
selected to make the degree of xt minimal. Thus d(v′(L)) in H(L) is at least d(xt)
(in H). On the other hand, the degree of v′(L) in L is d(xt) + 1. (It was inserted to
replace xt and then an edge (v′, c) was added.) This obviously implies d(v′(L)) ≤ 1 in
L−H(L).

The chain module CH , where H is 2-connected and 2-separable, is constructed
by the concatenation of 2k modified links L′H exactly as described in the previous
subsection for 3-connected graphs. The vertex v of each link is replaced by the vertex
v′ of the modified link. It remains to verify that the conditions of Lemma 3.1 are met
by that construction.

Condition 1 is satisfied since the boundary edges of the chain are located 2k
modified links apart from each other. Condition 2 is a consequence of part 1 of

GRAPH DECOMPOSITION IS NP-COMPLETE 1175

Fig. 7. The chain module C′ after deletion of all H(L′i)’s.

Proposition 3.3. Let C,G and D be as stated for Condition 3. Considering the
structure of a chain, it turns out that an H-subgraph which is split with respect to a
modified link, indeed has an SP consisting of the end-vertices of a boundary edge, as
required for part 2 of Proposition 3.3. Let C ′ denote the subgraph obtained from the
chain C after the edges of the D-part H(Li), defined in Proposition 3.3, are deleted
from each of the modified links Li. By Proposition 3.3 at most one of the edges
adjacent to v′ of each Li still remains in C ′. Two consecutive Li’s share one of these
edges and thus at most one such edge remains in all of C ′. Thus C ′ is structured of
two 1-separable subgraphs, possibly connected to each other by a single edge. A path
between C ′’s boundary edges passes through at least k articulation points of C ′ (see
Figure 7).

Since H is 2-connected, only one D-part can be partially contained in C ′. Ac-
cording to the construction of a chain, the number of edges in C is 1(mod k). This
clearly still holds for C ′. Hence, there must be a single D-part which contains a single
edge of C ′ and this edge is clearly a boundary edge of C as required.

4. Constructing alternator modules. The link module used in the first scheme
has two boundary edges, and an H-decomposable subgraph is obtained when either
one of them is deleted. This is impossible, as indicated in section 2.2, when g(H) > 1.
Instead, we use another module, called a square, as the elementary block from which
r-alternators are built. The boundary of the square is a 4-cycle such that if either
pair of opposite edges is removed, we obtain an H-decomposable graph.

Definition 4.1. A square module related to a graph H is a module SH(v1, v2, v3, v4),
(abbreviated SH where no ambiguity is caused) whose boundary is a 4-cycle B(SH) =
{e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v1)}, and it satisfies the following
two conditions:

1. Each of SH − {e1, e3} and SH − {e2, e4} is H-decomposable.
2. Every H-decomposition of a modular extension of SH contains an H-decom-

position of either one of the above two subgraphs.
Square modules are combined to form an r-alternator module r-AH as follows.
Let u be a vertex of H for which the degree d = d(u) is maximum. The vertex set

of the alternator contains subsets V q = {vqi : 0 ≤ i ≤ d} for 1 ≤ q ≤ r and W = {wi,j :

i 6= j, 0 ≤ i, j ≤ d}. Now construct r(d+1
2) square modules Sqi,j = SH(vqi , v

q
j , wj,i, wi,j)

for every 1 ≤ q ≤ r and 0 ≤ i < j ≤ d. Let the Sqi,j ’s be vertex disjoint except for the

common vertices of the V q’s and W . Also, for each 0 ≤ i ≤ d, construct a copy H−i

1176 D. DOR AND M. TARSI

Fig. 8. The 2-alternator module for d = 2.

of H − {u}, where the d vertices wi,j , j 6= i, serve as the d neighbors of the deleted
vertex u. We refer to these (H − {u})-subgraphs as wings. Let the vertex sets of the
wings otherwise be disjoint from each other and from the V q’s and W . The boundary
of r-AH is induced by

⋃r
q=1 V

q. The induced (d + 1)-cliques on each vertex set V q

are denoted by Kq and serve as the arms of the module (see Figure 8).
We first verify that the alternator indeed complies with the scheme described in

section 2.2.
Proposition 4.1. The subgraph obtained from an r-alternator by deleting r − 1

of its arms is H-decomposable.
Proof. Select 1 ≤ q ≤ r and delete each of the H-subgraphs induced by

V (H−i)
⋃
{vqi } for 0 ≤ i ≤ d. Once all of the cliques Kq′, q′ 6= q, are also removed,

there are altogether two edges deleted from each square Sqi,j , which form a complete
matching on its boundary. The remaining subgraph is thus H-decomposable by con-
dition 1 of Definition 4.1.

We now show that the process by which an exact cover on I is translated into an
H-decomposition of GH(I), described in section 2.2, is indeed invertible. Once this
is done, the entire scheme is summarized into the existence of square modules.

Lemma 4.2. If H allows the existence of a square module (cf. Definition 4.1),
then H-decomposition is NPC.

Proof. Let GH(I) be the graph whose construction is detailed in section 2.2, and
let D be an H-decomposition of GH(I). Let G′ denote the subgraph obtained from
GH(I) after the deletion of the D-parts which cover the interior of all of the square
modules Sqi,j in all of the alternator modules which form GH(I). Applying condition
2 of Definition 4.1, G′ is the union of all wings of the alternators involved, with some
additional edges incident with the common boundary vertices. It turns out that the
degree sequence of the vertices of G′ is that of t disjoint copies of H, where t is the total
number of wings in GH(I), which is also the number of parts in an H-decomposition
of G′, except for some excessive repetition of the maximal degree d. Now focus on the
vertices of a wing. Each of them is of degree at most d, which implies that no such
vertex is shared between two distinct D-parts; otherwise, there would be too many
vertices of certain small degree for t edge-disjoint D-parts. Consequently, for any r-
alternator module in GH(I), each wing is entirely contained in a single D-part, which
must be induced by V (H−i)

⋃
{vqi } for some 1 ≤ q ≤ r. Again applying condition 2 of

Definition 4.1 to the square modules Sqi,j for that specific value of q, it turns out that

GRAPH DECOMPOSITION IS NP-COMPLETE 1177

e4 e1

e2e3

v3

v2

v1

v4
Z Y

x

Fig. 9. The presquare module.

the same q is used for each 0 ≤ i ≤ d. In particular, if we focus on the 2-alternators
of the grouping modules, D provides a Kd+1-decomposition of the Hd+1,3-subgraph
of each GRA. By Lemma 2.2, it is either K+ or K−. Therefore, X = {A|D+

A ⊂ D}
forms a solution for I.

It now remains to argue that square modules indeed exist. Notice that condition
1 of Definition 4.1 might be met regardless of g(H) because the degrees of vertices in
the subgraph obtained do not depend on which one of the two pairs of edges is deleted.
However, g(H) > 1 appears to be helpful for meeting condition 2, as indicated by the
following lemma. (In contrast with condition 2, if g(H) = 1, then a D-part may
contain two adjacent boundary edges.) This is why our first scheme did not become
redundant once the second was developed.

Lemma 4.3. If g(H) > 1, then condition 2 of Definition 4.1 is a consequence of
the apparently weaker requirement:

2′. No D-part of an H-decomposition D of a modular extension of SH is split.
Proof. Let D be an H-decomposition of a modular extension of S = SH(v1, v2,

v3, v4). Let D′ denote the set of all D-parts which include an interior edge and are
hence entirely contained in S if condition 2′ holds. Clearly, R = S −

⋃
T∈D′ T is a

subset of B(S) = {e1, e2, e3, e4}. Since g(H) > 1, the difference between the degrees
of a vertex in two unions of disjoint H-subgraphs is either 0 or at least 2. Thus if
condition 1 is satisfied, then R is a complete matching on {v1, v2, v3, v4} that is either
R = {e1, e3} or R = {e2, e4}, which is the assertion of condition 2.

The first step towards establishing the existence of SH is the following construc-
tion of a presquare module for any given graph H.

The presquare module PSH . Let H be any graph. In accordance with Wilson’s
theorem, select integers n and N such that Kn is H-decomposable and KN is Kn-
decomposable. Make N big enough to allow two vertex-disjoint copies of Kn in a
Kn-decomposition of KN . Select four vertices v1, v2, v3, v4 of the graph KN = (V,E)
and two sets Y, Z ⊂ V of n − 2 vertices each, disjoint from each other and from
{v1, v2, v3, v4}. Insert a new vertex x 6∈ V and define PSH(v1, v2, v3, v4) to be

(V ∪ {x}, E − {(v1, y), (v3, z) : y ∈ Y, z ∈ Z} ∪ {(x, u) : u ∈ Y ∪ Z ∪ {v2, v4}}).

Let the boundary B(PSH) of the module be the 4-cycle {e1 = (v1, v2), e2 = (v2, v3),
e3 = (v3, v4), e4 = (v4, v1)} (see Figure 9).

1178 D. DOR AND M. TARSI

The presquare satisfies the first condition of Definition 4.1.

Proposition 4.4. Each of PSH−{e1, e3} and PSH−{e2, e4} is H-decomposable.

To verify the proposition, delete the edges of the two n-cliques induced by Y ∪
{x, v2} and by Z ∪ {x, v4}. If the two edges e1 = (v1, v2), e3 = (v3, v4) are also
deleted, then the remaining edges are those of the original KN from which two n-
cliques induced by Y ∪{v1, v2} and by Z ∪{v3, v4} are deleted. By the definition of n
and N , This remaining graph can be partitioned to complete Kn-decomposition, and
hence H-decomposition, of SH−{e1, e3}. The same argument holds for SH−{e2, e4}.

The means by which the presquare is used to construct the square module vary
as various families of graphs H are considered.

4.1. The square module for 5-connected graphs. If H is 5-connected and
g(H) > 1, we simply define SH = PSH . The four boundary vertices of PSH make any
split subgraph 4-separable. The assertion of condition 2′ of Lemma 4.3 immediately
follows.

4.2. Constructing the square module for 2-connected, 4-separable, non-
triangular graphs H with g(H) >1. When graphs H of lower connectivity are
considered, we face a situation that is analogous to the one we dealt with in section
3.2. Here we take similar measures as we define a modified presquare module PS′H .
The construction here is more complex, and several copies of the modified presquare
are required to form one square module. It so happens that the square module ob-
tained fails in meeting the definition if H is either 1-separable or triangular. These
two cases are treated separately.

Separating sets of two, three, or four vertices are involved here, and hence some
more definitions are required.

Definition 4.2. A minimal separating set (MS) of a graph G = (V,E) is a set
of vertices S ⊂ V , such that (G−S) = (V −S,E−{e : e is incident to an element of
S}) is not connected and no proper subset of S has this property. An S-component is
a subgraph of G, induced by the union of S and a connected component of G− S.

A k-separating sequence (k-SS) is a sequence Q = {S1, S2, . . . , Sn} of distinct
MSs of cardinality |Si| ≤ k such that their cardinalities |S1|, . . . , |Sn| form a nonde-
creasing sequence and for every 1 ≤ i ≤ n − 1, all Sj’s, j > i, are contained in the
same Si-component. Let nj(Q) denote the number of MSs in Q which are of cardi-
nality j. We define a partial order among k-SSs of G by Q1 > Q2 if nj(Q1) > nj(Q2)
for the smallest j, where nj(Q1) 6= nj(Q2). A maximal k-SS is maximal with respect
to that partial order.

Let Q = {S1, S2, . . . , Sn} be a k-SS of G. Let C0(Q,G) denote the union of the
S1-components which do not contain S2 and let Cn(Q,G) be one of the Sn-components
which do not contain Sn−1. (If n = 1, then C1(Q,G) is any component and C0(Q,G)
is the union of all the others.)

Proposition 4.5. Let H be a subgraph of G and Q = {S1, . . . , Sn} be a maximal
k-SS of H such that no edge of G−H is incident to any vertex of H−Cn(Q,H). If H ′

is an H-subgraph of G which includes an edge e0 ∈ C0(Q,H), then S is a (maximal)
k-SS of H ′.

Proof. Since no edge of G−H is incident to V (H −Cn), the sequence Q is also a
k-SS of G. Being as big as H, the subgraph H ′ includes an edge en ∈ Cn(Q,G). The
removal of any Si disconnects e0 from en; hence there exists an MS of H ′, S′ ⊆ Si.
We should prove that S′ = Si. Take the smallest i for which S′ ′⊆ Si. Since H ′

is isomorphic to H and Q is maximal, S′ must equal St for some t < i (otherwise,

GRAPH DECOMPOSITION IS NP-COMPLETE 1179

(S1, S2, . . . , S
′, . . .) > Q), that is, S′ = St ′⊆ Si for some t < i. This is a contradiction

since no MS is a proper subset of another.

The modified presquare module PS′H . Recalling the construction of PSH and
Proposition 4.4, form an H-decomposition D of PSH − {e1, e3}, where e1 = (v1, v2)
and e3 = (v3, v4). Let Q = (S1, . . . , Sn) be a maximal 4-SS, where Sn = {x1, . . . , xr},
such that d(xr) is minimum among all maximal 4-SSs. Select a vertex z 6∈ Sn which
is adjacent to xr in Cn(Q,H).

For the D-part Hv1 , which contains the edge (v1, v4), select xr(Hv1) = v1 and
z(Hv1) = v4. (No constraint holds regarding the roles of v1 and v4 in Hv1 since D is
formed by decomposing complete graphs.) Also, verify that v3 is not a vertex of Hv1 .

From the D-part Hv1 , construct Hv′1
, a new copy of H as follows: For every

u ∈ V (Hv1) such that (u, z(Hv1) = v4) 6∈ E(Hv1), replace u in Hv1 by a new vertex
u′. Also, add a new vertex v′1 to replace v1 in the role of xr(Hv1).

Similarly, let the role of xr and z in the D-part Hv3 , which includes the edge
(v3, v2), be played by the vertices v3 and v2 in that order. (Note that (v3, v2) can be
any edge of an n-clique that is vertex disjoint from the clique which includes (v1, v4).)
Using the same scheme as above, construct Hv′3

from the D-part Hv3 . Also, add a
new vertex v′3 to replace v3 in the role of xr(Hv3).

Define D′ = (D − {Hv1 , Hv3})
⋃
{Hv′1

, Hv′3
} and let PS′H be the union of all

T ∈ D′ and the edges e′1 = (v′1, v2) and e′3 = (v′3, v4). The boundary vertices of
PS′H are v′1, v2, v

′
3, v4 and the 4-cycle e′1, . . . , e

′
4 on these vertices, in that order, is the

boundary of the module. We refer to that specific copy as PS′H(v′1, v2, v
′
3, v4).

Proposition 4.6. The modified presquare module satisfies condition 1 of Defi-
nition 4.1.

Proof. Obviously, D′ is an H-decomposition of PS′H −{e′1, e′3}. Furthermore, the
neighborhood of v2 in PSH is identical to that of v4. The vertex v4 in Hv1 plays the
role of z ∈ V (Hv1). The neighbors of v4, except for v1, were not changed and v2 is
not a vertex of Hv1 . Similarly, the neighbors of v2, except for v3, were not changed
and v4 is not a vertex of Hv3 . Consequently, the neighborhoods of v2 and v4 are also
identical in Hv′1

and Hv′3
. Thus switching the roles of v2 and v4 in each T ∈ D′, we

also obtain an H-decomposition for PS′H − {e′2, e′4}.
We are now in a position to prove the following stronger version of Proposition

4.4.

Proposition 4.7. If G is a modular extension of a modified presquare PS′H
(v′1, v2, v

′
3, v4) which admits an H-decomposition D, then there exist two D-parts

H(PS′H , v
′
1) and H(PS′H , v

′
3), entirely contained in PS′H , such that each of the degree

of v′1 and that of v′3 in PS′H − {H(PS′H , v
′
1), H(PS′H , v

′
3)} is at most 1.

Proof. Let Q = (S1, . . . , Sn) be the maximal 4-SS of the subgraph Hv′1
of PS′H ,

as defined above. By the construction of Hv′1
, the sequence Q is also a 4-SS of

PS′H and of G. To verify the proposition, take a D-part H ′ which includes an edge
e0 ∈ C0(Q,H). By Proposition 4.5, Q is a 4-SS of H ′. Regarding the degree of v′1, this
vertex belongs to the nth SS of Q, Sn = {x1, . . . , xr}. The sequence Q was selected to
make the degree of xr the minimum. Thus d(v′1) in H ′ is at least d(xr) (in H). If H ′

includes any edge out of PS′H , then the separating 4-set of G, {v′1, v2, v′3, v4}, is also a
separating 4-set of H ′ which obviously does not contain Sn (since only v′1 is included
in Sn) and can be appended to Q to form a greater 4-SS-sequence — a contradiction,
which implies that H ′ ⊆ PS′H . The degree of v′1 in PS′H is d(xr) + 1. (It was inserted
to replace xr and then an edge e′1 was added.) Recalling that d(v′1) in H ′ is at least
d(xr), H

′ is the D-part H(PS′H , v
′
1), as the proposition states. The same argument

1180 D. DOR AND M. TARSI

y

u

u′′u′

x
v0

v1

v3
G−SH

Fig. 10. G′. The doted grid lines are not edges of the graph and are drawn for reference only.
“◦” and “•” denote fat and thin vertices, respectively. The vertices x and y can be located in any
of the squares surrounding v1 and v3.

can be applied to v′3 to obtain H(PS′H , v
′
3).

In light of Proposition 4.7, we refer to the boundary vertices v′1 and v′3 as the thin
vertices of the modified presquare, and, accordingly, v2 and v4 are the fat ones.

Constructing the square module SH . Start with an m×m (or (m+ 1)× (m+ 1) if
m is odd) rectangular grid on the two-dimensional torus. Let one square of the grid be
the boundary of SH and let the vertices of this square be denoted by v1, v2, v3, v4. Fill
all of the other grid squares with copies of PS′H whose boundaries intersect according
to their geometric adjacency. While doing so, make each grid vertex either thin in all
of the modified presquares which contain it or fat in all of them. Thus a “thin” “fat”
2-coloring of the grid vertices is induced. Let v1 and v3 be colored “thin.” The graph
obtained is the square module SH(v1, v2, v3, v4). A modular extension of SH can be
represented by filling the empty boundary square with G− S (see Figure 10).

Lemma 4.8. SH is a square module (cf. Definition 4.1).

Proof. As a consequence of Propositions 4.6 and 4.7, condition 1 of Definition 4.1
is satisfied by SH . We now prove that condition 2′ of Lemma 4.3 is also satisfied.

Let D be an H-decomposition of a modular extension G of SH . Let G′ denote the
graph obtained from G by deleting all of the D-parts H(PS′H , v

′
1) and H(PS′H , v

′
3),

defined in Proposition 4.6, from all the PS′H ’s in SH . As a result of that proposition,
each thin grid vertex, except v1 and v3, is completely saturated by the above D-parts
and is hence isolated in G′. The remainder of each modified presquare is a “diagonal
strip” connected to the rest of G′ by the two fat grid vertices, to which we refer as
the end vertices of that strip. There might remain a single edge connecting v1 to an
interior vertex x of SH and one connecting v3 to an interior vertex y (in addition to
many vertices adjacent to v1 and to v3 in G− SH).

Let H0 be an H-subgraph of G′ which contains a vertex v0 of G − SH . Assume
that H0 contains an interior vertex of SH . As an H-subgraph, H0 is too small to go
around the whole torus. Let u be a grid vertex in H0 which is furthest (in geometric
distance on the torus) from the boundary square. At most two strips lead from u to
the boundary and thus either H0 is 1-separable or it is triangular by u and the other
end vertices of the above two strips u′ and u′′ (see Figure 10). More careful attention
should be paid to the case where H0 is limited to the squares which surround the
boundary and includes the edge (v1, x) (and/or (v3, y)). A short case analysis shows

GRAPH DECOMPOSITION IS NP-COMPLETE 1181

that also in that scenario H0 is either 1-separable or triangular by v1, x, and a
certain grid vertex whose identity depends on the exact location of x. Since H is 2-
connected and nontriangular, the above leads to a contradiction and thus condition 2′

is satisfied.

4.3. The reduction for 1-separable nontriangular graphs. For a 1-sepa-
rable graph H, we first select a particular 2-connected component C of H. The graph
H − C is called the tail of H. Given an instance I of 3d-XC, we construct GC(I)
and then expand it to obtain GH(I) by inserting the right number of tails, hanging
at each vertex. Being 2-connected, C can replace H in the scheme described in the
last section. Yet some minor modifications of the construction of GC(I) are required
to cover the case where g(C) = 1. The presquare module is replaced by a structure
which we call a new presquare module, NSH ; this is also an expansion of a known
module, the modified presquare module, PS′C .

Careful selection of C assures that an H-decomposition of GH(I) (and of NSH)
implies a C-decomposition of GC(I) (and of PS′C). Finally, we claim that every
C-decomposition of GC(I) indeed implies a solution for I.

This subsection is divided into three parts. In the first part, we define the notion
of expansion and describe the new presquare module. In the second part, we show
that an H-decomposition of an expanded graph implies a C-decomposition of the
original one. We conclude this subsection by showing that C-decomposition of GC(I)
implies a solution for I when g(C) = 1. For g(C) > 1, this fact was already shown in
section 4.2. We start by stating the rules by which the subgraph 2-connected block
C is selected.

Let x be a separating vertex of H such that {x} is the last MS of a maximal
1-SS and let C be a 2-connected {x}-component. Choose x and C to make |E(C)|
the maximum among all such selections. If such C does not exist, then H contains a
vertex of degree 1. NP-completeness for that case is proven in [18].

We are now in a position to define the expanded graph.

Definition 4.3.

• Let D be an H-decomposition of G and let x and v be vertices of H and G,
respectively. We define N(x, v,D) to be the number of D-parts H ′ for which
x(H ′) = v.
• Let x be a separating vertex of H and let C be an {x}-component of H. Let
D be a C-decomposition of a graph G. We construct the {H,C,D}-expansion
G′ as follows: For each vertex v of G, construct n(v) = N(x, v,D) copies
of H − C, in which v is identified with x and the other vertices are new.
These copies are denoted by (H − C)i,v for 1 ≤ i ≤ n(v) and v ∈ V (G). The
expanded graph G′ is

G′ = G
⋃

v∈V (G)

⋃
1≤i≤n(v)

(H − C)i,v.

The new presquare module NSH . Let D be a C-decomposition of PS′C . We define
the new presquare module, NSH(D), to be an {H,C,D}-expansion of PS′C .

In section 4.2, it is shown that the modified presquare module PS′C satisfies both
condition 1 of Definition 4.1 and Proposition 4.7. Moreover, these two conditions
are sufficient for constructing a square module that satisfies Definition 4.1. We now
show that the definition of NSH is independent of the selection of D and prove the
conditions satisfied by the new presquare module.

1182 D. DOR AND M. TARSI

Lemma 4.9.

1. PSC(v1, . . . , v4)−{e1, e3} admits a C-decomposition D1 such that N(x, v2, D1)
= N(x, v4, D1).

2. There exist C-decompositions D1 and D2 of PS′C − {e1, e3} and PS′C −
{e2, e4}, respectively, such that N(x, v2, D1) = N(x, v4, D1) = N(x, v2, D2) =
N(x, v4, D2).

3. NSH = NSH(D1) = NSH(D2) is well defined and satisfies condition 1 of
Definition 4.1.

4. The new presquare module NSH satisfies Proposition 4.7 if every H-decom-
position of NSH implies a C-decomposition of a PS′C subgraph of NSH .

Proof.

1. Recall that by its definition, PS′C − {e1, e3} is KN -decomposable for some
constant N for which KN is C-decomposable. The total symmetry of KN

clearly allows the required structure of D1.
2. Let D1 be as above and let D2 be the decomposition obtained from D1 by

switching the roles of v2 and v4.
3. Add to each Di-part (i = 1, 2) one copy of H − C to obtain an H-decompo-

sition in accordance with condition 1 of Definition 4.1.
4. Since PS′C satisfies Proposition 4.7, the new presquare module NSH also

satisfies Proposition 4.7 if every H-decomposition of NSH implies a C-decom-
position of a PS′C-subgraph.

Lemma 4.10. Every H-decomposition of GH implies a C-decomposition of GC ,
where GH is an {H,C,D}-expansion of GC .

Proof. Let D be an H-decomposition of GH . If each {x}-component of H is iso-
morphic to C, then each D-part is an edge-disjoint union of C-subgraphs. Therefore,
assume that not all of the {x}-components are isomorphic. We wish to prove that for
every D′ ∈ D, the set E(D′)

⋂
E(GC) is an edge-disjoint union of copies of C. Take

any separating vertex v ∈ V (GC) ⊂ V (GH) and any {v}-component C ′ in GH , which
is edge-disjoint from GC .

Note that C was selected as the end component of a maximal sequence of sep-
arating vertices and hence at most one {x}-component of H is 1-separable. First,
assume that C ′ is 1-separable. Let H ′ be a D-part that intersects C ′ and contains
a maximal path of separating vertices in C ′. Since the size of H ′ equals the size of
H, the vertex v is also a separating vertex of H ′. Therefore, H ′ contains a maximal
path of separating vertices in H and hence does not contain any separating vertex
from another tail of H. Thus at most one 1-separable component of H is contained in

each D-part. Since the number of such components in GH equals N = E(GH)
E(H) , each

1-separable component of H is contained in exactly one D-part.

The graph GH−GC contains N edge-disjoint copies of H−C, i.e., N edge-disjoint
copies of each 2-connected component of H, except C. Since E(C) was chosen to be
maximum, no component of GH − GC is shared between more than one D-part.
(Otherwise, there will be too many small components.) If we remove all of those
components from D, we obtain a C-decomposition of GC .

From this presquare module, we construct the modified square module S′H follow-
ing the construction for 2-connected, nontriangular H, replacing each PS′H by a copy
of NSH . Since the new presquare module satisfies both condition 1 of Definition 4.1
and Proposition 4.7, the square obtained satisfies the following conditions:

1. Each of S′H − {e1, e3} and S′H − {e2, e4} is H-decomposable.
2. No D-part of an H-decomposition D of a modular extension of S′H is split.

GRAPH DECOMPOSITION IS NP-COMPLETE 1183

This second condition replaces condition 2 of Definition 4.1 only when g(C) > 1. The
rest of the proof for nontriangular, 1-separable graphs therefore takes different paths
for g(C) > 1 and for g(C) = 1. Notice that since H is nontriangular, so is C.

The case where g(C) > 1. For an instance I = (U,A) of 3d-XC, construct
G = GC(I) (as defined in section 2.2), replacing each square module by the above
modified square S′H . Let S(G) be the union of all square modules in G. Let D be
any C-decomposition of GC(I) and let D′ = {P : P ∈ D,P 6⊂ S(G)}. Notice that
n(v) = N(z, v,D′) is independent of D (see section 4.2). Finally, define GH(I) to be
an {H,C,D′}-expansion of G.

By Lemma 4.10, every H-decomposition of GH(I) implies a C-decomposition of
GC(I) and hence a solution for the instance I.

The case where g(C) = 1. When g(C) = 1, we modify the construction of GC(I).
The first step in the construction of the alternator was the selection of a vertex u, for
which d(u) was maximum. The selection of u changes when g(C) = 1, but otherwise
the construction remains the same. Recall that the construction of GC(I) did not
involve any constraints on d(u) and g(C). (The constraints were required only for the
correctness proof.)

The graph GH(I) is therefore, constructed as follows: Select a vertex z in C
and let d = d(z). Given an instance I = (U,A) of 3d-XC, construct GC,z(I) with
the following exception: For any 2-alternator module in GC,z(I) and 0 ≤ i ≤ d, let
wi,i+1 be a “thin” vertex in S1

i,i+1 (additions modulo d+ 1) and let wi+1,i be a “thin”

vertex in S2
i+1,i (see the discussion in section 4 of the r-alternator module for the

definition of wi,j and Sqi,j). Similarly to the case where g(C) > 1, let GH(I) be an
{H,C,D′}-expansion of GC(I).

The validity of the construction follows from Lemma 4.11 and the selection of z.

Lemma 4.11. H-decomposition is NPC if there exists a vertex z in C such that
for every C-decomposition D of GC,z(I), each wing is contained in exactly one D-
part.

Proof. Suppose z is a vertex which satisfies the above and let D be a C-
decomposition of GC,z(I). Take any 2-alternator of GC,z(I), A = 2-AC , and let
Di, 0 ≤ i ≤ d, be the D-parts which are internal to A but not to any square module.
Since each wing is contained in exactly one D-part, V (Di) is V (H−i)

⋃
{vqii } for some

qi ∈ {1, 2}.
We first show that q = q0 = · · · = qd. Suppose without loss of generality that

q0 = 1. Since w0,1 is “thin” in S1
0,1 and w1,0 is “thin” in S2

1,0, the edge (w1,0, v
2
1) is

not in D1 and therefore q1 also equals 1.

Now take any H-decomposition D of GH,z(I). By Lemma 4.10, D contains a
C-decomposition D′ of GC,z(I). As seen above, all the 2-alternators are decomposed
properly and a solution for I is obtained.

To complete this section we show how vertex z is selected in order to meet the
condition of Lemma 4.11. (For g(C) > 1, this condition is a simple corollary of
condition 2 of Definition 4.1.)

First, assume that x is adjacent to every vertex in C and select z to be x. Let D
be a C-decomposition of GC(I), which exists by Lemma 4.10, and let D′ be the set of
D-parts which are not included in any square module. Take any vertex w = wi,j . If w
plays the role of x in a D′-part, then its vertex set V is included in {wi,k, 0 ≤ k 6= i ≤
d(x)}

⋃
{wj,i}

⋃
{vqi , q = 1, 2, . . .}. If wj,i ∈ V , then its degree is 1—a contradiction.

Therefore, each wing is contained in at least one D′-part and a counting argument
shows that it must contain all of the wing. Hence all vertices playing the role of x

1184 D. DOR AND M. TARSI

(1,-1,0) (2,-2,0) (3,-3,0)

(2,0,-2)

(3,0,-3)

(1,0,-1)
(2,-1,-1)

(0,0,0)

v0

v2
v1

G0

G1

G2

Fig. 11. H3,3 embedded in the (two-dimensional) torus (and modified for Mp).

are vqi ’s. Since each vqi is connected to at most one wing, each wing is contained in
exactly one D′-part.

Finally, we can assume that there exists a vertex v in C which is not adjacent to
x. In that case, select z to be a vertex whose distance from x is maximal and denote
its distance from x by l.

Again, let D′ be a C-decomposition of GC(I) after removing the parts which are
included in square modules. Take any D′-part P which contains x(H−i). It is easy to
see that x(P) is x(H−i). Moreover, P contains (entirely) the first l − 1 levels of the
BFS tree of H−i , rooted at x. Any vertex in V (P)\V (H−i) must be in the lth level of
the tree and it must be adjacent to some vertex from the (l − 1)st level. Since every
wj,i is adjacent to exactly one vertex of another wing, each vertex of P which is not
in H−i is not in any other wing. (Otherwise, C is 1-separable.) Thus each wing is
contained in exactly one D′-part.

5. Triangular graphs. This section completes the proof of Theorem 1.1 by
proving the following.

Lemma 5.1. H-decomposition is NPC if H is a triangular graph.
The proof of Lemma 5.1 is a modification of Holyer’s proof for triangles [10],

where he presents a polynomial-time reduction of 3SAT to K3-decomposition.
Definition 5.1. An instance of 3SAT is a set of clauses C = {C1, . . . , Cr} in

variables u1, . . . , us. Each clause Ci consists of three literals li,1, li,2, and li,3, where
a literal li,j is either a variable uk or its negation uk. The problem is to determine
whether C is satisfiable, that is, whether there exists a Boolean assignment to the
variables which simultaneously satisfies all of the clauses in C. A clause is satisfied
if one or more of its literals has value “true.”

The basic building block used for our reduction is a modified version of the Holyer
graph H3,p. For every n ≥ 3 and p ≥ 3, the Holyer graph is Hn,p = (Vn,p, En,p), where

Vn,p =

{
x = (x1, . . . , xn) ∈ Znp :

n∑
i=1

xi ≡ 0

}
,

En,p = {(x, y) : ∃i, j such that yk ≡ xk for k 6= i, j and yi ≡ xi + 1, yj ≡ xj − 1},

and “≡” stands for congruence mod p (see Figure 11). Note that Hn,p can be regarded
as embedded in the (n − 1)-dimensional torus Tn−1 = S1 × · · · × S1 and that the
local structure of Hn,p is the same for each p. (Hn,p should not be confused with the
H-decomposition subgraph.)

Lemma 5.2. The graph H3,p has the following properties:
1. The degree of each vertex is 6.
2. The largest complete subgraph is a triangle.

GRAPH DECOMPOSITION IS NP-COMPLETE 1185

3. The number of triangles which include each vertex is 6.
4. Each edge occurs in exactly two triangles.
5. Each two distinct triangles either are edge disjoint or have exactly one edge

in common.
6. There are exactly two distinct edge partitions of H3,p into K3’s.

All the above listed facts are trivial for n = 3. A proof in the wider frame of
general n can be found in [10].

The two K3 partitions of H3,p will be called “true” and “false” partitions, denoted
by T-partition and F-partition. Two K3’s in H3,p are called neighbors if they have
a common edge. Also, define a patch to be the subgraph of H3,p consisting of the
vertices and edges of a particular K3 and its neighbors. It is a T-patch if the central
K3 belongs to the T-partition, and it is an F-patch otherwise. Two patches P1 and
P2 in H3,p are called noninterfering if the distance d(x, y) in H3,p between vertices
x ∈ V (P1) and y ∈ V (P2) is always at least 10.

Proof of Lemma 5.1 for 2-connected graphs. Let H be a 2-connected graph which
is triangular by vertices v0, v1, and v2 and components G0, G1, and G2. Select
v0, v1, v2 and G0, G1, G2 such that |E(G0)| is maximum among all possible triangular
representations of H.

Let I = {C1, . . . , Cr} in s variables u1, . . . , us, where each Ci consists of literals
li,1, li,2, and li,3. We construct a graphGH(I) for whichH-decomposition is equivalent
to 3SAT on I.

Label each of the vertices of H3,p either v0, v1, or v2 such that the labeling
forms a proper 3-coloring and replace every edge (vi, vi+1) (mod 3) by a copy of the
component Gi. Let all of these copies of G0, G1, and G2 be disjoint except for the
common original vertices of H3,p. In the graph obtained, Mp, we have a copy of H
replacing every triangle of H3,p. Accordingly, Mp admits T and F H-decompositions
and has its T- and F-patches (see Figure 11). Every H-subgraph of Mp obtained from
a triangle of H3,p will be referred to as a K ′3.

Take a copy Ui of Mp to represent each variable ui and copies Cl,1, Cl,2, and Cl,3
of Mp to represent each clause Cl. Join these copies of Mp together as follows: If li,j
is uk, then identify an F-patch of Ci,j with an F-patch of Uk. If li,j is uk, then identify
an F-patch of Ci,j with a T-patch of Uk. Also, join Ci,1, Ci,2, and Ci,3 for each i
by identifying one F-patch from each and then removing the edges of the central K ′3.
Choose all patches which occur in a single Mp copy to be noninterfering. The graph
obtained is GH(I).

If C is satisfiable, we partition GH(I) by partitioning Uk according to the truth
of uk in a satisfying assignment, choosing one “true” literal li,j for each i and F-
partitioning the corresponding Ci,j . On the other hand, suppose that there exists an
H-decomposition D of GH(I). The maximality of G0 implies {w, z} ⊂ {v2} ∪ V (G0)
for each separating pair {w, z} of H such that w ∈ V (Gi) and z ∈ V (Gj) (i 6= j).

First, we assume that each of the three components of each K ′3 is included in
exactly one D-part. Thus it is enough to consider K3-decompositions of G′H(I),
obtained from GH(I) by replacing each such component by a simple edge.

Suppose that there is a K3-decomposition of G′H(I), and consider a particular
copy M of a modified Mp (that is, a copy of H3,p) involved in the construction of
GH(I). Take a D-part, say B, which is in M but not near any join. Clearly, the
neighbors of B do not belong to D, the neighbors of neighbors of B do belong to D,
and so on. Therefore, the edges of M , except perhaps those involved in joins, are all
T-partitioned or all F-partitioned. Thus we may say that M is T- or F-partitioned.

1186 D. DOR AND M. TARSI

Now suppose li,j is uk and consider the join between Ci,j and Uk. We claim that the
edges in the vicinity of this join are K3-decomposable if and only if at least one of
Ci,j and Uk is T-partitioned. If (say) Ci,j is T-partitioned, this accounts for all of the
edges of Ci,j near the joining patch except for those of the patch itself. The patch can
be regarded as belonging to Uk, which can then be locally partitioned in either way.
If, on the other hand, both Ci,j and Uk are F-partitioned, a similar argument shows
that the edges of the patch not belonging to the central K3 are forced to belong to
the F-partitions of both Ci,j and Uk, which is a contradiction. Similarly, if li,j is uk,
then either Ci,j is F-partitioned or Uk is T-partitioned.

Finally, we show that each of the three components of K ′3 is included in exactly
one D-part. Let S be the multiset of all SPs of all D-parts and consider one particular
K ′3, say A, in GH(I). We show that if a D-part does not include all components of
K ′3, then the total number of separating pairs in all D-parts (i.e., |S|) is too large.
Obviously, S contains all SPs included in one of the three components of each K ′3
in GH(I). Therefore, the only SPs which are not guaranteed to be in S are {v2, w},
w ∈ V (G0) \ {v0, v1} for some K ′3-subgraph of GH(I). If there is no such SP in H,
then a simple counting argument implies that each of the three components of A is
contained in exactly one D-part. Hence assume that H contains n > 2 separating
pairs, {v2, w1}, . . . , {v2, wn} such that wi ∈ G0 for i = 1, . . . , n (v0 = w1 and v1 = wn).
If more than one D-part intersects the G0 component of A, then there are more than
(n2) +n− 2 separating pairs in S, more than S could possibly contain. Therefore, G0

intersects with exactly one D-part and each of G0, G1, and G2 is included in exactly
one D-part.

To complete the proof of Theorem 1.1, we need only prove Lemma 5.1 for 1-
separable graphs. H-decomposition of GH(I) is definitely implied by the satisfiability
of I, exactly as described in the last proof. The other direction does not follow
since the counting argument is highly dependent on 2-connectivity. To overcome this
difficulty, we replace SSs by corresponding SPs. As in section 4.3, we define C, a 2-
connected component of H. Lemma 4.10 then implies that H-decomposition of GH(I)
contains a C-decomposition of a subgraph of GH(I), from which the satisfiability of
I follows.

6. Concluding remarks. The existence and structure of graph decompositions
for various pairs (G,H) is a well-established branch of “classical” graph theory (see,
e.g., [2] and [16] for a partial list of references), and the natural question regarding
the computational complexity of the corresponding decision problems arose long ago.
Despite substantial effort devoted to that issue, no general answer has been given
until now.

The history of the problem solved by Theorem 1.1 is sketched in the introduction.
It seems that the use of Wilson’s theorem was the key step toward our general proof.
Without it, the problem was settled only for complete graphs and a rather limited
family of graphs H, all with g(H) = 1. Yet, also with Wilson’s theorem at hand,
many technical difficulties were tackled along the way.

Notice that our theorem does not completely settle the complexity status of all
graph-decomposition problems. However, very recently, after the first version of this
paper had already been submitted for publication, we heard that Bryś and Lonc [5]
has presented a polynomial time-algorithm to decide H-decomposability whenever H
has no component with more than two edges. Their presentation follows many partial
results obtained during the last 15 years, most of which are listed in the introduction.

Apparently, graph decomposition presents a pattern which was already observed

GRAPH DECOMPOSITION IS NP-COMPLETE 1187

in graph coloring, satisfiability, and many other graph-theoretical and combinatorial
decision problems. The border between polynomial and NPC problems is crossed once
a simple size parameter of the problem changes from 2 to 3. Unlike other combinatorial
problems (e.g., graph isomorphism) whose complexity status is an open problem,
graph decomposition, being in NPC, does not provide any consequences regarding
the general complexity hierarchy. In that sense, our result brings no surprise. It just
confirms the expected. It is surprising, however, how complicated the proof turned
out to be, in comparison to NP-completeness proofs of other basic graph-theoretical
problems. Of course, there might be a much simpler way to get to that result, a
way that we — as well as others who have dealt with the problem since the early
1980s—have thus far missed.

REFERENCES

[1] N. Alon, A note on the decomposition of graphs into isomorphic matchings, Acta Math.
Hungar., 42 (1983), pp. 221–223.

[2] J. C. Bermond and D. Sotteau, Graph decomposition and G-designs, in Proc. 5th British
Combinatorial Conference, Aberdeen, 1975, Utilitas Math. Publishers, pp. 53–72.

[3] A. Bialostocki and Y. Roditty, 3K2-decomposition of a graph, Acta Math. Acad. Sci. Hun-
gar., 40 (1982), pp. 201–208.

[4] A. E. Brouwer and R. M. Wilson, The decomposition of graphs into ladder graphs, zn 97/80,
Stiching Mathematisch Centrum, Amsterdam, 1980.

[5] K. Bryś and Z. Lonc, A complete solution of a Holyer problem, in Proc. 4th Twente Work-
shop on Graph and Combinatorial Optimization, University of Twente, Enschede, The
Netherlands, 1995.

[6] Y. Caro, Decomposition and partition of trees into isomorphic subtrees, M.Sc. thesis, Tel-Aviv
University, Tel-Aviv, 1985.

[7] O. Favaron, Z. Lonc, and M. Truszczynski, Decomposition of graphs into graphs with three
edges, Ars Combin., 20 (1985), pp. 125–146.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[9] I. Holyer, The complexity of graph theory problems, Ph.D. dissertation, Churchill College,
Cambridge, UK, 1980.

[10] I. Holyer, The NP-completeness of some edge partition problems, SIAM J. Comput., 10 (1981),
pp. 713–717.

[11] D. G. Kirkpatrick and P. Hell, On the completeness of a generalized matching problem,
in Proc. 10th Annual ACM Symposium on Theory of Computing Machinery, ACM, New
York, 1978, pp. 240–245.

[12] Z. Lonc, Edge decomposition into copies of SK12 is polynomial, J. Combin. Theory B, 69
(1997), pp. 164–182.

[13] J. Steiner, Combinatorische aufgabe, Z. Reine Angew. Math., 45 (1853), pp. 181–182.
[14] R. M. Wilson, Decomposition of a Complete Graph into Subgraphs Isomorphic to a Given

Graph, Utilitas Mathematica Publishing, Winnipeg, MB, 1976, pp. 647–695.
[15] M. Preisler and M. Tarsi, On the decomposition of graphs into copies of P3

⋃
tK2, Ars

Combin., 35 (1993), pp. 325–333.
[16] J. Boska, Graph Decompositions, Springer-Verlag, Berlin, 1990.
[17] E. Cohen and M. Tarsi, NP-completeness of graph-decomposition problems, J. Complexity, 7

(1991), pp. 200–212.
[18] S. Masuyama and S. L. Hakimi, Edge packing in graphs, preprint.

THE FOURTH MOMENT METHOD∗

BONNIE BERGER†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1188–1207, August 1997 013

Abstract. Higher moment analysis has typically been used to upper bound certain functions. In
this paper, we introduce a new combinatorial method to lower bound the expectation of the absolute
value of a random variable X by the expectation of a quartic in X. In the special case where we
are looking at the absolute value of a (weighted) sum of {−1,+1} unbiased random variables, we
achieve tight bounds, using only a fourth moment, for the total discrepancy of a set system. Because
the fourth moment depends only on 4-wise independence, our bounds will hold over polynomially
sized distributions, and so these bounds will be directly applicable in removing randomness to obtain
NC algorithms. We obtain the first NC algorithms for the problems of total discrepancy, maximum
acyclic subgraph, tournament ranking, the Gale–Berlekamp switching game, and edge discrepancy.
We show that for most of these applications it is truly necessary to consider a fourth moment
by exhibiting a 3-wise independent distribution which does not achieve the required bounds. Our
method is strong enough to give a new combinatorial bound on tournament ranking.

Key words. removing randomness, set discrepancy, Gayle–Berlekamp switching game, maxi-
mum acyclic subgraph

AMS subject classifications. 68Q22, 68R10, 05C20, 05C85

PII. S0097539792240005

1. Introduction. In the design of parallel algorithms, randomness can often
be used as a resource. Especially for parallel algorithms, however, generating many
random bits can be expensive. We would like to be able to reduce the number of
random bits that an algorithm needs to guarantee good performance—or even perhaps
remove the randomness entirely. The key to the general methodologies for removing
randomness from parallel algorithms [14, 17, 1, 18, 5, 3] involves showing that the
analysis of the algorithm’s good performance depends on lesser independence. This
will allow us, for constant k-wise independent distributions, for example, to perform
an exhaustive search [14, 17, 1] on a polynomially sized sample space.

For a large class of graph-theoretic randomized algorithms, the “goodness” of
a particular solution is measured in terms of balance. More precisely, let A ⊆ 2Γ,
|A| = |Γ| = n, be a family of finite sets. Let Y = 〈Y1, . . . , Yn〉 ∈ {−1,+1}n be a
2-coloring of the underlying points in Γ (i.e., Yi is the color of the ith element of Γ).
Define Si(Y) =

∑
j∈Ai Yj , where Ai ⊆ A. Then disc(Y) = max1≤i≤n |Si(Y)|. The set

discrepancy problem is to find a coloring Y such that disc(Y) is small. There is also
a weighted version of the problem. Previous work has focused on upper bounding
the expected maximum discrepancy of a set system over n sets; [2, 5, 19] give a good
upper bound on the expected maximum discrepancy, using a O(logn)th moment to
do so. A good upper bound on the expected maximum discrepancy means that all
sets are guaranteed to be nearly balanced, using only O(logn)-wise independence.
Since [2, 5, 19] also show how to derandomize algorithms whose analysis depends only
on O(logn)-wise independence, they obtain NC algorithms for set discrepancy, edge
coloring, and lattice approximation.

On the other hand, problems such as tournament ranking take advantage of the
fact that there will always be some positive discrepancy in each set. In this paper, we

∗Received by the editors June 10, 1992; accepted for publication (in revised form) September
7, 1995. This research was supported by an NSF Postdoctoral Research Fellowship. A preliminary
version of this paper appeared in Proc. 2nd Annual ACM–SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 1991, pp. 373–383.

http://www.siam.org/journals/sicomp/26-4/24000.html
†Laboratory for Computer Science and Department of Applied Mathematics, Massachusetts In-

stitute of Technology, Cambridge, MA 02139 (bab@theory.lcs.mit.edu).

1188

THE FOURTH MOMENT METHOD 1189

will be concerned with problems of this type: where a good solution is constructed
by taking advantage of probabilistic imbalance. We will be interested in the total
discrepancy of a set system. This is similar to set discrepancy above, except that
we want to find a coloring Y such that tot-disc(Y) =

∑n
i=1 |Si(Y)| is large. We

address the weighted version of this problem in section 3. A good lower bound on
the expected sum of the discrepancies of the individual sets implies that the expected
disparity between wins and losses will be large. To achieve NC algorithms for these
problems which use randomness to obtain large total discrepancy, we will give such a
lower bound based on lesser independent distributions.

We introduce a new combinatorial method to bound the expectation of an abso-
lute value of a random variable X from below by a fourth moment. In the special case
where we are looking at the absolute value of a (weighted) sum of {−1,+1} unbiased
random variables, we achieve a lower bound, using a fourth moment, for the total
discrepancy of a set system. (It is easy to show that our bound is tight using only
a second moment; see Lemma 3.3.) Since a fourth moment requires only 4-wise in-
dependence, this will allow us to use parallel derandomization techniques. Our lower
bound for total discrepancy will match the previously well-known lower bound which
requires n-wise independence [26].

We obtain the first NC algorithm for lower bounding total discrepancy, and this
in turn will give us the first NC algorithms for the Gale–Berlekamp switching game
and edge discrepancy. We also apply our fourth moment inequality to devise the
first NC approximation algorithm for getting strictly more than half the arcs in the
maximum acyclic subgraph problem and tournament ranking. These problems will be
defined later in section 5. Although our algorithms for these problems are discrepancy-
like in flavor, dependencies between random variables will prevent us from simply
applying our discrepancy lower bounds. Instead, these problems will require a more
involved application of our fourth moment method. The maximum acyclic subgraph
problem, or its alternate formulation as the feedback arc set problem, arises in many
applications, including machine-shop scheduling [16], generation of test vectors for
circuits [24], register minimization in VLSI design [24], feedback minimization in
systems [22], and circuit simulation through functional abstraction [15].

Finally, we show that it is truly necessary to consider a fourth moment. We exhibit
a discrepancy problem and a 3-wise independent distribution for which we get very
small expected total discrepancy. In fact, surprisingly, every point in the sample space
of this 3-wise independent distribution yields very small total discrepancy. This shows
that for lower bounding total discrepancy, 4-wise independence is both necessary and
sufficient.

This threshold behavior for k-wise independence is particularly interesting since it
shows that there are natural problems, which need only constant-wise independence
but for which Luby’s [18] parallel binary search procedure for pairwise and 3-wise
independent sample spaces can be proved to be too weak. Parallel binary search
techniques can sometimes be preferable to exhaustive search, even over constant-
wise independent distributions, because exhaustive search can sometimes blow up the
number of processors needed by the algorithm. Therefore, in order to obtain more
efficient NC algorithms over constant-wise independent distributions, our result shows
that we require more powerful methods to perform binary search in parallel, such as
those found in [2, 5, 19].

A preliminary version of this paper appeared in [4].

1190 BONNIE BERGER

2. The method. In this section, we present a new method for lower bounding
the expectation of an absolute value with a fourth moment. Suppose we have an
arbitrary random variable S and we are looking for a lower bound on E[|S|]. The
argument is complicated by the fact that we are taking an expectation of an absolute
value. In order to make things more manageable, we might consider S2 in place of |S|.
But then the problem arises that if |S| is a little more than its expected value, then the
contribution that S2 makes to its expected value is proportionally much larger. This
means that even if the expectation of S2 is known to be large, we cannot say much
about E[|S|]. Our solution will be to find a c > 0 for which f(S) = c(S2−S4/q) ≤ |S|
(where q > 0). Intuitively, we compensate for S2 growing large by subtracting off a
multiple of S4, which grows even faster. We show that we can choose our constants c
and q so that if E[f(S)] is large, then E[|S|] is large. This notion is captured in the
following lemma.

Lemma 2.1. For all X ≥ 0 and for all q > 0

X ≥ 3
√

3

2
√
q

(
X2 − X4

q

)
.

Proof. We want to find a c such that X ≥ (1/c
√
q)(X2−X4/q). Equivalently, we

want a c ≥ (qX − X3)/q3/2. If we differentiate the right-hand side of this equation
to find the maximum value, we find that it occurs when X =

√
q/3. Plugging in this

X, we get that the maximum value is 2/(3
√

3). So we can set c to be this constant.
Now plugging in for c, we get that

X ≥ 3
√

3

2
√
q

(
X2 − X4

q

)
,

as claimed.
Theorem 2.2. For any random variable S and for all q > 0,

E[|S|] ≥ 3
√

3

2
√
q

(
E[S2]− E[S4]

q

)
.

Proof. The proof follows from Lemma 2.1 by linearity of expectation.
A special case of this theorem is particularly interesting, and we give it in the

following corollary.
Corollary 2.3 (see [9, p. 194]). For any random variable S,

E[|S|] ≥ E[S2]3/2

E[S4]1/2
.

Proof. Plugging q = 3E[S4]/E[S2] into Theorem 2.2, we obtain the desired result.
Alternatively, Furedi has pointed out that this special-case form of the result can be
proved as a consequence of Hölder’s inequality [12, p. 140].

3. Tight bounds for total discrepancy using 4-wise independence. We
are interested in lower bounding the expected total discrepancy of a family of sets using
less independence. Weighted total discrepancy is similar to the unweighted case except
that for each set Ai ⊆ A, we let ε11, . . . , εnn ∈ R1 be the weights on its elements, where

1We can also extend these methods to obtain similar results for εij ∈ C.

THE FOURTH MOMENT METHOD 1191

εij = 0 if j 6∈ Ai, and we define Si = Si(Y) = εi1Y1 + · · ·+ εinYn. The weighted total
discrepancy problem is to find a coloring Y such that wt-tot-disc(Y) =

∑n
i=1 |Si|

is large.

We apply the fourth moment method as given in section 2 to obtain a tight
bound on total discrepancy in the case when the Yi are chosen 4-wise independently
at random. NC algorithms resulting from our bounds appear in section 5.2. First,
we bound the expected discrepancy of a single set, A, since we can then use linearity
of expectation to get a bound on the total discrepancy. Without loss of generality,
suppose A has n elements.

Lemma 3.1. Let Y1, . . . , Yn be 4-wise independent variables, each being 1 or −1
with equal probability, and let ε1, . . . , εn ∈ R. If S = ε1Y1 + · · ·+ εnYn, then

E[|S|] ≥
√
ε21 + · · ·+ ε2n

3
.

In the special case of unweighted discrepancy, when εi ∈ {−1,+1}, then

E[|S|] ≥
√
n

3
.

Proof. To get a lower bound on E[|S|] using Theorem 2.2, we need to compute
E[S2] and E[S4].

Before we compute the expected values, let us note the following facts:

1. E[Y ti] is 0 when t is odd and 1 when t is even.
2. E[Yi1 · · ·Yit] = E[Yi1] · · ·E[Yit] when t ≤ 4.

For notational convenience, henceforth in this paper, when we sum over an index i,
we mean i = 1, . . . , n, and when we sum over indices i1, . . . , it, we assume that they
are all different.

Observe that

E[S2] =
∑
i

ε2iE[Y 2
i] +

∑
i6=i′

εiεi′E[YiYi′] =
∑
i

ε2i .(3.1)

Also, observe that

E[S4] =
∑
i

ε4iE[Y 4
i] + 4

∑
i,i′

ε3i εi′E[Y 3
i Yi′] + 3

∑
i,i′

ε2i ε
2
i′E[Y 2

i Y
2
i′]

+ 6
∑
i,i′,i′′

ε2i εi′εi′′E[Y 2
i Yi′Yi′′] +

∑
i,i′,i′′,i′′′

εiεi′εi′′εi′′′E[YiYi′Yi′′Yi′′′]

=
∑
i

ε4i + 3
∑
i,i′

ε2i ε
2
i′ .(3.2)

Plugging these values for E[S2] and E[S4] into Theorem 2.2 and choosing q =
(3
∑
i ε

4
i + 9

∑
i,i′ ε

2
i ε

2
i′)/

∑
i ε

2
i , we get that

1192 BONNIE BERGER

E[|S|] ≥ 3
√

3

2

√
3
(∑

i
ε4
i
+3
∑

i,i′
ε2
i
ε2
i′

)∑
i
ε2
i

∑
i

ε2i −
∑
i ε

4
i + 3

∑
i,i′ ε

2
i ε

2
i′

3
(∑

i
ε4
i
+3
∑

i,i′
ε2
i
ε2
i′

)∑
i
ε2
i

=

3
√∑

i ε
2
i

2
√∑

i ε
4
i + 3

∑
i,i′ ε

2
i ε

2
i′

(
2
∑
i ε

2
i

3

)

=
(
∑
i ε

2
i)

3/2

(
∑
i ε

4
i + 3

∑
i,i′ ε

2
i ε

2
i′)

1/2
.

Squaring the first and last parts of this equation, we get that

E[|S|]2 ≥ (
∑
i ε

2
i)

3∑
i ε

4
i + 3

∑
i,i′ ε

2
i ε

2
i′

=
(
∑
i ε

2
i)(
∑
i ε

4
i +

∑
i,i′ ε

2
i ε

2
i′)∑

i ε
4
i + 3

∑
i,i′ ε

2
i ε

2
i′

≥
∑
i ε

2
i

3
.

By linearity of expectation, we obtain the following theorem, which provides a
lower bound on the expected total discrepancy.

Theorem 3.2. Let Y1, . . . , Yn be 4-wise independent variables, each being 1 or
−1 with equal probability. Then the expected total discrepancy

E

[
n∑
i=1

|Si|
]
≥
∑n
i=1

√
ε2i1 + · · ·+ ε2in√

3
.

In the case of complete independence of the Yi’s, it has been shown [26] that the
expected total discrepancy E [

∑n
i=1 |Si|] ≥

√
2/π

∑n
i=1

√
ε2i1 + · · ·+ ε2in; that is, this

gives a constant of
√

2/π versus 1/
√

3 in the theorem above.
The bounds in the preceding lemma and theorem are tight up to constant factors,

as we show in the following lemma.
Lemma 3.3. Let Y1, . . . , Yn be pairwise independent variables, each being 1 or −1

with equal probability, and let ε1, . . . , εn ∈ R. If S = ε1Y1 + · · ·+ εnYn, then

E[|S|] ≤
√
ε21 + · · ·+ ε2n.

Proof. The proof follows simply from the fact that E[X]2 ≤ E[X2] for any random
variable X and from the bound in equation (3.1).

In Theorem 3.2, we showed that the expected total discrepancy is large using
only 4-wise independence. In what follows, we will show a slightly stronger result,
namely, that the discrepancy is large with positive probability. Our proof will require
the following inequality due to Cantelli [23], which achieves a slightly better bound
than Chebyshev’s inequality.

Proposition 3.4 (Cantelli). If X is a random variable with mean µ and variance
σ2, then for all r ≥ 0,

Pr[X < µ− rσ] ≤ 1

r2 + 1
.

By combining Cantelli’s inequality with Lemma 3.1, we can directly show that
there exists an α > 0 such that Pr[|S| ≥ α

√
ε21 + · · ·+ ε2n] is bounded from below

THE FOURTH MOMENT METHOD 1193

by a constant. However, we can prove a more general result by combining Cantelli’s
inequality with fourth moment analysis, as in the following lemma.

Lemma 3.5. For any random variable S and 0 < α < 1,

Pr
[
|S| ≥ α

√
E[S2]

]
≥ (1− α2)2

(1− α2)2 + E[S4]
E[S2]2 − 1

.

Proof. We apply Cantelli’s inequality (Proposition 3.4) to show that

Pr
[
|S| ≥ α

√
E[S2]

]
= Pr

[
S2 ≥ α2E[S2]

]
≥ r2

r2 + 1
,

where r = (1− α2)E[S2]/
√
E[S4]− E[S2]2. Simplifying, this yields the desired

bound.
Theorem 3.6. Let Y1, . . . , Yn be 4-wise independent variables, each being 1 or −1

with equal probability, let ε1, . . . , εn ∈ R, and let 0 < α < 1. If S = ε1Y1 + · · ·+ εnYn,
then

Pr

[
|S| ≥ α

√
ε21 + · · ·+ ε2n

]
≥ (1− α2)2

(1− α2)2 + 2
.

Proof. Use Lemma 3.5 and the fact that from equations (3.1) and (3.2), we have
that E[S2] = ε21 + · · ·+ ε2n and E[S4] ≤ 3(ε21 + · · ·+ ε2n)2.

We set α = 1/
√

3 to get the following corollary.
Corollary 3.7.

Pr

[
|S| ≥

√
ε21 + · · ·+ ε2n√

3

]
≥ 2

11
.

We note that Theorem 3.6, when used directly in lower bounding the expected
total discrepancy, does not yield as good a constant as we obtained in Theorem 3.2
above, i.e., we get 1/3 versus the 1/

√
3 achieved above. However, Corollary 3.7 will

be useful later when we consider the problem of finding a sample point for which a
constant fraction of the sets in a set system have large discrepancy.

4. Fourth moments are necessary. We now show that a fourth moment is
actually necessary to achieve a lower bound on total discrepancy. We do this by
exhibiting a discrepancy problem and a 3-wise independent distribution for which we
get very small expected total discrepancy. In fact, every point in the sample space
of this 3-wise independent distribution yields very small total discrepancy. Note
that this also shows pairwise independence is not sufficient for lower bounding total
discrepancy.

Distribution D (also see [18]) is as follows. Let n = 2l−1 and ai = 〈i1, . . . , il−1, 1〉,
where bin(i) = 〈i1, . . . , il−1〉 is the binary expansion of i. Let ω = 〈ω1, . . . , ωl〉 be
picked uniformly from Zl2. Define random variables X0, . . . , Xn−1 such that

Xi = ai · ω.

Claim 4.1. Distribution D is 3-wise independent.

1194 BONNIE BERGER

Proof. It is fairly easy to show (see [2]) that Xi1 , Xi2 , and Xi3 are independent
and unbiased iff ai1 , ai2 , and ai3 are linearly independent as vectors over Z2. Assume
that Xi1 , Xi2 , and Xi3 are dependent. Then

α1ai1 + α2ai2 + α3ai3 = 0,

where α1, α2, α3 ∈ Z2 are not all 0. Consequently, an even number of α’s are 1 (since
in distribution D the last bit of ai is always 1). In addition, there cannot be exactly
two α’s that are 1: the ai’s being distinct implies that aij + aik 6= 0. Therefore,
α1, α2, α3 = 0, which is a contradiction. Thus Xi1 , Xi2 , and Xi3 are independent and
unbiased.

Observe that distribution D is not 4-wise independent; in particular, X4, X5, X6,
and X7 are dependent since X7 = X4 +X5 +X6.

Theorem 4.1. For all i, j ∈ {0, . . . , n − 1}, define εij = (−1)ai·aj .2 Let Si =
εi0Y0 + · · ·+εi,n−1Yn−1, where Yj = (−1)Xj and the Xj’s are chosen from distribution
D. Then for any X = 〈X0, . . . , Xn−1〉 in the sample space,

n∑
i=1

|Si| = n,

i.e., the total discrepancy is very small.
Proof. Pick an arbitrary ω. Let ω′ = 〈ω1, . . . , ωl−1〉. Note that if aj · ω = 0, then

Yj = 1, and if aj · ω = 1, then Yj = −1. By definition,

∑
i

|Si| =
∑
i

∣∣∣∣∣∣
∑
j

εijYj

∣∣∣∣∣∣
=
∑
i

∣∣∣∣∣∣
∑
j

(−1)ai·aj (−1)aj ·ω

∣∣∣∣∣∣
=
∑
i

∣∣∣∣∣∣
∑
j

(−1)aj ·(ai+ω)

∣∣∣∣∣∣ .
Observe that ai + ω has a 1 in exactly those positions where ai and ω differ.

Claim 4.2. bin(i) = ω′ implies that |Si| = n.
Proof. Since bin(i) = ω′ and for all i, ail = 1, ai + ω = ~0 when ωl = 1 and

〈0, . . . , 0, 1〉 when ωl = 0. Then aj · (ai + ω) = 0 when ωl = 1 and 1 when ωl = 0,
which implies that |Si| = n in either case.

Claim 4.3. For all i such that bin(i) 6= ω′, |Si| = 0.
Proof. Since bin(i) 6= ω′, ai and ω differ in at least one position among 1, . . . , l−1.

Half of the aj ’s have an even number of 1’s in positions where ai and ω differ and half
of the aj ’s have an odd number of 1’s in these positions. Hence |Si| = 0.

By Claims 4.2 and 4.3 and the fact that exactly one i has bin(i) = ω′, we get that∑
i |Si| = n, thereby proving the theorem.

Note that the bound in the theorem is the worst possible because it is always easy
to get a total discrepancy of n by making the discrepancy of a single set be n.

As a simple consequence Theorem 4.1, we obtain a very small expected total
discrepancy over a 3-wise independent distribution. Note that any cubic will have

2The matrix {εij} is an example of a Hadamard matrix.

THE FOURTH MOMENT METHOD 1195

the same expected value under any 3-wise independent distribution. Thus as a con-
sequence of Theorem 4.1, there is no cubic that will give a good lower bound on
the expected total discrepancy, i.e., there is no analogous “third moment method”
for lower bounding total discrepancy. This indicates that there is a threshold of in-
dependence where we need to go to 4-wise independence to get an adequate lower
bound for total discrepancy. Since Luby [18] could only handle up to 3-wise indepen-
dence efficiently in parallel, this serves to further motivate the need for the general
framework of [5] to remove randomness in the case of more than 3-wise (and up to
polylogarithmic) independence.

5. NC algorithms.

5.1. Background on removing randomness. For many applications [26, 21,
14, 17, 1, 18, 5, 3], the problem of removing randomness from an algorithm can be
solved by finding an X̂ = 〈X1, . . . , Xn〉 such that F (X̂) ≥ E[F (X)], for some function
F which measures the “goodness” of a sample point, and some sample space S over
which the expectation is to be computed. The problem is then how best to find a
good sample point (e.g., an X̂ such that F (X̂) ≥ E[F (X)]) in S. If the space of
sample points is small (e.g., polynomial), then this can be accomplished by brute
force [14, 17, 1]; namely, we could try all points until we get a good one, for one must
exist. Although a fully independent sample space is large, polynomial-size sample
spaces for 4-wise independent distributions exist.

Proposition 5.1 (see [1]). For any constant k, there exists a k-wise independent
distribution over X1, . . . , Xn, where the Xi’s are unbiased binary random variables,
with only O(nbk/2c) sample points.

Proposition 5.2 (see [13, 17, 1]). For any constant k, there exists a k-wise
independent distribution over X1, . . . , Xn, where the Xi’s are uniform in [0, n − 1],
with only O(nk) sample points.

To say that our inequality depends only on 4-wise independence means that it will
hold for any 4-wise independent distribution. Therefore, there is an O(n4) (O(n2) for
unbiased binary random variables) size sample space which we can search exhaustively
in NC by assigning a processor for each sample point. Notice, however, that we get a
blowup in the number of processors, as compared to the RNC algorithm, by a factor
of the number of sample points.

Alternatively, as long as S is a sum of a polynomial number of functions of at
most log n variables each, we could also use the Berger–Rompel [5] general framework
to remove randomness from functions of the form B(S) = (3

√
3/(2
√
q))(S2 − S4/q),

where q > 0. This is because raising S to the fourth or second power yields a sum of
a polynomial number of functions of at most four times as many variables as before.
The general framework can also handle a sum of a polynomial number of functions
B(S). Note, however, that the general framework cannot be used to handle functions
of the special-case form given in Corollary 2.3.

We discuss the tradeoff between using exhaustive search to derandomize versus
the more complicated methods of the general framework of [5] for the specific case of
derandomizing total discrepancy in section 5.2 and for the case of maximum acyclic
subgraph in section 5.4.2.

5.2. Total discrepancy is in NC . Theorem 3.2 immediately gives us an RNC
algorithm for total discrepancy where if we pick the Yj ’s 4-wise independently with

1196 BONNIE BERGER

{−1,+1} equally likely probability, we get a solution with expected total discrepancy

E

[
n∑
i=1

|Si|
]
≥
∑n
i=1

√
ε2i1 + · · ·+ ε2in√

3
.

To get an NC algorithm, we can either try all sample points in a 4-wise indepen-
dent sample space or do parallel binary search, as discussed in section 5.1. Which
method is better depends on ∆, the maximum set size.

Trying all sample points has a processor blowup of O(n2) for each sample point,
an additional factor of O(∆) processors to sum over the at most ∆ elements of each
set, and another factor of O(n) processors to sum over the n sets. This gives an
NC algorithm which uses O(n3∆) processors, runs in O(logn) time, and returns a
solution with total discrepancy

n∑
i=1

|Si| ≥

∑n
i=1

√∑
j∈Ai ε

2
ij

√
3

,

which, of course, is equivalent to the lower bound that we got for the RNC algorithm.
On the other hand, we could do a parallel binary search, as implemented by the

general framework of [5]. Using our fourth moment inequality, the total discrepancy
can be expressed as a sum of O(n∆4) functions, each depending on at most four
random variables. This gives an NC algorithm which uses O(n∆4) processors, runs
in O(logn) time, and returns a solution with the same total discrepancy as exhaustive
search.

In summary, if ∆ ≥ n2/3, exhaustive search is better since it uses fewer processors,
and parallel binary search is better otherwise.

Remark. Using 4-wise independence, we can also find in NC a single setting of
the Yj ’s such that the total discrepancy

∑n
i=1 |Si| is Θ(n3/2), i.e., this single setting

meets both the upper and lower bounds.
Remark. These methods can be extended to get a sample point that has a constant

fraction of the individual discrepancies large as well by using methods similar to
Corollary 3.7.

5.3. The Gale–Berlekamp switching game and edge discrepancy are
in NC . Our methods can be applied to get the first NC algorithms for the Gale–
Berlekamp switching game and the edge discrepancy problem.

In the Gale–Berlekamp switching game, we want an algorithm which, given an
n×n matrix of aij ∈ {−1,+1}, outputs an n-vector of Xi ∈ {−1,+1} and an n-vector
of Yi ∈ {−1,+1} so that

n∑
i,j=1

aijXiYj ≥ cn3/2

for some constant c > 0.
Brown and Spencer [7, 26] gave a deterministic polynomial-time algorithm for

this problem (for c =
√

2/π) by picking the Yj ’s n-wise independently at random
and then utilizing the method of conditional probabilities to derandomize. We, on
the other hand, will pick the Yj ’s 4-wise independently with {−1,+1} equally likely
probability and then derandomize using parallel methods.

THE FOURTH MOMENT METHOD 1197

The proof of our algorithm’s correctness follows along the same lines of Brown
and Spencer’s [7, 26] proof for the sequential case.

Lemma 5.3. Picking Y1, . . . , Yn 4-wise independently, each 1 or −1 with equal
probability, we obtain an RNC algorithm for the Gale–Berlekamp switching game,
where c = 1/

√
3 in the solution.

Proof. Let Ri =
∑n
j=1 aijYj . Set Xi = 1 if Ri ≥ 0 and −1 otherwise. Then

E

 n∑
i,j=1

aijXiYj

 = E

[
n∑
i=1

RiXi

]
= E

[∑
i

|Ri|
]

= E

∑
i

∣∣∣∣∣∣
∑
j

aijYj

∣∣∣∣∣∣
 ≥ n3/2

√
3

by Theorem 3.2 if we let εij = aij ∈ {−1,+1}.
To get an NC algorithm, trying all sample points works best in this case since

∆ = n (see the discussions in sections 5.1 and 5.2). Thus we get the following theorem.
Theorem 5.4. There is an NC algorithm for the Gale–Berlekamp switching

game which uses O(n4) processors, runs in O(logn) time, and returns a solution
where c = 1/

√
3.

Subsequent to our work, a higher-dimensional version of the switching game result
was obtained by Tetali [27].

In the edge discrepancy problem, we are given an edge coloring χ : E → {−1,+1}
of Kn = (V,E) and we want to find a subset of the vertices S ⊆ V so that∣∣∣∣∣ ∑

e∈ES

χ(e)

∣∣∣∣∣ ≥ cn3/2,

where ES are the edges of the subgraph induced by S.
Erdös and Spencer discovered a polynomial-time algorithm for edge discrepancy

through a reduction to the Gale–Berlekamp switching game (see [10] and [26, pp. 47–
48]). This reduction, which can easily be done in NC , in conjunction with Theorem 5.4
gives us the following theorem.

Theorem 5.5. There is an NC algorithm for the edge discrepancy problem
which uses O(n4) processors, runs in O(logn) time, and returns a solution where
c = 1/(12

√
3).

5.4. The maximum acyclic subgraph problem and tournament ranking
are in NC . We can also apply our methods to obtain the first NC algorithm that
gets strictly greater than half the arcs for the maximum acyclic subgraph problem,
and tournament ranking as a special case. The maximum acyclic subgraph problem
is as follows: given a directed graph G = (V,A), where |V | = n and |A| = m, find
the largest subset of the arcs which does not contain a cycle. This problem is NP -
complete, so we settle for approximate solutions. (See [6] for more background on the
problem.)

Berger and Shor [6] showed how to handle 2-cycles optimally and therefore re-
duced the problem to finding algorithms for 2-cycle-free graphs. So we henceforth
consider only such graphs. Furthermore, they devised randomized and determinis-
tic polynomial-time algorithms and an RNC algorithm (which we describe below)
and proved that these algorithms find an acyclic subgraph Â ⊆ A with at least
|A|/2 + Ω(

∑n
i=1

√
deg(i)) arcs, where deg(i) is the degree of vertex i in G.

Using Theorem 2.2 and a more delicate analysis than we used for lower bounding
the discrepancy of a set, we are able to prove that the Berger–Shor RNC algorithm

1198 BONNIE BERGER

works using 5-wise (versus n-wise in [6]) independence. Then the parallel derandom-
ization techniques can be applied. Moreover, our proof techniques, which utilize the
fourth moment method, give the following improved lower bound on the size of the
acyclic subgraph returned by our NC algorithm:

|A|
2
− 1 +

√
6

40

n∑
i=1

√
deg(i) +

√
3

20

n∑
i=1

|dout(i)− din(i)|,

where dout(i) is the out-degree of vertex i in G and din(i) is the in-degree of i. This
bound is tight, within a constant factor on the low-order terms [6].

We remark that if deg(i) = |V | − 1, for all i, an acyclic subgraph corresponds
simply to a tournament ranking. A tournament ranking is an ordering of players
from “best” to “worst,” where we maximize the number of pairs of players A and B
for which player A has beaten player B and we have assigned A a higher rank than
B. Our acyclic subgraph result generalizes and improves upon the corresponding
|A|/2 + Ω(

∑
v∈V

√
|V |) bound for tournaments discovered by Spencer [25, 26]. (A

sequential algorithm that achieves this latter bound was first presented in [20].) The
improved bound that we get is a natural consequence of our methods, which are
constructive.

Let G = (V,A), |V | ≥ 2, be a tournament. We are able to find in NC a ranking
of the players so that there are at least

|A|
2
− 1 +

√
3

40
|V |3/2 +

√
3

20

n∑
i=1

|dout(i)− din(i)|

wins of higher-ranked players over lower ranked ones. Notice that the last term results
in an improved ranking when there are players who have an unbalanced number of
wins and losses. This bound is tight within a constant factor on the low-order terms
for tournaments [8].

5.4.1. An improved RNC algorithm which uses 5-wise independence.
Berger and Shor [6] gave the following RNC approximation algorithm for the maxi-
mum acyclic subgraph problem in 2-cycle free graphs. Suppose that we have a pro-
cessor for each vertex and each arc in G and an incoming and outgoing adjacency list
in shared memory. Then once we have assigned a randomized ordering to the ver-
tices of G, we can process all of them in parallel. To produce a randomized ordering,
randomly assign each vertex i a rank ri ∈ {1, . . . , σ}, σ ∈ N (we will discuss possible
choices for σ later). When we process a vertex, we will only consider its neighbors
with a higher number in the assigned ordering. We will place in the acyclic subgraph
Â either all of the out-arcs to or all of the in-arcs from the higher-numbered neighbors,
whichever set is larger. It can easily be seen that this procedure can be handled with
a linear number of processors in logarithmic time using standard parallel algorithm
and data structure techniques.

However, this randomized algorithm is not in a form to which any of the known
parallel derandomization procedures can be applied; its analysis is based on that of its
sequential counterpart, whose analysis depends on n-wise independence. Moreover,
Greenlaw [11] has shown that if the algorithm is modified to process vertices in order of
highest-degree vertex in the remaining graph, then the problem of finding the acyclic
subgraph produced by this algorithm is P-complete.

In this paper, we will show that if we assign the randomized ordering 5-wise
independently (as opposed to n-wise independently), we will be able to obtain an even

THE FOURTH MOMENT METHOD 1199

better lower bound on E[|Â|], the expected number of arcs in the acyclic subgraph,
than was achieved through the sequential case analysis in [6]. The key point is that
we will then be able to derandomize this RNC algorithm to get an NC algorithm.

For 〈r1, . . . , rn〉 ∈ {1, . . . , σ}n chosen from a 5-wise independent distribution,
we wish to show that E[|Â|] is large. It will be convenient for us to define the following
random variables. Let Yij be the indicator random variable for rj > ri, i.e., Yij is
1 if rj > ri and 0 otherwise. Furthermore, let Zij be +Yij if 〈i, j〉 ∈ A and −Yij if
〈j, i〉 ∈ A. (Note that + and – are fixed by direction.) Let

Xi =

∣∣∣∣∣∣
∑

j∈N(i)

Zij

∣∣∣∣∣∣ .
Intuitively, Xi is the discrepancy, or difference in the number of incoming and outgoing
arcs, at the ith vertex when it is processed. Let di =

∑
j∈N(i) Yij . So di is the degree

of the ith vertex when it is processed. Let S denote the number of arcs that have
both of their endpoints with the same rank. Thus S =

∑
<i,j>∈A sij , where sij is 1 if

ri = rj and 0 otherwise.
For the purposes of analysis, suppose that the algorithm breaks ties between ranks

by a random permutation on all of the ranks once they are chosen. Call this algorithm
Aperm and the original algorithm A5wise. Then the sizes of the acyclic subgraphs
(i.e., the |Â|’s) produced by the two algorithms will differ by at most the number
of arcs connecting nodes of equal rank. Thus the expected difference in the |Â|’s
produced by the two algorithms is at most the expected number of arcs connecting
nodes of equal rank; in particular, the expected behavior of A5wise is at least the
expected behavior of Aperm minus this difference.

More formally, let us first examine the expected behavior of Aperm, that is,
the case when all the ranks are distinct. Expanding |Â| out in terms of the random
variables defined above, we get

|Â| =

n∑
i=1

(
di
2

+
Xi

2

)
=

1

2
|A|+ 1

2

n∑
i=1

Xi.

By linearity of expectation,

E[|Â|] =
1

2
|A|+ 1

2

n∑
i=1

E[Xi].(5.1)

We would now like to prove that
∑n
i=1E[Xi] is large. Observe that Xi is the

absolute value of a sum of random variables Zij . So as in section 2, we will bound its
expectation from below by a fourth moment. Applying Theorem 2.2, we have that
for all q > 0, E[Xi] ≥ (3

√
3/2
√
q)(E[X2

i] − E[X4
i]/q). We will show that if the ri’s

are chosen 5-wise independently in algorithm Aperm,

3
√

3

2
√
qi

(
E[X2

i]− E[X4
i]

qi

)
≥
√

6

20

√
deg(i) +

√
3

10
|dout(i)− din(i)|,

where qi = deg(i) + 2(dout(i)− din(i))2.
To do this, we need to compute E[X2

i] and E[X4
i]. The following claim will be

helpful.

1200 BONNIE BERGER

Claim 5.1. (Xi)
k is a function which is a sum of terms depending on at most

k + 1 ranks ri each.

Proof. Xk
i is a polynomial which is a sum of terms depending on k Zij ’s each. It

would appear that k Zij ’s are dependent on 2k ri’s. However, since each term of k
Zij ’s is really dependent on one i and at most k j ∈N(i), each term is a function of
at most k + 1 ri’s.

We can thus use the fact that, although Yij1 , Yij2 , . . . , Yijt are not independent,
we can still compute their expected product by the following lemma for t ≤ 4.

Lemma 5.6. E[Yij1Yij2 · · ·Yijt] = 1/(t+ 1) when j1, j2, . . . , jt are all distinct and
t ≤ 4.

Proof. This is because the product Yij1Yij2 · · ·Yijt is 0 except when i has a lower
rank than all of j1, . . . , jt. We note that if ranks 〈ri, rj1 , . . . , rjt〉 are chosen from at
least a (t+1)-wise independent distribution and ties are broken through a random
permutation, then all (t+1)-tuples of distinct rank values are equally likely. Then by
symmetry, since each of ri, rj1 , . . . , rjt is equally likely to be the least element, only
1/(t+ 1) has ri least.

Before we compute E[X2
i] and E[X4

i], let us give some useful definitions. Let
B = {〈i, j〉 ∈ A} and C = {〈j, i〉 ∈ A}. Let b = dout(i) = |B| and c = din(i) = |C|.
Let z = b+c and x = |b−c|. Let Bk = {(j1, . . . , jk)|j1, . . . , jk ∈ B all distinct} and let
Ck = {(j1, . . . , jk)|j1, . . . , jk ∈ C all distinct}. Let β =

∑
j∈B Yij and γ =

∑
j∈C Yij .

Without loss of generality, we assume that b ≥ c.
Lemma 5.7. E[X2

i] = z/6 + x2/3.

Proof. Observe that

E[X2
i] = E[(β − γ)2] = E[β2 − 2βγ + γ2].

We will compute this term by term using linearity of expectation. First,

E[β2] =
∑
j∈B

E[Y 2
ij]+

∑
(j,j′)∈B2

E[YijYij′] =
∑
j∈B

E[Yij]+
∑

(j,j′)∈B2

E[YijYij′] = b
1

2
+(b2−b)1

3

by Lemma 5.6. By symmetry,

E[γ2] = c
1

2
+ (c2 − c)1

3
.

Also,

E[−2βγ] = −2
∑
j∈B

∑
j′∈C

E[YijYij′] = −2bc
1

3
.

Combining all terms,

E[X2
i] =

1

6
(b+ c) +

1

3
(b− c)2 =

1

6
z +

1

3
x2.

Lemma 5.8. E[X4
i] = (1/30)(z + 2x2)(3z + 3x2 − 1).

Proof. Observe that

E[X4
i] = E[(β − γ)4] = E[β4 − 4β3γ + 6β2γ2 − 4βγ3 + γ4].

THE FOURTH MOMENT METHOD 1201

We will likewise compute this term by term using linearity of expectation. First,

E[β4] =
∑
j∈B

E[Y 4
ij] +

(
4

1

) ∑
(j,j′)∈B2

E[Y 3
ijYij′] + 3

∑
(j,j′)∈B2

E[Y 2
ijY

2
ij′]

+

(
4

2

) ∑
(j,j′,j′′)∈B3

E[Y 2
ijYij′Yij′′] +

∑
(j,j′,j′′,j′′′)∈B4

E[YijYij′Yij′′Yij′′′]

= b
1

2
+

(
4

1

)
b(b− 1)

1

3
+ 3b(b− 1)

1

3
+

(
4

2

)
b(b− 1)(b− 2)

1

4

+ b(b− 1)(b− 2)(b− 3)
1

5
.

By symmetry,

E[γ4] = c
1

2
+

(
4

1

)
c(c− 1)

1

3
+ 3c(c− 1)

1

3
+

(
4

2

)
c(c− 1)(c− 2)

1

4

+ c(c− 1)(c− 2)(c− 3)
1

5
.

Next,

E[−4β3γ] = −4

∑
j∈B

∑
j′′′∈C

E[Y 3
ijYij′′′] +

(
3

2

) ∑
(j,j′)∈B2

∑
j′′′∈C

E[Y 2
ijYij′Yij′′′]

+
∑

(j,j′,j′′)∈B3

∑
j′′′∈C

E[YijYij′Yij′′Yij′′′]

= −4

[
bc

1

3
+

(
3

2

)
b(b− 1)c

1

4
+ b(b− 1)(b− 2)c

1

5

]
.

By symmetry,

E[−4βγ3] = −4

[
bc

1

3
+

(
3

2

)
bc(c− 1)

1

4
+ bc(c− 1)(c− 2)

1

5

]
.

Also,

E[6β2γ2] = 6

∑
j∈B

∑
j′′∈C

E[Y 2
ijY

2
ij′′] +

∑
j∈B

∑
(j′′,j′′′)∈C2

E[Y 2
ijYij′′Yij′′′]

+
∑

(j,j′)∈B2

∑
j′′∈C

E[YijYij′Y
2
ij′′] +

∑
(j,j′)∈B2

∑
(j′′,j′′′)∈C2

E[YijYij′Yij′′Yij′′′]

= 6

[
bc

1

3
+ bc(c− 1)

1

4
+ b(b− 1)c

1

4
+ b(b− 1)c(c− 1)

1

5

]
.

Combining all terms,

E[X4
i] =

(b− c)4

5
− (b− c)2

15
+

3(b− c)2(b+ c)

10
+

(b+ c)2

10
− b+ c

30

=
x4

5
− x2

15
+

3x2z

10
+
z2

10
− z

30

=
(z + 2x2)(3z + 3x2 − 1)

30
.

1202 BONNIE BERGER

By Lemmas 5.7 and 5.8, when q = z + 2x2,

3
√

3

2
√
q

(
E[X2

i]− E[X4
i]

q

)
≥
√

6

20

√
z +

√
3

10
x.

This fact and Theorem 2.2 imply that

E[Xi] ≥
√

6

20

√
z +

√
3

10
x.

This implies

n∑
i=1

E[Xi] ≥
√

6

20

n∑
i=1

√
deg(i) +

√
3

10

n∑
i=1

|dout(i)− din(i)|.

Therefore, plugging the above equation into equation (5.1), we have for algorithm
Aperm that

E[|Â|] ≥ |A|
2

+

√
6

40

n∑
i=1

√
deg(i) +

√
3

20

n∑
i=1

|dout(i)− din(i)|.(5.2)

Now let us consider the expected behavior of the actual algorithm A5wise since
we do not really have access to an algorithm that produces truly random permutations.
Recall from the discussion above that E[|Â|] for A5wise is at least E[|Â|] for Aperm

minus the expected number of arcs with equal rank (i.e., E[S]). Therefore, from
equation (5.2) and this fact, we have shown for algorithm A5wise that

E[|Â|] ≥ 1

2
|A| − E[S] +

1

2

n∑
i=1

E[Xi].

We already lower bounded equation (5.1) in equation (5.2), so all that remains is to
upper bound E[S], which is achieved by the following lemma.

Lemma 5.9. E[S] ≤ |A|/σ.
Proof. For any pairwise independent distribution, E[sij] = 1/σ.
We have succeeded in proving the following theorem for A5wise.
Theorem 5.10. For 〈r1, . . . , rn〉 ∈ {1, . . . , σ}n chosen from a 5-wise independent

distribution, the expected size of the acyclic subgraph found by the RNC algorithm is

E[|Â|] ≥ |A|
2
− |A|

σ
+

√
6

40

n∑
i=1

√
deg(i) +

√
3

20

n∑
i=1

|dout(i)− din(i)|.

Observe that the larger we make σ, the better the lower bound we get on the
expected size of our acyclic subgraph. However, in terms of asymptotics, σ ≥ 16

√
∆,

where ∆ is the maximum degree of any vertex in the graph, suffices (since the second
term is then dominated by the third). This will be useful in the next section since we
will see that there is a tradeoff between the bound we achieve on |Â| and the number
of processors, or running time, we get when we derandomize.

Corollary 5.11. For 〈r1, . . . , rn〉 ∈ {1, . . . , 16
√

∆}n chosen from a 5-wise in-
dependent distribution,

E[|Â|] ≥ |A|
2

+ Ω

(
n∑
i=1

√
deg(i) +

n∑
i=1

|dout(i)− din(i)|
)
.

THE FOURTH MOMENT METHOD 1203

5.4.2. The NC algorithm. We can derandomize the algorithm of the previous
section in parallel. Since that randomized algorithm obtained a large acyclic subgraph
using 5-wise independence, we can derandomize by simply trying all sample points of
a 5-wise independent distribution, or, as we will show, we can use the techniques of
[5] to do a parallel binary search. While the former approach is simpler, in this case,
the latter requires fewer processors.

Before we describe either of these approaches, it will be convenient to define a
benefit function [14, 18]

B(W) =
1

2
|A| − S +

3
√

3

4

n∑
i=1

1
√
qi

(
X2
i −

X4
i

qi

)
,

where W = 〈r1, . . . , rn〉 ∈ {1, . . . , σ}n and qi = deg(i) + (dout(i) − din(i))2. By the
analysis leading to the proof of Theorem 5.10, we know that E[B(W)] for W chosen
over a 5-wise independent distribution is large.

We can therefore try all sample points W in a 5-wise independent distribution
to find a W such that B(W) ≥ E[B(W)]. This would require one processor for each
sample point, of which there are O(n5 + σ5). If we pick σ = n, we get a large acyclic
subgraph, but we may need O(n5) processors.

Alternatively, we can do a binary search in parallel to obtain the following theo-
rem. Recall that ∆ = max1≤i≤n deg(i).

Theorem 5.12. There is an NC algorithm for maximum acyclic subgraph which
uses O(n∆4) processors, runs in O(log2 n log σ) time, and produces an acyclic sub-
graph Â of size

|Â| ≥ |A|
2
− |A|

σ
+

√
6

40

n∑
i=1

√
deg(i) +

√
3

20

n∑
i=1

|dout(i)− din(i)|.

Proof. To find a good W , we apply one of the basic approaches for handling multi-
values given in [5] to the problem at hand. We have 5-wise independent multivalued
random variables W = 〈r1, . . . , rn〉, where bin(rk) = rk1rk2 · · · rkl (rkt ∈ {0, 1} and
l = dlog σe); in other words, W can be thought of as an n × l Boolean matrix that
has the rk’s as its rows. We compute the rk’s bit by bit, setting the tth bit of all of
the rk’s simultaneously. Let U (t) be the tth column of W once all of the bits in the

column are set. Similarly, U
(t)
k = rkt once its bit is set. At step t, we will show below

how to compute the tth bit of all the rk’s, U (t) such that

E[B(W)|rkj = U
(j)
k for 1≤k≤n, 1≤j≤ t]

≥ E[B(W)|rkj = U
(j)
k for 1≤k≤n, 1≤j≤ t− 1].

In other words, find a setting for the tth bits of the rk’s such that the expected benefit
from setting the first t bits of the rk’s is at least the expected benefit from setting the
first t− 1 bits of the rk’s. If we let

F (t)(U (t)) = E[B(W)|rkj = U
(j)
k for 1≤k≤n, 1≤j≤ t],

then the above is equivalent to finding a U (t) with F (t)(U (t)) ≥ E[F (t)(U (t))].
A simple inductive argument then shows that for all t,

E[B(W)|rkj = U
(j)
k for 1≤k≤n, 1≤j≤ t] ≥ E[B(W)].

1204 BONNIE BERGER

It follows that letting W be such that rkj = U
(j)
k for all k and j implies that B(W) ≥

E[B(W)].
To find a setting of U (t) such that F (t)(U (t)) ≥ E[F (t)(U (t))], we utilize the

method given in [5] for binary searching a distribution with n 5-wise independent 0/1
random variables. This works as follows. We construct an n × O(logn) matrix M
whose rows are 5-wise linearly independent. It was shown that for a randomly chosen
vector ω ∈ {0, 1}O(log n), taking the matrix–vector product of Mω produces an X
which consists of n 5-wise independent 0/1 random variables. By setting ω one bit
at a time so that the expected benefit of X, given the settings of ω to that point, is
always nondecreasing, it is possible to get a setting for X such that the benefit of X
is at least the expected benefit of X.

It remains to show how to compute the expected benefit from setting the first t
bits of the rk’s, given a partial setting of ω. First, let us define some terms. From
Claim 5.1, we know that our benefit function B(W) is a sum of terms depending on
at most five ranks rk each. Let α = {ij1, . . . , ijτ}, where τ ∈ [1, 4] and j1, . . . , jτ
are all distinct, be the indices of the arcs involved in such a term. Recall that Yij
is the indicator random variable for rj > ri and sij is the indicator random variable
for ri = rj . Then B(W) is a sum of O(n∆4) functions gα(W) = Yij1Yij2 · · ·Yijτ and
O(n∆) functions sij(W) = I{ri = rj}, each depending on at most five rk’s each. Note
that gα is the indicator function for Yij1Yij2 · · ·Yijτ , i.e., gα is 1 if ri is the minimum
among ri, rj1 , . . . , rjτ and 0 otherwise.

Let

f (t)
α (U (t)) = E[gα(W)|rkj = U

(j)
k for 1≤k≤n, 1≤j≤ t],

which is the expectation that ri is minimum among rj1, . . . , rjt, given that the first t
bits of the rk’s are specified. Let

f
(t)
ij (U (t)) = E[sij(W)|rkj = U

(j)
k for 1≤k≤n, 1≤j≤ t],

which is the expectation that the first t bits of the rk’s are specified. This allows

us to write F (t)(U (t)) as a sum of O(n∆4) functions f
(t)
α and f

(t)
ij , each depending

on at most five ranks rkt. Assuming that, given U (1), . . . , U (t−1), we can construct

functions f
(t)
α and f

(t)
ij , given a partial setting of ω, we can compute F (t)(U (t)) given

the partial setting of ω. We then choose the bit of ω that was set so as to maximize
F (t)(U (t)). After all bits of ω have been set in this way, we have found a U (t) such
that F (t)(U (t)) ≥ E[F (t)(U (t))].

We now show how to construct, for any t and for any settings of the first t − 1

bits U (1), . . . , U (t−1), the functions f
(t)
α (U (t)) given a partial setting of ω. Given term

α, the (t−1)-bit prefix of each rank ri, rj1 , . . . , rjτ , and partial information on the tth

bit of each of these ranks, f
(t)
α is the probability that ri is the minimum rank among

ri, rj1 , . . . , rjτ . To calculate f
(t)
α , we sort the ranks of term α into groups of those

that have a strictly smaller t-bit prefix than ri (group Γ1), those that have the same
t-bit prefix as ri (group Γ2), and those that have a strictly larger t-bit prefix than ri
(group Γ3). If |Γ1| > 0, then f

(t)
α = 0. Otherwise, we focus on those ranks with the

same t-bit prefix because only these are in contention for the minimum rank value.
Again for the purposes of analysis, we utilize algorithm Aperm, which we specified

to perform a random permutation of those ranks that are equal upon setting the last
(i.e., the lth) bit of the ranks. We will analyze what happens to algorithm Aperm

THE FOURTH MOMENT METHOD 1205

up to the permutation (i.e., the bits of the lth column are set but the identical ranks
have not been permuted yet). Intuitively, we do this because we cannot derandomize
O(n!) possibilities.

By way of example, suppose we have five ranks involved in the gα term. There are
25 different ways to set the tth bits for these ranks. For each setting of the five bits,
we have a collection of ranks whose leading order t − 1 bits are the same. We have
partial information on their tth bit (from the partial setting of ω) but no information
on their remaining bits (i.e., they are completely random). For each possible setting
of the five bits, we want to know the probability of that ri is the minimum rank:

Pr[ri is min | partial info on ω]

=
∑

32 settings

(Pr[get that setting | partial info on ω] · Pr[ri is min | get that setting]).

Calculating Pr[ri is min | get that setting] merely requires a table lookup: it is 0 or
1/((# of identical ranks including setting of tth bit)+1) since all of the ranks are
assumed to be distinct for algorithm Aperm.

To calculate Pr[get that setting | partial info on ω], assume without loss of gen-
erality that we have a five-row matrix M ′ such that all the rows are independent. We
are setting the bits of a l′ = O(logn) bit vector ω one at a time. Some of ω’s values
have been set, let us say t′, and the rest are random. We want to know the probability
that when we plug in the remaining l′− t′ unfixed values into vector ω, the five bits of
the ranks will get the specified setting. This probability can be calculated by solving
a linear system of equations with l′ − t′ unknowns. Suppose u is the dimension of
the solution space. Then the probability is 2u/2l

′−t′ = 2u−l
′+t′ . The solution to the

system of equations can be computed quickly since M ′ is of size 5 × O(logn) and ω
is of size log n, so it can be done sequentially in NC.

Next, we show how to construct, for any t and for any settings of the first t − 1

bits U (1), . . . , U (t−1), the functions f
(t)
ij (U (t)) given a partial setting of ω. Note that

the indicator sij is only for the part of the algorithm up to the random permutation.

As with f
(t)
α , to compute f

(t)
ij , we first show how to compute

E[sij(W)|rkj = U
(j)
k for 1≤k≤n, 1≤j≤ t];

it then suffices to plug in the given U (1), . . . , U (t−1) and every possible setting of the

variables {U (t)
k |k ∈ {i, j}} to construct f

(t)
ij .

Given arc 〈i, j〉 and the first t bits of ranks ri and rj , f
(t)
ij is the probability that

ri = rj . Clearly, if ri and rj have different t-bit prefixes, then f
(t)
ij = 0. Otherwise,

f
(t)
ij = Pr[ri=rj |ri and rj have same t-bit prefix]

=
1

2l−t
.

Now we want to argue that the above procedure finds a sample point W (i.e., a
collection of ranks) for which |Â| is large. For any collection of ranks, the following is
true:

|Â| =

n∑
i=1

(
di
2

+
Xi

2

)
=

1

2
|A| − 1

2
S +

1

2

n∑
i=1

Xi.(5.3)

1206 BONNIE BERGER

Note that the sum over all di is equivalent to |A| − S since S arcs are not processed,
and each processed arc is counted only once. In particular, let us suppose that equa-
tion (5.3) applies to the collection of 5-wise independent ranks obtained before the
final random permutation is performed by algorithm Aperm. S is then the number
of arcs with equal rank at this point. By the discussion in the preceding section, the∑
iXi for these ranks is at least

∑
iXi − S for the collection of ranks produced by

any final permutation. The number of arcs we get for the acyclic subgraph |Â| when
the sample point W is derived by the above process is at least

1

2
|A| − 1

2
S +

1

2

n∑
i=1

Xi

(where Xi is derived from 5-wise independent distribution for rk’s)

≥ 1

2
|A| − 1

2
S +

1

2

n∑
i=1

(E[Xi]− S)

(where E[Xi] is derived from tie-breaking rk’s by a random permutation)

=
1

2
|A| − S +

1

2

n∑
i=1

E[Xi]

≥ 1

2
|A| − S +

3
√

3

4

n∑
i=1

1
√
qi

(
E[X2

i]− E[X4
i]

qi

)
,

for qi = deg(i)+2(dout(i)−din(i))2 (by Theorem 2.2). The latter part of the equation
is the expected benefit E[B(W)]. (S was fixed after the 5-wise independent ranks
were determined.)

Thus we have selected a sample point that achieves at least the expected benefit
up to the random permutation that is left. The expected benefit was computed to be
large in the previous section (see Theorem 5.10). By the fact that for each column of
M , we deal with at most O(n∆4) terms and by the running-time analysis in [5], we
have achieved the desired Theorem 5.12.

Corollary 5.13. There is an NC algorithm for maximum acyclic subgraph
which uses O(n∆4) processors, runs in O(log3 n) time, and produces an acyclic sub-
graph of size

|Â| ≥ |A|
2

+ Ω

(
n∑
i=1

√
deg(i) +

n∑
i=1

|dout(i)− din(i)|
)
.

In the case where deg(i) = |V | − 1, Theorem 5.12 and Corollary 5.13 imply NC
algorithms and analogous lower bounds for tournament ranking.

Acknowledgments. I am happy to thank Lenore Cowen, Dan Kleitman, Tom
Leighton, and John Rompel for helpful discussions. Thanks to Prof. Dudley for helpful
references. Also, thanks to Joel Spencer for suggesting the title and pointing out that
the lower bound on discrepancy could be immediately applied to get an NC algorithm
for the switching game.

REFERENCES

[1] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

THE FOURTH MOMENT METHOD 1207

[2] B. Berger, Data structures for removing randomness, Technical Report MIT/LCS/TR-436,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
1988.

[3] B. Berger, Using randomness to design efficient deterministic algorithms, Ph.D. thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1990.

[4] B. Berger, The fourth moment method, in Proc. 2nd Annual ACM–SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, 1991, pp. 373–383.

[5] B. Berger and J. Rompel, Simulating (logc n)-wise independence in NC, J. Assoc. Comput.
Mach., 38 (1991), pp. 1026–1046.

[6] B. Berger and P. Shor, Approximation algorithms for the maximum acyclic subgraph prob-
lem, in Proc. 1st Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadel-
phia, 1990, pp. 236–243.

[7] T. Brown and J. Spencer, Minimization of ± matrices under line shifts, Colloq. Math.
(Poland), 23 (1971), pp. 165–171.

[8] W. Fernandez de la Vega, On the maximum cardinality of a consistent set of arcs in a
random tournament, J. Combin. Theory B, 35 (1983), pp. 328–332.

[9] L. Devroye and L. Gjörfi, Nonparametric Density Estimation: The L1 View, John Wiley,
New York, 1985.

[10] P. Erdös and J. Spencer, Imbalances in k-colorations, Networks, 1 (1972), pp. 379–385.
[11] R. Greenlaw, The parallel complexity of approximation algorithms for the acyclic subgraph

problem, Technical Report 90-61, Department of Computer Science, University of New
Hampshire, Durham, NH, 1990.

[12] G. Hardy, J. E. Littlewood, and G. Pòlya, Inequalities, Cambridge Mathematical Library,
Cambridge, MA, 1988.

[13] A. Joffe, On a set of almost deterministic k-independent random variables, Ann. Probability,
2 (1974), pp. 161–162.

[14] R. M. Karp and A. Wigderson, A fast parallel algorithm for the maximal independent set
problem, J. Assoc. Comput. Mach., 32 (1985), pp. 762–773.

[15] R. H. Lathrop, R. J. Hall, and R. S. Kirk, Functional abstraction from structure in VLSI
simulation models, in Proc. 24th IEEE–ACM Design Automation Conference, IEEE, Pis-
cataway, NJ, 1987, pp. 822–828.

[16] J. Leung, private communication, 1989.
[17] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.

Comput., 15 (1986), pp. 1036–1053.
[18] M. Luby, Removing randomness in parallel computation without a processor penalty, J. Com-

put. System Sci., 47 (1993), pp. 250–286.
[19] R. Motwani, J. Naor, and M. Naor, The probabilistic method yields deterministic parallel

algorithms, J. Comput. System Sci., 49 (1994), pp. 478–516.
[20] S. Poljak, V. Rödl, and J. Spencer, Tournament ranking with expected profit in polynomial

time, SIAM J. Discrete Math., 1 (1988), pp. 372–376.
[21] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing

integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.
[22] V. Ramachandran, Finding a minimum feedback arc set in reducible flow graphs, J. Algo-

rithms, 9 (1988), pp. 299–313.
[23] I. R. Savage, Probability inequalities of the Tchebycheff type, J. Res. Nat. Bureau Standards,

65B (1972), pp. 211–222.
[24] M. H. Shirley, Generating circuit tests by exploiting designed behavior, Technical Report

MIT/AI/TR-1099, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1988.

[25] J. Spencer, Optimal ranking of tournaments, Networks, 1 (1972), pp. 135–138.
[26] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA, 1987.
[27] P. Tetali, Derandomization of discrepancy results, manuscript, 1991.

TESTING SHARED MEMORIES∗

PHILLIP B. GIBBONS† AND EPHRAIM KORACH‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1208–1244, August 1997 014

Abstract. Sequential consistency is the most widely used correctness condition for multiproces-
sor memory systems. This paper studies the problem of testing shared-memory multiprocessors to
determine if they are indeed providing a sequentially consistent memory. It presents the first formal
study of this problem, which has applications to testing new memory system designs and realizations,
providing run-time fault tolerance, and detecting bugs in parallel programs.

A series of results are presented for testing an execution of a shared memory under various scenar-
ios, comparing sequential consistency with linearizability, another well-known correctness condition.
Linearizability imposes additional restrictions on the shared memory, beyond that of sequential con-
sistency; these restrictions are shown to be useful in testing such memories.

Key words. sequential consistency, linearizability, multiprocessors, shared memory, testing,
NP-completeness

AMS subject classifications. 68M15, 68M07, 68Q60, 68Q22

PII. S0097539794279614

1. Introduction. Shared-memory multiprocessors typically promise application
and system programmers some high-level view of the memory system. High-level cor-
rectness conditions such as sequential consistency [26] provide a conceptually simple
framework for programming parallel machines. In a sequentially consistent memory,
each execution is indistinguishable (by the processors) from an execution of a (very
fast) serial memory in which only one read or write occurs at a time, in an order
consistent with the respective sequences of reads and writes at the individual proces-
sors [26, 3]. Sequential consistency is the most widely used correctness condition for
multiprocessor memory systems.

A memory system promising sequential consistency may fail to provide it for a
number of reasons. First, high-performance shared-memory multiprocessors (cf. [5,
7, 12, 27]) employ a variety of techniques to improve their memory system perfor-
mance (e.g., buffering, pipelining, caching, multiple paths to memory, parallel access
to memory banks); these serve to distance the implementation from the sequential
consistency abstraction. Subtle design errors can occur in the memory system ar-
chitecture or in the supporting compilers due to the complexity of the design and
the difficulty in reasoning about asynchronous, concurrent systems. Second, various
hardware components may fail; such failures are more common in parallel machines
due to the multitude of components devoted to providing the large shared-memory
system. Third, certain implementations used in practice provide only an approxima-
tion to sequential consistency, e.g., processor consistency, as a tradeoff for improved
performance [16]. Fourth, shared-memory multiprocessors may support release con-
sistency [16, 21], which provides a sequentially consistent memory (only) for programs
that are free of data races. (A data race occurs when two or more processors access the
same location, with at least one writing, without intervening synchronization.) The
memory system may fail to provide sequential consistency if the program contains
data races.

∗ Received by the editors December 20, 1994; accepted for publication (in revised form) September
15, 1995.

http://www.siam.org/journals/sicomp/26-4/27961.html
† Bell Laboratories, Lucent Technologies, Room 2D-148, 600 Mountain Avenue, Murray Hill, NJ

07974 (gibbons@research.bell-labs.com).
‡ Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel (korach@bgumail.bgu.ac.il). Part

of this author’s work was done while visiting Bell Laboratories, Murray Hill, NJ.

1208

TESTING SHARED MEMORIES 1209

In this paper, we study the problem of testing shared-memory multiprocessors to
determine if they are indeed providing a sequentially consistent memory. We focus
on the basic problem of testing whether the memory system provided sequential con-
sistency for a given execution of a parallel program. For the given execution, the test
provides certification of the consistency or inconsistency of the memory system during
that execution, providing useful feedback whenever the memory system is suspect or
the program may contain data races, as discussed above. The test can also be used as
a building block in testing new memory system designs and realizations by verifying
each execution in a suite of test executions.

This paper provides a formal and systematic study of the complexity of testing
the correctness of an execution of a shared memory based on the reads and writes
observed by the individual processors. We define the problem verifying sequential
consistency of shared-memory executions (VSC) and prove that it is an NP-complete
problem. This motivates the study of various restrictions on the problem to further
characterize its complexity. Some of the variants that we consider are also motivated
by their potential utility in testing executions of existing parallel machines.

We compare results obtained for testing for sequential consistency with results
obtained for testing for linearizability, another well-known correctness condition. In a
linearizable shared memory, each execution is indistinguishable from an execution of a
serial memory, in which each read or write occurs at a distinct point in time between
when it is issued by the processor and when the system acknowledges its comple-
tion [22]. We define the problem verifying linearizability of shared-memory executions
(VL) and show that the additional restrictions imposed by linearizability beyond that
of sequential consistency are quite useful in testing such memories. In particular,
we present O(n logn)-time algorithms for several variants of the VL problem whose
corresponding VSC variants are NP-complete.

In an independent work, Wing and Gong [34] defined and studied the problem
of testing and verifying linearizability for arbitrary shared data structures (e.g., a
FIFO queue with push and pop operations). They developed a simulation environ-
ment for testing implementations (written using a C-Threads package) of shared data
structures, using as a building block a procedure for verifying individual executions.
This procedure uses a greedy algorithm that runs in exponential time; for this reason,
Wing and Gong suggested testing implementations by verifying many, short execu-
tions (at most several hundred operations each). They also point out that the general
problem they consider is NP-complete. Finally, they presented specifications, im-
plementations, and proofs of correctness (i.e., linearizability) for a number of shared
data structures. In contrast to their work, we focus specifically on shared memories,
consider both sequential consistency and linearizability, and present fast algorithms
for several important variants of these testing problems.

Other related previous work includes work on devising a suite of simple programs
to help test whether the memory system is providing sequential consistency or a
weaker correctness condition [11], work on detecting violations of sequential consis-
tency within the memory system itself [14, 15], work on testing the serializability of
database transactions [31], work on detecting data races (e.g., [2, 23, 28, 29]), work
on proving that weak memory systems provide sequential consistency for programs
that are free of data races (e.g., [1, 20, 21]), work on testing uniprocessor memo-
ries [9], work on algorithms for testing data structures on uniprocessors (e.g., [10]),
work on verifying specific properties of cache-coherence protocols (e.g., [32] and the
references therein), work on computing with faulty shared memories [4], work on de-

1210 P. B. GIBBONS AND E. KORACH

termining minimal ordering constraints needed to preserve sequential consistency [33],
and work on comparing implementations of sequential consistency versus linearizabil-
ity (e.g., [8]). However, none of this work addresses the general testing questions
considered in this paper.

1.1. The testing problems. During an execution of a parallel program on a
given multiprocessor, processors request to read or write particular shared-memory
locations as dictated by the program, and the memory system responds to each request
with a return value or acknowledgment. Associated with each processor is a total
order on its shared-memory operations, denoted its program order. Associated with
each read operation, read(a, d, t1, t2), issued by a processor are the address a of the
shared-memory location read, the value d returned for the read, the time t1 the read
was issued, and the time t2 of the response. Likewise, associated with each write
operation, write(a, d, t1, t2), issued by a processor are the address a of the shared-
memory location written, the value d written, the time t1 the write was issued, and the
time t2 of the response. The times t1 and t2 define an interval of time for an operation:
t1 is the start-of-interval time for the operation and t2 is the end-of-interval time for
the operation.

We consider testing procedures in which for each processor we are given its se-
quence of shared-memory operations. Our goal is to determine whether or not the
sequences can be interleaved as required by the correctness condition. For example,
both sequential consistency and linearizability require that in the interleaved sequence,
each read operation returned the value that was written by the last preceding write
to the same location (the usual read/write semantics).

Sequential consistency. Sequential consistency is based on respecting the program
orders and the read/write semantics, while ignoring the start-of-interval and end-
of-interval times. We define the verifying sequential consistency of shared-memory
executions (VSC) problem as follows.

Verifying sequential consistency of shared-memory executions

INSTANCE: Variable set A, value setD, finite collection of nonempty
sequences S1, . . . , Sp, each consisting of a finite set of memory oper-
ations of the form “read(a, d)” or “write(a, d),” where a ∈ A, d ∈ D.

QUESTION: Is there a sequence S, an interleaving of S1, . . . , Sp,
such that for each read(a, d) in S, there is a preceding write(a, d) in
S with no other write(a, d′) between the two?

We denote such a sequence S as a legal schedule for the instance; such a schedule
certifies that the memory system provided sequential consistency for the execution
corresponding to the instance. If there is no legal schedule, then the memory system
failed to provide sequential consistency.

Figure 1 depicts a positive instance of the VSC problem. Figure 2 depicts a
negative instance.

Linearizability. In contrast, linearizability adds the further constraint that the
schedule S must respect the time intervals for the operations. We define the verifying
linearizability of shared-memory executions (VL) problem as follows.

Verifying linearizability of shared-memory executions

INSTANCE: Variable set A, value setD, finite collection of nonempty
sequences S1, . . . , Sp, each consisting of a finite set of memory oper-
ations of the form “read(a, d, t1, t2)” or “write(a, d, t1, t2),” where
a ∈ A, d ∈ D, and t1 and t2 are positive rationals, t1 < t2, defining

TESTING SHARED MEMORIES 1211

S1 : write(a, 0),write(b, 1), read(a, 1).
S2 : read(b, 1),write(a, 1),write(c, 0).

Fig. 1. A positive instance of the VSC problem. In fact, there are two different legal sched-
ules: write(a, 0), write(b, 1), read(b, 1), write(a, 1), read(a, 1), write(c, 0) and write(a, 0), write(b, 1),
read(b, 1), write(a, 1), write(c, 0), read(a, 1).

S1 : write(a, 0),write(a, 1),write(b, 1).
S2 : read(b, 1), read(a, 0).

Fig. 2. A negative instance of the VSC problem. It is not possible to merge S1 and S2

into a legal schedule. For example, in the schedule write(a, 0), write(a, 1), write(b, 1), read(b, 1),
read(a, 0), the operation write(a, 1) is between write(a, 0) and read(a, 0). Although write(a, 1) is an
unread write, its existence makes this a negative instance.

an interval of time such that all intervals in an individual sequence
are pairwise disjoint, and t1 and t2 are unique rationals in the overall
instance.

QUESTION: Is there an assignment of a distinct time to each op-
eration such that

1. each time is within the interval associated with the operation;
2. for each read(a, d, τ1, τ2), there is a write(a, d, t1, t2) assigned

an earlier time, with no other write(a, d′, t′1, t
′
2) assigned a time

between the two?

Such a time assignment defines a legal schedule S that totally orders the opera-
tions in the instance. The memory system provided linearizability for the execution
corresponding to the instance if and only if there is a legal schedule.

As in the VSC problem, a legal schedule is an interleaving of the individual
processor sequences. Thus any linearizable execution is also sequentially consistent.
However, as shown below, not all sequentially consistent executions are linearizable.

Figure 3 depicts a positive instance of the VL problem. Thus if the start-of-
interval and end-of-interval times are removed from the instance, it is necessarily a
positive instance of the VSC problem. Figure 4 depicts a negative instance of the
VL problem; this particular instance corresponds to a positive instance of the VSC
problem.

For both the VSC and VL problems, the formalization assumes that each variable
(i.e., each shared-memory location) must be written before it is read; generalizations
to handle reads of the initial state of memory are straightforward. A schedule has a
reads-from violation if it has a read operation such that either there is no preceding
write operation with the same address and value or there is an intervening write
operation with the same address but a different value; such a schedule is not legal.

1.2. Results in this paper. Table 1 highlights and compares our main results
for the VSC and VL problems. Both problems are NP-complete, as indicated in
the table. Three restricted versions of the two problems are studied: bounding the
number of operations in each processor sequence, bounding the number of locations
in the instance, and bounding the number of processors. A “w.l.o.g.” in Table 1

1212 P. B. GIBBONS AND E. KORACH

S1 : write(a, 1, 1, 3),write(b, 1, 4, 6),write(c, 1, 7, 8).
S2 : read(b, 1, 2, 5), read(a, 1, 9, 10).

Fig. 3. A positive instance of the VL problem. There are many possible legal time assignments,
each of which schedules the write of a, then the write of b, then the read of b, then the write of c,
and finally the read of a. If the start-of-interval and end-of-interval times are removed from the
instance, we have a positive instance of the VSC problem.

S1 : write(a, 0, 1, 2), read(a, 0, 5, 6).
S2 : write(a, 1, 3, 4).

Fig. 4. A negative instance of the VL problem. Since the write of value 1 must be assigned a
time between the write of value 0 and the read of value 0, there is no legal VL schedule. However,
the schedule write(a, 0), read(a, 0), write(a, 1) is a legal VSC schedule.

indicates that the complexity of the problem is not affected by the given restriction.
In addition, we define and study four important variants on the VSC and VL problems;
these variants differ in the additional information provided as input, as detailed in
section 4. Perhaps somewhat surprisingly, the VSC problem is NP-complete for all
but one of the variants considered, in contrast with the results obtained for the VL
problem. We also show how our algorithmic results can be extended to handle atomic
read–modify–write operations, with no asymptotic penalty.

Our algorithms have small constants and hence are suitable for testing real shared
memories (see [17, 19] for implementation details).

Since this is the first paper to study these problems systematically, a number of
our NP-completeness results are obtained using somewhat standard techniques. For
more interesting constructions, we refer the reader particularly to Theorems 4.3, 4.11,
3.5, and 2.7 of this paper.

The combinatorial questions that arise in studying these testing problems are
interesting due to the asymmetry between reads and writes, and the fact that the
constraints on legal schedules imposed by reads and writes to the same location cannot
be represented as a partial order.

Outline of the paper. The remainder of this paper is organized as follows. Section 2
presents our results for the VSC problem, showing the problem is NP-complete, even
with only two operations per processor, only two locations, or only three processors.
These results are contrasted with results for the serializability problem for database
transactions. Section 3 presents our results for the VL problem, showing that the
problem is NP-complete even with only one operation per processor and only one
location and, on the other hand, presenting an O(n logn)-time algorithm when the
number of processors is fixed. Section 4 presents our results for four variants of the
VSC and VL problems that provide additional information as input, specifically, a
read-mapping, write-order, read&write only, and conflict-order. It also presents our
extensions to handle atomic read-modify-write operations.

Preliminary versions of this work appeared in [18, 19].

2. Verifying sequential consistency. We begin this section with a proof that
the VSC problem is NP-complete, even with only two operations per processor (sec-
tion 2.1). Then the VSC problem is shown to be NP-complete with only two locations

TESTING SHARED MEMORIES 1213

Table 1

A summary of the main results of this paper.

variant VSC result VL result

general problem NP-complete NP-complete

2 operations per proc NP-complete w.l.o.g.

2 locations NP-complete w.l.o.g.

3 processors NP-complete O(n logn)

read-mapping NP-complete O(n logn)

write-order NP-complete O(n logn)

read&write only NP-complete NP-complete

conflict-order O(n logn) O(n logn)

(section 2.2) or only three processors (section 2.3). We conclude this section with some
comparisons between the VSC problem (and the results obtained) and the serializ-
ability problem for database transactions (section 2.4).

2.1. The VSC problem is NP-complete. The VSC problem is in NP since
given a schedule of the reads/writes in the processor sequences, we can test that
the schedule is consistent with the processor sequences and does not have reads-from
violations, in linear time in one pass through the schedule, simulating the operations.

Theorem 2.1. The VSC problem, restricted to instances in which each sequence
contains at most two memory operations and each variable occurs in at most two write
operations, is NP-complete.

Proof. We use a reduction from the 3-Satisfiability (3SAT) problem [13]. Consider
a 3SAT instance F with n variables, v1, . . . , vn, and m clauses, C1, . . . , Cm. We use
the notation (vi, S(vi)) to represent either the variable vi (when S(vi) = T) or its
complement vi (when S(vi) = F) in a clause.

To reduce 3SAT to VSC, techniques are needed for simulating an OR and an
AND, as well as an assignment of variables that remains in effect until the formula is
evaluated. We observe that in all legal schedules, the following must hold:

1. The second operation in a processor sequence must not precede the first.
2. A read operation must not precede the first write operation with the same

address and value.
3. A second write operation to an address, writing a different value than the

first such write, must not precede any read operation of the first write (in
order to avoid a reads-from violation).

Thus assignment to variable vi can be simulated using the following four sequences,
V 1
i , V

2
i , V

3
i , and V 4

i (listed in columns):

V 1
i V 2

i V 3
i V 4

i

W (vi,T) R(x, 1) W (vi,F) R(x, 1)
R(vi,T) R(vi,F)

,

where a write W (x, 1) (shown below) occurs only after the satisfiability of F has been
simulated. Then both writes to vi cannot occur before W (x, 1); this ensures that the
initial assignment to each vi must remain in effect until the satisfiability of F has
been simulated.

An OR is simulated by having two writes to the same location of the same value: a
read can be scheduled after either write. For each clause Cj = (vp, S(vp))∨(vq, S(vq))∨

1214 P. B. GIBBONS AND E. KORACH

V 1
1 V 2

1 V 3
1 V 4

1

W (v1,T) R(x, 1) W (v1,F) R(x, 1)
R(v1,T) R(v1,F)

V 1
2 V 2

2 V 3
2 V 4

2

W (v2,T) R(x, 1) W (v2,F) R(x, 1)
R(v2,T) R(v2,F)

V 1
3 V 2

3 V 3
3 V 4

3

W (v3,T) R(x, 1) W (v3,F) R(x, 1)
R(v3,T) R(v3,F)

V 1
4 V 2

4 V 3
4 V 4

4

W (v4,T) R(x, 1) W (v4,F) R(x, 1)
R(v4,T) R(v4,F)

C1
1 C2

1 C3
1 C4

1

R(v1,T) R(v3,F) R(v4,T) R(d1,T)
W (d1,T) W (d1,T) W (c1,T) W (c1,T)

C1
2 C2

2 C3
2 C4

2

R(v1,F) R(v2,F) R(v4,T) R(d2,T)
W (d2,T) W (d2,T) W (c2,T) W (c2,T)

A0 A1 A2

W (x, 0) R(c1,T) R(c2,T)
W (x, 1) R(x, 0) R(x, 0)

Fig. 5. An example of the construction for transforming a 3SAT instance to a VSC instance
in which each processor sequence has at most two operations and each address is written at most
twice. Shown here are the sequences obtained for the 3SAT instance (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v4).

(vr, S(vr)), we have four sequences C1
j , C

2
j , C

3
j , and C4

j :

C1
j C2

j C3
j C4

j

R(vp, S(vp)) R(vq, S(vq)) R(vr, S(vr)) R(dj ,T)
W (dj ,T) W (dj ,T) W (cj ,T) W (cj ,T)

.

Four sequences, as opposed to three, are used in this construction since we are per-
mitted at most two writes to a location. By observations 1 and 2 above, this ensures
that the location cj is not set to T unless clause Cj is satisfied by the guessed truth
assignment.

Finally, the AND of the clauses is simulated by the following m + 1 sequences,
A0, A1, . . . , Am:

A0 A1 A2 · · · Am

W (x, 0) R(c1,T) R(c2,T) R(cm,T)
W (x, 1) R(x, 0) R(x, 0) R(x, 0)

.

The leftmost sequence ensures that W (x, 1) is the “second” write to its address. Thus
by observation 3 above, x is not set to 1 unless all clauses have been satisfied by the
guessed assignment.

This construction uses 4n+ 5m+ 1 sequences and n+ 2m+ 1 distinct addresses.
An example is given in Figure 5.

Lemma 2.2. Let F be an instance of a 3SAT problem, and let V be the instance
of the VSC problem constructed as described above. Then V is a positive instance if
and only if F is satisfiable.

Proof. Suppose F is satisfiable. We will construct a schedule in which, for each
i, the first write to vi scheduled corresponds to the satisfying truth assignment. Let
T (v1), . . . , T (vn), where T (vi) ∈ {T,F}, be a satisfying assignment for F . We con-
struct the following schedule for V:

1. first, W (v1, T (v1)), . . . ,W (vn, T (vn));

TESTING SHARED MEMORIES 1215

2. then for j = 1, 2, . . . ,m, all sequences Ctj whose read is R(vk, T (vk)) for some

k, followed by C4
j if either C1

j or C2
j has been scheduled;

3. then W (x, 0) from A0, followed by the sequences A1 to Am, followed by
W (x, 1) from A0;

4. then for i = 1, 2, . . . , n, if T (vi) = T, the sequences V 2
i , V 3

i , and V 4
i ; otherwise,

if T (vi) = F, the sequences V 4
i , V 1

i , and V 2
i ;

5. finally, for j = 1, 2, . . . ,m, any remaining sequences C1
j , C2

j , or C3
j , followed

by C4
j if it has yet to be scheduled.

The reader may verify that this is a legal schedule.
Conversely, suppose V is a positive VSC instance. If S is a legal schedule for V,

then the first value written to each vi will be our satisfying assignment. We show that
any unsatisfied clause corresponds to a cycle in S; a contradiction. For i = 1, 2, . . . , n,
let T (vi) = T if W (vi,T) is before W (vi,F) in S; otherwise, let T (vi) = F. Suppose
T (v1), . . . , T (vn) is not a satisfying assignment for F , and let

Ck = (vp, S(vp)) ∨ (vq, S(vq)) ∨ (vr, S(vr))

be an unsatisfied clause. Let ¬S(vp), ¬S(vq), and ¬S(vr) denote the complement
of S(vp), S(vq), and S(vr), respectively. Since Ck is not satisfied, W (vp,¬S(vp))
is before W (vp, S(vp)), W (vq,¬S(vq)) is before W (vq, S(vq)), and W (vr,¬S(vr)) is
before W (vr, S(vr)) in S. Since there are no reads-from violations in S and only two
writes to vp, all of the R(vp, ¬S(vp)) operations are before any of the R(vp, S(vp))
operations in S; similarly for vq and vr. Since S is a legal schedule, some W (ck,T)
precedes the R(ck,T) in Ak, which precedes W (x, 1), which precedes all R(x, 1),
including the one that precedes R(vp,¬S(vp)), which as argued above precedes the
R(vp, S(vp)) from C1

k , which precedes the W (dk,T) on C1
k . Likewise for vq, some

W (ck,T) precedes the W (dk,T) on C2
k . One of these W (dk,T)’s must precede the

R(dk,T) on C4
k which precedes the W (ck,T) on C4

k . A similar argument for vr shows
that some W (ck,T) also precedes W (ck,T) on C3

k . This is a contradiction since only
C3
k and C4

k contain W (ck,T).
Since the above transformation can be done in polynomial time, Theorem 2.1 is

proved.
Note that instances with only one memory operation per processor can be solved

by simply checking that there exists a write operation with the same address and
value as each read operation.

We also observe that instances with long processor sequences can always be trans-
formed to equivalent instances with at most three memory operations per processor.

Observation 2.3. There is a linear-time reduction from the VSC problem with
p sequences, n operations, and k variables to the VSC problem with n sequences,
O(n) operations, and k + 1 variables such that each sequence contains at most three
operations.

Proof. Let α be an address not in the original instance. For i = 1, . . . , p, we replace

the ith sequence in the instance, s
(i)
1 , s

(i)
2 , . . . , s

(i)
mi , with the following mi sequences:

s
(i)
1 R(α, x

(i)
1) · · · R(α, x

(i)
mi−2) R(α, x

(i)
mi−1)

W (α, x
(i)
1) s

(i)
2 s

(i)
mi−1 s

(i)
mi

W (α, x
(i)
2) W (α, x

(i)
mi−1)

,

where ∀i, j, i′, j′, x(i)
j = x

(i′)
j′ if and only if i = i′ and j = j′. There are a total

of
∑p
i=1(3mi − 2) = 3n − 2p operations. Since each new data value is unique, the

1216 P. B. GIBBONS AND E. KORACH

operations in the ith sequence of the original instance appear in sequence order in any
legal schedule of the constructed instance. The reader may verify that this constructed
instance is a positive instance if and only if the original instance is a positive in-
stance.

2.2. The VSC problem with two locations. We show that the VSC problem
is NP-complete even when only two locations are used.

Theorem 2.4. The VSC problem restricted to instances with only two variables
is NP-complete.

Proof. Our reduction from 3SAT is depicted in Figure 6. We use two variables, a
and b. Variable a is used to select a truth setting. The writes to a in the first sequence
set instance variables to true; the writes to a in the second sequence set instance
variables to false. For each instance variable, the second such write establishes the
truth setting. Variable b is used to ensure that exactly one assignment is selected per
instance variable by forcing both writes to a for this instance variable to be scheduled
before any writes to a for the next instance variable.

The three sequences for a clause Cj begin with two reads, corresponding to a
particular literal in the clause. The first read can be scheduled only after the variable’s
truth setting has been established; the second read can then be scheduled if the
assignment to the variable matches the assignment needed for the clause.

The final write in the first sequence together with the first read in the third
sequence ensure that all of the first and second sequences must be scheduled before
any of the third sequence. The 2n writes at the end of the third sequence are used
to clean up the remaining reads after the satisfiability of the 3SAT instance has been
simulated. The reads in the third sequence demand that for each clause, at least one
of the writes is scheduled prior to the cleanup: in order to schedule the R(b, 2n + j)
operation, we must first schedule a W (b, 2n+j) operation on behalf of clause Cj . This
in turn requires that the two reads to a in some sequence for Cj be scheduled prior
to the cleanup, and this is possible only if that particular literal in Cj is satisfied.

Lemma 2.5. Let F be an instance of a 3SAT problem, and let V be the instance
of the VSC problem constructed as described above. Then V is a positive instance if
and only if F is satisfiable.

Proof. Suppose F is satisfiable. We will construct a schedule in which, for each
vi, the latter of W (a,Ti) and W (a,Fi) scheduled corresponds to the satisfying truth
assignment. Let T (v1), . . . , T (vn) be a satisfying assignment for F , where T (vi) ∈
{T,F}. We construct the following schedule for V:

1. Repeat the following for i = 1, 2, . . . , n: Consider group i. If T (vi) = T, sched-
ule W (a,Fi), then W (a,Ti). Otherwise, schedule W (a,Ti), then W (a,Fi).
Next, schedule W (b, 2i− 1), R(b, 2i− 1), W (b, 2i). Then schedule all R(b, 2i)
operations. If T (vi) = T, schedule all R(a,Ti) operations. Otherwise, sched-
ule all R(a,Fi) operations.

2. Schedule W (a, α), W (b, β), R(b, β).
3. Repeat the following for p = 1, 2, . . . ,m: Schedule any W (b, 2n+p) for which

both reads above it have been scheduled. Since each clause of F is satisfied,
at least one such write can be scheduled. Then schedule R(b, 2n+ p).

4. Finally, we schedule the cleanup writes together with all unscheduled reads
in the 3m clause sequences. At the very end, schedule all remaining writes
to b in these clause sequences.

The reader may verify that this is a legal schedule.
Conversely, suppose V is a positive instance. If S is a legal schedule for V, then

TESTING SHARED MEMORIES 1217

First, we have the following three sequences:

W (a,T1) W (a,F1) R(b, β)
W (b, 1) R(b, 1) R(b, 2n+ 1)
R(b, 2) W (b, 2) R(b, 2n+ 2)
W (a,T2) W (a,F2) :
W (b, 3) R(b, 3) R(b, 2n+m)
R(b, 4) W (b, 4) W (a,T1)

: : W (a,F1)
W (a,Tn) W (a,Fn) W (a,T2)
W (b, 2n− 1) R(b, 2n− 1) W (a,F2)
R(b, 2n) W (b, 2n) :
W (a, α) W (a,Tn)
W (b, β) W (a,Fn)

Then for each clause Cj , say Cj = vp ∨ vq ∨ vr, we have the following three sequences:

R(b, 2p) R(b, 2q) R(b, 2r)
R(a,Tp) R(a,Fq) R(a,Tr)
W (b, 2n+ j) W (b, 2n+ j) W (b, 2n+ j)

Fig. 6. Transforming an instance of 3SAT to an instance of VSC with just two locations, a
and b. There are n variables, v1, . . . , vn, and m clauses, C1, . . . , Cm in the 3SAT instance. We
construct a VSC instance with 3m + 3 sequences. W (a, d) designates a write to location a of the
value d; R(a, d) designates a read from location a of the value d. Some data values are expressed as
arithmetic expressions, e.g., 2n+m, 2n+ j, 2p, 2q, and 2r, indicating a value that is the result of
evaluating the expression using the values of n, m, j, p, q, and r appropriate to the overall instance,
the particular clause, or the particular variable.

let T be the truth assignment corresponding to, for each vi, the latter of W (a,Ti)
and W (a,Fi) (from the first two sequences) scheduled. Let S = S1S2S3, where S1 is
the prefix of S up to and including W (b, β) and S3 is the suffix of S starting with
W (a,T1) from the cleanup. All operations in the first two sequences are in S1, but
none of the last sequence is in S1. Since the value of b is β at the end of S1 and any
writes to b not in S1 write values in [2n+ 1..2n+m], all of the reads of b in the clause
sequences are in S1.

Consider a clause Cp and its three sequences. If none of the three reads to a in
these sequences are in S1, then since the value of a is α at the end of S1, all must be in
S3. But therefore all of the writes W (b, 2n+ p) are also in S3. However, R(b, 2n+ p)
must be in S2, a contradiction. Consider a literal vi in Cp (the case of vi is symmetric).
Since any R(b, 2i) must be after the W (b, 2i), which in turn must be after W (b, 2i−1),
this implies that R(a,Ti) must be after both W (a,Ti) and W (a,Fi). Therefore, in
the three sequences of Cp, at least one of the reads to a in S1 must read the value
written by the second of these two writes. It follows that Cp is satisfied by T.

Since the above transformation can be done in polynomial time, Theorem 2.4
follows.

A simple modification of the previous construction shows that the VSC problem
is NP-complete even when both the number of locations and the number of operations
per sequence are small constants.

1218 P. B. GIBBONS AND E. KORACH

Corollary 2.6. The VSC problem restricted to instances with only two variables
is NP-complete, even if each sequence contains at most three memory operations.

Proof. Since we are restricted to only two variables, the general reduction of
Observation 2.3 cannot be applied. Instead, we divide the first sequence in Figure 6,
with its 3n+2 operations, into n+1 sequences, one with the first two operations only
(i.e., creating the sequence W (a,T1), W (b, 1)), and the remaining n with subsequent
sets of three operations. We divide the second sequence in Figure 6, with its 3n
operations, into n sequences of three operations each. Finally, we replace the last
sequence in Figure 6, with its 2n + m + 1 operations, with the following m + n
sequences of three operations each: the sequence R(b, β), R(b, 2n + 1), W (a, α2);
for i = 2, . . . ,m − 1, the sequence R(a, αi), R(b, 2n + i), W (a, αi+1); the sequence
R(a, αm), R(b, 2n+m), W (b, β2); and finally, for i = 1, . . . , n, the sequence R(b, β2),
W (a,Ti), W (a,Fi). The reader may verify that this new construction is a positive
instance if and only if the construction in Figure 6 is a positive instance. Thus the
corollary follows from the proof of Theorem 2.4.

2.3. The VSC problem for three processors. Many multiprocessors have
only a small number of processors, e.g., 8, 16, or 32. We have shown that the VSC
problem with O(n) processors is NP-complete; in this section, we show that the VSC
problem with just three processors is still NP-complete.

The previous NP-completeness proofs in this paper use a disjoint set of processors
for each clause; some also use a disjoint set of processors for each variable. The
difficulty in proving an NP-completeness result for a small fixed number of processors
is that we do not have as much freedom to schedule operations in an arbitrary order,
since the total order on operations at a processor must be respected by any legal
schedule. Since processors are a scarce resource, care must be taken to ensure that
the construction permits steady progress through each processor sequence, unless the
intent is to construct a negative instance. In particular, for each read operation
r, there is a corresponding write operation that can be scheduled closely after the
operation preceding r at its processor.

Our reduction is from POSITIVE ONE-IN-THREE 3SAT, a variant of 3SAT in
which no clause contains a negated literal and we seek a truth assignment such that
each clause has exactly one true literal (and hence two false literals). This problem is
known to be NP-complete [13]. We construct the instance of the VSC problem, using
three processors, depicted in Figure 7.

The idea behind this construction is that the desired truth assignment is the
second scheduled write to each vi. Any legal schedule proceeds in stages, enforced
by the seven-operation construction marked (∗). For each clause, each of the three
processors is satisfied by a particular one-in-three assignment. The subtle part of the
construction are the writes marked (∗∗). For any of the three ways to satisfy this
clause, this construction frees up the other two processors (by negating variables),
yet returns all variables to their original setting (for the next clause). Conversely, for
any assignment that does not satisfy this clause, there is no legal scheduling of the
operations in this stage.

Theorem 2.7. The VSC problem restricted to three processors is NP-complete.
Proof. Let F be an instance of a POSITIVE ONE-IN-THREE 3SAT problem,

and let V be the instance of the VSC problem constructed as depicted in Figure 7.
We will show that V is a positive instance if and only if F is a positive instance.

Suppose F is one-in-three satisfiable. We will construct a schedule in which, for
each i, the second write to vi scheduled corresponds to the satisfying truth assignment.

TESTING SHARED MEMORIES 1219

P1 P2 P3
W (v1,T) W (v1,F)
· · · · · ·
W (vn,T) W (vn,F)
W (z, 1) W (z, 2) R(z, 1) (∗)

R(z, 2) (∗)
R(z, 3) R(z, 3) W (z, 3) (∗)
R(vp1 ,T) R(vq1 ,T) R(vr1 ,T) (C1)
R(vq1 ,F) R(vr1 ,F) R(vp1 ,F) (C1)
R(vr1 ,F) R(vp1 ,F) R(vq1 ,F) (C1)
W (vp1 ,F) W (vq1 ,F) W (vr1 ,F) (∗∗)
W (vq1 ,T) W (vr1 ,T) W (vp1 ,T) (∗∗)

· · ·
W (z, 3m− 2) W (z, 3m− 1) R(z, 3m− 2) (∗)

R(z, 3m− 1) (∗)
R(z, 3m) R(z, 3m) W (z, 3m) (∗)
R(vpm ,T) R(vqm ,T) R(vrm ,T) (Cm)
R(vqm ,F) R(vrm ,F) R(vpm ,F) (Cm)
R(vrm ,F) R(vpm ,F) R(vqm ,F) (Cm)
W (vpm ,F) W (vqm ,F) W (vrm ,F) (∗∗)
W (vqm ,T) W (vrm ,T) W (vpm ,T) (∗∗)

Fig. 7. Transforming an instance of POSITIVE ONE-IN-THREE 3SAT to an instance of VSC.
There are n variables, v1, . . . , vn, and m clauses, C1, . . . , Cm, where Ci = (vpi ,T)∨(vqi ,T)∨(vri ,T),
for pi, qi, and ri ∈ {1, 2, . . . , n}.

Let T (v1), . . . , T (vn), where T (vi) ∈ {T,F}, be a satisfying assignment for F . We
construct the following schedule for V:

1. First, for i = 1, 2, . . . , n, the pair W (vi,T), W (vi,F) if T (vi) = F, or the pair
W (vi,F), W (vi,T) if T (vi) = T;

2. then W (z, 1), W (z, 2), R(z, 1), R(z, 2), W (z, 3), R(z, 3), R(z, 3).
3. Since clause C1 = (vp1 ,T)∨ (vq1 ,T)∨ (vr1 ,T) is satisfied by a one-in-three as-

signment, exactly one of the following is true: (1) T (vp1) = T, T (vq1) = F, and
T (vr1) = F; (2) T (vp1) = F, T (vq1) = T, and T (vr1) = F; or (3) T (vp1) = F,
T (vq1) = F, and T (vr1) = T. Suppose the first case holds (the other cases
follow by symmetry). Schedule R(vp1 ,T), R(vq1 ,F), R(vr1 ,F), W (vp1 ,F),
and W (vq1 ,T) from P1; then R(vq1 ,T), R(vr1 ,F), R(vp1 ,F), W (vq1 ,F), and
W (vr1 ,T) from P2; thenR(vr1 ,T), R(vp1 ,F), R(vq1 ,F), W (vr1 ,F), andW (vp1 ,T)
from P3. Note that at this point, the current “value” of each vi is the same
as it was before this step of the construction.

4. Repeat the construction of the previous two steps for clauses C2, . . . , Cm in
an analogous manner.

The reader may verify that this is a legal schedule.

Conversely, suppose V is a positive VSC instance. If S is a legal schedule for
V, then the second value written to each vi will be our satisfying assignment. For
i = 1, 2, . . . , n, let T (vi) = T if the first W (vi,F) from P1 precedes in S the first
W (vi,T) from P2; otherwise, let T (vi) = F. A simple induction establishes that
any prefix Sj of S ending in W (z, 3j), j = 1, . . . ,m, contains precisely the following

1220 P. B. GIBBONS AND E. KORACH

events: all events in the prefix of P1 ending in W (z, 3j − 2), all events in the prefix
of P2 ending in W (z, 3j − 1), and all events in the prefix of P3 ending in W (z, 3j).

For j = 1, . . . ,m, consider the operations in P1, P2, and P3 in S immediately
following Sj :

R(z, 3j) R(z, 3j)
R(vpj ,T) R(vqj ,T) R(vrj ,T)
R(vqj ,F) R(vrj ,F) R(vpj ,F)
R(vrj ,F) R(vpj ,F) R(vqj ,F)

.

Due to these reads, it is not possible to extend Sj to a legal schedule unless the current
“value” of exactly one of vpj , vqj , and vrj is T. Assume that vpj is T, while vqj and
vrj are F. A careful inspection of the operations for Cj reveals that the following is a
subsequence of Sj+1 after Sj : R(vpj ,T), R(vqj ,F), R(vrj ,F), W (vpj ,F), W (vqj ,T) (all
from P1), R(vqj ,T), R(vrj ,F), R(vpj ,F), W (vqj ,F), W (vrj ,T) (from P2), R(vrj ,T),
R(vpj ,F), R(vqj ,F), W (vrj ,F), W (vpj ,T) (from P3). This subsequence may be in-
terleaved with the remaining operations in Sj+1 − Sj , namely, R(z, 3j), R(z, 3j),
W (z, 3j+ 1), W (z, 3j+ 2), R(z, 3j+ 1), R(z, 3j+ 2), and W (z, 3(j+ 1)). By symme-
try, these properties also hold in the case where vqj is T, while vrj and vpj are F, or
the case where vrj is T, while vpj and vqj are F.

We claim that for i = 1, . . . , n and j = 1, . . . ,m, the “value” of vi through Sj is
T (vi). This is established via a simple induction, where the base case, j = 1, holds
by definition. Moreover, by the characterization of Sj+1 of the previous paragraph, it
follows by inspection that for i = 1, . . . , n, the “value” of vi through Sj+1 is the same
as through Sj .

It follows that T (v1), . . . , T (vn) is a satisfying one-in-three assignment for each
clause in F , and hence F is one-in-three satisfiable.

The construction depicted in Figure 7 uses only n+ 1 locations. Alternatively, it
can be modified to have each location assume at most two values.

2.4. Comparison with serializability. The VSC problem is reminiscent of the
serializability problem for database transactions. The most similar variant is that of
view serializability. In the view serializability problem [31], we are given a history H,
i.e., a total order on a set of reads and writes, where each read or write is associated
with a particular database transaction, and each read or write contains an address
but not a value. Each read is assumed to read from the last preceding write in H to
the same address. The task is to determine if there is a total order on the transactions
that preserves this mapping of reads to writes. The view serializability problem is
NP-complete [31].

The VSC problem differs from the view serializability problem in at least four
ways. First, in the VSC problem, legal schedules may interleave operations from
different processors: the sequence of operations at a processor must be in order but
need not be consecutive in a legal schedule. For example, the instance in Figure 1 is a
positive VSC instance, but a negative instance for view serializability: both S = S1S2

and S = S2S1 have reads-from violations. Second, the input to a view serializability
problem, a consistent total order of the reads and writes, is the desired output of the
VSC problem. Third, when a database system is correctly enforcing serializability,
each transaction that is not aborted will view an unchanged database during the course
of its operations. Thus a single read of an address suffices to learn the value in that
location for the duration of the transaction, and in general, it may be assumed that
within each transaction, there is at most one read and one write to each location.

TESTING SHARED MEMORIES 1221

These restrictions are not appropriate for the VSC problem since communicating
processors exchange values by writing and reading memory. Fourth, the VSC problem
does not provide a mapping of reads to writes that must be preserved. However, in
section 4, we will consider a variant of the VSC problem (the VSC-read problem)
in which the input includes such a mapping, and a legal schedule must preserve this
mapping.

For the VSC problem, we observe that the ability to interleave input sequences
is not all that helpful unless the number of processors is bounded. Specifically, the
construction in Observation 2.3 converts any VSC instance into one in which there
is a legal schedule if and only if there is a legal schedule such that each processor
sequence is a consecutive subsequence of the schedule. Thus the VSC problem is
NP-complete even when interleaving is not permitted. On the other hand, if the
number of processors is bounded, then interleaving is quite powerful. Whereas the
VSC problem with three processors is NP-complete, there is a trivial linear-time
algorithm for serializability when the number of transactions is restricted to a constant
k: with k “processors,” there are only a constant number, k!, of possible serializations
to check.

3. Verifying linearizability. In this section, we present results for testing lin-
earizability. We begin with some preliminary remarks in section 3.1, including an
efficient reduction from the VL problem to the VSC problem. In section 3.2, we show
that the VL problem is NP-complete. (The NP-completeness proof together with the
reduction can be used for an alternative proof of Corollary 2.6.) Then in section 3.3,
we present a polynomial-time algorithm for the VL problem with O(logn) processors.

3.1. Preliminaries. As discussed in section 1, linearizability is more restrictive
than sequential consistency, in that a legal schedule must respect the time intervals
for the operations. This added constraint makes implementations of linearizability
provably slower than implementations of sequential consistency [8]. In the interest
of memory system performance, shared-memory multiprocessors such as the Kendall
Square KSR1 [12] support sequential consistency instead of linearizability. On the
other hand, linearizability has the advantage over sequential consistency that each
address, or, more generally, each shared data object, can be considered in isolation.
Herlihy and Wing [22] proved that a system is linearizable if and only if each object
in the system is linearizable. Thus linearizable objects can be implemented, verified,
and executed independently. In this paper, we use the following implication of the
Herlihy and Wing theorem.

Fact 3.1. V is a positive instance of the VL problem if and only if, for each
address a, the subinstance of V comprised solely of the operations on a is a positive
instance.

Thus as indicated in Table 1, we can assume without loss of generality that a VL
instance has but a single location. This assumption does not alter the complexity of
the problem: if f(n) is the running time on an instance of size n, then since f(n) ≥ n,

f(n) = f(
∑k

i=1 ni) ≥
∑k
i=1 f(ni), where n1, . . . , nk are the respective sizes of the

subinstances on each of the k locations.

Note as well that if the number of processors is not bounded, then we can also
assume without loss of generality that a VL instance has but a single operation per
processor, as indicated in Table 1. This follows since the intervals for operations by a
single processor do not overlap, so the total order between them is enforced whether
or not they are considered to be part of the same processor sequence.

1222 P. B. GIBBONS AND E. KORACH

A VL instance can be reduced to a VSC instance that uses additional operations
that reflect the scheduling constraints defined by the start-of-interval and end-of-
interval times. Specifically, we have the following reduction from the VL problem to
the VSC problem.

Theorem 3.2. There is an O(n logn)-time reduction from the VL problem with
n operations and k variables to k instances of the VSC problem with two variables, at
most three memory operations per sequence, and a total of O(n) operations over all
instances.

Proof. By Fact 3.1, it suffices to construct distinct VSC instances for each of
the k variables in the VL instance. Consider one such variable, a, and let V be the
subinstance comprised of the operations on a, with na operations. Let t1, t2, . . . , tna
be the end-of-interval times in V in increasing order. We construct the following
VSC instance V ′ using two types of sequences. For each operation read(a, d, ti, tj)
or write(a, d, ti, tj) in V, we have in V ′ the following type I sequence: (1) read(b, τ),
where τ is the largest end-of-interval time in V less than ti (if any); (2) read(a, d) or
write(a, d); and (3) write(b, tj). In addition, for each end-of-interval time tj , j < na,
we have a type II sequence (1) read(b, tj), (2) read(b, tj+1). Clearly, V ′ is a VSC
instance with two variables, at most three memory operations per sequence, and O(na)
operations. We will show that the operations on b encode the scheduling constraints
defined by the start-of-interval and end-of-interval times.

We begin by showing that if two operations have nonoverlapping intervals in V,
then the order between them is respected by any legal schedule for V ′.

Lemma 3.3. Consider any two operations πi and πj in V and the corresponding
operations π′i and π′j in V ′. If the end-of-interval time for πi is less than the start-of-
interval time for πj, then π′i precedes π′j in any legal schedule for V ′.

Proof. Let S′ be a legal schedule for V ′. Consider the subsequence S′r of S′ of
all read(b, t) operations in V ′. Since there is exactly one write(b, t) operation for each
end-of-interval t, all read(b, t) operations for the given t are consecutive in S′r and
follow this write(b, t) operation in S′. Moreover, due to the type II sequences, the
read(b, t) operations in S′r are in nondecreasing order of t. If the end-of-interval time
ti for πi is less than the start-of-interval time tj for πj , then there is a read(b, tk)
operation preceding π′j in a type I sequence such that tk ≥ ti. It follows that π′i
precedes write(b, ti) precedes read(b, ti) precedes read(b, tk) precedes π′j in S′.

We now prove the correctness of our construction.

Lemma 3.4. V ′ is a positive VSC instance if and only if V is a positive VL
instance.

Proof. Suppose V is a positive VL instance, and let A be an assignment of times
for a legal schedule for V. For each operation π′ in V ′, define A′(π′) as follows:

1. If π′ is an operation on a, then A′(π′) = A(π), where π is the corresponding
operation in V.

2. If π′ is an operation on b with data value t, then A′(π′) = t.

Let S be a sequence of the operations in V ′ in nondecreasing order according to
A′ such that among operations with the same A′ value, the operation on a (if any)
precedes the write operation on b precedes any read operations on b. We claim that
S is a legal schedule for V ′. First, observe that any type II sequence appears in
order in S. Moreover, consider the type I sequence constructed for an operation
π = read(a, d, t1, t2) or write(a, d, t1, t2) in V: read(b, τ) (if any), π′ = read(a, d)
or write(a, d), and write(b, t2). By construction and since A corresponds to a legal

TESTING SHARED MEMORIES 1223

schedule,

τ < t1 ≤ A(π) = A′(π′) ≤ t2,

and hence the type I sequence also appears in order in S. Thus S is an interleaving
of the individual sequences. Second, there are no reads-from violations on a since the
order of operations on a corresponds to a legal schedule for V. Moreover, there are no
reads-from violations on b since for each read(b, τ) operation, τ is an end-of-interval
time, and hence a write(b, τ) operation is the last preceding write operation in S.

Conversely, suppose V ′ is a positive VSC instance, and let S′ be a legal schedule
for V ′. Let S′a = π′1, π

′
2, . . . , π

′
na be the subsequence of S′ comprised of the operations

on a. Let Sa = π1, π2, . . . , πna be the corresponding operations in V. Since S′ is legal,
there are no reads-from violations in Sa. Let ε0 be the minimum difference between
any pair of times (start-of-interval or end-of-interval) in V; let ε = ε0/n. We assign
times to operations in Sa inductively as follows. The first operation π1 is assigned a
time equal to its start-of-interval time. For k = 2, . . . , na, the operation πk in Sa is
assigned a time equal to the maximum of its start-of-interval time and ε greater than
the time assigned to πk−1. We claim that even in this latter case, the time assigned to
πk is within its interval. To see this, let πi, 1 ≤ i < k, be the last operation preceding
πk in Sa that is assigned a time equal to its respective start-of-interval time ti. The
time assigned to πk is ti+(k− i)ε. Since π′i precedes π′k in S′, it follows by Lemma 3.3
that the start-of-interval time for πi is less than the end-of-interval time for πk by at
least ε0. Thus since

ti + (k − i)ε < ti + nε = ti + ε0,

the time assigned to πk is within its interval.
As the reader may verify, this transformation can be done in O(n logn) time.

Theorem 3.2 follows.

3.2. The VL problem is NP-complete. In this section, we prove the
NP-completeness of the VL problem by a reduction from the Satisfiability problem
(SAT) [13]. By Fact 3.1, it is necessary to consider a reduction based on a single
location. The VL problem is in NP since given an assignment of times, we can test
in polynomial time that each operation is assigned a time within its interval and that
the schedule defined by the assignment has no reads-from violations.

Theorem 3.5. The VL problem is NP-complete.
Proof. Consider an instance F of SAT with n variables, v1, v2, . . . , vn, and m

clauses, C1, C2, . . . , Cm. Without loss of generality, assume that each variable and its
negation appear in at least one clause, but not the same clause, and that there are
no repeated variables in a clause. We construct an instance of the VL problem with
at most 5nm + 4n + m operations, corresponding to F . To simplify the description,
the construction has multiple operations sharing the same start-of-interval or end-
of-interval times; these ties can be broken arbitrarily to ensure unique time values.
In particular, we use only integral times in our simplified description, with at most
m + 2 intervals sharing the same start or end time, so unique positive rationals can
be readily selected to break any ties.

Figure 8 depicts an example construction. For each clause Cj , j = 1, . . . ,m, we
have a read(a, cj , 1, 3n+1) operation, denoted the clause read for Cj . For each variable
vi, i = 1, . . . , n, assignment to vi is simulated using two operations: write(a, i, 3i −
1, 3i) and write(a, ı, 3i− 1, 3i).

1224 P. B. GIBBONS AND E. KORACH

w1 w1

w2 w2qqq qqq
wn wn

wα

wα

wα

wαqqq
wα

rc1 rc2 · · · rcm

r1

r1

r1

w1

w1

w1

wc1

wc1

rc1

wc4

wc4

rc4

wc6

wc6

rc6

r1

w1

wc3

wc3

rc3

r2

r2

w2

w2

wc1

wc1

rc1

wc7

wc7

rc7

q q q

Fig. 8. Transforming an instance of SAT to an instance of VL with a single location. There are
n variables, v1, . . . , vn, and m clauses, C1, . . . , Cm. The full construction has at most 5nm+4n+m
operations. Here the literal v1 appears in exactly clauses C1, C4, and C6, the literal v1 appears in
clause C3 only, the literal v2 appears in exactly clauses C1 and C7, and so forth. Every column
corresponds to a processor sequence. Vertical boxes depict the intervals of time for the respective
read (r) or write (w) operations to the single location; time progresses from top to bottom in the
figure. The number or symbol following each r or w indicates the value read or written.

We have 2n write operations, used to partition the problem into 2n phases, one
for each literal, as follows. Consider i = 1, . . . , n. Let mi (mı) be the number of
clauses containing the literal vi (vi, respectively). By assumption, mi > 0, mı > 0,
and mi + mı ≤ m. Let ∆i = (7m + 4)(i − 1) + 3n + 3 and let ∆ı = ∆i + 7mi + 2.
There is a write(a, α,∆i − 1,∆i) and a write(a, α,∆ı − 1,∆ı).

TESTING SHARED MEMORIES 1225

There is a set of operations for each literal vi, denoted the group of operations
for i. For i = 1, . . . , n, if Ci1 , Ci2 , . . . , Cimi are the clauses containing the literal vi,
we have the following 5mi intervals. First, for Ci1 , we have

• ri(1) = read(a, i, 3i+ 1,∆i + 4),
• wi(1) = write(a, i,∆i + 3,∆i + 7),

• wc(1)
i1

= write(a, ci1 , 3i+ 1,∆i + 5),

• wc(2)
i1

= write(a, ci1 ,∆i + 1,∆i + 2),
• rci1 = read(a, ci1 ,∆i + 5,∆i + 6).

Then for Cik , k = 2, . . . ,mi, we have

• ri(k) = read(a, i,∆i + 7(k − 1),∆i + 7(k − 1) + 4),
• wi(k) = write(a, i,∆i + 7(k − 1) + 3,∆i + 7(k − 1) + 7),

• wc(1)
ik

= write(a, cik , 3i+ 1,∆i + 7(k − 1) + 5),

• wc(2)
ik

= write(a, cik ,∆i + 7(k − 1) + 1,∆i + 7(k − 1) + 2),
• rcik = read(a, cik ,∆i + 7(k − 1) + 5,∆i + 7(k − 1) + 6).

The operations wc
(1)
i1
, wc

(1)
i2
, . . . , wc

(1)
imi

are denoted the clause writes for vi.

Likewise, there is a set of operations for each literal vi, denoted the group of
operations for ı. For i = 1, . . . , n, if Cı1 , Cı2 , . . . , Cımı are the clauses containing
the literal vi, we have the 5mı intervals obtained from the previous definition by
replacing ∆ı with ∆i+1 and leaving “3i + 1” unchanged but otherwise replacing i
with ı throughout.

This completes the construction.

The idea behind the construction is the following. Consider a variable v1, and
refer to Figure 8. Recall that all reads and writes are to the same location. Both w1
and w1 on the left must be scheduled before any r1 or r1; the second write scheduled
corresponds to the truth assignment. If w1 is scheduled second, then the first r1 can
be scheduled, followed by the clause writes wc1, wc4, and wc6 for v1. If all clauses
can be satisfied by the truth setting, then the set of all clause writes will ensure that
all m clause reads can be scheduled during their common interval. Consider the three
w1 operations and the two r1 operations below the first dashed line, together with
the r1 operation that crosses this line. Since the crossing r1 has been scheduled, the
two r1 operations below the line can pair up with the first two w1 operations; this in
turn permits the rc1 (below the line) to be paired with the wc1 directly above it. On
the other hand, if w1 had been scheduled second instead, then the first w1 is paired
with the crossing r1. Hence the first w1 is scheduled between the intervals for the
wc1 and the rc1 below the line; this implies that a clause write wc1 is needed below
the line. For this reason, all clause writes for a literal not in the truth assignment
must be scheduled below the first dashed line. It follows that all clause reads can be
scheduled if and only if we have a satisfying truth assignment.

Lemma 3.6. Let F be an instance of a SAT problem, and let V be the instance of
the VL problem constructed as described above. Then V is a positive instance if and
only if F is satisfiable.

Proof. Suppose F is satisfiable. We will construct a schedule in which, for each
vi, the latter of write(a, i, 3i − 1, 3i) and write(a, ı, 3i − 1, 3i) scheduled corresponds
to the satisfying truth assignment. Let T (v1), . . . , T (vn), where T (vi) ∈ {T,F}, be a
satisfying assignment for F . We construct the following schedule for V:

1. Repeat the following for i = 1, 2, . . . , n:
If T (vi) = T, schedule write(a, ı, 3i−1, 3i) at time 3i−1, then write(a, i, 3i−
1, 3i) at time 3i. Consider the 5mi operations in the group for i, together with

1226 P. B. GIBBONS AND E. KORACH

the mi corresponding clause reads, read(a, ci1 , 1, 3n+1) through read(a, cimi ,

1, 3n+1). Schedule ri(1) = read(a, i, 3i+1,∆i+4) at time 3i+1. Then after
time 3i + 1 and before time 3i + 2, for k = 1, . . . ,mi, schedule each of mi

clause writes paired with any unscheduled, corresponding clause reads: wc
(1)
ik

= write(a, cik , 3i + 1,∆i + 7(k − 1) + 5) followed by, if it has not yet been
scheduled, read(a, cik , 1, 3n+ 1).
The case where T (vi) = F is symmetric, and left to the reader.

2. Since T (v1), . . . , T (vn) is a satisfying assignment for F , all clause reads have
been scheduled by this point. Schedule write(a, α,∆1 − 1,∆1) at time ∆1.

3. Repeat the following for i = 1, 2, . . . , n:
If T (vi) = T, consider the 4mi− 1 unscheduled operations in group i and the
5mi unscheduled operations in group ı:

(a) Schedule wc
(2)
i1

at time ∆i + 2, then rci1 at time ∆i + 5, then wi(1) at
time ∆i + 7.

(b) Then repeat for k = 2, . . . ,mi: Schedule ri(k) at time ∆i + 7(k− 1) + 1,

then wc
(2)
ik

at time ∆i + 7(k− 1) + 2, then rcik at time ∆i + 7(k− 1) + 5,

and finally wi(k) at time ∆i + 7(k − 1) + 7.
(c) This completes group i. Schedule write(a, α,∆ı − 1,∆ı) at time ∆ı.

(d) Schedule wc
(2)
ı1

at time ∆ı + 1, then wı(1) at time ∆ı + 3, then rı(1) at

time ∆ı + 4, then wc
(1)
ı1

at time ∆ı + 5, and finally rcı1 at time ∆ı + 6.

(e) Then repeat for k = 2, . . . ,mı: Schedule wc
(2)
ık

at time ∆ı+ 7(k− 1) + 1,

then wı(k) at time ∆ı+7(k−1)+3, then rı(k) at time ∆ı+7(k−1)+4, then

wc
(1)
ık

at time ∆ı+7(k−1)+5, and finally rcık at time ∆ı+7(k−1)+6.
(f) This completes group ı. Schedule write(a, α,∆i+1 − 1,∆i+1) at time

∆i+1.
The case where T (vi) = F is symmetric and left to the reader.

The reader may verify that this is a legal schedule.

Conversely, suppose V is a positive instance. If S is a legal schedule for V, then
let T be the truth assignment defined as follows: for each vi, if write(a, ı, 3i − 1, 3i)
precedes write(a, i, 3i− 1, 3i) in S, then T (vi) = T; otherwise, T (vi) = F.

We observe the following for i = 1, . . . , n: Both write(a, i, 3i−1, 3i) and write(a, ı,
3i− 1, 3i) precede both ri(1) and rı(1) in S. Thus if T (vi) = F, then while rı(1) may
be scheduled in S prior to time 3i + 3, ri(1) cannot be. The ri(1) operation must be
scheduled after the only other operation that writes i prior to the end of its interval,

namely wi(1). Hence wc
(2)
i1

precedes wi(1) precedes ri(1) precedes rci1 . But this implies

that for k = 2, . . . ,mi, wc
(2)
ik

precedes wi(k) precedes ri(k) precedes rcik . The case
where T (vi) = T is symmetric.

Suppose T does not satisfy a clause Cj . Consider the literals in Cj sorted by
their index, and let x be the number of literals in Cj . For k = 1, . . . , x, define
jk ∈ {1, 1, 2, 2, . . . , n, n} such that jk = i (or ı) if and only if vi (vi, respectively) is
the kth literal in Cj . We claim that all writes of cj are scheduled in S after ∆1. The
proof is by induction on decreasing k. Consider the last rcj in S, in group jx. Due
to the argument given in the preceding paragraph, there is only one write of cj that
could have been scheduled so as to be read by the rcj : the sole write of cj in group jx
whose interval is not strictly after ∆jx . Assume inductively that all writes of cj from
groups jk+1 to jx are scheduled after ∆jk+1

. Thus due to the argument given in the
preceding paragraph, there is only one write of cj that could have been scheduled so

TESTING SHARED MEMORIES 1227

as to be read by the rcj : the sole write of cj in group jk whose interval is not strictly
after ∆jk . The claim follows by induction.

Since there are no writes of cj in S until after ∆1 = 3n + 3, but the clause
read read(a, cj , 1, 3n + 1) must be scheduled before ∆1, S is not a legal schedule, a
contradiction.

Hence T is a satisfying assignment for F .
Since the above transformation can be done in polynomial time, Theorem 3.5

follows.

3.3. The VL problem with few processors. In this section, we describe a
polynomial-time algorithm for the VL problem when the number of processors (i.e., se-
quences) is bounded. Recall that if two operations have nonoverlapping intervals, their
order in any legal schedule is predetermined. Thus since we can consider each address
in isolation, the number of possible schedules grows with the number of overlapping
intervals for operations on that address. The specific result we obtain is the following.

Theorem 3.7. The VL problem restricted to instances such that at any time t,
there are at most k operations on the same address whose intervals contain t, can be
solved in O(n2O(k) + n logn) time.

Proof. We consider each address x in isolation. Let Sx be the set of operations on
x. Let t0 > 0 be the earliest start-of-interval time and t∞ be the latest end-of-interval
time for an operation in Sx. To simplify the discussion that follows, we augment Sx
with two additional writes to x: Let S′x = Sx∪{write(x, δ, t0/3, t0/2),write(x, δ, t∞+
1, t∞+ 2)}, where δ is a value not appearing in Sx. For each address, we may assume
without loss of generality that there are only k processors.

Let Gx be a leveled acyclic digraph, with one level for each operation in S′x, in
order of increasing end-of-interval times, and at most k2k−1 vertices per level, as
follows. We identify each level by the finishing time t of its corresponding operation
αt. There are at most k − 1 additional operations in S′x with intervals containing t;
these may or may not be assigned times greater than t. Consider all possible subsets
of these operations; there are at most 2k−1 of them. Each vertex at level i specifies
one of these subsets, plus a last write to x. The vertex represents a prefix of a schedule
of the operations in S′x, namely, a schedule in which the operations in the subset as
well as all operations with start-of-interval times after t are assigned times later than
t, and the last write assigned a time no later than t is indicated. Since for a given
subset there are at most k possible choices of a last write, we have at most k2k−1

nodes. The first level consists of a single node, with last write write(x, δ, t0/3, t0/2);
the last level consists of a single node, with last write write(x, δ, t∞ + 1, t∞ + 2).

The edges of Gx are defined as follows. Consider two consecutive levels t and t′,
and let α and α′ be the operations with end-of-interval times t and t′, respectively. All
intervals, other than α’s, that contain time t must contain t′. Consider two vertices
in Gx, v at level t and v′ at level t′. There is an edge between v and v′ if the following
conditions hold:

1. Every interval containing both t and t′ that was assigned a time no later than
t, according to v, is also assigned a time no later than t′, according to v′.

2. Let A be the set of operations with intervals containing t′ (including possibly
α′) that were assigned a time later than t (either they do not contain t or
they contain t but were assigned a time later than t, according to v) but were
assigned a time no later than t′, according to v′. Every read in A must either
read the value of the last write in v or has a corresponding write of the same
value in A. Moreover, the last write in v′ must either be in the set A or, if

1228 P. B. GIBBONS AND E. KORACH

there are no writes in A, the same last write as in v.
Note that the operations in A can be safely scheduled without reads-from violations
in the interval between the last start-of-interval time in A and t′. It follows that there
is a directed edge from v to v′ if and only if there is a schedule consistent with both
v and v′. This leads to the following claim, whose proof is left to the reader.

Claim 3.8. We have a positive VL instance if and only if there is a source-to-sink
path in Gx for each address x.

To construct the graphs for each address, first we sort the operations by address,
and within an address, by their starting and finishing times (each operation appears
twice in this sorted sequence). Then we test for each pair of vertices on consecutive
levels whether a directed edge should be between them. Next, we test for a source-
to-sink path in each Gx using depth-first search. If we have a positive instance, we
assign times to the operations based on the information in the vertices visited along
the source-to-sink paths. Each Gx can be constructed and searched in O(nx2O(k))
time, where nx is the number of operations in Sx. Thus the total running time is
O(n logn+ n2O(k)).

Since with k processors there can be at most k overlapping intervals, Theorem 3.7
implies, for instance, the following two corollaries.

Corollary 3.9. There is an O(n logn)-time algorithm for the VL problem with
any fixed number of processors.

Corollary 3.10. There is a polynomial-time algorithm for the VL problem with
O(logn) processors.

4. Providing additional input information. In the previous sections, we
have considered the basic VSC and VL problems, in which the only constraints on
legal schedules arise from (1) either the order of operations at a processor or the time
intervals, and (2) the fact that some write operation with the same address and value
must precede each read operation, with no intervening write with the same address
but a different value. In this section, we consider variants of the VSC and VL prob-
lems in which the input provides additional information on either the pairing of reads
to particular writes (section 4.1), the order of writes to a location (section 4.2), the old
value overwritten by each write (section 4.3), or the order of all conflicting operations
to a location (section 4.4). As shown in Table 1, this additional information helps
in some cases, but not in others. We also show how our algorithmic results can be
extended to handle atomic read-modify-write operations, with no asymptotic penalty
(section 4.5).

Each of the variants considered in this section is motivated by practical consider-
ations in existing multiprocessors. For further details, we refer the reader to [17, 19].

We require that the additional information provided by the memory system as
input in these variants be respected in any legal schedule. What happens if the ad-
ditional information provided is incorrect? If there are anomalies in the additional
information, e.g., a read is paired with a write with a different address, we detect
this and report a negative instance. If the additional information is incorrect such
that a positive instance (ignoring the information) becomes a negative instance, we
report a negative instance: there is clearly something wrong with the memory system.
The most important property that we require, however, is that the testing procedure
must never be persuaded by incorrect (or even correct) additional information that
an execution was sequentially consistent or linearizable when in fact it was not. Con-
versely, if both the execution and the additional information were correct, the testing
procedure must report a positive instance.

TESTING SHARED MEMORIES 1229

4.1. Providing the read-mapping. In the basic VSC and VL problems, when-
ever there are multiple writes with the same address and value, there may be ambiguity
as to which of the writes is to be paired with a given read of the same address and
value. The question addressed in this section is as follows: If for each read there is
no ambiguity as to with which write it is to be paired, do the VSC and VL problems
remain NP-complete?

We define the VSC-read and VL-read problems, in which for each read operation,
it is known precisely which write was responsible for the value read; a legal schedule
must respect this relation. (A schedule S respects the relation if and only if, for each
read in S, the write to which it is mapped is the last preceding write in S with the
same address.) The function mapping each read to the responsible write is called a
read-mapping. A schedule that does not respect the read-mapping has a reads-from
violation.

VSC-read. We will show that the VSC-read problem is NP-complete by a reduc-
tion from view serializability. Recall that in the view serializability problem, we are
given a history H, i.e., a total order on a set of reads and writes, where each read
or write is associated with a particular database transaction, and each read or write
contains an address but not a value. Each read is assumed to read from the last
preceding write in H to the same address. The task is to determine if there is a total
order on the transactions that preserves the read-mapping in H.

Theorem 4.1. The VSC-read problem restricted to instances in which each se-
quence contains at most three memory operations is NP-complete.

Proof. We begin by showing a reduction to the VSC-read problem with no restric-
tions on the number of operations in a sequence. Given a history H, an instance of
a view serializability problem, we construct an instance of the VSC-read problem as
follows. Let α be an address not in H. Let S′i be the sequence of operations in H for
transaction i, where each write operation in a transaction is assigned a unique value
to write, and each read operation is assigned the value of the last previous write in H
to the same address. Let Si = W (α, i)S′iR(α, i) for all transactions i. This construc-
tion ensures that all operations in Si must be scheduled consecutively in any legal
schedule: any schedule that interleaves operations from different Si’s must violate the
reads-from mapping for α. It follows that we have a positive VSC-read instance if
and only if H is view serializable.

To complete the theorem, we note that Observation 2.3 can be adapted to the
VSC-read problem by simply adding the read-mapping.

VL-read. We now turn to the VL-read problem and show that, in contrast to the
VSC-read problem, there is an O(n logn)-time algorithm for this problem.

Theorem 4.2. There is an O(n logn)-time algorithm for the VL-read problem.

Proof. We sort the input by address, and within an address, by start-of-interval
and end-of-interval times. We check to see that each read is mapped to a write
operation with the same address and value; otherwise, we have a negative instance.
Consider each address separately. Define a cluster to be a write w and the set R of
reads mapped to the write. The write w must be assigned a time earlier than that of
any read in R. Thus the start-of-interval time for w must be earlier than the end-of-
interval time for any read in R; otherwise, we have a negative instance. Any legal time
assignment defines an interval for a cluster from the time assigned to w to the time
assigned to the last read in R; only operations in this cluster can be scheduled during
this time interval. Define a zone for a cluster to be the interval from the earliest
end-of-interval time for an operation in the cluster to the latest start-of-interval time

1230 P. B. GIBBONS AND E. KORACH

for an operation in the cluster. In the normal scenario, the former is earlier than the
latter, and we have a forward zone; otherwise, we have a backward zone. For any legal
time assignment, the interval of time for a cluster with a forward zone must contain
that zone. Therefore, if two forward zones overlap, we have a negative instance.

For a cluster with a backward zone, the backward zone is the intersection of the
individual operation intervals for operations in the cluster. Thus all operations in
a cluster can be safely scheduled in any subinterval of the zone of positive length.
Moreover, one can see that the interval of time for the cluster in any legal time
assignment must intersect its backward zone. It follows that if a backward zone is
contained within the forward zone for some other cluster, we have a negative instance.

Finally, if none of the illegal configurations described above occurs, we have a
positive instance. Let ε0 be the minimum difference between any pair of times in
the instance. Augment each forward zone by ε0/3 before and after the zone. Then
the operations in forward zone clusters are safely scheduled within their respective
augmented zones, and the operations in backward zone clusters are safely scheduled
outside all augmented forward zones using nonoverlapping subintervals: for each clus-
ter, w is scheduled at the start of the augmented zone or subinterval, and then the
operations in R are scheduled in order of start-of-interval times. The reader may
verify that this is a legal schedule.

The final legal schedule is obtained by merging the individual schedules for each
address. After the initial sorting, the algorithm runs in linear time.

4.2. Providing the write-order. A second source of ambiguity in the basic
VSC and VL problems is that there may be multiple writes to the same location by
different processors. The question addressed in this section is as follows: If for each
location there is no ambiguity as to the order of writes to the location, do the VSC
and VL problems remain NP-complete?

We define the VSC-write and VL-write problems, in which for each shared-
memory location, a total order on the write operations to the location is known;
a legal schedule must respect this write-order relation.

VSC-write. We show that the VSC-write problem is NP-complete. In fact, we
prove that the VSC problem is NP-complete even when each location is written to by
only a single processor, yielding the following stronger result.

Theorem 4.3. The VSC and VSC-write problems restricted to instances in which
each location is written to by only a single processor are NP-complete.

Proof. Our reduction from 3SAT is depicted in Figure 9. The construction consists
of operations used to select a truth assignment and then to test each clause. We use
the W (ok) operation in the first sequence to signal when all clauses have been tested
and it is time to clean up so that the set of operations not used in testing the particular
assignment may be safely scheduled if and only if the assignment satisfied the 3SAT
instance. Note that for each location, all writes to that location appear in the same
sequence. Thus for the VSC-write problem, the write-order is implied by the order of
the individual sequences.

In all three NP-completeness proofs of section 2, the constructions have, for each
variable, two writes to the same location such that the order between the two writes
determines the truth setting for the variable. Here the order on two such writes is
predetermined by the order in which they appear in their processor sequence. Hence
we use two writes to different locations, which must somehow be coupled so that only
one setting of the 3SAT variable occurs prior to the cleanup. The first interesting
part of the construction, then, is the four sequences for each variable.

TESTING SHARED MEMORIES 1231

First, we have the following three sequences:

W (a1, 1) W (b1, 1) W (c1, 1)
W (a1, 2) W (b1, 2) W (c1, 2)
W (a2, 1) W (b2, 1) W (c2, 1)
W (a2, 2) W (b2, 2) W (c2, 2)

: : :
W (am, 1) W (bm, 1) W (cm, 1)
W (am, 2) W (bm, 2) W (cm, 2)
R(f1) W (f1) W (f2)
R(f2)
W (ok) R(ok) R(ok)
W (a1, 1) W (b1, 1) W (c1, 1)
W (a2, 1) W (b2, 1) W (c2, 1)

: : :
W (am, 1) W (bm, 1) W (cm, 1)

Then for each variable vi, i = 1, 2, . . . , n, we have the following four sequences:

W (yi, 1) W (zi, 1) R(yi, 2) R(zi, 2)
W (yi, 2) W (zi, 2) R(zi, 1) R(yi, 1)
W (yi, 1) W (zi, 1) W (vi) W (vi)

R(ok) R(ok)
R(yi, 2) R(zi, 2)

Finally, for each clause Cj = λj,1∨λj,2∨λj,3, j = 1, 2, . . . ,m, where λj,1, λj,2, and λj,3
denote literals from {v1, . . . , vn, v1, . . . , vn}, we have the following three sequences:

R(λj,1) R(λj,2) R(λj,3)
R(bj , 1) R(cj , 1) R(aj , 1)
R(aj , 2) R(bj , 2) R(cj , 2)

Fig. 9. Transforming an instance of 3SAT with n variables and m clauses to an instance of
VSC with 4n+ 3m+ 3 sequences and locations, such that each location is written to by only a single
processor. For locations that are written to only once in the entire construction, we omit the data
field in the write and the reads for that location.

We begin by proving the following lemma about these four sequences.

Lemma 4.4. Consider the four sequences for a variable vi, together with an ad-
ditional sequence comprised solely of a W (ok) operation. Then we have the following:

1. There exists a legal schedule for these sequences such that W (vi) precedes
W (ok) precedes W (vi).

2. There exists a legal schedule for these sequences such that W (vi) precedes
W (ok) precedes W (vi).

3. There exists no legal schedule for these sequences such that both W (vi) and
W (vi) precede W (ok).

Proof. For claim 1, the reader may verify that the following is a legal sched-
ule: W (yi, 1), W (yi, 2), R(yi, 2), W (zi, 1), R(zi, 1), W (vi), W (ok), R(ok), R(yi, 2),
W (zi, 2), R(zi, 2), W (yi, 1), R(yi, 1), W (vi), R(ok), R(zi, 2), W (zi, 1). Claim 2 follows
by symmetry. As for claim 3, suppose both did precede W (ok) in a legal schedule S.

1232 P. B. GIBBONS AND E. KORACH

Let S = S1S2, where S1 is the prefix of S up to and including the W (ok) operation.
Then the first R(yi, 2) and the first R(zi, 2) are in S1. By symmetry, assume with-
out loss of generality that the former precedes the latter in S1. Then it can be seen
that the first W (yi, 1) precedes W (yi, 2) which precedes R(yi, 1) in S1. So to avoid a
reads-from violation, W (yi, 2) must precede the second W (yi, 1) which must precede
R(yi, 1) in S1. But since the second R(yi, 2) is in S2 and there are no other W (yi, 2)
operations to schedule after the R(yi, 1) operation, S is not a legal schedule, and we
have a contradiction.

Likewise, in the previous construction, we simulate an OR using three writes with
the same address and value, any one of which signals that a clause has been satisfied
by the truth assignment. Here the order on any such writes is predetermined, and
hence this approach for simulating an OR does not work. The second interesting part
of the construction, then, is how the first three sequences together with all the clause
sequences accurately test each clause.

Consider the jth clause Cj and its three sequences, say S1, S2, and S3. There
is a row in the first three sequences in which writes to aj , bj , and cj set the values
of these locations to 1, followed by a row in which writes to these same locations set
the values to 2. These six operations must be scheduled prior to the cleanup. If Cj is
satisfied, then for at least one of S1, S2, or S3, the entire sequence can be scheduled
prior to the cleanup. On the other hand, if Cj is not satisfied, then all operations
in S1, S2, and S3 remain to be scheduled during the cleanup. The second reads in
S1, S2, and S3 read the value 1; thus before the first such read, e.g., R(cj , 1), can be
scheduled, we must schedule the appropriate write of 1, W (cj , 1), during the cleanup.
But then for that particular location cj , the read of 2 remains to be scheduled, and
yet the value cannot be reset to 2.

Lemma 4.5. Let F be an instance of the 3SAT problem, and let V be the instance
of the VSC-write problem constructed as depicted in Figure 9. Then V is a positive
instance if and only if F is satisfiable.

Proof. Suppose F is satisfiable, and let T be a satisfying assignment for F . We
construct the following schedule for V:

1. For each variable vi set to true (respectively, false) by T , schedule operations
in the four sequences for vi according to claim 1 (respectively, claim 2) of
Lemma 4.4, up to but not including the W (ok) added by the lemma.

2. For each clause Cj in turn, schedule as follows: First, schedule one of the
reads that agrees with T . This leaves two reads in the same sequence, say
R(cj , 1) and R(bj , 2), if the second of the sequences for Cj agrees with T .
Schedule the first W (aj , 1), the first W (bj , 1), and the first W (cj , 1) (in a
row in the figure), then the read R(cj , 1). Then schedule W (aj , 2), W (bj , 2),
W (cj , 2), and R(bj , 2).

3. Schedule W (f1), R(f1), W (f2), R(f2), and W (ok). Then schedule the two
R(ok) operations (from the same sequences as the W (f1) and W (f2)).

4. For each variable vi set to true (respectively, false) by T , schedule all remain-
ing operations in the four sequences for vi according to claim 1 (respectively,
claim 2) of Lemma 4.4 after the W (ok) added by the lemma.

5. At this point, both W (vi) and W (vi) have been scheduled, so all remaining
R(vi) and R(vi) operations can safely be scheduled next.

6. For each clause Cj in turn, schedule as follows: There are two pairs of un-
scheduled reads in the sequences for Cj , say R(bj , 1) followed by R(aj , 2) and
R(aj , 1) followed by R(cj , 2) (if the pair R(cj , 1) and R(bj , 2) were the ones

TESTING SHARED MEMORIES 1233

scheduled above). Note that the last writes to aj , bj , and cj scheduled each
wrote the value 2. Schedule the second W (bj , 1), then R(bj , 1), then R(aj , 2).
Then schedule the second W (aj , 1), then R(aj , 1), then R(cj , 2), and finally
the second W (cj , 1).

The reader may verify that this is a legal schedule.

Conversely, suppose V is a positive instance, and let S be a legal schedule for V.
Let S = S1S2, where S1 is the prefix of S up to and including W (ok) and S2 is the
remaining suffix of S. We observe that the claims of Lemma 4.4 apply to S since,
outside of W (vi), W (vi), and R(ok), the four sequences for each vi contain addresses
appearing only in these four sequences. Let T be the partial truth assignment such
that for each vi, vi is set to true if W (vi) is in S1, vi is set to false if W (vi) is in S1,
and vi is not set otherwise. (It follows from claim 3 of Lemma 4.4 that no variable
is set to both true and false.) We claim that the partial truth assignment T satisfies
F . Suppose not, and let Cj be an unsatisfied clause. Since for each of the three
sequences for Cj , the first read cannot be in S1, then the last two reads in each such
sequence are in S2. Moreover, the last write to aj , bj , and cj in S1 wrote the value 2.
By symmetry, assume without loss of generality that R(aj , 1) precedes both R(bj , 1)
and R(cj , 1) in S2. Then the second W (aj , 1) precedes R(aj , 1), to avoid a reads-from
violation, which precedes R(bj , 1) which precedes R(aj , 2) in S2. Since there is no
W (aj , 2) in between the W (aj , 1) and the R(aj , 2) in S2, S is not a legal schedule, a
contradiction. Therefore, all clauses are satisfied by T.

Since the above transformation can be done in polynomial time, Theorem 4.3
follows.

VL-write. We now turn to the VL-write problem, and show that, in contrast to
the VSC-write problem, there is an O(n logn)-time algorithm for this problem.

Theorem 4.6. There is an O(n logn)-time algorithm for the VL-write problem.

Proof. Let V be an instance of the VL-write problem. We sort the instance
by address and, within each address, by start-of-interval and end-of-interval times.
We check to see that each write is included only in the write-order for its address;
otherwise, we have a negative instance.

Consider the set of operations S on an address a in V. Let w1, w2, . . . , wm be the
sequence of writes to address a as ordered by the write-order. The algorithm proceeds
in rounds. We begin with all operations in S unscheduled and maintain the invariant
that all the start-of-interval times for scheduled operations are less than all the end-
of-interval times of unscheduled operations. At round i, if the start-of-interval time
for wi is greater than the end-of-interval time for an unscheduled operation, then we
have a negative instance and halt. Otherwise, schedule wi. Then greedily schedule,
in order of increasing start-of-interval times, all unscheduled reads of the same value
whose start-of-interval times are less than the end-of-interval time for all unscheduled
operations. Continue on to the next round.

If any reads remain unscheduled after round m, then we have a negative instance
and halt. Otherwise, a legal assignment of times for the operations in S is obtained
inductively as follows. Let ε0 be the minimum difference between any pair of times
(start-of-interval or end-of-interval) in V; let ε = ε0/n. The first operation scheduled,
w1, is assigned a time equal to its start-of-interval time. Each subsequent operation
is assigned a time equal to the maximum of its start-of-interval time and ε greater
than the time assigned to the previous scheduled operation.

We now show that this greedy algorithm finds a legal schedule of S if and only
if one exists. The schedule produced by the algorithm is legal since it contains all of

1234 P. B. GIBBONS AND E. KORACH

the operations in S, the write-order is respected, the last write scheduled prior to a
read has the same value, and all operations are assigned times within their intervals.
To see that this last condition holds, consider an operation π that is assigned a time
greater than its start-of-interval time. Let π′ be the last operation prior to π that is
assigned a time equal to its respective start-of-interval time t′. Since π′ is scheduled
before π, t′ is less than the end-of-interval time for π. Thus π is assigned a time less
than t′ + ε0 and hence within its interval.

Conversely, assume that there is a legal schedule of S. Suppose that the greedy al-
gorithm completes j ≤ m rounds. For i = 1, . . . , j, we claim that the set of operations
Si in the greedy schedule prior to wi is a superset of the set of operations scheduled
prior to wi in any legal schedule of S. The proof is by induction, with a trivial basis
since w1 is the first operation in any legal schedule. Assume that the claim is true for
i− 1. Consider a legal schedule of S, and let S′i be the set of operations prior to wi in
the schedule. Suppose there is an operation α in S′i that is not in Si. Since the order
on writes is fixed, S′i and Si contain the same writes, as do S′i−1 and Si−1. It follows
from the inductive assumption that α is a read of the value written by wi−1. Since α
is not in Si, there must be an operation not in Si whose end-of-interval time is less
than the start-of-interval time for α such that the operation is a read of a different
value. Since α is in S′i but reads a different value, it must be in S′i−1. But then by
the inductive assumption, it is in Si−1, a contradiction.

From this claim, we see that any unscheduled operation in Sj will be scheduled
after wj in any legal schedule, and hence its end-of-interval time is greater than the
start-of-interval time for wj . Moreover, the set of reads not in Sm is a subset of the
set of reads scheduled after wm in any legal schedule. It follows that the algorithm
successfully completes all m rounds and finds a legal schedule of S.

If for all addresses, the algorithm succeeds in finding a legal schedule, we have a
positive instance. The final legal schedule for V is obtained by merging the individual
schedules for each address.

4.3. Read&write only. In the VSC-write and VL-write problems, the input
provides a mapping from each write to the previous write on the same address (if
any). In this section, we consider the complexity of the VSC and VL problems when
for each write, the input provides not the identity of the previous write but only its
value.

We view the memory operations as atomic read–modify–write operations. Ac-
cordingly, we define a read&write(a, dold : dnew, t1, t2) operation, where a ∈ A is the
address, dold ∈ D is the old value (returned by the read), and dnew ∈ D is the
new value written. A legal schedule must respect this pairing of old and new values:
each read&write(a, dold :dnew, t1, t2) operation must be preceded by an operation that
writes dold to a with no intervening operation that writes a different value to a. As
before, the start-of-interval time t1 and end-of-interval time t2 are needed for the VL
problem but not the VSC problem. In the VSC and VL problems with read&write
only, all operations are read&write operations; in this context, a read is simply a
read&write that does not alter the value.

Note that the relationship between the VSC-write/VL-write problems and the
VSC/VL problems with read&write only is analogous to the relationship between the
VSC-read/VL-read problems and the basic VSC/VL problems, namely, the distinction
between providing the identity of the previous write versus providing only the value
of the previous write.

TESTING SHARED MEMORIES 1235

VSC with read&write only. We show that the VSC problem with read&write only
is NP-complete, even under two restrictive scenarios.

By Theorem 4.3, the VSC problem restricted to instances in which each location
is written to by only a single processor is NP-complete. In such instances, each write
can be replaced with the appropriate read&write operation, yielding the following
corollary.

Corollary 4.7. The VSC problem with read&write only restricted to instances
in which each location is written to by only a single processor is NP-complete.

We next observe that instances with long processor sequences can always be trans-
formed to equivalent instances with at most two memory operations per processor.

Observation 4.8. There is a linear-time reduction from the VSC problem with
read&write only with p sequences, n operations, and k variables to the VSC problem
with read&write only with at most n sequences, O(n) operations, and k variables such
that each sequence contains at most two operations.

Proof. For i = 1, 2, . . . , p, consider the ith sequence in the instance, Si =
rw(a1, d1 : d′1), rw(a2, d2 : d′2), . . ., rw(ami , dmi : d′mi), where a1, . . . , ami , d1, . . . , dmi ,
d′1, . . . , d

′
mi are not necessarily distinct. When Si has more than two memory opera-

tions (i.e., mi > 2), the construction splits each operation rw(aj , dj :d′j) in Si, other
than the first and the last operation, into a pair of operations to the same address:

rw(aj , dj :x
(i)
j−1) and rw(aj , x

(i)
j−1 :d′j). In particular, we replace Si with the following

mi − 1 replacement sequences for Si:

rw(a1, d1 :d′1) rw(a2, x
(i)
1 :d′2) rw(a3, x

(i)
2 :d′3) · · · rw(ami−1, x

(i)
mi−2 :d′mi−1)

rw(a2, d2 :x
(i)
1) rw(a3, d3 :x

(i)
2) rw(a4, d4 :x

(i)
3) rw(ami , dmi :d′mi)

,

where ∀i, j, i′, j′, x(i)
j = x

(i′)
j′ if and only if i = i′ and j = j′.

The idea behind this construction is as follows. Consider the pairs of operations
in the constructed instance. Since each new data value is unique, then in any legal
schedule of the constructed instance, no operation to the same address can be sched-
uled between a pair, and no operation from the same replacement sequences can be
scheduled between a pair. This in turn will imply that any legal schedule can be
reordered to obtain a new legal schedule in which the two operations in any pair are
consecutive. Then considering each pair as being replaced by its original operation,
we have a legal schedule of the original instance.

The reader may verify that this constructed instance is a positive instance if and
only if the original instance is a positive instance.

We now show that the VSC problem with read&write only is NP-complete even
when there is only a single variable and at most two operations per sequence.

Theorem 4.9. The VSC problem with read&write only restricted to instances
with one variable and at most two memory operations per sequence is NP-complete.

Proof. We show the reduction for sequences with many operations; this can
be transformed to sequences with at most two operations each by applying Ob-
servation 4.8. Given a 3SAT instance F with n variables and m clauses, we con-
struct the following VSC instance V. First, we have the following 2n + 1 sequences,
A, V1, V

′
1 , . . . , Vn, V

′
n, where ⊥ is the initial value of a, the literal v1 is in clauses

{c2, c3, . . . , cm}, the literal v1 is in clauses {c4, c6, . . . , c9},. . . , the literal vn is in

1236 P. B. GIBBONS AND E. KORACH

clauses {c4, c5, . . . , c8}, and the literal vn is in clauses {c1, c6, . . . , cm}:

A V1 V ′1 · · · Vn V ′n
rw(a,⊥ :1) rw(a, 1:c2) rw(a, 1:c4) rw(a, n :c4) rw(a, n :c1)
rw(a, 1′ :2) rw(a, c2 :c3) rw(a, c4 :c6) rw(a, c4 :c5) rw(a, c1 :c6)
rw(a, 2′ :3) : : : :

: rw(a, cm :1′) rw(a, c9 :1′) rw(a, c8 :n′) rw(a, cm :n′)
rw(a, (n−1)′ :n)

.

In addition, we have the following m+ 1 sequences, A′, C1, C2, . . . , Cm:

A′ C1 C2 · · · Cm
rw(a, c′m :1) rw(a, c1 :c1) rw(a, c2 :c2) rw(a, cm :cm)
rw(a, 1′ :2) rw(a, n′ :c′1) rw(a, c′1 :c′2) rw(a, c′m−1 :c′m)
rw(a, 2′ :3)

:
rw(a, (n−1)′ :n)

.

Lemma 4.10. Let F be an instance of the 3SAT problem, and let V be the instance
of the VSC problem with read&write only constructed as defined above. Then V is a
positive instance if and only if F is satisfiable.

Proof. Suppose F is satisfiable. Let T (v1), . . . , T (vn) be a satisfying assignment
for F , where T (vi) ∈ {T,F}. We construct the following schedule for V:

1. first, rw(a,⊥ : 1) (or rw(⊥ : 1); from now on we shall omit the variable “a”);
this is the first operation in A;

2. then if T (v1) = T, all of the operations in V1, interleaved with clause read
operations, as explained below, and followed by the second operation in A,
rw(1′ : 2); otherwise, if T (v1) = F, all of the operations in V ′1 , interleaved
with clause read operations, as explained below, and followed by the second
operation in A.

3. For i = 2, 3, . . . , n, repeat the previous step: If T (vi) = T (T (vi) = F),
schedule all of the operations in Vi (respectively, V ′i), interleaved with clause
read operations, as explained below, and followed by, for i < n, the (i+ 1)th
operation in A, rw(i′ : i+ 1).

4. The first operation in each sequence Cj is denoted the clause read for clause
cj . Since T satisfies F , then each clause cj is satisfied by some T (vi), and
therefore when the corresponding Vi or V ′i was scheduled, an operation of the
form rw(x : cj) for some value x was in that sequence; the clause read for cj
is scheduled immediately after the first such operation rw(x :cj).

5. Next, we schedule rw(n′ : c′1), rw(c′1 : c′2), . . . , rw(c′m−1 : c′m), followed by
rw(cm′ :1) (the first operation in A′).

6. Finally, repeat the following for i = 1, 2, . . . , n: If T (vi) = F (T (vi) = T),
schedule all of the operations in Vi (respectively, V ′i), followed by, for i < n,
the (i+ 1)th operation in A′: rw(i′ : i+ 1).

The reader may verify that this is a legal schedule.
Conversely, suppose V is a positive instance and let S be a legal schedule for V.

For i = 1, . . . , n, let the first operation in S from either Vi or V ′i be denoted the variable
read operation for vi and the sequence Vi or V ′i containing vi be denoted the variable
read sequence. Let the sequence Vi or V ′i that is not the variable read sequence for vi
be denoted the cleanup read sequence and its first operation be denoted the cleanup
read. Consider the truth assignment T defined as follows: For each i = 1, . . . , n,

TESTING SHARED MEMORIES 1237

T (vi) = T if Vi is the variable read sequence for vi and T (vi) = F otherwise. Note
that by the construction, operations in a variable read sequence only write values cj
for clauses satisfied by T . We will show that T is a satisfying assignment for F .

Suppose there is a clause cj not satisfied by T , and consider the clause read for
cj : rw(cj : cj). Let S = σ1rw(cj : cj)σ2. We claim that rw(c′m : 1) and hence all of
A′ is in σ2. To see this, first observe that since the values c′1, c

′
2, . . . , c

′
m are read by

exactly one operation and written by exactly one operation, the sequence rw(n′ :c′1),
rw(c′1 : c′2), . . . , rw(c′m−1 : c′m), rw(c′m : 1) is a consecutive subsequence of S. Since
the second operation in Cj is in this subsequence and in σ2, then rw(c′m : 1) is in
σ2 as well. Thus all of A′ is in σ2, and hence at most one operation that writes i,
i = 1, . . . , n, is in σ1.

Since among the two operations that read i, the variable read precedes the cleanup
read, it follows that the cleanup read and hence the cleanup read sequence is in σ2

for all vi. The last operation in σ1 must write cj and thus must be in a variable read
sequence. Thus, as observed above, cj is satisfied by T , a contradiction.

The lemma follows.

Since the above transformation can be done in polynomial time, Theorem 4.9
follows.

VL with read&write only. We show that the VL problem with read&write only
is NP-complete. This contrasts with the O(n logn)-time algorithm for the VL-write
problem.

Theorem 4.11. The VL problem with read&write only is NP-complete.

Proof. With only read&write operations, a more careful construction is needed
than the one shown in Figure 8 that relies on writes whose old values are not prede-
termined. Each new value to be written must serve as the old value for the next write
(recall that there is but a single location), giving us less flexibility in the construction.
Nevertheless, we show below how to overcome this difficulty to obtain a construction
with the desired properties.

Our reduction is again from SAT. Consider an instance F of SAT with n variables,
v1, v2, . . . , vn, and m clauses, C1, C2, . . . , Cm. Without loss of generality, assume that
each variable and its negation appear in at least one clause, but not the same clause,
and that there are no repeated variables in a clause. We construct an instance of the
VL problem with at most 5nm + 10n + m + 1 operations, corresponding to F . To
simplify the description, we have multiple intervals with common start times or end
times; these ties can be broken arbitrarily to ensure unique time values.

Figure 10 depicts an example construction. First, there is an initial read&write
operation: read&write(a,⊥ :0, 1, 2). Then for each clause Cj , j = 1, . . . ,m, we have a
read&write(a, cj :cj , 3, 5n+ 4) operation, denoted the clause read for Cj .

For i = 1, . . . , n, let mi (respectively, mı) be the number of clauses containing the
literal vi (respectively, vi). By assumption, mi > 0, mı > 0, and mi + mı ≤ m. For
i = 1, . . . , n+1, let ∆i = (7m+4)(i−1)+5n+4. For i = 1, . . . , n, let ∆ı = ∆i+7mi+2.

For each variable vi, assignment to vi is simulated using six operations:

• read&write(a, 0: i, 5i, 5i+ 1),
• read&write(a, 0: ı, 5i, 5i+ 1),
• read&write(a, ı̂ :0, 5i, 5i+ 1),
• read&write(a, ı̂ :0, 5i+ 3, 5i+ 4),
• read&write(a, i : ı̂, 5i,∆i − 1),
• read&write(a, ı : ı̂, 5i,∆ı − 1).

There is a set of operations for each literal vi, denoted the group of operations

1238 P. B. GIBBONS AND E. KORACH

⊥ :0

0 :1 0 :1 1̂ :0

1̂ :0

1 : 1̂ 1 : 1̂

qqq
· · ·0:n 0:n n̂ :0

n̂ :0

n : n̂ n : n̂

rc1

· · ·
rcm

c1 :1

c4 :1

c6 :1

r1

1:c1

1:c4

1̂ : 0

1 :c1

0:c1

rc1

c1 :c4

c1 :c4

rc4

c4 :c6

c4 :c6

rc6

c6 : 1̂

c3 :1

r1

1̂ :0

1 :c3

0:c3

rc3

c3 : 1̂

r2

· · ·

qqq

Fig. 10. Transforming an instance of SAT to an instance of VL with a single location such
that all memory operations are read&write operations. There are n variables, v1, . . . , vn, and m
clauses, C1, . . . , Cm. The full construction has at most 5nm + 10n + m + 1 operations. Here the
literal v1 appears in exactly clauses C1, C4, and C6, the literal v1 appears in clause C3 only, and
so forth. Every column corresponds to a processor. Vertical boxes depict the intervals of time for
the respective read&write operations to the single location; time progresses from top to bottom in the
figure. A read&write operation with old value d and new value d′ is denoted d : d′; the case where
d = d′ is denoted simply rd. The set of values used is {0, 1, 1, 1̂, 2, 2, 2̂, . . . , n, n, n̂, c1, c2, . . . , cm}.
The first read&write necessarily reads the initial value in memory, which we denote ⊥, before writing
a new value (i.e., 0).

TESTING SHARED MEMORIES 1239

for i. For i = 1, . . . , n, if Ci1 , Ci2 , . . . , Cimi are the clauses containing the literal vi,
we have the following 5mi + 2 intervals. First, for Ci1 , we have

• read&write(a, i : i, 5i+ 2,∆i + 4),
• read&write(a, i :ci1 , 5i+ 2,∆i + 5),
• read&write(a, 0:ci1 ,∆i + 1,∆i + 2),
• read&write(a, ci1 :ci1 ,∆i + 5,∆i + 6),
• read&write(a, ci1 : i,∆i + 3,∆i + 7).

Then for Cik , k = 2, . . . ,mi, we have

• read&write(a, i :cik−1
,∆i + 7(k − 1),∆i + 7(k − 1) + 4),

• read&write(a, cik−1
:cik , 5i+ 2,∆i + 7(k − 1) + 5),

• read&write(a, cik−1
:cik ,∆i + 7(k − 1) + 1,∆i + 7(k − 1) + 2),

• read&write(a, cik :cik ,∆i + 7(k − 1) + 5,∆i + 7(k − 1) + 6),
• read&write(a, cik : i,∆i + 7(k − 1) + 3,∆i + 7k).

Finally, we have read&write(a, cimi : ı̂, 5i+2,∆ı−1) and read&write(a, ı̂ :0,∆ı−1,∆ı).

Likewise, there is a set of operations for each literal vi, denoted the group of
operations for ı. For i = 1, . . . , n, if Cı1 , Cı2 , . . . , Cımı are the clauses containing
the literal vi, we have the 5mı + 2 intervals obtained from the previous definition by
replacing ∆ı with ∆i+1 and leaving “5i+2” unchanged but otherwise replacing i with
ı throughout.

This completes the construction.

We show below that for any satisfying truth assignment, there is a legal schedule
for the instance constructed. As an example, consider a satisfying assignment that
sets v1 to true, and refer to Figure 10. In this case, a legal schedule begins: ⊥ : 0,
then 0 : 1, then 1 : 1̂, then the first 1̂ : 0, then 0 : 1, then r1, then 1 : c1 (immediately
to the right of r1 in the figure), then the clause read rc1, then c1 :c4, then the clause
read rc4 (not shown), then c4 : c6, then the clause read rc6 (not shown), then c6 : 1̂,
and then the second 1̂ : 0. The schedule continues with operations for v2, v3, . . . , vn
until the second n̂ : 0 is scheduled. Then the remaining (cleanup) operations for v1

are scheduled as follows: 0 : c1 (in the figure, just below the third dashed line from
the top), then rc1, then c1 : 1, then the 1 : c1 to its right, then the c1 : c4 to its right,
then the rc4 below it, then c4 : 1, then 1 : c4, then the c4 : c6 to its right, then the rc6
below it, then c6 : 1, then 1 : 1̂, and then the 1̂ : 0 just above the fourth dashed line;
then 0 : c3, then c3 : 1, then r1, then 1 : c3, then rc3, then c3 : 1̂, and then the 1̂ : 0
just above the fifth dashed line. The schedule continues with cleanup operations for
v2, v3, . . . , vn until all operations have been scheduled.

Lemma 4.12. Let F be an instance of a SAT problem, and let V be the instance
of the VL problem with read&write operations constructed as described above. Then
V is a positive instance if and only if F is satisfiable.

Proof. Suppose F is satisfiable, and let T be a satisfying truth assignment for F .
We construct the following schedule for V. When there is no ambiguity, we use the
notation “d1 :d2” to denote a read&write operation to address a with old value d1 and
new value d2; the case where d1 = d2 is denoted simply “rd1.” We show the order
in which events are scheduled; an assignment of distinct, valid times to operations is
left to the reader. The schedule is as follows:

1. First, schedule ⊥ :0.
2. Repeat the following for i = 1, 2, . . . , n:

If vi is set to true by T , schedule 0 : ı, then ı : ı̂, then read&write(a, ı̂ :
0, 5i, 5i + 1), then 0 : i, and then ri. Schedule i : ci1 , followed by—if it has
not already been scheduled—the clause read rcj , where j = i1. Then repeat

1240 P. B. GIBBONS AND E. KORACH

for k = 2, . . . ,mi: schedule read&write(a, cik−1
:cik , 5i+ 2,∆i + 7(k− 1) + 5),

followed by—if it has not already been scheduled—the clause read rcj , where
j = ik. Finally, schedule cimi : ı̂, then read&write(a, ı̂ :0, 5i+ 3, 5i+ 4).
The case where vi is set to false by T is symmetric and left to the reader.

3. Since T is a satisfying assignment for F , all clause reads have been scheduled
by this point. Note also that all the above operations can be scheduled prior
to time ∆1.
Repeat the following for i = 1, 2, . . . , n:
If vi is set to true by T , consider the 4mi unscheduled operations in group
i, together with the unscheduled i : ı̂, and finally the 5mı + 2 (unscheduled)
operations in group ı:
(a) Schedule 0 :ci1 , then rci1 , then ci1 : i.
(b) Then repeat for k = 2, . . . ,mi: Schedule i : cik−1

, then the unscheduled
cik−1

:cik , then rcik , and then cik : i.
(c) Schedule the unscheduled i : ı̂, then schedule read&write(a, ı̂ : 0,∆ı −

1,∆ı) to complete group i.
(d) Next, schedule 0 :cı1 , then cı1 : ı, then rı, then ı :cı1 , and then rcı1 .
(e) Then repeat for k = 2, . . . ,mı: Schedule read&write(a, cık−1

: cık ,∆ı +
7(k − 1) + 1,∆ı + 7(k − 1) + 2), then cık : ı, then ı : cık−1

, then the
unscheduled cık−1

:cık , and then rcık .
(f) Finally, to complete group ı, schedule cımı : ı̂ and then read&write(a, ı̂ :

0,∆i+1 − 1,∆i+1).
The case where vi is set to false by T is symmetric and left to the reader.

The reader may verify that this is a legal schedule.

The proof of the converse, i.e., if V is a positive instance, then F is satisfiable,
parallels the proof given in Lemma 3.6 and is left to the reader.

Since the above transformation can be done in polynomial time, Theorem 4.11
follows.

4.4. Providing the conflict-order. Two operations on the same location con-
flict if at least one is a write. In the VSC-conflict and VL-conflict problems, both a
read-mapping and a write-order are known, implying that all conflicting operations
are ordered; a legal schedule must respect this conflict-order relation.

VSC-conflict. There is a simple O(n logn)-time algorithm for the VSC-conflict
problem. Thus although providing either the read-mapping or the write-order is NP-
complete, providing both yields a fast algorithm.

Theorem 4.13. There is an O(n logn)-time algorithm for the VSC-conflict prob-
lem.

Proof. Sort the VSC-conflict instance by address. We check to see that each read
is mapped to a write operation with the same address and value and that each write is
included only in the write-order for its address; otherwise, we have a negative instance.
Construct a graph G with a vertex for each operation in the instance. Add an edge
between a vertex u and a vertex v if u immediately precedes v in some processor
sequence. In addition, add edges from each write to all reads mapped to it and from
the write and these reads to the next write in its write-order. The graph G has n
vertices and O(n) edges.

The reader may verify that if G has a directed cycle, we have a negative instance.
Otherwise, we have a positive instance, and any topological sort of G yields a legal
schedule.

TESTING SHARED MEMORIES 1241

VL-conflict. An O(n logn)-time algorithm for the VL-conflict problem follows as
a corollary to Theorems 3.2 and 4.13.

Corollary 4.14. There is an O(n logn)-time algorithm for the VL-conflict
problem.

4.5. Atomic read–modify–write. We conclude this section by showing how
the algorithmic results of this paper can be extended to handle atomic read–modify–
write operations at no asymptotic penalty. The input consists of three types of mem-
ory operations: reads, writes, and read&writes. The read&write operations are in-
cluded in both the domain and range of any read-mapping, as well as ordered by
any write-order (in which case the value read must match the value written by the
previous write).

Few processors. We first consider the scenario where the number of processors is
bounded.

Theorem 4.15. The VL problem with read, write, and read&write operations,
restricted to instances such that at any time t, there are at most k operations on the
same address whose intervals contain t, can be solved in O(n2O(k) + n logn) time.

Proof. The proof parallels the proof of Theorem 3.7, with the following modi-
fication of the algorithm to handle the possible presence of read&write operations.
Namely, condition 2 for including an edge between a vertex v and a vertex v′ on
consecutive levels of the graph defines a set A of operations that must be assigned
times after the last write ω designated by v and before any writes not in A. With
only reads and writes, it sufficed to test whether each read in A read either the value
of the last write designated by v or the value of some write in A. With read&write
operations, however, we cannot have, for example, the set A consist of two operations
that each read the designated last write and write a new value. We use the following
test instead. Consider a multigraph H consisting of a vertex for every value occurring
in A ∪ {ω}, plus an extra dummy vertex z. Each read&write operation in A that
reads a value d and writes a value d′ defines a directed edge in H from the vertex
for d to the vertex for d′. Each write operation defines a directed edge from z to the
vertex for the value written. Each read operation defines a self-loop at the vertex for
the value read. There is a directed edge from z to the vertex for the value written by
ω. Then for each vertex y in H whose in-degree exceeds its out-degree by j > 0, we
have j directed dummy edges in H from y to z.

Lemma 4.16. The set of operations in A can be safely scheduled if and only if H
has an Eulerian circuit.

Proof. If H has an Eulerian circuit, then consider the sequence S of operations
defined by an Eulerian circuit that begins with the edge for ω. Then the schedule
obtained from S by removing ω and all dummy edges contains all of A and has no
reads-from violations. Conversely, if there is no Eulerian circuit, then either H has a
vertex x whose out-degree exceeds its in-degree or it has a nonempty set of vertices
not reachable from z. In the former case, note that x 6= z since by construction the
in-degree of z is necessarily at least as large as its out-degree. Moreover, since any
vertex with an outgoing dummy edge has the same in-degree as out-degree, all edges
incident to x correspond to operations in A ∪ {ω}. Hence there are more operations
that read and modify x’s value than there are operations that write it. It follows that
any schedule of A will have a reads-from violation. In the latter case, any schedule ofA
will have a reads-from violation at the first scheduled operation from the unreachable
set.

1242 P. B. GIBBONS AND E. KORACH

We construct H and check to see that all vertices are reachable from z and have
the same in-degree as out-degree in time linear in the size of A. Finally, consider the
last write, ω′, designated by v′, which like ω may be either a write or a read&write.
The final condition required for adding an edge from v to v′ is that either ω′ is in A
and writes a value whose vertex in H has an outgoing dummy edge or, if there are no
writes or read&writes in A, ω′ = ω.

Theorem 4.15 implies, for instance, the following corollary.
Corollary 4.17. There is an O(n logn)-time algorithm for the VL problem

with read, write, and read&write operations and any fixed number of processors.
Read-mapping. If a read-mapping is provided, then we have the following corollary

to Theorem 4.2.
Corollary 4.18. There is an O(n logn)-time algorithm for the VL-read problem

with read, write, and read&write operations.
Proof. We modify the algorithm in Theorem 4.2 to handle read&write operations

by simply replacing the use of clusters in that algorithm with cluster sequences, as
defined below. Observe that at most one read&write operation can be mapped by the
read-mapping to a single write or read&write; otherwise, we have a negative instance.
Define a cluster sequence, S = w1, R1, w2, R2, . . . , wk, Rk, k ≥ 1, to be a sequence of
alternating operations and sets such that w1 is an ordinary write operation, w2, . . . , wk
are read&write operations with wi mapped to wi−1 for i = 2, . . . , k, there is no
read&write operation mapped to wk, and Ri is the set of ordinary reads mapped to
wi for i = 1, . . . , k. Any legal schedule assigns w1 an earlier time than any read in
R1, which is assigned an earlier time than w2, and so on. Thus the start-of-interval
time for an operation must be earlier than the end-of-interval time for any operation
that is ordered after it in its cluster sequence; otherwise, we have a negative instance.
A legal assignment of times defines an interval for a cluster sequence, from the time
assigned to w1 to the time assigned to the last read in Rk; only operations in this
cluster sequence can be scheduled during this time interval. The algorithm and proof
continue as in Theorem 4.2.

Write-order and conflict-order. Since the old value on writes provides no addi-
tional information once a write-order is provided, we have the following corollary to
Theorems 4.6 and 4.13 and Corollary 4.14.

Corollary 4.19. There are O(n logn)-time algorithms for the VL-write, VSC-
conflict, and VL-conflict problems with read, write, and read&write operations.

5. Conclusions. This paper provides the first formal and systematic study of
the complexity of testing the correctness of an execution of a shared memory, based
on the reads and writes observed by the individual processors. We define two combi-
natorial problems: the verifying sequential consistency of shared-memory executions
(VSC) problem for testing for sequential consistency, and the verifying linearizability
of shared-memory executions (VL) problem for testing for linearizability. We show
that the VSC problem is NP-complete even when the number of processors, locations,
or operations per processor is bounded. Moreover, the problem remains NP-complete
even when additional information is provided, such as the pairing of reads to particu-
lar writes, the order of writes to a location, or the old value overwritten by each write.
However, if the order of all conflicting operations to a location is provided, we obtain
an O(n logn)-time algorithm. Linearizability, in contrast, is more restrictive than
sequential consistency, and our results show that these additional restrictions can be
quite useful in testing for linearizability. In particular, we present O(n logn)-time
algorithms for several variants of the VL problem whose corresponding VSC variants

TESTING SHARED MEMORIES 1243

are NP-complete. On the other hand, we show that the VL problem is NP-complete
even when given the old value overwritten by each write operation.

Efficient testing algorithms can be used by machine designers, system software
writers, application programmers, and näıve users whenever doubt arises as to wheth-
er all aspects of the memory system are functioning properly. In [17, 19], we present
approaches to implementing testing procedures on real multiprocessors or their sim-
ulators. In particular, we devise schemes for collecting the additional information
needed for the read-mapping, write-order, old value on writes, or conflict-order. We
also describe algorithms for heuristic testing of several processors at a time. The
results in [17, 19] demonstrate interesting tradeoffs between the speed, accuracy, and
obtrusiveness of various testing procedures.

We have presented several O(n logn)-time algorithms; after sorting, these run in
linear time. Depending on the assumptions made on the form of the input, one could
apply integer sorting to obtain linear time bounds for these algorithms.

In this paper, we consider read, write, and read–modify–write operations. This is
extended in [17, 19], where we also consider the load-reserved (a.k.a. load-linked, load-
locked) and store-conditional operations [24] appearing in many recent architectures.
More generally, one can consider testing shared memories that support various data
structures, such as priority queues.

Finally, correctness conditions other than linearizability and sequential consis-
tency can be considered. A number of correctness conditions from the domain of
database transactions have been previously studied (e.g., [6, 25, 30]). It would be
interesting to develop a general theory encompassing a wide range of correctness con-
ditions so that tradeoffs between the generality of a correctness condition and its
complexity may be better understood.

Acknowledgments. We thank Michael Merritt and Robert Cypher for discus-
sions related to this work. We acknowledge the helpful comments of an anonymous
referee.

REFERENCES

[1] S. V. Adve, Designing memory consistency models for shared-memory multiprocessors, Ph.D.
thesis, University of Wisconsin, Madison, WI, 1993.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer, Detecting data races on
weak memory systems, in Proc. 18th International Symposium on Computer Architecture,
ACM, New York, 1991, pp. 234–243.

[3] Y. Afek, G. M. Brown, and M. Merritt, Lazy caching, ACM Trans. Programming Lang.
Systems, 15 (1993), pp. 182–205.

[4] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld, Computing with faulty shared
objects, J. Assoc. Comput. Mach., 42 (1995), pp. 1231–1274.

[5] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kuri-

hara, B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung, The MIT Alewife
machine: A large-scale distributed-memory multiprocessor, in Proc. Workshop on Scalable
Shared Memory Multiprocessors, Kluwer Academic Publishers, Norwell, MA, 1991.

[6] D. Agrawal, J. L. Bruno, A. El Abbadi, and V. Krishnaswamy, Relative serializability:
An approach for relaxing the atomicity of transactions, in Proc. 13th ACM Symposium on
Principles of Database Systems, ACM, New York, 1994, pp. 139–149.

[7] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith,
The Tera computer system, in Proc. 1990 International Conference on Supercomputing,
ACM, New York, 1990, pp. 1–6.

[8] H. Attiya and J. L. Welch, Sequential consistency versus linearizability, ACM Trans. Com-
put. Systems, 12 (1994), pp. 91–122.

[9] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, Checking the correctness of
memories, Algorithmica, 12 (1994), pp. 225–244.

1244 P. B. GIBBONS AND E. KORACH

[10] J. Bright and G. Sullivan, Checking mergeable priority queues, in Proc. 24th IEEE Fault-
Tolerant Computing Symposium, IEEE, Piscataway, NJ, 1994, pp. 144–153.

[11] W. W. Collier, Reasoning About Parallel Architectures, Prentice–Hall, Englewood Cliffs, NJ,
1992.

[12] S. Frank, H. Burkhardt III, and J. Rothnie, The KSR1: Bridging the gap between shared
memory and MPPs, in Proc. 1993 IEEE Compcon Spring, IEEE, Piscataway, NJ, 1993,
pp. 285–294.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[14] K. Gharachorloo and P. B. Gibbons, Detecting violations of sequential consistency, in
Proc. 3rd ACM Symposium on Parallel Algorithms and Architectures, ACM, New York,
1991, pp. 316–326.

[15] K. Gharachorloo, A. Gupta, and J. Hennessy, Two techniques to enhance the perfor-
mance of memory consistency models, in Proc. 1991 International Conference on Parallel
Processing, CRC Press, Boston, MA, 1991, pp. I:355–364.

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
Memory consistency and event ordering in scalable shared-memory multiprocessors, in
Proc. 17th International Symposium on Computer Architecture, IEEE, Piscataway, NJ,
1990, pp. 15–26.

[17] P. B. Gibbons and E. Korach, Testing for sequential consistency, in preparation.
[18] P. B. Gibbons and E. Korach, The complexity of sequential consistency, in Proc. 4th IEEE

Symposium on Parallel and Distributed Processing, IEEE, Piscataway, NJ, 1992, pp. 317–
325.

[19] P. B. Gibbons and E. Korach, On testing cache-coherent shared memories, in Proc. 6th ACM
Symposium on Parallel Algorithms and Architectures, ACM, New York, 1994, pp. 177–188.

[20] P. B. Gibbons and M. Merritt, Specifying nonblocking shared memories, in Proc. 4th ACM
Symposium on Parallel Algorithms and Architectures, ACM, New York, 1992, pp. 306–315.

[21] P. B. Gibbons, M. Merritt, and K. Gharachorloo, Proving sequential consistency of high-
performance shared memories, in Proc. 3rd ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 1991, pp. 292–303.

[22] M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Programming Lang. Systems, 12 (1990), pp. 463–492.

[23] R. Hood, K. Kennedy, and J. Mellor-Crummey, Parallel program debugging with on-the-fly
anomaly detection, in Proc. 1990 International Conference on Supercomputing, ACM, New
York, 1990, pp. 74–81.

[24] E. H. Jensen, G. W. Hagensen, and J. M. Broughton, A new approach to exclusive data
access in shared memory multiprocessors, Technical Report UCRL-97663, Lawrence Liv-
ermore National Laboratory, Livermore, CA, 1987.

[25] V. Krishnaswamy and J. Bruno, On the complexity of concurrency control using semantic
information, Technical Report TRCS 92-21, Department of Computer Science, University
of California at Santa Barbara, Santa Barbara, CA, 1992.

[26] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess
programs, IEEE Trans. Comput., C-28 (1979), pp. 690–691.

[27] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,

M. Horowitz, and M. S. Lam, The Stanford DASH multiprocessor, IEEE Comput., 25
(1992), pp. 63–79.

[28] J. Mellor-Crummey, Compile-time support for efficient data race detection in shared-memory
parallel programs, in Proc. 3rd ACM/ONR Workshop on Parallel and Distributed Debug-
ging, ACM, New York, 1993, pp. 129–139.

[29] R. H. B. Netzer and B. P. Miller, Improving the accuracy of data race detection, in Proc. 3rd
ACM Symposium on Principles and Practice of Parallel Programming, ACM, New York,
1991, pp. 133–144.

[30] C. Papadimitriou, The serializability of concurrent database updates, J. Assoc. Comput.
Mach., 26 (1979), pp. 631–653.

[31] C. Papadimitriou, The Theory of Database Concurrency Control, Computer Science Press,
Rockville, MD, 1986.

[32] F. Pong and M. Dubois, A new approach for the verification of cache coherence protocols,
IEEE Trans. Parallel Distrib. Systems, 6 (1995), pp. 773–787.

[33] D. Shasha and M. Snir, Efficient and correct execution of parallel programs that share mem-
ory, ACM Trans. Programming Lang. Systems, 10 (1988), pp. 282–312.

[34] J. M. Wing and C. Gong, Testing and verifying concurrent objects, J. Parallel Distrib. Com-
put., 17 (1993), pp. 164–182.

POLYNOMIAL METHODS FOR SEPARABLE CONVEX
OPTIMIZATION IN UNIMODULAR LINEAR SPACES

WITH APPLICATIONS∗

ALEXANDER V. KARZANOV† AND S. THOMAS MCCORMICK‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1245–1275, August 1997 015

Abstract. We consider the problem of minimizing a separable convex objective function over
the linear space given by a system Mx = 0 with M a totally unimodular matrix. In particular, this
generalizes the usual minimum linear cost circulation and cocirculation problems in a network and
the problems of determining the Euclidean distance from a point to the perfect bipartite matching
polytope and the feasible flows polyhedron.

We first show that the idea of minimum mean cycle canceling originally worked out for lin-
ear cost circulations by Goldberg and Tarjan [J. Assoc. Comput. Mach., 36 (1989), pp. 873–886.]
and extended to some other problems [T. R. Ervolina and S. T. McCormick, Discrete Appl. Math,
46 (1993), pp. 133–165], [A. Frank and A. V. Karzanov, Technical Report RR 895-M, Laboratoire
ARTEMIS IMAG, Université Joseph Fourier, Grenoble, France, 1992], [T. Ibaraki, A. V. Karzanov,
and H. Nagamochi, private communication, 1993], [M. Hadjiat, Technical Report, Groupe Intelli-
gence Artificielle, Faculté des Sciences de Luminy, Marseille, France, 1994] can be generalized to
give a combinatorial method with geometric convergence for our problem. We also generalize the
computationally more efficient cancel-and-tighten method.

We then consider objective functions that are piecewise linear, pure and piecewise quadratic,
or piecewise mixed linear and quadratic, and we show how both methods can be implemented to
find exact solutions in polynomial time (strongly polynomial in the piecewise linear case). These
implementations are then further specialized for finding circulations and cocirculations in a network.

We finish by showing how to extend our methods to find optimal integer solutions, to linear
spaces of larger fractionality, and to the case when the objective functions are given by approximate
oracles.

Key words. separable convex optimization, unimodular linear spaces, min mean canceling,
network flows

AMS subject classifications. 90C25, 68Q25, 90B10

PII. S0097539794263695

1. Introduction. A circulation in a digraph G = (V,E) is a vector x ∈ RE
satisfying the conservation condition∑

k:(k,i)∈E
xki −

∑
j:(i,j)∈E

xij = 0 for all i ∈ V .

A vector π ∈ RV of node potentials induces a cocirculation (or potential difference, or
tension) ∆π ∈ RE in G defined by

∆π(i, j) = πj − πi for (i, j) ∈ E.

∗ Received by the editors February 25, 1994; accepted for publication (in revised form) September
16, 1995. This research was performed while both authors were visiting Laboratoire ARTEMIS IMAG
at Université Joseph Fourier de Grenoble, Grenoble, France.

http://www.siam.org/journals/sicomp/26-4/26369.html
† Institute for System Analysis, 9 Prospect 60 Let Oktyabrya, 117312 Moscow, Russia

(karzanov@cs.vniisi.msk.ru). The research of this author was supported by the “Chaire municipale,”
Mairie de Grenoble, Grenoble, France.
‡ Faculty of Commerce and Business Administration, University of British Columbia, Vancouver,

BC V6T 1Z2, Canada (stmv@adk.commerce.ubc.ca). The research of this author was supported by
an NSERC Operating Grant, an NSERC Grant for Research Abroad, and a UBC Killam Faculty
Study Leave Fellowship.

1245

1246 A. V. KARZANOV AND S. T. MCCORMICK

Suppose that for each e ∈ E we are given an objective function we : R→ R which
is convex. Consider the problem of minimizing the separable total objective function,
defined as

w(x) =
∑
e∈E

we(xe),(1)

over the set C of circulations in G and consider a similar problem for the set C⊥ of
cocirculations in G. This framework includes many special problems on circulations
and cocirculations. The most popular is the classical minimum linear cost circulation
problem (briefly, the linear circulation problem): given lower and upper arc bounds
l, u ∈ RE with l ≤ u and arc costs c ∈ RE , find x ∈ C that minimizes

∑
e∈E cexe

subject to le ≤ xe ≤ ue, e ∈ E. This is reduced to the above “unconstrained” problem
by defining for e ∈ E

we(r) =

 ceue + α(r − ue) if r > ue,
cer if le ≤ r ≤ ue,
cele + α(le − r) if r < le,

(2)

where α is a sufficiently large positive number. (We could also just set we(xe) = +∞
when xe is outside the bounds.) Thus we obtain a special case of separable piecewise
linear objective function w; see Figure 1. In the case of the minimum linear cost
cocirculation problem (briefly, linear cocirculation problem), let a+ (a−) denote the
vector of positive parts (negative parts) of vector a, i.e., the vector with ith component
max{ai, 0} (max{−ai, 0}). Then the dual objective function can be written as

max
π
{lT (cπ)+ − uT (cπ)−}(3)

(see [8]), where cπe = ce−∆πe is the vector of reduced costs. Equation (3) shows that
the classic dual circulation (cocirculation) objective is the piecewise linear function
shown in Figure 2.

6

-

6

��
��

�

6↑
we

le ue xe →

slope ce

Fig. 1. The arc objective function for the classic linear circulation problem with lower bound
le, upper bound ue, and cost ce.

It is tempting to further generalize this model by allowing demands at nodes,
by putting convex penalties on violations of conservation, or by putting convex costs
on the node potentials, etc. However, all of these generalizations can be handled by
adjoining a new node 0 to the network, along with arcs from 0 to every other node.
These new arcs can then carry demands, conservation violations, or node potentials.
Thus we do not really lose any generality by considering only the simpler model.

Among the many approaches to solving the linear circulation problem (see, e.g.,
Ahuja, Magnanti, and Orlin [1] for a survey), one strongly polynomial method is es-
pecially simple, namely, the minimum mean cycle canceling method due to Goldberg

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1247

-

6

�
�
�
�
�
�
���

��������9

↑
we

ce

slope ue

slope le
∆πe →

Fig. 2. The arc objective function for the classic linear cocirculation problem with lower bound
le, upper bound ue, and cost ce.

and Tarjan [5]. Its ideas inspired a number of polynomial and strongly polynomial al-
gorithms for other problems, such as the linear cocirculation problem [2], determining
the Euclidean distances to certain polyhedra [4, 12], and the min-cost cocirculation
(tension) problem [7]. (However, it appears that it does not work well for submodular
flow problems; see [20].)

The first purpose of the present paper is to show that the “minimum mean can-
celing method” can be unified and generalized to solve a wide class of problems. We
generalize it in two directions at once: to deal with separable convex objectives as
in (1); and to arbitrary unimodular linear spaces L (i.e., the solution set of system
Mx = 0 with a totally unimodular matrix M). The sets of circulations and cocir-
culations of a digraph are special cases of such an L. The method we develop is
combinatorial and has geometric dual convergence in terms of the `1-distance of the
current vector of partial (left and right) derivatives to an optimal dual vector.

There is a faster version of the minimum mean cycle canceling method for the
linear circulation problem, the “cancel-and-tighten method” [5, 2]. We show that this
also can be generalized to our generic case to give a method whose dual convergence
is at essentially the same geometric rate but which has much faster iterations than
our first method.

This paper considers several specializations and two generalizations of our general
model by varying the form of the objective functions and the type of linear space. An
overview of the various cases and their running times is given in the next section, with
details in sections 3–12. Two generalizations go beyond our model: our methods can
solve problems where the variables are restricted to be integer (see section 12) and
problems whose constraint matrices are not totally unimodular but have “bounded
fractionality” (see section 10). We also consider practical implications of duality for
these problems in section 11 and the accuracy attainable by our methods when the
objective functions are represented by approximate oracles in section 13.

Polynomial algorithms for the circulation problem with nonlinear separable costs
based on capacity scaling were designed by Florian [3] and Minoux [23, 24]. In particu-
lar, [24] gives a polynomial algorithm for finding an optimal integer-valued circulation
in a network with quadratic costs; this algorithm was speeded up and extended to
general convex costs in [1, Chapter 14]. Our methods do not require any scaling, are
as fast, and work with the problem in a more combinatorial way.

Hochbaum and Shanthikumar [11] gave a polynomial method for separable convex
minimization over a linear space which is also based on capacity scaling. Their method
involves solving linear programs where each original variable gets replicated 4n times
(n is the number of original variables). By contrast, our methods work in the space

1248 A. V. KARZANOV AND S. T. MCCORMICK

of original variables at all times and appear to be faster in general. For the case
of separable convex circulation problems on networks, the Hochbaum–Shanthikumar
algorithm can be specialized into a practical algorithm [10, 1], with about the same
running time as our method (see section 2).

On the other hand, our methods assume the existence of a stronger oracle than
what is assumed in [11]. That is, our oracle (O) (ii) in section 3 essentially assumes
that we can do root-finding for the derivatives of the objective functions, whereas [11]
assumes only an evaluation oracle. There are well-developed methods for root-finding,
so our oracle is reasonable in practice. However, in theory, as [10] points out, there
is a lower bound on root-finding even for square roots with the floor operation that
is not strongly polynomial [17], and this shows that our oracle cannot be simulated
with a strongly polynomial number of calls to an evaluation oracle.

In the general case, our methods depend on having an efficient procedure for
solving various linear programs (LPs) over L. Such LPs can be solved in strongly
polynomial time, e.g., by Tardos’s version [32] of the ellipsoid method. For circula-
tions and cocirculations on networks, we use fast combinatorial algorithms in place of
solving LPs.

There are many applications for convex separable cost circulations; see [1, Chapter
14]. Many of these applications involve piecewise quadratic and/or linear objective
functions. However, our method should be useful also for more general nonlinear
problems. An example of this comes from applications to queuing networks where
modelers are interested in the arc congestion function we(xe) = aexe/(ue−xe) on the
interval [0, ue) (see, e.g., [16]).

Applications for cocirculations are rarer, but they do arise. The best known
example is the dual to the minimum-cost network flow problem, as discussed above.
Chapter 7F of [30] contains several other more general applications of cocirculations.
A more nonlinear application is to traffic flow equilibrium in congested cities, where
the cocirculation represents differences in timings of traffic lights; see Hassin [9]. This
application is not convex, but perhaps our methods could be used as a heuristic for
quickly finding local optima. Our cocirculation methods should be also useful in
PERT networks, where there are often nonlinear penalties for the elapsed time (time
difference) for the task represented by an arc.

An example of a problem that is not unimodular is the well-known fractional b-
matching problem (see, e.g., [6]). Such problems have the node-edge incidence matrix
of an undirected graph as the essential part of their coefficient matrix. This problem
turns out to have fractionality 2, which is certainly bounded, so the extension of our
methods in section 10 will give strongly polynomial algorithms for this problem.

A more significant nonunimodular application arises when we add a new set of
linear constraints dix = 0, i = 1, . . . , p, to the unimodular system Mx = 0, where all
entries dij are integers and the sum of their absolute values is at most a fixed number
k. For example, in a network, we could add the equalities xe = xe′ for k/2 pairs of
arcs {e, e′} in the network. Then 2k (which is constant because k is fixed) is an upper
bound on any subdeterminant of the resulting matrix and so also on the fractionality
of the problem. Thus our methods are again polynomial.

2. An overview of the results. Let L be a subspace of the Euclidean space
RE with coordinates indexed by the elements of a set E, and let L⊥ be the orthogonal
complement of L. We study the unconstrained (within L) optimization problem

find x ∈ L such that w(x) =
∑
e∈E we(xe) is as small as possible,(4)

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1249

where each we is convex. We may assume that L contains a nonzero point; otherwise,
the problem is trivial. We also assume that (4) has a finite optimal solution x. This
assumption can be checked by solving two linear programs, one which computes an
x ∈ L satisfying any bounds implicit in the we’s and another which computes an
h ∈ L⊥ that satisfies any dual bounds (see [30]).

We now impose the important restriction that L is a unimodular space given by
a totally unimodular matrix M with n rows and m columns (the columns correspond
to the elements of E, so |E| = m also). We assume w.l.o.g. that M has full row rank
n, so we can permute and partition the columns of M as (B N), where B is n× n
and nonsingular. Since pivoting preserves total unimodularity, the matrix (I B−1N)
gives an alternative unimodular representation of L.

Now the (m − n) × m matrix K = ((B−1N)T − I) clearly has full row rank
and is totally unimodular, and it is easy to check that {h ∈ RE : Kh = 0} is exactly
L⊥. Thus L⊥ is a unimodular linear space which is represented by matrix K. For
convenience, we will often call the vectors in L (L⊥) circulations (cocirculations).

A nonzero vector ξ ∈ L (ξ ∈ L⊥) whose support supp(ξ) = {e ∈ E : ξe 6= 0}
is inclusionwise minimal is said to be a cycle (resp. cocycle) of L. Since a positive
multiple of a cycle essentially defines the same cycle, we will henceforth assume that
a cycle is the canonical representative of this class that is integral with no common
divisors. Then a unimodular linear system is distinguished by the fact that all of its
cycles (and cocycles) are (0,±1) vectors. The size of a cycle or cocycle is its number
of nonzero components. Key parameters for us will be φ (φ⊥), the maximum size
of a cycle (resp. cocycle), and ρ (ρ⊥), one plus the rank of M (resp. K); clearly,
φ ≤ ρ = n+ 1 and φ⊥ ≤ ρ⊥ = m− n+ 1.

Example. Let D = (V,E) be a digraph with node-arc incidence matrix M . Then
M is totally unimodular and L = {x ∈ RE : Mx = 0} is the set of circulations
for D. The set of cycles for this L is exactly the set of simple circuits (with possible
forward and backward arcs) in D, and the set of co-cycles is exactly the set of simple
cuts (with possible forward and backward arcs) in D. The dual space L⊥ is the space
of cocirculations. Conversely, if M is instead a matrix whose rows are the incidence
vectors of a circuit basis, then M is again totally unimodular and L = {x ∈ RE :
Mx = 0} is the set of cocirculations for D. The set of cycles for this L is exactly the
set of simple cuts in D, and the set of co-cycles is exactly the set of simple circuits in
D. The dual space L⊥ is the space of circulations.

Our first algorithm will find a cycle ξ such that updating the current x along
ξ by step length α via x := x + αξ will decrease the objective value. The cost of
cycle ξ w.r.t. x is the local change in objective value from this change. A minimum
mean cycle is a cycle whose cost per nonzero component is minimum. The min mean
canceling method (MMCM) chooses a min mean cycle with an appropriate step length
at each iteration. Section 3 will show that MMCM is a polynomial-time algorithm,
but its time bounds are not impressive. One reason is that it is slow (but polynomial)
to compute min mean cycles. Another is that it takes O(ρ⊥) MMCM iterations to
achieve a relatively modest reduction in its measure of convergence.

We propose a second method, called cancel-and-tighten, that overcomes both of
these problems. Section 5 shows that a single cancel-and-tighten iteration achieves
essentially the same reduction in the convergence parameter that takes O(ρ⊥) MMCM
iterations, without the need to compute any min mean cycles.

We shall consider various special and general cases of problem (4). First, consider
the objective functions we. In the piecewise linear and/or quadratic case, we use C

1250 A. V. KARZANOV AND S. T. MCCORMICK

to represent the largest number among the data. More precisely, when the we’s are
all piecewise linear with integer slopes, then C denotes the absolutely largest finite
slope. When the we’s are piecewise mixed linear and quadratic with all coefficients
of all pieces and all breakpoints integer, then C denotes the absolutely largest finite
number among all these data. We look at the cases where for all e ∈ E, we have the
following:

1. The we’s are general, i.e., they have no special properties other than convex-
ity. In this case, we shall assume that we have some initial bound β on the “deviation”
of an initial solution from optimality and that we want to get a final solution whose
“deviation” is at most ε, in a sense to be made precise in section 3.

2. The we’s are piecewise linear, with all slopes integral.
3. The we’s are again piecewise linear, but the slopes may be general. Define

B as the number of linear pieces in all of the we’s; note that O(B) pieces of data
are needed to represent such a set of we’s, so B can legitimately appear in a strongly
polynomial bound. Cases 2 and 3 are dealt with in section 6.

4. The we’s are piecewise quadratic with all data integral.
5. The we are piecewise mixed linear and quadratic with all data integral. Cases

4 and 5 are dealt with in section 7.
6. The we’s are general, but we are looking for an optimal integral solution. This

case actually concerns constraints, not objectives, but it is dealt with in section 12 by
transforming it to the case of piecewise linear objectives.

Now consider a generalization and some specializations of the space L:

a. We generalize by allowing L to be any linear space represented by a rational
matrix. We measure the deviation of L (L⊥) from unimodularity by its fractionality
q (q⊥), which is the absolutely largest component of any cycle of L (L⊥) when it is
scaled to have all integral components with no common divisors. Thus unimodular
spaces have fractionality q = q⊥ = 1. Case a is dealt with in section 10.

b. This is the standard unimodular case, which is dealt with in section 3.
c. Here we specialize to the case where L is the space of circulations of a

network.
d. Here we specialize to the case where L is the space of cocirculations of a

network. Cases c and d are dealt with in section 8.

The running-time bounds of our methods will involve the parameters φ, φ⊥,
ρ, and ρ⊥. In most instances, we will use the upper bounds φ ≤ ρ ≤ O(n) and
φ⊥ ≤ ρ⊥ ≤ O(m−n) ≤ O(m). However, there are some situations where our sharper
bounds are useful. For example, if D is a bipartite network with n1 left nodes and n2

right nodes, where n1 � n2, then φ = O(n1). As another example, if m = n+O(
√
n),

then ρ⊥ = O(
√
n).

In order to express running time of algorithms for computing min mean cycles
below, we need two more definitions. Let LPq(n,m) denote the time to solve an n×m
linear program over a space of fractionality q, and let MC(n,m) denote the time to
find a min cut separating two given nodes in a network with n nodes and m arcs.

Theorem 2.1. The numbers of iterations and running times per iteration for
MMCM and cancel-and-tighten under the above assumptions about the objective func-
tions and constraints are as given in Table 1 below. The bounds in row 1 are for
approximate solutions, and the bounds in the other rows are for finding exact solu-
tions.

We now give a “ proof ” of Theorem 2.1 that outlines the main ideas behind its
bounds, while leaving the harder technical details for later sections.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1251

Table 1

Table of main results. Abbreviations PWL, PWQ, and PWLQ stand for “piecewise linear,”
“piecewise quadratic,” and “piecewise mixed linear and quadratic,” respectively. C+T stands for
“cancel-and-tighten.”

Type of Constraints
Type of

Objective
(a) Fractionality q (b) Unimodular

(c) Network
Circulation

(d) Network
Cocirculation

Number of MMCM Iterations

(1) Gen’l O(ρ⊥φq log(β/ε)) O(ρ⊥φ log(β/ε)) O(mn log(β/ε)) O(mn log(β/ε))
(2) PWL,
Int. Slopes

O(ρ⊥φq log(φC)) O(ρ⊥φ log(φC)) O(mn log(nC)) O(mn log(nC))

(3) PWL,
Gen’l Slopes

O(Bqρ⊥φ) O(Bρ⊥φ) O(Bmn) O(Bmn)

(4) PWQ,
Int. Data

O(ρ⊥φqm logC) O(ρ⊥φm logC) O(m2n logC) O(m2n logC)

(5) PWLQ,
Int. Data

O(ρ⊥φqm logC) O(ρ⊥φm logC) O(m2n logC) O(m2n logC)

(6) Int.
Solution

NP hard O(ρφ⊥ log(φ⊥C)) O(mn log(nC)) O(mn log(nC))

(7) MMCM
Time per
Iteration

O(ρφq2LPq(n,m)) O(ρφLP1(n,m))
O(mn)

O(
√
nm log(nC))

O(nMC(n,m))
O(mn log(nC))

Number of Cancel-and-Tighten Iterations
(1) Gen’l O(ρq log(β/ε)) O(ρ log(β/ε)) O(n log(β/ε)) O(m log(β/ε))
(2) PWL,
Int. Slopes

O(ρq log(φC)) O(ρ log(φC)) O(n log(nC)) O(m log(nC))

(3) PWL,
Gen’l Slopes

O(Bqρ log φ) O(Bρ log φ) O(Bn logn) O(Bm logn)

(4) PWQ,
Int. Data

O(ρqm logC) O(ρm logC) O(mn logC) O(mn logC)

(5) PWLQ,
Int. Data

O(ρqm log(φC)) O(ρm log(φC)) O(mn log(nC)) O(mn log(nC))

(6) Int.
Solution

NP hard O(ρ⊥ log(φ⊥C)) O(m log(nC)) O(n log(nC))

(7) C+T
(Amortized)
Time per
Iteration

O(ρ⊥LPq(m,n)) O(ρ⊥LP1(m,n)) O(m logn) O(m+ n logn)

Proof. The convergence proof for MMCM depends on analyzing λ(x), the negative
of the min mean cycle value w.r.t. the current point x. Lemma 3.4 shows that ρ⊥

iterations of MMCM suffice to reduce λ(x) by a factor of at most (1− 1/2φ). Since

(1− 1/2φ)2φ log(β/ε) < ε/β,

O(ρ⊥φ log(β/ε)) MMCM iteration reduce λ(x) from its initial value of at most β to
a final value below ε. This is the result in box 1b of Table 1, and all other MMCM
results follow from this.

To get the results in row 2 for MMCM with piecewise linear objectives with
integral slopes, section 6 shows that λ(x) ≤ C for any feasible initial x, and Lemma 6.1
shows that if λ(x) < 1/φ, then x is optimal. Thus the bounds in row 2 result from
substituting C for β and φ for 1/ε in the row 1 bounds.

The results in row 4 for MMCM with piecewise quadratic objectives and integral
data are derived similarly. Section 7 shows that we can choose an initial x with
λ(x) = O(Cm+1) and that if we reduce λ(x) below 1/(2C2mφ), then we can round x

1252 A. V. KARZANOV AND S. T. MCCORMICK

to an optimal x using continued fractions (see [31]). Thus here log(β/ε) = O(m logC).

The results in row 3 for MMCM with piecewise linear objectives and general slopes
are slightly more complicated. Section 4 defines reduced costs, which are closely related
to λ(x); in fact, Corollary 4.2 and Lemma 4.3 show that −λ(x) and the most negative
reduced cost differ by a factor of at most φ. For piecewise linear objectives, there are
at most B different values that reduced costs can take. By the same reasoning as for
row 1, O(ρ⊥φ log φ) MMCM iterations suffice to reduce λ(x) by a factor of at least
φ. By Corollary 4.2 and Lemma 4.3, this must cause a decrease in the most negative
reduced cost. But this can happen at most B times. Finally, Lemma 11 from [28]
applies here to remove the factor of log φ from the iteration bounds.

The results in row 5 for MMCM with piecewise mixed linear and quadratic ob-
jectives follow the ideas for the piecewise quadratic case. Using the same ideas and
number of iterations, we can compute the exact values of optimal xe’s that are located
in “quadratic parts” of the objective functions. We are left with a piecewise linear
problem with at most two pieces per element, which we can solve in the same number
of iterations as in row 3 where B = O(m). Thus these bounds are the sums of the
bounds in row 3 and row 4.

The results in row 6 for MMCM (aside from column a) restricted to integral
solutions start by noting that an equivalent problem results if we replace the we’s
with their piecewise linear approximations with breakpoints at all integers. Thus we
effectively have instances with piecewise linear objectives (with possibly an unbounded
number of pieces) with integral breakpoints and general slopes. We now apply the
duality results from section 11, which say that when we dualize, the objective functions
for the dual are piecewise linear, now with integral slopes and general breakpoints.
Then the bounds from row 2 applied to the dual can be used with the parameters for
L and L⊥ interchanged.

The convergence proof for cancel-and-tighten in section 5 depends on analyzing
λ, an upper bound on λ(x). Lemma 5.2 shows that one iteration of cancel-and-tighten
reduces λ by a factor of at most (1− 1/2ρ). Then the same reasoning as in row 1 of
MMCM gives the iteration bound in box 1b for cancel-and-tighten.

Rows 2–6 in Table 1 for cancel-and-tighten are obtained in the same way as the
corresponding rows for MMCM, except that the trick from [28] does not apply to
cancel-and-tighten in row 3.

We turn now to the columns of Table 1. Column a deals with linear spaces of
fractionality q. Section 10 shows that essentially the same proofs go through except
that the factor (1 − 1/2φ) of Lemma 3.4 is replaced by the factor (1 − 1/(2qφ)) in
Lemma 10.1. This leads to an extra factor of O(q) in all of the bounds in column (a),
except for the subcase asking for integral optimal solutions (box 6a). This problem is
NP hard even for q = 2 since a special case of this is finding a maximum independent
set (stable set) in a graph. It can be shown that there exists an optimal solution
to the continuous relaxation of the linearized problem here with the denominators
of all components bounded by Q, the least common multiple of all cycle vectors.
For example, for the independent set problem, q = Q = 2. This would then lead
to O(ρ⊥q⊥ log(φ⊥QC)) iterations to solve the continuous relaxation for MMCM and
O(ρφ⊥q⊥ log(φ⊥QC)) iterations for cancel-and-tighten.

Columns c and d deal with linear spaces coming from networks with n nodes and
m arcs. Column c deals with network circulation problems, and its bounds come from
replacing φ and ρ by n and ρ⊥ by m. Column d deals with network cocirculation
problems, and its bounds come from replacing φ and ρ by m and ρ⊥ by n.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1253

Finally, we consider the two row 7’s, the time per iteration rows. Section 9 gives
a general algorithm for computing min mean cycles by solving linear programs, which
is a refinement of a general method in [15]. The bound in MMCM box 7a comes
from Theorem 9.2, and MMCM box 7b just sets q = 1 in this bound. MMCM box
7c gives the current fastest weakly and strongly polynomial bounds for computing a
min mean cycle in a network (which dominates the time per iteration for MMCM);
the top bound is from [26, 18] and the bottom one from [14]. MMCM box 7d does
the same for computing a max mean cut in a network; the top bound is from [27],
and the bottom bound is from [13, 18, 27].

The bounds in the cancel-and-tighten time-per-iteration row are implicit in sec-
tion 5 in columns a and b and are covered explicitly in section 8 in columns c and d.
To get the strongly polynomial bounds in cancel-and-tighten row 3, it is necessary to
intersperse an iteration using an exact min mean cycle from time to time. Section 5
shows that it is possible to amortize the time for these (expensive) iterations over the
remaining (cheaper) iterations.

Note that when we specialize our general methods to piecewise linear objective
functions on networks (rows 2 and 3, columns c and d times row 7), when we set B =
O(m) (as would be the case for classic linear circulation and cocirculation problems),
they have the same time bounds as the best bounds in [5, 2]. Thus, despite being
considerably generalized, our methods do not sacrifice any efficiency.

Taking the product of cancel-and-tighten box 6c with its time-per-iteration box
7d (we must use box 7d instead of 7c since we dualize when solving integer prob-
lems), we get a bound of O(m log(nC)(m+n logn)) total time for cancel-and-tighten
for circulations in networks with general objectives and integer restrictions. This is
roughly the same as the bound of O(m logC(m + n logn)) for an algorithm for the
same problem in [1, Chapter 14]; see also [10].

Note that for problems with fractionality q, there is a factor of O(q) more iter-
ations, and each iteration takes a factor of O(q2) more time. Nevertheless, if q is
bounded by a polynomial in |E|, the whole algorithm is still polynomial. For the
fractional b-matching problem q = 2 and for the second example in the introduction,
q ≤ 2k for k fixed, so our methods are polynomial in both cases.

3. The minimum mean canceling method. In what follows, we utilize some
well-known facts in convex analysis, linear algebra, and optimization; for references,
see, e.g., Rockafellar [29] or Schrijver [31].

The convexity of we ensures the existence of the right derivative, denoted by c`e (r),
and the left derivative, cae (r), at every r ∈ R. Note that cae (r) < c`e (r) is possible at
a breakpoint. The interval [cae (r), c`e (r)] is known as the subdifferential of we(r), and
an h ∈ [cae (r), c`e (r)] is called a subgradient of we at r; see [29]. We refer to c`e (r) and
cae (r) as the left (local) cost and right (local) cost of e at r, respectively. Because of
the convexity of we,

if r < r′, then cae (r) ≤ c`e (r) ≤ cae (r′) ≤ c`e (r′);(5)

in particular, both cae (r) and c`e (r) are monotone nondecreasing in r. The convexity
of we implies that

for any r ∈ R, c`e is continuous at r in the set [r,∞) and cae is
continuous at r in (−∞, r].(6)

It will be enough for us to assume that we is given by an oracle which

1254 A. V. KARZANOV AND S. T. MCCORMICK

(O) (i) when given a point r ∈ R will return the costs c`e (r) and cae (r);
(ii) when given a “slope” p ∈ R will return a point r with cae (r) ≤ p ≤ c`e (r).

In the case of piecewise linear or quadratic functions, (O) (i) and (ii) reduce to
a simple linear or binary search, followed by solving a one-variable linear equation.
Even for more complicated objectives such as the application to queuing networks
[16], it is usually easy to compute both parts of (O) in practice.

We recall that any nonzero point (resp. any integral point) x ∈ L is a nonnegative
(resp. nonnegative integer) combination α1ξ

1 + · · · + αkξ
k of k ≤ |E| cycles ξ1, . . . ,

ξk ∈ L; moreover, these ξi’s may be chosen so that

ξieξ
j
e ≥ 0 for i, j = 1, . . . , k and e ∈ E.(7)

This is called a conformal decomposition of x.
In what follows, we associate a (0,±1)-vector ξ in RE with the pair Fξ = (Aξ, Bξ),

where Aξ = {e : ξe = 1} and Bξ = {e : ξe = −1}. If ξ is a cycle (resp. cocycle) of
L, we call Fξ a cycle (resp. cocycle) also; the set of such Fξ’s is denoted by F (resp.
F⊥). Define |F |, the size of F , as |A|+ |B|.

For a function f : S → R and a subset S′ ⊆ S, we use f(S′) to denote
∑

(fe : e ∈
S′). Also, when it is not confusing, for a fixed point x ∈ L and a cycle F = (A,B),
we denote

∑
e∈A c

`
e (xe) by c`(A) and denote

∑
e∈B c

a
e (xe) by ca(B).

Suppose that we have a cycle F = (A,B) and a circulation x ∈ L and we want
to “augment x around F ,” i.e., increase x by an amount ε > 0 on the elements of
A and decrease x by ε on the elements of B. Then the local change in objective
function value per unit of ε is c`(A)− ca(B), the cost of F at x, denoted by c(x, F).
We say that F is a negative cycle at x if c(x, F) < 0. The mean cost of F at x is
c(x, F) := c(x, F)/|F |. We say that F is a minimum mean cycle if c(x, F) is as small
as possible. Define

λ(x) = max{0,−min
F∈F

c(x, F)}.(8)

If λ(x) is positive, it is called the absolute minimum mean value for x.
The following lemma gives an optimality criterion for (4).
Lemma 3.1. Point x ∈ L is an optimal solution to (4) if and only if there are no

negative cycles at x or, equivalently, if λ(x) = 0.
This lemma can be derived from general optimality theorems in convex program-

ming, but to make our description self-contained, we prove it directly. Let x ∈ L.
Suppose that c(x, F) = −λ < 0 for some F = (A,B) ∈ F . Then push a small amount
ε > 0 around F to get x′ ∈ L with w(x′) < w(x), thus proving that x is not optimal.
More precisely, we set

x′e =

{
xe + ε for e ∈ A,
xe − ε for e ∈ B,
xe otherwise,

(9)

where ε > 0 is chosen so that δe(ε) := c`e (xe + ε) − c`e (xe) < λ for each e ∈ A and
δe(ε) := cae (xe)−cae (xe−ε) < λ for each e ∈ B. Such an ε exists because of (6). Since
c` and ca are monotone, we(x

′
e) − we(xe) is at most εc`e (xe) + εδe(ε) for e ∈ A and

at most −εcae (xe) + εδe(ε) for e ∈ B, whence

w(x′)− w(x) ≤ εc(x, F) +
∑

e∈A∪B
εδe(ε) < εc(x, F) + ελ|F | = 0.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1255

This proves the “only if” part of Lemma 3.1. The “if” part will follow from the
next lemma. Given a circulation x and a cocirculation h, the positive reduced cost of
element e is c`e (xe)− he and its negative reduced cost is he − cae (xe). The next lemma
characterizes −λ(x) as being the largest possible lower bound on reduced costs when
h varies over all vectors in L⊥.

Lemma 3.2. A real λ is an upper bound on λ(x) if and only if there exists h ∈ L⊥
such that the reduced costs satisfy

c`e (xe)− he ≥ −λ and he − cae (xe) ≥ −λ for all e ∈ E.(10)

Moreover, if λ = λ(x) > 0, F = (A,B) is a minimum mean cycle, and h ∈ L⊥
satisfies (10), then c`e (xe) − he = −λ for all e ∈ A and he − cae (xe) = −λ for all
e ∈ B.

Proof. Let 1I denote a vector of ones, and consider the following optimization
problem:

min(c`x+ − cax−)/(1Ix+ + 1Ix−)
s.t. M(x+ − x−) = 0,

x+, x− ≥ 0.
(11)

If (11) has an optimal solution, then it also has an optimal (x+, x−) with minimal
support, which must then be a min mean cycle. Since (11) is homogeneous, it does
not hurt to normalize by requiring that the denominator equals 1. Therefore, the
problem remains the same if we delete the denominator to get the LP

min c`x+ − cax−
s.t. M(x+ − x−) = 0,

1Ix+ + 1Ix− = 1,
x+, x− ≥ 0,

(12)

with dual

max δ
s.t. πM + δ1I ≤ c`,
−πM + δ1I ≤ −ca,
π, δ free.

(13)

Note that since π is free, πM is an arbitrary vector h in L⊥. Thus we can rewrite
(13) as

max δ
s.t. δ1I ≤ c` − h,

δ1I ≤ h− ca,
Kh = 0,

δ free.

(14)

Dual LP (14) is asking for the largest (least negative) value of δ that satisfies (10).
Then the first part of the lemma follows from LP duality.

For the second part, if F is a minimum mean cycle with, say, c`e − he > −λ(x)
for some element in A, then since (10) is true for all elements of F , we would have
c(x, F) > −λ, contradicting that λ = λ(x).

1256 A. V. KARZANOV AND S. T. MCCORMICK

From Lemma 3.2, we now derive the “if” part of Lemma 3.1. Suppose that x∗ ∈ L
admits no negative cycles, i.e., λ(x∗) = 0. Then (10) yields

cae (x∗e) ≤ he ≤ c`e (x∗e) for each e ∈ E.(15)

We show that (15) implies the optimality of x∗, i.e., w(x) ≥ w(x∗) holds for any
x ∈ L. Since w is convex and any point in L is a nonnegative combination of cycles,
it suffices to prove this for x = x∗ + ξ, where ξ is a cycle of L. Let Fξ = (A,B).
If e ∈ A, we have xe = x∗e + 1 and c`e (xe) ≥ c`e (x∗e), whence we(xe) − we(x

∗
e) ≥

c`e (x∗e)(xe−x∗e) = c`e (x∗e). If e ∈ B, we have xe = x∗e− 1 and cae (xe) ≤ cae (x∗e), whence
we(xe)− we(x∗e) ≥ −cae (x∗e). Therefore,

w(x)− w(x∗) ≥
∑
e∈A

c`e (x∗e)−
∑
e∈B

cae (x∗e) ≥ h(A)− h(B) = hξ = 0,

as required.
Lemma 3.2 is crucial for our MMCM. We assume that there is a procedure avail-

able to solve the following auxiliary problem (AP); algorithms for solving (AP) are
discussed in section 9.

(AP): Given x ∈ L, find λ = λ(x), and if λ > 0, find a minimum mean cycle
F = (A,B) at x and h ∈ L⊥ satisfying (10).

MMCM starts with any reasonable x ∈ L and computes λ = λ(x). If λ = 0, stop
since x is optimal (by Lemma 3.1). Otherwise (λ > 0), find F and h as in (AP). For
each element e ∈ F , use answer (ii) of oracle (O) for we to compute the local step
length εe as an increment ∆ s.t.{

cae (xe + ∆) ≤ c`e (xe) + λ = he ≤ c`e (xe + ∆) if e ∈ A,
cae (xe −∆) ≤ cae (xe)− λ = he ≤ c`e (xe −∆) if e ∈ B(16)

(the equalities come from the second part of Lemma 3.2); clearly, εe > 0. The overall
step length ε is min{εe : e ∈ A ∪ B}. That is, we increase ε until the first time a
reduced cost (w.r.t. h) in F becomes nonnegative. Now push ε around F forming
x′ as in (9), and make x′ the new current point x in L. Continue until λ is “small
enough.”

We claim that this method converges geometrically in λ. We show this using two
lemmas. The first is similar to a lemma in Goldberg and Tarjan [5], and the second
is similar to a lemma in Frank and Karzanov [4] with an improvement generalizing a
result in Radzik and Goldberg [28]. Note that (16) and (5) imply that

c`e (xe) ≤ cae (x′e) ≤ c`e (xe) + λ for e ∈ A,(17)

cae (xe) ≥ c`e (x′e) ≥ cae (xe)− λ for e ∈ B.

Lemma 3.3. If x′ is obtained from x at an iteration, then λ(x′) ≤ λ(x).
Proof. Let h ∈ L⊥ be a cocirculation proving the optimality of λ = λ(x), i.e., h

is as in Lemma 3.2. By Lemma 3.2, it is enough to show that (10) holds for c`(x′)
and ca(x′).

Since x′ and x coincide outside F , it suffices to examine only elements in the
minimum mean cycle F = (A,B) at x that is chosen at the iteration. For e ∈ A, the
inequality

c`e (x′e) ≥ c`e (xe)

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1257

(since x′e > xe) together with (10) implies

c`e (x′e) ≥ he − λ,

and the inequality

cae (x′e) ≤ c`e (xe) + λ

(by (17)) together with the equality c`e (xe) = he − λ (by Lemma 3.2) implies

−cae (x′e) ≥ −c`e (xe)− λ = −he + λ− λ > −he − λ,

as required. The proof for e ∈ B is similar.
For the next lemma, we superscript everything by the iteration number.
Lemma 3.4. After every ρ⊥ iterations, λ = λ(x) decreases by a factor of at most

(1− 1/2φ), i.e., λi+ρ
⊥ ≤ λi(1− 1/2φ).

Proof. Fix h := hi ∈ L⊥ proving the optimality of λ = λ(xi), and consider
iterations i, i+1, . . . , i+ρ⊥. For each j = i, . . . , i+ρ⊥, call e ∈ E positively (negatively)
close to h if c`e (xje) − he ≥ −λ/2 (resp. he − cae (xje) ≥ −λ/2), and otherwise call it
positively (negatively) far from h. Note that c`e (xe) − cae (xe) ≥ 0 implies that e
cannot be positively and negatively far from h at the same time. The proof rests on
the following two claims.

Claim 1. If for all k = i, . . . , j − 1 the chosen cycle F k = (Ak, Bk) is such that
each e ∈ Ak is positively far from h and each e ∈ Bk is negatively far from h, then
c`e (xje)− he ≥ −λ and he − cae (xje) ≥ −λ for all e ∈ E.

Proof. The proof is by induction on j. Then c`e (xje) ≥ c`e (xj−1
e) ≥ he − λ for

e ∈ E − Bj−1 and −cae (xje) ≥ −cae (xj−1
e) ≥ −he − λ for e ∈ E − Aj−1. Consider

the remaining two cases. For e ∈ Aj−1, we have cae (xje) ≤ c`e (xj−1
e) + λj−1 (by (17))

and c`e (xj−1
e) < he − λ/2 (since e is positively far from h). Putting these inequalities

together yields cae (xje) < he−λ/2+λj−1 < he+λj−1, whence −cae (xje) > −he−λj−1 ≥
−he − λ (since λj−1 ≤ λ by Lemma 3.3). The case for e ∈ Bj−1 is similar.

We say that an element e in a cycle F = (A,B) ∈ F (i.e., e ∈ A ∪ B) is close
(far) if e is positively close (far) whenever e ∈ A and negatively close (far) whenever
e ∈ B.

Claim 2. There is some iteration j (i < j ≤ i+ρ⊥) such that either (i) λj < λ/2,
or (ii) F j includes an element close to h.

Proof. Suppose that for j = 1, . . . , i + ρ⊥ − 1, no iteration j satisfies (i), i.e.,
λj ≥ λ/2, and suppose that all iterations up to and including j have all elements of
their cycles far from h so that Claim 1 applies. Denote by P (resp. N) the current set
of elements positively (resp. negatively) close to h, and let C = P ∩N . By the rank
of C, we mean the rank of the submatrix of K induced by the columns corresponding
to elements of C (recall that K is a matrix representing L⊥, with rank ρ⊥ − 1). We
shall show that each iteration j increases the rank of C by at least one. This implies
that after iteration i+ ρ⊥ − 1, C meets the support of every cycle ξ ∈ L. Therefore,

the cycle F i+ρ
⊥

must include some element of C, proving (ii).
First, we show that if e ∈ E belongs to P (resp. N) before iteration j, then e

remains in P (resp. N) after the iteration. Consider a positively close e (the proof
is similar for a negatively close e). Now e could become positively far only if c`e (xe)
decreased, which implies that e ∈ Bj . But then e is negatively far from h at iteration
j, i.e., −cae (xje) < −he − λ/2. This together with c`e (xj+1

e) ≥ cae (xje) − λj (by (17))

1258 A. V. KARZANOV AND S. T. MCCORMICK

yields c`e (xj+1
e) > he +λ/2−λj ≥ he−λ/2 so that e is not positively far from h after

iteration j. Thus each of the sets P , N , and C is monotone nondecreasing.
Next, we show that there is at least one element e in F j such that iteration j

makes e close (recall that all elements in F j are far). Lemma 3.3 says that λj ≤ λ.
By the choice of εj , either (a) Aj contains e with c`e (xj+1

e) ≥ c`e (xje) + λj or (b) Bj

contains e with cae (xj+1
e) ≤ cae (xje) − λj . Suppose that (a) takes place (case (b) is

similar). Then (using Claim 1 for j) we get

c`e (xj+1
e) ≥ c`e (xje) + λj ≥ he − λ+ λj ≥ he − λ/2.

Thus iteration j adds this e as a new element to C.
Finally, we show that adding this e increases the rank of C. Suppose to the

contrary that the rank of the set C at the beginning of iteration j equals the rank of
C∪{e}. Then a minimal vector ξ′ ∈ L⊥ proving the dependence of e on C corresponds
to a cocycle, and e ∈ supp(ξ′). Let ξ ∈ L be the vector corresponding to F j . Since
ξξ′ = 0 and ξeξ

′
e 6= 0, there exists another element e′ 6= e in both F j and supp(ξ′).

But e is the only element of supp(ξ′) not in C, so e′ ∈ C ∩ F j . But each element of
F j was far at the beginning of iteration j, a contradiction.

We may assume that λj ≥ λ/2 for j = i, . . . , i+φ⊥; otherwise, Lemma 3.3 shows
that we are already done. Thus there must be an iteration j satisfying Claim 2(ii), i.e.,
with either (a) Aj containing an element u positively close to h or (b) Bj containing
an element u′ negatively close to h. Consider the smallest j with this property and
assume that (a) takes place (case (b) is similar). Using Claim 1, we have

c(xj , F j) = c(xj , F j)− h(Aj) + h(Bj)

=
∑

e∈Aj−{u}
(c`e (xje)− he) + (c`u(xju)− hu) +

∑
e∈Bj

(he − cae (xje))

≥ −λ(|Aj | − 1)− λ/2− λ|Bj | = −λ|F j |+ λ/2,

whence λj ≤ λ(1− 1/2φ).
This establishes MMCM box 1b in Table 1.

4. Cost distance and dual and primal convergence. Since λ(x) is the best
possible lower bound on reduced costs over all h ∈ L⊥, it is a measure of dual con-
vergence. However, it remains unclear whether this fact forces fast convergence of
the current point x to an optimal point. Here we introduce another, closely related
measure of the quality of the current point x which will enable us to show fast con-
vergence of x to an optimal point for some special cases of w and to compute exact
optimal solutions in sections 6 and 7.

Given x ∈ L and h ∈ L⊥, for each e ∈ E, define

〈xe, he〉 =

he − c`e (xe) if c`e (xe) < he,
cae (xe)− he if cae (xe) > he,
0 if cae (xe) ≤ he ≤ c`e (xe),

(18)

and then define

〈x, h〉 = max
e∈E
〈xe, he〉.(19)

That is, 〈x, h〉 is the absolute value of the most negative reduced cost for x and h.
Clearly, 〈x, h〉 ≥ 0, and if 〈x, h〉 = 0, then x is optimal since (18) turns into (15). We
call 〈x, h〉 the cost distance from x to h.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1259

Lemma 4.1. Let x∗ be an optimal solution to (4) and h∗ ∈ L⊥ prove its optimal-
ity, i.e., x∗ and h∗ satisfy (15). Let x ∈ L and suppose that δ = 〈x, h∗〉 > 0. Then
there exists a cycle F ∈ F whose cost c(x, F) is at most −δ.

Proof. Let u ∈ E be an element with 〈xu, h∗u〉 = δ. Then xu 6= x∗u (otherwise,
δ = 0). Suppose for definiteness that xu < x∗u (the reverse case is similar). Represent
z = x∗−x as z = α1ξ

1 + · · ·+αkξ
k, where α1, . . . , αk > 0 and ξ1, . . . , ξk are cycles of

L satisfying (7). Since zu > 0, there is ξi with ξiu = 1; let F = (A,B) ∈ F correspond
to ξi. Then u ∈ A, and from (7), it follows that

x∗e > xe for e ∈ A and x∗e < xe for e ∈ B.

By (5) and (15), c`e (xe) ≤ cae (x∗e) ≤ h∗e for e ∈ A and cae (xe) ≥ c`e (x∗e) ≥ h∗e for e ∈ B.
Also c`u(xu) = h∗u − δ. Thus

c(x, F) =
∑
e∈A

c`e (xe)−
∑
e∈B

cae (xe) ≤ −δ + h∗(A)− h∗(B) = −δ,

as required.

Corollary 4.2. 〈x, h∗〉 ≤ φλ(x).

Proof. If 〈x, h∗〉 > φλ(x), Lemma 4.1 shows that there is a cycle F with c(x, F) <
−φλ(x). But then −λ(x) ≤ c(x, F) < −φλ(x)/|F | ≤ −λ(x) (since |F | ≤ φ), a
contradiction.

In section 6, we will also need to bound λ(x) by 〈x, h∗〉 on the other side.

Lemma 4.3. λ(x) ≤ 〈x, h∗〉.
Proof. Recall that λ(x) is the minimum λ ≥ 0 such that there is an h ∈ L⊥

satisfying (10). Since h∗ is one such h, we have

λ(x) ≤ max
e

max{h∗ − c`e (xe), c
a
e (xe)− h∗, 0} = 〈x, h∗〉 .

If we replace each we(r) by w′e(r) = kwe(r/k) for an integer k > 1, then the right

cost c′
`

for w′ satisfies c′
`
e (kr) = c`e (r), and similarly for the left cost c′

a
. Thus if

we define x′ = kx and x′
∗

= kx∗, then x′
∗

is optimal for the problem with w′, while
h∗ remains optimal for w′. Therefore, 〈x′, h∗〉 = 〈x, h∗〉, whereas the `∞-distance
between x′ and x′

∗
has increased by a factor of k. This makes it seem as if cost

distance is of limited utility in measuring primal convergence.

However, cost distance is indeed a useful measure of primal convergence for an
important class of functions w. We say that we is fast growing (f.g.) with speed α (α >
0) in an interval σ of R if for any r, r′ ∈ σ, r < r′, we have cae (r′)− c`e (r) ≥ α(r′ − r)
(this is related to the concept of strong convexity in [25, Chapter 7]). For example, the
quadratic function we(r) = ar2 +br+d (a > 0) is f.g. with α = 2a in (−∞,∞). Other
examples of f.g. functions are piecewise quadratic, cubic, and exponential functions.
If we is f.g. for all e ∈ E, we say that w is fast growing, and its speed is defined to be
the smallest speed of any we.

Lemma 4.4. If we is f.g. with speed α in an interval σ and both the current value
xe and optimal value x∗e are in σ, then |xe − x∗e| ≤ α−1〈xe, h∗e〉.

Proof. Assume that xe < x∗e (the reverse case is similar) so that 〈xe, h∗e〉 =
h∗e − c`e (xe). Then we f.g. means that x∗e − xe ≤ α−1(cae (x∗e) − c`e (xe)). But the
optimality of x∗ and h∗ implies that h∗ ≥ cae (x∗e) (by (15)). Plugging this into the
bound on x∗e − xe and using the value for 〈xe, h∗e〉 give the result.

1260 A. V. KARZANOV AND S. T. MCCORMICK

5. A faster method: Cancel-and-tighten. MMCM can take up to ρ⊥ itera-
tions to reduce λ(x) by the factor (1− 1/2φ) (these bounds can be tight; see [28]). It
is reasonable to ask if there is a faster way to achieve the same reduction, particularly
since both [5] and [2] give “cancel-and-tighten” algorithms which do this in the cases
of circulations and cocirculations in networks.

The outline of our faster method is that the first half of each iteration is a cancel
step that improves a primal x, and the second half is a tighten step that improves a
dual h. The cancel step iteratively “cancels” (augments x around, in the sense of (9))
cycles whose elements are restricted to be sufficiently far away from the optimality
condition (15). When no such cycles remain, we can compute a direction d in which
to move our current dual estimate h that guarantees a (1 − 1/2ρ) decrease (which
is almost as good as the (1 − 1/2φ) decrease in MMCM). Thus our speedup comes
from two sources: First, we do not have to compute minimum mean cycles, but rather
we may cancel any sufficiently far cycles. Second, we get a decrease after only one
iteration of cancel-and-tighten, rather than ρ⊥ iterations of MMCM.

Instead of computing a min mean cycle to find the exact value of λ(x), we keep
a dual vector h ∈ L⊥ that approximately satisfies the optimality condition (15) with
x. We define λ as the absolute value of the most negative reduced cost w.r.t. h (i.e.,
λ = 〈x, h〉), so that λ is an upper bound on λ(x). By Lemma 3.2, h proves that λ is
a valid upper bound via satisfying

c`e (xe)− he ≥ −λ and he − cae (xe) ≥ −λ for all e ∈ E.(20)

We try to improve x and h by decreasing the gap between the costs and h. Define
the subset P far ⊆ E (resp. N far ⊆ E) consisting of elements that are positively (resp.
negatively) far from h as defined in the proof of Lemma 3.4 (using λ in place of λ(x)),
and define Efar = P far ∪N far.

Call a cycle F = (A,B) with A ⊆ P far and B ⊆ N far a far cycle. The cancel
step consists of finding and canceling far cycles until no more exist. Define C =
E− (P far ∪N far) as the set of elements close to h. Then at each inner iteration of the
cancel step, we find a minimal-support nonzero solution to the system

Mz = 0,

ze ≥ 0 for e ∈ P far,(21)

≤ 0 for e ∈ N far,

= 0 for e ∈ C.

System (21) can be solved using linear programming techniques.
The computation of the step length ε for a far cycle F = (A,B) found by solving

(21) resembles (16) but is a bit different since the gaps between the costs and he’s do
not all have the same value −λ here. Again using (O) (ii) for we, we compute

εe = an increment ∆ s.t.

{
cae (xe + ∆) ≤ he ≤ c`e (xe + ∆) if e ∈ A,
cae (xe −∆) ≤ he ≤ c`e (xe −∆) if e ∈ B(22)

and the overall step length ε = min{εe : e ∈ A ∪B}. Then ε > 0.
Lemma 5.1. A cancel step preserves (20) and uses at most ρ⊥ iterations, each

canceling a far cycle.
Proof. Since we are canceling cycles consisting only of elements far from h, Claim

1 in the proof of Lemma 3.4 shows that we cannot create any elements violating (20).

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1261

Furthermore, the proof of Claim 2 shows that we cannot create any new elements far
from h either. Comparing (16) with (22) in the case where e ∈ P far (the other case
is similar), since he = c`e (xe) + (he − c`e (xe)) for element e in (22), we are effectively
using he− c`e (xe) for the λ in (16); since he− c`e (xe) > λ/2, case (i) of Claim 2 cannot
hold. Thus |P far| and |N far| are monotone nonincreasing.

At least one element in each far cycle canceled (namely, an element determining
ε) must become close to h and so drop out of P far or N far. In the same way as in
the proof of Claim 2, each such newly close element must increase the rank of the
submatrix of K induced by the elements close to h, and hence we can cancel at most
ρ⊥ cycles before no more far cycles exist.

It might seem that canceling ρ⊥ far cycles might be as much work as canceling
ρ⊥ min mean cycles, but for the specializations to networks in section 8, the total
work to cancel the far cycles in one cancel can be done much faster than even one
min mean cycle computation. Even in the general case, solving (21) for a far cycle is
much faster than finding a min mean cycle.

The tighten step now looks for a sufficiently improving direction, which is a vector
d ∈ RE that satisfies the following conditions:

[A] d is an integral vector in L⊥.
[B] For all e, |de| ≤ ρ− 1.
[C] For all e ∈ P far, de ≥ +1.
[D] For all e ∈ N far, de ≤ −1.
Lemma 5.2. If d is a sufficiently improving direction and we replace h by h′ :=

h− (λ/2ρ)d, then λ is reduced to at most λ
′

:= (1−1/2ρ)λ, i.e., (20) holds for h′ and

λ
′
.

Proof. By [A], h′ ∈ L⊥.
Suppose that e is not positively far from h. Then by [B],

c`e (xe)− h′e = c`e (xe)− he + deλ/2ρ

≥ c`e (xe)− he − (ρ− 1)λ/2ρ

= c`e (xe)− he − λ/2 + λ/2ρ.

Since c`e (xe) − he ≥ −λ/2 for such an e, we have that this e satisfies (20) in the

positive direction for h′ and λ
′
. The negative direction for the case where e is not

negatively far from h is similar.
By [C], if e ∈ P far, then

c`e (xe)− h′e = c`e (xe)− (he − deλ/2ρ)

≥ c`e (xe)− he + λ/2ρ.

Since e satisfied (20) in the positive direction for h and λ, it also satisfies (20) in the

positive direction for h′ and λ
′
. The negative direction for the case where e ∈ N far is

similar.
Lemma 5.2 shows that moving a distance of λ/2ρ in a sufficiently improving

direction reduces λ by a factor of at least (1− 1/2ρ), as desired. To finish specifying
the tighten step, it remains only to show how to (efficiently) compute a sufficiently
improving direction.

Note that when the cancel step is done, system (21) has z = 0 as its only feasible
solution. In particular, for each u ∈ Efar, there is no far cycle containing u. The
following shows that there is a cocycle Du with corresponding incidence vector ξu

proving this fact.

1262 A. V. KARZANOV AND S. T. MCCORMICK

Lemma 5.3. An element u ∈ Efar is contained in no far cycle if and only if there
is a cocycle ξu ∈ L⊥ such that ξuu 6= 0, ξue ≥ 0 for all e ∈ P far, and ξue ≤ 0 for all
e ∈ N far.

Proof. Applying Farkas’ lemma to (21) with the additional constraint zu = 1 or
zu = −1, we observe that u is in no far cycle if and only if there is a vector ξ = yTM
feasible to

ξe ≥ 0 for e ∈ P far,

ξe ≤ 0 for e ∈ N far,(23)

ξu 6= 0.

Now if (23) has a solution in L⊥ then it has a solution that is a cocycle ξu. Conversely,
if ξu as in the lemma exists then it satisfies (23), thus proving (by Farkas’ lemma)
that no far cycle contains u.

Now the tighten step can compute d as follows. Find a subset Bfar of Efar such
that {ξu : u ∈ Bfar} forms a basis for {ξu : u ∈ Efar}. Then define d to be

∑
u∈Bfar ξu.

Lemma 5.4. This d is a sufficiently improving direction.
Proof. Since d is a sum of incidence vectors of cocycles, d certainly satisfies [A].
The dimension of the subspace of L⊥ spanned by {ξe : u ∈ Efar} (i.e., the

cardinality of Bfar) is at most the dimension of L⊥, which is ρ− 1. This proves [B].
Consider e ∈ Efar. By Lemma 5.3, for all u ∈ Efar, ξue ≥ 0 if e ∈ P far and ξue ≤ 0

if e ∈ N far. Furthermore, for the vector ξe, we have ξee 6= 0. Now since {ξu : u ∈ Bfar}
generates all of {ξe′ : e′ ∈ Efar}, there must be at least one u ∈ Bfar such that ξue 6= 0.
By Lemma 5.3, every such ξue must have the same sign as ξee . This proves [C] and
[D].

In practice, to construct a sufficiently improving direction d efficiently, it suffices
to find a basic feasible solution of the linear program obtained by adding to (23) the
constraints −ρ+ 1 ≤ ξe ≤ ρ− 1 (e ∈ E), ξe ≥ 1 (e ∈ P far), and ξe ≤ −1 (e ∈ N far).

This establishes cancel-and-tighten box 1b in Table 1.

6. (Strongly) polynomial bounds on computing exact solutions with
piecewise linear costs. Note that if we start with an integral x0 (often x0 = 0
will work), then with integral breakpoints, the algorithm will always maintain an
integral solution. Thus with integral breakpoints, we can guarantee an integer optimal
solution. We use x∗ (resp. h∗) to denote an optimal circulation (resp. cocirculation).

Note that piecewise linear functions are not f.g. in the sense of section 4. Thus we
will need to develop different techniques for proving that our methods can find exact
optimal solutions.

6.1. A polynomial bound with integral slopes. We assume that all slopes
are integral in this subsection. We borrow an optimality characterization from [5]
that depends directly on λ(x) and not on 〈x, h∗〉.

Lemma 6.1. In the piecewise linear case with integral slopes, if λ(x) < 1/φ, then
x is exactly optimal.

Proof. Let h ∈ L⊥ be a dual vector proving that λ(x) < 1/φ. Then Lemma 3.2
says that the reduced cost of every element in cycle F = (A,B) is more than −1/φ.
This implies that c(x, F) = (c` − h)(A) + (h − ca)(B) > −|F |/φ ≥ −1. But c(x, F)
is an integer, so it must be nonnegative. Thus by Lemma 3.1, x is optimal.

Let x0 denote our initial circulation. Each finite cae (x0
e) and c`e (x0

e) will be equal
to one of the O(B) possible slopes so that λ(x0) and λ are at most C. This together
with Lemma 6.1 establishes both row 2’s in Table 1.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1263

6.2. A strongly polynomial bound for general slopes. The proof of strong
polynomiality for the case of linear network flow in [5] seems not to work when some
we’s have more than two breakpoints. However, the alternative proof below (which
has the same flavor as a proof that [28] uses for the case of networks) is just as strong
as the ones given for special cases in [5, 2, 7] since we will be able to derive exactly
the same bounds on running time for those special cases in section 8. At the same
time, this proof is somewhat simpler than the proofs in [5, 2, 7].

We use the very close relationship between λ(x) and 〈x, h∗〉 given by Corollary 4.2
and Lemma 4.3, which say that neither number can get very far from the other. Each
c`e (xe) and cae (xe) equals one of the only O(B) slopes, and we may assume that h∗

stays fixed throughout the algorithm. Thus by (18) and (19), 〈x, h∗〉 always equals
h∗e − c`e (xe), c

a
e (xe) − h∗e, or 0 for some element e. Therefore, there are only O(B)

different values that 〈x, h∗〉 can take, a strongly polynomial number.
Theorem 6.2. In the piecewise linear case, MMCM requires O(Bρ⊥φ log φ)

iterations to compute an exact optimal circulation.
Proof. Define a big iteration as a sequence of iterations that reduce λ(x) by a

factor of more than 1/φ. As argued in the proof of Theorem 2.1, a big iteration
consists of O(ρ⊥φ log φ) min mean cycle cancellations. Let x be our point before a
big iteration and x′ be the point after a big iteration. Then

〈x′, h∗〉 ≤ φλ(x′) (by Corollary 4.2)

< λ(x) (by the definition of big iteration)

≤ 〈x, h∗〉 (by Lemma 4.3).(24)

This shows that 〈x, h∗〉 strictly decreased during the big iteration. Thus after at most
B big iterations, 〈x, h∗〉 has decreased B times, and its only possible remaining value
is 〈x, h∗〉 = 0, implying that x is optimal.

The argument in Theorem 6.2 does not work for cancel-and-tighten because
Lemma 4.3 might not be true for λ (but Corollary 4.2 is true with λ in place of λ(x)).
That is, there is nothing in cancel-and-tighten to force λ to take large downwards
steps, even when this is possible due to 〈x, h∗〉 becoming smaller than an optimal
reduced cost. However, we can use an idea from [5] and at the beginning of every
big iteration, we use a min mean cycle computation to replace λ by the exact value
of λ(x). Then (24) becomes true, and the rest of the proof of Theorem 6.2 goes
through as before. In applications to networks, the (slow) min mean cycle iterations
can be amortized over the (fast) tighten-step iterations so as to not slow down the
fast asymptotic running time of cancel-and-tighten; see section 8.

7. Polynomial bounds on computing exact solutions with quadratic and
linear costs and integer data. For this case, we assume that for each e ∈ E the
function we consists of a sequence of functions f ie = aiex

2
e + biexe + die, i = 1, . . . , ke,

where each f ie is defined on the interval between the breakpoints pi−1
e and pie (pi−1

e <
pie); so p0

e = −∞, pkee =∞, and f ie(p
i
e) = f i+1

e (pie). We assume that all aie, b
i
e, and die

are integers with aie ≥ 0 and that each finite pie is an integer. If aie = 0, then this piece
is linear; otherwise, it is quadratic. Thus we have the case of piecewise mixed linear
and quadratic costs. If all aie are positive, then we have piecewise quadratic costs.
Slightly redefine C to be the maximum number among all 4aie, 2|bie|, and (finite) 2|pie|
(e ∈ E).

If x∗e is interior to piece i, define the bounds pe = pi−1
e and p′e = pie and force he

to be the derivative of f ie by defining its bounds as ge = g′e = 2aiexe + bie. If instead

1264 A. V. KARZANOV AND S. T. MCCORMICK

x∗e = pie, then set pe = p′e = pie and set ge = cae (pie) and g′e = c`e (pie). Then any x and
h feasible to the following linear system must be optimal:

Mx = 0,

Kh = 0,(25)

pe ≤ xe ≤ p′e, e ∈ E,
ge ≤ he ≤ g′e, e ∈ E.

It can be seen that the absolute value of any subdeterminant of the matrix combin-
ing all constraints in (25) is at most Cm, where m = |E|. This implies the following.

Lemma 7.1. In the piecewise mixed linear and quadratic case, there are optimal
solutions x∗ and h∗ such that every component x∗e of x∗ and every component h∗e of
h∗ is a rational with numerator and denominator at most Cm.

We will also need a bound on the cost distance
〈
x0, h∗

〉
between an initial x0

and an optimal h∗. We can feasibly choose x0 = 0. Each h∗e is bounded above by
2aiex

∗
e + bie for some i. By Lemma 7.1, each x∗e ≤ Cm, so

〈
x0, h∗

〉
= O(Cm+1),

and by Lemma 4.3, β = λ(x0) ≤ O(Cm+1). Our goal will be to reduce 〈x, h∗〉 below
1/(2C2m); by Corollary 4.2, to do this it suffices to reduce λ(x) below ε = 1/(2φC2m).
The running time bounds involve log(β/ε), which is O(m logC) since φ = o(C2m).

7.1. The piecewise quadratic case. Since w is strictly convex in this case,
problem (4) has a unique optimal solution x∗. Thus if we reduce |xe − x∗e| below
1/(2C2m), then there is a unique rational closest to xe with denominator at most
Cm, and by Lemma 7.1, this rational must be x∗e. Furthermore, xe can be efficiently
rounded to x∗e using standard continued fractions techniques [31]. Defining α to be
the minimum of 2aie among all e and i, each we is f.g. with speed α. Therefore, by
Lemma 4.4, it suffices to decrease 〈xe, h∗e〉 (which is an upper bound on α|xe − x∗e|)
below α/(2C2m). This establishes both row 4’s of Table 1.

7.2. The piecewise mixed linear and quadratic case. This case differs from
the previous one because the we need not be f.g. when some pieces f ie are linear.

Our strategy is to run the algorithm long enough to be able to round the elements
xe whose x∗e’s fall into quadratic pieces as above. After we fix xe to be x∗e on such
pieces, we are left with a piecewise linear problem where each element has at most
two pieces with finite slope, which we can solve in strongly polynomial time as in
section 6.

More precisely, let x ∈ L be any circulation. We say that e is a quadratic element
of x if (i) xe is interior to a quadratic piece, (ii) xe equals a breakpoint between two
quadratic pieces, or (iii) xe equals a breakpoint between a quadratic piece and a linear
piece with arbitrarily large slope representing a lower or upper bound; otherwise, e is
a linear element of x. Define ∆ = 1/Cm and redefine α to be the minimum of 2aie
over quadratic pieces.

Now run the algorithm in “phase 1” until 〈x, h∗〉 < ∆2/2, so we can use continued
fractions to round each xe to a unique x′e with denominator at most Cm. The next
lemma will show that whenever e is a quadratic element of x′, then we can set x∗e = x′e
without loss of optimality. Furthermore, it will show that when e is a linear element
of x′, we can constrain x∗e to be in one of the at most two linear pieces adjacent to
x′e, and so we can complete x∗ by solving a piecewise linear “phase 2.”

Lemma 7.2. If element e is quadratic for x′e, then x′e = x∗e. If x′e is interior to
a linear piece f ie, then every optimal x∗e is in f ie’s piece. If x′e equals the breakpoint

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1265

pie between linear pieces f i−1
e and f ie, then every optimal x∗e is in f i−1

e ’s piece or f ie’s
piece. If x′e equals the breakpoint pie between a linear piece and a quadratic piece, then
every optimal x∗e is in the linear piece.

Proof. Suppose that e is quadratic for x′e, and let x∗e and h∗e come from optimal
solutions with denominators at most Cm as in Lemma 7.1. If x∗e > x′e (the reverse
case is similar), then x∗e−x′e ≥ ∆2. Since |x′e−xe| < ∆2/2, we get x∗e−xe ≥ ∆2/2. If
x′e is interior to a quadratic piece, let f ie be that quadratic piece; otherwise, x′e equals a
breakpoint, say pi−1

e , and we may assume that f ie is quadratic. Then h∗e ≥ 2aiex
∗
e + bie.

But now, since c`e (xe) ≤ max{2aiexe + bie, 2a
i
ex
′
e + bie}, we have ∆2/2 > 〈xe, h∗e〉 ≥

2aie(∆
2/2), a contradiction. Thus we must have x′e = x∗e so that e is quadratic for

this x∗e and so for all optimal solutions.
If x′e is interior to linear piece f ie with slope bie, then xe must also be interior to

f ie. Thus 〈xe, h∗e〉 < ∆2/2 implies that

|bie − h∗e| < ∆2/2.(26)

If there is an optimal x∗ with corresponding h∗, where x∗e does not belong to f ie,
then by Lemma 7.1 we may assume that there is such a solution with denominators
at most 1/∆. If x∗e is in the interior of a linear piece with slope bje = h∗e, then
|bie − bje| = |bie − h∗e| ≥ 1, contradicting (26). Otherwise, x∗e is either interior to a
quadratic piece or at a breakpoint nonadjacent to f ie. In either case, since x∗e is
outside of f ie’s interval by at least ∆2/2, h∗e must differ from bie by more than ∆2/2,
again contradicting (26). Thus x∗e is in f ie’s interval, forcing every optimal solution to
use f ie’s interval.

The remaining two cases have proofs much like the previous case.
Now we have our algorithm: If e is quadratic for x′, then we can fix x∗e = x′e.

Otherwise, we use one of the three linear cases in Lemma 7.2 to constrain xe to lie
in either in a single linear piece or the union of two adjacent linear pieces. This
establishes both row 5’s of Table 1.

Many applications of piecewise mixed linear and quadratic costs do not need to
solve the piecewise linear second phase. For example, if the only piecewise linear parts
are bounds (as in [4, 12]), then all elements are quadratic for every solution, so the
optimal solution will be fully determined after the first phase. Alternatively, if there
is only one linear piece per element, then the second phase can be solved more simply
as just a linear feasibility problem with bounds over L.

8. Implementations for networks. We assume that the digraph G = (V,E)
has n nodes and m = |E| arcs so that the maximum size of a circuit is O(n) and the
maximum size of a cut is O(m). Note that an initial circulation satisfying any bounds
implicit in the arc cost functions can be computed with one max flow, and similarly
an initial cocirculation can be computed with one shortest path [1]. Thus it is easy
to initialize the algorithms and to verify that optimal solutions exist.

8.1. Network circulation algorithms. We consider how to implement cancel-
and-tighten for circulations. Make an auxiliary graph consisting of the arcs in P far and
the reverses of the arcs in N far so that far cycles are directed cycles. We then adapt a
trick from [5] for the classic linear circulation problem. It develops an algorithm based
on dynamic trees for the problem of canceling all cycles consisting solely of negative
reduced-cost augmentable (admissible) arcs. The key of an arc in its method is the
residual capacity of the arc in this direction. Instead, choose the number εe defined
in (22) for every arc e far from h. Once the method finds and cancels a cycle, it then

1266 A. V. KARZANOV AND S. T. MCCORMICK

cuts all arcs that are no longer augmentable out of the data structure. We apparently
need to cut out all arcs that become close to h, but instead we relax our concept
of the cancel step a bit. Note that the proof of Claim 1 remains true even if each
cycle contains elements satisfying only that c`e (xe) − he ≤ 0 (for forward elements)
or he − cae (xe) ≤ 0 (for backwards elements). Thus we can cut out only arcs whose
reduced costs become 0; this may cause some arcs that become newly close to h to
stay in the dynamic trees and so participate in some future cancellation, but this will
not cause a violation of (20). Furthermore, the proof of Claim 2 shows that no new
arcs far from h can be created. Since each cancellation cuts at least one arc of the
auxiliary graph out of the dynamic trees, we still get the O(m) bound on the number
of cancellations. Thus in the same way as in [5], this method takes only O(m logn)
time.

When the cancel step is done, the auxiliary graph is acyclic, so an acyclic node
labeling l exists. The label differences ∆lij := lj − li form a sufficiently improving
direction d for the tighten step and can be computed in linear time [5]. Thus one
round of cancel-and-tighten costs O(m logn) time, which is a lot smaller than the
time to compute even one min mean cycle.

Now consider the piecewise linear case from section 6. If we want to use cancel-
and-tighten for circulations in networks in the piecewise linear case and we want
to achieve the strongly polynomial bound of row 3 in Table 1, we are required to
substitute a O(mn) [14] min mean cycle computation once every O(n logn) tighten
steps. Since O(n log) tighten steps cost O(mn log2 n) > O(mn) time, this does not
affect our cancel-and-tighten time bound. This establishes column c of Table 1.

8.2. Network cocirculation algorithms. We now consider how to implement
cancel-and-tighten for cocirculations. Make an auxiliary graph containing the arcs in
P far and the reverses of the arcs in N far, with the εe from (22) as lengths, together
with both the forward and reverses of arcs close to h with length 0. Then a far cycle
is a cut whose forward arcs all have positive lengths. We then adapt a trick from [2]
for the classic linear cocirculation problem. Select an arbitrary node r as a source
and compute shortest-path distances from r to every other node. Update x by these
shortest-path distances, which effectively cancels all far cycles (cuts) with r on the
source side. Then do the same thing with all arcs reversed to cancel far cycles with r
on the sink side. This takes O(m+ n logn) time.

Since no cut with all forward arcs positive remains after the cancel step, we can
find a set of circuits such that each arc in Efar gets covered at least once in the proper
orientation, and such a circuit cover can be computed in linear time [2]. The sum of
the incidence vectors of these circuits is a sufficiently improving direction d for the
tighten step. Thus one round of cancel-and-tighten costs O(m+ n logn) time, which
is a lot smaller than the time to compute even one min mean cut.

Now consider the piecewise linear case from section 6. If we want to use cancel-
and-tighten for cocirculations in networks in the piecewise linear case and we want to
achieve the strongly polynomial bound of row 3 in Table 1, we are required to substi-
tute a O(nMC(n,m)) min mean cut computation once every O(m logn) tighten steps
[27]. However, O(m logn) tighten steps cost O(m logn(m+n logn)) < O(nMC(n,m))
time, which would affect our cancel-and-tighten time bound. However, an idea of
Radzik quoted in [2] allows the same strongly polynomial bound to hold even with
a weaker semiexact min mean cut computation that costs only O(MC(n,m)) time.
This can now be amortized without loss of efficiency; see [2] for details.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1267

9. How to compute minimum mean cycles. We now explain how to solve
the auxiliary problem (AP) in strongly polynomial time for an arbitrary unimodular
linear space L. There exist general methods for computing min mean values under
various assumptions; see Karzanov [15], Megiddo [21, 22], or Radzik [27]. None of the
approaches in [21, 22, 27] seems to yield a strongly polynomial algorithm for (AP);
we know of no algorithm for unimodular linear programming that is “linear” in the
sense required by Megiddo’s methods, and Radzik’s method does not even apply to
finding min mean circuits in networks.

We assume that L is explicitly given via a system Mx = 0 with a totally uni-
modular n × m matrix M whose columns are indexed by elements of a set E. We
can get a strongly polynomial algorithm by directly solving the linear program (12)
using the version of the ellipsoid algorithm developed by Tardos [32]. This depends
on realizing that, although the LP is not totally unimodular, the size of its matrix in
binary notation is O(mn).

An algorithm that is more combinatorial is derived from the general method in
[15] that enables us to reduce (AP) to solving O(ρφ) linear programs with totally
unimodular constraint matrices. This method will also allow us to solve (AP) for
systems which are not totally unimodular.

Recall from the proof of Lemma 3.2 that (AP) is equivalent to solving problem
(11). It is clear that (11) is, in turn, a special case of the following problem. Suppose
that L′ is a (not necessarily unimodular) linear subspace of RE′ given by a system
M ′y = 0 with an integer n′ × m′ matrix M ′ (m′ = |E′|). Consider the cone K =
L′ ∩ RE′+ = {y ∈ L′ : y ≥ 0}. Let |y| denote the `1-norm

∑
e∈E′ |ye|, and for

y ∈ K − {0}, define the min mean value of y as νd(y) = dy/|y|. Then, given a vector
d ∈ RE′ − {0}, the minimum mean problem (MMP) for K and d is to compute

ν∗ := ν∗d := min
y∈K−{0}

νd(y)

as well as a minimizing y.

An integer vector y ∈ K − {0} is called elementary, or a cycle, if y = y′ + y′′ is
impossible for any two integral vectors y′, y′′ ∈ K − {0}. We say that the maximum
q = q(K) of ye’s among all elementary vectors y and e ∈ E′ is the fractionality of K.
(Clearly, q does not exceed the maximum absolute value of a subdeterminant of M ′.)
Problem (AP) for L with q > 1 will be used in the next section. Clearly, there is an
optimal solution to the MMP which is an elementary vector. Computationally, given
any optimal solution y∗ to the MMP, standard linear algebra techniques can extract
an optimal cycle from y∗.

For y ∈ RE′, let S(y) = supp(y) and let S+(y), S−(y), and S0(y) denote the
sets of e ∈ E′ with ye positive, negative, and zero, respectively. We assume that
every e ∈ E′ is contained in the support of at least one cycle in K; otherwise, we
could delete e from E′. Each iteration of the algorithm for the MMP transforms the
current objective vector d by adding to it a vector h ∈ (L′)⊥ and possibly by shifting
d by a constant δ ∈ R (i.e., setting de := de + δ for all e ∈ E′). Clearly, the former
operation does not change νd(y) for any y ∈ K, while the latter one increases it by
δ (and therefore increases ν∗ to ν∗ + δ). At the beginning of the algorithm, we shift
the initial d by a sufficiently large negative r in order to ensure that the inequality
ν∗d ≤ 0 holds. We maintain ν∗d ≤ 0 throughout the algorithm.

Recall that d+ denotes the positive part of the current d. At an iteration, an
element u ∈ E′ with du < 0 is fixed, and we solve the following pair of dual linear

1268 A. V. KARZANOV AND S. T. MCCORMICK

programs:

min{d+y : y ∈ K, yu = 1}(27)

and

max{hu : h ∈ (L′)⊥, he ≥ −d+
e for e ∈ E′ − {u}}.(28)

To see that (27) and (28) are dual LPs, rewrite (27) as min{d+y : M ′y = 0, y ≥
0, yu = 1}, let the dual vector for the constraints M ′y = 0 be γ, and let the dual
scalar for yu = 1 be σ. Then if we define h = −γM ′, we must have h ∈ (L′)⊥ (since
the rows of M ′ are a basis of (L′)⊥), and it is clear (since d+

u = 0) that hu = σ at
optimality in the dual of (27).

By the above assumption, there is a cycle whose support contains u; thus (27)
has a feasible solution. Since the objective value of (27) is bounded below by zero,
(27) has an optimal solution. When feasible solutions y and h to (27) and (28) are
optimal, then the following (complementary slackness) condition holds:

for any e ∈ E′ − {u}, d+
e + he > 0 implies ye = 0.(29)

Let y and h be optimal, and define d̂ = d + h. If d̂u ≥ 0, we finish the iteration
with the new objective vector d′ = d̂. If instead d̂u < 0, we in addition shift d̂ by
δ := −d̂y/|y|, and the resulting vector d′ becomes the new objective vector. In the
latter case, we also keep y as a possible candidate for being an optimal solution of the
original (and each intermediate) problem; set y∗ := y. Then d′y∗ = 0.

From (29), we observe that

for e ∈ S(y)− {u}, d̂e =

{
0 if de ≥ 0,
de if de < 0.

(30)

Since y is nonnegative, (30) implies

d̂y ≤ d̂uyu = d̂u;(31)

hence δ > 0 (in case d̂u < 0). Note also that (30) together with hu = d+y ≥ 0 (since
d+ ≥ 0 and y ≥ 0) and δ > 0 preserves the following monotone property (in both
cases):

S−(d′) ⊆ S−(d); and d′e ≥ de for any e ∈ S−(d′).(32)

The algorithm finishes if the iteration results in d′ with d′e ≥ 0 for all e ∈ E′, i.e.,
S−(d′) = ∅. Then for the y∗ obtained at the last iteration when a shift of d occurs, we
have d′y∗ ≥ 0. On the other hand, after that iteration, the current d was transformed
only by adding vectors from L⊥, which does not change the inner product of d and
y∗. Hence d′y∗ = 0 (so d′e = 0 for all e ∈ S(y∗)). This and ν∗d′ ≥ 0 (as d′ ≥ 0) yield
that y∗ is an optimal solution to the original MMP.

We say that the iteration is big if S−(d′) is strictly contained in S−(d) and small
otherwise. The number of big iterations does not exceed N = |S−(d0)| for the d0

obtained by the initial shift of the original objective vector. So we have to estimate
the number of consecutive small iterations. We impose the additional rule that the
same element u is fixed throughout consecutive small iterations. Suppose that the
current and the next iterations are small. Let y′, h′, and d′ be the corresponding

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1269

objects found at the next iteration. Note that by the definition of small iterations,
S−(d) = S−(d′) so that Q := Q(d) := S+(d) ∪ S0(d) is independent of d during this
sequence of small iterations.

Lemma 9.1. y(Q) > y′(Q).
Proof. Obviously, d′e ≥ δ for each e ∈ Q, and (30) implies that d′e = δ for

e ∈ S(y) ∩Q. This and d′y = 0 give

d′u = d′uyu ≥
∑

(d′eye : e ∈ S−(d)) = −
∑

(d′eye : e ∈ Q) = −δy(Q).(33)

On the other hand, we have d̂′u = d′u +h′u < 0 (since the second iteration is small), so

− d′u > h′u = (d′)+y′ ≥ δy′(Q)(34)

(using LP strong duality for the second iteration and the fact that d′e ≥ δ for e ∈
Q). Comparing (33) and (34) yields δy(Q) > δy′(Q), and the result follows because
δ > 0.

Note that the preliminary shift of the original d can be chosen so that the above
number N is at most ρ (the rank of M ′; since M ′ = (M −M) in our application,
we use the same ρ and φ for both M and M ′). Indeed, let p1 < p2 < · · · < pk be
all the different values of de, e ∈ E′, and let Xi = {e ∈ E : de ≤ pi}. Solving the
corresponding LP problems, find the minimum i such that Xi contains the support
of some nonzero vector of K. Shift d by −pi. This makes the elements of Xi−1

(Xi−Xi−1) be of negative (resp. zero) value, and therefore there is y ∈ K−{0} with
νd(y) ≤ 0. Clearly, we have N = |Xi−1| ≤ ρ.

Theorem 9.2. The number of iterations of the algorithm is at most ρmin{q2φ, η},
where η is the number of elementary vectors in K. In particular, if q is bounded by a
polynomial in |E′| and a strongly polynomial algorithm is used to solve (27) and (28),
then this algorithm is strongly polynomial for the MMP.

Proof. Consider two consecutive small iterations as in Lemma 9.1. As we noted,
there must be extreme optimal solutions y and y′ to (27) in these iterations. By
Lemma 9.1, y(Q) > y′(Q), so the number of consecutive small iterations does not
exceed the number of distinct values of z(Q) for extreme vectors z of K with zu = 1.
But if z′ is an integral extreme vector of K, then z′(Q) is an integer between 1 and
qφ, and there are at most q ways to normalize z′ to z so that zu = 1. Thus there can
be at most min{q2φ, η} values for x(Q). Now the result follows from the fact that the
number of big iterations is at most ρ.

For the original function d and the final function d∗, we have d∗ = d+h∗+δ∗1IE′ ,
where δ∗ is the total shift and h∗ is the sum of solutions to (28) over the iterations.
Since d∗ is nonnegative and d∗e = 0 for any e ∈ S(y∗),

de + h∗e

{
= −δ∗ for e ∈ S(y∗),
≥ −δ∗ otherwise.

(35)

In particular, ν∗d = −δ∗. (Note also that (35) proves the equality ν∗d = maxh∈(L′)⊥

mine∈E′(de + he).)

10. The methods for linear spaces of bigger fractionality. We now gen-
eralize the method developed in section 3 to linear spaces L ⊆ RE given by system
Mx = 0 when M is not totally unimodular. We briefly describe how to do this,
emphasizing only the places where significant differences exist between this case and
section 3.

1270 A. V. KARZANOV AND S. T. MCCORMICK

The cost at x of a cycle ξ is defined as

c(x, ξ) =
∑
{c`e (xe)ξe : e ∈ S+(ξ)}+

∑
{cae (xe)ξe : e ∈ S−(ξ)},

and its mean cost c(x, ξ) is c(x, ξ)/|ξ| (S+(ξ) and S−(ξ) are as defined in the previous
section). Then ξ is a minimum mean cycle at x if c(x, ξ) is as small as possible, and
λ(x) is defined to be max{0,−c(x, ξ)}, where ξ is a minimum mean cycle.

Lemmas 3.1 and 3.2 remain true in this case. MMCM is generalized as follows. For
the current x ∈ L, we solve the analogue of the auxiliary problem (AP) to compute
λ = λ(x) and, if λ > 0, to find a minimum mean cycle ξ of L at x and h ∈ L⊥

satisfying (10). If λ > 0, we “push ε > 0 around ξ,” i.e. transform x into the new
current point x′ ∈ L defined as x′ = x + εξ (cf. (9)). To compute the step length ε,
we first compute the local step lengths εe as an increment ∆ such that (cf. (16)){

cae (xe + ∆ξe) ≤ c`e (xe) + λ = he ≤ c`e (xe + ∆ξe) if e ∈ S+(ξ),
cae (xe −∆ξe) ≤ cae (xe)− λ = he ≤ c`e (xe −∆ξe) if e ∈ S−(ξ),

and then ε = min{εe : e ∈ S+(ξ) ∪ S−(ξ)}.
In this case, Lemma 3.3 has essentially the same proof, while Lemma 3.4 should

be modified as follows.
Lemma 10.1. After every ρ⊥ iterations, λ = λ(x) decreases by a factor of at

most (1− 1/(2φq)).
Proof. The proof is similar to that of Lemma 3.4. The only nontrivial point that

needs some reproving is when, at some iteration j (i < j ≤ i + ρ⊥), for the chosen
cycle ξj , there is an element u ∈ supp(ξj) close to h, and for all e ∈ S+(ξj) − {u}
(resp. e ∈ S−(ξj)− {u}), we have c`e − he ≥ −λ (resp. he − cae ≥ −λ); for simplicity,
we replace c`e (xje) and cae (xje) by c`e and cae here. For definiteness, let u be positively
close to h. Then

c(xj , ξj) = c(xj , ξj)− hξj

=
∑

e∈S+(ξj)−{u}
(c`e − he)ξje + (c`e − hu)ξju −

∑
e∈S−(ξj)

(he − cae)ξje

≥ −λ
∑

e∈S+(ξj)−{u}
ξje −

1

2
λξju + λ

∑
e∈S−(ξj)

ξje

= −λ|ξj |+ 1

2
λξju ≥ −λ|ξj |+ λ/2,

whence −λj = c(x, ξj) ≥ −λ + λ/2|ξj | ≥ −λ(1 − 1/2φq) (since |ξj | ≤ φq), and the
result follows.

This establishes column a of Table 1.

11. Duality and practical implementations. Throughout our methods, we
have liberally used dual vectors h ∈ L⊥, and we computed optimal dual vectors h∗.
There is a well-developed theory of duality in convex optimization that shows that
not only is h∗ optimal in the sense of proving x∗’s optimality via (15), but h∗ is
the optimal solution of a related optimization problem dual to (4). The form of this
problem is

min
h∈L⊥

∑
e∈E

ve(he),(36)

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1271

where each ve is the convex conjugate of the corresponding we (see, e.g., Rockafellar
[30], who would say that we have a dual pair of monotropic programming problems).

Suppose that we is piecewise linear. Then ve is also piecewise linear, the break-
points of ve are the slopes of we, and the slopes of ve are the breakpoints of we. For
example, the convex conjugate of the cost function for linear circulations in networks
in Figure 1 is the function for linear cocirculations in networks in Figure 2. Similarly,
we is piecewise mixed linear and quadratic if and only if ve is piecewise mixed linear
and quadratic.

Since we get h∗ solving (36) for free when we solve the primal problem (4), if
we want to compute x∗, we have the luxury of being free to either solve the primal
problem (4) and get x∗ directly or solve the dual problem (36) and get x∗ as the
optimal set of dual variables for (36). This free choice has some practical implications
because (although the primal and dual problems are in theory completely symmetric)
in practice it may be easier to solve one than the other.

We focus on solving circulation and cocirculation problems in networks. The
number of MMCM iterations is O(mn log(β/ε)) for both cases (MMCM boxes 1c and
1d in Table 1). However, the time per iteration (which is dominated by the min
mean cycle computation) is, up to log factors, O(mn) for circulations and O(mn2) for
cocirculations using strongly polynomial algorithms, andO(

√
nm) for circulations and

O(mn) for cocirculations using polynomial algorithms under the similarity assumption
(namely, that C = O(nO(1)); see [1]). Thus it is clearly better to use MMCM on the
circulation version of the problem when we have a choice.

For the faster cancel-and-tighten method, the work per iteration is the same up
to log factors: O(m) for both circulations and cocirculations. However, the number
of iterations is O(n log(β/ε)) for circulations but O(m log(β/ε)) for cocirculations
(cancel-and-tighten boxes 1c and 1d of Table 1). In the piecewise linear case, the
iteration bound for circulations is O(min{n log(nC), Bn logn}), and for cocirculations
it is O(min{m log(nC), Bm logn}) (cancel-and-tighten boxes in rows 2 and 3, columns
c and d of Table 1). Thus in both cases, solving the circulation version of the problem
instead of the cocirculation version will result in a speedup by a factor of roughly
O(m/n).

Thus we conclude that when finding an optimal cocirculation in a network, it
should be faster to dualize the problem and solve the circulation version of the prob-
lem instead. An experimental implementation of the cocirculation methods from [2]
(a special case of our methods) in [19] proved to be very slow, confirming our recom-
mendation.

12. Solving integer problems. For some applications it is more realistic to
consider problems where the decision variables are restricted to be integers; see, e.g.,
[24] or [1, Chapter 14]. We show here how to adapt our methods to this restriction.

Formally, we want to solve the following problem:

Find an integral x ∈ L such that w(x) =
∑
e∈E we(xe) is as small as

possible.
(37)

Define ŵe(xe) so that it matches the value of we(xe) whenever xe is integral and is
linear between consecutive integers, so the ŵe’s are piecewise linear. It is equivalent
to solve (4) using the ŵe’s and solve (37) with the we’s. We would like to use the
versions of our methods adapted for piecewise linear costs to solve (4) using the ŵe’s.
Unfortunately, the number of pieces in all of the ŵe’s might be unbounded, so we
cannot use the strongly polynomial bound. Also, the ŵe’s have integral breakpoints

1272 A. V. KARZANOV AND S. T. MCCORMICK

but general slopes, just the reverse of what Lemma 6.1 requires. However, we can
(implicitly) dualize the problem to get a problem over the dual space L⊥ with objec-
tives v̂e, the convex conjugates of the ŵe (see section 11). Recall from section 11 that
the v̂e’s are also piecewise linear and have integer slopes, so Lemma 6.1 does apply to
the dual problem.

To make this work, we need to be able to simulate an oracle for v̂e from the given
oracle for we. For (O) (i), we are given r and want to find ĉae (r) and ĉ`e (r), where the
ĉe’s are the left and right costs at r w.r.t. v̂e. We use (O) (ii) for we to find a p such
that cae (p) ≤ r ≤ c`e (p). Set k = dpe and compute the slope of ŵe between k − 1 and
k as we(k)−we(k− 1). If we(k)−we(k− 1) ≤ r, then ĉ`e (r) = k; otherwise, it equals
k − 1. Similarly, if we(k)− we(k − 1) > r, then ĉae (r) = k; otherwise, it equals k − 1.

For (O) (ii), we are given p and want to find r such that ĉae (r) ≤ p ≤ ĉ`e (r). Since
v̂e is piecewise linear, such an r always exists which is a breakpoint of v̂e. Then the
two slopes adjacent to this breakpoint r are ĉae (r) and ĉ`e (r). Redualizing back to the
primal and remembering that dualizing interchanges slopes and breakpoints, we want
to find a slope r of ŵe whose adjacent breakpoints a = ĉae (r) and b = ĉ`e (r) bracket
p. But breakpoints of ŵe are just all of the integers, so a = bpc, b = dpe (if p is
an integer, set b = p + 1 instead), and so r is the linear approximation of the slope
between these breakpoints, namely we(b)− we(a).

Note that duality reverses the roles of the two parts of the oracle: We use (O) (i)
for we to simulate (O) (ii) for v̂e, and we use (O) (ii) for we to simulate (O) (i) for v̂e.
This allows us to simulate an oracle for v̂e using only O(1) calls to the oracle for we.
Otherwise, we run our algorithm as before (using matrix K in place of matrix M).
This yields the bounds in both row 6’s of Table 1.

13. The methods for problems with approximate oracles. In the case
where some we’s are general convex functions, it may not be possible to exactly
represent c`e and cae in a finite word length, leading to an evaluation error δe. Similarly,
an exact solution to (O) (ii) may be transcendental and/or it might not be easy to
solve the equation w′e(r) = p exactly (which is roughly what (O) (ii) requires). Then
(O) (ii) might be implemented as a numerical root-finding procedure with some known
error, leading to a root-finding error δr. We now use the convention that symbols for
approximate quantities are the same symbols as the exact quantities with tildes added.
We now assume that we have an oracle that

(Õ) (i) when given a “point” r ∈ R will return costs c̃`e (r) and c̃ae (r) satisfying
|c̃`e (r)− c`e (r)| ≤ δe and |c̃ae (r)− cae (r)| ≤ δe;

(ii) when given a “scalar” p ∈ R will return a point r̃ with cae (r̃) − δr ≤ p ≤
c`e (r̃) + δr (so c̃ae (r̃)− δe − δr ≤ p ≤ c̃`e (r̃) + δe + δr).

The first consequence of these errors is that λ̃(x), the approximate min mean
cycle value that we compute w.r.t. c̃`e and c̃ae , will not exactly equal λ(x). However,
since c̃`e and c̃ae differ from c`e and cae by at most δe per element, it is easy to see that

λ̃(x) satisfies

|λ(x)− λ̃(x)| ≤ δe.(38)

A quick scan of Lemmas 3.3 and 3.4 (the key lemmas proving polynomial conver-
gence) shows that our arguments there all have a slack of at least λ/2 in them, except
for the argument in Claim 2 that no new element far from h can be created. We want
to claim that whenever λ̃(x) is large enough w.r.t. δe and δr, the arguments in those

lemmas will still hold true with the approximate data c̃`e , c̃ae , and λ̃(x) substituted

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1273

for c`e , cae , and λ(x). The argument in Claim 2 depends on knowing that for some e
(superscripting by iteration number)

c̃`e (xje) + λ̃j ≤ c̃`e (xj+1
e) if e ∈ Aj and(39)

c̃ae (xje)− λ̃j ≥ c̃ae (xj+1
e) if e ∈ Bj ,

but (Õ) (ii) might cause these inequalities to be violated by as much as δ := δe + δr.
We can fix this and obtain an easy analysis of the approximate oracle case by slightly
increasing our local step length εe from (16) to now be an increment ∆ such that{

c̃ae (xe + ∆)− δ ≤ c̃`e (xe) + λ̃+ δ ≤ c̃`e (xe + ∆) + δ if e ∈ A,

c̃ae (xe −∆)− δ ≤ c̃ae (xe)− λ̃− δ ≤ c̃`e (xe −∆) + δ if e ∈ B.
(40)

That is, we call (Õ) (ii) with p = c̃`e (xe) + λ̃+ δe + δr when e ∈ A and p = c̃ae (xe)−
λ̃− δe− δr when e ∈ B. Since xj+1

e = xje + ∆ for an e achieving the minimum εe, this
ensures that (39) will hold for this e.

There are two factors that limit how much we can reduce λ̃(x) before the inac-
curacies catch up with us: (i) the maximum error in a c`e or cae , namely δe, can be

at most the slack in the arguments in Lemmas 3.3 and 3.4, namely λ̃(x)/2; and (ii)

the increment in reduced cost, namely λ̃(x) + δe + δr, plus the maximum error in c`e
and cae , namely δe, must be smaller than λ̃ + λ̃/2 to ensure that we do not make a

positively far element negatively far or vice versa. Now (i) gives the bound λ̃(x) > 2δe
and (ii) gives λ̃(x) ≥ 2δr + 2δe. That is, we must have

λ̃(x) ≥ 2δe + 2δr.(41)

Now, as long as λ̃(x) satisfies (41), and since we contrived (40) to make (39) true,

the whole analysis of Lemmas 3.3 and 3.4 becomes true with c̃`e , c̃ae , and λ̃(x) in place

of c`e , cae , and λ(x). In particular, this shows that λ̃(x) will geometrically decrease.

Once the algorithm has driven λ̃(x) down to 2δe+2δr, (38) says that λ(x) ≤ 3δe+2δr.
This estimate can be used with the cost distance defined in section 4 and the bounds
based on it developed in section 7 to get a bound on how close x is to an optimal
solution.

These arguments suggest that when (Õ) (ii) is implemented as a root-finding
procedure with an error estimate available at each iteration, then it will be faster to
run the root-finder only until the current error in its root, δ′r, is small enough so that

λ̃(x)− 2δ′r > 2δe.
The same sort of analysis can be pushed through for the cancel-and-tighten

method. All of this shows that even with an approximate oracle, our methods can
obtain an answer whose accuracy is close to the accuracy of the underlying evaluation
and root-finding machinery.

Acknowledgments. We thank the referees for suggesting improvements to this
paper and Maurice Queyranne for pointing out an error in an earlier version.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice–Hall, New York, NY, 1993.

1274 A. V. KARZANOV AND S. T. MCCORMICK

[2] T. R. Ervolina and S. T. McCormick, Two strongly polynomial cut cancelling algorithms
for minimum cost network flow, Discrete Appl. Math, 46 (1993), pp. 133–165.

[3] M. Florian, Nonlinear cost network models in transportation analysis, Math. Prog. Stud., 26
(1986), pp. 167–196.

[4] A. Frank and A. V. Karzanov, Determining the distance to the perfect matching polytope of
a bipartite graph, Technical Report RR 895-M, Laboratoire ARTEMIS IMAG, Université
Joseph Fourier, Grenoble, France, 1992.

[5] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by canceling negative
cycles, J. Assoc. Comput. Mach., 36 (1989), pp. 873–886.

[6] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[7] M. Hadjiat, Un algorithme fortement polynomial pour la tension de coût minimum basé sur
les cocycles de coûts moyens minimums, Technical Report, Groupe Intelligence Artificielle,
Faculté des Sciences de Luminy, Marseille, France, 1994 (in French).

[8] R. Hassin, The minimum cost flow problem: A unifying approach to dual algorithms and a
new tree-search algorithm, Math. Programming, 25 (1983), pp. 228–239.

[9] R. Hassin, A flow algorithm for network synchronization, Working Paper, Department of
Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, 1993.

[10] D. S. Hochbaum, Polynomial and strongly polynomial algorithms for convex network opti-
mization, in Network Optimization Problems, D. Z. Du and P. M. Pardalos, eds., World
Scientific, Singapore, 1993, pp. 63–92.

[11] D. S. Hochbaum and J. G. Shanthikumar, Convex separable optimization is not much harder
than linear optimization, J. Assoc. Comput. Mach., 37 (1990), pp. 843–862.

[12] T. Ibaraki, A. V. Karzanov, and H. Nagamochi, Determining the distance to the flow
polyhedron of a network, private communication, 1993.

[13] K. Iwano, S. Misono, S. Tezuka, and S. Fujishige, A new scaling algorithm for the maximum
mean cut problem, Algorithmica, 11 (1994), pp. 243–255.

[14] R. M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math., 23
(1978), pp. 309–311.

[15] A. V. Karzanov, Minimum mean weight cuts and cycles in directed graphs, in Methods for
Solving Operator Equations, Yaroslavl State University, Yaroslavl, Russia, 1985, pp. 72–83
(in Russian); Amer. Math. Soc. Transl. (2), 158 (1994), pp. 47–55 (in English).

[16] T. L. Magnanti, Models and algorithms for predicting urban traffic equilibria, in Transporta-
tion Planning Models, M. Florian, ed., North–Holland, Amsterdam, 1984, pp. 153–186.

[17] Y. Mansour, B. Schieber, and P. Tiwari, Lower bounds for computations with the floor
operation, manuscript, 1988.

[18] S. T. McCormick, Approximate binary search algorithms for mean cuts and cycles, Oper.
Res. Lett., 14 (1993), pp. 129–132.

[19] S. T. McCormick and L. Liu, An experimental implementation of the dual cancel and tighten
algorithm for minimum cost network flow, in Network Flows and Matching, D. S. Johnson
and C. S. McGeoch, eds., American Mathematical Society DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 12, AMS, Providence, RI, 1993,
pp. 247–266.

[20] S. T. McCormick, T. R. Ervolina, and B. Zhou, Mean cancelling algorithms for general
linear programs, and why they (probably) don’t work for submodular flow, Working Pa-
per 94-MSC-011, Faculty of Commerce, University of British Columbia, Vancouver, BC,
Canada, 1994.

[21] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,
4 (1979), pp. 414–424.

[22] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
Assoc. Comput. Mach., 30 (1983), pp. 852–865.

[23] M. Minoux, A polynomial algorithm for minimum quadratic cost flow problems, Europ. J.
Oper. Res., 18 (1984), pp. 377–387.

[24] M. Minoux, Solving integer minimum cost flows with separable convex cost objective polyno-
mially, Math. Prog. Stud., 26 (1986), pp. 237–239.

[25] A. S. Nemirovsky and D. B. Yudin, Problem Complexity and Method Efficiency in Optimiza-
tion, Wiley–Interscience, Toronto, 1983.

[26] J. B. Orlin and R. K. Ahuja, New scaling algorithms for the assignment and minimum cycle
mean problems, Math. Programming, 54 (1988), pp. 41–56.

[27] T. Radzik, Parametric flows, weighted means of cuts, and fractional combinatorial optimiza-
tion, in Complexity in Numerical Optimization, P. Pardalos, ed., World Scientific, Singa-
pore, 1993, pp. 351–386.

SEPARABLE CONVEX OPTIMIZATION IN UNIMODULAR SPACES 1275

[28] T. Radzik and A. V. Goldberg, Tight bounds on the number of minimum-mean cycle can-
cellations and related results, Algorithmica, 11 (1994), pp. 226–242.

[29] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[30] R. T. Rockafellar, Network Flows and Monotropic Optimization, Wiley–Interscience, New

York, 1984.
[31] A. Schrijver, Theory of Linear and Integer Programming, John Wiley, New York, 1986.

[32] É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.
Res., 34 (1986), pp. 250–256.

ALGORITHMS FOR THE CERTIFIED WRITE-ALL PROBLEM∗

RICHARD J. ANDERSON† AND HEATHER WOLL‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1277–1283, October 1997 001

Abstract. In this paper, we prove new upper bounds on the complexity of the certified write-all
problem with respect to an adaptive adversary. Our strongest result is that for any ε > 0, there exists
an O(p1+ε) work algorithm for the p-processor p-memory cell write-all. We also give a randomized
O(p2 log p) work algorithm for a p-processor p2-memory cell write-all.

Key words. certified write-all problem, asynchronous computation, synchronization primitives,
adversary models

AMS subject classifications. 68Q10, 68Q22

PII. S0097539794319126

1. Introduction. A fundamental problem in asynchronous computation is to
have p processors set n memory cells to a fixed value, and then signal the completion
of the task. This problem is important in its own right as well as for capturing the
difficulty of other problems in asynchronous computation such as the step-by-step
simulation of a synchronous computation on an asynchronous machine.

Formally, the input to the certified write-all problem is an array B[1. . n] and a
variable c. The variables are all initialized to 0. The problem is to set all the variables
to 1, with the restriction that c cannot be set to 1 until all the B[i]’s are guaranteed to
be 1. We have p processors available. We assume a fully asynchronous model, where
processors read and write to a global memory.

Each processor issues a stream of read and write instructions. A computation is
an interleaving of these instructions. We are interested in worst case asynchronous
computation, so we consider the interleaving which maximizes the cost of the compu-
tation. A common way to view this is to assume that an all powerful (or adaptive)
adversary constructs the interleaving sequence.

We use the work measure as the cost of the algorithm. The work of the algorithm
is the total number of instructions executed up until the point that the problem is
solved.

The write-all problem was introduced by Kanellakis and Shvartsman [KS92] who
gave an O(p log2 p) work upper bound for a p-processor, p-cell write-all algorithm un-
der the fail-stop model. Martel, Subramonian, and Park [MSP90] gave an O(p) work
bound for an p

log p log∗ p -processor, p-cell write-all algorithm under a weaker adversary
model than considered here. Martel’s algorithm was randomized and assumed that
the adversary must set the instruction interleaving prior to viewing the random num-
bers. The write-all problem for the general (adaptive) adversary model was previously
considered by Buss et al. [BKRS96]. They gave an algorithm with O(plog2 3) work
(log2 3 ≈ 1.59). Our algorithm can be viewed as an extension of their method. They
also established an Ω(p log p) work lower bound for the write-all problem.

∗ Received by the editors December 9, 1994; accepted for publication (in revised form) May 19,
1995.

http://www.siam.org/journals/sicomp/26-5/31912.html
† Department of Computer Science and Engineering, University of Washington, Box 352350,

Seattle, WA 98195-2350 (anderson@cs.washington.edu). This work was partially supported by NSF
grant CCR-9204242 and NSF II grant CDA-9123308.
‡ 92 Seymour Terrace, Piscataway, NJ 08854.

1277

1278 RICHARD J. ANDERSON AND HEATHER WOLL

2. Block write algorithm. In the write-all problem, we must write to n mem-
ory cells using p processors. The difficulty is that an adversary controls the order
in which the processors execute. The adversary can cause all processors to halt ex-
cept for one. This means that a processor must write to all memory cells when the
other processors appear to have stopped. To avoid using Ω(np) work, processors must
detect when other processors have written to regions of memory.

One method for reducing the work is to have the processors perform block writes.
The memory is divided into blocks B1, . . . , Bk, each of size b. Each block Bi has an
associated completion bit bi. A block write to Bi is done by first reading bi, and if bi
is 0, writing to the memory cells of Bi and then setting bi to 1. In other words, Bi is
written to only if the completion bit is not set when the write begins. If the processors
perform block writes in the same order, then the adversary can cause Ω(pn) work by
having the processors execute in lock step. However, if the processors perform block
writes in different orders, then the worst case work can be reduced. For example,
suppose that there are two processors P1 and P2 and two blocks B1 and B2. P1 does
block writes in the order B1, B2, and P2 does block writes in the order B2, B1. Either
b2 = 1 when P1 reaches B2, or b1 = 1 when P2 reach B1. This means that the amount
of work is at most 3

2n+ 7 instead of 2n. (The “+7” comes from reading and writing
completion bits.) All of our algorithms are based upon using this idea to limit the
amount of duplicated work.

The block write algorithm has each processor perform block writes to all cells.
The order of the block writes is governed by a different permutation for each processor.
A processor with permutation π = π1, . . . , πk performs the block writes in the order
Bπ1

, . . . , Bπk . We discuss how to analyze the performance of this algorithm and how
to pick the permutations to use. We also generalize the algorithm to work with
hierarchies of blocks to get different performance bounds.

The adversary chooses an interleaving of the instruction streams to maximize
the amount of work. We can summarize this order by looking at the order in which
the completion bits are set to 1. For a fixed interleaving of instructions, there is a
permutation α = α1, . . . , αk such that the assignments to the completion bits occur
in the order bα1

, . . . , bαk .
A processor succeeds on a block write if the completion bit is zero when the write

starts, so that the processor writes to the cells of the block. We want to be able to
compute the maximum number of successful block writes for a processor, given the
processor’s permutation π and the adversaries interleaving α. A processor maximizes
its number of successful block writes by having the writes occur as early as possible
in the interleaving sequence subject to the constraint that they are consistent with α.
For example, suppose π = (4, 3, 1, 5, 2, 6) and α = (3, 4, 6, 1, 2, 5). The processor can
succeed in its writes to blocksB4, B1, andB5. In general, a processor can succeed in its
write to block Bπi , if the blocks Bπ1

, . . . , Bπi−1
are completed before Bπi according the

to permutation α. This means that πi occurs in α after π1, . . . , πi−1. The permutation
α−1 gives the position of i in the permutation α, so the permutation α−1π gives the
position of πi in α.1 In the example, α−1 = (4, 5, 1, 2, 6, 3) and α−1π = (2, 1, 4, 6, 5, 3).
If πi occurs after π1, . . . , πi−1, this means that (α−1π)i > (α−1π)1, . . . , (α

−1π)i >
(α−1π)i−1, so i is a left-to-right maxima of α−1π. This result is summarized in the
following lemma.

Lemma 2.1. Suppose that a processor performs its block writes in the order
Bπ1

, . . . , Bπk and the adversary causes the completion bits to be written in the order

1 For permutations A and B, the composition permutation AB is defined (AB)i = ABi .

ALGORITHMS FOR THE CERTIFIED WRITE-ALL PROBLEM 1279

bα1
, . . . , bαk . The maximum number of successful block writes for the processor is

bounded by the number of left-to-right maxima in α−1π.

We shall now turn our attention to bounding the number of left-to-right maxima
in a set of permutations before returning to the write-all algorithms.

3. Contention of permutations. We define the contention of a set of permu-
tations in order to quantify the worst case work that an adversary can cause. This
allows us to express our bounds in terms of a simple combinatorial quantity. In this
section, we assume that permutations are over the set {1, . . . , n} unless we say other-
wise. A random permutation is a permutation which has been chosen uniformly from
the set of all permutations of {1, . . . , n}, and a set of random permutations is a set of
independently chosen random permutations. The harmonic series is Hn =

∑n
j=1

1
j .

This quantity occurs in our bounds on contention of permutations. The value of Hn

is very close to the natural logarithm, satisfying the bound lnn ≤ Hn ≤ lnn+ 1.

Let π = π1, . . . , πn be a permutation. We say πi is a left-to-right maxima if
πi > πk for k < i. It is well known that the expected number of left-to-right maxima
in a random permutation is Hn [Knu73]. We need a bound on the expected number
of left-to-right maxima in a set of n random permutations.

We use LR(π) to denote the number of left-to-right maxima in a permutation π
and LR(S) to denote the total number of left-to-right maxima in a set S of permuta-
tions, so LR(S) =

∑
π∈S LR(π).

We begin with a lemma which can be used to analyze the distribution of LR(π)
when π is a random permutation.

Lemma 3.1. Suppose π = π1, . . . , πn is a random permutation. For 1 ≤ i ≤ n,
let Xi = 1 if πi is a left-to-right maxima and Xi = 0 otherwise. The random variables
X1, . . . , Xn are independent random variables with Prob[Xi = 1] = 1

i .

Proof. The proof is by induction. The key to the proof is to generate random
permutations by an algorithm which converts a random permutation on {1, . . . , n−1}
into a random permutation on {1, . . . , n} without changing the values ofX1, . . . , Xn−1.

Our method for generating a random permutation is as follows:

1. Construct a random permutation π′ = π′1, . . . , π
′
n−1 on {1, . . . , n− 1}.

2. Choose a random value r from {1, . . . , n}. Let πn = r. For i < n, let πi = π′i
if π′i < r and πi = π′i + 1 if π′i ≥ r.

πn is a left-to-right maxima if and only if r = n, so Prob[Xn = 1] = 1
n . This

holds for any permutation π′, so there is no conditioning between the X1, . . . , Xn−1

and Xn, so the random variables are independent.

It follows from Lemma 3.1 that if S is a set of n random permutations, then the
expected size of LR(S) is nHn. We need to show that it is very unlikely for LR(S)
to be larger than cnHn for some c. Our proof relies on a “Chernoff bound” due to
Raghavan. We restate his result here for completeness.

Lemma 3.2 (Raghavan). Let X1, X2, . . . , Xr be a sequence of independent Bernoulli
trials and let Ψ = X1 +X2 + · · ·+Xr. Suppose Exp[Ψ] = m. For δ > 0,

Prob[Ψ > (1 + δ)m] <

(
eδ

(1 + δ)(1+δ)

)m
.

Proof. See [Rag88, Theorem 1].

Lemma 3.3. Let S be a set of n random permutations. The probability that
LR(S) > 3nHn is at most 1

2nn! .

1280 RICHARD J. ANDERSON AND HEATHER WOLL

Proof. Let S = {π1, . . . , πn} be a set of random permutations. If n ≤ 3 the result
is trivial, so we assume n ≥ 4. Let Xij be a random variable that is one if πij is a

left-to-right maximum in πi and zero otherwise. The key observation for the proof is
that this is a set of independent random variables. It is clear that random variables
which correspond to different permutations are independent, and Lemma 3.1 shows
that random variables associated with the same permutation are also independent.

Let Ψ =
∑
i

∑
j Xij . Since Prob[Xij = 1] = 1

p−j+1 , we have Exp[Ψ] = nHn.
Applying Lemma 3.2 with δ = 2

Prob[Ψ > 3n lnn] <

(
e2

33

)nHn
<

(
1

e

)nHn
≤
(

1

e

)n lnn

=
1

nn
<

1

2nn!
.

(We use the assumption that n ≥ 4 in the last inequality.)
For permutations π and α, the contention of π with respect to α (denoted

Cont(π, α)) is defined to be LR(α−1π). For a set S of permutations and a permutation
α, the contention of S with respect to α is defined Cont(S, α) =

∑
π∈S Cont(π, α).

The maximum contention of S is Cont(S) = maxα Cont(S, α). We will show that
there exists a set S of n permutations with Cont(S) ≤ 3nHn. First, we show that
Lemma 3.3 applies, and then we prove the theorem using a probabilistic argument.

Lemma 3.4. Let α be a fixed permutation and S a set of n random permutations.
The probability that Cont(S, α) > 3nHn is at most 1

2nn! .
Proof. The set of permutations S′ = {α−1π | π ∈ S} is a random set of per-

mutations since multiplication by a fixed permutation can be viewed as a one-to-one
mapping. Lemma 3.3 applies directly to give the result.

We now prove that there exists a set of permutations with low contention. Our
proof is based on the probabilistic method pioneered by Erdös [ES74], where we show
the existence of a set with a certain property by showing that a random set has the
property with probability greater than zero.

Theorem 3.5. Let S be a random set of n permutations. The probability that
Cont(S) > 3nHn is at most 1

2n .
Proof. We say that a set S of n permutations is bad for a permutation α if

Cont(S, α) > 3nHn. By Lemma 3.4 the probability that a random set of n permuta-
tions is bad for a fixed α is less than 1

2nn! . Summing over all permutations α shows
that with probability less than 1

2n , a random set of n permutations is bad for some
α.

Corollary 3.6. There exists a set of S permutations with Cont(S) ≤ 3nHn.

4. Randomized algorithms for the write-all problem. We use the results
of the previous sections to derive several write-all algorithms. The algorithms differ in
their ratios of processors to memory locations. The algorithms perform block writes
in an order given by a random set of permutations. The following lemma relates the
amount of work to the contention.

Lemma 4.1. Let S = π1, . . . , πp be a set of permutations on 1, . . . , p. Suppose
that processor j performs its block writes in the order Bπj1

, . . . , Bπjp . The number of

successful block writes is at most Cont(S).
Proof. If the adversary fixes the order of writes to b1, . . . , bp to the permutation

α, then Lemma 2.1 says that the number of successful block writes for processor j is
at most Cont(πj , α). If we sum over all processors, the number of successful block
writes for interleaving α is at most Cont(S, α). Hence, Cont(S) is an upper bound on
the number of successful block writes.

ALGORITHMS FOR THE CERTIFIED WRITE-ALL PROBLEM 1281

Our first algorithm is for the case n = p2, so we want to write to p2 memory
locations using p processors. In this case, we use the block write algorithm described
in section 2. The memory is divided into p blocks of size p. A set S = {π1, . . . , πp} of
random permutations on {1, . . . , p} is constructed. The code for processor j follows.

BlockWriteI
for i := 1 to p
k := πji ;
if bk = 0

write Bk;
bk := 1;

By Lemma 4.1 the number of successful block writes is bounded by 3pHp with
probability 1 − 1

2p . Each processor does O(p) additional work in testing completion
bits, so the total work is O(p2 log p) with high probability.

To improve the result, we would like to decrease the number of memory cells per
processor yet still maintain efficiency. We give another randomized algorithm which
reduces the block size to

√
p. We do this by generalizing the BlockWriteI algorithm to

use a two-level hierarchy of blocks. The big blocks are B1, . . . , B√p with completion
bits b1, . . . , b√p. Block Bi is divided into small blocks Bi1, . . . , Bi√p with completion
bits bi1, . . . , bi√p. The big blocks have size p and the small blocks have size

√
p.

The processors are numbered Pij for 1 ≤ i, j ≤ √p. We uses a set of
√
p random

permutation S = π1, . . . , π
√
p over {1, . . . ,√p}.

The code for processor Pij follows.

BlockWriteII
for k := 1 to

√
p

s := πik;
if bs = 0

for l := 1 to
√
p

t := πjl ;
if bst = 0

write Bst;
bst := 1;

bs := 1;

Lemma 4.2. For a random choice of permutations, the algorithm BlockWriteII
has O(p3/2 log2 p) work with probability at least 1− 1

2
√
p .

Proof. We divide the processors into groups Gi = {Pi1, . . . ,Pi√p}. A group Gi
succeeds in a block write to Bk if at least one processor in the group succeeds. By
considering permutations of writes to b1, . . . , b√p, Lemma 4.1 implies that the number
of successful group writes is at most Cont(S).

When group Gi has a successful write to Bk, we make the pessimistic assumption
that all processors in the group succeed. Lemma 4.1 now implies that the number of
successful writes by processors in Gi to the small blocks in Bk1, . . . , Bk√p is at most
Cont(S), and the associated work is O(

√
pCont(S) + p). Putting these two together,

we get a work bound of
√
pCont2(S) + pCont(S). Theorem 3.5 implies that this is

O(p3/2 log2) with probability at least 1− 1
2
√
p .

5. Deterministic algorithm for the write-all problem. We can adapt the
ideas used in the randomized algorithm to get a deterministic algorithm. The only
use of randomness is that we do not know how to construct a set of permutations
with low contention, so we rely on using a random set, which has low contention with

1282 RICHARD J. ANDERSON AND HEATHER WOLL

overwhelming probability. In our deterministic algorithm we increase the number of
levels of recursion. As the number of levels of recursion increases, the size of the
permutations decreases. When we reduce the size of the permutations used to a
constant q, we claim that we can find a good set in constant time by a brute force
search. The brute force algorithm tests every set of q permutations by evaluating the
set’s contention with respect to all permutations. This takes O(

(
q!
q

)
q!q2 log q) time,

which is a constant.
We show that for any ε > 0 there exists a deterministic p processor algorithm for

writing to p-memory cells that takes O(p1+ε) work. Suppose p = qd for integers q and
d. We view the computation as taking place on a q-ary tree of height d. Each internal
node of the tree contains a single bit, which corresponds to the completion bit of a
block, and the leaf nodes contain the memory cells. We use a set S = {π1, . . . , πq}
of permutations over {1, . . . , q} with Cont(S) ≤ 3qHq. The existence of such a set
is guaranteed by Corollary 3.6. When a processor is at a node, it visits the children
of that node in an order given by a permutation of S. We label the processors with
distinct strings of length d over the alphabet {1, . . . , q}. Each processor chooses a
permutation to use for all of the nodes at a particular level of the tree. The choice of
permutation is based upon the label of the processor. The processor labeled q1 · · · qd
considers the children of a node on level l in the order given by πql .

We give the code for the recursive algorithm BlockWriteIII. The blocks are labeled
Blα where α is a string of length l over {1, . . . , q}, and the completion bits are labeled
blα. The algorithm assigns 1’s to all of the blocks Bdα. We give the code for the
processor q1 · · · qd. The initial call is BlockWriteIII(0, λ).

BlockWriteIII(l, α)

if l = d then

Blα := 1

else

for i := 1 to q do

t := π
ql
i ;

if bl+1
α = 0

BlockWriteIII(l + 1, αt);

bl+1
αt := 1;

Since each processor will write to all of the cells in the absence of other processors,
it is easy to see that the algorithm solves the write-all problem. We now establish the
work bound. We divide the processors into groups, with the groups indexed by strings
over {1, . . . , q}. For β, a string of length l, the group Glβ is the set of all processors

whose name has as a prefix the string β. We say that Glβ has a successful write to Blα
if some processor in Glβ makes a call to BlockWriteIII(l, α). The next lemma is the
key to the performance analysis.

Lemma 5.1. If Glβ has a successful write to Blα, then there are at most Cont(S)

pairs s and t where Gl+1
βs has a successful write to Bl+1

αt .

Proof. Suppose that Glβ has a successful write to Blα. Assume that every processor

inGlβ is successful in writing toBlα. A processor inGl+1
βs reads and writes bl+1

α1 , . . . , b
l+1
αq

in the order given by πs. This is precisely the situation covered in Lemma 4.1, so
the number of pairs of s and t where Gl+1

βs has a successful write to Bl+1
αt is at most

Cont(S).
We can now prove the main theorem. We refer to a successful write of Glβ to Blα

as a write on level l.

ALGORITHMS FOR THE CERTIFIED WRITE-ALL PROBLEM 1283

Theorem 5.2. For every ε > 0, there exists a deterministic O(p1+ε) work algo-
rithm for the p-processor, p-memory cell certified write-all.

Proof. It follows Lemma 5.1 that the number of successful writes to level l is at
most (Cont(S))l. Each successful write on level l can be performed by p

ql
processors,

so the work W is bounded by

W ≤ c
logq p∑
l=0

p

ql
(Cont(S))l ≤ cp

logq p∑
l=0

(3Hq)
l < cp(c′ log q)logq p

for some constants c and c′. Manipulating logarithms we have

log[(c′ log q)logq p] = logq p log log qc
′

= log p log log qc
′
/ log q.

So

W ≤ cp1+log log qc
′
/ log q.

Since log log qc/ log q → 0, for any ε > 0 we can find a q such that W ≤ p1+ε.

REFERENCES

[BKRS96] J. F. Buss, P. C. Kanellakis, P. L. Ragde, and A. A. Shvartsman, Parallel algo-
rithms with processor failures and delays, J. Algorithms, 20 (1996), pp. 45–86.

[ES74] P. Erdös and J. Spencer, The Probabilistic Method in Combinatorics, Academic
Press, New York, 1974.

[Knu73] D. E. Knuth, Searching and sorting, in The Art of Computer Programming, Vol. 3,
Addison–Wesley, Reading, MA, 1973.

[KS92] P. Kanellakis and A. Shvartsman, Efficient parallel algorithms can be made robust,
Distrib. Comput., 5 (1992), pp. 202–217.

[MSP90] C. Martel, R. Subramonian, and A. Park, Asynchronous PRAMs are (almost) as
good as synchronous PRAMs, in 31st Symposium on Foundations of Computer
Science, St. Louis, MO, 1990, pp. 590–599.

[Rag88] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating
packing integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

COMPUTATIONAL MODELING FOR GENETIC SPLICING
SYSTEMS∗

SAM MYO KIM†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1284–1309, October 1997 002

Abstract. A genetic splicing system involves DNA molecules mixed with enzymes and a ligase
that allow the molecules to be cleaved and recombined to produce other molecules in addition to the
original ones. Recently, using formal language theory, several researchers have investigated the string
properties of DNA molecules that may potentially arise from the original set of molecules under the
effect of the given restriction enzymes.

This paper introduces an algorithm which, given a splicing system whose initial set of strings
is regular, constructs a finite state automaton that recognizes the set of DNA molecules spliced by
the system. This algorithm solves the open problem of constructing such an automaton and shows
a direct approach to the proof of regularity of spliced languages.

Key words. finite state automata, languages, genetic splicing, DNA molecules

AMS subject classification. 68Q05

PII. S0097539794263890

1. Introduction. Genetic splicing is one of the most popular techniques in the
field of genetic engineering. It involves restriction enzymes and DNA molecules. Re-
striction enzymes are endodeoxyribonucleases that recognize specific nucleotide se-
quences in double-stranded DNA and cleave both strands of the double helix. In
molecular biology each double-stranded DNA molecule is represented in terms of
paired symbols from four alphabet A, T,C, and G, which denote adenine, cytocine,
guanine, and thymine, respectively. The pairs are A/T , T/A, G/C, and C/G. In
[5], Head used formal language theory for the study of the potential effect of a set of
restriction enzymes and a ligase that allow a set of DNA molecules to be cleaved and
reassociated to produce further molecules. He introduced a new generative formalism
called a splicing system as an abstract model for such a biological setting and analyzed
the associated languages.

The effect of a restriction enzyme is to cut the molecule into two pieces at a
specific pattern of the molecule which is defined by the enzyme involved. For example,
consider the effect of enzyme EcoRI represented by the pair of strings

GAATTC
CTTAAG

on a small hypothetical DNA molecule represented by the pair of strings
....GCTACTAGAATTCGCGCTA....
....CGATGATCTTAAGCGCGAT.... .

The enzyme works on the molecule by finding a substring pair identical to the enzyme,
indicated by the underlines. The enzyme cuts this molecule into two staggered pieces

....GCTACTAG AATTCGCGCTA....
....CGATGATCTTAA GCGCGAT.... .

∗ Received by the editors March 2, 1994; accepted for publication (in revised form) September
19, 1995. This research was partially supported by the Korea Science and Engineering Foundation
and National Science Foundation grants CCR-9114725 and CDA-8805910 while the author was a
professor at Rensselaer Polytechnic Institute.

http://www.siam.org/journals/sicomp/26-5/26389.html
† Department of Computer Engineering, Kyungpook National University, Taegu, Korea (kims@

bh.kyungpook.ac.kr).

1284

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1285

Notice that G/C on the left piece (in this notation G is from the top string of the
piece and C from the bottom string) and C/G on the right are not involved in the cut.
However, they are needed for finding the right pattern and the cut that takes place.
Enzymes are classified into two groups depending on where the overhangs occur. In
the above example, the left piece has the overhang on the lower half of the strand and
the right piece on the top half.

There are enzymes which cut the other way. For example, enzyme HhaI
GCGC
CGCG

will cut the above molecule as follows.
....GCTACTAGAATTCGCG CTA....
....CGATGATCTTAAGC GCGAT.... .

The staggered ends of a DNA molecule recombine with others if they match. For
example, if there exists the following piece cut from some other molecule

AATTACATT....
TGTAA....

then by combining with the first half of the fragments cut by EcoRI, the following
DNA molecule can be formed.

....GCTACTAGAATTACATT....
....CGATGATCTTAATGTAA.... .

In [5], it was proved that if the initial set of DNA strings is finite, the strings generated
by the system are strictly locally testable [5], and if the initial set is regular, the set of
strings generated is also regular [1]. In [2] an algorithm was presented which, given a
splicing system, constructs an automaton which recognizes the language of the splicing
system. This algorithm works only for the class of permanent splicing systems. It has
been an open problem to develop a more powerful algorithm that does not require
the permanence property of splicing systems.

We solve this open problem by introducing an algorithm which uses the so-called
monomialization technique that we have developed based on the concept of input
memory span of [7]. Given a splicing system with its initial set of strings given in
terms of the finite state transition graph of an automaton that recognizes the set, our
algorithm constructs an automaton that recognizes the set of strings generated by the
system. This paper also shows constructive proofs of the strict locality in [5] and the
regularity in [1] of the spliced languages.

Section 2 describes a formal definition of genetic splicing systems which abstracts
the above biological concept, investigates the language generated by a splicing system,
and introduces lemmas that will be used in sections 4 and 5. Section 3 develops useful
concepts and related lemmas concerning finite state transition graphs that will be used
in sections 4 and 5 together with the ones developed in section 2. Section 4 introduces
an algorithm which constructs an automaton for a given splicing system and analyzes
its output. Section 5 proves the main theorems of the paper and, finally, section 6
gives some concluding remarks.

2. Splicing systems. This section formally defines splicing systems, which were
first introduced in [5], and develops some lemmas that will be used in sections 4
and 5.

Definition 2.1 (see [5]). A splicing system is a quadruple S = (A, I,B,C),
where

A: a finite alphabet,
I: a set of initial strings in A∗, and

1286 SAM MYO KIM

B, C: finite sets of triples (u, x, v), u, x, v ∈ A∗.
Note that the size of I can be infinite. The sets B and C are called left-hand

patterns and right-hand patterns, respectively. A substring uxv in a string over the
alphabet A is called left-hand site if (u, x, v) is a left-hand pattern and right-hand site
if (u, x, v) is a right-hand pattern. String x is called the crossing of the site uxv. In this
paper we will use u, x, and v, and their subscript symbols to denote patterns and sites.
For a string wuxvz with a site uxv, we call wux the left half of wuxvz with respect to
site uxv, and xvz the right half of wuxvz with respect to site uxv. We assume that for
each string in I there are an unbounded number of copies available whenever they are
needed for splicing. In the biological sense, we may assume that alphabet A consists
of the four symbols each representing one of the four paired symbols A/T, T/A,G/C,
and C/G, and B and C represent, respectively, the two types of enzymes depending
on the locations of the overhangs.

Definition 2.2. For a splicing system S = (A, I,B,C), by L(S) we denote the
set of strings generated by S which is formally defined as follows.

(1) I ⊆ L(S).
(2) If w1u1xv1z1 and w2u2xv2z2 are in L(S), and u1xv1 and u2xv2 are sites of

the same hand, then w1u1xv2z2 and w2u2xv1z1 are also in L(S).

A language L is splicing language if there exists a splicing system S which gen-
erates L. In part (2) of the above definition, string w1u1xv2z2 is produced by splic-
ing w1u1xv1z1 and w2u2xv2z2 on sites u1xv1 and u2xv2, respectively. Notice that
w1u1xv2z2 is formed by writing the left half of w1u1xv1z1 w.r.t u1x1v1 followed by
the right half of w2u2xv2z2 w.r.t. u2xv2 with the crossing x overlapped. We will
denote this operation as follows:

w1u1xv1z1 6↪→ w2u2xv2z2 = w1u1xv2z2.

Notice that spliced sites are underlined. In the literature the following two classes of
splicing systems have been studied, in particular, for their language properties and
characterizations in terms of finite state automata.

Definition 2.3 (see [2]). A splicing system S = (A, I,B,C) is permanent if, for
each pair of strings w1u1xv1z1 and w2u2xv2z2 in A∗ with sites u1xv1 and u2xv2 of
the same hand, it has the following property: if y is a substring of w1u1x (respectively,
xv2z2) that is the crossing of a site in w1u1xv1z1 (respectively, w2u2xv2z2), then this
same substring y of w1u1xv2z2 is the crossing of a site in w1u1xv2z2.

Notice that the substring y must exist either in w1u1x of w1u1xv1z1 or in xv2z2
of w2u2xv2z2.

Definition 2.4 (see [5]). A persistent splicing system is defined as Definition
2.3 with the word “is” occurring in boldface replaced by “contains an occurrence of.”

Clearly, permanence implies persistence. To help the reader understand the above
two definitions, consider the following operation of a splicing system:

w1u1xv1z1 6↪→ w2u2xv2z2 = w1u1xv2z2.

Since x is a substring in w1u1x that is the crossing of a site in w1u1xv1z1, if the system
is permanent, then the same x in w1u1xv2z2 is the crossing of a site in w1u1xv2z2. If
the system is persistent, the same x contains an occurrence of the crossing of a site
in w1u1xv2z2. In other words, w1u1xv2z2 contains a site whose crossing is contained
in the substring x. Now, suppose that w1u1xv2z2 = w3u3x3v3z3 such that u3x3v3

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1287

is a site and the crossing x is contained in x3v3z3. Consider the following splicing
operation:

w4u4x3v4z4 6↪→ w3u3x3v3z3 = w4u4x3v3z3.

The substring x, which is contained in x3v3z3, also exists in w4u4x3v3z3 and, hence,
the same x should have the crossing of a site. Now, we investigate some interesting
splicing operations and introduce several lemmas that will be used in section 5. We
need the following well-known theorem (e.g., [4, p.7]).

Theorem 2.5. Let α, γ ∈ A+ and β ∈ A∗ such that αβ = βγ. Then there exist
α1, α2 ∈ A∗ and p ≥ 0 such that α = α1α2, γ = α2α1, and β = αpα1 = α1γ

p.
Note that p = b|β|/|α|c and |α1| = |β| mod |α|.
Lemma 2.6. Let α, β, γ ∈ A+ such that αβ = βγ. Then, for all k > |β|, string β

is a substring of both αk and γk.
Proof. By Theorem 2.5 there are α1, α2 ∈ A∗ such that α = α1α2 and β =

αpα1 = α1γ
p, where p = b|β|/|α|c ≥ |β|. Clearly, αp+1 = αpα1α2 = βα2 and

γp+1 = α2α1γ
p = α2β.

Lemma 2.7. Let w1, w2, w3 ∈ L(S) of a splicing system S = (A, I,B,C) such
that for some sites uxv, u1x1v1, and u2x2v2,

w1 = w11uxvz1 = w12u1x1v1y1z1,
w2 = w21uxvy0z2 = w22u2x2v2y2y0z2, and
w3 = w31u1x1v1y1z3 = w32u2x2v2y2y0z3,

where wij , z1, z2, z3 ∈ A∗ and y0 ∈ A+. Then w11uxv(y0)+z2 ⊆ L(S).
Proof. We prove the lemma by showing that w11uxv(y0)kz2 ∈ L(S), for all k ≥ 1,

by induction. The following splicing operation shows that w11uxv(y0)kz2 ∈ L(S) for
k = 1:

w11uxvz1 6↪→ w21uxvy0z2 = w11uxvy0z2.

Suppose that w11uxv(y0)iz2 ∈ L(S) for all i < k. We have w11uxv(y0)iz2 =
w12u1x1v1y1(y0)iz2. The following sequence of splicing produces w11uxv(y0)i+1z2:

(1) w31u1x1v1y1z3 6↪→ w12u1x1v1y1(y0)iz2 = w31u1x1v1y1(y0)iz2
= w32u2x2v2y2y0(y0)iz2,

(2) w22u2x2v2y2y0z2 6↪→ w32u2x2v2y2y0(y0)iz2 = w22u2x2v2y2y0(y0)iz2
= w21uxvy0(y0)iz2,

(3) w11uxvz1 6↪→ w21uxvy0(y0)iz2 = w11uxvy0(y0)iz2 = w11uxv(y0)i+1z2.
If we choose w1 = w2 = w3, z1 = z2 = z3, and uxv = u1x1v1y1 = u2x2v2y2

in Lemma 2.7, we get w11 = w12 = w31 and w21 = w22 = w32, and the first two
expressions of the lemma become redundant. For this simple case of the lemma we
present the following corollary.

Corollary 2.8. Let w ∈ L(S) of a splicing system. If w = w1uxvz = w2uxvy0z,
for some w1, w2, z ∈ A∗, y0 ∈ A+ and a site uxv, then w1uxv(y0)∗z ⊆ L(S).

Lemma 2.9. Let w1, w2, w3 ∈ L(S) of a splicing system S that satisfies the
condition of Lemma 2.7 above. Then there exists a constant c such that for all k ≥ c,
the string (y0)k contains the site uxv.

Proof. Conditions (1), (2), and (3) of Lemma 2.7 implies that strings w1, w2, and
w3 can be superposed as shown in Figure 1. In the figure, heavy vertical lines indicate
exact positions and others can vary. It is easy to see that the longest string among
uxvy0, u2x2v2y2y0, u1x1v1y1, and uxv has the others as suffixes. The figure shows
the case in which u2x2v2y2y0 is the longest.

1288 SAM MYO KIM

u2 x2 v2 y2 y0

v1 x1 v1 y1

u x v y0

z1

z3

z2w21

(w22)

w12

w11 u x v z1

(w31)

w32

Fig. 1. Superposing w1, w2, and w3 for Lemma 2.9.

Whichever the case, we have zuxv = uxvy0 for some z ∈ A+. By Lemma 2.6
with β = uxv and γ = y0, string y0

k contains the site uxv for all k > |uxv|.
Lemma 2.10. Let w1, w2, w3 ∈ L(S) of a splicing system S = (A, I,B,C) such

that
w1 = w11uxvz1 = w12u1x1v1y1vz1,
w2 = w21u

′xv′y0z2 = w22u2x2v2y2y0z2, and
w3 = w31u1x1v1y1z3 = w32u2x2v2y2y0z3,

for some wij , z1, z2, z3 ∈ A∗ and y0 ∈ A∗, where uxv and u′xv′ are sites of the same
hand, and u1x1v1 and u2x2v2 are arbitrary sites. Then w11ux(v′y0)+z2 ⊆ L(S).

Proof. Notice that w11ux = w12u1x1v1y1, w21u
′xv′ = w22u2x2v2y2, and w31u1x1v1y1

= w32u2x2v2y2y0. We will prove the lemma by showing that w11ux(v′y0)kz2 ∈ L(S)
for all k ≥ 1. The following splicing operation shows that w11ux(v′y0)kz2 ∈ L(S) for
k = 1:

w11uxvz1 6↪→ w21u
′xv′y0z2 = w11uxv

′y0z2.

For k > 1, suppose that w11ux(v′y0)iz2 ∈ L(S) for all i < k. Then by the
property of w1, we have

w11ux(v′y0)iz2 = w12u1x1v1y1(v′y0)iz2.

We can produce w11ux(v′y0)i+1z2 by the following sequence of splicing operations:
(1) w31u1x1v1y1z3 6↪→ w12u1x1v1y1(v′y0)iz2 = w31u1x1v1y1(v′y0)iz2

= w32u2x2v2y2y0(v′y0)iz2,
(2) w22u2x2v2y2y0z2 6↪→ w32u2x2v2y2y0(v′y0)iz2 = w22u2x2v2y2y0(v′y0)iz2

= w21u
′xv′y0(v′y0)iz2,

(3) w11uxvz1 6↪→ w21u
′xv′y0(v′y0)iz2 = w11uxv

′y0(v′y0)iz2
= w11ux(v′y0)i+1z2.

In Lemma 2.10 if w1 = w2 = w3, vz1 = z2 = z3, ux = u1x1v1y1, and u′xv′ =
u2x2v2y2, the first two expressions become redundant. For this simple case of the
lemma we present the following corollary.

Corollary 2.11. Let w ∈ L(S) of a splicing system S such that w = w1uxvz =
w2u

′xv′y0vz for some w1, w2, z ∈ A∗ and sites uxv and u′xv′ of the same hand. Then
w1ux(v′y0)∗vz ⊆ L(S).

Lemma 2.12. Let w1, w2, w3 ∈ L(S) of a splicing system S that satisfies the
condition of Lemma 2.10 above. If S is persistent, there exists a constant c such that
for all k ≥ c the string (v′y0)k contains a site.

Proof. It suffices to show that x is a substring of (v′y0)k. As for the proof of
Lemma 2.9, we can superpose w1, w2, and w3 as shown in Figure 2, which implies

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1289

zx = xv′y0 for some z ∈ A+. By Lemma 2.6 with γ = v′y0 and β = x, string x is a
substring of (v′y0)k for all k > |v′y0|.

u x vz1

x1 v1 y1 z3
(w32)

w22 u2 x2 v2 y2 y0 z2

w21 u′ x v′ y0 z2

(w12)

w31

w11

Fig. 2. Superposing w1, w2, and w3 for Lemma 2.12.

3. Automata and input memory spans. This section investigates finite state
transition graphs and develops some concepts and lemmas that will be used in sections
4 and 5 for constructing an automaton which recognizes the language of a given
splicing system. In this paper we use the notation of [9] for the automaton M =
(Q,A, δ, qst, F). The automata that our algorithm constructs is nondeterministic.
Thus, δ(p, x) ⊆ Q, for a state p ∈ Q and string x ∈ A∗. We write q ∈ δ(p, x) to
refer to a sequence of transitions in response to the input string x beginning at p
and ending at q. (Note that qst designates the start state of an automaton.) By a
graph we mean the state transition graph of the automaton, which is an edge-labeled
directed graph. Following the convention we allow an edge to have more than one
label. We assume that every state is reachable from the start state, and from every
state an accepting state is reachable. Hence, the graph does not have dead states.

A path is a sequence of, possibly repeating, states q0q1 . . . qn such that there is a
directed edge from qi to qi+1, 0 ≤ i < n. An accepting path is a path which starts
from the start state and ends in an accepting state. A span is a string of symbols
collected along a path one symbol from each edge. Notice that there can be more
than one span on a path because more than one symbol can be assigned on an edge.
If q ∈ δ(p, x), there is a path from p to q which has span x. An accepting span is
a span of an accepting path. By Ak (A≤k), we denote the set of strings of length k
(≤ k) over the alphabet A. By L(G) we denote the set of accepting spans in state
transition graph G, i.e., the language of the automaton represented by graph G. We
need the following definition which was introduced in [7].

Definition 3.1 (input memory span). Let M = (Q,A, δ, qst, F) be an automaton.
A string w is an input memory span (IMS) of state q if there is a state p such that
q ∈ δ(p, w). For a state q ∈ Q and a nonnegative integer k, the set of input memory
spans of order k of state q, denoted by IMS(q, k), is defined as follows:

IMS(q, k) = {x | x ∈ Ak, q ∈ δ(qst, wx), w ∈ A∗}
⋃
{x | x ∈ A<k, q ∈ δ(qst, x)}.

We can prove that this definition is equivalent to the statement of the following
lemma which is used for computing IMS(q, k) of all states q of a given automaton as
shown in Figure 3. We leave the proof of the lemma for the reader.

Lemma 3.2. Let q be a state of an automaton M = (Q,A, δ, qst, F); then
IMS(q, k) can be defined as follows.

(1) IMS(q, 0) = {ε} and, for all k ≥ 0, ε ∈ IMS(qst, k).

1290 SAM MYO KIM

(2) For k > 0, a ∈ A and x ∈ A∗ xa ∈ IMS(q, k), if and only if there exists
p ∈ Q such that x ∈ IMS(p, k − 1) and q ∈ δ(p, a).

Procedure Compute IMS(G, k)
(//G is a finite state transition graph which is defined as G = (A,Q, δ, qst, F).

This procedure computes IMS of order k of all states in G. //)
for each state q ∈ Q let IMS(q, 0) = {ε};
for i = 1 to k do

for each state q ∈ Q do
if q is the start state then let IMS(q, i) = {ε}

else let IMS(q, i) = ∅;
for i = 1 to k do

begin
for each state q ∈ Q do

if q ∈ δ(p, a), for some p ∈ Q and a ∈ A, then
for each x ∈ IMS(p, i− 1) put xa in IMS(q, i);

end;

Fig. 3. Algorithm for computing IMS.

Definition 3.3 (monomial state, monomial automaton). A state q is monomial
with respect to string x, if x 6∈ IMS(q, |x|) or x is the only IMS of length ≤ |x| of q,
i.e., {x} = IMS(q, |x|). An automaton is monomial w.r.t. string x if every state of
the automaton is monomial w.r.t. x. An automaton is monomial of order k if every
state of the automaton is monomial w.r.t. every string of length k.

If a state q of an automaton is not monomial w.r.t. a string x, we can transform the
automaton to an equivalent one such that the state is monomial w.r.t. x. Appendix
A shows an algorithm for monomializing a state transition graph G w.r.t. a string x.
(For now, ignore statements 5 and 11 which are for algorithm SPLICE in Appendix
B to block splitting “merged” transitions. We will be back to this later in section 4.)

The basic idea is state splitting. Let x = a1a2 . . . an, n ≥ 1, and xi = a1a2 . . . ai,
with x0 = ε. By definition, the graph G is monomial w.r.t. the null string ε. Suppose
that G is monomial w.r.t. string xi, i < n. If a state q is not monomial w.r.t. a string
xiai+1, then the algorithm splits q into two equivalent states, say q1 and q2, such that
IMS(q1, i+ 1) = {xiai+1} and xiai+1 6∈ IMS(q2, i+ 1). Figure 4 shows an example
of monomializing a graph w.r.t. string aaaa. Notice that state q in part (a) of the
figure, which is not monomial w.r.t. string aaaa, is split into two together with its
ancestors along the path (of shaded nodes) which has span aaaa.

Lemma 3.4. Let M be an automaton with n states and alphabet size c. Automaton
M can be monomialized to order k by increasing the number of states to no more than
nck+1.

Proof. By Definition 3.1, for a state q, we have

|IMS(q, k)| ≤ ck + ck−1 + · · ·+ c0 =
ck+1 − 1

c− 1
≤ ck+1.

Hence, by splitting each state into no more than ck+1 equivalent states we can
monomialize the automaton to order k. The resulting automaton will have no more
than nck+1 states.

Definition 3.5 (see [8]). For a string x ∈ A∗ and a nonnegative integer k, define

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1291

b

b

a

a

b
a

b

a

b

b

a

a

a

b
a

b

a

b

a

q

a

a

a

(a) (b)

a a

a a

a

q1q2

Fig. 4. Monomializing state q w.r.t. string aaaa.

fk(x): the prefix of x of length k,
tk(x): the suffix of x of length k, and
Ik+1: the set of all substrings of x of length k + 1.

A language L ⊆ A∗ is (k + 1)-testable in strict sense ((k + 1)-LTSS) if and only
if there exists finite sets α, β, and γ such that

x ∈ L⇐⇒ (fk(x) ∈ α)
∧

(tk(x) ∈ γ)
∧

(Ik+1(x) ⊆ β).

A language is strictly locally testable (or locally testable in the strict sense, or LTSS)
if it is (k + 1)-LTSS for some k ≥ 0.

In other words, a language is LTSS if its membership of a string x can be decided
by inspecting the substrings of x of some constant length. It is irrelevant to the order of
appearance of the substrings and other global properties of the string. An automaton
is LTSS if its language is LTSS. Theorem 3.6 below shows a simple necessary and
sufficient condition that the state transition graph of a reduced deterministic finite
automaton should have if it is LTSS.

In [5], it is shown that the languages generated by persistent splicing systems
are strictly locally testable if the initial set I is finite. This proof was based on an
algebraic property of locally testable languages. In section 5 we will give another
proof of this fact by showing that the automaton constructed in section 4 is strictly

1292 SAM MYO KIM

locally testable. For the proof we use the following property of the state transition
graphs of strictly locally testable automata that we introduced in [6].

Theorem 3.6 (see [6]). Let M = (Q,A, δ, qst, F) be a deterministic finite state
automaton which is reduced. The language L(M) is LTSS if and only if there is
no pair of distinct states p, q ∈ Q which are not dead state and w ∈ A+ such that
δ(p, w) = p and δ(q, w) = q.

In other words, an automaton is not LTSS if its state transition graph has two
distinct looping paths with the same span. For example, Figure 5(a) shows an au-
tomaton which violates Theorem 2.5 in two cases: one is δ(r, 0) = r and δ(q, 0) = q,
and the other is δ(p, 011) = p and δ(q, 011) = q. The automaton in Figure 5(b) is
LTSS.

(b)(a)

p

qrr q

p

1

00

0 0
1

1

1

1

1
0

0

Fig. 5. (a) An automaton which is not LTSS; (b) an LTSS automaton.

If the state transition graph of a nondeterministic automaton does not have two
identical looping paths, then it is LTSS because its reduced deterministic version of
the state transition graph will also have no such looping paths as we now prove.

Lemma 3.7. Let M = (Q,A, δ, qst, F) be a nondeterministic automaton having
the property that, for all p, q ∈ Q and a string x ∈ A+, if p ∈ δ(p, x) and q ∈ δ(q, x),
then p = q. Then the language L(M) is LTSS.

Proof. Let n = |Q|. Assuming the hypothesis of the lemma, we note that, for
all w1, w2 ∈ A∗ and y ∈ A+ such that both δ(qst, w1y

n) and δ(qst, w2y
n) are defined,

string w1y
iw3 ∈ L(M) if and only if w2y

iw3 ∈ L(M) for all i ≥ n.
Let M ′ = (Q′, A, δ′, q′st, F

′) be the reduced deterministic version of M . For a pair
of nondead states p′, q′ ∈ Q′ and y ∈ A+, suppose that δ′(p′, y) = p′ and δ′(q′, y) = q′.
Let w1, w2 ∈ A∗ such that δ(q′st, w1) = p′ and δ(q′st, w2) = q′. In the nondeterministic
automaton M , both δ(qst, w1y

n) and δ(qst, w2y
n) should be defined. Hence, for all

w3 ∈ A∗ and i ≥ n, string w1y
iw3 ∈ L(M) if and only if w2y

iw3 ∈ L(M). It follows
that string w1y

iw3 ∈ L(M ′) if and only if w2y
iw3 ∈ L(M ′), which implies that, for

all w3 ∈ A∗, δ(p′, w3) is in an accepting state if and only if δ(q′, w3) is. This implies
that p′ = q′. By Theorem 3.6, L(M) is LTSS.

We can easily extend Lemma 3.7 as follows.
Lemma 3.8. Let M = (Q,A, δ, qst, F) be a nondeterministic automaton. The

language L(M) is LTSS if for every pair of identical looping paths corresponding to
p ∈ δ(p, w) and q ∈ δ(q, w), for some p, q ∈ Q and w ∈ A+ in the transition graph,

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1293

the looping paths have a common state r such that r ∈ δ(p, w1) and r ∈ δ(q, w1) for
some prefix w1 of w.

Proof. Let w = w1w2. Since r ∈ δ(r, w2w1), the two looping paths can be merged
into a single looping path without affecting the language of the automaton. Let M ′

be the resulting automaton. By Lemma 3.7 L(M ′) is LTSS.

4. Constructing an automaton for a splicing system. This section de-
scribes an algorithm CONSTRUCT which, given a splicing system S = (A, I,B,C),
constructs the finite state transition graph of an automaton whose language is L(S).
Appendix B shows a high level description of the algorithm. We assume that I is
regular which is given in terms of the finite state transition graph G of an automaton
which recognizes I. Graph G is iteratively modified by subroutine SPLICE which
merges and links certain states until no such modifications are possible.

Let Gi, i ≥ 1, be the graph that results from ith iteration of the algorithm with
G0 = G. For each pattern (u, x, v), subroutine SPLICE modifies Gi in three major
steps in each iteration: state monomialization and merging in step I, linking in step
II, and state collapsing in step III. In steps I(1) and I(2) the algorithm monomializes
graph G w.r.t. uxv using algorithm Monomialize in Appendix A which was described
in section 3. Note that by statements 5 and 11 of the algorithm, if a state q has
incoming transitions which are marked as “merged” by step I-5 of algorithm SPLICE,
those “merged” transitions are kept merged either in q1 or q2 depending on whether
q1 has a marked incoming transition or not. Figure 6 shows what will happen if
the graph in Figure 5 is monomialized w.r.t. string aaaa with both of the incoming
transitions (thick edges) to the dark-colored state marked as “merged.”

For a pattern (u, x, v) of system S, let Q(uxv) denote the set of states p whose
IMS of length |uxv| contains uxv, i.e., uxv ∈ IMS(p, |uxv|), after the monomialization
step. Let Q(ux, v) denote the set of states q such that ux ∈ IMS(q, |ux|) and r ∈
δ(q, v) for a state r ∈ Q(uxv). In step I the algorithm finds Q(uxv) and Q(ux, v) for
each pattern (u, x, v) and merges all states in Q(uxv) into a single state, which we
will denote by MQ(uxv), and marks all converged transitions as “merged” (by step
I(5)). These “merged” transitions will be kept merged on a common state throughout
the computation.

In step II the algorithm constructs a link with span v′ from every state in Q(ux, v)
to state MQ(u′xv′) for every pattern (u′, x, v′) of the same hand with the same
crossing as that of pattern (u, x, v). We call states in Q(ux, v) link sources and the
stateMQ(u′xv′) link destination. Note that links are not marked as “merged”, though
they end at a merged state. Figure 7 illustrates merging and linking operations
for sites uxv and u′xv′, where highlighted nodes are merged states whose incoming
transitions corresponding to the solid edges will be marked as “merged.”

Step III collapses equivalent states that meet certain conditions. This step is
needed to guarantee that the graph does not grow indefinitely. We will go back to
this step for further details after Lemma 4.4.

Figure 8 shows an example of constructing an automaton which recognizes the
language generated by splicing system S = (A, I,B,C), where A = {a, b}, I =
{baa, aaba, bb}, B = {(b, a, a), (a, a, b), (ba, b, a), (ε, b, b)}, and C = ∅. Part (a) of
the figure is the state transition graph which recognizes I, part (b) is the result of
processing sites (b, a, a) and (a, a, b), and part (c) is the final graph after processing
sites (ba, b, a) and (ε, b, b). Notice that the highlighted state in part (b) is split into
two in part (c) by monomialization step. We leave it for the reader to show that the
language of the automaton is L(S) = {baa, aaba, bb, aaa, baba, babb, ba}.

1294 SAM MYO KIM

b

b

a

a

b

a

b

b

a

a

a

a

b

a

q

aa

(a) (b)

a

a

a a
a

b

b b

q1q2

Fig. 6. State splitting to monomialize state q w.r.t. aaaa.

Now, we study algorithm CONSTRUCT and develop several lemmas that will
be used in section 5 where we will prove that if G is the output of the algorithm
then L(G) = L(S). We first present the main theorem of this section which proves
that algorithm CONSTRUCT terminates under the presumption of finiteness of Gi,
which will be ascertained by Lemma 4.7.

Theorem 4.1. If the size of the graph Gi is finite for all i ≥ 0, then there
exists a k such that L(Gk) = L(Gk+1) and algorithm CONSTRUCT terminates
after (k + 1)st iteration.

Proof. Suppose that the algorithm does not terminate. This implies that during
each iteration subroutine SPLICE finds |Q(uxv)| > 1 for some pattern (u, x, v).
Since the size of the automaton is finite, it should be that Gi = Gj , for some j >
i ≥ 0, possibly with different labels on states. Suppose that in jth iteration it was
found that |Q(uxv)| > 1, and all the states in Q(uxv) have been merged into one
state by step I(5) of algorithm SPLICE. Then, in ith iteration, the same states in
Q(uxv) should have been merged into a state with all the converged transitions to
that state marked as “merged” by step I(5) of algorithm SPLICE. Since “merged”
transitions to a state are kept in a common state (by statements 5 and 11 of algorithm
Monomialize), algorithm SPLICE should have |Q(uxv)| = 1 in jth iteration. We
are in a contradiction. It follows that in jth iteration every nonempty set Q(uxv)

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1295

x

u′

x

u′

v′ v′

z4
z3

v

x

u

z2z1

v

x

u

(a) (b)

[uxv] [u′xv′]

z4

z3

z2z1

v′

v′

v

v

v

x

u

v

x

u

v′

v′

u′

x

u′

x

Fig. 7. Merging and linking.

should have only one element whose incoming transitions have been merged in previous
iteration. No state merging or linking will occur in this iteration and the graph does
not change, causing the algorithm to terminate in the next iteration. We take i = k
for the theorem.

For a string w, by SF (w) we denote the set of suffixes of w. Let p and q be two
states. By Ipq we denote the set of spans which start from p and end at q. By Fp and
Tp we, respectively, denote the set of spans that start from qst and end in p and the
set of spans that start from p and end at an accepting state. Formally,

Fp = {w | w ∈ A∗, p ∈ δ(qst, w)},
Tp = {w | w ∈ A∗, r ∈ δ(p, w), r ∈ F},
Ipq = {w | w ∈ A∗, q ∈ δ(p, w)}.

Lemma 4.2. Let p be a state in Q(uxv) which is not monomial w.r.t. a site uxv
after the monomialization step (i.e., step (I-2)) of algorithm SPLICE. For every
span w ∈ Fp, if uxv 6∈ SF (w), then there exists a span ŵ ∈ Fp which satisfies the
following conditions:

(a) uxv ∈ SF (ŵ),
(b) w = w1u

′x′v′y and ŵ = ŵ1u
′x′v′y, for some w1, ŵ1, y ∈ A∗ and a site u′x′v′,

such that w1u
′x′v′, ŵ1u

′x′v′ ∈ Fr, for a state r.
Proof. If there is no string ŵ that satisfies condition (a), then uxv 6∈ IMS(p, |uxv|)

and state p is monomial w.r.t. uxv by Definition 3.3. We are in a contradiction.
Suppose that w and ŵ do not satisfy condition (b) of the lemma. Then by algorithm
Monomialize, state r and all its descendents up to p along the path corresponding
to p ∈ δ(r, y) should have been split, with p split into two equivalent states p1 and
p2 which are monomial w.r.t. string uxv. It follows that no such state p can be
in Q(uxv) that is not monomial w.r.t. string uxv. Again, we are in a contradic-
tion.

1296 SAM MYO KIM

a

b

b

a

b

a

(c)(b)(a)

b a

a

b

a

a

b

a

a

b

a

b

a

a

b

a

a

b

a

a

a

b

a

a

b

Fig. 8. Constructing an automaton for S = (A, I,B,C), where A = {a, b}, I = {baa, aaba, bb},
B = {(b, a, a), (a, a, b), (ba, b, a), (ε, b, b)} and C = ∅.

Actually, condition (b) of Lemma 4.2 implies that both of the last transitions of
r ∈ δ(qst, w1u

′x′v′) and r ∈ δ(qst, ŵ1u
′x′v′) have mark “merged” given by algorithm

SPLICE when it computed Q(u′x′v′) and merged the set into a state. Consequently,
monomializing the graph w.r.t. string uxv, algorithm Monomialize should have kept
both of these marked transitions merged at state r. (Recall statements 5 and 11 of
algorithm Monomialize and Figure 6.) Similarly, the following lemma holds.

Lemma 4.3. Let p be a state in Q(ux, v) which is not monomial w.r.t. ux after
the monomialization step (i.e., step I(2)) of algorithm SPLICE for site uxv. For
every span w ∈ Fp, if ux 6∈ SF (w), then there exists a span ŵ ∈ Fp, not necessarily
distinct from w, which satisfies the following conditions:

(a) ux ∈ SF (ŵ),
(b) w = w1u

′x′v′y and ŵ = ŵ1u
′x′v′y, for some w1, ŵ1, y ∈ A∗ and a site u′x′v′,

such that both w1u
′x′v′, ŵ1u

′x′v′ ∈ Fr, for a state r.

Clearly, if w is an accepting span of Gi, it will remain as an accepting span,
possibly of a different path, after monomialization and merging in step I, linking in
step II, and link merging in step III. Hence, we have the following.

Lemma 4.4. For a string w ∈ A∗, if w ∈ L(Gi), then w ∈ L(Gi+1).

Now, we are ready to show that the size of graph Gi is bounded by some constant
factor of the size of the input G0. By Lemma 3.4, monomializing G0 increases its
size by no more than a constant factor. Clearly, merging does not increase the graph
size. Linking introduces new paths and consequently increases the graph size. If one
of the states on the links becomes a link source which in turn introduces new links,
recursively inducing an unbounded number of links, the graph may grow unbounded
and the algorithm will not terminate. Figure 9(a) illustrates this possibility, where
the highlighted node is a link destination MQ(u0xv0), and link sources in Q(u1x, v1)
are labeled by [u1x]. (In the figure only one link with span v0 is shown from each link

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1297

w′

(a)

[u1x]

[u1x]

[u1x]

[u1x]

[u1x]

v0

w′
v0

w′

v0

v0

w′

w a

w

a

w

a

w

a q
s

p

(b)

qp

s,t

[u1x] [u1x]

a

w

w′

vo

a

Fig. 9. Link recurrence and link merging.

source to the link destination.)

We solve this problem by merging those links whose link sources have the same
input memory spans of order equal to the length of the longest site of the system.
Part (b) of Figure 9 illustrates the result of this merging operation on part (a) of the
figure.

Let p, q ∈ Q(u1x, v1) and r = MQ(u0xv0) in Gi, and in step II the algorithm has
put links with span v0 from p to r and q to r. Let s and t be the first states on these
links as shown in Figure 9(a). (Note that in the figure v0 = aww′, where a,w,w′ are,
respectively, the spans on p to s, s to q, and q to r paths.) If we can show that s and
t are equivalent in the output graph of algorithm CONSTRUCT, we can merge them
and their successors pairwise.

Notice that if neither s nor t is an ancestor of the other, they are equivalent in
Gi. However, if a state on either p to r link or q to r link (not both) is later merged
into (or linked to) other state, s and t can no longer be equivalent. This is possible
because the states on p to r link may have different input memory spans from those of
states on q to r link. If t is a descendant of s on identical links that will be recursively
generated an unbounded number of times as shown in Figure 9(a), we can also merge
s and t and their successors pairwise because Ts = Tt = w(aw)∗w′Tr. The following
lemma formally presents this idea, which is implemented by step III of algorithm
SPLICE.

Lemma 4.5. Let r = MQ(u0xv0) and p, q ∈ Q(u1x, v1) for some sites u0xv0 and
u1xv1 of the same hand. Let k be the length of the longest possible site of the system.
If IMS(p, k) = IMS(q, k), then we can merge the two links from p to r and from q

1298 SAM MYO KIM

to r, excluding p and q, into a single link without affecting the language of the output
graph from algorithm CONSTRUCT .

Proof. Let ps0s1 . . . sn be p to r link and qt0t1 . . . tn be q to t link, where sn =
tn = r. Since IMS(p, k) = IMS(q, k), for a site u′x′v′, state si is in Q(u′x′, v′) if
and only if ti is in Q(u′x′, v′), and si is in Q(u′x′v′) if and only if ti is in Q(u′x′v′).
Hence, if si is merged into (or linked to) a state, ti will be merged into (or linked to)
the same state. States si and ti remain equivalent throughout the computation. We
can merge the two links by collapsing si and ti pairwise, for all i, 0 ≤ i ≤ n, without
affecting the language of the graph.

Lemma 4.6. If I is given in terms of a finite state transition graph G0, then, for
every i ≥ 0, the number of linking states in Gi is finite.

Proof. Let c = |A|, and let k1 and k2, respectively, be the length of the longest
possible site of the splicing system and the length of the longest link. After step III no
two separate links exist from a pair of link sources p and q which are linked to the same
destination with the property that IMS(p, k1) = IMS(q, k1). Let µ = ck1+1, which
is the largest possible size of the set of IMS of a state (recall the proof of Lemma 3.4).
There are no more than 2µ different sets of input memory spans of length ≤ k1 + 1.
Hence, there are no more than 2µ separate links in Gi that link to the same merged
state. There are no more than k2 − 1 states on a link, and at most |B|+ |C| merged
states exist in Gi. It follows that Gi has (k2− 1)(|B|+ |C|)2µ linking states, which is
finite.

Lemma 4.7. If I is given in terms of a finite state transition graph G0, then Gi
is finite for all i ≥ 0.

Proof. By Lemma 3.4 monomializing G0 increases the graph size by no more
than a constant factor of the graph size. By Lemma 4.6, the total number of states
introduced by linking is also no more than a constant factor of the given graph size.
If a link is introduced from a link source p to a link destination q, the IMS of q and its
descendents may change, and, consequently, monomialization during the subsequent
iterations of the algorithm may increase the number of states. However, monomializa-
tion introduces no more than k1 states per link introduced, where k1 is the maximum
site length of the system. Since the number of links is finite, throughout the compu-
tation, the number of states introduced by monomialization is also finite.

5. Characterization theorem. This section proves a characterization of ge-
netic splicing systems in terms of an automaton by showing that for a given splicing
system S, the automaton generated by algorithm CONSTRUCT recognizes the lan-
guage L(S). In particular, we prove the following three main theorems of the paper.

Theorem 5.1. Let G be the output graph from algorithm CONSTRUCT for a
splicing system S = (A, I,B,C) with I given in terms of the state transition graph of
an automaton whose language is I. Then L(G) = L(S).

Proof. Lemmas 5.9 and 5.10 will, respectively, prove that L(G) ⊆ L(S) and
L(S) ⊆ L(G).

Since I is given in terms of the finite state transition graph of an automaton whose
language is I, Theorem 5.1 implies a constructive proof of the following theorem which
was proved in [1] using alphabetic dominos.

Theorem 5.2. Let S = (A, I,B,C) be a splicing system. If I is regular, so is
L(S).

Theorem 5.3. Let S = (A, I,B,C) be a splicing system with finite I. If S is
persistent, then L(S) is LTSS.

Proof. We defer the proof till we prove Lemma 5.11.

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1299

To prove Theorem 5.1, we first investigate how each step of algorithm SPLICE
affects the language L(Gi). The algorithm has four operations that may affect the
language: monomialization (step I(2)), state merging (step I(5)), linking (step II(2)),
and link merging (step III). State monomialization and link merging do not affect the
language because the one splits a state into equivalent states and the other merges
equivalent states that will remain equivalent throughout the computation. By the
following two lemmas we shall investigate the effect of state merging and linking
operations.

Lemma 5.4. For a pattern (u, x, v) of a splicing system S, let G′ be the resulting
graph after merging the states in Q(uxv) of a graph G to a single state MQ(uxv) in
step I(5) of algorithm SPLICE. If L(G) ⊆ L(S), then L(G′) ⊆ L(S).

Proof. Let p, q ∈ Q(uxv). Clearly, all accepting spans that are introduced by
merging p and q are in the following set (Fp + Fq)(Ipq + Iqp)

∗(Tp + Tq). (Recall the
notation of Fp, Tp, and Ipq from section 4.) No other spans are affected by the
operation. Hence, for the proof it is enough to show the following:

(Fp + Fq)(Ipq + Iqp)
∗(Tp + Tq) ⊆ L(S).

Let w ∈ Fp, w′ ∈ Fq, z ∈ Tp, z′ ∈ Tq, and ykyk−1 . . . y1 ∈ (Ipq + Iqp)
∗, for some k ≥ 0,

where yi is either in Ipq or in Iqp. Let Yki = ykyk−1 . . . yi, Yii = yi, and Y0i = ε. For
the proof it is enough to show that, for all k ≥ 0,

(w + w′)Yk1(z + z′) ⊆ L(S).

We show this by induction on k. Since p ∈ Q(uxv), by Lemma 4.2, for every
w ∈ Fp, if uxv 6∈ SF (w), there exists ŵ ∈ Fp such that uxv ∈ SF (ŵ), ŵ = ŵ1u1x1v1y
and w = w1u1x1v1y for some ŵ1, w1, y ∈ A∗ and a site u1x1v1. The same property
holds for every string w′ ∈ Fq.

For any pair of strings w ∈ Fp and w′ ∈ Fq, find ŵ ∈ Fp and ŵ′ ∈ Fq such that
uxv ∈ SF (ŵ), uxv ∈ SF (ŵ′), w = w1u1x1v1y, ŵ = ŵ1u1x1v1y, w′ = w′2u2x2v2y

′, and
ŵ′ = ŵ′1u1x1v1y. Since wz, ŵz, w′z′, ŵ′z′ ∈ L(G), by the hypothesis of the lemma we
have wz, ŵz, w′z′, ŵ′z′ ∈ L(S). With ŵz = ŵ0uxvz and ŵ′z′ = ŵ′0uxvz

′, the system
generates ŵz′ and ŵ′z as follows:

ŵ0uxvz 6↪→ ŵ′0uxvz
′ = ŵ0uxvz

′ = ŵz′,

ŵ′0uxvz
′ 6↪→ ŵ0uxvz = ŵ′0uxvz = ŵ′z.

It follows that

(ŵ + ŵ′)(z + z′) ⊆ L(S).

With wz = w1u1x1v1yz and ŵ(z + z′) = ŵ1u1x1v1y(z + z′), the system generates all
strings in w(z + z′) as follows:

w1u1x1v1yz 6↪→ ŵ1u1x1v1y(z + z′) = w1u1x1v1y(z + z′) = w(z + z′).

Likewise, with w′z = w′1u2x2v2y
′z and ŵ′(z + z′) = ŵ′1u2x2v2y

′(z + z′) the system
produces w′(z + z′) as follows:

w′1u2x2v2y
′z 6↪→ ŵ′1u2x2v2y

′(z + z′) = w′1u2x2v2y(z + z′) = w′(z + z′).

1300 SAM MYO KIM

It follows that for all w ∈ Fp, w′ ∈ Fq, z ∈ Tp, and z′ ∈ Tq,

(w + w′)(z + z′) = (w + w′)Y01(z + z′) ⊆ L(S).

Now, suppose that (w + w′)Yi1(z + z′) ⊆ L(S), for all i, 0 ≤ i < k. If yi+1 ∈
Ipq, clearly, wyi+1 ∈ Fq and hence, by Lemma 4.2 there exists ŵ′ ∈ Fq such that
uxv ∈ SF (ŵ′), wyi+1 = wi+1u1x1v1y and ŵ′ = ŵ′1u1x1v1y, for some wi+1, ŵ

′
1, y ∈

A∗ and a site u1x1v1. Since wyi+1z
′ ∈ L(G), by the hypothesis of the lemma we

have wyi+1z
′ ∈ L(S). By the induction hypothesis we have ŵ′Yi1(z + z′) ⊆ L(S).

With wyi+1z
′ = wi+1u1x1v1yz

′ and ŵ′Yi1(z + z′) = ŵ′1u1x1v1yYi1(z + z′) the system
generates all strings in wY(i+1)1(z + z′) as follows:

wi+1u1x1v1yz
′ 6↪→ ŵ′1u1x1v1yYi1(z + z′)

= wi+1u1x1v1yYi1(z + z′) = wyi+1Yi1(z + z′) = wY(i+1)1(z + z′).

If yi+1 ∈ Iqp, then w′yi+1 ∈ Fp and w′yi+1z ∈ L(G). Applying the same argument
above with the roles of p and q (and w and w′) interchanged, we can show that the
system generates w′Y(i+1)1(z + z′). It follows that

(w + w′)Y(i+1)1(z + z′) ⊆ L(S),

which implies that (w + w′)Yk1(z + z′) ⊆ L(S) for all k ≥ 0.
Lemma 5.4 is concerned with one merging operation in step I(5) of the algorithm.

Obviously, we can extend the lemma for a sequence of merging operations as follows.
Lemma 5.5. Let G′ be the resulting graph when step I of algorithm SPLICE

completes its merging operation on G for all sites. If G ⊆ L(S), then L(G′) ⊆ L(S).
Lemma 5.6. For two distinct patterns of the same hand (u, x, v) and (u′xv′),

which have the same crossing, let p ∈ Q(ux, v) and q = MQ(u′xv′) in a graph G. Let
G′ be the graph that is constructed from G by linking a path from p to q with span v′

in step II of algorithm SPLICE. If L(G) ⊆ L(S), then L(G′) ⊆ L(S).
Proof. Let r = MQ(uxv). Figure 10 illustrates the effect of the linking operation.

We first consider the case Iqp = ∅. Clearly, adding p to q path with span v′ in G will
result in adding the set Fpv

′Tq to L(G). Let w ∈ Fp and z′ ∈ Tq. We will show that

wv′z′ ∈ L(S). Let z ∈ Tr and ŵ′ ∈ Fq such that ŵ′ = ŵ′0u
′xv′. Notice that, since

q is a merged state, such ŵ′ exists by Lemma 4.2. Since wvz, ŵ′z′ ∈ L(G), by the
hypothesis of the lemma we have wvz, ŵ′z′ ∈ L(S). Since p ∈ Q(ux, v), by Lemma
4.3, there exists ŵ ∈ Fp such that ux ∈ SF (ŵ) (i.e., ŵ = w0ux for some w0 ∈ A∗),
w = w1u1x1v1y and ŵ = ŵ1u1x1v1y for some w1, ŵ1, y ∈ A∗ and a site u1x1v1. Since
ŵvz ∈ L(G), we have ŵvz ∈ L(S).

With ŵvz = ŵ0uxvz and ŵ′z′ = ŵ′0u
′xv′z′ the system produces ŵv′z′ as follows:

ŵ0uxvz 6↪→ ŵ′0u
′xv′z′ = ŵ0uxv

′z′ = ŵv′z′.

With ŵv′z′ = ŵ1u1x1v1yv
′z′ and wz = w1u1x1v1yz, the system generates

w1u1x1v1yv
′z′ = wv′z′ as follows:

w1u1x1v1yz 6↪→ ŵ1u1x1v1yv
′z′ = w1u1x1v1yv

′z′ = wv′z′.

It follows that Fpv
′Tq ⊆ L(S), which implies L(G′) ⊆ L(S).

Now, suppose that Iqp 6= ∅. Adding a p to q link induces a cycle as Figure 10
shows. For the proof we examine how the set of strings in FpTp+FqTq will be affected

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1301

u

x

v

z

u′

x

v′

v′

Iqp

q

p

r z′

ŵ0 ŵ′0

Fig. 10. Linking from p to q with span v′.

when the algorithm adds p to q path with span v′. Notice that FpTp is the set of
accepting spans in G that start with a string in Fp, and FqTq is the set of accepting
spans that start with a string in Fq. The set of spans in G′ that start from q and end
in an accepting state is

Tq + Iqp(v
′Iqp)

∗(vTr + (v′ + Ipq)Tq).

Notice that Iqp(v
′Iqp)

∗ denotes all spans that start from q and end in p. The second
term of the above expression denotes the set of strings that start with a span in Iqp
and end with a span in either in Tr or Tq. Let

R = Iqp(v
′Iqp)

∗(vTr + (v′ + Ipq)Tq).

In L(G′), the set of accepting spans which start with a string in Fq is Fq(Tq +R), and
the set of accepting spans which start with a string in Fp is Fp(Tp + (Ipq + v′)R). So,
for the proof of the lemma it is enough to show that

Fq(Tq +R) + Fp(Tp + (Ipq + v′)R ⊆ L(S).

Since FqTq +FpTp ⊆ L(S) by the hypothesis of the lemma, we only need to show that

FqR+ Fp(Ipq + v′)R ⊆ L(S).

We show this in two parts: FqR ⊆ L(S) and Fp(Ipq + v′)R ⊆ L(S).
Part I. Proof of FqR = FqIqp(v

′Iqp)
∗(vTr + (v′ + Ipq)Tq) ⊆ L(S). Let w′ ∈ Fq,

y0 ∈ Iqp, z ∈ Tr, z′ ∈ Tq and t ∈ v′ + Ipq. Let Yk1 = v′ykv
′yk−1 . . . v

′y1 ∈ (v′Iqp)
∗,

k ≥ 0, where Yii = v′yi and Y0i = ε, for all i, 1 ≤ i ≤ k. For the proof it is enough to
show the following:

w′y0Yk1(vz + tz′) ⊆ L(S).

1302 SAM MYO KIM

Since w′y0vz ∈ L(G), by the hypothesis of the lemma we have w′y0vz ∈ L(S).
Since w′y0 ∈ Fp and p ∈ Q(ux, v), by Lemma 4.3 there exists ŵ ∈ Fp such that
ux ∈ SF (ŵ), ŵ = ŵ1u1x1v1y, and w′y0 = w′1u1x1v1y for some ŵ1, w

′
1, y ∈ A∗ and

a site u1x1v1. Since ŵvz ∈ L(G), we have ŵvz ∈ L(S). Find ŵ′ ∈ Fq such that
u′xv′ ∈ SF (ŵ′). Since ŵ′z′ ∈ L(G), we have ŵ′z′ ∈ L(S) by the hypothesis of the
lemma.

Splicing ŵvz = ŵ0uxvz and ŵ′z′ = ŵ′0u
′xv′z′ the system generates ŵv′z′ as

follows:

ŵ0uxvz 6↪→ŵ′0u′xv′z′ = ŵ0uxv
′z′ = ŵv′z′.

Let y′ ∈ Ipq. Then ŵy′z′ ∈ L(G) and by the hypothesis of the lemma ŵy′z′ ∈ L(S).
For an arbitrary t ∈ v′ + Ipq, we know that ŵtz′ ∈ L(S). With ŵtz′ = ŵ1u1x1v1ytz

′

and w′y0vz = w′1u1x1v1yvz, the system generates w′y0tz
′ as follows:

w′1u1x1v1yvz 6↪→ ŵ1u1x1v1ytz
′ = w′1u1x1v1ytz

′ = w′y0tz
′.

Since w′y0vz ∈ L(S), we have proved that

w′y0(vz + tz′) = w′y0Y01(vz + tz′) ⊆ L(S).

Now, suppose that w′y0Yi1(vz+ tz′) ⊆ L(S), for some i, 0 ≤ i < k. For the proof
of Part I, we will show that w′y0Y(i+1)1(vz + tz′) ⊆ L(S).

Since y0 is an arbitrary string in Iqp, obviously, w′yi+1Yi1(vz+ tz′) ⊆ L(S). Since
w′y0 ∈ Fp, by Lemma 4.3 there exists ŵ ∈ Fp such that ux ∈ SF (ŵ), ŵ = ŵ1u1x1v1y,
and w′y0 = w′1u1x1v1y for some ŵ1, w

′
1, y ∈ A∗ and a site u1x1v1.

Let ŵ′ be a string in Fq such that u′xv′ ∈ SF (ŵ′). Clearly, ŵ′yi+1Yi1(vz+ tz′) ⊆
L(S). Since ŵvz ∈ L(G), by the hypothesis of the lemma we have ŵvz ∈ L(S).
Since ŵvz = ŵ0uxvz and ŵ′yi+1Yi1(vz + tz′) = ŵ′0u

′xv′yi+1Yi1(vz + tz′), the system
produces ŵv′yi+1Yi1(vz + tz′) by the following operation:

ŵ0uxvz 6↪→ ŵ′0u
′xv′yi+1Yi1(vz+ tz′) = ŵ0uxv

′yi+1Yi1(vz+ tz′) = ŵv′yi+1Yi1(vz+ tz′).

With w′y0vz = w′1u1x1v1yvz and ŵv′yi+1Yi1(vz+tz′) = ŵ1u1x1v1yv
′yi+1Yi1(vz+tz′),

finally the system produces w′y0Y(i+1)1(vz + tz′) by the following splicing operation:

w′1u1x1v1yvz 6↪→ ŵ1u1x1v1yv
′yi+1Yi1(vz + tz′)

= w′1u1x1v1yv
′yi+1Yi1(vz + tz′) = w′y0Y(i+1)1(vz + tz′).

It follows that w′y0Yk1(vz + tz′) ⊆ L(S), for all w′ ∈ Fq, y0 ∈ Iqp, z ∈ Tr, z′ ∈ Tq,
t ∈ v′ + Ipq, and Yk1 ∈ (v′Iqp)

∗. This implies that FqR ⊆ L(S).
Part II. Proof of Fp(Ipq+v′)R ⊆ L(S). Obviously, FpIpq ⊆ Fq. Since FqR ⊆ L(S)

from Part I of the proof, we have FpIpqR ⊆ L(S). Hence, for the proof it is enough
to show that Fpv

′R ⊆ L(S). Let w ∈ Fp. We will show that wv′R ⊆ L(S). Since
wvz ∈ L(G), we have wvz ∈ L(S) by the hypothesis of the lemma. Find ŵ′ ∈ Fq such
that u′xv′ ∈ SF (ŵ′). From Part I we know that ŵ′R ⊆ L(S).

If ux ∈ SF (w), then since wvz = w0uxvz and ŵ′R = ŵ′0u
′xv′R, the system

produces w0uxv
′R = wv′R by

w0uxvz 6↪→ ŵ′0u
′xv′R = w0uxv

′R = wv′R.

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1303

If ux 6∈ SF (w), then by Lemma 4.3 there exists ŵ ∈ Fp such that ux ∈ SF (ŵ),
ŵ = ŵ1u1x1v1y, and w = w1u1x1v1y for some ŵ1, w1, y ∈ A∗ and a site u1x1v1. Since
ŵvz ∈ L(G), we have ŵvz ∈ L(S). Since ŵvz = ŵ0uxvz, the system produces all
strings in ŵv′R as follows:

ŵ0uxvz 6↪→ ŵ′0u
′xv′R = ŵ0uxv

′R = ŵv′R.

Finally, since ŵv′R = ŵ1u1x1v1yv
′R and wvz = w1u1x1v1yvz, the system generates

all strings in wv′R by the following operation:

w1u1x1v1yvz 6↪→ ŵ1u1x1v1yv
′R = w1u1x1v1yv

′R = wv′R.

It follows that Fpv
′R ⊆ L(S).

Lemma 5.6 is concerned with one linking operation in step II. As for the merging
operation, we can extend this lemma for a sequence of linking operations.

Lemma 5.7. Let G′ be the resulting graph processed by step II of algorithm
SPLICE with graph G. If L(G) ⊆ L(S), then L(G′) ⊆ L(S).

Step III, which merges links, actually merges states that will remain equivalent
throughout the computation as it was shown by Lemma 4.5. Since Step III does not
change the language, we have the following.

Lemma 5.8. Let G′ be the resulting graph processed by step III of algorithm
SPLICE with graph G. If L(G) ⊆ L(S), then L(G′) ⊆ L(S).

Now, we are ready to present the two lemmas that prove Theorem 5.1.
Lemma 5.9. Let G be the output graph from algorithm CONSTRUCT for a

splicing system S = (A, I,B,C) with I given in terms of the state transition graph of
an automaton whose language is I. Then L(G) ⊆ L(S).

Proof. By Lemma 4.4, if w is in L(Gi), it is also in L(Gi+1). Clearly, L(G0) = I.
Since by definition I ⊆ L(S), we have L(G0) ⊆ L(S). By Theorem 4.1 algorithm
CONSTRUCT terminates after some finite nth iteration. Thus we have G = Gn.
Suppose that L(Gi) ⊆ L(S) for all i < n. By Lemmas 5.5, 5.7, and 5.8 we know that
L(Gi+1) ⊆ L(S), which implies that L(G) ⊆ L(S).

Lemma 5.10. L(S) ⊆ L(G) for the same G and S of Lemma 5.9.
Proof. Suppose L(S) − L(G) 6= ∅. Since L(S) is spliced starting with I and

I ⊆ L(S)
⋂
L(G), there should be a string w ∈ L(S) − L(G) that is generated by

splicing with some strings in L(S)
⋂
L(G). Let w = w0x1w1x2w2 . . . xkwk, for some

k ≥ 1, such that xi, 1 ≤ i ≤ k is a crossing of a pattern. (Notice that xi is a crossing
that is not necessarily embedded in a site.) This implies that L(G) should have
strings w0x1z0, y1x1w1x2z1, y2x2w2x3z2, . . . , ykxkwk, for some yi, zj ∈ A∗, 1 ≤ i ≤ k,
0 ≤ j ≤ k− 1, such that, for each i, the two xi’s that appear in each pair of adjacent
strings in the sequence are crossings which are embedded in sites of the same hand.
Let uixivi and u′ixiv

′
i be those two sites that have crossing xi.

Since w0x1z0, y1x1w1x2z1 ∈ L(G), algorithm SPLICE should have added an
accepting span w0x1w1x2z1 in step I or II of the algorithm when it processed the site
whose crossing is x1. Since the graph has two spans w0x1w1x2z1 and y2x2w2x3z2,
the algorithm should have added an accepting span w0x1w1x2w2x3z2 in step I or step
II of the algorithm when it processed crossing x2, and so on. Finally, the algorithm
should have added an accepting span w0x1w1x2w2 . . . xkwk, which is w. It follows
that w ∈ L(G), a contradiction.

In [5], it was shown that if I is finite set, L(S) is strictly locally testable. We
prove the same result by showing that the reduced deterministic version of M does

1304 SAM MYO KIM

not have two nondead states p and q such that δ(p, w) = p and δ(q, w) = q, for any
w ∈ A+, which is a necessary and sufficient condition that a reduced deterministic
finite automaton must satisfy to be strictly locally testable [6]. For the proof we need
the following lemma.

Lemma 5.11. Let y be a span of a cycle in Gi. If the system S is persistent and
|I| is finite, there is a constant c such that, for all k ≥ c, string yk contains a site.

Proof. If |I| is finite, graph G0 has no cycle. Clearly, during the computation
a new cycle will be introduced either by merging, linking, or link collapsing. More
specifically, a cycle will be introduced only when there exist two states p and q such
that p is an ancestor of q and either one of the following conditions is satisfied. Let
uxv and u′xv′ be sites of the same hand and let k be the length of the longest site.

(1) p, q ∈ Q(uxv).
(2) p = MQ(u′xv′) and q ∈ Q(ux, v).
(3) p, q ∈ Q(ux, v) such that IMS(p, k) = IMS(q, k) and there exists r =

MQ(u′xv′).

If condition (1) is satisfied, a cycle will be introduced when p and q are merged
in step I of the algorithm. If condition (2) is satisfied, step II will create a cycle when
it constructs a link from q to p with span v′. If condition (3) is satisfied, step III will
create a cycle when it collapses the two links from p to r and from q to r, both with
span v′.

Case (1). p, q ∈ Q(uxv). Let y0 ∈ Ipq. Step I of the algorithm merges p and q
and creates a cyclic with span y0. Let w3 ∈ Fp. Since p inQ(uxv), by Lemma 4.2
there exists w2 ∈ Fp such that w2 = w21uxv = w22u2x2v2y2 and w3 = w32u2x2v2y2.
Since w3y0 ∈ Fq, again by Lemma 4.2 there exists w1 ∈ Fq such that w1 = w11uxv =
w12u1x1v1y1 and w3y0 = w31u1x1v1y1. Let z ∈ Tq. We have three accepting spans
w1z, w2y0z, and w3y0z that have the following properties.

w1z = w11uxvz = w12u1x1v1y1z,
w2y0z = w21uxvy0z = w22u2x2v2y2y0z, and
w3y0z = w31u1x1v1y1z = w31u2x2v2y2y0z.

By Theorem 5.1, w1z, w2y0z, w3y0z ∈ L(S). By Lemmas 2.7 and 2.9, there exists
a constant c such that for all k ≥ c, the string (y0)k has a site.

Case (2). p = MQ(u′xv′) and q ∈ Q(ux, v). Let y0 ∈ Ipq. Linking q to p with
span v′ in step II, the algorithm creates a cycle with span v′y0. Let w3 ∈ Fp. Since p ∈
Q(u′xv′), by Lemma 4.2 there exists w2 ∈ Fp such that w2 = w21u

′xv′ = w22u2x2v2y2
and w3 = w32u2x2v2y2. Since w3y0 ∈ Fq, by Lemma 4.3 there exists w1 ∈ Fq such
that w1 = w11ux = w12u1x1v1y1 and w3y0 = w31u1x1v1y1. Let r = MQ(uxv) and
r ∈ Tr. We have accepting spans w1vz, w2y0vz, and w3y0vz that have the following
property:

w1vz = w11uxvz = w12u1x1v1y1vz,
w2y0vz = w21u

′xv′y0vz = w22u2x2v2y2y0vz, and
w3y0vz = w31u1x1v1y1vz = w31u2x2v2y2y0vz.

By Theorem 5.1, w1vz, w2y0vz, w3y0vz ∈ L(S), and by Lemmas 2.10 and 2.12
there exists a constant c such that for all k ≥ c, the string (v′y0)k contains a site.

Case (3). p, q ∈ Q(ux, v) such that IMS(p, k) = IMS(q, k) and there exists
r = MQ(u′xv′). Let s and t, respectively, be the first states of the links from p to r
and from q to r with span v′ that have been introduced by step II. Let a be the label
on the q to t transition, which is the first symbol of v′. Clearly, p to s transition has
the same label a. Let w ∈ Isq. Then, collapsing states s and t introduces a loop with
span aw. We will show that there is a constant c such that (aw)k contains a site for

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1305

all k > c. Obviously, aw ∈ Ipq. We will actually show that for any y0 ∈ Ipq, string
y0
k contains a site.

Let w1 ∈ Fp. We have w1y0 ∈ Fq. Suppose that q is not monomial w.r.t. ux.
By Lemma 4.3, we have w1y0 = w12u1x1v1y1 for some w12, y1 ∈ A∗ and a site
u1x1v1. (Notice that |ux| > |u1x1v1y1|. Otherwise, q should be monomial w.r.t. ux.)
Since IMS(p, k) = IMS(q, k), state p is also not monomial w.r.t. ux and w1 =
w11u1x1v1y1. Let z1 ∈ Tq. String w1y0z1 is an accepting span, and we have w1y0z1 =
w11u1x1v1y1y0z1 = w12u1x1v1y1z1. Since |y0| ≥ 1, we have u1x1v1y1y0 = zu1x1v1y1
for some z ∈ A+. By Theorem 5.1, w1y0z1 ∈ L(S), and by Corollary 2.8,
w11u1x1v1y1(y0)+z1 ⊆ L(S). By Lemma 2.9, there exists a constant c such that
for all k ≥ c the string (y0)k has a site.

Now, suppose that q is monomial w.r.t. ux. We have w1y0v ∈ Fr. Let z1 ∈ Tr.
Then w1y0vz1 is an accepting span. Since IMS(p, k) = IMS(q, k), state p is also
monomial w.r.t. ux. Hence, we have w1y0v

′z1 = w11uxy0v
′z1 = w11zuxv

′z1 for some
z1 ∈ A+. Since uxy0 = zux, by Lemma 2.6 there is a constant c such that y0

k contains
ux, for all k ≥ c. By the property of persistence there should be a constant c′ ≥ c
such that for all k ≥ c′, y0k has a site.

Now, we are ready to prove Theorem 5.3.
Proof. Let G be the output of algorithm CONSTRUCT. To prove that L(G) is

strictly locally testable, we show that the reduced deterministic version of G satisfies
Theorem 2.5. Suppose that the graph has a pair of states p and q such that δ(p, w) = p
and δ(q, w) = q for some y ∈ A+. Let Cp and Cq denote the cycles, respectively,
corresponding to δ(p, w) = p and δ(q, w) = q. By Lemma 5.11, there is a constant c
such that for all k ≥ c, the string wk has a site, say uxv. This implies that Cp and Cq
have states p′ and q′, respectively, such that p′, q′ ∈ Q(uxv). States p′ and q′ should
have been merged into a state r = MQ(uxv) by step I(5) of algorithm SPLICE. State
r belongs to both of the cycles Cp and Cq, and r ∈ δ(r, w2w1), for some w1 and w2

such that w = w1w2. By Lemma 3.8 the language L(G) is LTSS.

6. Concluding remarks. We have introduced an algorithm, which, given a
splicing system with its initial set of strings given in terms of the state transition
graph of an automaton that recognizes the set, constructs an automaton that rec-
ognizes the language generated by the system. This solves the open problem in [2].
With the construction we could show that if the system is persistent, the splicing lan-
guage is LTSS. This result also shows a constructive proof of regularity of splicing
languages when I is regular, which was proven in [1] by using an algebraic system
called alphabetic dominos.

The algorithm in [2] works for permanent splicing systems. Recently, one of the
reviewers commented that this algorithm had been extended to the class of so-called
twist-free splicing systems [3]. A pair of distinct patterns (u, x, v) and (w, y, z) are
twisted if there is another pair of patterns (u′, x, v′) and (w′, y, z′) such that either
one of the following conditions are satisfied.

(a) For some u1 ∈ A+ such that ux = u1u2, either one of u1 and w′ is suffix of
the other, and either one of u2 and z is prefix of the other.

(b) For some z2 ∈ A+ such that z = z1z2, either one of z2 and v′ is prefix of the
other, and either one of z1 and ux is suffix of the other.

A splicing system is twist free if it has no pair of twisted patterns. Twist freeness
implies both permanence and persistence. If a splicing system has a pair of twisted
patterns, a site can be destroyed. The splicing system in Figure 8 has one twisted
pair (ba, b, a) and (b, a, a). Our algorithm solves the problem of twisted patterns by

1306 SAM MYO KIM

monomializing the graph as shown in the figure (see the split states highlighted).
We can think of multihanded splicing systems S = (A, I,H1, H2, . . . , Hn), a gen-

eralization of the two-handed splicing model. Our algorithm and the main results can
be easily extended to such a generalization.

The automata that our algorithm constructs are nondeterministic like the other
algorithms introduced in [2] and [3]. It would be challenging to develop a practical
algorithm that can construct a deterministic automaton for a given splicing system.
There is considerable room for improvement in our algorithm. For the improvement
we may note that, in biology, sites are almost always 4, 6, or 8 bps long, and most
sites consist of reverse palindromes. Can we use these properties for more efficient
construction? Is the algorithm practical for such data? Can we improve it?

Appendix A.
procedure Monomialize(G, x)
(//This algorithm monomializes the finite state transition graph G of an automaton
M = (Q,A, δ, qst, F) w.r.t. string x ∈ A+. It is assumed that the automaton, which
is nondeterministic, has no ε transition.

The algorithm uses two subroutines Split1(G, q, q1, q2, c) and Split2(G, q, q1, q2, c).
Given a state q which is not monomial w.r.t. symbol c, algorithm Split1(G, q, q1, q2, c),
splits q into two equivalent states q1 and q2 and makes them monomial w.r.t. symbol
c such that IMS(q1, 1) = {c} and c 6∈ IMS(q2, 1). Given G which is monomial w.r.t.
a string x ∈ A+ and a state q which is not monomial w.r.t. xc, Split2(G, q, q1, q2, c)
splits q into two equivalent states q1 and q2 and monomializes them w.r.t. string xc
such that IMS(q1, |xc|) = {xc} and xc 6∈ IMS(q2, |xc|). Statements 5 and 11 are for
algorithm SPLICE in Appendix B to block splitting transitions marked as “merged.”
//)

begin
1. Let x = a1a2 . . . an;
2. for each state q such that q ∈ δ(p, a1), for some p ∈ Q, do
3. if there exits b 6= a1 such that q ∈ δ(r, b), for some r ∈ Q, then

begin
4. Split1(G, q, q1, q2, a1) and mark q1 with “mon”;
5. if there is a transition q1 ∈ δ(p, a1), p ∈ Q, which has mark “merged”

then change all transitions q2 ∈ δ(r, b), b ∈ A, r ∈ Q,
that have mark “merged” to q1 ∈ δ(r, b);

end
6. else mark q with “mon”;
7. for i = 2 to n do (// Monomialize G w.r.t. string a1a2 . . . ai. //)

begin
8. for each q ∈ Q such that q ∈ δ(p, ai), for some p which has mark “mon,”

do
9. if there exists a transition q ∈ δ(r, b) such that

either r has no mark “mon” or b 6= ai then
begin

10. Split2(G, q, q1, q2, ai) and mark q1 with m̂;
11. if there is a transition q1 ∈ δ(p, a1), p ∈ Q, which has mark

“merged”
then change all transitions q2 ∈ δ(r, b), b ∈ A, r ∈ Q
that have mark “merged” to q1 ∈ δ(r, b);

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1307

end
12. else mark q with m̂;
13. Erase marks “mon,” if any, from all states and then change marks m̂ to

“mon”; end;
14. Erase marks “mon,” if any, from all states;

end;

procedure Split1(G, q, q1, q2, c)
(// This procedure splits state q into two equivalent states q1 and q2 and monomializes
both of them w.r.t. symbol c such that IMS(q1, 1) = {c} and c 6∈ IMS(q2, 1). //)

begin
1. Introduce new states q1 and q2;
2. Let q1 and q2 be accepting states if state q is;
3. if q = qst then let q2 be the start state qst;
4. for every looping transition q ∈ δ(q, a), a ∈ A, do
5. if a = c then let q1 ∈ δ(q1, a) and q1 ∈ δ(q2, a)
6. else let q2 ∈ δ(q2, a) and q2 ∈ δ(q1, c);
7. for every transition q ∈ δ(p, a), for a ∈ A and state p 6= q do
8. if a = c then let q1 ∈ δ(p, a)
9. else let q2 ∈ δ(p, a);
10. for every transition s ∈ δ(q, a), for a ∈ A and state s 6= q do
11. let s ∈ δ(q1, a) and s ∈ δ(q2, a);
12. Delete q and all its incoming and outgoing transitions;

end;

procedure Split2(G, q, q1, q2, c)
(// This procedure splits q into two equivalent states q1 and q2 and monomializes
them w.r.t. xc if the state transition graph G is monomial w.r.t. a nonnull string x.
Assume that every state p is marked with “mon” if IMS(p, |x|) = {x} and state q is
not monomial w.r.t. string xc. //)

begin
1. Introduce new states q1 and q2;
2. Let q1 and q2 be accepting states if q is;
3. for every looping transition q ∈ δ(q, a), a ∈ A, do
4. let q2 ∈ δ(q2, a) and q2 ∈ δ(q1, a);
5. for every transition q ∈ δ(p, a), for a ∈ A and state p 6= q do
6. if a = c and p has mark “mon” then let q1 ∈ δ(p, a)
7. else let q2 ∈ δ(p, a);
8. for every transition s ∈ δ(q, a), for a ∈ A and state s 6= q do
9. let s ∈ δ(q1, a) and s ∈ δ(q2, a);
10. Delete q and all its incoming and outgoing transitions;

end;

Appendix B.

procedure CONSTRUCT (S)
(// S = (A, I,B,C) is a splicing system, where I is given in terms of the state
transition graph G of an automaton whose language is I. Using subroutine SPLICE,
this algorithm transforms G to G′ such that L(G′) = L(S). //)

1308 SAM MYO KIM

begin
Find the length k of the longest pattern;
repeat
SPLICE(G,B); SPLICE(G,C);

until (G is not changed);
end.

procedure SPLICE(G,X)
(//Given a set of strings in terms of the state transition graph G, this algorithm
transforms G to G′ such that L(G′) is exactly the set of strings generated by splicing
L(G) with pattern X. //)

begin
repeat

I. for each pattern (u, x, v) ∈ X do (// Merge states in Q(uxv).//)
begin

1. Compute IMS of length |uxv| of all states;
2. Monomialize(G, uxv);
3. Construct the sets Q(uxv) and Q(ux, v);
4. If |Q(uxv)| > 1 then
5. merge the set Q(uxv) into one state and mark all the converged

transitions as “merged”;
end;

II. for each pattern (u, x, v) ∈ X do (// Put links. //)
begin

1. if the set Q(uxv) is not empty then
2. for each pattern (u′, x, v′) ∈ X such that u 6= u′ or v 6= v′ do

add a path with span v′ from each r ∈ Q(ux, v) to the state MQ(u′xv′);
end;

III for each pattern (u, x, v) do (// Merge links.//)
for each pair p, q ∈ Q(ux, v) do

if IMS(p, k) = IMS(q, k) then merge the links from p to r and
from q to r, for every merged state r = MQ(u′xv′) with u 6= u′ or v 6= v′;

until (no states are merged in Sep I);
end;

Acknowledgments. The author thanks Robert McNaughton for many fruitful
discussions and suggestions. I am indebted to the reviewers for their helpful recom-
mendations, especially to the one who suggested the simple proofs for Lemmas 2.9
and 2.12.

REFERENCES

[1] K. Culik II and T. Harju, Splicing semigroups of dominos and DNA, Discrete Appl. Math.,
31 (1991), pp. 261–277.

[2] R. W. Gatterdam, Algorithms for splicing systems, SIAM J. Comput., 21 (1992), pp. 507–520.
[3] R. W. Gatterdam, DNA and Twist Free Splicing Systems, personal communication, 1995.
[4] M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA,

1978.
[5] T. Head, Formal language theory and DNA: An analysis of the generative capacity of specific

recombinant behaviors, Bull. Math. Biol., 49 (1987), pp. 737–759.

COMPUTATIONAL MODELING FOR SPLICING SYSTEMS 1309

[6] S. M. Kim and R. McCloskey, A characterization of constant-time cellular automata com-
putation, Phys. D, 45 (1990), pp. 404–419.

[7] R. Martin, Studies in Feedback-Shift-Register Synthesis of Sequential Machines, M.I.T. Press,
Cambridge, MA, 1969.

[8] R. McNaughton and S. Papert, Counter-Free Automata, M.I.T. Press, Cambridge, MA,
1971.

[9] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

FAST MANAGEMENT OF PERMUTATION GROUPS I∗

LÁSZLÓ BABAI† , EUGENE M. LUKS‡ , AND ÁKOS SERESS§

SIAM J. COMPUT c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1310–1342, October 1997 003

Abstract. We present new algorithms for permutation group manipulation. Our methods result
in an improvement of nearly an order of magnitude in the worst-case analysis for the fundamental
problems of finding strong generating sets and testing membership. The normal structure of the
group is brought into play even for such elementary issues. An essential element is the recognition of
large alternating composition factors of the given group and subsequent extension of the permutation
domain to display the natural action of these alternating groups. Further new features include a novel
fast handling of alternating groups and the sifting of defining relations in order to link these and
other analyzed factors with the rest of the group. The analysis of the algorithm depends on the
classification of finite simple groups. In a sequel to this paper, using an enhancement of the present
method, we shall achieve a further order of magnitude improvement.

Key words. permutation group algorithm, strong generating set

AMS subject classifications. 68Q40, 20B40

PII. S0097539794229417

1. Introduction. Since the size of a permutation group G on n letters can be
exponential in n, it is customary, for computational purposes, to specify G by a small
list of generators. However, the succinctness of such a representation raises the issue
of whether we can deal effectively with the groups that we can specify. Can one, for
example, find the order of G and test membership in G without enumerating all of
its elements?

In fact, in the late sixties, Sims developed efficient algorithms for permutation
group manipulation [Si70]. These included the key notion of a strong generating set
(SGS) which is the underlying concept in essentially all polynomial-time algorithms
in computational group theory. Given a chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 of
subgroups of G, an SGS with respect to this chain is a set T ⊂ G such that T ∩ Gi
generates Gi for each i. Sims’s algorithm uses the point stabilizer chain; that is, Gi
is the pointwise stabilizer of the first i points of the permutation domain.

While Sims’s methods for constructing an SGS have been widely used in compu-
tational group theory since their inception, the question of their asymptotic efficiency
was not resolved until 1980. Furst, Hopcroft, and Luks [FHL] observed that a version
of Sims’s algorithm runs in polynomial time, namely O(n6 + sn2) steps, where s is
the number of generators given for G. Subsequently, Knuth [Kn] and Jerrum [Je82],
[Je86] gave variants with running time O(n5 + sn2). All of these algorithms rest on
the most elementary group theory.

∗Received by the editors October 28, 1994; accepted for publication (in revised form) September
20, 1995.

http://www.siam.org/journals/sicomp/26-5/22941.html
†Department of Algebra, Eötvös University, Muzeum krt. 6-8, Budapest H-1088, Hungary and

Department of Computer Science, University of Chicago, 1100 East 58th Street, Chicago, IL 60637-
1504 (laci@cs.uchicago.edu). The research of this author was partially supported by NSF grant
CCR-9014562 and OTKA (Hungary) grant 2581.
‡Computer and Information Sciences Department, University of Oregon, Eugene, OR 97403

(luks@cs.uoregon.edu). The research of this author was partially supported by NSF grant CCR-
9013410.
§Department of Mathematics, Ohio State University, 231 West 18th Street, Columbus, OH 43210

(akos@math.ohio-state.edu). The research of this author was partially supported by NSF grants
CCR-9201303 and CCR-9503430.

1310

FAST MANAGEMENT OF PERMUTATION GROUPS I 1311

Since Knuth’s note of 1981 (a preliminary version of [Kn]) and Jerrum’s 1982
paper, the O(n5) bound has achieved notoriety and is generally believed to be the
best that can be obtained via Sims’s approach alone (cf. Remark 2.13). The main
result of this paper is the improvement of the worst case bound by nearly one order
of magnitude.

Theorem 1.1. Given a permutation group G by a list S of generators, |S| = s,
the following problems can be solved in O(n4 logc1 n+ sn2) time.

(a) Find a set of strong generators.

(b) Find the order of G.

(c) Test membership of any permutation in G. Additional tests cost only O(n2)
each.

(d) Find the pointwise stabilizer of a subset of the permutation domain.

(e) Construct a generator-relation presentation 〈X|R〉 of G in which |X| =
O(n logc2 n) and |R| = O(n2 logc3 n).

In order to avoid long timing expressions as in Theorem 1.1 and concentrate
on the essential part of the improvements, we introduce a “soft version” of the big-
O notation. For two functions f(n), g(n), we write f(n) = O∼(g(n)) if f(n) ≤
Cg(n) logc n (c, C are positive constants). Thus the time bound for basic permutation
group manipulation in Theorem 1.1 is O∼(n4 + sn2). We do not try, at this time, to
minimize the exponent of log n. Straightforward estimates give c1 = 7, c2 = 2, and
c3 = 4.

The new algorithms are not merely improved versions of previous SGS construc-
tions. All of those predecessors construct an SGS with respect to the chain of point
stabilizer subgroups. A key departure from the traditional approach is the use of
another sort of subgroup tower, one which is not easily observable solely in terms
of the action on the original permutation domain. Its very specification subsumes
knowledge of the group structure. We construct an SGS with respect to a subgroup
chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 such that each Gi is normal in G and the factor
groups Gi/Gi+1 are either products of isomorphic alternating groups or subgroups of
products of small primitive groups (“small” in this context means of order nc log n).

Naive divide-and-conquer of the permutation domain provides some normal sub-
groups of G in the kernels of induced actions on orbits or blocks of imprimitivity; the
new machinery comes into play precisely when such decomposition bottoms out. The
structure of large primitive groups allows an augmentation of the domain that read-
mits naive decomposition. This idea is part of the NC-procedure developed for the
same problem [BLS87]. However, the sequential algorithm cannot be viewed as the
sequential implementation of the parallel one. Even a knowledgeable implementation
of the relevant part of parallel ideas would require O∼(n6) at best.

The timing analysis depends on the classification of finite simple groups via infor-
mation on the order of primitive permutation groups whose socle is not the product
of alternating groups. We remark, however, that there is an elementary version of
the algorithm breaking the O(n5) barrier. Instead of the classification, we may use
Babai’s bound [Ba] on the order of uniprimitive groups and Pyber’s recent bound [Py]
on the order of doubly transitive groups to obtain an O∼(n4.5) algorithm. In fact, the
elementary algorithm is simpler in the sense that we do not have to detect alternating
groups in socles of primitive groups involved in G (unless the primitive group itself is
alternating or symmetric in its natural action on blocks of imprimitivity of G). Both
Babai’s and Pyber’s results are within a logarithmic factor (in the exponent) from
optimal; the loss in running time is due to the fact that we do not have elementary

1312 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

estimates for the order of primitive groups with nonalternating-type socle. We sketch
the elementary version in section 9.

We mention two further aspects which are important differences from previous
methods. Exploiting the normality of subgroups in the new subgroup chain, we first
obtain only normal generators, i.e., generators whose normal closure is the given
subgroup. Another difference is the novel handling of full symmetric and alternating
groups. We formulate the latter result as a separate theorem.

Theorem 1.2. From a given list of generators of the symmetric or alternating
group, one can construct an SGS with respect to the chain of point stabilizer subgroups
in O∼(n3 + sn2) time. (The term “construct” refers to the operations of taking prod-
ucts and powers of permutations.) Moreover, there is a Las Vegas algorithm achieving
the same goal in O∼(n2 + sn) expected running time.

A random algorithm is Las Vegas if it never returns incorrect answers. We require
that the SGS is constructed from the given generators via permutation multiplications
since we apply this result when the symmetric group is involved in a larger permuta-
tion group G and acts on blocks of imprimitivity of G. We can guarantee that a given
permutation from the symmetric group belongs to G only if it is constructed by the
aforementioned operations.

We remark that the random subproduct method, originally developed to prove
the random part of Theorem 1.2, was substantially extended by Babai, Cooper-
man, Finkelstein, Luks, and Seress [BCFLS91], [BCFLS95] to yield an elementary
Monte Carlo algorithm for the basic tasks mentioned in Theorem 1.1 which runs in
O(n3 log4 n + sn logn) time. (A Monte Carlo algorithm may return a wrong answer
with a fixed but arbitrarily small probability.)

In a sequel to this paper, we shall extend our method to achieve a further order
of magnitude improvement in the running time.

Theorem 1.3 (see [BLS]). Given a permutation group G by a list S of generators,
|S| = s, the following problems can be solved in O∼(sn3) time:

(a) All items listed in Theorem 1.1.

(b) Finding a composition series of G.

Let us remark that the length of the input is Θ(sn) so this is an O∼(n3) algorithm
as a function of the input length. For the more complicated task of computing a
composition series, Theorem 1.3 gives an improvement of five orders of magnitude
from Luks’s original algorithm [Lu87]. This result requires a deeper probe into the
structure of primitive groups with different types of socle, in the spirit of the O’Nan–
Scott theorem [Sc], [Cam].

Like the method of this paper, the O∼(sn3) algorithm examines the primitive
groups involved in G and locates the large alternating composition factors. It differs
in its handling of the nonalternating part of G and a reduction of the number of
“normal generators” for consecutive groups in the normal series. Specifically, the
arguments in sections 6 and 7 are improved. A part of these results appeared in
[BLS93].

As presented in sections 3–8, our O∼(n4) algorithm requires O∼(n3 + sn2) mem-
ory. In section 9 we indicate how to decrease the memory requirement to O∼(n2+sn).
Also, without loss in time efficiency, the algorithm can output Jerrum’s compressed
data structure [Je86] for an SGS with respect to the point stabilizer subgroup chain;
this requires only O(n2) space and supports membership testing in O(n2) time per
test.

At this point, our emphasis is on the theoretical improvement realized by our

FAST MANAGEMENT OF PERMUTATION GROUPS I 1313

algorithm. Practical computations often deal with so-called small-base groups, i.e.,
families of groups satisfying log |G| < logc n for some fixed constant c. For small-base
group inputs, the traditional algorithms run in O∼(n2) time and our method becomes
essentially a version of the traditional approach. The attention given to the small-
base case is, in part, due to the fact that interesting permutation representations of
the nonalternating simple groups tend to have a small base. However, it is also the
case that it has often been impractical to deal with large-base groups. Thus, aspects
of the new methods should be important in practice where there is a need to deal
with groups where log |G| is, say, proportional to n and when hardware is improved
to allow the usage of Θ(n2) memory for n in the tens of thousands.

2. Definitions and preliminaries. We refer to any standard text, e.g. [Ha],
for basic facts about groups. For permutation group concepts we refer to [Wi] and
[Cam]. We mention two sources of information on the classification of finite simple
groups [Go], [Car], but no knowledge of these works is required. Cameron [Cam] gives
a fine survey of all the consequences of the simple groups classification relevant to our
work.

2.1. Group theory. We write H ≤ G if H is a subgroup of G and H/G if H
is a normal subgroup of G.

Lemma 2.1 (see [Ha, p. 96]). Let H ≤ G and assume S is a set of generators of
G and R is a complete set of right coset representatives of G mod H. Then the set

{ρσρ−1
1 : ρ, ρ1 ∈ R, σ ∈ S, ρσρ−1

1 ∈ H}
generates H.

The generators described here are called Schreier generators of H; their number is
|S||G : H| (these are not necessarily distinct).

For Q ⊂ G, the normal closure 〈QG〉 of Q in G is the smallest normal subgroup
of G containing Q. More generally, for K ≤ G, 〈QK〉 is the smallest subgroup of
G containing Q and normalized by K. We say Q is a set of normal generators for
H if H = 〈QG〉. For τ, σ ∈ G, τσ denotes the conjugate σ−1τσ. A group G 6= 1
is called simple if it has no nontrivial normal subgroups. We call G semisimple
if it is the direct product of simple groups. If these simple groups are isomorphic
then G is characteristically simple. A composition series of G is any series 1 =
Gr/ · · · /G1/G0 = G where the quotients Gi−1/Gi are simple; these quotients are
the composition factors. The group G is solvable if all composition factors of G are
cyclic. We need the following well-known fact (see, e.g., [Sc]).

Proposition 2.2. Let H be a subgroup of the semisimple group G =
∏m
i=1 Ti

such that all Ti are simple nonabelian and H projects onto each factor. Then H is
direct product of “diagonal” subgroups; more precisely, the Ti can be arranged into
blocks of isomorphic groups so that, after a suitable renumbering of the factors,

H = Diag(T1 × · · · × Tk1)× · · · ×Diag(Tkr−1+1 × · · · × Tkr).
In other words, having identified the groups in each block, H consists precisely of the
elements of the form

(α1, . . . , α1), . . . , (αr, . . . , αr).

The socle of G is the subgroup generated by all minimal normal subgroups and
is denoted by Soc(G). The socle is semisimple.

1314 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

The automorphism group of G is denoted by Aut(G). Every element g ∈ G
induces an inner automorphism x 7→ g−1xg. The group of inner automorphisms,
Inn(G), is normal in Aut(G). The factor group Out(G) = Aut(G)/Inn(G) is the
outer automorphism group. One of the classification-dependent results required by
our algorithm analysis is the so-called Schreier conjecture.

Theorem 2.3 (Schreier conjecture). The outer automorphism group of a finite
simple group is solvable.

2.2. Permutation groups. The group of all permutations of an n-element set
A is denoted Sym(A), or Sym(n) if the specific set is unessential. Subgroups of
Sym(n) are the permutation groups of degree n. The even permutations of A form
the alternating group Alt(A) (or Alt(n)). We refer to Sym(A) and Alt(A) as the
giants. These two families of groups require special treatment in most algorithms (see
sections 5 and 8).

The support supp(π) of π ∈ Sym(A) consists of those elements of A actually
displaced by π, i.e., {a ∈ A : aπ 6= a}. The degree of π is deg(π) = |supp(π)|.

We say that G acts on A if a homomorphism G→ Sym(A) is given. This action
is faithful if its kernel is the identity. The orbit of a ∈ A under G is the set of images
{aγ : γ ∈ G}. G is transitive on A if there is only one orbit. We say G is t-transitive
if the action of G induced on the set of ordered t-tuples of distinct elements of A is
transitive (t ≤ n). The maximum such t is the degree of transitivity of G. The degree
of transitivity of the giants is ≥ n− 2.

Theorem 2.4. If G is 2-transitive and |G| ≥ n2+log n then G is giant.

This is an immediate consequence of the classification of doubly transitive groups,
which is essentially due to Curtis, Kantor, and Seitz [CKS]. Their work is based on
detailed knowledge of the finite simple group classification. For the list of doubly
transitive groups, see, e.g., [Cam].

Actually, we could use a weaker version of Theorem 2.4, with no loss in the
asymptotic analysis of running time. The following result has a strikingly simple,
elementary proof.

Theorem 2.5 (see [Py]). There exists an explicitly computable constant c such

that if G is 2-transitive and |G| ≥ nc log2 n then G is giant.

2.3. Orbits, orbitals, blocks, stabilizers. If G acts on A, the orbits of the
induced (componentwise) G-action on A×A are called orbitals [Si67]. The stabilizer
of x ∈ A is the subgroup Gx = {γ ∈ G : xγ = x}. If G is transitive on A then
there is a bijection between the orbitals of G and the orbits of Gx. For an orbital
Θ of G and x ∈ A, the (out)neighbors of x in the (di)graph (A,Θ) form the orbit
Θ(x) = {y|(x, y) ∈ Θ} of the stabilizer Gx. For B ⊂ A, we use GB for the pointwise
stabilizer

⋂
x∈B Gx of B, and G{B} for the setwise stabilizer {γ ∈ G : Bγ = B} of B.

If B ⊂ A is stabilized by G, then we denote by GB the restriction of G to B, so that
GB ≤ Sym(B). Then, G(B) = GB{B} denotes the image of the action of the setwise
stabilizer of B on B.

If G is transitive on A and Gx = 1 for some (any) x ∈ A, then G is said to be
regular. If G is transitive and D ⊆ A, D is called a block (for G) if for all γ ∈ G,
either Dγ = D or Dγ ∩D = ∅, and G is called primitive if no nontrivial blocks exist.
(Trivial blocks have 0, 1, or |A| elements.) If D is a block then the set of images of
D is called a block system and an action of G is induced on the block system. The
block system is minimal if that action is primitive.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1315

For section 4, we need the following elementary results on the structure of prim-
itive groups. They all follow from the O’Nan–Scott theorem [Sc] (cf. [Cam], [Lu87]).

Theorem 2.6. Let G ≤ Sym(A) be primitive. If Soc(G) is abelian then n = pd

for some prime p, A can be identified with the d-space over GF (p) and (via this
identification) G ≤ AGL(d, p), the group of affine transformations of A, and Soc(G) ∼=
Zdp is the group of translations of A.

Theorem 2.7. Let G ≤ Sym(A) be primitive. Then

Soc(G) = T1 × · · · × Td
where the Ti are isomorphic simple groups. If Soc(G) is nonabelian then G contains
a normal subgroup N such that

(a) Soc(G) ≤ N ≤ Aut(T1)× · · · ×Aut(Td);
(b) G/N is a subgroup of Sd;
(c) n ≥ 5d.
In the particular case that the isomorphic Ti are alternating groups, we say that

G is of alternating type.
Theorem 2.8. Let G ≤ Sym(A) be primitive. If G has more than one minimal

normal subgroup then G has precisely two minimal normal subgroups, each of order
|A|.

2.4. Primitive groups of Cameron type. A remarkable class of primitive
groups of alternating type is obtained as follows.

First we define a class of imprimitive groups. Let B be a set of k elements, k ≥ 5,
and 1 ≤ s < k/2. Let C = rB = B1∪̇ · · · ∪̇Br denote the disjoint union of r copies of
B. An s-transversal of C is a subset X ⊂ C such that |X ∩ Bi| = s for i = 1, . . . , r.

Let A denote the set of s-transversals and let n = |A| =
(
k
s

)r
. The wreath product

W (B, r) = Sym(B) o Sr ≤ Sym(C) consists of all permutations of C that respect the
partition {Bi}. Clearly,

Soc(W (B, r)) = Alt(B1)× · · · ×Alt(Br).

Now let W (B, r) ≥ G ≥ Soc(W (B, r)) and assume G acts transitively on the set of
blocks {Bi}. Under these conditions, the action ofG on A is primitive (and alternating
type, since Soc(G) = Soc(W (B, r))). We say that the primitive groups obtained this
way are of Cameron type.

Theorem 2.9 (see [Li]). If G is a primitive group of degree n and order > n9 log n

then G is of Cameron type.
This is the third consequence of the simple groups classification that we require.

The name “Cameron type” acknowledges the first version of Theorem 2.9 by Cameron
[Cam], who formulated the lower bound as > nc log n, without explicit determination
of the constant c = 9. For large n, c approaches 1. We remark that the actual value
of c plays no role in the algorithms; their analysis depends only on the existence of c.

2.5. Cameron schemes. For application in section 4, we introduce a combi-
natorial structure associated with the action of W (B, r) on A. Let A, B, C be as
above. For an s-transversal X ∈ A, let Xi = X ∩Bi. For X,Y ∈ A, let di = |Xi ∩ Yi|
and let f1 ≤ f2 ≤ · · · ≤ fr be the sorted sequence {di}. We call (f1, . . . , fr) the
intersection pattern of X and Y . Let us partition A×A according to intersection pat-
terns: A×A = R0 ∪ · · · ∪RN . We call the system C(n, k, s, r) = (A;R0, . . . , RN) the
Cameron scheme with parameters (n, k, s, r). This is a particular association scheme

1316 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

[Bos], [Del], [MS]; it includes the Hamming schemes (s = 1) and the Johnson schemes
(r = 1) as particular cases. The scheme can be thought of as a coloring of the edges
of the complete graph on n vertices (including self-loops); we refer to the Ri as color
classes.

It is clear that each group of Cameron type acts on a Cameron scheme. In
fact, the color classes are precisely the orbitals of the action of W (B, r) on A. It may,
however, happen that the color classes split under the action of a Cameron-type group
G ≤W (B, r). In a key subroutine, NATURAL ACTION, we recover the imprimitive
action of G on C = rB using the orbital structure of the primitive G-action on A,
thereby reducing the Cameron-type groups to imprimitive groups with a block system
of r ≤ logn/ log 5 blocks, with giants acting on each block.

Some elementary observations about the orbital structure will be useful in this
computation. Let Σi be the color class corresponding to the intersection pattern
(s− i, s, . . . , s) and Φ to (0, 0, . . . , 0).

Lemma 2.10. Let G be a Cameron-type group acting on the points A of a
Cameron scheme C(n, k, s, r) and suppose k ≥ 2rs2. Then the following hold.

(a) Σ1 is the second smallest orbital of G.

(b) Φ is the largest orbital of G.

Proof. We note first that Σi (0 ≤ i ≤ s) and Φ are orbitals of G; i.e., they do not
split. For Φ this follows from the fact that G ≥ Alt(k)r. For Σi we need in addition
that the stabilizer of any a ∈ A acts transitively on the set of blocks {Bi}.

Proof of (a): Fix x ∈ A and consider an orbital Θ. We have to prove that |Σ1(x)| <
|Θ(x)| for any Θ other than Σ1 and the diagonal Σ0 (the diagonal is the smallest
orbital). Observe, since k ≥ 2s2, that

(
k−s
s

) ≥ s(k − s) with strict inequality when
s > 1.

For s ≥ i > 1,

|Σi(x)| = r

(
s

s− i
)(

k − s
i

)
> rs(k − s) = |Σ1(x)|.

Assume now that Θ is contained in the color class with intersection pattern (i1, i2, . . .)
where i1 ≤ i2 < s; let (x, y) ∈ Θ. Just counting the images of y under the stabilizer
of x in Alt(k)r we obtain

|Θ(x)| ≥
(
s

i1

)(
k − s
s− i1

)(
s

i2

)(
k − s
s− i2

)

≥ s2(k − s)2 > rs(k − s),

the final inequality using k ≥ 2r.

Proof of (b): We have to prove that Φ is the largest color class in the Cameron
scheme. (Note that G plays no role here.)

We use the fact that, for 1 ≤ i ≤ s,

r

(
k − s
s− i

)(
s

i

)
<

(
k − s
s

)
.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1317

To see this, note that k ≥ max{2rs2, 2s+ 1} implies k − 2s+ 1 > rs2, so that(
k−s
s

)(
k−s
s−i
) =

i−1∏
j=0

k − 2s+ i− j
s− j

>
i−1∏
j=0

rs2

s− j ≥ rs
i ≥ r

(
s

i

)
.

Now let the color class Θ have intersection pattern (0r0 , . . . , srs). (The exponents
denote multiplicities.) Then

|Θ(x)| =
(

r

r0, r1, . . . , rs

) s∏
i=0

(
k − s
s− i

)ri(s
i

)ri

<

(
r

r0, r1, . . . , rs

)(
k − s
s

)r
1

rr−r0
<

(
k − s
s

)r
= |Φ(x)|.

2.6. Strong generators. In our algorithms, permutation groups are input and
output via sets of generators. A standard tool for permutation group computation is
an SGS [Si70]. An SGS with respect to the subgroup chain G = G0 ≥ G1 ≥ · · · ≥
Gm = 1 is a set T ⊂ G such that T ∩Gi generates Gi for all i.

Let Ci be a set of (right) coset representatives for Gi−1 mod Gi, i = 1, 2, . . . ,m.
Then any α ∈ G has a unique factorization α = ρm · · · ρ2ρ1 with ρi ∈ Ci. An SGS
T is computationally effective if, for any α ∈ Gi−1, there are fast procedures for
determining the coset of Gi to which α belongs and constructing a representative for
this coset from T .

We construct an SGS with respect to a subgroup chain G = G0 ≥ G1 ≥ · · · ≥
Gm = 1 such that each Gi is normal in G and the factor groups Gi−1/Gi are ei-
ther subgroups of direct products of small primitive groups (“small levels”) or di-
rect products of alternating groups (“alternating levels”). To achieve the effective-
ness mentioned above, we, in fact, construct an SGS with respect to a refinement
G = H0 ≥ H1 ≥ · · · ≥ Hm′ = 1 of the subgroup chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1.
Namely, we construct a permutation representation for each Gi−1 with kernel Gi. The
refinement between Gi−1 and Gi is a pointwise stabilizer chain in this representation.
The advantage of a pointwise stabilizer chain is that it is easy to recognize the coset
to which a given permutation belongs: given α ∈ H, its coset Hxα is determined by
xα.

If a pointwise stabilizer chain is long, it requires too much time and storage
to store all coset representatives at each level. Hence, in alternating groups, we
use the following Jerrum-style [Je86] compact SGS. Suppose that K ∼= Alt(m) and
K acts naturally on a set B = {x1, . . . , xm} with Ki the pointwise stabilizer of
{x1, . . . , xi}. Let the set T consist of the permutations π1, π2, . . . , πm−1 satisfying
the following properties. For all 1 ≤ k ≤ m − 2, πk fixes pointwise x1, . . . , xk−1 and
πm−1 fixes pointwise x1, . . . , xm−3. Moreover, xπkk = xk+1 for k = 1, 2, . . . ,m− 2 and
x
πm−1

m−2 = xm. Suppose we store just the products µi = π1π2 · · ·πi for i ≤ m − 2 and

µm−1 = π1π2 · · ·πm−3πm−1. Then {µ−1
i−1µj : i − 1 ≤ j ≤ m − 1} is a complete set

of coset representatives for Ki in Ki−1. Thus, any coset representative within the
chain can be obtained with one multiplication. (We use the term multiplication for
the evaluation of α−1β as well as αβ; clearly the timings are the same.)

1318 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

It is useful to observe that an SGS for a factor group G/N , lifted to G and
appended to an SGS for N , gives an SGS for G. With an abuse of language, we call a
subset C ⊂ G a set of strong generators of G/N if C is a lifting of such a set. Suppose
α ∈ G is factored according to a fixed SGS of G/N , that is, ᾱ = ρ̄l · · · ρ̄2ρ̄1, where the
bar signifies the image mod N . Then ν = α(ρl · · · ρ1)−1 ∈ N and we call ν the siftee
of α into N . The following notion plays an important role in reducing the number
of generators we use for N . If C ⊂ G is an SGS for G/N and S∗ ⊂ G is a set of
generators for G/N such that C ⊂ 〈S∗〉 (in G, not only in G/N), then we say that
S∗ is compatible with C.

2.7. Sims’s algorithm. Sims’s algorithm for constructing strong generators has
been formulated for the case when Gi is the stabilizer of the first i points of the
permutation domain. An efficient version of Sims’s method has been analyzed by
Knuth [Kn]. In this subsection, we describe a slight extension of the latter version.

We consider the action of G = 〈Q〉 ≤ Sym(A) on the set C = {1, 2, . . . ,m}. Let
Gi be the pointwise stabilizer of {1, 2, . . . , i},

G = G0 ≥ G1 ≥ · · · ≥ Gm = N,

where N is the kernel of the G-action on C. Our objective is to find an SGS of G/N .
During the procedure, we maintain lists Ti, i = −1, 0, . . . ,m − 1 and Ri, i =

0, 1, . . . ,m, where Ri is a not-necessarily-complete list of right coset representatives
of Gi−1 mod Gi; and Ti ⊆ Gi such that 〈Ti〉 ⊇

⋃
j≥i+1Rj . The lists T−1 := Q

and R0 := {1} do not change during the procedure; all other lists may sometimes be
augmented. Each time Ti is augmented, the group 〈Ti〉C increases.

We employ the following SIFT routine which attempts to factor π ∈ Gk (k is part
of the input) over the current partial coset lists. If it does not succeed then it inserts
a new coset representative in the appropriate Rj+1, updates the Ti, k + 1 ≤ i ≤ j,
and sets k := j. In any case, at the conclusion of SIFT, π ∈ NRmRm−1 · · ·Rk+1.

procedure SIFT(π,C, k, {Ti}, {Ri})
Initialize: σ := π, j := k.

while j ≤ m− 1 and σ 6= 1 do
if σ ∈ Gj+1α for some α ∈ Rj+1

then set σ := σα−1 and j := j + 1
else

begin
add σ to Rj+1;
add σ to Tl, l = k + 1, . . . , j;
k := j;

end ;
end (SIFT).

The main procedure is the following.

procedure PERMREP(Q,C)
INPUT: (Q,C) as above.
OUTPUT: {Ti}, {Ri}.
Initialize: k := −1, T−1 := Q,

Ti := ∅ for 0 ≤ i ≤ m− 1, Ri := {1}, for 0 ≤ i ≤ m.
while k ≥ −1 do

begin

FAST MANAGEMENT OF PERMUTATION GROUPS I 1319

while Rk+1 × Tk not exhausted do
begin

select next (ρ, τ) in Rk+1 × Tk;
SIFT(ρτ, C, k, {Ti}, {Ri});

end ;
k := k − 1
end

end (PERMREP).

Note that the intention is to put the elements of each Rk+1 × Tk in a queue as
such elements are created (by augmentation of Rk+1 and/or Tk), ensuring that each
(ρ, τ) ∈ Rk+1 × Tk is selected exactly once in the lifetime of the procedure.

The following proposition is just a reformulation of Sims’s basic observations.
Proposition 2.11. When procedure PERMREP(Q,C) terminates, Ri is a com-

plete set of coset representatives for Gi−1 mod Gi and 〈Ti〉C = GCi for 0 ≤ i ≤ m.
Proof. Recall that N denotes the kernel of the G-action on C. As a result of

having sifted RiTi−1, we know RiTi−1 ⊆ NRmRm−1 · · ·Ri for 0 ≤ i ≤ m. We have
also maintained the properties Ti ⊆ Gi,

⋃
j≥i+1Rj ⊆ 〈Ti〉, and the elements of Ri

represent distinct cosets mod Gi.
Since Q = R0T−1 ⊆ NRm · · ·R1 ⊆ N〈T0〉, G = N〈T0〉. Suppose, for any i

that Gi = N〈Ti〉; then Ri+1Ti ⊆ NRmRm−1 · · ·Ri+1 ⊆ N〈Ti+1〉Ri+1, whence Gi ⊆
NRi+1〈Ti〉 ⊆ N〈Ti+1〉Ri+1. It follows that Gi = N〈Ti〉 = NGi+1Ri+1 and Gi+1 =
N〈Ti+1〉.

We use the following easy facts about PERMREP(Q,C). We set n = |A| and
assume n ≥ m = |C|. Therefore, the cost of each group operation is O(n). Let
t =max{|GCi−1 : GCi | : 1 ≤ i ≤ m}; note that t ≤ m. Also, log |GC | is an upper bound
on the length of subgroup chains in GC so there are ≤ log |GC | indices i such that
Gi 6= Gi+1. In particular, the cost of each sift is O(n log |GC |) and each Ti is increased
≤ log |GC | times. From this, we obtain the following estimates.

Theorem 2.12. (a) Let |Q| = q. The running time of PERMREP(Q,C) is
O(n log |GC |(q+ t log2 |GC |)); in particular, if |GC | ≤ exp(logc n) = exp(O∼(1)) then
the running time is O∼(n(q + t)).

(b) At any moment during the execution of the algorithm, |Tk−1| ≤ 1 +
∑m
j=k

log |Rj |.
Remark 2.13. The O(n5) bottleneck that is inherent to all versions of Sims’s

method [Si70], [FHL], [Je86], [Kn] can be appreciated in the context of PERMREP
(take C = A and N = 1). These methods rely on the construction of generators for
the groups in the pointwise stabilizer chain, using Schreier’s construction of subgroup
generators. (In PERMREP, Schreier generators enter in the sifting of Rk+1Tk, since
the sift of ρτ begins with finding ρ1 ∈ Rk+1 such that ρτρ−1

1 ∈ Gk+1.) In general,
|Rk+1|, |Tk| and the number of groups in the chain can each be Ω(n) so there may be
Ω(n3) elements to sift and a sift may cost Ω(n2). In fact, Knuth discusses a class of
groups in which the average behavior of such methods is Θ(n5).

As in [FHL], a slight modification of PERMREP provides normal closures. The
addition to the previous procedure is that we have to add conjugates of generators
to the generating set until we get a group closed for conjugation. We again consider
group actions.

The situation is the following: G = 〈S〉 ≤ Sym(A) and 〈Q〉 ≤ Sym(A) act on C.
The output consists of sets of coset representatives {Ri} and sets of generators of the
stabilizer chain over C for H := 〈QG〉. For sets of permutations T and S, TS denotes

1320 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

the set of conjugates {τσ : τ ∈ T, σ ∈ S}.
procedure NORMCL(Q,C, S)
INPUT: (Q,C, S) as above.
OUTPUT: {Ti}, {Ri}.

PERMREP(Q,C);
T ∗ := ∅;
repeat

k := −1, T−1 := (T0 \ T ∗)S , T ∗ := T0;
while k ≥ −1 do

begin
while Rk+1 × Tk not exhausted do

begin
select next (ρ, τ) ∈ Rk+1 × Tk;
SIFT(ρτ, C, k, {Ti}, {Ri});

end ;
k := k − 1

end
until T0 = T ∗

end (NORMCL).

The proof of correctness and the timing of this algorithm is similar to that of
PERMREP (with H playing the role of G in the estimates). Let t =max{|HC

i−1 :
HC
i | : 1 ≤ i ≤ m}.

Proposition 2.14. When procedure NORMCL(Q,C, S) terminates, the Ri form
complete sets of coset representatives for H, and 〈Ti〉C = HC

i .
Theorem 2.15. Let s = |S|, q = |Q|. The running time of NORMCL(Q,C, S)

is O(n log |HC |(q + s log |HC | + t log2 |HC |)); in particular, if |HC | ≤ exp(logc n) =
exp(O∼(1)) then the running time is O∼(n(q + s+ t)).

2.8. Structure forest, structure domain. It is natural in dealing with per-
mutation groups, whether theoretically or in computational settings, to use the orbit
structure in a problem decomposition. Further combinatorial divide-and-conquer is
available in the imprimitivity structure of transitive groups. For computational pur-
poses, it is convenient to provide an extension of the permutation domain that both
reflects and guides the flow of control in such procedures. Specifically, a structure
forest (SF) for a permutation group G ≤ Sym(A) is a forest of rooted trees on which
G acts as automorphisms fixing the roots, such that the leaves form the permutation
domain A, and, denoting by G(v) the permutation group induced on the children of
node v by Gv (the stabilizer of v), each G(v) is primitive. Thus, in particular, there
is exactly one tree per orbit in A, and it is not possible to insert intermediate levels
in that tree, with nontrivial branching, and remain consistent with the G action on
the tree.

To reflect the flow of control in our procedure (e.g., treating orbits sequentially)
we suppose that the trees of the SF are stacked vertically and enumerate the resulting
“levels.” Hence, the root of the first tree comprises level 0, its leaves comprise level
h, where h is the height of this tree, the root of the second tree comprises level h+ 1,
etc.

The divide-and-conquer offered by the SF alone does not suffice for our methods.
To achieve a finer decomposition, we need to delve into the primitive groups them-
selves; specifically, for “large” groups, we use the forced relations between the nature

FAST MANAGEMENT OF PERMUTATION GROUPS I 1321

of the socle and that of the permutation domain.
The first and principal stage creates an extended structure forest (ESF). For this,

the SF is augmented at nodes v where G(v) is a “large” group, i.e., of order >
exp(logc n). At such places, we are assured that G(v) is, in fact, a Cameron-type
group with Soc(G(v)) ∼= Alt(k)r. Such G(v) has a natural imprimitive representation
on a set B of size kr, and we can build a structure forest (in fact, a tree) T (v) on B for
G(v). Our algorithm constructs the trees T (v) so that the leaves of T (v) correspond
to certain subsets of the children of G(v). In particular, we need only do the work of
constructing T (v) at one node v at each level of the SF, using the action of G to copy
the trees to other nodes at the same level. As a result, the permutation action of each
element of G naturally extends to the ESF. We consider the trees T (v) appended to
the SF to be placed entirely between levels of the initial forest. Having so situated
the T (v), we delete the edges between v and its children in the original forest. Thus,
edges, where they exist, in the ESF only traverse consecutive levels. It is important
to note, however, that G(v) acts faithfully on the leaves of T (v), so that the subgroup
of G that fixes all the leaves at this level also fixes all the nodes at the level of the
children of v in the SF.

We now continue to use G(v) to denote the (primitive) permutation group induced
by Gv on the set of children of the node v of the ESF. (In context, it is clear which
G(v) is intended when we specify the ambient graph.) Thus, in the ESF, G(v) is
either a “small” group (of order < exp(logc n)) or a giant. Furthermore, the groups
at a given level are isomorphic, in fact, conjugate under the action of G; accordingly,
we can talk about small group levels and giant levels in the ESF.

A second refinement is used to restrict the giant levels to be alternating. Consider
a node v of the ESF where G(v) is a full symmetric group Sym(C(v)) on the children
C(v) of v. At each such node, we append a small tree consisting of the root v and
two leaves, say vL and vR (for “left” and “right”), which are inserted at a new level
between v and C(v). Again, we sever the links from v to C(v), but we now connect
both vL and vR to all points in C(v). We need to extend the action of G to the new
intermediate level. This may be done by fixing any orderings of the C(v), relative
to which the actions of γ ∈ G can be viewed as inducing even or odd permutations;
if γ induces an “even” mapping of C(v) to C(w) then vγL = wL and vγR = wR, else
vγL = wR and vγR = wL. We call the resulting structure D a structure domain (SD)
for G.

For a node v ∈ D, we continue to denote the children of v, that is, the neighbors
at next level by C(v) and the action of Gv on C(v) by G(v).

We summarize some important properties of this structure. A structure domain
for G ≤ Sym(A) is a graph D = (V,E) such that the following hold.

(i) A ⊆ V and |V | = O(n), where n = |A|.
(ii) The action of G extends to Aut(D).
(iii) The orbits of G in V , called “levels,” are ordered, L0, L1, . . . , Lm, and E ⊆⋃m−1

i=0 (Li × Li+1).
(iv) If E ∩ (Li × Li+1) = ∅, then GLi ≤ GLi+1 .
(v) If E ∩ (Li × Li+1) 6= ∅, then, letting G(v) denote the action of Gv on the

neighbors C(v) in Li+1 of v ∈ Li, it follows that G(v) is either a “small” group or
Alt(C(v)).

Let G0 = G and, for i ≥ 1, let Gi be the kernel of the action of Gi−1 on Li. Then
the normal series

G = G0 ≥ G1 ≥ · · · ≥ Gm = 1

1322 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

is the chain forecast in the introduction and in section 2.6. Instances of (iv) suggest
that the chain is not strictly decreasing (and one can have equality of successive
groups even when the induced bipartite graph is nontrivial), but it is convenient to
allow this occasional duplication. Note, however, that (v) implies, when Gi+1 < Gi,
that Gi/Gi+1 is either a product of isomorphic alternating groups or a subgroup
of the product of isomorphic small primitive groups. The fact that, in the former
case, Gi−1/Gi is actually isomorphic to a product of alternating groups (not only a
subgroup) follows from Proposition 2.2.

Informally, we say the SD consists of small group levels and alternating levels.

3. Organization of the algorithm. In this section, we outline our main al-
gorithm. Suppose that G = 〈S〉 ≤ Sym(A) is given, |A| = n. We construct a chain
of normal subgroups G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 and, for each 1 ≤ i ≤ m, a
permutation representation of Gi−1 on a set Li such that

(i) Gi is the kernel of the action of Gi−1 on Li;
(ii) Gi−1/Gi is either a subgroup of a direct product of small primitive groups

(“small” in this context means of order< exp(9 log2 n log logn)) orGi−1/Gi ∼= Alt(k)r

for some k, r.
The normal subgroup Gi is defined to be the pointwise stabilizer of the first i levels

in a structure domain (see section 2.8). However, we have to construct generators for
the Gi. We do this successively for i = 0, 1, . . . ,m − 1. We construct an SGS Ti for
G/Gi and normal generators Ni for Gi, i.e., group elements whose normal closure (in
G) is Gi.

Suppose we have constructed Ti−1 and Ni−1. We start to take the normal closure
of Ni−1 in G until the known part of the normal closure generates Gi−1/Gi. We
confirm this by examining the action of Gi−1 on Li. Then we obtain Ti by appending
an SGS for Gi−1/Gi to Ti−1. For this, if Gi−1/Gi corresponds to a small group level
then we add complete sets of coset representatives from the point stabilizer chain on
Li to Ti−1 (we do ensure that the total number of saved coset representatives in the
entire subgroup chain is only O(n log2 n)); if Gi−1/Gi is the product of alternating
groups then we add Jerrum-style compact SGS (cf. section 2.6) for each of these
alternating groups to Ti−1. We also obtain a presentation for Gi−1/Gi, which, along
with presentations for earlier quotients, facilitates a construction of normal generators
Ni for Gi. Thus we proceed to the next value of i.

We emphasize that generators for Gi (not only normal generators) are available
only when the entire algorithm is finished.

During the algorithm, we work with various permutation representations of sub-
groups of G. If a procedure performs group operations, we may either need the result
in the current representation only (local operation) or in the original representation
as well (global operation). An example of a purely local operation is the determina-
tion of whether the stabilizer of a node v in the SF acts as a Cameron-type group
on its children. To this end, it is enough to perform group operations in G(v) and
the action of Gv on other nodes of the SF is irrelevant. All operations not explicitly
labelled “local” are understood to be global. Since the sum of sizes of all the induced
permutation representations remains O(n), the cost of elementary group operations
remains O(n).

Main Algorithm.
INPUT: a set S of generators for G ≤ Sym(A), |S| = s.
Step 1. Construct a structure forest and choose a representative v in each orbit of the
SF. For all such v, construct Schreier generators for Gv.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1323

Step 2. For these representatives, use NATURAL ACTION to decide whether G(v)
is a “large group” and, if so, construct new action and corresponding structure tree
T (v).
Step 3. Append a copy of T (v) to all nodes in the orbit vG, deleting the connections
of v to its children in the SF, thus obtaining an ESF. Extend the G-action of gen-
erators to the ESF. Inserting new levels at giant symmetric nodes, obtain the SD.
Henceforth, compute the effect of any global operation on the entire SD. Compute
the node stabilizers Gw as in Step 1 for representatives of G-orbits of the SD.
Step 4. For each node v representing an alternating level in the SD, construct an SGS
for G(v).

Step 5. for i := 1 to m do
construct SGS for Gi−1/Gi
store a compatible generating set Si−1 of size O∼(|Li|) for Gi−1/Gi

(* cf. section 2.6 *)
construct normal generators for Gi

end (MAIN ALGORITHM).

Lemma 3.1. (a) A structure forest can be computed in O(sn2) time. (b) Gener-
ators of Gv for representatives of the G-orbits of the SF can be constructed in O(sn2)
time.

Proof. (a) According to Atkinson [At], a structure forest can be computed as
efficiently as orbits and minimal blocks of imprimitivity, i.e., in O(sn2) time.

(b) The action of the group generators on the orbit vG of a node v in the SF
naturally defines a graph on vG. Choosing a spanning tree in this graph and computing
the product of generators along the paths from v in this tree, group elements which
carry v to the other nodes of its orbit can be computed in O(|vG|n+ |vG|s) time. We
obtain generators for Gv (and, at the same time, for G(v)) via Lemma 2.1; thus Gv is
generated by O(|vG|s) elements and the cost of computing each is O(n). The result
follows since the sum of the |vG| over orbit representatives v is the number of nodes
in the SF.

Steps 2 and 3 will be analyzed in section 4. We present a novel method for
constructing an SGS for the giants in section 5. Section 6 relates group presentations
(in terms of generators and relations) to the construction of normal generators. By
the results of section 4, the factor groups Gi−1/Gi in Step 5 are either subgroups
of products of “small” groups or products of alternating groups. We handle the
first case in section 7, utilizing NORMCL (cf. section 2.7). For the second case, we
give an efficient implementation of Luks’s “noncommutative linear algebra” [Lu86] in
section 8. Finally, in section 9, we present a version of the algorithm with decreased
memory requirement and wrap up the proof of Theorem 1.1.

4. Reducing large to giant. The purpose of this section is to classify primitive
groups as “large” and “small.” Large groups turn out to be groups of Cameron type,
and we construct their “natural” (often imprimitive) action with giants acting on each
block and a small group permuting the blocks. Thereby most algorithmic problems
are reduced to consideration of giants and small groups.

Our objective is achieved by the subroutine NATURAL ACTION. This procedure
is a slight refinement of the one under the same name in [BLS87]. The procedure
involves a global variable n, the degree of the permutation group which is the input
of the full algorithm. However, we execute group multiplications only on the set
where the group under the current investigation acts primitively (local operations, cf.

1324 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

section 3).

First, we describe a simple procedure to test whether or not a permutation group
is a giant.

procedure TEST GIANT(G)
INPUT: a 2-transitive group G = 〈Q〉 ≤ Sym(C), |C| = m.
Begin executing PERMREP(Q,C)

if |{i : |Ri| 6= 1}| ≥ 2 logm+ log2m (∗ we use the notation of section 2.7. ∗)
then stop PERMREP(Q,C); output “giant” and halt
else output “small group” and halt

end (TEST GIANT).

When reading the following pseudocode, it is useful to review the notation of
sections 2.4 and 2.5 and keep in mind that NATURAL ACTION was designed to
handle Cameron-type groups, when m =

(
k
s

)r
and the underlying set A corresponds

to s-transversals in rB for some set B of size k. In that scenario, Γ and ∆ correspond
to the sets of pairs of s-transversals with intersection pattern (s − 1, s, . . . , s) and
(0, 0, . . . , 0), respectively. The primary aim of the procedure is to construct a subset
of A corresponding to the s-transversals containing a fixed point in rB. Such a set is
constructed as C(x, y) below, where x, y are s-transversals with intersection pattern
(s− 1, s, . . . , s) and C(x, y) consists of all s-transversals containing the unique point
in x that is not covered by y. The subset C(x, y) has kr distinct images under G,
corresponding to the points of rB. We compute this set D of images in two phases,
first constructing in D(x) only the rs images corresponding to the points of x. This
and other checks on the sizes of newly constructed objects allow early termination in
the case when G is not a large group.

procedure NATURAL ACTION(Q)
INPUT: a primitive group G = 〈Q〉 ≤ Sym(A), where m := |A| ≤ n.

Step 1. if m ≤ 3 log2 n
then output “small group” and halt

Step 2. if G is 2-transitive
then TEST GIANT(G); (∗ procedure will halt there ∗)

Step 3. Compute the orbitals (G-orbits on A×A);
Γ := the second smallest orbital;

(∗ The smallest orbital is the diagonal. ∗)
∆ : D the largest orbital.
Fix x ∈ A;
if |Γ(x)| > 2

√
m logm

then output “small group” and halt
For each w ∈ A construct α(w) ∈ G such that xα(w) = w.
Construct Schreier generators for Gx.

Fix y ∈ Γ(x). For each y′ ∈ Γ(x) compute some β(y′) ∈ Gx such that yβ(y′) = y′.
Compute the sets

B(x, y) = ∆(y)−∆(x);

C(x, y) = A−
⋃

z∈B(x,y)

∆(z).

Let D(x) = {C(x, y)β(y′) : y′ ∈ Γ(x)}.
if |D(x)| > logm

then output “small group” and halt

FAST MANAGEMENT OF PERMUTATION GROUPS I 1325

Let D =
⋃
w∈AD(x)α(w).

if |D| > 2
√
m logm

then output “small group” and halt
Step 4. Consider G-action on D. (∗ This action exists and it is transitive. ∗)

Select a system {E1, . . . , Et} of minimal-size (but nonsingleton) imprimitivity blocks
(∗ ⋃iEi = D ∗).

if q := |Ei| > 4 log n and G(E1) :=the stabilizer of E1 restricted to E1 is 2-transitive
and TEST GIANT(G(E1)) returns message “giant”

then output (“large group, faithfully acting on D”;
the G-action on D;
a structure tree for the G-action on D)

else output “small group”
halt

end (NATURAL ACTION).

We say that G fails the large groups test if output is “small group.” Otherwise G
is said to pass the large groups test.

4.1. Correctness of the subroutine NATURAL ACTION.
Lemma 4.1. If TEST GIANT(G) outputs “giant” then G is a giant. If the output

is “small group” then |G| < m2+logm.
Proof. It is proved by Theorem 2.4.
The following result justifies the term “small groups” and provides additional

information about large groups.
Theorem 4.2. (1) If NATURAL ACTION outputs “giant” then G is a giant.
(2) If NATURAL ACTION outputs “large group” then G acts faithfully on D and

the stabilizer of each block Ei restricted to Ei contains Alt(Ei).
(3) If NATURAL ACTION outputs “small group” then

|G| < exp(9 log2 n log logn).

Statement (1) is obviously correct. For (2) we need a lemma.
Lemma 4.3. For p 6= r primes, the order of a Sylow r-subgroup of the linear

group GL(d, p) is less than p2d.
Proof. This result is implicit in [Lu82, Lemma 3.6].
Corollary 4.4. For q ≥ 4d log p, the order of Alt(q) does not divide the order

of the affine linear group AGL(d, p).
Proof. Let r = 3 if p = 2 and let r = 2 otherwise. The result follows from Lemma

4.3 (except for the two easy cases p = 2, d ≤ 3).
Proof of Theorem 4.2, part (2). We show that the alternating groups constructed

by the procedure are in the socle of G and G has a unique minimal normal subgroup.
These facts imply that the G-action on D has a trivial kernel. We say that the group
H is involved in the group K if H ∼= L/M for some M/K,M ≤ L ≤ K. If a simple
group H is involved in K then clearly H is involved in a composition factor of K.

We may assume G is not a giant. Let K be the kernel of the G-action on D. The
stabilizer of E1 restricted to E1 passed TEST GIANT, whence it contains Alt(q),
q := |E1|. As the G-action on the set of blocks is transitive, the same holds for each
Ei. Also, it follows that Alt(q) is involved in G/K.

If Soc(G) is abelian then, by Theorem 2.6, m = pd for some prime p and G ≤
AGL(d, p). But, d log p = log m ≤ log n ≤ q/4 and therefore, by Corollary 4.4,
the order of Alt(q) does not divide |G|. Thus this case cannot occur. Hence Soc(G)

1326 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

is nonabelian and the results stated in Theorem 2.7 apply. We use the notation of
Theorem 2.7 and refer to N/G established there.

First we show that Alt(q) is not involved in G/Soc(G). Indeed, otherwise Alt(q)
must be involved either in G/N or in N/Soc(G). The first case is impossible because
G/N ≤ Sd (Theorem 2.7(b)) and d ≤ log m/ log 5 < q/8 (Theorem 2.7(c)). In
the second case, Alt(q) is involved in N/Soc(G) ≤ Out(T)d, a solvable group by the
Schreier conjecture (Theorem 2.3), again a contradiction.

It follows now that Alt(q) is involved in Soc(G) and K 6≥ Soc(G). Now Soc(G)
must be the unique minimal normal subgroup for otherwise, by Theorem 2.8, we have
a contradiction:

n2 ≥ m2 = |Soc(G)| ≥ |Alt(q)| = q!/2 > 2q ≥ n4.

It follows that K contains no minimal normal subgroup, whence K = 1.
Proof of Theorem 4.2, part (3). Assume the order of |G| exceeds the stated bound.

We must show that at no point will “small group” be falsely announced. This would
not happen in Step 1, for m ≤ 3 log2 n implies |G| ≤ m! < (3 log2 n)3 log2 n. If G
is 2-transitive then the Step 2 call to TEST GIANT will correctly halt with that
revelation (by Theorem 2.4).

By Theorem 2.9, G is of Cameron type and A can be identified with the set of
points of a Cameron scheme C(m, k, s, r), and we may assume that rs > 1; that is, G
is not a giant. Of course, the parameters and the identification are not known a priori.
We prove that Step 3 of NATURAL ACTION correctly recovers this structure with
D corresponding to rB, Ei to Bi (so q = k), and the parameter k satisfies k >
4 logn. (We use the letters r, k, Bi, C = rB = B1 ∪ · · · ∪ Br to mean what they
do in section 2.5. We call the action of G on C “natural.” Recall that each a ∈ A
corresponds to an s-transversal T (a) ⊂ rB.)

We take note of some inequalities satisfied by the parameters of this C(m, k, s, r).

Since m =
(
k
s

)r ≥ (k/s)rs ≥ 2rs,

(4.1) rs ≤ logm.

Since rs > 1, we have m ≥ (k2) which implies

(4.2) k < 2
√
m.

Also,

(4.3) k > 4 logn;

otherwise, |G| ≤ (k!)rr! ≤ kkrr! ≤ mkr! ≤ n4 log n(logn)! < exp(9 log2 n log log n).
Finally,

(4.4) k ≥ 2rs2;

otherwise, using (4.1), we have |G| ≤ (k!)rr! < (2rs2)2r
2s2r! < (2 log2 n)2 log2 n(log n)!

< exp(9 log2 n log log n).
We claim now that the G-action on D is similar to the natural G-action on C. For

b ∈ rB, let U(b) = {u ∈ A|b ∈ T (u)}. We need to show that that D = {U(b)|b ∈ rB}.
By (4.4) and Lemma 2.10, Γ = Σ1 and ∆ = Φ. Thus, for any y ∈ Γ(x), the set
T (x)−T (y) is a singleton {b(x, y)}. Now, a simple inspection of the Cameron scheme,

FAST MANAGEMENT OF PERMUTATION GROUPS I 1327

using that k > 3s (by (4.4) since rs > 1), shows that C(x, y) = U(b(x, y)). The result
follows since G acts transitively on C.

The identification of the Ei with the Bi follows because the latter are the unique
minimal-size blocks in the natural action of G. Finally, (4.1), (4.2), and (4.3) ensure
that the cardinality tests on that Γ(x), D(x), D,Ei in Steps 3 and 4 do not cause
terminal output “small group.”

4.2. Time complexity of the subroutine NATURAL ACTION.
Lemma 4.5. Suppose G = 〈Q〉 acts on an m-set, and |Q| = q. Then TEST

GIANT(G) runs in O∼(m2 + qm) time.
Proof. We work with O∼(1) coset representative sets Ri each of size 2 ≤ |Ri| ≤ m,

and, by Theorem 2.12(b), O∼(1) sets of generators Ti of size O∼(1). Hence the sifting
of products of the form ρτ , ρ ∈ Ri, τ ∈ Ti−1 for some i costs O∼(m2); in addition, we
may have to sift the elements of Q.

Theorem 4.6. Suppose G = 〈Q〉 acts on an m-set, and |Q| = q. Then NATU-
RAL ACTION(Q) runs in O∼(qm2) time.

Proof. Testing 2-transitivity takes O(m2q) time. Hence, by Lemma 4.5, Step 2
can be executed in O∼(m2q). Finding the orbitals requires O(m2q) steps. The (local)
computation of {α(w) : w ∈ A} requires O∼(m2 + qm) time. The number of Schreier
generators is qm; they are found in O(m2q) time. O∼(qm3/2) steps suffice to find
the β(y′). C(x, y) can be determined in O(m2) time. We compute D(x) in O∼(m2).
Finally, D is also obtained in O∼(m2). Thus Step 3 requires O∼(m2q) total time.

The action of any φ ∈ Q on D can be found in O∼(m3/2). The structure tree is
computed in O∼(mq), and, since r = O∼(1), generators for the stabilizers of orbit-
representatives on the new tree can be computed in O∼(qm) time. Finally, we call
TEST GIANT on a set of size O∼(

√
m), with O∼(q) generators, requiring O∼(m +

q
√
m) time. Thus the time complexity of Step 4 is O∼(mq +m3/2).
Corollary 4.7. Step 2 of the main algorithm runs in O∼(sn2) time.
Proof. We apply NATURAL ACTION to the action G(v) of the point stabilizer

Gv on the children of v for certain nodes v of the structure forest (one node from each
level of each tree). Denoting by qv the number of (Schreier) generators for Gv and by
mv the number of children of v,

∑
v(qvmv) = O(sn).

4.3. Extending the structure forest.
Proposition 4.8. Step 3 of the main algorithm runs in O∼(sn2) time.
Proof. Suppose that a node v is the representative of an orbit in the original SF, v

has m children, and NATURAL ACTION appended a tree T (v) to v. The vertices of
T (v) are subsets of the children of v; hence the group elements carrying v to the other
nodes of its orbit vG, computed in Step 1, naturally define a copy of T (v) appended
to the other nodes in vG. These copies of T (v) can be obtained in O∼(m3/2|vG|)
and the action of any σ ∈ G can be extended to the appended trees within the same
time bound. Hence the action of σ on the entire ESF can be computed in O∼(n3/2).
The extension to the SD is straightforward and in time O(n). Finally, as in Lemma
3.1(b), generators of Gv for representatives of G-orbits of the SD can be constructed
in O(sn2) time.

5. Constructing strong generators for a giant. The purpose of this section
is to construct a Jerrum-style compact SGS for the giants. Recall that the “giants”
are the symmetric and alternating groups in their natural action. The Jerrum-style
compact SGS for G = Sym(C) acting on the set C = {x1, x2, . . . , xm} consists of m−1
permutations π1, π2, . . . , πm−1 such that for all 1 ≤ k ≤ m− 1, πk fixes x1, . . . , xk−1

1328 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

and xπkk = xk+1. For G = Alt(C), the SGS contains π1, π2, . . . , πm−2 as above while
πm−1 fixes x1, . . . , xm−3 and x

πm−1

m−2 = xm.

We require that the strong generators are constructed from the given generators
of the giant by the following legal operations: multiplication, inversion, and taking
powers of permutations. The reason for this constraint is that the procedure is applied
to the case when G(v), the action of the stabilizer of node v on the children in the
structure domain, is an alternating group. In this case, although we know a priori
that some σ ∈ G(v) acts on the children as, e.g., a given 3-cycle, no such permutation
can be guaranteed to belong to the input group unless it has been constructed, by
way of legal operations, from the generators of G(v). In this application, all group
operations are global; i.e., we perform them on all points in the SD.

5.1. Construction of a 3-cycle. The essence of the procedure is the construc-
tion of a 3-cycle. Once a 3-cycle ρ is constructed, an SGS can be obtained easily by
taking appropriate conjugates of ρ.

We note that a byproduct of the procedure yields a simple, elementary proof of
the old result, known to Jordan (1895) [Jo] (and vastly surpassed by Theorem 2.4)
that the only c log2 n/ log log n -fold transitive permutation groups are the giants
[BS87]. It also yields an exp(

√
n lnn(1 + o(1))) upper bound on the diameter of any

Cayley graph of the giants [BS88].

Our goal is achieved by the procedure THREE CYCLE. As a preprocessing phase,
we determine and store the first log n primes. (The global variable n is the degree
of the permutation group which is the input of the entire algorithm; we assume that
n is sufficiently large.) We denote the ith prime by pi and the product of the first i
primes by p(i).

Also, we need the following definitions. For π ∈ Sym(C), let us call a subset
B of supp(π) independent with respect to π if B ∩ Bπ = ∅. The commutator of
π, τ ∈ Sym(C) is [π, τ] = πτπ−1τ−1.

The procedure THREE CYCLE uses the subroutine ORBITALS. Given gener-
ators for some G ≤ Sym(C), |C| = m, ORBITALS returns O(logm) generators for
a subgroup H ≤ G with the same orbitals as G. In particular, if G is a giant then
ORBITALS returns O(logm) generators for a 2-transitive subgroup. The idea is the
following. Suppose that generators for some H ≤ G are already defined but the or-
bital structures of the two groups are different. We fix an ordering of the generators
P = {τ1, . . . , τk} of G, and, for each H-orbital ∆ which is not an orbital of G, we find
the last element of P which moves ∆. Then we add a product of the form τ ε11 τε22 · · · τ εkk
to the generators of H where each εi ∈ {0, 1} and εj is chosen such that τε11 τε22 · · · τ εjj
moves at least half of the H-orbitals ∆ for which τj was the last generator moving ∆.
This is a deterministic version of the random subproduct method, which we describe
in section 5.4.

procedure ORBITALS(P,C,R)
INPUT:G = 〈P 〉 ≤ Sym(C), |C| = m, P = {τ1, . . . , τk}.
OUTPUT: Generators R for some H ≤ G with same orbitals as G, |R| = O(logm).
Initialize: compute orbitals O1, . . . , Op of G; R = ∅
repeat

compute orbitals {∆i : i ∈ I} of 〈R〉
for all ∆i 6∈ {O1, . . . , Op}, compute

last(∆i) := max{j : ∆
τj
i 6= ∆i}

σ := 1 (∗ start constructing new element of R ∗)

FAST MANAGEMENT OF PERMUTATION GROUPS I 1329

for j := 1 to k do
if |{∆i : last(∆i) = j,∆σ

i = ∆i}| > |{∆i : last(∆i) = j,∆σ
i 6= ∆i}|

then σ := στj
R := R ∪ {σ}

until orbitals of G = orbitals of 〈R〉
end (ORBITALS).

Steps 1–3 in the next procedure can be viewed as a preprocessing phase in which
we construct the first log2 n coset representative sets in the stabilizer chain of a giant
G. With these coset representative sets in hand, it is easy matter to construct a
permutation τ ∈ G that has a prescribed effect on an arbitrary subset of size log2 n
(cf. Lemma 5.2). Such constructed elements are useful in a computation that replaces
a given element λ by one with significantly smaller support. For an appropriately
designed τ , λ1 = [λ, τ] contains cycles of prime length for a lot of different primes.
An underlying idea then is that one of these primes does not divide most of the
cycle lengths in λ1. Taking an appropriate power of λ1, we can kill all cycles whose
length was not divisible by that prime and we get a permutation with smaller support.
Iterating the process, we obtain a 3-cycle.

procedure THREE CYCLE(Q)

INPUT: G = 〈Q〉 acting on C = {x1, x2, . . . , xm}; m > 3 log2 n, GC is a giant.
OUTPUT: An SGS, constructed from Q (using legal operations only).
Step 1. Begin PERMREP(Q,C);

stop PERMREP(Q,C) when |{i : i > log2 n, |Ri| 6= 1}| = 2 logn+ log2 n.
Let R be a collection of nontrivial coset representatives such that

|R ∩Ri| = 1 for all i > log2 n, |Ri| 6= 1.
Step 2. ORBITALS(Q,C,Q0).

Step 3. for i := 1 to log2 n do
Let G(i− 1) := 〈Qi−1 ∪R〉.
Construct coset representatives Di for G(i− 1)C mod G(i− 1)Cxi

(∗ G(i− 1)Cxi is the stabilizer of xi in G(i− 1)C . ∗)
Construct Schreier generators Q∗i for G(i− 1)Cxi .
ORBITALS(Q∗i , C,Qi).

Step 4. Compute f(m), g(m), where f(m) := min{{}r : p(r) > m4}, and g(m) :=∑f(m)
i=1 pi.

Step 5. Let λ be any 6= 1 element of G.

while deg(λ) > log2 n do
Choose B ⊂ supp(λ), |B| = g(m) such that B is independent.
Construct τ ∈ G such that τ fixes pointwise Bλ and

τ |B consists of cycles of length p1, p2, . . . , pf(m).
λ1 := [λ, τ].
For all i ≤ f(m), compute m(i) := the product of all cycle lengths in λ1

which are not divisible by pi.

Choose i ≤ f(m) such that 2 ≤ deg(λ
m(i)
1) < deg(λ)/2.

Let λ := λ
m(i)
1 for this i.

end
Step 6. Construct ρ ∈ G such that ρ fixes exactly deg(λ)− 1 points in supp(λ).

Let σ = [λ, ρ]. (∗ σ is a 3-cycle ∗)
Step 7. Take conjugates of σ to obtain an SGS for Alt(C).

If GC = Sym(C) then sift an odd permutation to obtain an SGS for GC .

1330 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

output the SGS for GC .
end (THREE CYCLE).

5.2. Correctness of the subroutine THREE CYCLE.

Lemma 5.1. For each 1 ≤ i ≤ log2 n, 〈Q∗i 〉C\{x1,...,xi} contains Alt(C\{x1, . . . , xi}).
Proof. It is proved by Theorem 2.4.

Lemma 5.2. Given any D ⊂ C, |D| = d ≤ log2 n, and an injection f : D → C,
it is possible to construct τ ∈ G such that τ |D = f , and τ is a 2d-long product of

elements of
⋃log2 n
i=1 Di.

Proof. By Lemma 5.1, for all i ≤ log2 n Di = {α(i, j)|i ≤ j ≤ m}, where
α(i, j) fixes x1, x2, . . . , xi−1 and moves xi to xj . For any distinct a1, . . . , ad ∈ C,
let us define recursively π(a1, . . . , ad) = ρα(d, aρd)

−1, where ρ = π(a1, . . . , ad−1).

Then, for i ≤ d we have a
π(a1,...,ad)
i = i. Let now D = {l1, . . . , ld}. Then τ =

π(l1, . . . , ld)π(f(l1), . . . , f(ld))
−1 is appropriate.

Proposition 5.3. f(m) = O(log m
log log m) and g(m) = O(log2m

log log m).

Proof. It is proved by the prime number theorem [HW].

Corollary 5.4. f(m) = O(logn) and g(m) = O(log2n).

The following is easily verified.

Lemma 5.5. Let π, τ ∈ Sym(C). Assume that B is an independent set with
respect to π and τ |Bπ is the identity. Then [π, τ]|B = τ−1|B .

Lemma 5.6. Let π ∈ Sym(m), k = deg(π). Suppose π contains cycles of each
prime length pi, i ≤ r = f(m). Let m(i) be the product of all cycle lengths occurring
in π which are not divisible by pi. Then 2 ≤ deg(πm(i)) < k/4 for some i ≤ r.

Proof. Let K = supp(π). For each x ∈ K, let us consider the set P (x) of those
primes pi dividing the length of the π-cycle through x. Clearly, the product of these
primes is ≤ k.

Let n(i) denote the number of points x such that pi ∈ P (x). Let us estimate
the weighted average W of the n(i) with weights log pi. Recall that the sum of the
weights is

∑
log pi > log(m4) = 4 log m; therefore,

W <
∑
x∈K

∑
pi∈P (x)

log pi/(4 log m)

≤ (k log k)/(4 log m) ≤ k/4.

We thus infer that n(i) < k/4 for some i ≤ r. Clearly, πm(i) is not the identity
and it fixes all but n(i) points.

Theorem 5.7. The output of THREE CYCLE(Q) is an SGS for G.

Proof. By Lemma 5.1, Step 3 constructs the first log2 n coset-representative
sets for a giant. By Corollary 5.4, we can choose independent sets of size g(m)
from permutations of degree > log2 n. By Lemma 5.2, we are able to construct the
permutations τ, ρ required in Step 5 and 6. By Lemma 5.5, λ1|B has the same cycle
structure as τ |B ; moreover, deg(λ1) ≤ deg(λ) + deg(τλ−1τ−1) = 2 deg(λ). Hence, by

Lemma 5.6, we can choose i ≤ r such that 2 ≤ deg(λ
m(i)
1) < deg(λ)/2. In Step 6,

we compute the commutator of two permutations whose supports intersect in exactly
one point, whence the commutator is a 3-cycle. Finally, we can obtain permutations
which conjugate σ into elements of an SGS by Lemma 5.2.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1331

5.3. Time complexity of THREE CYCLE.

Lemma 5.8. ORBITALS(P,C,R) runs in O∼(|P ||C|2 + |P |n) time.

Proof. The orbitals of G can be computed in O(|P ||C|2) time. One execution
of the repeat loop costs O∼(|R||C|2) for the computation of the orbitals of 〈R〉, plus
O(|P ||C|2) for the computation of the function last(∆i), plus O(|C|2) for checking the
images ∆σ

i , plus O(|P |n) for group multiplications to compute σ. The key observation
is that we execute the repeat loop only O(log |C|) times since, at each execution, the
new σ increases at least half of the orbitals ∆i for which the function last(∆i) is
defined. Therefore, after l executions of the repeat loop, the number of “bad” ∆i’s is
≤ |C|2(3/4)l.

Lemma 5.9. Suppose that the sum of the different positive integers bi is ≤ m.
Then

∏
bi ≤ exp(O∼(

√
m)).

Proof. Choose b1 < b2 < · · · such that
∏
bi is maximal. Then b1 ≤ 4, for

otherwise substituting b1 by 2 and b1− 2 the product would increase. Also, for any i,
bi+1− bi ≤ 2; otherwise the product would increase by substituting bi+1 and bi+1−1
for bi and bi+1. Moreover, bi+1 = bi + 2 for at most one i: if bi+1 ≥ bi + 2 and
bj+1 ≥ bj + 2 for some i < j then by substituting bi by bi + 1 and bj+1 by bj+1 − 1
the product would increase. Thus the bi comprise an initial segment of the natural
numbers with the possible omission of 1, 2, 3 and one other number. If max{bi} = x,
then m ≥∑ bi ≥ x(x+ 1)− 1− 2− 3− (x− 1), which implies x ≤ 2 +

√
2m. We have

then
∏
bi < x! = exp(O∼(

√
m)).

Theorem 5.10. Suppose that |Q| = q and 〈Q〉C is a giant. Then THREE CYCLE(Q)
constructs an SGS for 〈Q〉C in O∼(qn+mn+m2q +m3) time.

Proof. By the prime number theorem, the lognth prime is O(logn log logn);
hence the preprocessing phase requires O∼(1) time. By Theorem 2.12(b) and the
argument already used at the analysis of TEST GIANT (cf. Lemma 4.5), Step 1 runs
in O∼(qn+mn). By Lemma 5.8, Step 2 requires O∼(m2q+ qn) time and the output
Q0 satisfies |Q0| = O(logm). We execute the loop of Step 3 O∼(1) times. The coset
representative set Di is obtained in O(mn). The Schreier generators are constructed
in O∼(mn) time and their number is |Q∗i | ≤ m|Qi−1| = O∼(m). Using Lemma 5.8
again, Qi is computed in O∼(m3 + mn); hence the total time requirement of Step 3
is O∼(mn+m3). Step 4 runs in O∼(1). Since we decrease the degree of λ at least by
a factor 2, the loop of Step 5 is executed O∼(1) times. By Lemma 5.2, τ , whence λ1,
is obtained in O∼(n). By Lemma 5.9, m(i) is a ≤ O∼(

√
m)-digit number; thus, for

all i ≤ r, m(i) can be computed in O∼(m) time [SS], and λ
m(i)
1 can be constructed

in O∼(n
√
m). (For all x in the permutation domain, we have to divide m(i) by the

length of the cycle through x.) Hence Step 5 requires O∼(n
√
m) time. Step 6 runs in

O∼(n). Finally, by Lemma 5.2, Step 7 requires O∼(mn) time.

Corollary 5.11. Step 4 of the main algorithm runs in O∼(n3+sn2) total time.

Proof. We apply THREE CYCLE to the action of the stabilizer of some nodes
v on the children of v in the SD. As in the proof of Corollary 4.7, denoting by qv
the number of (Schreier) generators for Gv and by mv the number of children of v,∑
v(qvmv) = O(sn).

5.4. Las Vegas speedup of THREE CYCLE. In this section we present a
randomized version of THREE CYCLE withO∼((q+m)n) running time. As indicated
in the proof of Theorem 5.10, calls to the subroutine ORBITALS were the only parts
of the procedure THREE CYCLE not executable within this tighter time bound.
ORBITALS is accelerated by using random subproducts of generators.

1332 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

Definition 5.12. Let G = 〈τ1, τ2, . . . , τk〉. A random subproduct of the genera-
tors τ1, . . . , τk is an instance of the product τε11 τε22 · · · τ εkk where the εi are independent,
0-1 valued random variables with Prob(εi = 0) = Prob(εi = 1) = 1/2.

The key observation is that a random subproduct of the generators is just as
likely to increase an orbital of a subgroup H ≤ G as the deterministically constructed
element σ in ORBITALS. We make this observation more precise in the following
lemma.

Lemma 5.13. Let G = 〈τ1, τ2, . . . , τk〉 ≤ Sym(m). Then the expected number of
random subproducts of the generators τ1, . . . , τk which generate a subgroup H with the
same orbitals as G is c logm.

Proof. Let Ht be the subgroup generated by the first t random subproducts and
let σ = τε11 τε22 · · · τ εkk be the (t + 1)st random subproduct. Let {∆i : i ∈ I} be the
orbitals of Ht which are not orbitals in G. For an arbitrary ∆i, let l = last(∆i) =
max{j : ∆

τj
i 6= ∆i}. Then

Prob(∆σ
i 6= ∆i) = Prob(∆

τ
ε1
1 ···τ

εl
l

i 6= ∆i)

≥ Prob(εl = 1|∆τ
ε1
1 ···τ

εl−1
l

i = ∆i)Prob(∆
τ
ε1
1 ···τ

εl−1
l

i = ∆i)

+ Prob(εl = 0|∆τ
ε1
1 ···τ

εl−1
l

i 6= ∆i)Prob(∆
τ
ε1
1 ···τ

εl−1
l

i 6= ∆i)

= 1/2.

Hence, with probability ≥ 1/2, σ enlarges each “bad” orbital of Ht. A standard
argument shows that after taking t random subproducts the expected number of
“bad” orbitals is ≤ m2(3/4)t.

The speedup of THREE CYCLE is straightforward: instead of calling ORBITALS,
we take O(logm) random subproducts of generators. The procedure is Las Vegas
since we can check in O∼(m2) time whether these random subproducts generate a
2-transitive group.

Chronologically, the idea of random subproducts preceded the subroutine OR-
BITALS (cf. [BLS88]). Random subproducts are useful far beyond the scope of this
paper; for example, in [BCFLS91], [BCFLS95], augmented with other ideas, they
provide a O∼(n3) elementary Monte Carlo SGS construction.

6. Descending the structure domain: Traversing levels. In the previous
sections, we discussed the first four (preparatory) steps of the main algorithm. We
constructed an extension of the original permutation domain, called the SD, and an
ordered partition of the SD such that the pointwise stabilizer Gi of the first i sets
is normal in G. The algorithm proceeds by constructing an SGS for successive Gi
mod Gi+1 and finding normal generators for Gi+1 (that is, generators of subgroup
whose normal closure in G is Gi+1). We describe the construction of these elements
through a process of normal sifting, which relies on knowledge of presentations for
the quotients Gi/Gi+1. Our time bounds depend critically on the number of normal
generators obtained and, to that end, we indicate how we form concise presentations.

Recall that a presentation of a group G is a pair 〈X | R〉, in which X is a set and
R ⊆ F(X) (F(X) denotes the free group on X) such that there is an epimorphism
φ : F(X)→ G with kernel 〈RF(X)〉. We shall say that the presentation is induced by
φ; in the algorithmic application of presentations, it is typically necessary to specify
φ along with X and R. The elements of R are called relators.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1333

6.1. Normal sifting. Let

(6.1) G = G0 ≥ G1 ≥ · · · ≥ Gm = N

be a chain of normal subgroups of G. Let Si ⊂ Gi generate Gi mod Gi+1, i.e.,
Gi = 〈Si〉Gi+1 (i ≤ m − 1). We call the collection {Si : 0 ≤ i ≤ m − 1} a system of
chain generators of the series (6.1).

Suppose that

(6.2) Gi/Gi+1 = 〈Xi | Ri〉
is a presentation of Gi/Gi+1 induced by φ : Xi → Gi/Gi+1. We say that Si ⊆ Gi
corresponds to this presentation if the natural map Gi → Gi/Gi+1 yields a bijection
Si → φ(Xi). Then, for w(Xi) ∈ Ri, substitution of Si for Xi yields an element
w(Si) ∈ Gi+1.

Assume that the subgroup chain

(6.3) G = H0 ≥ H1 ≥ · · · ≥ Hf = N

is a refinement of (6.1): Gi = Hji (0 = j0 < j1 < · · · < jm = f). Assume further that
a set Cj of right coset representatives of Hj−1 mod Hj is given for each j, 1 ≤ j ≤ f
such that for ji + 1 ≤ j ≤ ji+1, we have Cj ⊂ 〈Si〉. Such a system will be called
compatible with the given system {Si} of chain generators of (6.1). Given an element
of g ∈ G, we can sift it down along the chain {Hj} to obtain a siftee, a member of N .
This defines the map sift: G→ N .

Theorem 6.1 (normal sift theorem). Assume a series of normal subgroups (6.1)
of the group G = 〈S〉 is given along with chain generators {Si | 0 ≤ i ≤ m− 1} which
correspond to presentations (6.2) of the factors. Assume a refinement (6.3) of (6.1)
is given along with coset representatives, compatible with the given chain generators.
Let Q denote the set of the following elements:

(a) S (the set of generators of G);
(b) g−1hg for g ∈ S and h ∈ Si, 1 ≤ i ≤ m− 1;
(c) wi(Si) for all wi ∈ Ri, 0 ≤ i ≤ m− 1.
Then N = 〈sift(Q)G〉.
Proof. Let H = 〈sift(Q)G〉. Set Ḡ = G/H and let φ : G → Ḡ be the natural

homomorphism. Clearly, H ≤ N , and therefore |Ḡ| ≥ |G/N |. We have to prove that
equality holds here. For any subset U ⊂ G, we use Ū to denote φ(U).

Let Hi = 〈Si, Si+1, . . . , Sm−1〉. (Hm = 1.)
1. H̄0 = Ḡ, because sift(S) ⊂ H by (a).
2. H̄i/ Ḡ, because sift(SSi) ⊂ H by (b).
3. |H̄i/H̄i+1| ≤ |Gi/Gi+1|, because wi(S̄i) ∈ H̄i+1 for wi ∈ Ri by (c).
It follows that |Ḡ| = |H̄0/H̄1| · · · |H̄m−1/H̄m| ≤ |G0/G1| · · · |Gm−1/Gm| =

|G/N |.
6.2. Presentations. The normal sift theorem is applied each time our descent

of the structure domain finishes a level. There, we are dealing with quotients Gi/Gi+1

that act faithfully on Li+1, the (i+1)st level of the SD. For our time bounds, we need
to ensure that |Ri| = O∼(|Li+1|2).

For a full alternating group, Alt(q), there is a concise set of at most q relations
[Car], cf. [CM, p. 67]. We quote Carmichael’s presentation of Alt(q).

Theorem 6.2 (see [Car]). Fix q ≥ 4. Let X = {x, y}. Let

RCar = {yq−2, x3, (yx)q} ∪ {(xy−kxyk)2 | 1 ≤ k ≤ (q − 3)/2}

1334 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

if q is odd, and

RCar = {yq−2, x3, (yx)q−1} ∪ {(x(−1)ky−kxyk)2 | 1 ≤ k ≤ (q − 2)/2}
if q is even. Then 〈X | RCar〉 is a presentation of Alt(q).

This extends easily to a presentation of direct products of alternating groups, the
situation we uncover at alternating levels of the SD. We use a Carmichael presentation,
with a pair of generators, for each factor and enter the relators (commutators) that
ensure that the pairs of generators commute.

For the small-group levels, we recall an elementary construction of presentations.
Suppose that, for 1 ≤ j ≤ f , Cj is a complete set of right coset representatives for
Hj−1 mod Hj , where

G = H0 ≥ H1 ≥ · · · ≥ Hf = 1.

For each γ ∈ ⋃fj=1 Cj , associate a symbol xγ and let X be the collection of these
symbols. For any j ≥ k and 1 6= σ ∈ Cj , 1 6= τ ∈ Ck,

στ = γf · · · γj+1γj , for unique γp ∈ Cp, j ≤ p ≤ f.
Let wσ,τ be the word x−1

τ x−1
σ xγf · · ·xγj+1

xγj and let R be the collection of all such
words. Then 〈X | R〉 is a presentation of H.

Let H = Gi/Gi+1 be a small-level group acting on Li+1, |Li+1| = m. Coset repre-
sentatives in the point stabilizer chain for H are available via PERMREP (Proposition
2.11). We know, however, that H is contained in a direct product of isomorphic prim-
itive groups, this direct product acting as a “small” group on each of its, say r, orbits
each of size m/r. Any such orbit includes at most O∼(1) points where the point
stabilizer chain for H decreases, i.e., where |Ci| 6= 1. Furthermore |Ci| ≤ m/r for all
i. It follows that |X| = O∼(m) and |R| = O∼(m2).

7. Descending the structure domain: Small group levels. By the results
of section 4, the group G(w) (the action of the stabilizer of the node w in the structure
domain on the children of w), is either an alternating or a small group. (A small
group is of order < exp(9 log2 n log logn).) Moreover, for w,w′ ∈ Li these groups
are isomorphic. We call Li an alternating level if G(w) is alternating for w ∈ Li, and
a small group level in the other case. Our objective in this section is to get past a
small group level Li−1. Suppose that we have constructed an SGS for G/Gi−1 and
normal generators Qi−1 for Gi−1. We proceed to constructing an SGS for Gi−1/Gi
and normal generators Qi for Gi.

The routine NORMCL(Qi−1, Li, S) gives us the SGS. A presentation for Gi−1/Gi
is obtained according to section 6.2, and then normal generators for Gi are constructed
according to Theorem 6.1.

Timing analysis for NORMCL. Let Li−1 := {w1, w2, . . . , wr}, and denote
by Bj the children of wj . Then Li =

⋃
1≤j≤r Bj and |(Gi−1)Li | = exp(O∼(|Li−1|)).

Moreover, since Gi−1 stabilizes Li−1 pointwise, t :=max(|(Gi−1)Lij : (Gi−1)Lij+1|) ≤
|Li|/r. (Recall that (Gi−1)Lij denotes the jth subgroup in the pointwise stabilizer
chain in the group Gi−1 acting on the set Li.) Therefore, by Theorem 2.15, the
running time of NORMCL(Qi−1, Li, S) is O∼

(|Li−1|n(|Qi−1|+ s|Li−1|+ |Li||Li−1|)
)
.

Number of normal generators obtained. There are O∼(|Li|) coset represen-
tatives, so |Qi| ≤ |Qi−1|+O∼(s|Li|+ |Li|2).

Finally we observe that the time to sift each normal generator intoGi isO∼(n|Li−1|).

FAST MANAGEMENT OF PERMUTATION GROUPS I 1335

Remark 7.1. If s > n then we may apply NORMCL(Qi−1, Li, S
∗) with S∗ :=⋃

j<i−1 S
j . Since S∗ is a set of compatible generators for G/Gi−1 and Qi−1 contains

the siftees of S into Gi−1, 〈S〉 = 〈S∗, Qi−1〉 and 〈Qi−1〉〈S
∗〉

= 〈Qi−1〉G. This change
improves the timing and the bound on the number of generators, replacing s by n in
both expressions.

8. Descending the structure domain: Alternating levels. Suppose that
we have constructed an SGS for G/Gi−1 in Step 5 of the main algorithm and Li−1

is an alternating level. In this section, we describe a method to obtain an SGS for
Gi−1/Gi and normal generators for Gi.

First, we introduce some notation. Let v be a representative node at level Li−1.
Level Li can be partitioned into Li = B1∪̇B2∪̇ · · · ∪̇Br, |Bj | = m > 3 log2 n for all
j such that for each w ∈ Li−1 the children of w comprise one of the Bj and the
point stabilizer Gw acts as Alt(Bj) on this Bj . We may suppose that B1 contains the
children of v. While computing Schreier generators for Gv, the algorithm constructed
α2, . . . , αr ∈ G such that B

αj
1 = Bj . We denote by Qi−1 the set of normal generators

for Gi−1 constructed by the algorithm and by S the generators of G. Finally, for
π ∈ Gi−1, length(π) := |{j : π|Bj 6= 1}|.

If all elements of Qi−1 act trivially on Li, then Gi = Gi−1 and there is nothing
to do. If there exists ρ ∈ Qi−1 acting nontrivially on Bj′ for some j′ ≤ r, then, since
Gi−1 contains all conjugates of ρ, Gi−1 acts as Alt(Bj′) on Bj′ ; moreover, conjugating

by α2, . . . , αr we see that G
Bj
i−1 = Alt(Bj) for all j ≤ r. Hence, by Proposition 2.2,

Gi−1/Gi is isomorphic to Alt(m)k for some k. We give an efficient version of Luks’s
“noncommutative linear algebra” to determine which coordinates of

∏
j≤r Alt(Bj) are

linked in the diagonal subgroups. We note that because of the transitive G-action on
{B1, . . . , Br}, the number of Alt(Bj)’s is the same in each linked collection.

8.1. The procedure GIANT CLOSURE. In Step 4 of the main algorithm,
we computed an SGS Pv ⊆ G for G(v), the action of Gv on B1. However, the elements
of Pv are not necessarily in Gi−1 (that is, they do not necessarily fix all nodes at level
i− 1). Here we describe a subroutine which computes an SGS R ⊆ Gi−1 for Alt(B1)
given Pv and given an element of Gi−1 acting nontrivially on B1.

More precisely, with additional applications in mind, we consider the following
situation. The setwise stabilizer G{C} of a group G acts on a set C, |C| ≥ 8, as
Alt(C). The input to GIANT CLOSURE is P ⊆ G{C} such that P is an SGS in this

action, and ρ ∈ G{C}. The output is R, an SGS for Alt(C), such that R ⊆ 〈ρ〈P 〉〉;
i.e., R is generated by conjugates of ρ by the elements of 〈P 〉. Moreover, we require
that there are τ, σ ∈ 〈ρ〈P 〉〉 such that w(τ, σ) = 1 for w(x, y) ∈ RCar (see Theorem
6.2), and R ⊆ 〈τ, σ〉.

If C = {1, 2, . . . ,m}, m even then τ = (1 2 3), σ = (1 2)(3 4 . . . m − 1 m)
satisfy the relations in Theorem 6.2. If m is odd then we can choose τ = (1 2 3),
σ = (3 4 . . . m− 1 m).

procedure GIANT CLOSURE(G,C, ρ, P,R, τ, σ)
INPUT:C,P, ρ as specified above.
OUTPUT: R, τ, σ.
Step 1. Let γ1 ∈ 〈P 〉 such that γ1|C is a 3-cycle not commuting with ρ|C . Compute
ρ1 = [ρ, γ1]. (∗ deg(ρ1|C) ≤ 6 ∗) Take γ2 ∈ 〈P 〉 such that |supp(ρ1|C)∩ supp(γ2|C)| =
1. Compute ρ2 = [ρ1, γ2]. (∗ ρ2|C is a 3-cycle ∗)
Step 2. Conjugating ρ2 with appropriate elements of 〈P 〉, obtain permutations

1336 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

π1, π2, . . . , πm−2 such that πi|C = (i i + 1 i + 2). (∗ π1, π2, . . . , πm−2, π
2
m−2 is an

SGS for Alt(C) ∗).
Step 3. Compute τ, σ as specified before the procedure as a product of the πi’s.
Step 4. If m is odd then compute στ . (∗ στ |C = (1 2 . . . m− 1 m) ∗) R consists of
τ and its conjugates by the powers of στ .

If m is even then compute στ2 and τσ−1τσ. (∗ στ2|C = (2 3 . . . m− 1 m) and
τσ−1τσ|C = (2 3 4) ∗) R consists of τ , τσ−1τσ, and the conjugates of τσ−1τσ by the
powers of στ2.
end (GIANT CLOSURE).

Proposition 8.1. If group operations in G require O(n) time then
GIANT CLOSURE(G,C, ρ, P,R, τ, σ) computes an SGS for Alt(C) in O(mn).

Proof. The correctness of the procedure is obvious. Given an SGS for Alt(C),
any element of Alt(C) can be constructed from it by O(m) group multiplications.
Therefore, Steps 1 and 3 require O(mn) time. By Lemma 5.2, a permutation with
three prescribed positions can be constructed in O(n) time so Step 2 also runs in
O(mn). Finally, we notice that using the result of the conjugation by the previous
power of στ (or στ2), all conjugates in Step 4 can be computed with O(m) group
operations.

8.2. The procedure GIANT LINK. We obtain an SGS for Gi−1/Gi by ap-
plying the procedure GIANT LINK. We use the notation introduced at the beginning
of section 8 for the input; the output will be an SGS T and a set Si−1 of compatible
generators for Gi−1/Gi and a set Qi of normal generators for Gi.

If two coordinates j, j′ ≤ r are not linked in a diagonal action then there exists
π ∈ Gi−1 such that π|Bj 6= 1 and π|Bj′ = 1. In this case, we say that π witnesses the
separation of j from j′. Note that possession of a witness to the separation of j from
j′ does not imply possession of a witness to the reverse separation, even though we
know that one exists.

GIANT LINK uses the subroutine GIANT SEPARATE. The input is an SGS

Rj ⊂ Gi−1 for G
Bj
i−1
∼= Alt(Bj) and π1, π2 ∈ Gi−1 such that πl|Bj 6= 1 for l = 1, 2.

The output is a single π ∈ Gi−1 such that, for any coordinate j′, if either π1 or π2

witnesses the separation of j from j′, then π also witnesses this separation.

procedure GIANT SEPARATE(Rj , π1, π2, π)
INPUT:Rj , π1, π2 as specified above.
OUTPUT: π.

if π1|Bj , π2|Bj do not commute
then π := [π1, π2]
else take ρ ∈ 〈Rj〉 such that π1|Bj , ρ−1π2ρ|Bj do not commute

π := [π1, ρ
−1π2ρ]

end (GIANT SEPARATE).

Proposition 8.2. GIANT SEPARATE computes the witness π in O(n) time.
Proof. The only nontrivial point is that an appropriate ρ ∈ 〈Rj〉 can be con-

structed in O(n) time. If π1|Bj has a fixed point, say xπ1 = x, then conjugate π2 such

that xρ
−1π2ρ = y for some y with yπ1 6= y. If π1|Bj does not have a fixed point then

choose four different points x, y, z, u ∈ Bj such that xπ1 = y and zπ1 = u. Conjugate

π2 such that yρ
−1π2ρ = u and xρ

−1π2ρ 6= z. Since we described the value of ρ at ≤ 4
points, such ρ can be obtained in O(n) time by Lemma 5.2. Note that π2|Bj′ = 1

implies ρ−1π2ρ|Bj′ = 1.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1337

In the first three steps of GIANT LINK, we compute a subgroup of Gi−1 which
acts as the full alternating group on each Bj . In Step 4, we obtain witnesses for all
pairs not linked by this subgroup and then compute a single witness for each Bj . In
the loop described in Steps 5–7, we obtain additional elements of the subgroup Gi−1

(until we have a collection that fully generates Gi−1/Gi). First, in Step 5, until the
linked collections have the same length, we conjugate the shortest collection into all
positions, necessarily breaking up some links in the longer collections. Step 7 ensures
that we have done all the link breaking that is implied by the subgroup at hand and,
if so, that the subgroup is normalized (mod Gi) by G; failure of either test produces a
new witness to separation in Step 7, and the loop is repeated. If the tests are passed,
we can specify Qi (Step 8).

procedure GIANT LINK(Li, Q
i−1, S, Pv, {α2, . . . , αr}, Qi, Si−1, T)

INPUT: Li = B1∪̇ · · · ∪̇Br, Qi−1, S, Pv, {α2, . . . , αr} as specified above.
OUTPUT: Qi, Si−1, T .
Step 1. take ρ ∈ Qi−1, ρ|Bj 6= 1 for some j; Compute ρ1 := αjρα

−1
j .

Step 2. GIANT CLOSURE(G,B1, ρ1, Pv, R1, τ1, σ1).
Step 3. for j := 2 to r do

compute Rj := α−1
j R1αj , σj := α−1

j σ1αj , τj := α−1
j τ1αj , and

ρj := α−1
j ρ1αj .

Step 4. for j := 1 to r do
Collect the following elements of Gi−1 in a set Σ:

the siftees of Qi−1 ∪ {σj′ , τj′ : 1 ≤ j′ ≤ r} through Rj
w(τj , σj) for all w(x, y) ∈ RCar (∗ see Theorem 6.2 ∗)

for σ ∈ Σ do
for all coordinates j′ for which σ witnesses the separation of j′

from j but this separation is not witnessed by the current ρj′ do
GIANT SEPARATE(Rj′ , ρj′ , σ, ρj′).

Step 5. while there exist j, j′ with length(ρj) 6= length(ρj′) do
take ρj with minimal length
for j′ := 1 to r do

GIANT SEPARATE(Rj′ , ρj′ , α
−1
j′ αjρjα

−1
j αj′ , ρj′)

if the lengths of all ρj′ , 1 ≤ j′ ≤ r, are equal and
there exist j′, j′′ such that ρj′′ witnesses a separation of j′

(from some j′′′) that is not witnessed by ρj′
then for one such pair j′, j′′

GIANT SEPARATE(Rj′ , ρj′ , ρj′′ , ρj′).
Step 6. for j := 1 to r do

GIANT CLOSURE(G,Bj , ρj , Rj , Rj , τj , σj).
Step 7. for j := 1 to r do

Collect the following elements of Gi−1 in a set Σ:
the siftees of Qi−1 ∪ {σj′ , τj′ : 1 ≤ j′ ≤ r} through Rj
w(τj , σj) for all w(x, y) ∈ RCar

the siftees of {σαj′ , ταj′ : α ∈ S, 1 ≤ j′ ≤ r} through Rj
for σ ∈ Σ do

for all coordinates j′ for which σ witnesses the separation of j′

from j but this separation is not witnessed by the current ρj′ do
GIANT SEPARATE(Rj′ , ρj′ , σ, ρj′)

if any of the ρj were changed in this step then goto Step 5.

1338 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

Step 8. Let J ⊆ {1, 2, . . . , r} consist of a representative j from each linked collection
of coordinates.

output Si−1 := {τj , σj : j ∈ J};
output T :=

⋃{Rj : j ∈ J} ;
collect in Qi the following elements of Gi:

the siftees of Qi−1 through the SGS T
for all distinct j, j′ ∈ J , the commutators [σj , τj′], [σj , σj′], [τj , τj′],
[τj , σj′]
for all j ∈ J , w(τj , σj) for all w(x, y) ∈ RCar

the siftees of {α−1τjα, α
−1σjα : τj , σj ∈ Si−1, α ∈ S} through the

SGS T ;
output Qi.

end (GIANT LINK).

8.3. Correctness and time requirement of GIANT LINK.
Theorem 8.3. The outputs T , Si−1 of GIANT LINK are, respectively, an SGS

and a set of compatible generators for Gi−1/Gi. The collection Qi is a set of normal
generators for Gi.

Proof. We first claim that after the execution of Step 4, for all 1 ≤ j ≤ r,
ρj witnesses the separation of j form any j′ that is implied by the group H =
〈Qi−1 ∪ {τj , σj : 1 ≤ j ≤ r}〉. The claim follows from Theorem 6.1 with G := H,N :=
HBj and m := 1 (because normal generators for the kernel of the action on Bj suffice
to witness possible separations of any j′ from j). Thus, in particular, the distinct
classes Cj = {j′ | ρj |Bj′ 6= 1}, 1 ≤ j ≤ r partition {1, . . . , r}.

When we emerge from Step 5, the distinct classes among the Cj are again disjoint
(a nontrivial intersection would be picked up by the last if statement, which would
reduce the length of ρj′ for some j′ in the intersection) and they now have the same
size.

In Step 7, if the sifting of Qi−1, σj′ , τj′ and the elements w(τj , σj) witness no new
separations, then we know that the ρj , 1 ≤ j ≤ r, witness all separations implied
by elements of the group H = 〈Qi−1 ∪ {τj , σj : 1 ≤ j ≤ r}〉 (by the argument for
Step 4). Furthermore, we know that H acts on Li as a direct product of alternating
groups, exactly one alternating group in each still-linked class of coordinates. If so,
the successful sifting of the collection of σαj′ , τ

α
j′ guarantees that H is invariant (mod

Gi) under the action of G.
The claims about T and Si−1 are now clear. The fact that Qi is a set of normal

generators of Gi then follows from Theorem 6.1 (with the chain of normal subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gi−1 ≥ Gi = N).

Theorem 8.4. Let s = |S|. Then GIANT LINK(Li, Q
i−1, S, Pv, {α2, . . . , αr},

Qi, Si−1, T) runs in time O∼(|Qi−1||Li|n + s|Li|2n) and |Qi| ≤ |Qi−1| + O(s|Li| +
|Li|2).

Proof. In Step 1, we can pick an appropriate ρ in O(|Qi−1|rm) and ρ1 is computed
in O(n) time. By Proposition 8.1, Step 2 requires O(mn) time and Step 3 can be
executed in O(rmn).

In Step 4, we sift |Qi−1|+2r elements through r SGS’s, requiring O(|Qr−1|rmn+
r2mn) total time; moreover, we compute O(rm) defining relations, in O(rmn) total
time. Altogether for all 1 ≤ j ≤ r we place O(|Qi−1|r + r2) elements into Σ; for each
of these, O(mr) time suffices to check whether it breaks some new links. The total
cost of calls of the subroutine GIANT SEPARATE in Step 4 is at most O(r2n) since
for each pair j, j′ we call GIANT SEPARATE at most once. Hence the total cost of

FAST MANAGEMENT OF PERMUTATION GROUPS I 1339

Step 4 (using that r ≤ n) is O(|Qr−1|rmn+ r2mn).

We enter the while loop of Step 5 at most r times since the minimum length of
ρj decreases at each call. (Within the while loop, the length of each ρj′ decreases at
least to the previous minimum.) Hence calls of GIANT SEPARATE in Step 5 cost
O(r2n). The if statement can also be executed within this time bound, since all we
have to check is whether the sets Cj (see the proof of Theorem 8.3) define a partition
of {1, 2, . . . , r}.

Each time Step 6 is executed, all the ρj are of the same length. The length in
any round is necessarily a divisor of the length in the previous round, so Step 6 is
executed ≤ log r times. By Proposition 8.1, one execution costs O(mrn).

Step 7 is executed always after Step 6, i.e., ≤ log r times, and one execution is
similar to Step 4 with the additional sifting of O(sr) conjugates (by S) through the r
SGS’s for a total timing of O(|Qr−1|rmn+ sr2mn).

Finally, Step 8 runs in O(|Qi−1|mrn + r2n + srmn). Only the term O(srmn)
(instead of O(sr2mn)) requires additional explanation: each conjugate α−1τjα, α ∈ S
acts nontrivially in only one of the linked collections of alternating groups so sifting
costs only O(mn). Noting that |Li| = mr, the proof is complete.

Remark 8.5. If s > n then we may use the set S∗ =
⋃
j<i−1 S

j instead of S
as input of GIANT LINK, replacing the term s by n in both the running time and
number of generators created. Correctness is proved by the argument in Remark 7.1.

9. Proof of the main results. In this section, we finish the proof of Theorem
1.1 and sketch two other versions of the algorithm: one with reduced memory re-
quirement (and same time efficiency as the original) and an elementary version with
O∼(n4.5) running time.

9.1. Proof of Theorem 1.1. The algorithm described in sections 3–8 computed
an SGS for the input group G = 〈S〉 ≤ Sym(n), |S| = s; we have to analyze the
running time.

By Lemma 3.1, Corollary 4.7, Proposition 4.8, and Corollary 5.11, the first four
steps of the main algorithm run within O∼(n3 +sn2). By the analysis in section 7 and
Theorem 8.4, the number of normal generators created while processing level Li−1

is O∼(s|Li| + |Li|2) (in addition to the |Qi−1| normal generators for Gi−1). Hence
|Qi| = O∼(n2 + sn) for all i and, by section 7 and Theorem 8.4, Step 5 runs in
O∼(n4 + sn3).

If the O∼(sn3) term becomes dominant, i.e., s > n, then we modify the procedure
according to Remarks 7.1, 8.5, and the running time drops down to O∼(n4 + sn2).
Finally, if sn2 dominates n4, i.e., s > n2, then we begin the algorithm by reducing the
number of generators to O(n2) in O(sn2) time. This can be achieved by sifting the
elements of S into (the originally empty) coset representative table with respect to the
point stabilizer chain of the permutation domain (cf. procedure SIFT in section 2.7).
In any case, we can achieve the claimed O(n4 logc n + sn2) running time with no
logarithmic factors multiplying sn2.

We turn to the proof of claims (b)–(e) in Theorem 1.1. The order of G is easily
computed as the product of sizes of coset representative sets. Although the SGS
constructed by the algorithm can be used directly for membership testing by extending
the action of a candidate permutation to the SD and there is a method to compute
pointwise set stabilizers from it (developed for the parallel procedure in [BLS87]),
it is easier to use a result of Brown, Finkelstein, and Purdom [BFP]. They provide
an O(n3) base-change algorithm for converting strong generating sets with respect

1340 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

to point stabilizer chains along different orderings of the permutation domain. The
base-change algorithm outputs the SGS in Jerrum’s compact format.

Finally, we observe that the normal sift theorem (Theorem 6.1) essentially pro-
vides the scheme for proving (e). Note that, with the descent of the SD complete, the
chain generators generate G, so we may assume S =

⋃
i Si. We associate a symbol xπ

to every element π of S and let X denote the collection of these. Each coset represen-
tative ρ ∈ Rj (see notation and discussion preceding the theorem) is representable as
a word in S and there is a corresponding word w(ρ) in X. The elements to be sifted in
Theorem 6.1 (a),(b),(c) are given as words in S, and so each τ corresponds naturally
to a word w′(τ) in X. Sifting τ can be interpreted as expressing τ canonically as a
word ρ1 · · · ρl. From each such sift we derive a relation w′(τ)−1w(ρ1) · · ·w(ρl) and
denote the collection of these by R. Then 〈X | R〉 is a presentation of G.

9.2. Reducing the memory requirement. The algorithm, as presented in
sections 3–8, requires O∼(n3+sn2) space. Here we indicate how to reduce the memory
requirement to O∼(n2 + sn).

The first four steps of the main algorithm run within this tighter bound. The
problem arises because of the top-down approach in Step 5 since, eventually, we
accumulate O∼(n2 + sn) normal generators. On the other hand, the SGS we build
occupies only O∼(n2) space. The solution is to build the output SGS T simultaneously
on all levels. We call T up-to-date on level i if 〈T ∩ Gj〉 is a normal subgroup of G
for all j ≥ i. We work always at the lowest level (i.e., greatest index i) which is not
up-to-date.

We start executing Step 5 at level 0 as before. The difference is that working on
level i, whenever the algorithm produces a normal generator ψ for Gi+1, we sift ψ
immediately into the SGS already constructed. If ψ factors completely then it can
be discarded; if it has a nontrivial siftee on some lower level j then we suspend the
execution on level i and jump down to level j.

On small levels, we execute exactly the same steps as in the original algorithm
(possibly interrupted by some computations on lower levels). On alternating levels,
we may execute GIANT LINK O(logn) times, discovering smaller and smaller linked
collections of subgroups. There are no more than O(logn) executions since the lengths
of linked collections are divisors of each other. This extra work may add a logn factor
to a lower-order term in the running time.

9.3. An elementary version. Two elementary estimates on the order of prim-
itive groups enable us to break the O(n5) barrier by an elementary, O∼(n4.5) algo-
rithm. One of them is Pyber’s estimate (cf. Theorem 2.5) on the order of nongiant
2-transitive groups and the other one is due to Babai.

Theorem 9.1 (see [Ba]). Let G ≤ Sym(n) be primitive; G is not a giant. Then
|G| ≤ exp(O∼(

√
n)).

Elementary algorithm.
INPUT: a set S of generators for G ≤ Sym(A), |S| = s.
Step 1. Construct an SF and choose a representative v in each orbit of the SF. For
all such v, construct Schreier generators for Gv.
Step 2. For these representatives, use TEST GIANT to decide whether G(v) is a
giant.
By inserting new levels after symmetric levels, obtain the SD. Compute the node sta-
bilizers Gw as in Step 1 for representatives of G-orbits of the SD. Let (L0, L1, . . . , Lm)
be the levels of the SD.

FAST MANAGEMENT OF PERMUTATION GROUPS I 1341

Step 3. For each node v representing an alternating level in the SD, construct an SGS
for G(v).

Step 4. for i := 1 to m do
if Li−1 is an alternating level

then construct SGS for Gi−1/Gi, normal generators for Gi as in
section 8
else construct SGS for Gi−1/Gi, normal generators for Gi as in
section 7

end (ELEMENTARY ALGORITHM).

We have to modify the stopping condition in TEST GIANT and in the first
step of THREE CYCLE to accommodate the weaker bound in Theorem 2.5. This
change adds only a logarithmic factor to a low-order term in the running time. Since
NATURAL ACTION is eliminated from this algorithm, correctness is elementary.
However, primitive groups on small levels may be of the size allowed in Theorem 9.1,
adding a factor

√
n in the analysis of section 7.

Acknowledgment. We are indebted to the referees for their careful work and
for suggestions to improve the presentation.

REFERENCES

[At] M. D. Atkinson, An algorithm for finding the blocks of a permutation group, Math.
Comp., 29 (1975), pp. 911–913.

[Ba] L. Babai, On the order of uniprimitive permutation groups, Ann. of Math., 113 (1981),
pp. 553–568.

[BCFLS91] L. Babai, G. Cooperman, L. Finkelstein, E. M. Luks, and Á. Seress, Fast Monte
Carlo algorithms for permutation groups, in Proc. 23rd ACM Symposium on the
Theory of Computing, 1991, pp. 90–100.

[BCFLS95] L. Babai, G. Cooperman, L. Finkelstein, E. M. Luks, and Á. Seress, Fast Monte
Carlo algorithms for permutation groups, J. Comput. System Sci., 50 (1995),
pp. 296–308.

[BLS87] L. Babai, E. M. Luks, and Á. Seress, Permutation groups in NC, in Proc. 19th
ACM STOC, 1987, pp. 409–420.

[BLS88] L. Babai, E. M. Luks, and Á. Seress, Fast management of permutation groups, in
Proc. 29th IEEE Foundations of Computer Science, 1988, pp. 272–282.

[BLS93] L. Babai, E. M. Luks, and Á. Seress, Computing composition series in primitive
groups, in Groups and Computation, DIMACS Series in Discrete Mathematics 11,
1993, pp. 1–15.

[BLS] L. Babai, E. M. Luks, and Á. Seress, Fast Management of Permutation Groups II,
in preparation.

[BS87] L. Babai and Á. Seress, On the degree of transitivity of permutation groups: A short
proof, J. Combinatorial Theory Ser. A, 45 (1987), pp. 310–315.

[BS88] L. Babai and Á. Seress, On the diameter of Cayley graphs of the symmetric group,
J. Combin. Theory Ser. A, 49 (1988), pp. 175–179.

[Bos] R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced designs,
Pacific J. Math., 13 (1963), pp. 389–419.

[BFP] C. Brown, L. Finkelstein, and P. Purdom, A new base change algorithm for per-
mutation groups, SIAM J. Comput., 18 (1989), pp. 1037–1047.

[Cam] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London
Math. Soc., 13 (1981), pp. 1–22.

[Car] R. Carter, Simple Groups of Lie Type, Wiley, London, 1972.
[CKS] C. W. Curtis, W. M. Kantor, and G. L. Seitz, The 2-transitive permutation rep-

resentations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218 (1976),
pp. 1–57.

[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete
Groups, 3rd ed., Springer-Verlag, New York, 1972.

1342 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

[Del] P. Delsarte, An algebraic approach to the association schemes of coding theory,
Philips Research Report Supplement, 10 (1973).

[FHL] M. L. Furst, J. Hopcroft, and E. M. Luks, Polynomial time algorithms for per-
mutation groups, in Proc. 21st IEEE Foundations of Computer Science, 1980,
pp. 36–41.

[Go] D. Gorenstein, Finite Simple Groups and Their Classification, Academic Press, New
York, 1986.

[Ha] M. Hall, Jr., The Theory of Groups, Macmillan, New York, 1959.
[HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th

ed., Clarendon Press, Oxford, 1979.
[Je82] M. Jerrum, A compact representation for permutation groups, in Proc. 23rd IEEE

Foundations of Computer Science, 1982, pp. 126–133.
[Je86] M. Jerrum, A compact representation for permutation groups, J. Algorithms, 7

(1986), pp. 60–78.
[Jo] C. Jordan, Nouvelles recherches sur la limite de transitivité des groupes qui ne con-

tiennent pas le groupe alterné, Journ. de Mathématiques, 1 (1895), pp. 35–60.
[Kn] D. E. Knuth, Efficient representation of perm groups, Combinatorica, 11 (1991),

pp. 33–44.
[Li] M. W. Liebeck, On minimal degrees and base sizes of primitive groups, Arch. Math.,

43 (1984), pp. 11–15.
[Lu82] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial

time, J. Comput. System Sci., 25 (1982), pp. 42–65.
[Lu86] E. M. Luks, Parallel algorithms for permutation groups and graph isomorphism, in

Proc. 27th IEEE Foundations of Computer Science, 1986, pp. 292–302.
[Lu87] E. M. Luks, Computing the composition factors of a permutation group in polynomial

time, Combinatorica, 7 (1987), pp. 87–99.
[MS] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

North–Holland, Amsterdam, 1978.
[Py] L. Pyber, On the orders of doubly transitive permutation groups, elementary esti-

mates, J. Combin. Theory Ser. A, 62 (1993), pp. 361–366.
[SS] A. Schönhage and V. Strassen, Schnelle Multiplikation Großer Zahlen, Computing,

7 (1971), pp. 281–292.
[Sc] L. L. Scott, Representations in characteristic p, in Proc. Santa Cruz Conf. on Finite

Groups, AMS, Providence, RI, 1980, pp. 319–322.
[Si67] C. C. Sims, Graphs and finite permutation groups, Math. Z., 95 (1967), pp. 76–86.
[Si70] C. C. Sims, Computational methods in the study of permutation groups, in Compu-

tational Problems in Abstract Algebra, J. Leech, ed., Pergamon Press, Elmsford,
NY, 1970, pp. 169–183.

[Wi] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.

PARAMETERIZED DUPLICATION IN STRINGS: ALGORITHMS
AND AN APPLICATION TO SOFTWARE MAINTENANCE∗

BRENDA S. BAKER†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1343–1362, October 1997 004

Abstract. As an aid in software maintenance, it would be useful to be able to track down
duplication in large software systems efficiently. Duplication in code is often in the form of sections
of code that are the same except for a systematic change of parameters such as identifiers and
constants. To model such parameterized duplication in code, this paper introduces the notions of
parameterized strings and parameterized matches of parameterized strings. A data structure called
a parameterized suffix tree is defined to aid in searching for parameterized matches. For fixed
alphabets, algorithms are given to construct a parameterized suffix tree in linear time and to find all
maximal parameterized matches over a threshold length in a parameterized p-string in time linear in
the size of the input plus the number of matches reported. The algorithms have been implemented,
and experimental results show that they perform well on C code.

Key words. string matching, pattern matching, duplication

AMS subject classifications. 68Q25, 68Q20, 68R15

PII. S0097539793246707

1. Introduction. In a large ongoing systems project, introduction of new fea-
tures and code maintenance by large staffs of programmers may result in code that
includes many duplicated sections. Such duplication still occurs even though it has
long been known that copying code may make the code larger, more complex, and
more difficult to maintain. For example, when a new feature is introduced, rather
than risk breaking a working feature by making a major revision, a programmer
might choose to leave the old section of code untouched, and to add another slightly
modified copy of it for the new feature. A bug fix might also be handled by copying
and modifying the code, for example, if the original programmer omitted handling
of special cases. The copies might be further copied and modified as time goes on.
With time, the amount of duplication in a system can become substantial and can
complicate maintenance.

While some of the duplication in a software system may involve sections of code
that are identical, much of the duplication involves sections of code that are not
identical, but are the same except for a systematic change of parameters such as
identifiers and constants. For example, each occurrence of first, last, 0, and fun in
one section may be replaced by init, final, 1, and g, respectively, in the other section;
this kind of correspondence between sections of code is called a parameterized match
[Bak1]. [Bak1] describes a program dup that finds all maximal parameterized matches
over a threshold length in C code; application of dup to a million-line subsystem of
a production system revealed that 21% of the lines were involved in parameterized
matches of at least 30 lines (excluding comments and white space).

This paper formalizes the notion of parameterized matches for code in terms of
parameterized strings, or p-strings, which are strings over two alphabets: an alpha-
bet of constant symbols and an alphabet of parameter symbols. Two parameterized

∗Received by the editors April 2, 1993; accepted for publication (in revised form) September 29,
1995. Some of the results in this paper appear in the Proc. of the 25th Annual ACM Symposium on
Theory of Computing, ACM, New York, 1993, pp. 71–80.

http://www.siam.org/journals/sicomp/26-5/24670.html
†Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Room 2C-457, Murray Hill, NJ

07974 (bsb@research.bell-labs.com).

1343

1344 BRENDA S. BAKER

strings are a parameterized match, or p-match, if they are the same except for a one-to-
one correspondence between the parameter symbols occurring in them. For example,
axbxyazyx and aubuvaxvu are a p-match where the one-to-one correspondence maps
the x, y, and z of the first p-string into the u, v, and x, respectively, of the second
p-string.

For use in searching p-strings, we define a new data structure called a parameter-
ized suffix tree, or p-suffix tree. We show that a p-suffix tree can be built in time and
space O(n), where n is the length of the input, if the alphabets are fixed. Given a
pattern p-string P of length m and a text p-string T of length n over fixed alphabets, a
p-suffix tree for T can be used to determine in O(n+m) time and O(n) space whether
P has a p-match in T . An algorithm is given that finds all maximal p-matches over a
threshold length in a p-string S in time O(n+ r), where n is the length of the input
and r is the number of matches reported, by searching a p-suffix tree constructed
for S. The algorithms for constructing p-suffix trees and for reporting all maximal
p-matches over a threshold length have been implemented. Experiments show that
the program performs well on C code input.

The algorithms in this paper improve upon the somewhat ad hoc method of
finding parameterized matches in dup. The parameterized-matching algorithm im-
plemented in dup operates as follows: it transforms all parameter candidates such
as identifiers and constants to the same symbol P , finds exact matches in the trans-
formed code, and then checks the exact matches for possible parameterized matches;
the worst-case running time is not a function of the size of the input and number
of p-matches, or even of the size of the input and the total length of the p-matches.
In some cases, as many as 99% of the exact matches found do not correspond to
parameterized matches.

P-suffix trees are a generalization of suffix trees for strings [McC, Ukk, We], but
are more dynamic in that each access to an input symbol requires a transformation
based on the depth in the tree. The algorithm described here for building p-suffix
trees is based on the McCreight algorithm for building suffix trees [McC]; however,
the original algorithm and the concept of suffix links used in it must be modified
to allow for the dynamic way in which p-strings are handled and the failure of a key
property of strings to generalize for p-strings. The algorithm for finding all maximal p-
matches over a threshold length is a generalization of the suffix-tree-based algorithm
implemented in dup for finding all exact matches over threshold length in strings
[Bak1, Bak2]; again, the generalization is not straightforward because of the dynamic
nature of p-suffix trees.

The generalization of suffix trees to p-strings is related to Giancarlo’s generaliza-
tion of suffix trees to L-strings [G] in that both have to deal with the failure of the
same key property of strings to generalize. In other respects, L-strings and p-strings
behave differently, because L-strings do not obey the restricted form of this prop-
erty that can be proved for p-strings. Consequently, the linear bounds obtainable for
constructing p-suffix trees with fixed alphabets do not appear to be obtainable for
constructing L-suffix trees for L-strings.

Four other methods have been attempted for finding duplication in code: (1)
string pattern matching has been applied to strings encoding the call graph and
statistics about characteristics such as use of operators to detect student plagiarism
[Ja]; (2) signal processing techniques combined with a graphical user interface have
been used to find approximate duplication by eye [CH]; (3) exhaustive search was
used on parse trees to identify identical subtrees or subtrees related by change of

PARAMETERIZED DUPLICATION IN STRINGS 1345

parameter, but was found to be unsuccessful because of time and space usage [Jo];
and (4) data flow analysis and safe approximation techniques have been proposed as a
basis for comparing program components in a restricted programming language [Ho].

Parameterized matching is reminiscent of unification [GeN], where the goal is
to determine whether two expressions can be made equivalent via substitutions for
variables, but unification differs in three ways from our problem: the domain is expres-
sions (terms) rather than strings, terms (rather than just variables) are substituted
for variables, and there is no notion of matching just parts of terms.

A parameterized match is a kind of approximate match, but is very different
from the standard definition in which two strings are an approximate match if they
are within a specified edit distance (number of insertions, deletions, or substitutions)
from each other, as studied, for example, in [CL, GG]. Even exact or approximate
matches to regular expressions [Aho, MM, WM] do not involve any notion of relating
repeated occurrences of corresponding (but different) symbols.

The UNIX grep pattern-matching program and ed editor [KP] allow a pattern
to be a restricted regular expression with backreferencing to refer to parts of the
text matching earlier parts of the pattern, as described in [Aho]. This problem is NP-
complete [Aho], and the algorithms implemented are undocumented, but are based on
backtracking and do not correctly implement the definitions [Hu92]. The grep/ed us-
age of backreferencing is not comparable with our definitions: in our terminology, they
have no way of requiring that distinct parameters should match different substrings,
while we have no way of allowing them to match the same substrings. These programs
also do not address the problem of finding all duplication over a threshold length.

The paper is organized as follows. Section 2 defines parameterized strings, param-
eterized matches, and parameterized suffix trees, and shows how parameterized suffix
trees can be used for parameterized pattern matching. The algorithm for construct-
ing a parameterized suffix tree is given in section 3. Section 4 gives the algorithm for
reporting all parameterized matches over a threshold length in a p-string. An imple-
mentation of the algorithms and some experimental results from applying them to C
code are described in section 5. Section 6 discusses time bounds for the algorithms
for variable alphabets and directions for further research.

2. Parameterized strings, parameterized matches, and parameterized
suffix trees. In this section, we introduce parameterized strings, parameterized
matches, and parameterized suffix trees (p-suffix trees), and show how parameter-
ized suffix trees can be used for parameterized pattern matching. We assume a RAM
model of computation with the uniform cost criterion [AHU].

Throughout, Σ will be a fixed finite alphabet of constant symbols and Π will be
a fixed finite alphabet of parameter symbols; i.e., the sizes of Σ and Π are O(1). We
assume that Σ and Π are disjoint from each other and the set of nonnegative integers,
that symbols are ordered and can be compared in constant time, and that symbols of
Π can be used to index into an array in constant time.

DEFINITION. A string of symbols in (Σ∪Π)∗ is called a parameterized string or
p-string. Two p-strings are a parameterized match, or p-match, if one p-string can
be transformed into the other by renaming the parameters via a one-to-one function
whose domain is the set of parameter symbols occurring in one p-string and whose
range is the set of parameter symbols occurring in the other p-string.

For example, if x, y, and v are parameter symbols and a, b, and c are constant
symbols, then S1 = axaybxycby and S2 = ayavbyvcbv are a p-match, where x and y
of S1 and renamed as y and v, respectively, in S2.

1346 BRENDA S. BAKER

Determining whether two entire p-strings are a p-match is straightforward, as
follows. Scan the two p-strings left to right, while constructing a table giving the one-
to-one correspondence, to see if any mismatches are found between symbols. In addi-
tion to mismatches in length, mismatches can be between different non-parameters,
between a parameter and a non-parameter, or between two parameters, at least one of
which has already been made to correspond to a different parameter. Given our defini-
tions, checking for mismatches can be done in time linear in input length n and space
O(|Π|), by constructing a table for the one-to-one correspondence. Unfortunately,
this approach does not conveniently generalize to pattern matching.

Instead, we use a procedure prev, that chains together occurrences of the same
parameter, to obtain a string in (Σ∪N)∗, where N is the set of nonnegative integers.
For each parameter, the leftmost occurrence is represented by a 0, and each succes-
sive occurrence is represented by the difference in position compared to the previous
occurrence. A number representing such a difference in position is called a parameter
pointer. For example, if u, v, x, and y are parameter symbols and a and b are constant
symbols, then prev(abuvabuvu) = ab00ab442 = prev(abxyabxyx). (Each parameter
pointer is a single digit here.)

Since symbols of Π can be used to index into a table, computation of prev can
be done in time linear in input length and space linear in |Π| by means of a table
containing the position of last occurrence of each parameter symbol encountered.
Proving the following proposition is straightforward from the definitions.

Proposition 1. P-strings S and S are a p-match if and only if prev(S) =
prev(S).

DEFINITION. Define the ith p-suffix of a p-string S = b1b2 . . . bn to be
psuffix(S, i) = prev(bibi+1 . . . bn). Define prefix(S, i, j) = prev(bibi+1 . . . bj), for i ≤ j.
Define prefix(S, i, j) to be the empty string if j < i.

Note that a symbol of prev(S) corresponds to a different value in psuffix(S, i) if
it is a parameter pointer that points to a position before i. For example, if prev(S) =
a0a2ab3, then psuffix (S, 3) = a0ab3. It is easily seen that prefix (S, i, j) is the prefix
of length j − i+ 1 of psuffix (S, i).

The following proposition follows directly from the definitions and Proposition 1.

Proposition 2. If P is a p-string pattern and T is a p-string text, P has a
p-match starting at position i of T iff prev(P) = prefix (T, i, i+ |P | − 1).

We also note that the value of the jth symbol of psuffix (S, i) can be computed in
constant time from j and the corresponding (j + i− 1)st symbol b of prev(S). We let
f be this function; the value of f is as follows.

DEFINITION. For b ∈ Σ ∪ N, if b if a nonnegative integer larger than j − 1,
f(b, j) = 0; otherwise f(b, j) = b.

Our strategy is to generalize suffix trees in p-strings based on Proposition 2 and
the function f . First, we briefly review suffix trees.

Suppose that Σ is an alphabet and S = a1a2 . . . an is a string, where each ai ∈ Σ.
For each i, 1 ≤ i ≤ n, the substring ai . . . an is a suffix of the input. Without loss of
generality, we assume that the last symbol an is a unique endmarker; consequently,
no suffix is the prefix of another suffix. A suffix tree is a compacted trie (multiway
Patricia trie) over the alphabet Σ ∪ N representing the suffixes of the input string
[McC]. A suffix tree is shown in Figure 1. Each arc of the tree is labelled with a
nonempty substring of the input, each internal (nonleaf) vertex has degree at least
two, and, for each internal vertex, the arcs to its children have labels beginning with
distinct symbols. For each leaf, the concatenation of the labels on the path from the

PARAMETERIZED DUPLICATION IN STRINGS 1347

bcabc$

$

bcabc$

$

abc$

bcabc$

abc$

$

abc

bc

c

$

Fig. 1. A suffix tree for the string abcbcabc $.

root to the leaf is a distinct suffix of S. Each vertex other than a leaf has at least two
children. Since the number of internal vertices is less than the number of leaves, the
number of vertices is at most 2n. Because no suffix is a prefix of another suffix, there
is a one-to-one correspondence between the leaves and the suffixes.

The generalization of suffix trees to p-suffixes of a p-string gives us p-suffix trees,
defined as follows.

DEFINITION. If S is a p-string that ends with a unique endmarker in Σ, a pa-
rameterized suffix tree, or p-suffix tree, for S is a compacted trie (multiway Patricia
trie) that stores the p-suffixes of S.

Each are in a p-suffix tree for S represents a nonempty substring of a p-suffix of
S; each internal vertex has degree at least two; and the arcs from an internal vertex
to its children have labels beginning with distinct first symbols. For each leaf, the
concatenation of the labels on the path from the root to the leaf is a p-suffix of S.
Since S ends with a unique endmarker, no p-suffix of S is the prefix of another p-suffix
of S, and consequently, each p-suffix of S is the concatenation of the labels on a path
from the root to a leaf. Thus, there is a one-to-one correspondence between leaves and
p-suffixes of S, and the number of vertices in S is linear in |S|. Arcs are oriented from
the root toward the leaves, so that arcs leaving a vertex point toward its children.

Example. Let S = xbyyxbx$, where x and y are parameter symbols and b and $
are constant symbols, so that prev(S) = 0b014b2$. (All parameter pointers are single
digits here.) The p-suffixes to be encoded in the tree are 0b014b2$, b010b2$, 010b2$,
00b2$, 0b2$, b0$, 0$, and $. Notice that the parameter pointers change to 0 as the
preceding part of the string is shortened. The p-suffix tree for S is shown in Figure 2.

DEFINITION. For each vertex ν, the pathstring of ν is the concatenation of the
labels on the path from the root to ν, and ν is the locus of its pathstring. The length
of the pathstring of ν is the pathlength of ν.

In order for the p-suffix tree to be stored in space linear in input length, arc labels

1348 BRENDA S. BAKER

0

b0

$

$

0b2 $

b

10b2 $

014b2 $

2 $

$

10b2 $

Fig. 2. A p-suffix tree for the p-string S = xbyyxbx$, where Σ = {b, $} and Π = {x, y}.

are calculated dynamically as follows. We assume that prev(S) has been computed
and stored in an array. For each vertex ν other than the root, we store the pathlength
plen(ν), an index firstpos(ν) into the input to specify the starting position of the label
of the arc from its parent, and the length arclen(ν) of this arc. If a label symbol is
at pathlength j from the root and corresponds to index k into the input, its value in
the label is f(b, j), where b is the kth symbol of prev(S), and f is as defined above;
extracting this value takes constant time.

Because up to n symbols of N can be used even when Π is fixed, it might seem
that the number of children of each internal vertex is O(n). However, this number
is bounded by |Σ| + |Π|, for the following reason. The pathstring of any vertex ν
contains parameter pointers representing at most |Π| distinct chains of parameters,
and the first symbol of an arc to a child must either be a symbol of Σ, a 0 (implying
that at most |Π| − 1 chains appear in the pathstring of ν), or a nonnegative integer
pointing to the last element of one of these chains.

For fixed alphabets, linked lists can be used to store the arcs, as far as the theo-
retical time bounds are concerned; in practice, for large alphabets, hashing would be
used, as suggested by McCreight [McC].

Thanks to Proposition 2, searching the p-suffix tree of a text p-string T$ for
a pattern p-string P is straightforward: follow the path determined by successive
symbols of prev(P) from the root downward in the p-suffix tree for T$ to see if prev(P)
is identical to the first part of some p-suffix of T . This search can be accomplished in
time O(|P |). The actual matching positions can be calculated from the descendant
leaves. Thus, we obtain the following result.

Theorem 1. Given p-strings P and T over fixed alphabets, prev(T), and a p-

PARAMETERIZED DUPLICATION IN STRINGS 1349

suffix tree for T$, where $ is a unique endmarker, whether P has a p-match with a
substring of T can be determined in time O(|P |) and space O(|T |). All positions of T
at which P has a p-match can be found in time O(|P |+ k) and space O(|T |), if there
are k such positions.

In the next section, we will show that for fixed alphabets, a p-suffix tree can be
built in time and space linear in the input length. Consequently, given p-strings P
and T , whether P has a p-match with a substring of T can be determined in time
O(|P |+ |T |) and space O(|T |), and all positions of T at which P has a p-match can
be found in time O(|P |+ |T |+ k) = O(|P |+ |T |) and space O(|T |).

3. Building a p-suffix tree. In this section, an algorithm is given for con-
structing a p-suffix tree. We would like to imitate McCreight’s algorithm for building
suffix trees as much as possible; however, some basic changes must be made because
of the difference between strings and p-strings.

Some useful properties. Strings have the following two trivial properties:
(1) Common Prefix Property. For a, b ∈ Σ and S, T ∈ Σ∗, if aS = bT , then

S = T .
(2) Distinct Right Context Property. Suppose aS = bT and aSc 6= bTd, where

a, b, c, d ∈ Σ and S, T ∈ Σ∗. Then Sc 6= Td.
These two properties make it possible to augment a suffix tree with pointers

called suffix links. If an internal vertex has pathstring aα, where a is a symbol
and α is a string, its suffix link points to an internal vertex with pathstring α; in
addition, the suffix link for the root points to the root. The definition of suffix links
depends on the two properties in the following way. The existence of an internal
vertex with pathstring aα implies there are two distinct strings sharing prefix aα.
The Common Prefix Property guarantees that stripping off the initial a from the two
strings results in strings sharing an initial prefix α, and the Distinct Right Context
Property implies that no longer prefix is shared, which in turn guarantees the existence
of an internal vertex with pathstring α. Suffix links are useful both for building a
suffix tree [McC] and for pattern matching in space proportional to the size of the
pattern [CL].

The Common Prefix Property generalizes to p-strings, but unfortunately the Dis-
tinct Right Context Property does not.

Lemma 1 (Common Prefix Property for p-strings). If a, b ∈ Σ ∪Π and S and T
are p-strings such that prev(aS) = prev(bT), then prev(S) = prev(T).

Proof. Observe that prev(S) is different from prev(aS) only in the deletion of the
first symbol and in the changing of a parameter pointer pointing to the first position
in prev(aS) to a 0, if such a parameter pointer exists, and similarly for prev(T) and
prev(bT). By equality of prev(aS) and prev(bT), such parameter pointers, if they
exist, must be in the same position in these two p-strings.

We would like to be able to generalize the Distinct Right Context Property
to p-strings as follows: if prev(aS) = prev(bT) and prev(aSc) 6= prev(bTd), then
prev(Sc) 6= prev(Td), where a, b, c, d ∈ Σ ∪ Π and S and T are p-strings. Unfortu-
nately, this is false, because prev turns nonnegative integers into 0’s as the front end
of the string is chopped off. For example, suppose S = xabxyabz, with Σ = {a, b}
and Π = {x, y, z}. Then prev(xabx) = 0ab3 and prev(yabz) = 0ab0, which have a
common prefix of 0ab, but prev(abx) = ab0 = prev(abz), and the distinctness of the
right contexts of 0ab is lost.

The best we can do is the following restricted form of the Distinct Right Context
Property.

1350 BRENDA S. BAKER

Lemma 2 (Restricted Distinct Right Context Property for p-strings). Suppose
prev(aS) = prev(bT) and prev(aSc) 6= prev(bTd), where S and T are p-strings of
length k and a, b, c, d ∈ Σ ∪Π. If prev(Sc) = prev(Td), then the last symbol of one of
prev(aSc), prev(bTd) is k + 1, while the last symbol of the other is 0.

Proof. Obviously, prev(aSc) and prev(bTd) differ only at their last symbol. Sup-
pose prev(Sc) = prev(Td). If the common last symbol is a nonzero parameter pointer
or is in Σ, then the corresponding symbols in prev(aSc) and prev(bTd) also have a
common value ν, implying that prev(aSc) = prev(aS)ν = prev(aT)ν = prev(aTd),
a contradiction. The only other possibility is that the last symbols of prev(Sc)
and prev(Td) are zero, and the last symbols of prev(aSc) and prev(bTd) are pa-
rameter pointers in {0, k + 1}. They can’t both be zero or both be k + 1, since
prev(aSc) 6= prev(bTd).

Overview of McCreight’s algorithm. McCreight’s algorithm for building suffix
trees inserts suffixes in stages, where Stage i inserts suffix i (the suffix starting at
position i of the input), for i = 1, 2, . . . , n (from left to right). Define headi to be
the longest prefix of the ith suffix of S that is also a prefix of the jth suffix of S for
some j < i. The path for suffix i in the tree coincides with an existing path up to
|headi| symbols; in Stage i, the algorithm inserts a new vertex hdi at that point, if
no vertex exists there already, and gives it a child that is a leaf whose pathstring is
suffix i.

Suffix links are McCreight’s key to turning this idea into an efficient algorithm.
A suffix link for a vertex with pathstring aα, where a is a symbol and α is a string,
points to the vertex with pathstring α (which must exist because of the Common
Prefix Property and Distinct Right Context Property); the suffix link for the root
points to the root. Suppose Stage i − 1 found that head i−1 was aα, where a is a
symbol and α a p-string. Then head i will be at least as long as |α| because of the
Common Prefix Property. In Stage i, if the suffix link is already defined for the vertex
with pathstring aα, there is no need to trace the common prefix α from the root; the
processing can jump directly from the vertex with pathstring aα to the vertex with
pathstring α via a suffix link. From that point, scanning can continue downward to
find the desired location of hdi.

Unfortunately, the suffix links are constructed dynamically, and the desired suffix
link may not actually be defined until after it would be most useful in Stage i. Mc-
Creight’s algorithm gets around this obstacle as follows. In Stage i, it uses the best
suffix link available, namely that of the parent of the desired vertex, and follows a
path downward in the tree while rescanning part of the input, up to a pathlength of
|α|. Fortunately, we know what symbols of the input were already scanned, just not
where to go in the tree; thus, only the first symbol of each arc needs to be rescanned.
If no vertex exists at this point (with pathlength |α|), a new vertex hdi is inserted,
the missing suffix link is set to point to hdi, and a leaf is created to represent suffix
i. If a vertex does exist already at this point, the missing suffix link is set to it, and
the scanning phase continues along the path corresponding to suffix i until the next
symbol is not available in the tree; at this point, the algorithm creates an internal
vertex hdi if necessary, and a leaf to represent suffix i. (This explanation skips over
some of the details of the algorithm.)

Our algorithm. We would like to generalize McCreight’s algorithm to p-suffix
trees. Unfortunately, we cannot generally define a suffix link for a vertex with path-
string prev(aS) to point to a vertex with pathstring prev(S), because that vertex
may not exist due to the failure of the Distinct Right Context Property for p-strings.

PARAMETERIZED DUPLICATION IN STRINGS 1351

We can, however, define a modified suffix link, called a contracted suffix link. For a
vertex with pathstring prev(aS), the contracted suffix link points to the best available
vertex, namely the one whose pathstring is the contracted locus of prev(S), by the
following definition.

DEFINITION. For α ∈ (Σ ∪ N)∗, the contracted locus of α is the vertex whose
pathstring is the longest prefix of α of all vertices in the tree.

The contracted locus of α must exist because the empty string is a prefix of every
string, and the root is the locus of the empty string.

The contracted locus of a pathstring may change as vertices are added to the p-
suffix tree. Thus many contracted suffix links may need to be reset. But the following
algorithm uses lazy evaluation; i.e., a contracted suffix link is reset only when it needs
to be evaluated.

DEFINITION. For a p-string S and i ≥ 1, define headi(S) as the longest prefix
of psuffix(S, i) that is also a prefix of psuffix(S, j) for some j < i. Define head0 to be
the empty string.

Lemma 3. If headi−1(S) = prefix (S, i − 1, s), where i − 1 ≤ s, then head i(S) =
prefix (S, i, t) for some t ≥ s.

Proof. By definition of head i−1, there is some j < i − 1 such that head i−1(S) is
a prefix of psuffix (S, j) as well as of psuffix (S, i− 1). Since |headi−1(S)| = s− i+ 2,
the first s − i + 1 symbols of psuffix (S, j + 1) and psuffix (S, i) must be the same by
the Common Prefix Property. The result follows by definition of head.

The construction of p-suffix trees follows the organization of McCreight’s original
algorithm [McC] as much as possible; modifications are needed to allow for updating
out-of-date contracted suffix links and the extra searching resulting from out-of-date
contracted suffix links. The values of plen, firstpos, and arclen are stored for the
vertices as described earlier. In addition, for each vertex ν, the contracted suffix link
CSL(ν) is stored, and if ν is not the root, a pointer to its parent parent(ν) is stored.

Let S be the p-string for which the p-suffix tree is to be constructed; we assume
that S ends in a unique endmarker in Σ, and P = prev(S) has already been con-
structed in linear time and space as described in the previous section. The main
procedure of the algorithm, called lazy, is given in Figure 3; additional procedures,
prescan, rescan, and scan, called by lazy are described in the text. The ith iteration
of the main loop of lazy will be referred to as Stage i and inserts the ith p-suffix into
the tree.

The tree is initialized to a root, with CSL(root) = root and oldhd = root. We will
prove the algorithm correct inductively by means of the following properties, which
we will show must hold for Stage i, i ≥ 1.

P1: At the beginning of stage i, CSL(ν) has been set for the root and for every
internal vertex ν except possibly for oldhd, which is the locus of headi−1;
CSL(root) points to root, and for a vertex ν other than the root, if CSL(ν) is
defined and the pathstring of ν is prefix (S, j, k), where j ≤ k, CSL(ν) points
to a vertex whose pathstring is prefix (S, j + 1, t) for some t, j ≤ t ≤ k.

P2: At the end of Stage i, the tree is a compacted trie for the first i p-suffixes.

The goals in Stage i are to set CSL(oldhd), to find or create hd, the locus of headi,
and to create a new leaf as the locus for psuffix (S, i). Along the way, the contracted
suffix link for parent(oldhd) may be updated. In the following discussion, we assume
that P1 and P2 held up to the start of Stage i.

If oldhd is the root, CSL(oldhd) is already set to the root, and is up-to-date; the
algorithm proceeds to call scan, described below.

1352 BRENDA S. BAKER

/∗index(i,len) translates a tree pathlength len into an index

into prev(S) for Stage i ∗/
#define index(i,len) i-1+len

#define FP(i,j) f(P[i],j)

lazy() {

int i,short;

VERTEX c,d,hd,oldhd,start;

create a tree consisting of a root;

oldhd=root;

CSL(oldhd)=root;

for (i=1;i<=n;++i) { /∗ Stage i ∗/
if (oldhd == root) hd=scan(root,child(root,S(0,i)),0,i,i);

else {

if (CSL(oldhd) is defined)

start = CSL(oldhd);

else

start = CSL(parent(oldhd)) = prescan(parent(oldhd),i);

pgoal=plen(oldhd)-1; /∗ pgoal = |prefix(S, i, s)| ∗/
c=rescan(start,pgoal,i); /∗contracted locus of prefix(S, i, s) ∗/
short = pgoal-plen(c);

/∗compare next transformed symbol of prev(S) to corresponding

symbol on the appropriate arc out of c ∗/
d=child(c,f(plen(c),index(i,plen(c)+1)));

if ((d is defined) and (short>0) and

(FP(index(i,pgoal+1),pgoal)!= FP(firstpos(d)+short,pgoal) {

create a new vertex hd between c and d

with arclen(hd) = short and firstpos(hd)=i-1+pgoal;

CSL(oldhd) = hd;

}

else {

CSL(oldhd) = c;

hd = scan(c,d,short,index(i,pgoal+1),i);

}

}

}

add a new leaf lf as a child of hd, with firstpos(lf)=i+plen(hd),

arclen(hd)=n-i-plen(hd)-1; /∗ locus of psuffix (i) ∗/
oldhd=hd;

}

}

Fig. 3. The main procedure for the algorithm for constructing p-suffix trees.

So suppose oldhd is not the root. For s = plen(oldhd) + i − 2, headi−1 =
prefix(S, i − 1, s). CSL(oldhd) must be set to the contracted locus of prefix (S, i, s).
Fortunately, prefix (S, i, s) is guaranteed to be a prefix of some pathstring already ex-
isting in the tree. This follows from the definition of headi−1 and the Common Prefix
Property.

Initially, lazy looks for a vertex start that is an ancestor of the contracted locus
of prefix (S, i, s). If CSL(oldhd) is already defined (although possibly out of date), by
property P1, CSL(oldhd) can be used as start. Otherwise lazy begins by updating
CSL(parent(oldhd)) and sets start to its updated value. This updated value is found
by calling prescan(parent(oldhd), i) and will be the contracted locus of prefix (S, i, r)
for some r < s.

PARAMETERIZED DUPLICATION IN STRINGS 1353

If parent(oldhd) is the root, prescan(parent(oldhd), i) returns the root. Other-
wise, it follows the path of prefix (S, i, s) downward in the tree from the vertex pointed
to by CSL(parent(oldhd)). It needs to check only the first symbol of each arc label
since prefix (S, i, r) is a prefix of prefix (S, i, s), which we showed to be a prefix of some
pathstring in the tree. It finds the contracted locus by not exceeding the desired
pathlength, plen(parent(oldhd))− 1.

Once start has been set, lazy finds the current contracted locus c of prefix (S, i, s)
by calling a function rescan(start, pgoal, i), where pgoal = plen(oldhd) − 1. Now,
rescan scans downward from start following the path of prefix (S, i, s). Like prescan,
rescan checks only the first symbol of each arc label because prefix (S, i, s) is known
to be a prefix of some pathstring in the tree. The contracted locus of prefix (S, i, s) is
found by not exceeding the desired pathlength, pgoal; the contracted locus is short
symbols above where the locus of prefix (S, i, s) would be (if it existed), for some
short ≥ 0.

While c is currently the contracted locus of prefix (S, i, s), it may no longer be so
at the end of the stage if a new vertex is created as the locus of headi. By Lemma
3, for some t ≥ s, headi = prefix(S, i, t), but the value of t is not yet known. The
only case in which c will not be the contracted locus of prefix (S, i, s) at the end of
the stage is when short > 0 and t = s. If short > 0, whether t = s is determined by
checking the (short + 1)st transformed symbol on the arc from c to the appropriate
child d.

Thus the algorithm proceeds as follows. If short > 0 and t = s, a new vertex
is created as the locus hd of headi and CSL(oldhd) is made to point to it. Oth-
erwise, the algorithm sets CSL(oldhd) to c and sets hd to the vertex returned by
scan(c, d, short, i+ pgoal, i).

Scan(c, d, short, j, i) begins just after the (short)th symbol on the arc into d (or
at c if short = 0) and the jth input symbol and scans downward in the tree along
the path determined by psuffix (S, i) until the next transformed input symbol is not
available in the tree. At this point, scan creates a new vertex as the locus of headi,
if none exists already, and returns it.

Finally, a new arc is added from the locus hd of headi = prefix(S, i, t) to a new
leaf, which is the locus of psuffix (S, i).

Property P1 holds initially when the tree is initialized to just the root. In Stage
i, the algorithm sets CSL(oldhd) to the contracted locus for prefix (S, i, s), implying
P1 holds for oldhd, and care is taken to ensure that P1 still holds for parent(oldhd)
if its contracted suffix link was reset. No other contracted suffix links were changed.
Hence, if P1 held at the beginning of this stage, it still holds at the end of the stage.

Property P2 holds at the beginning when the tree is initialized to just the root,
and for i > 1, by the induction hypothesis, property P2 holds at the end of Stage
i − 1. Either the locus of headi is created in Stage i by lazy because short > 0 and
t = s, or it is created by scan. In either case, it is made the child of the old contracted
locus of headi in the tree. Therefore, property P2 holds at the end of Stage i.

By induction, properties P1 and P2 hold for all stages. For i = n, P2 implies
that the tree is a compacted trie for all the p-suffixes of S. Thus, the above algorithm
constructs a p-suffix tree for S.

Analysis.

Theorem 2. Let Σ and Π be fixed finite disjoint alphabets. Given a p-string
S ∈ (Σ ∪ Π)∗ ending in a unique endmarker in Σ, a p-suffix tree can be constructed
for S in time O(n) and space O(n), where n is the length of S.

1354 BRENDA S. BAKER

Proof. Since correctness of the algorithm was shown above and linearity of space
was shown when p-suffix trees were defined in section 2, it only remains to analyze the
running time. The proof is more complicated than that for McCreight’s algorithm
because of the parameter pointers and the use of contracted loci. In McCreight’s
algorithm, of the input symbols rescanned in a single stage, only the last can be
rescanned again later, implying that the time for rescanning is linear in the length of
the string. In our case, the failure of the Distinct Right Context Property and the
resulting use of contracted loci mean that from one stage to the next, rescanning can
back up in the input and rescan again a sequence of symbols already rescanned, but
at most a number proportional to |Π| in any stage, for a total of O(|Π|n) rescanning
steps. Prescanning, not needed in McCreight’s algorithm, also can recheck symbols
already checked previously, but again at most a number proportional to |Π|n. The
result will follow from our assumption that |Π| is O(1).

First we observe that scan uses O(n) time over all stages, because in each stage,
scan is called at most once and scans at most one symbol scanned in an earlier stage,
and |Σ| and |Π| are O(1).

Next, we analyze the work required for prescanning.

Call a contracted suffix link good if it is for the root or if it is from ν to ν, where
the pathlength of ν is one less than the pathlength of ν. Otherwise, it is bad. By the
Restricted Distinct Right Context Property, when a vertex is first given a bad suffix
link, it has exactly two arcs, one whose label begins with 0 and one whose label begins
with the pathlength of the vertex.

Let BAD(y) be the set of vertices ν that have had contracted suffix links pointing
to proper ancestors of y at the start of Stage i and whose contracted suffix links are
reset to point to y or a descendant of y after y is created. Every prescanning step
that checks the first symbol on an outarc of y is due to a distinct member of BAD(y).

At the start of Stage i, every vertex in BAD(y) still has exactly two outarcs,
one whose label begins with 0 and one whose label begins with the pathlength of the
vertex, since otherwise the vertex would have been given a good contracted suffix link
already. We claim that all vertices of BAD(y) lie in a single path in the tree at the
start of Stage i and that the path corresponding to BAD(y) goes along the arcs whose
labels begin with a parameter pointer 0.

For suppose that vertices of BAD(y) include wb and wc, where neither is an
ancestor of the other. Let z be their lowest common ancestor. Since any pathstring
can have at most one parameter pointer to the first symbol, by the definition of prev ,
z has two arcs whose labels begin with symbols we will call b and c, respectively,
where b and c are not parameter pointers to the first symbols in the pathstrings and
b 6= c. Without loss of generality, suppose the arc whose label begins with c was
created second. By the Restricted Distinct Right Context Property, in the stage after
the second arc was created, z received a good contracted suffix link to a vertex u, with
arcs whose labels begin with b and c, respectively. Since all internal vertices descended
from the arc of z whose label begins with c get their contracted suffix links created
after u is created (by construction), wc has a bad contracted suffix link pointing to u
or to a descendant of u through the arc whose label begins with c. By the definition of
BAD(y), the contracted suffix link of wc points strictly above y at the start of Stage i
but to y or below y after y is created, and consequently y is a descendant of u through
the arc whose label begins with c. But then the (|u|+ 1)st symbol of the pathstring
of y is c, whereas by the definition of wb, it must be b, contradicting the membership
of wb in BAD(y). Therefore, either wb or wc must be an ancestor of the other.

PARAMETERIZED DUPLICATION IN STRINGS 1355

Moreover, at each vertex ν (other than the one farthest from the root) in BAD(y),
the path follows the outarc whose label begins with 0. The path cannot follow the
arc whose label begins with a parameter pointer to the first symbol in the pathstring,
because each vertex of BAD(y) has an outarc whose label begins with a parameter
pointer to the first symbol in the pathstring, and a pathstring can have at most one
such parameter pointer by definition of prev .

Since the number of 0’s in a pathstring is at most |Π|, BAD(y) contains at most
|Π| vertices. Therefore, vertices created before y account for at most |Π| symbols
prescanned because of y. The only other prescanning steps involving y are those in
which prescanning begins at y for vertices whose bad contracted suffix links point
directly at y; there are at most n such steps.

There are at most n prescanning steps that can be allocated to the first symbol
prescanned in each stage. Over all vertices y, there are at most |Π|n additional
prescanning steps. Since |Σ| and |Π| are O(1), each step takes O(1) time, and the
total time for prescanning is O(n).

Finally, we analyze the time required for rescanning.

An argument similar to the prescanning argument shows that the number of
symbols rescanned in resetting an out-of-date CSL(oldhd) is O(|Π|n) = O(n) over all
stages.

Next, we consider rescanning for stages in which CSL(oldhd) is initially undefined.
We will show that, in successive stages, rescanning can back up in the input and rescan
sections of input already rescanned, but it cannot back up past symbols already
rescanned whose transformed value is not 0. More precisely, suppose that the kth
symbol of prev(S) is rescanned in Stage i after having been previously rescanned,
k > i (the kth symbol is not the first symbol in the label of an outarc from the root),
and the transformed value in this rescanning is not 0. We will show that this symbol
must be the first symbol rescanned in Stage i.

The transformed value is the first symbol in the label of an outarc of the locus
of prefix (S, i, k − 1) and is either a symbol in Σ or an integer between 1 and k − i.
Also, k ≤ s, where oldhd is the locus of prefix (S, i − 1, s), or the kth symbol of
prev(S) would not be rescanned. Let j be the number of the last stage in which
this symbol was rescanned or scanned. In Stage j, the transformed value of the kth
symbol was the same, because of the definition of f and the fact that this symbol was
deeper in the tree in Stage j than in Stage i. In Stage j, the kth symbol of prev(S)
corresponds to the first symbol on an arc of an internal vertex. Therefore, for some q,
prefix (S, j, k−1) = prefix(S, q, q+k−j−1) but prefix (S, j, k) 6= prefix(S, q, q+k−j),
and the last symbol of prefix (S, j, k) is either a symbol in Σ or an integer between 1
and k− i < k−j. Therefore, by the Common Prefix Property and Restricted Distinct
Right Context Property, the locus of prefix (S, j+1, k−1) = prefix(S, q+1, q+k−j−1)
exists at the end of Stage j + 1. Moreover, this argument can be applied inductively
to show that the locus of prefix (S, i − 1, k − 1) exists at the end of Stage i − 1.
Consequently, k − 1 ≤ r < s, where parent(oldhd) is the locus of prefix (S, i − 1, r).
But the contracted locus of prefix (S, i, r) cannot be any closer to the root than the
locus of prefix (S, i, k − 1). We conclude that the kth symbol of prev(S) must be the
first symbol rescanned in Stage i.

We have shown that other than the first symbol rescanned in each stage, only
symbols transformed into 0’s can have been rescanned previously. Since the number
of 0’s in any pathstring is at most |Π|, each stage rescans at most |Π| + 1 symbols
already rescanned previously. Over all stages, there are at most n rescannings of

1356 BRENDA S. BAKER

symbols for the first time. Since |Π| and |Σ| are O(1), O(|Π|n) = O(n) symbols are
rescanned and the time for rescanning each symbol is O(1). Thus, the total time
spent on rescanning over all stages is O(n).

From above, scanning, prescanning, and rescanning use O(n) time over all stages.
Since the time used by lazy outside of these procedures is also O(n), the result
follows.

4. An algorithm for finding all maximal p-matches over a threshold
length. This section defines maximal p-matches and gives algorithms for finding all
maximal p-matches over threshold length in a p-string.

DEFINITION. For a p-string S, define Si to be its ith symbol, for 1 ≤ i ≤ |S|, and
Si,j = Si . . . Sj, for 1 ≤ i ≤ j ≤ |S|.

Let S be a p-string of length n. If Si,i+k and Sj,j+k are a p-match, where 1 ≤
k < n and 1 ≤ i, j ≤ n− k, we denote it by (i, j, k + 1) or (equivalently) (j, i, k + 1),
i.e., by the two starting positions and the length of the p-match. Define Sn+1 to be
an endmarker $ that does not occur in S, and S0 to be a beginning marker that also
does not occur in S, with S0 6= $.

DEFINITION. Suppose Si,i+k and Sj,j+k are a p-match, where 1 ≤ i ≤ i+ k ≤ n
and 1 ≤ j ≤ j+k ≤ n. We say this p-match is left-extensible if Si−1,i+k and Sj−1,j+k

are a p-match, and right-extensible if Si,i+k+1 and Sj,j+k+1 are a p-match. If it is
neither left-extensible nor right-extensible and is not the trivial p-match (1, 1, n), we
say it is a maximal p-match.

Lemma 4. If (i, j, k) is a maximal p-match, then this p-match cannot be extended
in any amount in either or both directions; i.e., there are no r, s ≥ 0 with at least one
of r, s nonzero such that (i− r, j − r, r + k + s) is a p-match.

Proof. If two p-strings p-match, and they are truncated on the right (left) by
the same amount, the resulting p-strings will still p-match. Therefore, if there is
a p-match that is more than one symbol longer in either direction, there will also
be a p-match that is exactly one symbol longer, contradicting the nonextensibility
of the p-match.

Maximal p-matches for p-strings include as a subcase maximal matches for strings.
It was shown in [Bak2] that the maximal match relation is not an equivalence relation,
because it is not transitive. For example, consider the string adbdadb. The triple (2,
4, 1) represents the maximal match between the first two d’s. Similarly, the triple (4,
6, 1) represents the maximal match between the last two d’s. However, the first and
last d’s are not a maximal match; they are part of the longer maximal match (1, 5, 3).
Thus, maximal p-matches are also not an equivalence relation, and an algorithm to
report all maximal p-matches over a threshold length must report pairs of p-substrings
rather than equivalence classes of p-strings.

In [Bak2], a suffix-tree-based algorithm was given to find all maximal matching
substrings over a threshold length in a string. We would like to generalize that
algorithm to p-suffix trees and p-strings. The algorithm for strings was based on two
facts: each pathstring in a suffix tree represents one or more matches that are not
right-extensible, and whether the p-matches are left-extensible can be determined by
checking the symbol to the left of the matching substrings.

For p-suffix trees, it is also true that each pathstring represents one or more p-
matches that are not right-extensible. However, checking whether the p-matches are
left-extensible is more complicated.

Suppose Si,i+k and Sj,j+k are a p-match. If Si−1 and Sj−1 are both in Π, the
first symbols of prev(Si−1,i+k) and prev(Sj−1,j+k) will both be 0. Nevertheless, it may

PARAMETERIZED DUPLICATION IN STRINGS 1357

happen that Si−1,i+k and Sj−1,j+k are not a p-match. The reason is that for some
r ≤ k, the rth symbols of prev(Si,i+k) and prev(Sj,j+k) may both be 0, but Si+r−1

may be the next occurrence of Si−1, while Sj+r−1 may be the first occurrence of
some parameter other than Sj−1, so these symbols cannot correspond under renaming
in Si−1,i+k and Sj,j+k. For example, consider Si−1,i+k = xabcx and Sj−1,j+k =
yabcz, where x, y, and z are parameters. Then prev(abcx) = abc0 = prev(abcz), but
prev(xabcx) = 0abc3 while prev(yabcz) = 0abc0. This is the failure of the Distinct
Right Context Property in a different guise.

It would be convenient to have a way to determine left-extensibility just by
checking the positions to the left. Our solution is to construct another string, A =
(prev(Sr))r, where the superscript r represents reversal; in A, the parameters are
turned into forward references rather than back references as before. Note that A can
be constructed in time and space linear in |S| by scanning prev(S), replacing each
parameter by a 0, and then replacing each such 0 pointed to by a parameter pointer
by the value of the parameter pointer. Let A0 = S0 (the unique beginning-marker).
The following proposition shows that by applying a transform function to each left
context, we need check only the left context positions for equality.

Lemma 5. Let i, j, k > 0 and i 6= j. A p-match (i, j, k) is left-extensible iff
f(Ai−1, k + 1) = f(Aj−1, k + 1).

Proof. The proof is trivial if at least one of the symbols Ai−1 and Aj−1 is in Σ.
So, consider the case where both are parameters.

If (i, j, k) is left-extensible, (i − 1, j − 1, k + 1) is a p-match and Si−1 occurs in
Si,i+k−1 iff Sj−1 occurs in the corresponding positions of Sj,j+k−1. If these symbols
do occur, then

f(Ai−1, k + 1) = f(Aj−1, k + 1) > 0,

while if they don’t occur, then

f(Ai−1, k + 1) = f(Aj−1, k + 1) = 0.

Now, suppose (i, j, k) is a p-match and f(Ai−1, k+1) = f(Aj−1, k+1) = r. If r =
0, then the initial symbols are both parameter symbols that don’t occur in the rest of
the p-strings, and the p-match is left-extensible. If r > 0, then the initial symbols are
the same as the parameter r symbols to the right, and the one to one correspondence
between parameter symbols for (i, j, k) also implies that (i−1, j−1, k+1) is a p-match
and (i, j, k) is left-extensible.

The algorithm for finding all maximal p-matches over a threshold length will be
based on p-suffix trees augmented by lists of the following forms.

DEFINITION. A plist is a list of integers, and a clist is a list of plists.
An integer i in a plist will represent the ith p-suffix. Each plist will be constructed

so that all of its member elements correspond to p-suffixes with the same transformed
left context. The intent is to construct a clist for each vertex ν to represent the
descendant leaves of ν, sorted by transformed left context in A.

For strings, the algorithm recurses over a suffix tree as follows [Bak2]. For each
leaf L, it creates a clist containing a single plist with one index corresponding to the
suffix represented by the leaf. At each internal vertex, after constructing the clists
for the children, the algorithm sorts the information represented by the clists of the
children into a new clist. The sorting is accomplished by processing the children from
left to right and merging their information into a new clist. At the same time, any
longest p-matches that are found are reported.

1358 BRENDA S. BAKER

The following example illustrates the operation of the string algorithm at a vertex
ν. Suppose we represent a plist with positions p1, p2, . . . , pk and left context σ by
σ : p1, p2, . . . , pk. If the first child of ν has a clist containing plists a:35,72,46, b:43,7,
and c:25, the second child has a clist consisting of plists a:66,2 and c:56, and the
third child has a clist consisting of plists b:64,31 and c:82,13,59, where a, b, c ∈ Σ,
then the clist constructed for the parent, ν, will be a:35,72,46,66,2, b:43,7,64,31, and
c:25,56,82,13,59.

For strings, this algorithmic structure is adequate [Bak2]. For p-strings, an extra
step must be performed, because the transformed left context of a plist may change
from nonzero to zero when it is transformed with respect to a smaller number. For
example, if the transformed left context is 35 when evaluated with respect to the
pathlength 38 of a child, and the parent has pathlength 32, then the transformed left
context will be 0 when transformed with respect to the pathlength of the parent.

Thus, a clist that is sorted by left context for a child may contain more than
one plist with left context 0 when the left contexts are evaluated with respect to the
parent. Thus, after a clist is constructed for a child c of a vertex ν, the clist is scanned
for any plists corresponding to left contexts of 0 when transformed with respect to
the pathlength of ν, and such plists are merged into a single plist.

Figure 4 gives the three procedures needed to perform this algorithm for a thresh-
old t: pdup, concatz, and pcombine. The main procedure is pdup, which recurses over
the p-suffix tree. For each internal vertex, pdup calls pcombine, which sorts and com-
bines the plists produced for the children, and applies concatz to handle the special
case where a nonzero value of a transformed left context changes to a zero value.
The concatenations of plists, which are not described explicitly, are done via pointers
rather than by copying; by maintaining pointers to the beginning and end of each plist,
each concatenation is done in O(1) time. For conciseness, the following definitions
are assumed in the pseudocode.

DEFINITION. For a leaf L, the starting position of the p-suffix corresponding to L
is start(L) = firstpos(L)+ arclen(L)− plen(L). For an integer i, define LCA(i) to be
Ai−1. For a plist of pl, define LCA(pl) to be Ai−1, where the first element of pl is i.

Thus, for a vertex ν, f(LCA(pl), plen(ν)+1) is the transformed left context used
for pl while processing vertex ν.

Theorem 3. Given a p-string S of length n over fixed alphabets Σ and Π and a
positive integer t, all p-matches of length at least t in S can be found in time O(n+ r)
and space O(n), where r is the number of matches reported.

Proof. Construct the p-suffix tree T for S$, where $ is an endmarker that doesn’t
occur in S, using linear time by Theorem 2. Then, call pdup(root(T), t), where pdup
is given in Figure 4.

We claim that the algorithm correctly merges the clists of the children at each
vertex ν, transforming the left context values as required by the pathlength of ν, and
reporting exactly the longest p-matches over threshold length. A formal proof would
be by induction on the depth of ν; details are left to the interested reader.

Now, we need to analyze the time and space bounds for the algorithm. The time
spent on linear searches of clists and plists in pcombine and concatz is dominated
by the number of steps spent on cross-products. Two cross-products of clists are
performed in pcombine. We partition the work into same-work, namely, the steps
required when the transformed left contexts are the same, and different-work, namely,
the steps required when the transformed left contexts are different. We bound the
amount of same-work and different-work as follows.

PARAMETERIZED DUPLICATION IN STRINGS 1359

/∗f is defined in Section 2 ∗/
clist pcombine(clist cl1, clist cl2, int len, int t) {

plist pl1, pl2;

clist outputlist;

if (len < t) return (NULL);

for each plist pl1 of cl1 and each plist pl2 of cl2

if (f(LCA(pl1),len+1) 6= f(LCA(pl2),len+1))

for every p1 in pl1 and every p2 in pl2

report a maximal match (p1, p2, len);

/∗construct outputlist ∗/
for each plist pl1 of cl1 and each plist pl2 of cl2

if (f(LCA(pl1), len+1) == f(LCA(pl2),len+1)) {

include in outputlist the plist obtained by concatenating

pl2 to pl1;

mark pl1 and pl2 as used;

}

for each plist pl1 of cl1 that is not marked used

include pl1 in outputlist;

for each plist pl2 of cl2 that is not marked used

include pl2 in outputlist;

remove marks from all plists in outputlist;

return outputlist;

}

clist concatz(clist cl, int len) {

scan cl and concatenate all plists pl for which f(LCA(pl), len+1)=0

into one plist while leaving others unchanged

}

clist pdup(vertex v, int t) {

clist cl;

if (v is a leaf) return a clist containing one plist

consisting of start(ν);
cl = NULL;

for each child s of v

cl = pcombine(cl, concatz(pdup(s,t),plen(v)),plen(v),t);

return cl;

}

Fig. 4. The algorithm pdup for reporting all maximal p-matches of length at least t.

By examining the second cross-product of clists, where plists are merged, it is
easy to see that the same-work done at vertex ν is linear in the number of new links
created in combining plists, and consequently, the amount of same-work performed
over all vertices is linear in the sum of the lengths of the plists for the root, and is
consequently linear in n.

At each step in the first cross-product with distinct transformed left contexts, a
maximal p-match is reported for each pair of positions in the cross-product of the
plists. Therefore, the amount of time spent over all vertices on different-work in the
two cross-products of clists is linear in r.

5. Implementation and experiments. This section describes an application
of the p-suffix tree to finding parameterized duplication in C code. The algorithms
lazy and pdup have been implemented in a C program running under UNIX. The
sets Σ and Π are disjoint sets of integers, varying with the input. For each line of
C code, the lexical analyzer turns tokens such as identifiers and constants (but not
keywords or operators) into integer parameter symbols, generates a new version of

1360 BRENDA S. BAKER

Table 1

Data for lazy on three subsystems.

Number Number Number of Number of Time
of of |Σ| |Π| symbols symbols for lazy

lines symbols prescanned rescanned in seconds

35233 112146 2406 6761 60730 27371 4.97
101874 320947 3992 11718 176690 74149 15.06
158579 517415 8808 24168 271069 121202 25.91

the line in which each such token is replaced by a “P,” and obtains an integer in Σ
corresponding to the transformed line. Thus, each line of input corresponds to one
symbol of Σ and zero or more symbols of Π (in the order in which the corresponding
tokens occur in the line). Since Σ and Π can be very large, accessing the children of
each vertex is accomplished by hashing rather than by linked lists in lazy. How to do
this was suggested by McCreight [McC]. However, since pdup requires being able to
scan successive children of each vertex, which cannot easily be done with the hashing
method, the outarcs of each vertex are converted into linked lists for running pdup;
the transformation is done in time linear in input length.

The program was applied to code from three different subsystems of a production
system. The experiments were run on one processor of an SGI machine with eight 33
MHz R3000 processors, data and instruction caches of 64 Kbytes, a secondary data
cache size of 256 Kbytes, and main memory size of 256 Mbytes.

Table 1 gives the data related to lazy. The first four columns give the data for
the input subsystems: the number of lines (including comments and white space),
the length of the resulting p-string, the size of Σ, and the size of Π. The last three
columns give the running time for lazy, (not including the lexical analysis), the number
of symbols prescanned, and the number of symbols rescanned.

The proof of Theorem 2 suggests that, in the worst case, the number of steps
executed for prescanning and rescanning might be proportional to |Π| times the length
of the input. Since |Π| is not constant in our application, and could be in principle
proportional to n, the running time could be quadratic rather than linear in n. Table 1
shows that this blowup was not observed in the experiments: in each case, the number
of symbols prescanned and the number of symbols rescanned were less than the length
of the input. The question of why this blowup was not observed is partially answered
by looking at the maximum number of prescannings and rescannings in any stage.
For the largest subsystem, the maximum number of prescannings in any stage was 6,
and for the other two, it was 3; for the largest subsystem, the maximum number of
rescannings in any stage was 99, for the second largest, it was 33, and for the smallest,
it was 16. Either the bound of |Π|n steps is not tight, or the input from code does
not generate worst-case behavior. In any case, we conclude that lazy runs fast even
with large alphabets and large input.

Table 2 gives data regarding running times of pdup and running times of the
whole program (including lexical analysis and lazy) on the three subsystems, with a
threshold length of 75, which is a value which would be reasonable for the application.
The times given for pdup include the time for transforming the arc representation from
hashing into linked lists and the time for running pdup. Note that with a threshold
of 75, the number of p-matches reported is much less than input length; hence the
running time of pdup is dominated by the part of the algorithm linear in input length.
With a threshold of 10 for the largest subsystem, with p-string length of 517415, pdup

PARAMETERIZED DUPLICATION IN STRINGS 1361

Table 2

Running times for pdup and for the whole program.

Threshold Number Number Number of pdup time Total time
length of lines of symbols matches in seconds in seconds

75 35233 112146 512 4.28 27.48
75 101874 320947 3837 15.14 69.64
75 158579 517415 16088 26.06 111.33

reports 5017926 maximal p-matches and takes 467 seconds, and the whole program
takes 555 seconds.

6. Discussion. The theorems in this paper were stated in terms of fixed alpha-
bets, but in the application, as described in the last section, the alphabets are not
fixed. It is interesting to examine further the worst-case time bounds in the case of
variable alphabets.

The construction of A from prev(S) takes time linear in |S| even for variable
alphabets, and in pdup, arcs are only accessed sequentially. Thus, for variable al-
phabets, once the p-suffix tree is constructed for a p-string S, the time to report all
maximal p-matches over a threshold length in S is O(n + r), where n is the input
length and r is the number of p-matches reported.

On the other hand, as mentioned in the previous section, the bounds proved for
constructing a p-suffix tree do depend on alphabet size: the proof of Theorem 2 shows
that the number of symbols prescanned and rescanned when running lazy on input
of length n is bounded by O(n|Π|). If arcs are stored in a balanced tree scheme with
O(log(|Σ| + |Π|)) access time, then lazy constructs a p-suffix tree in worst-case time
O(n(|Π| log(|Σ| + |Π|))). As discussed in the last section, these bounds may not be
tight.

The author is continuing work on p-suffix trees, some of which will be described in
[Bak3]. As a step in improving the worst-case bounds for variable alphabets, [Bak3]
will show that a p-suffix tree for a p-string S of length n can be constructed in
O(n logn) time and O(n) space if Σ and Π can vary. However, that algorithm is not
practical, since it relies on complicated auxiliary data structures.

An issue regarding the choice of problem statement is that reporting all maximal
p-matches over a threshold length does not necessarily result in a natural analysis
of certain kinds of duplication. For example, a structure of (abc)4 will be reported
as one p-match of length 3, one of length 6, and one of length 9 (with the matching
p-strings overlapping). It could be that some other set of definitions would enable a
more natural analysis of the structure of duplication.

A related issue regarding the choice of definitions is the issue of how the amount
of output relates to the amount of information it conveys. Tufte has stressed in his
beautiful book [Tu] on the visual display of data that it is important to maximize
the data-ink ratio. The same principle should apply to how much output is reported
by algorithms. In the case of duplication, if there are c copies of the same p-string,
then a natural way to report them would be by listing c starting positions and the
p-string; however, because the p-match relationship is not an equivalence relation,
they could in general be part of c(c−1)/2 distinct maximal p-matches, and under the
maximal p-match definition, these must be reported separately. It is not obvious what
definitions would enable reporting a minimal amount of information in each case, in
a way easily understandable to the user of the program.

1362 BRENDA S. BAKER

Acknowledgments. The author would like to thank Raffaele Giancarlo for help-
ful discussions relating to this work, and William Chang for providing an implemen-
tation of McCreight’s algorithm that was modified to implement lazy.

REFERENCES

[Aho] A. V. Aho, Algorithms for finding patterns in strings, Handbook of Theoretical Computer
Science, J. Van Leeuwen, ed., Elsevier Science Publishers, Amsterdam, 1990, pp. 255–
300.

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[Bak1] B. S. Baker, A program for identifying duplicated code, Comput. Sci. Stat., 24 (1992),
pp. 49–57.

[Bak2] B. S. Baker, On finding duplication in strings and software, Algorithmica, to appear.
[Bak3] B. S. Baker, Parameterized pattern matching: Algorithms and applications, in Proc. of

25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 71–
80.

[CL] W. I. Chang and E. L. Lawler, Sublinear approximate string matching and biological
applications, Algorithmica, 12 (1995), pp. 327–344.

[CH] K. W. Church and J. I. Helfman, Dotplot: A program for exploring self-similarity in
millions of lines of text and code, J. Comput. Graph. Statist., 2 (1993), pp. 153–174.

[GG] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string match-
ing, J. Complexity, 4 (1988), pp. 33–72.

[GeN] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence, Mor-
gan Kaufman, Los Altos, CA, 1987.

[G] R. Giancarlo, The suffix tree of a square matrix, with applications, in Proc. Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993, SIAM, Philadel-
phia, pp. 402–411.

[Ho] S. Horwitz, Identifying the semantic and textual differences between two versions of a
program, Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 1990, ACM, New York, pp. 234–245.

[Hu92] A. G. Hume, personal communication, November 1992.
[Ja] H. T. Jankowitz, Detecting plagiarism in student PASCAL programs, Comput. J., 31

(1988), pp. 1–8.
[Jo] R. Johnson, personal communication, October, 1991.
[KP] B. W. Kernigan and R. Pike, The UNIX Programming Environment, Prentice-Hall, En-

glewood Cliffs, NJ, 1984.
[McC] E. M. McCreight, A space-economical suffix-tree construction algorithm, J. ACM, 23

(1976), pp. 262–272.
[MM] E. W. Myers and W. Miller, Approximate matching of regular expressions, Bull. Math.

Biol., 51 (1989), pp. 5–37.
[Tu] E. R. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire,

CT, 1983.
[Ukk] E. Ukkonen, On-line construction of suffix trees, Algorithmica, 14 (1995), pp. 249–260.
[We] P. Weiner, Linear pattern matching algorithms, in Proc. 14th Annual IEEE Symp. on

Switching and Automata Theory, 1973, IEEE, Piscataway, NJ, pp. 1–11.
[WM] W. Wu and U. Mamber, Fast text searching allowing errors, Comm. ACM, 35 (1992),

pp. 83–91.

THE MAXIMUM LATENCY AND IDENTIFICATION OF POSITIVE
BOOLEAN FUNCTIONS∗

KAZUHISA MAKINO† AND TOSHIHIDE IBARAKI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1363–1383, October 1997 005

Abstract. Consider the problem of identifying minT (f) and maxF (f) of a positive (i.e., mono-
tone) Boolean function f by using membership queries only, where minT (f) (maxF (f)) denotes
the set of minimal true vectors (maximal false vectors) of f . It is known that an incrementally
polynomial algorithm exists if and only if there is a polynomial time algorithm to check the ex-
istence of an unknown vector u for given sets MT ⊆ minT (f) and MF ⊆ maxF (f); that is,
u ∈ {0, 1}n \ ({v | v ≥ w for some w ∈ MT} ∪ {v | v ≤ w for some w ∈ MF}). This paper intro-
duces a measure for the difficulty to find an unknown vector, which is called the maximum latency.
If the maximum latency is constant, then an unknown vector can be found in polynomial time and
there is an incrementally polynomial algorithm for identification. Several subclasses of positive func-
tions are shown to have constant maximum latency, e.g., 2-monotonic positive functions, ∆-partial
positive threshold functions, and matroid functions, while the class of general positive functions has
bn/4c+1 maximum latency and the class of positive k-DNF functions has Ω(

√
n) maximum latency.

Key words. identification of Boolean functions, positive Boolean function, partial function,
unknown vector, maximum latency, dualization, transversal

AMS subject classifications. 06E30, 68Q25, 68T05, 68R05, 94C10

PII. S0097539794276324

1. Introduction. Consider the problem of identifying T (f) (set of true vectors)
and F (f) (set of false vectors) of a given Boolean function (or a function in short)
f by asking membership queries to an oracle whether f(u) = 0 or 1 holds for some
selected vectors u [6]. In the terminology of computational learning theory [1, 2, 28],
this is the exact learning of a Boolean theory f by membership queries only. It is
also a process of forming a theory that explains a certain phenomenon by collecting
positive and negative data (in the sense of causing and not causing that phenomenon)
[12]. In particular, we are interested in the case where f is known to be positive, i.e.,
monotone. If f is a positive function, T (f) and F (f) can be compactly represented by
minT (f) (set of minimal true vectors) and maxF (f) (set of maximal false vectors).
Therefore our problem is stated as follows.

Problem IDENTIFICATION.
Input: A membership oracle for a positive function f .
Output: minT (f) and maxF (f).
The complexity of this type of enumeration algorithm is usually measured in

its length of input and output. An algorithm to enumerate items a1, a2, . . . , ap is
called incrementally polynomial [19, 21] (i) if it iterates the following procedure for
i = 1, 2, . . . , p: output the ith item ai from the knowledge of its input and items
a1, a2, . . . , ai−1 generated by then and (ii) if the time required for the ith iteration

∗ Received by the editors November 1, 1994; accepted for publication (in revised form) October
12, 1995. This research was partially supported by the Scientific Grant-in-Aid from Ministry of
Education, Science and Culture of Japan. A preliminary version of this paper appeared in the Pro-
ceedings of the 5th International Symposium on Symbolic and Algebraic Computation (ISSAC’94),
D. Z. Du and X. S. Zhang, eds., Lecture Notes in Comput. Sci. 834, Springer-Verlag, Berlin, 1994,
pp. 324–332 [23].

http://www.siam.org/journals/sicomp/26-5/27632.html
† Department of Systems and Human Science, Graduate School of Engineering Science, Osaka

University, Toyonaka, Osaka 560, Japan (makino@sys.es.osaka-u.ac.jp).
‡ Department of Applied Mathematics and Physics, Graduate School of Engineering, Kyoto Uni-

versity, Kyoto 606, Japan (ibaraki@kuamp.kyoto-u.ac.jp).

1363

1364 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

is polynomial in the input length and the sizes of a1, a2, . . . , ai−1. If an algorithm is
incrementally polynomial, it also satisfies the criterion of polynomial total time [19]
(i.e., polynomial time in the length of input and output).

Now let MT and MF respectively denote the partial knowledge of minT (f) and
maxF (f) currently at hand, i.e.,

MT ⊆ minT (f) and MF ⊆ maxF (f).(1)

Define

T (MT) = {v | v ≥ w for some w ∈MT},
F (MF) = {v | v ≤ w for some w ∈MF}.

By assumption (1), T (MT) ⊆ T (f) and F (MF) ⊆ F (f), and hence

T (MT) ∩ F (MF) = ∅
holds. A vector u is called unknown if

u ∈ {0, 1}n \ (T (MT) ∪ F (MF)),

since it is not known at the current stage whether u is a true vector or a false vector
of f . If there is no unknown vector, then T (MT) ∪ F (MF) = {0, 1}n holds, i.e.,
MT = minT (f) and MF = maxF (f) hold for some positive function f .

The general procedure of identifying a positive function f can be described as
follows.

Algorithm IDENTIFY.
Input: A membership oracle for a positive function f .
Output: minT (f) and maxF (f).

1. Start with appropriate sets MT (⊆ minT (f)) and MF (⊆ maxF (f)).
2. Test if T (MT) ∪ F (MF) = {0, 1}n holds. If so, output MT and MF , and

halt. Otherwise, find an unknown vector u and go to 3.
3. Ask an oracle if f(u) = 1 or f(u) = 0. If f(u) = 1, then compute a new

minimal true vector y such that y ≤ u and let MT := MT ∪ {y}. On the other
hand, if f(u) = 0, compute a new maximal false vector y such that y ≥ u and let
MF := MF ∪ {y}. Return to 2.

The crucial part of this algorithm is in step 2, i.e., to solve the following problem,
where a set of vectors M is incomparable if any pair of vectors v and w in M satisfies
v 6≥ w and w 6≥ v.

Problem EQ.
Input: Incomparable sets MT,MF (⊆ {0, 1}n) such that T (MT) ∩ F (MF) = ∅.
Question: Does T (MT) ∪ F (MF) = {0, 1}n (i.e., no unknown vector) hold ?
In case of MT,MF = ∅, problem EQ is obviously polynomially solvable, since

all vectors u are unknown. Hence in the following, we assume MT ∪MF 6= ∅ in step
1. If problem EQ can be solved in polynomial time, it is known that an unknown
vector in step 2 can be found in polynomial time [6] and that computing a minimal
true vector or a maximal false vector y from an unknown vector u in step 3 can also
be done in polynomial time [1, 6, 15, 28]. Therefore, an incrementally polynomial
algorithm exists if problem EQ can be solved in polynomial time. The converse
direction is also known [6], and hence an incrementally polynomial algorithm exists if
and only if problem EQ can be solved in polynomial time. As noted in [6], problem

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1365

EQ is polynomially equivalent to many other interesting problems encountered in
various fields such as hypergraph theory [13], theory of coteries (used in distributed
systems) [16, 18], artificial intelligence [27], and Boolean theory [5]. Unfortunately,
the complexity of these problems is still open [6, 13, 19], though the recent result
by M. Fredman and L. Khachiyan [14] shows that it is unlikely that the problem is
NP-hard.

We comment here that there is a wide spectrum of research on the exact learning of
Boolean functions. Many of these studies, however, are based on the model of using
both membership and equivalence queries. Using such a model, N. H. Bshouty [9]
showed that any Boolean function (not necessarily positive) is polynomially learnable
either as DNF (disjunctive normal form) or CNF (conjunctive normal form).

In order to investigate the complexity of problem EQ, we introduce in this paper
the concept of maximum latency, which is a complexity measure for finding an un-
known vector. If the maximum latency is constant, then problem EQ can be solved
in polynomial time, though the converse is not generally true. Based on the result
by V. K. Korobkov and T. L. Reznik [20], it is noted in section 3 that the maximum
latency of general positive functions is bn/4c + 1. However, several special classes
of positive functions are found in section 4 to have constant maximum latency, e.g.,
classes of (i) 2-monotonic positive functions [4, 7, 8, 11, 25, 26] (ii) ∆-partial positive
threshold functions [25], (iii) k-degree positive threshold functions, (iv) matroid func-
tions [3, 10], and (v) k-tight positive functions. For these classes of positive functions,
therefore, there are incrementally polynomial identification algorithms. Finally, it is
shown in section 5 that the class of positive k-DNF functions has maximum latency
not less than Ω(

√
n), even though it is known [13] that problem EQ can be solved in

polynomial time for this class of functions.
The last result indicates that the concept of maximum latency is not always suffi-

cient to distinguish polynomially solvable cases from those not solvable in polynomial
time. However, it is also evident that the maximum latency is a powerful tool to find
polynomially solvable special cases.

2. Definitions and basic properties. A Boolean function, or a function in
short, is a mapping f : {0, 1}n 7→ {0, 1}, where v ∈ {0, 1}n is called a Boolean vector
(a vector in short). If f(v) = 1 (resp., 0), then v is called a true (resp., false) vector of
f . The set of all true vectors (resp., false vectors) is denoted by T (f) (resp., F (f)).
Two special functions with T (f) = ∅ and F (f) = ∅ are, respectively, denoted by f = ⊥
and f = >. A function f is positive if v ≤ w always implies f(v) ≤ f(w). A positive
function is also called monotone.1 A true vector v of f is minimal if there is no other
true vector w such that w < v, and let minT (f) denote the set of all minimal true
vectors of f . A maximal false vector is symmetrically defined and maxF (f) denotes
the set of all maximal false vectors of f .

If functions f and h satisfy h(a) ≤ f(a) for all a ∈ {0, 1}n, then we denote h ≤ f .
If h ≤ f and there exists a vector a satisfying h(a) = 0 and f(a) = 1, we denote
h < f . The variables x1, x2, . . . , xn and their complements x̄1, x̄2, . . . , x̄n are called
literals. A term (resp., clause) is a conjunction (resp., disjunction) of literals such
that at most one of xi and x̄i appears for each variable. A term t (resp., clause C)
is called an implicant (resp., implicate) of a function f if t ≤ f (resp. C ≥ f). An
implicant t (resp., implicate C) of a function is called prime if there is no implicant

1 The name “monotone” may be more familiar to people in theoretical computer science than
“positive.” However, in this paper we use “positive” to avoid confusion, since such names as 1-
monomonic (or unate) and 2-monotonic used in threshold logic do not exclude nonpositive functions.

1366 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

t′ > t (resp., no implicate C ′ < C). A DNF (resp., CNF) is a disjunction of terms
(resp., conjunction of clauses).

If f is positive, it is known that f has (i) the unique DNF consisting of all
prime implicants and (ii) the unique CNF consisting of all prime implicates. There
is one-to-one correspondence between prime implicants (resp., prime implicates) and
minimal true vectors (resp., maximal false vectors). For example, a positive function
f = x1x2 ∨ x2x3x4 = x2(x1 ∨ x3)(x1 ∨ x4) has prime implicants x1x2 and x2x3x4,
which respectively correspond to minimal true vectors (1100) and (0111), and prime
implicates x2, (x1 ∨ x3), and (x1 ∨ x4), which respectively correspond to maximal
false vectors (1011), (0101), and (0110). In other words, the input length to describe
a positive function f is O(n|minT (f)|) (resp., O(n|maxF (f)|)) if it is represented
by DNF (resp., CNF).

Sets minT (f) and maxF (f), respectively, define T (f) and F (f) by

T (f) = {v | v ≥ a for some a ∈ minT (f)},
F (f) = {v | v ≤ b for some b ∈ maxF (f)}.

Definition 2.1. Given incomparable sets MT,MF (⊆ {0, 1}n) such that MT ∪
MF 6= ∅ and T (MT) ∩ F (MF) = ∅, the partial function g is defined by

g(v) =

 1, v ∈ T (MT),
0, v ∈ F (MF),
unknown, otherwise.

If MT and MF of g satisfy MT ⊆ minT (f) and MF ⊆ maxF (f) for some (com-
plete) positive function f , then g is called a partial function of f . The set of unknown
vectors of g is denoted by U(g), i.e.,

U(g) = {0, 1}n \ (T (MT) ∪ F (MF)).

The k-neighborhood of g (defined by MT and MF) is given by

Nk(g) = {v | ‖ v − a ‖≤ k for some a ∈MT ∪MF} ,
where ‖ w ‖ denotes

∑n
i=1 |wi|; i.e., Nk(g) is the set of all vectors within Hamming

distance k of MT ∪MF . The latency of g, λ(g), is defined by the integer k satisfying

Nk−1(g) ∩ U(g) = ∅ and Nk(g) ∩ U(g) 6= ∅.
As a special case, if U(g) = ∅, i.e., g = f , then λ(g) is defined to be 0. λ(g) is
equivalently given by

λ(g) = min{‖ u− a ‖ | a ∈MT ∪MF,u ∈ U(g)}.
Example 2.2. Let f = x1x3 ∨ x2x4, i.e.,

minT (f) = {1010, 0101},
maxF (f) = {0011, 0110, 1001, 1100},

and let g be a partial function defined by

MT = {1010, 0101},
MF = {0011, 0110, 1001}.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1367

Fig. 1. The partial function g of Example 2.2.

Then the set of unknown vectors is

U(g) = {1100},

and we obtain λ(g) = 2 (see Figure 1).

Definition 2.3. Let CX be a subclass of positive functions. CX(n) denotes the
set of functions in CX with n variables. For CX(n), the maximum latency is defined
by

ΛX(n) = max{λ(g) | g is a partial function of f ∈ CX(n)}.

If g is a partial function of f ∈ CX(n), then by definition there is no unknown
vector if NΛX(n)(g) ∩ U(g) = ∅. That is, in order to find an unknown vector, we
need only to search ΛX(n)-neighborhood of g. Therefore, if a positive function f of
n variables is known to belong to class CX(n), step 2 of Algorithm IDENTIFY can
be executed as follows.

2. Test if NΛX(n)(g) ⊆ T (MT) ∪ F (MF), where g is the partial function defined
by MT and MF . If so, output MT and MF , and halt. Otherwise, find an unknown
vector u ∈ NΛX(n)(g) \ (T (MT) ∪ F (MF)) and go to 3.

The test of NΛX(n)(g) ⊆ T (MT) ∪ F (MF) can be accomplished by checking if
v ≥ a for some a ∈ MT or v ≤ b for some b ∈ MF , for every v ∈ NΛX(n)

(g). This
computation takes at most

n(|MT |+ |MF |) |NΛX(n)(g)| ≤ n(|MT |+ |MF |)2 nΛX(n)

time. Therefore, we have the next result.

Theorem 2.4. Let g, defined by MT and MF , be a partial function of f ∈
CX(n). If ΛX(n) is constant, then an unknown vector can be found in polynomial
time in n and |MT | + |MF |. (Therefore, in this case, there is an incrementally
polynomial algorithm to identify f ∈ CX(n).)

1368 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

3. Maximum latency of general positive functions. Let

CP : class of all positive functions.

It was shown by V. K. Korobkov and T. L. Reznik [20] that ΛP (n) ≤ bn/4c + 1
for all n, and that ΛP (n) ≥ bn/4c+ 1 for n = 4k. Similar results were independently
obtained in [22]. We complement these results by showing the next lemma. For
a vector v ∈ {0, 1}n, use the notations ON(v) = {j | vj = 1, j = 1, 2, . . . , n} and
OFF (v) = {j | vj = 0, j = 1, 2, . . . , n}.

Lemma 3.1. ΛP (n) ≥ bn/4c+ 1 for all positive integers n.
Proof. For n = 1, 2, 3, it is clear that ΛP (n) = bn/4c+ 1 = 1. We show ΛP (n) ≥

bn/4c + 1 for n ≥ 4 by providing an example of g with λ(g) = bn/4c + 1. In this
example (MT,MF), there is exactly one unknown vector u. Hence, there is a vector
v ∈MT (resp., v ∈MF) such that v ≤ u+ei (resp., v ≥ u−ei) for every i ∈ OFF (u)
(resp., i ∈ ON(u)), where ei denotes the unit vector whose ith component is 1. MT
and MF are constructed in such a way that all vectors v ∈ MT ∪MF are used for
the above purpose and satisfy ‖ v − u ‖≥ bn/4c+ 1.

(1) n = 4k (k ≥ 1) : Define a 2k × 4k matrix

X =

(
Jk O

O Jk
I2k

)
and a (k2 + 2k)× 4k matrix

Y =

 Q Jk2×2k

J2k − I2k Jk O

O Jk

 ,

where Ji is the i× i matrix whose elements are all 1’s, Ji×j is the i× j matrix whose
elements are all 1’s, Ii is the i× i identity matrix, O is the k × k zero matrix, and Q
is the k2 × 2k matrix defined by

k︷ ︸︸ ︷ k︷ ︸︸ ︷

Q =

0 1 1
0 1 1
. Jk − Ik
0 1 1

1 0 1 . . . 1
. Jk − Ik
1 0 1 . . . 1

. .

1 1 0
. Jk − Ik
1 1 0

 k

}
k.

...}
k

A partial function g is then defined by MT = {x(j) | j = 1, 2, . . . , 2k} and MF =
{y(j) | j = 1, 2, . . . , k2 + 2k}, where x(j) is the jth row of X and y(j) is the jth row of
Y . Furthermore, let

u = (1, 1, . . . , 1︸ ︷︷ ︸
2k

, 0, 0, . . . , 0︸ ︷︷ ︸
2k

).

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1369

It is clear that T (MT)∩F (MF) = ∅ and u 6∈ T (MT)∪F (MF); i.e., u is an unknown
vector. Furthermore, u − ei ∈ F (MF) for every i ∈ ON(u) and u + ei ∈ T (MT)
for every i ∈ OFF (u), where ei denotes the unit vector whose ith component is 1.
Consider the positive function f satisfying minT (f) = MT . Then it is not difficult
to see that maxF (f) = {u} ∪MF by using a relation

maxF (f) = {v̄ | v ∈ minT (fd)},
where fd is the dual of f . Therefore, T (MT) ∪ F (MF) ∪ {u} = {0, 1}n; i.e., u is
the only unknown vector. Finally, ‖ x(j) − u ‖= k + 1 > k for every j (1 ≤ j ≤ 2k),
‖ y(j)−u ‖= 2k+2 > k for every j (1 ≤ j ≤ k2), and ‖ y(j)−u ‖= k+1 > k for every
j (k2 < j ≤ k2 + 2k). This proves that Nk(g) ∩ U(g) = ∅ and Nk+1(g) ∩ U(g) 6= ∅.

(2) n = 4k + α (k ≥ 1, 1 ≤ α ≤ 3): Define a 2k × (4k + α) matrix

X =

(
Jk O

O Jk
I2k J2k×α

)
and a (k2 + 2k + α)× (4k + α) matrix

Y =

 Q Jk2×2k

J2k − I2k Jk O

O Jk

J(k2+2k)×α

Jα×4k Jα − Iα

 .

Define a partial function g byMT = {x(j) | j = 1, 2, . . . , 2k} andMF = {y(j) | j = 1, 2,
. . . , k2 + 2k + α}. Furthermore, let

u = (1, 1, . . . , 1︸ ︷︷ ︸
2k

, 0, 0, . . . , 0︸ ︷︷ ︸
2k

, 1, 1, . . . , 1︸ ︷︷ ︸
α

) .

Similarly to case (1), it can be shown that U(g) = {u}, and Nk(g) ∩ U(g) = ∅ and
Nk+1(g) ∩ U(g) 6= ∅ for k = bn/4c.

In Example 2.2, it is easy to see that g is the partial function constructed for
k = 1 in the proof (1) of the above lemma.

Theorem 3.2. Class CP satisfies

ΛP (n) = bn/4c+ 1.

Proof. Combine the result in [20] and Lemma 3.1.

4. Restricted classes of positive functions with constant maximum la-
tencies. In this section, we find some restricted classes of positive functions with con-
stant maximum latency, which are important in practice and theory (e.g.,[2, 13, 25]).
As stated in Theorem 2.4, functions in these classes can be identified by incrementally
polynomial algorithms.

4.1. 2-monotonic positive functions. An assignment A of binary values 0 or
1 to k variables xi1 , xi2 , . . . , xik is called a k-assignment and is denoted by

A = (xi1 ← a1, xi2 ← a2, . . . , xik ← ak) ,

where each of a1, a2, . . . , ak is either 1 or 0. Let the complement of A, denoted by Ā ,
represent the assignment obtained from A by complementing all the 1’s and 0’s in A.
When a function f of n variables and a k-assignment A are given,

fA = f(xi1←a1, xi2←a2,..., xik←ak)

1370 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

denotes the function of (n− k) variables obtained by fixing variables xi1 , xi2 , . . . , xik
as specified by A.

Let f be a function of n variables. If either fA ≤ fĀ or fA ≥ fĀ holds for
every k-assignment A, then f is said to be k-comparable. If f is k-comparable for
every k such that 1 ≤ k ≤ m, then f is said to be m-monotonic. (For more detailed
discussion on these topics, see [25] for example.) In particular, f is 1-monotonic if
f(xi←1) ≥ f(xi←0) or f(xi←1) ≤ f(xi←0) holds for any i ∈ {1, 2, . . . , n}. A 1-monotonic
function is also called a unate function. A positive function is precisely a 1-monotonic
function f for which f(xi←1) ≥ f(xi←0) holds for all i.

Now consider a 2-assignment A = (xi ← 1, xj ← 0). If

fA ≥ fĀ (resp., fA > fĀ)

holds, this is denoted by xi �f xj (resp., xi �f xj). Variables xi and xj are said to
be comparable if either xi �f xj or xi �f xj holds. When xi �f xj and xi �f xj hold
simultaneously, it is denoted as xi ≈f xj . If f is 2-monotonic, this binary relation �f
over the set of variables is known to be a total preorder (i.e., reflexive, transitive, and
comparable) [25]. A 2-monotonic positive function f of n variables is called regular if

x1 �f x2 �f · · · �f xn.
Any 2-monotonic positive function becomes regular by permuting variables.

The 2-monotonicity was originally introduced in conjunction with threshold func-
tions (e.g., [25]), where a positive function f is threshold if there exist n+1 nonnegative
real numbers w1, w2, . . . , wn and t such that

f(x) =

{
1 if

∑
wixi ≥ t,

0 if
∑
wixi < t.

As wi ≥ wj implies xi �f xj and wi = wj implies xi ≈f xj , a threshold function is
always 2-monotonic, although the converse is not true [25]. Let

C2M : class of 2-monotonic positive functions,
CTH : class of positive threshold functions.

Theorem 4.1. Class C2M satisfies

Λ2M (n) = 1.

Proof. Assume that a 2-monotonic positive function f is regular without loss of
generality and that g is a partial function of f defined by MT and MF . Assume
that N1(g) ∩ U(g) = ∅ and U(g) 6= ∅ (i.e., Λ2M (n) > 1). Take a u ∈ maxU(g),
where maxU(g) is the set of maximal unknown vectors (i.e., u + ej ∈ T (MT) for all
j ∈ OFF (u)). Let j = max{i | i ∈ OFF (u)}. Since u + ej ∈ T (MT), there exists
an a ∈ MT such that a ≤ u + ej . Note that aj = 1 holds since otherwise a ≤ u,
contradicting u ∈ U(g). Then a− ej ∈ F (MF) by the assumption N1(g) ∩ U(g) = ∅.
Therefore, there exists a b ∈ MF such that b ≥ a − ej . This b satisfies bj = 0 since
otherwise b ≥ a, a contradiction. For any l ∈ OFF (u) \ {j},

a− ej + el ∈ T (f) ⊆ T (MT) ∪ U(g)

by regularity of f , and hence b 6≥ a− ej + el, i.e., bl = 0 for all l ∈ OFF (u) and hence
b ≤ u. (i) If b = u, then u ∈ F (MF), which is a contradiction. (ii) If b < u, then
u ∈ T (MT) by N1(g) ∩ U(g) = ∅, which is also a contradiction.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1371

Since the complexity of problem IDENTIFICATION is still open, E. Boros et al.
[7, 8] considered the following restricted problem.

Problem IDENTIFICATION-2M.
Input: A membership oracle for a positive function f .
Output: If f is 2-monotonic, then minT (f) and maxF (f); otherwise, “no.”
Two algorithms were proposed therein; one usesO(n3m) time andO(n3m) queries,

while the other uses O(nm2 +n2m) time and O(nm) queries, where m = |minT (f)|+
|maxF (f)|. Based on the concept of maximum latency, we could recently construct
a new algorithm for IDENTIFICATION-2M, which uses O(n2m) time and O(n2m)
queries [24]. Since m� n can be expected in usual cases, this is an improvement over
the previous two algorithms.

Corollary 4.2. Class CTH satisfies

ΛTH(n) = 1.

4.2. ∆-partial positive threshold functions.
Definition 4.3 (see [25]). A positive function f is called ∆-partial threshold if

f is represented by

f(x) =

 1 if
∑
wixi ≥ t+ α,

0 if
∑
wixi < t− α,

0 or 1 otherwise,

where wi (i = 1, 2, . . . , n), t and ∆ are nonnegative real numbers, and

α = ∆wmin,

where wmin = mini wi. Associated with these wi (i = 1, 2, . . . , n) and t, define the
threshold function h by

h(x) =

{
1 if

∑
wixi ≥ t,

0 if
∑
wixi < t.

Then the above f is called a ∆-partial threshold function of h.
In the above definition of f , the value f(x) in the case of “otherwise” can be

determined arbitrary, provided that the resulting f is positive.
Example 4.4. Let h be a threshold function represented by

h(x) =

{
1 if 2x1 + x2 + x3 + x4 ≥ 3,
0 if 2x1 + x2 + x3 + x4 < 3,

i.e., h = x1x2 ∨ x1x3 ∨ x1x4 ∨ x2x3x4, and

minT (h) = {1100, 1010, 1001, 0111},
maxF (h) = {0011, 0101, 0110, 1000}.

Consider f = x1x2 ∨ x1x3 ∨ x2x4, i.e.,

minT (f) = {1100, 1010, 0101},
maxF (f) = {0011, 0110, 1001}.

1372 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

This f is a 1-partial threshold function of h represented by

f(x) =

 1 if 2x1 + x2 + x3 + x4 ≥ 4,
0 if 2x1 + x2 + x3 + x4 < 2,
0 or 1 otherwise,

where α = mini wi = 1.
Let

C∆PTH : class of ∆-partial positive threshold functions.

Theorem 4.5. Class C∆PTH satisfies

Λ∆PTH(n) ≤ d∆e+ 1.

Proof. Let f be a ∆-partial threshold function of a threshold function h. We
assume w1 ≥ w2 ≥ · · · ≥ wn without loss of generality. Assuming that g is a partial
function of f defined by MT and MF such that Nd∆e+1(g)∩U(g) = ∅ and U(g) 6= ∅,
we derive a contradiction. Take a u ∈ maxU(g), and let j = max{i | i ∈ OFF (u)}.
There exists an a ∈MT such that a ≤ u+ej . Since ‖ u−a ‖≥ d∆e+2 by assumption,
‖ u− (a− ej) ‖≥ d∆e+ 1 holds, i.e., |ON(u) \ON(a)| ≥ d∆e+ 1. Let

c(1) = a− ej +

d∆e∑
l=1

eil ,

where il, l = 1, 2, . . . , d∆e, are arbitrary d∆e indices in ON(u) \ ON(a). Note that
c(1) 6∈ U(g) (i.e., c(1) ∈ T (MT) ∪ F (MF)) because a ∈ MT , ‖ a − c(1) ‖= d∆e + 1,
and, by assumption, ‖ x − y ‖≥ d∆e + 2 for any pair of x ∈ MT and y ∈ U(g). If
c(1) ∈ T (MT), then u ∈ T (MT) holds since u ≥ c(1), which is a contradiction. If
c(1) ∈ F (MF), then there exists a b(1) ∈ MF such that b(1) ≥ c(1). (i) If b(1) ≥ u,
then u ∈ F (MF), which is a contradiction. (ii) If b(1) < u, then b(1) ∈ MF and
Nd∆e+1(g) ∩ U(g) = ∅ imply b(1) + ei ∈ T (MT) for any i ∈ OFF (b(1)) ∩ ON(u).

Since u ≥ b(1) + ei, this means u ∈ T (MT), which is a contradiction. (iii) Otherwise
(i.e., b(1) and u are incomparable), |ON(b(1)) \ ON(u)| 6= ∅ holds. We consider the
following two cases.

Case 1. a ∈MT ∩ T (h): Take a p ∈ ON(b(1)) \ON(u). Then

∑
wic

(1)
i + wp =

∑
wiai − wj +

d∆e∑
l=1

wil + wp

≥ t+ α+ (wp − wj)
≥ t+ α (by wp ≥ wj).

Therefore, c(1) + ep ∈ T (f), a contradiction to c(1) + ep ≤ b(1) ∈MF .

Case 2. a ∈MT ∩F (h): Let ON(b(1))\ON(u) = {p1, p2, . . . , ps}. If s ≥ d∆e+1,
then ∑

wib
(1)
i ≥

∑
wic

(1)
i +

s∑
l=1

wpl

=
∑

wiai − wj +

d∆e∑
l=1

wil +

s∑
l=1

wpl .(2)

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1373

Since we have
∑
wiai ≥ t− α (by a ∈MT ∩ F (h)),

∑d∆e
l=1 wil ≥ ∆wmin = α, and

s∑
l=1

wpl = wp1 +
s∑
l=2

wpl

≥ wp1 + α (by s ≥ d∆e+ 1),

the right-hand side of (2) is at least

(t− α)− wj + α+ (wp1 + α) ≥ t+ α+ (wp1 − wj)
≥ t+ α (by wp1 ≥ wj).

This implies b(1) ∈ T (f), which is a contradiction. Therefore, we conclude s ≤ d∆e.
Now, u ≥ b(1) −∑s

l=1 epl implies u > b(1) −∑s
l=1 epl since Nd∆e+1(g) ∩ U(g) = ∅. In

other words, there exists a p′ ∈ ON(u) \ON(b(1)). Define

c(2) = b(1) −
s∑
l=1

epl + ep′ (∈ T (MT) ∪ F (MF) by ‖ b(1) − c(2) ‖≤ d∆e+ 1).

Then c(2) > c(1) since b(1) −∑s
l=1 epl ≥ c(1). If c(2) ∈ T (MT), then u ∈ T (MT)

holds since u ≥ c(2), which is a contradiction. If c(2) ∈ F (MF), then there exists a
b(2) ∈ MF such that b(2) ≥ c(2). (i) If b(2) ≥ u, then u ∈ F (MF), a contradiction.
(ii) If b(2) < u, then similar to the case b(1) < u, u ∈ T (MT), a contradiction. (iii)
Otherwise (i.e., b(2) and u are incomparable),

ON(b(2)) \ON(u) = {q1, q2, . . . , qr} and 0 < r ≤ d∆e
can be shown in a manner similar to b(1). Then define

c(3) = b(2) −
r∑
l=1

eql + eq′ ∈ T (MT) ∪ F (MF),

where q′ ∈ ON(u) \ON(b(2)). Then c(3) > c(2) holds since b(2) −∑r
l=1 eql ≥ c(2).

However, this procedure cannot be continued indefinitely, since

c(1) < c(2) < c(3) < · · · < u

and the distance between u and c(1) is finite, and it completes the proof.
As an example, we construct a partial function g of f ∈ C∆PTH of Example 4.4

by

MT = minT (f)− {1100} = {1010, 0101},
MF = maxF (f) = {0011, 0110, 1001}.(3)

In this case, U(g) = {1100} and λ(g) = d1e+ 1 = 2.

4.3. k-degree positive threshold functions.
Definition 4.6. A function f is called a k-degree positive threshold function if

f(x) =

{
1 if

∑
wixi +

∑
i1<i2

wi1i2xi1xi2 + · · ·+∑i1<···<ik wi1...ikxi1 . . . xik ≥ t,
0 otherwise,

where all weights wi1i2···ik′ (1 ≤ k′ ≤ k) and threshold t are nonnegative.

1374 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

Example 4.7. Let f be a 2-degree threshold function represented by

f(x) =

{
1 if 5x1 + 5x2 + 3x3 + 3x4 + x1x3 + x2x4 ≥ 9,
0 otherwise.

Then f = x1x2 ∨ x1x3 ∨ x2x4, and

minT (f) = {1100, 1010, 0101},
maxF (f) = {0011, 0110, 1001}.

Note that a 1-degree threshold function is simply a threshold function. In the
following, we show that, if the sum of higher terms∑

i1<i2

wi1i2 +
∑

i1<i2<i3

wi1i2i3 + · · ·+
∑

i1<···<ik
wi1...ik

is relatively small (i.e., higher terms are used only to perturb linear terms), so is the
maximum latency.

Lemma 4.8. If a k-degree positive threshold function f satisfies

2∆wmin ≥
k∑
l=2

(
n

l

)
max

i1<i2<···<il
wi1i2...il ,

where wmin = mini wi, then f is a ∆-partial positive threshold function.
Proof. Let f be represented by

f(x) =

{
1 if

∑
wixi +

∑
i1<i2

wi1i2xi1xi2 + · · ·+∑i1<···<ik wi1...ikxi1 . . . xik ≥ t,
0 otherwise,

and let h be the threshold function represented by

h(x) =

{
1 if

∑
wixi ≥ t− α,

0 if
∑
wixi < t− α,

where α = ∆wmin. We show that f is represented by

f(x) =

 1 if
∑
wixi ≥ t,

0 if
∑
wixi < t− 2α,

0 or 1 otherwise,

which implies that f ∈ C∆PTH .
(i) If

∑
wixi ≥ t, then it is trivial that f(x) = 1 since all weights wi1i2···ik′

(1 ≤ k′ ≤ k) are nonnegative.
(ii) If

∑
wixi < t− 2α, then∑

wixi +
∑
i1<i2

wi1i2xi1xi2 + · · ·+
∑

i1<···<ik
wi1...ikxi1 . . . xik

< t− 2α+
∑
l

(
n

l

)
max

i1<i2<···<il
wi1i2...il

< t− 2α+ 2α = t,

i.e., f(x) = 0.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1375

In Example 4.7, since

2∆wmin = 6∆ ≥
(

4

2

)
max
i1<i2

wi1i2

= 6

holds for ∆ = 1, f is 1-partial threshold. In fact, with t = 6 and α = ∆wmin = 3, f
can be represented by

f(x) =

 1 if 5x1 + 5x2 + 3x3 + 3x4 ≥ 9,
0 if 5x1 + 5x2 + 3x3 + 3x4 < 3,
0 or 1 otherwise.

Combining Lemma 4.8 with Theorem 4.5, we establish the next theorem.
Theorem 4.9. For the class of k-degree positive threshold functions, which satisfy

2∆wmin ≥
k∑
l=2

(
n

l

)
max

i1<i2<···<il
wi1i2...il ,

its maximum latency is not greater than d∆e+ 1.
As an example, let us construct a partial function g of f of Example 4.7 by using

MT and MF of (3). In this case, we have U(g) = {1100} and λ(g) = d1e+ 1 = 2.

4.4. Matroid functions.
Definition 4.10. A positive function f is called a matroid function if for each

v, w ∈ minT (f) and each i ∈ ON(v)\ON(w) there exists a j ∈ ON(w)\ON(v) such
that v − ei + ej ∈ minT (f).

In other words, for a matroid function f of n variables, M = (E,F) forms a ma-
troid [29], where E = {1, 2, . . . , n} and F = {ON(v) | v ≤ a for some a ∈ minT (f)}.
Minimal true vectors of f correspond to the bases of matroid M . Let

CMAT : class of matroid functions.

From the definition of a matroid function, there exists a nonnegative integer
r (≤ n) such that |ON(a)| = r for every a ∈ minT (f). This r is called the rank of
f . Matroid functions provide a very rich class of examples [3], including the following
example of spanning tree functions [3, 10]. For an undirected graph G = (V,E) where
E = {1, 2, . . . n}, f is called a spanning tree function of G if it is given by

f(v) =

{
1 if Gv = (V,ON(v)) is connected,
0 if Gv = (V,ON(v)) is disconnected.

For any a ∈ minT (f), ON(a) is a spanning tree of G and for any b ∈ maxF (f),
OFF (b) is a minimal cut of G. The rank of spanning tree function is r = |V | − 1.

First, we derive a lower bound on ΛMAT .
Lemma 4.11. Class CMAT of matroid functions satisfies

ΛMAT (n) = 1 if n = 1, 2, 3,
ΛMAT (n) ≥ 2 if n ≥ 4.

Proof. For n = 1, 2, 3, it is clear by examining all matroid functions that ΛMAT (n)
= 1. For n ≥ 4, we provide an example of g with λ(g) = 2. Consider a spanning tree
function f of Figure 2.

1376 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

Fig. 2. The graph g of the proof of Lemma 4.11.

(1) n = 2k (k ≥ 2): Let

minT (f) = {a | |ON(a) ∩ {2j − 1, 2j}| = 1 for all j = 1, 2, . . . , k},
maxF (f) = {b | OFF (b) = {2j − 1, 2j} for some j = 1, 2, . . . , k}.

Then we construct a partial function g of f by

MT = minT (f)− {u},
MF = maxF (f),

where u = (0101 · · · 01). For any j, u + e2j−1 ≥ u + e2j−1 − e2j ∈ MT , and hence
u + e2j−1 ∈ T (MT). Similarly, u − e2j ∈ F (MF) for any j. Therefore, T (MT) ∪
F (MF) ∪ {u} = {0, 1}n. For every a ∈ MT , ‖ a ‖=‖ u ‖= k and a 6= u imply
‖ u − a ‖≥ 2. For every b ∈ MF , we have u 6≤ b. Furthermore, ‖ b ‖= n − 2 and
‖ u ‖= k imply u 6≥ b and

‖ u− b ‖≥ 2.

Therefore, we obtain λ(g) ≥ 2.

(2) n = 2k + 1 (k ≥ 2): Let

minT (f) = {a | 2k + 1 ∈ ON(a) and |ON(a) ∪ {2j − 1, 2j}| = 1
for all j = 1, 2, . . . , k},

maxF (f) = {b | OFF (b) = {2j − 1, 2j} for some j = 1, 2, . . . , k} ∪ {11 · · · 10},
and construct a partial function g of f by

MT = minT (f)− {0101 · · · 011}
MF = maxF (f).

Then U(g) = {0101 · · · 011}. The rest is similar to case (1), and we have λ(g) ≥ 2.
Example 4.12. For n = 4, the above construction gives f = x1x3 ∨ x1x4 ∨ x2x3 ∨

x2x4, i.e.,

minT (f) = {1010, 1001, 0110, 0101},
maxF (f) = {0011, 1100}

and

MT = minT (f)− {0101} = {1010, 1001, 0110},
MF = maxF (f) = {0011, 1100},
U(g) = {0101}.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1377

Fig. 3. The partial function g of Example 4.12.

The result is illustrated in Figure 3. The latency λ(g) is obviously equal to 2.

Next, we consider an upper bound on ΛMAT .

Lemma 4.13. Let f be a matroid function. If a partial function g of f defined
by MT and MF satisfies N2(g) ∩ U(g) = ∅, then MT = minT (f).

Proof. Note that MT ∪MF 6= ∅ holds by the definition of a partial function
g. First assume MT = ∅. Then MF 6= ∅ and we let b ∈ MF . If OFF (b) = ∅
(i.e., b = (1, 1, . . . , 1)), then MT = minT (f) = ∅, which completes the proof. Oth-
erwise, b + ej ∈ T (MT) holds for any j ∈ OFF (b), since b + ej ∈ N1(g) and
N2(g) ∩ U(g) = ∅. This means MT 6= ∅, a contradiction. Hence in the following,
we consider the case of MT 6= ∅. Assume that there exists a v ∈ minT (f) \MT .
Take an a(1) ∈ MT and let k = |ON(a(1)) \ ON(v)|. If k = 1, then ‖ v − a(1) ‖= 2
since |ON(v)| = |ON(a(1))| = r, where r is the rank of f , which is a contradiction. If
k > 1, there exists a(2) = a(1) − ei + ej ∈ minT (f) where i ∈ ON(a(1)) \ON(v) and
j ∈ ON(v) \ ON(a(1)), since f is a matroid function. Then ‖ a(2) − a(1) ‖= 2, and
hence a(2) ∈ MT and |ON(a(2)) \ ON(v)| = k − 1. By repeating this procedure, we
obtain a(1), a(2), . . . , a(k−1), a(k) ∈ MT such that |ON(a(k)) \ ON(v)| = 1, a contra-
diction.

After showing the next lemma, we show a sufficient condition to have MF =
maxF (f).

Lemma 4.14. If f is a matroid function, then for every a ∈ minT (f) and every
j ∈ ON(a), there exists exactly one b ∈ maxF (f) such that b ≥ a− ej.

Proof. See [29], for example.

Lemma 4.15. Let f be a matroid function. If a partial function g of f defined
by MT = minT (f) and some MF satisfies N1(g)∩U(g) = ∅, then MF = maxF (f).
That is, f = g (i.e., λ(g) = 0).

Proof. Assume that there exists a v ∈ maxF (f) \MF . For any j ∈ OFF (v),
there exists an a ∈ MT such that a ≤ v + ej , and there exists a b ∈ MF such that
b ≥ a− ej . Then Lemma 4.14 implies that v = b, a contradiction.

Lemma 4.16. If g is a partial function of a matroid function f , then λ(g) ≤ 2.

Proof. It follows from Lemma 4.13 and Lemma 4.15.

1378 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

Theorem 4.17. Class CMAT of matroid functions satisfies

ΛMAT (n) =

{
1, n = 1, 2, 3,
2, n ≥ 4.

Proof. It follows from Lemma 4.11 and Lemma 4.16.
In fact, it is known [21] that learning minT (f) of a matroid function f with only

a membership oracle can be done in polynomial time in n and |minT (f)|. Since
Lemma 4.14 indicates that |maxF (f)| ≤ n|minT (f)|, we can show a similar result
by our algorithm that uses the maximum latency.

4.5. k-tight positive functions.
Definition 4.18. A positive function f is called k-tight for a positive integer k

if it satisfies

max{‖ a−b ‖ | a ∈ minT (f), b ∈ maxF (f) and a−ej ≤ b for some j ∈ ON(a)} ≤ k.
Let

CkTI : class of k-tight positive functions.

Note that the condition a − ej ≤ b for a ∈ minT (f) and b ∈ maxF (f) is equivalent
to the condition b+ ej ≥ a. Let us imagine minT (f) and maxF (f) as the bottoms of
ravines and the peaks of mountains, respectively. Then k-tightness of f implies that
the height difference between a mountain peak and the bottoms of its surrounding
ravines is at most k. This means that the ground is locally smooth, even though some
mountains may be very high.

For example, a positive threshold function with wmax ≤ kwmin is always k-tight,
where wmax = maxi wi and wmin = mini wi, since for any a ∈ minT (f), j ∈ ON(a),
and il ∈ OFF (a) (l = 1, 2, . . . , k),

n∑
i=1

wiai − wj +
k∑
l=1

wil ≥
∑

wiai − wmax + kwmin

≥
∑

wiai ≥ t,

i.e., a− ej +
∑k
l=1 eil ∈ T (f).

To introduce other types of k-tight functions, define the rank of a set S ⊆ {0, 1}n
by r(S) = max{‖ x ‖ | x ∈ S} and the antirank by ar(S) = min{‖ x ‖ | x ∈ S},
respectively.

Theorem 4.19. A positive function f satisfying one of the following conditions
is k-tight.

(i) |r(maxF (f))− ar(minT (f))| ≤ k − 2.
(ii) ar(minT (f)) ≥ n− k + 1.
(iii) r(maxF (f)) ≤ k − 1.

Proof. (i) For any a ∈ minT (f) and b ∈ maxF (f), | ‖ b ‖ − ‖ a ‖ | ≤ k − 2. If
a− ej ≤ b, then ‖ b− a ‖≤ k holds.

Conditions (ii) and (iii) are similar to (i).
These types of functions are discussed in [13] and other papers.
Lemma 4.20. For a positive function f , define an undirected bipartite graph

Gf = (minT (f), maxF (f), E), where E = {(a, b) | a ∈ minT (f), b ∈ maxF (f) and
a− ej ≤ b for some j ∈ ON(a)}. Then this Gf is connected.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1379

Proof. We proceed by induction on |minT (f)|. For |minT (f)| = 0, 1, it is
trivially true. Assume that the lemma holds for all |minT (f)| ≤ k but does not hold
for |minT (f)| = k + 1, i.e., Gf is not connected. Let minT (f) = {a(1), a(2), . . . , a(k),
a(k+1)}, V1 be the connected component of Gf that includes a(1) and V2 = V − V1,
where V is the set of all nodes in Gf .

First, we show V1 ∩ minT (f) 6= {a(1)}. Take a b ∈ maxF (f) such that b ≥
a(1) − ej for j ∈ ON(a(1)). Then bj = 0, since otherwise b ≥ a(1), a contradiction,
and hence ‖ b ‖≤ n− 1. If ‖ b ‖= n− 1, then b + ej = (1, 1, . . . , 1) and a(i) ≤ b + ej
for all a(i) ∈ minT (f), i.e., V1 ∩minT (f) = minT (f). Otherwise, i.e., ‖ b ‖< n− 1,
there exists an a′ ∈ minT (f) such that a′ ≤ b+ ei for some i ∈ OFF (b) \ {j}. Then
a′j = 0 by a′ ≤ b+ ei and bj = 0. Therefore, a′ 6= a(1) and {a(1), a′} ⊆ V1 ∩minT (f).

Second, we show V2 ∩minT (f) 6= ∅. If V2 ∩minT (f) = ∅ (i.e., minT (f) ⊆ V1),
then maxF (f) ⊆ V1 holds since for any b ∈ maxF (f), there exist j ∈ OFF (b) and
a ∈ minT (f) such that a ≤ b + ej . This contradicts the assumption that Gf is not
connected.

Now, define f ′ by minT (f ′) = {a(2), a(3), . . . , a(k+1)}, and let

S = {b ∈ maxF (f ′) | b ≥ a(1)}.
Then

minT (f ′) ∪ {a(1)} = minT (f),

maxF (f ′) \ S ⊆ maxF (f),

and hence

S = (minT (f ′) ∪maxF (f ′)) \ (minT (f) ∪maxF (f)).(4)

There is no path from each a(p) ∈ V1∩ (minT (f)\{a(1)}) to any a(q) ∈ V2∩minT (f)
in Gf . However, by the induction hypothesis, these a(p) and a(q) are connected in Gf ′ .
That is, by property (4), there are a(p) ∈ V1∩(minT (f)\{a(1)}), a(q) ∈ V2∩minT (f),
and c ∈ S such that c is adjacent to a(p) and a(q) in Gf ′ . We then show that there
is a b ∈ maxF (f) such that b is adjacent to a(1) and a(q) in Gf , which leads to a
contradiction. Take a j ∈ ON(a(1)) \ON(a(q)) arbitrarily. Then c− ej ∈ F (f) since
minT (f) ∩ {v | v ≤ c} = {a(1)}. Therefore, there exists a b ∈ maxF (f) such that
b ≥ c − ej . Since a(1) − ej ≤ c − ej ≤ b, this b is adjacent to a(1) in Gf . Moreover,
a(q) − ei ≤ c for some i ∈ ON(a(q)), since c is adjacent to a(q) on Gf ′ . Hence,

a(q)− ei ≤ c− ej by a
(q)
j = 0. Therefore, a(q)− ei ≤ b, i.e., b is adjacent to a(q).

Theorem 4.21. Class CkTI of k-tight positive functions satisfies

ΛkTI(n) ≤ k.
Proof. Assuming that g is a partial function of f ∈ CkTI , defined by MT and MF ,

such that Nk(g)∩U(g) = ∅ and U(g) 6= ∅, we derive a contradiction. Since U(g) 6= ∅,
there exists a u ∈ (minT (f) ∪ maxF (f)) ∩ U(g). We assume u ∈ minT (f) ∩ U(g)
without loss of generality, and let T1 = {u} and F1 = ∅. If there exists some j ∈
ON(u) such that u− ej ∈ F (MF), then there exists a b ∈MF such that b ≥ u− ej .
‖ u − b ‖≤ k holds since f is k-tight, and hence u ∈ Nk(g) ∩ U(g), which is a
contradiction. Therefore, u − ej ∈ U(g) holds for all j ∈ ON(u); i.e., F2 = {b ∈
maxF (f)| b ≥ u − ej for some u ∈ T1 and j ∈ ON(u)} satisfies F2 ⊆ U(g). If
b+ei ∈ T (MT) for some b ∈ F2 and i ∈ OFF (b), then some a ∈MT satisfies a ≤ b+ej

1380 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

and ‖ a − b ‖≤ k, i.e., b ∈ Nk(g) ∩ U(g), a contradiction. Therefore, T2 ⊆ U(g),
where T2 = {a ∈ minT (f)| a ≤ u + ej for some u ∈ F2 and j ∈ OFF (u)}. We
can indefinitely continue this procedure, which generates T1 ⊆ T2 ⊆ · · · ⊆ U(g) and
F1 ⊆ F2 ⊆ · · · ⊆ U(g), where Fi+1 (⊆ maxF (f)) is the set of vertices adjacent to Ti
in Gf , and Ti+1 (⊆ minT (f)) is the set of vertices adjacent to Fi+1 in Gf . By Lemma
4.20, we obtain Tl = minT (f) and Fl = maxF (f) for a sufficient large l. This is a
contradiction to MT ∪MF 6= ∅.

Corollary 4.22. (i) For the class of positive functions f satisfying |r(maxF (f))
−ar(minT (f))| ≤ k, its maximum latency is not greater than k + 2 .

(ii) For the class of positive functions f satisfying ar(minT (f)) ≥ n − k, its
maximum latency is not greater than k + 1.

(iii) For the class of positive functions f satisfying r(maxF (f)) ≤ k, its maximum
latency is not greater than k + 1.

Proof. Combine Theorems 4.19 and 4.21.

5. Positive k-DNF functions.
Definition 5.1. A positive function f which satisfies

r(minT (f)) ≤ k

is called a positive k-DNF function, where DNF stands for disjunctive normal form.
Let

CkDNF : class of positive k-DNF functions.

The next theorem shows that the maximum latency cannot be constant for this
class, though there is an incrementally polynomial identification algorithm [13].

Theorem 5.2. Class CkDNF satisfies

ΛkDNF (n) ≥
 1, k = 1,

(k − 1)

⌊√
n

(k−1)

⌋
− k + 2, k ≥ 2,

for n ≥ 4(k − 1).
Proof. For k = 1, it is clear that Λ1DNF (n) ≥ 1. For k ≥ 2, we provide an example

of g with λ(g) = (k−1) b
√

n
(k−1) c−k+2 for n ≥ 4(k−1). Let α = b

√
n

(k−1) c, where

α satisfies α ≥ 2. Then √
n

(k − 1)
≥ α, i.e., n ≥ α2(k − 1).

Therefore, let n = α2(k − 1) + β, where β is a nonnegative integer. Now define a
α(α− 1)(k − 1)× n matrix

X =
(
Q

∣∣∣Iα(α−1)(k−1)

∣∣∣ Oα(α−1)(k−1)×β
)
,

where Q is the α(α− 1)(k − 1)× α(k − 1) matrix

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1381

k−1︷ ︸︸ ︷ k−1︷ ︸︸ ︷ k−1︷ ︸︸ ︷ k−1︷ ︸︸ ︷

Q =

11 · · · 1 00 · · · 0 · · · · · · 00 · · · 0
11 · · · 1 00 · · · 0 · · · · · · 00 · · · 0
. .
11 · · · 1 00 · · · 0 · · · · · · 00 · · · 0
00 · · · 0 11 · · · 1 00 · · · 0 · · · 00 · · · 0
. .
00 · · · 0 11 · · · 1 00 · · · 0 · · · 00 · · · 0
. .

00 · · · 0 00 · · · 0 00 · · · 0 · · · 11 · · · 1
. .
00 · · · 0 00 · · · 0 00 · · · 0 · · · 11 · · · 1

 (α− 1)(k − 1)

}
(α− 1)(k − 1),

...}
(α− 1)(k − 1)

Ij is the j × j identity matrix, and Oi×j is the i× j zero matrix. Define f by

minT (f) = (the set of rows of matrix X)

and a partial function g of f by MT = minT (f) and MF = maxF (f) \ {u}, where

u = (1, 1, . . . , 1︸ ︷︷ ︸
α(k−1)

, 0, 0, . . . , 0︸ ︷︷ ︸
α(α−1)(k−1)

, 1, 1, . . . , 1︸ ︷︷ ︸
β

).

Then u+ ej ∈ T (MT) for any j ∈ OFF (u) since u ∈ maxF (f) and MT = minT (f).
Moreover, u−ej ∈ F (MF) for any j ∈ {1, 2, . . . , α(k−1)} and u−∑j∈S ej 6∈ F (MF),
where S = {n− β + 1, n− β + 2, . . . , n}. In other words,

U(g) = { (1, 1, . . . , 1︸ ︷︷ ︸
α(k−1)

, 0, 0, . . . , 0︸ ︷︷ ︸
α(α−1)(k−1)

, ∗, ∗, . . . , ∗︸ ︷︷ ︸
β

) },

where ∗ stands for 0 or 1. It is not difficult to see that ‖ a−w ‖≥ (α− 1)(k − 1) + 1
for every a ∈MT and w ∈ U(g) and ‖ b−w ‖≥ (α− 1)(k − 1) + 1 for every b ∈MF
and w ∈ U(g). Therefore, its latency is

λ(g) = (α− 1)(k − 1) + 1 = (k − 1)

⌊√
n

(k − 1)

⌋
− k + 2.

We note that the f and g of Example 2.2 satisfy the above conditions with n = 4
and k = 2.

6. Conclusion. The problem of identifying a positive Boolean function f has
an incrementally polynomial algorithm if and only if problem EQ can be solved in
polynomial time [6]. In this paper, we introduced the maximum latency as a measure
for the difficulty to find an unknown vector. If the maximum latency is constant, then
EQ can be solved in polynomial time. It turned out that the maximum latency of
general positive functions is bn/4c+1, but several subclasses of positive functions have
constant maximum latency. Such subclasses include classes of (i) 2-monotonic positive
functions, (ii) ∆-partial positive threshold functions, (iii) k-degree positive threshold

1382 KAZUHISA MAKINO AND TOSHIHIDE IBARAKI

functions, (iv) matroid functions, and (v) k-tight positive functions. Finally, it is
shown that the class of positive k-DNF functions has maximum latency not less than
O(
√
n), even though it is known [13] that problem EQ can be solved in polynomial

time for this class of functions.
The last result indicates that the concept of maximum latency is not always suffi-

cient to distinguish polynomially solvable cases from those not solvable in polynomial
time. However, it is also evident that the maximum latency is a powerful tool to find
polynomially solvable special cases.

Acknowledgments. The authors are grateful to the valuable comments given
by H. Nagamochi and the other members of their laboratory, and to the information
on [20] provided by T. Hegedus of Comenius University, Slovakia. The authors also
appreciate the comments given by two anonymous reviewers, which helped improve
the readability of this paper.

REFERENCES

[1] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[2] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge University Press,

London, 1992.
[3] M. O. Ball and J. S. Provan, Disjoint products and efficient computation of reliability, Oper.

Res., 36 (1988), pp. 703–715.
[4] P. Bertolazzi and A. Sassano, An O(mn) time algorithm for regular set-covering problems,

Theoret. Comput. Sci., 54 (1987), pp. 237–247.
[5] J. C. Bioch and T. Ibaraki, Decompositions of positive self-dual Boolean functions, Discrete

Math., 140 (1995), pp. 23–46.
[6] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean

functions, Inform. and Comput., 123 (1995), pp. 50–63.
[7] E. Boros, P. L. Hammer, T. Ibaraki, and K. Kawakami, Identifying 2-monotonic positive

Boolean functions in polynomial time, in ISA’91 Algorithms, W. L. Hsu and R. C. T.
Lee, eds., Springer Lecture Notes in Computer Science 557, Springer-Verlag, Berlin, 1991,
pp. 104–115.

[8] E. Boros, P. L. Hammer, T. Ibaraki, and K. Kawakami, Polynomial time recognition of
2-monotonic positive boolean functions given by an oracle, SIAM J. Comput., 26 (1997),
pp. 93–109.

[9] N. H. Bshouty, Exact learning via the monotone theory, Inform. and Comput., 123 (1995),
pp. 146–153.

[10] C. J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, London,
1987.

[11] Y. Crama, Dualization of regular Boolean functions, Discrete Appl. Math., 16 (1987), pp. 79–
85.

[12] Y. Crama, P. L. Hammer, and T. Ibaraki, Cause-effect relationships and partially defined
Boolean functions, Ann. Oper. Res., 16 (1988), pp. 299–326.

[13] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and related
problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

[14] M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms, J. Algorithms, 21 (1996), pp. 618–628.

[15] D. N. Gainanov, On one criterion of the optimality of an algorithm for evaluating monotonic
Boolean functions, USSR Comput. Math. Math. Phys., 24 (1984), pp. 176–181.

[16] H. Garcia-Molina and D. Barbara, How to assign votes in a distributed system, J. ACM,
32 (1985), pp. 841–860.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, New York,
1979.

[18] T. Ibaraki and T. Kameda, A theory of coteries: Mutual exclusion in distributed systems,
IEEE Trans. Parallel Distrib. Systems, 4 (1993), pp. 779–794.

[19] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating all maximal inde-
pendent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[20] V. K. Korobkov and T. L. Reznik, Certain algorithms for the computation of monotonic
functions in the algebra of logic, Soviet Math. Dokl., 3 (1962), pp. 1763–1767.

MAXIMUM LATENCY OF POSITIVE BOOLEAN FUNCTIONS 1383

[21] E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput., 9 (1980), pp. 558–
565.

[22] K. Makino and T. Ibaraki, The maximum latency of partially defined positive Boolean func-
tions, Trans. IEICE, J76-D-1 (1993), pp. 409–416. (In Japanese.)

[23] K. Makino and T. Ibaraki, The maximum latency and identification of positive Boolean
functions, in Proceedings 5th International Symposium on Symbolic and Algebraic Com-
putation (ISSAC’94), D. Z. Du and X. S. Zhang, eds., Lecture Notes in Computer Science
834, Springer-Verlag, Berlin, 1994, pp. 324–332.

[24] K. Makino and T. Ibaraki, A fast and simple algorithm for identifying 2-monotonic positive
Boolean functions, in Proceedings 6th International Symposium on Symbolic and Algebraic
Computation (ISSAC’95), J. Staples et al., eds., Lecture Notes in Computer Science 1004,
Springer-Verlag, Berlin, 1995, pp. 291–300.

[25] S. Muroga, Threshold Logic and Its Applications, Wiley-Interscience, New York, 1971.
[26] U. N. Peled and B. Simeone, Polynomial-time algorithm for regular set-covering and thresh-

old synthesis, Discrete Appl. Math., 12 (1985), pp. 57–69.
[27] R. Reiter, A theory of diagnosis from first principles, Artif. Intell., 32 (1987), pp. 57–95.
[28] L. G. Valiant, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[29] D. J. A. Welsh, Matroid Theory, Academic Press, New York, 1976.

AN EXPANDER-BASED APPROACH TO GEOMETRIC
OPTIMIZATION∗

MATTHEW J. KATZ† AND MICHA SHARIR‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1384–1408, October 1997 006

Abstract. We present a new approach to problems in geometric optimization that are tradition-
ally solved using the parametric-searching technique of Megiddo [J. ACM, 30 (1983), pp. 852–865].
Our new approach is based on expander graphs and range-searching techniques. It is conceptually
simpler, has more explicit geometric flavor, and does not require parallelization or randomization.
In certain cases, our approach yields algorithms that are asymptotically faster than those currently
known (e.g., the second and third problems below) by incorporating into our (basic) technique a
subtechnique that is equivalent to (though much more flexible than) Cole’s technique for speeding
up parametric searching [J. ACM, 34 (1987), pp. 200–208]. We exemplify the technique on three
main problems—the slope selection problem, the planar distance selection problem, and the planar
two-line center problem. For the first problem we develop an O(n log3 n) solution, which, although
suboptimal, is very simple. The other two problems are more typical examples of our approach. Our
solutions have running time O(n4/3 log2 n) and O(n2 log4 n), respectively, slightly better than the
previous respective solutions of [Agarwal et al., Algorithmica, 9 (1993), pp. 495–514], [Agarwal and
Sharir, Algorithmica, 11 (1994), pp. 185–195]. We also briefly mention two other problems that can
be solved efficiently by our technique.

In solving these problems, we also obtain some auxiliary results concerning batched range search-
ing, where the ranges are congruent discs or annuli. For example, we show that it is possible to
compute deterministically a compact representation of the set of all point-disc incidences among a
set of n congruent discs and a set of m points in the plane in time O((m2/3n2/3 + m + n) logn),
again slightly better than what was previously known.

Key words. expander graphs, geometric optimization, slope selection, computational geometry,
parametric searching, range searching, facility location

AMS subject classifications. 05C99, 68Q20, 68R10, 52C99, 90B80

PII. S0097539794268649

1. Introduction. More than 10 years ago, Megiddo [34] proposed the ingenious
technique of parametric searching for efficiently solving a variety of optimization prob-
lems. The technique has recently been applied to many problems in geometric opti-
mization, thus demonstrating its power and versatility (see [2, 3, 4, 6, 7, 12, 18, 20, 37]
for some of these applications).

The general idea behind parametric searching is that we are given a “decision
problem” P (λ) that depends on a real parameter λ, and we seek an optimal value λ∗

of λ, where a certain extremal condition is satisfied. For example, in the slope selection
problem, we are given n lines in the plane and an integer k, and we want to find the kth
leftmost vertex of the arrangement of the lines. The corresponding decision problem
P (λ) is to determine whether the number of vertices of the arrangement to the left
of or on the vertical line x = λ is smaller than, equal to, or larger than k, and the

∗ Received by the editors May 27, 1994; accepted for publication (in revised form) October 13,
1995. This research was supported by a Fund for Basic Research grant administered by the Israeli
Academy of Sciences. The research of the second author was supported by NSF grant CCR-91-22103
and by grants from the U.S.–Israeli Binational Science Foundation and the G. I. F., the German–
Israeli Foundation for Scientific Research and Development.

http://www.siam.org/journals/sicomp/26-5/26864.html
† Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-

Sheva 84105, Israel (matya@cs.bgu.ac.il).
‡ School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (sharir@

math.tau.ac.il) and Courant Institute of Mathematical Sciences, New York University.

1384

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1385

optimal λ∗ is the abscissa of the vertical line that passes through the kth leftmost
vertex.

We assume that an “oracle” procedure A(λ) that solves the decision problem is
available; that is, it can determine whether a given value of λ is smaller than, equal
to, or larger than the desired optimal λ∗. Our goal is to run some sort of binary search
over λ, using A(λ) as a discriminating procedure, until λ∗ is found. The problem is
that the number of critical values of λ where the output of A(λ) might change is often
too large, so we cannot afford to generate all of them. (In the slope selection problem,
these critical values are the abscissae of the vertices of the arrangement, so there are
quadratically many such values. The oracle for this problem simply has to count the
number of vertices lying to the left of a vertical line x = λ, which can easily be done
in time O(n logn) using a standard inversion-counting procedure; see, e.g., [18].)

The parametric-searching technique generates, in an implicit manner, only a small
subset of these critical values which is guaranteed to include λ∗. It does so by running
a generic parallel version of the oracle A(λ); that is, it runs such a parallel procedure
without knowing the value of λ, with the intention of simulating its execution at
the unknown λ∗. Whenever it needs to resolve, in a single parallel step, a batch
of comparisons whose outcome depends on λ, it computes the critical values where
any of these comparisons changes its outcome and runs a binary search to locate λ∗

among these values, using the (explicit) oracle A(λ). This determines the outcome
of all comparisons of the current batch, and the next parallel step can be executed.
Each parallel step generates further restrictions on the range where λ∗ must lie, and
at the end of execution this range must essentially shrink to a singleton, thus yielding
λ∗. The parallel version of the generic algorithm ensures that the algorithm executes
only a small number of (expensive) oracle calls. We refer the reader to [7, 34, 37] for
more detailed expositions of the method.

In spite of its power and versatility, parametric searching suffers from several
disadvantages. First, it relies crucially on the availability of a parallel version of the
oracle procedure, which is not always easy to obtain. Admittedly, this parallel version
is simulated sequentially, so we can develop it in the rather loose comparison-based
model of Valiant [38], but still it is often a major hurdle in the application of para-
metric searching. In addition, the parallel algorithm is often much more complicated
than its sequential counterpart, and the need to run it generically tends to make its
implementation extremely complicated. Second, the behavior of parametric searching
is rather mysterious and highly nonintuitive. On one hand, this is where the beauty
of the method lies, but it also makes the method difficult to follow, and makes the
execution of the algorithm appear to be rather erratic, performing comparisons that
are guided by some mysterious rule and that by magic manage to converge on the
right value of λ∗. This feeling is more acute in geometric applications of parametric
searching, where one would like to have a geometric interpretation that will provide a
more explicit explanation and prediction of the behavior of the algorithm, and where
such an interpretation is often lacking.

Recently, Chazelle et al. [12] proposed an alternative approach to parametric
searching in geometric optimization. Their approach is based on epsilon nets and on
recent related partitioning techniques (called cuttings). They applied it to the slope
selection problem and obtained an O(n log2 n) (deterministic) solution. Their solution
is conceptually much simpler than the previous optimal O(n logn) solution of Cole
et al. [18]. Moreover, it can be made optimal by replacing the oracle calls by calls to
the approximating oracle of [18] (this observation was missed in [12]). It seems that

1386 MATTHEW J. KATZ AND MICHA SHARIR

the approach of [12] can be applied to other geometric problems, although this still
remains to be worked out.

Another alternative approach to parametric searching was recently proposed by
Dillencourt, Mount, and Netanyahu [19] and by Matoušek [28, 29]. This approach is
based on randomization and yields efficient and fairly simple algorithms. For example,
in the slope selection problem, it generates a small number of random critical values
of λ and locates λ∗ among these values. Then it generates a new set of random
values of λ from the restricted range where λ∗ is now known to lie and again locates
λ∗ among these new values, and continues in this manner until λ∗ is found. In the
case of slope selection, the algorithm of [28] has expected running time O(n logn).
Matoušek comments in [28] on possible extensions of his technique to other geometric
problems, such as those studied in this paper.

In this paper we propose a different alternative approach to parametric search-
ing in geometric optimization and demonstrate its applicability to the slope selection
problem; to the distance selection problem, where we are given n points in the plane
and an integer k, and we want to find the kth smallest distance between the given
points; and to the two-line center problem, where we are given n points in the plane
and want to find the smallest width r so that all the points can be covered by the
union of two strips of width r. Agarwal et al. [2] present a randomized solution to the
distance selection problem, based on parametric searching, that runs in expected time
O(n4/3 log8/3 n). Their solution can be made deterministic using more involved tech-

niques [1]. Another deterministic solution, which also runs in time O(n4/3 log8/3 n),
was recently given by Goodrich [21]. Here we give an improved O(n4/3 log2 n) solu-
tion. Agarwal and Sharir [6] present a deterministic O(n2 log5 n) algorithm for the
two-line center problem, which is based on parametric searching. Here we give an
improved O(n2 log4 n) algorithm for this problem.1 We also briefly mention two more
problems for which our approach yields efficient solutions. These problems are as
follows.

(i) The two-center problem: Given n points in the plane, find the smallest radius
r so that all the points can be covered by the union of two discs of radius r.

(ii) The minimum output rate problem: Given consecutive time intervals T1, . . . , Tn
and input rates I1, . . . , In (where Ij is the input rate during the jth time interval) and
a buffer size B, find the minimum output rate R∗ required to assure that the buffer
does not overflow; see [35] for more details.

We present an O(n2 log3 n) solution to the first problem; the same asymptotic
running time was achieved by Agarwal and Sharir [6] using parametric searching.
The second problem was solved by Megiddo, Naor, and Anderson [35], who gave an
O(n logn log logn) deterministic solution and a randomized solution with expected
running time O(n logn), both using parametric searching. We give a geometric in-
terpretation of the problem and derive a deterministic O(n log3 n) solution and a
randomized solution (which is based on a different approach) with expected running
time O(n logn), which we believe to be simpler than the solution of [35].

1 There have been recent developments, after the original submission of this paper, in regard to
the solution of the two-line center problem. Glozman, Kedem, and Shpitalnik [On some geometric
selection and optimization problems via sorted matrices, Proc. Workshop on Algorithms and Data
Structures, Lecture Notes in Comput. Sci. 995, Springer-Verlag, Berlin, 1995, pp. 26–37] give another
algorithm with running time O(n2 log4 n), and Jaromczyk and Kowaluk [The two-line center problem
from a polar view: A new algorithm and data structure, Proc. Workshop on Algorithms and Data
Structures, Lecture Notes in Comput. Sci. 955, Springer-Verlag, Berlin, 1995, pp. 13–25] give an
improved O(n2 log2 n) solution.

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1387

Our approach is based on expander graphs that are constructed on certain subsets
of the input objects. Since expanders can be constructed in an explicit deterministic
manner (see, e.g., [9]), our technique is deterministic. It is conceptually rather simple,
does not require parallelization, and has a very clear geometric interpretation. In
addition, it avoids performing some of the generic comparisons that are performed in
standard parametric-searching applications (such as [2]), which change their outcome
at roots of rather high-degree polynomials. Its analysis relies on a simple and known
property of expanders, which loosely states that for any pair of sufficiently large sets of
vertices, the expander contains sufficiently many edges between them. There are only
a few applications of expanders to geometric problems, such as the recent application
of expanders to parallel linear programming [8]. We hope that our study will lead to
further geometric applications of expanders.

As an exemplification of our technique, the slope selection problem is perhaps
not ideal, in the sense that (what we regard as) the elegant and simple algorithm
that is given below is suboptimal and runs in time O(n log3 n) (which is, by the way,
the same running time yielded by the basic parametric-searching method, without the
improvements of [17] and of [18]). To improve it, one must develop additional technical
tricks that have little to do with the basic method. (In a companion paper [25], we
do present an alternative O(n logn) algorithm, which is also based on expanders.)

The solution to the distance selection problem is a much more typical exemplifi-
cation of our technique and also demonstrates the general applicability of the tech-
nique. Roughly speaking, the algorithm runs in O(logn) stages. Each stage produces
a further restricted range where the kth smallest distance is known to lie, with the
additional property that the jth range Ij contains at most O(n2ρj) distances among
the given points for some constant ρ < 1. The jth stage begins by generating a com-
pact representation of the set of all pairs of points whose distances lie in Ij−1. This is
done by performing batched range searching with appropriate annuli centered at the
given points. This yields a collection of complete bipartite graphs {Mt × Pt}t, where
for each t the distance between every point in Mt and every point in Pt lies in Ij−1.
Next we replace each such bipartite graph by an expander Gt. We associate with each
edge of these expanders the distance between the two points that it connects. Since
the total number of edges of these graphs is relatively small, we can afford to run a
binary search (using the oracle) to locate the desired kth smallest distance in the list
of the distances associated with these edges. This search produces the next interval
Ij and the whole procedure is repeated.

The analysis of the algorithm, namely, the proof that the numbers of distances in
the ranges Ij keep decreasing geometrically, is somewhat intricate and relies on the
property of expanders mentioned above and on certain properties of range searching
via geometric partitioning.

We enhance our basic technique (as described above) by a subtechnique. The
enhanced technique yields, in certain cases, algorithms that are asymptotically faster
that those previously known (e.g., our algorithms for the distance selection problem
and for the two-line center problem). The subtechnique is in some sense equivalent
to Cole’s technique for speeding up standard parametric searching [17], although the
context in which it is applied is rather different (and considerably more general). In
both approaches, the number of (expensive) oracle calls is reduced, so that only a
constant (rather than logarithmic) number of calls are made in each stage of the algo-
rithm. For Cole’s improvement to apply, the generic parallel algorithm must run on
a sorting network (or satisfy similar restrictive conditions), whereas our improvement

1388 MATTHEW J. KATZ AND MICHA SHARIR

is much more flexible and can be applied in fairly general settings.
We also obtain some results concerning batched range searching, which we use

in the algorithm for the distance selection problem. These results, we believe, are
of independent interest. Loosely speaking, each stage of our algorithms begins with
a range I where λ∗ is known to lie and aims to shrink this range further. To do
so, the algorithm performs range searching to obtain, in compact form, all pairs (or
triples, etc.) of the data objects, whose “comparisons” generate critical values of λ
that fall in I. Once all these interactions have been found, we replace them by certain
expander graphs and use only the critical values generated by the edges of those
graphs for the oracle-guided binary search. In this setting all the relevant range-
searching queries are known in advance, so we can perform all of them using batched
range searching; this technique, when carefully implemented, can perform better than
standard range searching. For example, given n congruent discs and m points in the
plane, we compute a compact representation of the set of all point-disc incidences in
time O((m2/3n2/3 +m+ n) logn), slightly better than what was previously known.

The paper is organized as follows. In section 2 we briefly review expander graphs
and their basic properties. In section 3 we obtain some results concerning batched
range searching. (The contents of this section are not directly related to the main topic
of this paper, so this section may be skipped in a first reading, if so desired.) Sections 4,
5, and 6 present, respectively, our solutions to the distance selection problem, the two-
line center problem, and the slope selection problem. In section 7 we briefly mention
two more problems for which our approach yields efficient algorithms. We conclude
the paper in section 8 with a discussion of the potential of our technique and with
some open problems and suggestions for further research.

2. Expanders and their properties.
Definition 2.1. A graph G = (V,E) is an (n, d, c) expander if it has n ver-

tices, its degree is d, and for every set of vertices W ⊂ V of cardinality |W | ≤ n/2,
|N(W)| ≥ c|W |, where N(W) is the set of vertices in V \W that are connected to W
by an edge of G.

The following property is proved in [9, Chap. 9, Corollary 2.2].
Lemma 2.2. If G is a d-regular graph with n vertices and λ is the second largest

eigenvalue of the adjacency matrix of G, then G is an (n, d, c) expander with c =
(d− λ)/2d.

Thus, if λ is much smaller than d (which is the largest eigenvalue of the adjacency
matrix of G), then G is a good expander.

Lubotzky, Phillips, and Sarnak [26] (and independently Margulis [27]) have given
an explicit and very simple description of a d-regular graph G with n vertices, for
which λ ≤ 2

√
d− 1, for any d = p + 1 and n = q + 1, where p and q are primes

congruent to 1 modulo 4. These graphs actually have the stronger property that all
their eigenvalues (except d) have absolute value at most 2

√
d− 1. We will refer to

such graphs as LPS-expanders.
From the description in [26] it follows that, whenever d is a constant, an LPS-

expander of degree d with n vertices can be constructed deterministically in O(n)
time.

The following lemma, which is the main property of LPS-expanders that we will
need in this paper, is proved in [9, Chap. 9, Corollary 2.5].

Lemma 2.3. Let G = (V,E) be a d-regular graph with n vertices. Assume the
absolute value of all its eigenvalues, but the largest is at most λ. Then, for every two
sets of vertices A and B of respective cardinalities a and b, we have |e(A,B)−abd/n| ≤

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1389

λ
√
ab, where e(A,B) is the number of edges of G connecting a vertex of A with a vertex

of B.
Corollary 2.4. If A and B are two sets of vertices of respective cardinalities a

and b such that e(A,B) = 0, then ab ≤ 4n2/d.
Proof. The previous lemma and the fact that λ < 2

√
d imply that if ab > 4n2/d,

then e(A,B) ≥ abd/n−2
√
abd > 0, as is easily verified. This contradiction completes

the proof.
Corollary 2.5. If A and B are two sets of vertices of respective cardinalities a

and b such that e(A,B) < 3n, then ab < 9n2/d.
Proof. The previous lemma and the fact that λ < 2

√
d imply that if ab ≥ 9n2/d,

then e(A,B) ≥ abd/n− 2
√
abd ≥ 3n, as is easily verified.

3. Batched range searching. We next describe how to perform efficiently the
batched range searching required in step 1 of the distance selection algorithm pre-
sented in section 4. For simplicity of presentation, we describe the method for the
case where the ranges are congruent discs rather than annuli, but the technique works
equally well for congruent annuli. The technique is reminiscent of the approach of
Clarkson et al. [15]; it is a result of independent interest, and we hope that it will also
find other applications.

Let C = {c1, . . . , cn} be a set of n congruent circles, and let P = {p1, . . . , pm} be
a set of m points in the plane. We wish to compute a compact representation of the
set Z of all pairs of the form (ci, pj), where ci ∈ C, pj ∈ P , and pj lies inside ci. The
representation we are interested in is a collection of complete pairwise edge-disjoint
bipartite subgraphs of C × P , that is, pairs of the form (Ct, Pt), where Ct ⊆ C,
Pt ⊆ P , the sets Ct × Pt are pairwise disjoint, and Z =

⋃
t Ct × Pt.

We first consider the following problem. Let C be a set of n circles in the plane.
We wish to preprocess C so that, given a query point p, the set of circles of C
containing p in their interior can be found quickly. The following theorem is due to
Agarwal. Here the circles of C do not have to be congruent.

Theorem 3.1. Let C be a set of n circles in the plane. One can construct,
in O(n2 logn) time, a data structure that uses O(n2 logn) space, so that the set of
circles containing a query point in their interior can be reported in O(logn) time as
a collection of O(logn) pairwise disjoint “canonical” (prestored) sets.

This data structure is constructed as follows. Form the arrangement A(C) of the
circles in C, and let G be the dual graph of A(C); the nodes of G are the faces of
A(C) and its edges connect pairs of faces adjacent along an edge of A(C). Compute
a spanning tree of G and duplicate each edge of the tree to obtain an Eulerian tour π
of G; the tour may visit a face of A(C) any number of times, but the overall number
of its edges is clearly O(n2) (see Figure 1). Now fix a circle c ∈ C and mark all the
edges of π that cross c (i.e., are dual to an edge of A(C) contained in c). There are
only O(n) such edges in π since there are only O(n) edges in A(C) that are contained
in c and each of them is crossed by π at most twice (once in each direction). These
(marked) edges partition π into subsequences, so that the union of cells of A(C) in a
single subsequence is either fully contained inside c or lies fully outside c. The total
number of such subsequences, over all circles in C, is only O(n2). We now build a
balanced segment tree T over the nodes of π, in their order along π, and represent
each circle c by the collection of sequences of faces of A(C) that are interior to c, as
just constructed, viewing each such subsequence as a “segment” of π. We store each
of these “segments,” for each circle c ∈ C, at O(logn) nodes of T in a standard fashion
(see Figure 2). The desired data structure consists of the resulting segment tree T

1390 MATTHEW J. KATZ AND MICHA SHARIR

1

5

6

7
8

9

20

24

25

27

31 2

3

4

29

10
11

13

14

15

16

17

18
19

21

22

23

28 30

12

C1

C2

C3

C4
C7

C6

C5

26

Fig. 1. An Eulerian path in an arrangement of circles.

c3 c2 c3 c5 c4 c4 c5 c4 c6 c3 c6 c3 c1c1,c3c7 c4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

c1 c3 c4 c4

c3c5

c3,c4 c6 c6 c5

c4

Fig. 2. The corresponding segment tree.

plus an efficient point location structure for A(C), where, in addition, each face of
A(C) points to some leaf of T (that is, to a node of π) that is equal to it. It is easily
checked that the data structure requires O(n2 logn) space and can be constructed in
time O(n2 logn).

Next, given a query point p, we locate the face f of A(C) containing p, access the
leaf of T to which f points, construct the path of T from this leaf to the root of T ,
and report the sets of circles stored at each of the O(logn) nodes along that path. It
is easily seen that each circle containing p appears in exactly one of these sets, which
implies the correctness of the query.

We now return to our original problem of computing a compact representation
of the set Z of all point-circle containments, for a set C of n congruent circles and a
set P of m points in the plane, as defined above. We first describe a “base” solution

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1391

to this problem, which is less efficient than our final algorithm, but is required as a
subroutine in that algorithm.

We distinguish between two cases. Assume first that n ≤ m1/2. Construct the
data structure of Theorem 3.1 for the collection C of n circles and perform m queries
in it, one query for each point p ∈ P ; we store p at each node along the path of the
segment tree traced by the query. After completing the m queries, we produce the
output by traversing all the nodes of the tree and by reporting, for each node t, the
complete bipartite graph formed between the set Ct of circles stored at t and the set
Pt of points stored at t (if either of these sets is empty, we ignore t). We thus obtain
a collection of O(m) complete edge-disjoint bipartite graphs Ct × Pt, with∑

t

|Pt|,
∑
t

|Ct| = O(m logn) = O(m logm).

The total cost of the algorithm is

O(n2 logn+m logn) = O(m logn) = O(m logm).

Now consider the case where n > m1/2. Partition C into d n
m1/2 e subsets of size at

most dm1/2e each and construct the data structure of Theorem 3.1 for each of these
subsets separately. Now for each p ∈ P perform d n

m1/2 e separate queries, one in each
of these data structures. As in the former case, we defer the reporting until all the
queries have been processed. The cost of the preprocessing is thus

n

m1/2
O((m1/2)2 logm1/2) = O(nm1/2 logm),

and the cost of the queries is

m
n

m1/2
O(logm1/2) = O(nm1/2 logm).

After all queries are performed, we traverse all the trees to obtain a collection of

n

m1/2
O(m) = O(nm1/2)

complete edge-disjoint bipartite graphs Ct × Pt, as above, with∑
t

|Pt|,
∑
t

|Ct| = n

m1/2
O(m logm) = O(nm1/2 logm).

We next combine both cases and, for technical reasons required by our analysis,
also interchange the roles of points and circles (which is possible since the circles are
congruent, so a circle ci contains a point pj if and only if the circle congruent to ci and
centered at pj contains the center of ci) to obtain the following intermediate result.

Theorem 3.2. Let C be a set of n congruent circles, and let P be a set of m
points in the plane. One can compute the set of pairs of the form (c, p), where p ∈ P ,
c ∈ C, and p lies inside c, as a collection of complete edge-disjoint bipartite graphs
{Ct × Pt}t in O((mn1/2 + n) logn) space and time. The number of graphs obtained
is O(mn1/2 + n), and we have

∑
t |Pt|,

∑
t |Ct| = O((mn1/2 + n) logn). Each such

point-circle containment pair appears in exactly one of these graphs.
Next we fix some parameter 1 ≤ r ≤ n (not necessarily a constant) and compute

a (1/r)-cutting for C. That is, we partition the plane into k = O(r2) cells ∆1, . . . ,∆k,

1392 MATTHEW J. KATZ AND MICHA SHARIR

each of constant description complexity, so that each cell is intersected by at most
n/r circles. This can be done in O(nr) deterministic time, as in [11, 30]. Within this
time bound we can also obtain for each cell ∆i the set Ci of circles crossing ∆i.

Let Pi = P ∩∆i and mi = |Pi|. Clearly
∑k
i=1mi = m. We can compute the sets

P1, . . . , Pk using O(r2 + m) space and O((r2 + m) log r) time (by preprocessing the
above cutting for efficient point location and then by performing m queries with the
points of P).

We obtain Z as the disjoint union of two subsets Z1 and Z2. The set Z1 (resp., Z2)
consists of all pairs (c, p) ∈ Z such that c intersects (resp., fully contains) the cell
of the cutting in which p lies. Our final representation will consist of a compact
representation of Z1 and a compact representation of Z2.

We first compute a compact representation of the set Z1. The above cutting
induces k subproblems, one for each cell of the cutting. In the ith subproblem we
must consider the interaction between mi points and at most n/r congruent circles.
According to Theorem 3.2, this can be solved in O((mi(n/r)

1/2 +n/r) log(n/r)) time
and space. Thus all the k subproblems can be solved in a total of

k∑
i=1

O((mi(n/r)
1/2 + n/r) log(n/r)) = O((m(n/r)1/2 + nr) log(n/r))

time and space. As a result, we obtain a collection of complete edge-disjoint bipartite
graphs Ct × Pt, so that the number of graphs is

O(m(n/r)1/2 + nr)

and ∑
t

|Pt|,
∑
t

|Ct| = O((m(n/r)1/2 + nr) log(n/r)).

Now we show how to compute a compact representation of the set Z2. We compute
an Eulerian path π of the dual graph of the cutting. The length of π is O(r2) (and it
can be computed in O(r2) time), and each edge of the cutting is crossed at most twice
by the path (once in each direction). Next we associate with each circle c ∈ C the
set of maximal intervals along the path such that for each node in such an interval,
its corresponding cell is fully contained in c. We claim that the total number of such
intervals, over all circles, is only O(nr). To see this, observe that each such interval
I can be charged to a pair (c, w), where c is the relevant circle and w is the node
of π that follows I; note that c necessarily crosses the cell ∆ of the cutting that w
represents. Since each such ∆ is crossed by at most n/r circles and π has only O(r2)
nodes, the total number of intervals is at most O(nr).

This argument also implies that we can find all these intervals in time O(nr log r):
for each circle c ∈ C mark all the nodes of π whose associated cell of the cutting is
crossed by c (such a cell may correspond to many nodes of π, and we mark all of
them). We next sort all the marked nodes along π and obtain the desired intervals as
those nonempty “gaps” between consecutive pairs of marked nodes, which are fully
contained in c. We repeat this for each c ∈ C, and the preceding arguments imply
that the overall cost of this procedure is O(nr log r).

Now build a balanced segment tree T over the nodes of π, as above. The con-
struction takes O(r2 + nr log r) time and space. We next perform O(r2) queries, one
for each cell of the cutting. (As above, each cell is mapped to only one leaf of T ,

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1393

even though other leaves may represent the same cell, and the query only traces the
path in T from that leaf to the root. The preceding arguments justify this strategy.)
The queries take a total of O(r2 log r) time. Again, we defer the reporting until all
queries are processed and then report, for each node t of T , the complete bipartite
graph formed between the circles stored at t and the union

⋃
Pi over all cells ∆i

whose queries have reached t. This yields a collection of O(r2) complete edge-disjoint
bipartite graphs Ct × Pt, with

∑
t |Pt|,

∑
t |Ct| = O(nr log r).

Combining all the preceding steps, we see that the cost of the entire computation

is dominated by O((m(n/r)1/2 + nr) logn). If we choose r = m2/3

n1/3 , we obtain the
following summary result.

Theorem 3.3. Let C be a set of n congruent circles and P be a set of m points
in the plane. One can compute the set of pairs of the form (c, p), where p ∈ P , c ∈ C,
and p lies inside c, as a collection {Ct×Pt}t of complete edge-disjoint bipartite graphs
in O((m2/3n2/3 + m + n) logn) time and space. The number of graphs obtained is
O(m2/3n2/3 +m+ n), and we have

∑
t |Pt|,

∑
t |Ct| = O((m2/3n2/3 +m+ n) logn).

Each such point-circle containment pair appears in exactly one of these graphs.
Remark 1. As a special case, we also obtain the oracle for our distance selection

algorithm (see section 4), which has to compute the number of pairs (c, p), where p
lies in c. The resulting algorithm thus takes O((m2/3n2/3 + m + n) logn) time and
O(m2/3n2/3 +m+ n) space.

Remark 2. We also obtain an efficient solution to the following problem: given
n congruent circles of radius r in the plane, count the number of (resp., report in
a compact form all the) intersecting pairs. (Take as the set of points P the set of
centers of the given circles, and let the set C consist of circles of radius 2r about
these centers.) The resulting algorithm thus takes O(n4/3 logn) time and O(n4/3)
(resp., O(n4/3 logn)) space.

Theorem 3.3 and the first remark above can also easily be applied to the case
where our ranges are congruent annuli rather than circles. We omit here the easy
details.

Theorem 3.4. Let M be a set of n congruent annuli and P be a set of m points in
the plane. One can compute the set of pairs of the form (A, p), where p ∈ P , A ∈M ,
and p lies inside A, as a collection {Mt × Pt}t of complete edge-disjoint bipartite
graphs in O((m2/3n2/3 +m+n) logn) time and space. The number of graphs obtained
is O(m2/3n2/3 +m+n), and we have

∑
t |Pt|,

∑
t |Mt| = O((m2/3n2/3 +m+n) logn).

Each such point-annulus containment pair appears in exactly one of these graphs.

4. Selecting distances in the plane. In this section we present our technique
as applied to the distance selection problem. Let P = {p1, . . . , pn} be a given set of
n points in the plane in general position, and let k be a given integer in the range
[1,
(
n
2

)
]. The problem is to find the kth smallest distance among the points of P . The

algorithm proceeds in stages; the jth stage produces an interval Ij = (αj , βj), so that
the kth smallest distance among the points of P is known to lie in that interval, and
the total number of distances among the points of P that lie in Ij is at most O(n2ρj)
for some constant parameter ρ < 1. Thus, after logarithmically many stages, we are
left with a sufficiently small number of distances, from which it will be easy to retrieve
the desired distance. Initially, we have I0 = (0,∞).

For clarity of exposition, we first describe an initial version of the algorithm, which
does not yet employ our Cole-like improvement. In this version, the number of calls
to the oracle in each stage is O(logn). Since the number of stages is O(logn) and each
oracle call takes O(n4/3 logn), the complexity of the entire algorithm is O(n4/3 log3 n).

1394 MATTHEW J. KATZ AND MICHA SHARIR

Afterwards we will obtain an improved version by applying our Cole-like technique
to step 4 of each stage (see below). This will reduce the number of calls to the oracle
to only O(1) per stage and thus improve the complexity of the entire algorithm by a
logarithmic factor.

An initial version: The jth stage proceeds as follows.

1. For i = 1, . . . , n, let Ai denote the annulus centered at pi and having radii
αj−1 and βj−1. Let M denote the set of these annuli. We perform batched
range searching with the sets M and P , using the technique described in
section 3, whose results are summarized in Theorem 3.4. This batched
range searching thus takes time and space O(n4/3 logn), and its output con-
sists of a collection of O(n4/3) complete bipartite graphs {Mt × Pt}t, where∑
t |Pt|,

∑
t |Mt| = O(n4/3 logn). Note also that

∑
t |Pt| · |Mt| is twice the

number of pairs of points of P whose distance lies between αj−1 and βj−1,
and is thus O(n2ρj−1) by assumption. If this number is sufficiently small, we
simply examine all edges of these graphs and select the desired distance, ter-
minating the algorithm. (For this we need to know the number k0 of pairs of
points at distance ≤ αj−1; our desired distance is then the (k−k0)th smallest
distance represented in the above bipartite graph collection. We obtain k0 as
in Remark 1 following Theorem 3.3.)

2. Replace each complete bipartite graph Mt×Pt by the following smaller graph
Gt. Put mt = |Mt| and nt = |Pt|. Partition Mt into k = bmtnt c subsets,
Mt1, . . . ,Mtk, so that each subset, with the possible exception of the last one
Mtk, has exactly nt elements, and Mtk has between nt and 2nt − 1 elements.
For each i ≤ k, construct a d-regular LPS-expander graph Gti on the vertex
set Mti ∪ Pt. Let Gt be the union of all these graphs. Assuming d to be a
constant, the number of edges of Gt is clearly O(|Mt|+ |Pt|). Thus the total
number of edges of all the graphs Gt is proportional to

∑
tO(|Mt|+ |Pt|) =

O(n4/3 logn).
3. Each edge (A, p) of Gt that connects a node representing an annulus with a

node representing a point is associated with the distance between p and the
center of A. (All other edges of Gt are ignored.) Let L be the list of all these
edge distances, over all graphs Gt, sorted in increasing order. The length of
L is O(n4/3 logn).

4. Now run a binary search over L, using as an oracle, for each λ ∈ L, a counting
variant of the batched range-searching procedure of section 3, involving the
set P of points and the set of circles of radius λ centered at the points of P .
As shown in section 3, the cost of an oracle call is also O(n4/3 logn). This
yields a new interval Ij = (αj , βj) where the kth smallest distance is known
to lie. Note that the interval Ij has the property that it contains no distance
induced by any edge of any of the graphs Gt.

5. We now repeat the whole procedure with the new interval Ij .

Once the algorithm terminates, its correctness is easy to prove. The main step
in the analysis is to establish the invariant concerning the number of distances that
lie in each interval Ij , thereby showing that the algorithm does indeed terminate and
that it takes only O(logn) stages to do so.

Fix one of the pairs (Mt, Pt) obtained by the partitioning procedure of step 1.
Let Mti be one of the subsets of Mt in the partition of step 2. Replace each annulus A
in Mti by another annulus A′ with the same center as A but with radii αj and βj (see
Figure 3); let M ′ti denote the resulting set of annuli. Compute (only for the purpose of

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1395

Fig. 3. The concentric annuli A and A′.

analysis) a 1/r-cutting for the set M ′ti of size O(r2). That is, fix some parameter r and
partition the plane into k = O(r2) cells, ∆1, . . . ,∆k, so that each cell is intersected by
at most |M ′ti|/r of the circles bounding the annuli of M ′ti. (Actually, for our analysis,
it is sufficient to assume that for some constant c > 0, a 1/r-cutting of size O(rc) can
be computed.)

For each u = 1, . . . , k, let P
(u)
t denote the set of points in Pt that lie inside ∆u,

let K
′(u)
ti denote the set of annuli in M ′ti that fully contain ∆u, and let L

′(u)
ti denote

the set of annuli in M ′ti that have a bounding circle that crosses ∆u. It is clear that
the number Dti of distances between centers of annuli in M ′ti and points in Pt that
lie in Ij satisfies

Dti ≤
∑
u

|L′(u)
ti | · |P (u)

t |+
∑
u

|K ′(u)
ti | · |P (u)

t |.

Since, for each u, we have |L′(u)
ti | ≤ |M ′ti|/r = |Mti|/r, and since

∑
u |P (u)

t | = |Pt|,
it follows that ∑

u

|L′(u)
ti | · |P (u)

t | = O

(|Mti| · |Pt|
r

)
.

Next consider the second sum
∑
u |K

′(u)
ti | · |P (u)

t |. Since, for each A′ ∈ K
′(u)
ti and

each p ∈ P
(u)
t , the distance between p and the center of A′ is in Ij , and since the

corresponding expander Gti has no edge whose distance lies in Ij , it follows that Gti

contains no edge connecting between K
′(u)
ti (or, more precisely, the original annuli

in Mti corresponding to the annuli of K
′(u)
ti) and P

(u)
t . Hence, by Corollary 2.4, it

follows that

|K ′(u)
ti | · |P (u)

t | ≤
4(|Mti|+ |Pt|)2

d
.

1396 MATTHEW J. KATZ AND MICHA SHARIR

Since there are only O(r2) cells, it follows that the corresponding sum satisfies∑
u

|K ′(u)
ti | · |P (u)

t | = O

(
r2(|Mti|+ |Pt|)2

d

)
.

Hence,

Dti = O

(
r2(|Mti|+ |Pt|)2

d

)
+O

(|Mti| · |Pt|
r

)
.

Recall that |Pt| ≤ |Mti| < 2|Pt|, which is easily seen to imply that (|Mti| + |Pt|)2 ≤
5|Mti| · |Pt|. Hence,

Dti = O

(
|Mti| · |Pt| ·

[
r2

d
+

1

r

])
.

If we now choose r = d1/3 and ρ to be appropriately proportional to 1/d
1
3 , then we

have, for each of these pairs,

Dti ≤ ρ|Mti| · |Pt|.
Hence, summing up all these inequalities, we conclude that the total number of dis-
tances between the points of P that fall in Ij is at most ρ times the number of these
distances within Ij−1. This establishes the desired invariant, thus completing the
analysis of the algorithm, and yielding the following intermediate result.

Lemma 4.1. The above algorithm computes the kth smallest distance among n
points in the plane in (deterministic) time O(n4/3 log3 n).

An improved version: We now apply our Cole-like improvement to step 4 of each
stage of the algorithm. This will reduce the number of oracle calls in a single stage
of the algorithm to only a constant and will improve the complexity of the algorithm
by a logarithmic factor. To this end, we replace step 4 above by the following.

4. Let W be the number of pairs of points of P whose distance lies in Ij−1; that
is, W = 1/2

∑
t |Pt| · |Mt|. We assume that W ≥ 8; otherwise, we can simply

check the constant number of distances in Ij−1 and select out of them the
desired distance. We assign a weight to each distance in L, so that the weight
of each of the at most (|Pt|+ |Mti|)d/2 distances induced by the edges of an
expander Gti is |Pt||Mti|/(|Pt| + |Mti|) (recall that some of these expander
edges do not induce a distance; see step 3 of the algorithm). The total weight
of the distances in L is

≤
∑
t,i

(|Pt|+ |Mti|)d
2
· |Pt||Mti|
|Pt|+ |Mti| =

d

2

∑
t,i

|Pt| · |Mti| = Wd,

and, using the fact that |Pt| ≤ |Mti|, the weight of any single distance in L is

|Pt||Mti|
|Pt|+ |Mti| < |Pt| ≤

√
|Pt| · |Mti| ≤

√
2W ≤ W

2
,

since we have assumed that W ≥ 8. Partition the list L into at most 2d
intervals, each of weight at most W and at least W/2, and perform at most
log(2d) = O(1) oracle calls to obtain the interval Ij that contains the desired
distance. (Note that there is no need to sort L for the binary search; instead,

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1397

one may use repeated weighted-median findings on appropriate portions of L,
which take a total time linear in the size of L.) Below we show that although
now Ij is not necessarily defined by two consecutive values in L, the number
of distances between the points of P that lie in Ij is still only ρ times the
number of these distances within Ij−1 for some constant ρ < 1.

It remains to show that, after the above change, it is still true that the number
of distances that lie in the interval Ij is only O(n2ρj) for some constant ρ < 1. The
analysis below is similar to the analysis for the basic version. The main difference is
that we use Corollary 2.5 instead of Corollary 2.4.

As above, fix one of the pairs (Mt, Pt) obtained by the partitioning procedure of
step 1 and let Mti be one of the subsets of Mt in the partition of step 2. Suppose
first that the corresponding expander graph Gti contains at least 3(|Pt|+ |Mti|) edges
whose distances lie in Ij . Then, by definition, Gti contributes at least 3|Pt| · |Mti| to
the total weight of edges whose distances lie in Ij . Since, by construction, this total
weight is at most W , we conclude that

∑
t,i |Pt| · |Mti|, over all t, i for which Gti has

the above property, is at most W/3.

Thus we only need to consider graphs Gti that have fewer than 3(|Pt| + |Mti|)
edges whose distances lie in Ij . Let M ′ti be the corresponding set of new annuli, as
above, and compute (only for the purpose of analysis) a 1/r-cutting of M ′ti, as above,

to obtain the sets P
(u)
t , K

′(u)
ti , and L

′(u)
ti , u = 1, . . . , r. As above, the number Dti of

distances between centers of annuli in M ′ti and points in Pt that lie in Ij satisfies

Dti ≤
∑
u

|L′(u)
ti | · |P (u)

t |+
∑
u

|K ′(u)
ti | · |P (u)

t | = O

(|Mti| · |Pt|
r

)
+
∑
u

|K ′(u)
ti | · |P (u)

t |.

Next consider the sum
∑
u |K

′(u)
ti | · |P (u)

t |. Since, for each A′ ∈ K ′(u)
ti and each p ∈

P
(u)
t , the distance between p and the center of A′ is in Ij , and since the corresponding

expander Gti has fewer than 3(|Pt|+ |Mti|) edges whose distances lie in Ij , it follows

that Gti contains fewer than 3(|Pt|+ |Mti|) edges connecting between K
′(u)
ti (or, more

precisely, the original annuli in Mti corresponding to the annuli of K
′(u)
ti) and P

(u)
t .

Hence, by Corollary 2.5, it follows that

|K ′(u)
ti | · |P (u)

t | ≤
9(|Mti|+ |Pt|)2

d
.

Thus we can repeat the analysis given above, with the only difference that the con-
stants of proportionality are now larger, to conclude that, for an appropriate constant
ρ = O(1/d

1
3), we have Dti ≤ ρ|Mti| · |Pt|. Hence, summing up all these inequalities

and adding the contribution of expanders Gti with many edges whose distances fall
in Ij , we conclude that the total number of distances between the points of P that
fall in Ij is at most (ρ + 1

6) times the number of these distances within Ij−1. The
factor (ρ + 1

6) is smaller than 1 if we choose d sufficiently large. This establishes
the desired invariant and thus completes the analysis of the algorithm. Since both
the range-searching procedure and the oracle procedure cost O(n4/3 logn), the total
running time of the above algorithm is O(n4/3 log2 n). To summarize, we have shown
the following theorem.

Theorem 4.2. The improved algorithm computes the kth smallest distance
among n points in the plane in (deterministic) time O(n4/3 log2 n).

1398 MATTHEW J. KATZ AND MICHA SHARIR

αj−1

βj−1

p

q

Fig. 4. The strip Arp,q defined by p and q.

5. The two-line center problem. In this section we apply our new technique
to obtain an improved algorithm for the two-line center problem. Let P be a given
set of n points in the plane in general position. The problem is to find two strips
whose union contains P , so that the larger width w∗ of the two strips is as small as
possible. Note that w∗ is determined by three points of P—two points defining one
of the borders of the wider strip and the third point defining the opposite border. We
use the algorithm of Agarwal and Sharir [6], whose running time is O(n2 log3 n), for
the appropriate decision problem: given a value w > 0, determine whether w∗ < w,
w∗ > w, or w∗ = w.

The main algorithm proceeds in stages; the jth stage produces an interval Ij =
(αj , βj), so that w∗ is known to lie in that interval, and the total number of strips
defined by triples of points in P whose width lies in Ij is at most O(n3ρj) for some
constant parameter ρ < 1. Thus, after logarithmically many stages, we are left with a
sufficiently small number of widths, from which it will be easy to retrieve the desired
width. Initially, we have I0 = (0,∞). The jth stage proceeds as follows.

1. For each pair of points p, q ∈ P , draw the open strip Arp,q of width βj−1−αj−1,
whose borders are parallel to the line passing through p and q and lie to the
right of this line at distances αj−1 and βj−1, respectively (see Figure 4). Let
Alp,q denote the strip symmetric to Arp,q with respect to the line through p and

q. (We note that, for p1, p2, p3 ∈ P , we have p3 ∈ Arp1,p2 (resp., p3 ∈ Alp1,p2)
if and only if the width of the strip defined by ({p1, p2}, p3) (i.e., defined
by the line through p1 and p2 and the line parallel to it through p3) lies
in (αj−1, βj−1) and the center line of this strip lies to the right (resp., to
the left) of p1p2.) Let M denote the set of these n(n − 1) strips. Perform
n(n−1) batched range-searching queries on the set P with these strips. Using
standard techniques, such as those of [31], [32], or [13], we can perform these
queries so that the output consists of a collection of pairs (Mt, Pt), where, for
each t, Pt is a subset of P , Mt is a subset of M , for each p ∈ Pt and each
A ∈Mt we have p ∈ A, and each such containment is obtained in exactly one

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1399

pair Mt × Pt. Moreover, using an approach similar to that of [32], one can
show that the number of pairs is at most O(n2),

∑
t |Pt| = O(n2),

∑
t |Mt| =

O(n2 log2 n) and the batched range searching takes time O(n2 log2 n). Note
also that

∑
t |Pt| · |Mt| is equal to the number of strips with width between

αj−1 and βj−1 that are defined by triples of points of P , and is thus O(n3ρj−1)
by assumption. If this number is sufficiently small, we find the desired width
by examining all the relevant strips, in increasing width order, and stop.

2. For each pair (Mt, Pt), construct a graph Gt exactly as in step 2 of the
preceding algorithm. Here the total number of edges of all the graphs Gt is
proportional to

∑
tO(|Mt|+ |Pt|) = O(n2 log2 n).

3. Each edge (A, p) of Gt is associated with the width of the strip spanned by
the two points defining A and the point p. Let L be the list of all these
edge values, over all graphs Gt, sorted in increasing order. The length of L
is O(n2 log2 n). (As above, only some of the edges of Gt are used to form L.)

4. Now run a binary search over L, using the oracle of [6], to obtain a new
interval Ij = (αj , βj) where w∗ is known to lie. As in section 4, we make
only a constant number of oracle calls, employing a weighing scheme similar
to that used above, with obvious and straightforward modifications. (As in
the preceding algorithm, there is no need to actually sort L for the binary
search.)

5. We now repeat the whole procedure with the new interval Ij .

Once the algorithm terminates, its correctness is easy to establish. Using an
analysis similar to that of the preceding section (which we therefore omit), one easily
shows that the algorithm does indeed terminate and that it takes only O(logn) stages
to do so. The running time of the algorithm is thus O(logn) times the cost of a single
stage, and that cost is dominated by the cost of an oracle call, which is O(n2 log3 n)
[6]. Thus we have the following theorem.

Theorem 5.1. The above algorithm solves the two-line center problem in (deter-
ministic) time O(n2 log4 n).

Remark. Note that if the oracle of [6] could be improved, say by a logarithmic
factor, the complexity of the above algorithm would improve to O(n2 log3 n). We
leave this as an open problem for further research.

6. Slope selection. In this section we consider the slope selection problem and
develop an algorithm that is very similar to those obtained in the preceding sections.
Let L = {`1, . . . , `n} be a given collection of n lines in the plane in general position,
and let 1 ≤ k ≤ (

n
2

)
be an integer. We want to find the kth leftmost vertex vk

of the arrangement A(L) of L. As in the preceding section, the algorithm proceeds
in O(logn) stages; the jth stage produces a vertical slab σj = (αj , βj) (this is a
shorthand notation for αj < x < βj), so that vk is known to lie in σj , and the total
number of vertices of A(L) within σj is at most O(n2ρj) for some constant parameter
ρ < 1. Initially, we have σ0 = (−∞,∞) (that is, the entire plane).

The jth stage proceeds as follows.

1. For a line `, let ξ(`), η(`) denote the y-coordinates of the intercepts of ` with
the left and right borders of σj−1, respectively. Note that two lines ` and `′

intersect within σj−1 if and only if either
(i) ξ(`) < ξ(`′) and η(`) > η(`′) or
(ii) ξ(`) > ξ(`′) and η(`) < η(`′).

In other words, we can map each line `i to the point `∗i = (ξ(`i), η(`i)) in a
dual plane, so that, given any query line `, the set of lines of L that intersect `

1400 MATTHEW J. KATZ AND MICHA SHARIR

η

`∗

ξ

Fig. 5. The two quadrant ranges defined by `.

within σj−1 is the (set dual to the) output of the following pair of orthogonal
range-searching queries (see Figure 5):

{`∗i | ξ(`i) < ξ(`), η(`i) > η(`)},

{`∗i | ξ(`i) > ξ(`), η(`i) < η(`)}.

To perform such range-searching queries, we use the standard two-dimensional
range tree data structure. As is well known, we can perform our 2n quadrant
range queries in this structure, so that each query takes O(log2 n) time and
returns its output as the disjoint union of O(log2 n) canonical subsets. Thus
we obtain a collection of pairs (Kt,Lt) of subsets of L (where each Lt is some
canonical set and Kt is the set of queries associated with it) that satisfy the
following properties.

(i) For each t, every line ` ∈ Kt intersects every line `′ ∈ Lt within σj−1.
(ii) For each pair of lines `, `′ of L that intersect within σj−1, there
exists a unique t such that ` ∈ Kt, `′ ∈ Lt.
(iii)

∑
t |Lt|,

∑
t |Kt| = O(n log2 n).

Properties (i) and (ii) imply that the total number of vertices of A(L) within
σj−1 is at most

∑
t |Lt| · |Kt|.

2. For each pair (Kt,Lt), construct a graph Gt in the same manner as in the pre-
ceding sections. The total number of edges of all the graphs Gt is proportional
to
∑
tO(|Kt|+ |Lt|) = O(n log2 n).

3. Each edge (`, `′) of Gt, with ` ∈ Kt, `′ ∈ Lt, is associated with the vertex of
A(L) formed by the intersection of ` and `′. Let L be the list of all these
vertices, over all graphs Gt, sorted in the order of increasing x-coordinates.
The length of L is O(n log2 n).

4. Now run a binary search over L, using the inversion-counting oracle mentioned
in the introduction, to obtain a new slab σj = (αj , βj) where the kth leftmost

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1401

vertex vk is known to lie. Note that the slab σj has the property that it
contains no vertex associated with any edge of any of the graphs Gt. (As in
the preceding sections, there is no need to sort L, and the repeated median
findings that are used instead take only linear time in |L|.)

5. We now repeat the whole procedure with the new slab σj until we obtain a
slab that contains only a single vertex, and then we terminate the algorithm
and report that vertex.

Once the algorithm terminates, its correctness is easy to establish (under the
assumption of general position). The analysis, showing that the algorithm does indeed
terminate and that it takes only O(logn) stages to do so, is similar to that given in the
preceding sections. Specifically, fix one of the pairs (Kt,Lt) obtained by the range-
searching procedure of step 1. Let Kti be one of the subsets of Kt in the partition of
step 2. Consider a modified dual plane, obtained by replacing the ξ and η coordinates
by the respective intercepts ξ′, η′ of lines along the left and right borders of the new
slab σj . We fix some parameter r, to be determined shortly, and apply (only for the
purpose of analysis) the following partitioning of the new dual plane. The plane is
partitioned into r vertical slabs, so that each slab contains |Lt|/r points dual to lines
in Lt, and then each slab is partitioned, by horizontal cuts, into r rectangles, each
containing |Lt|/r2 dual points. For each line ` ∈ Kti, consider the pair of quadrants

Q1(`) = {ξ < ξ′(`), η > η′(`)},

Q2(`) = {ξ > ξ′(`), η < η′(`)}.
For each of the resulting quadrants Q, there are at most 2r rectangles of the parti-
tioning that are crossed by the boundary of Q; each other rectangle is either fully
contained within Q or lies fully outside Q.

For each u = 1, . . . , r, let Ru denote the uth rectangle of the partitioning, let L(u)
t

denote the set of lines of Lt whose dual points fall in Ru, let Q′(u)
ti denote the set of

lines of Kti whose associated quadrants fully contain Ru, and let Q′′(u)
ti denote the set

of lines of Kti whose associated quadrants are such that their boundary crosses Ru.
It is clear that the number Dti of intersection points between lines in Lt and lines in
Kti that lie in σj satisfies

Dti ≤
∑
u

|Q′(u)
ti | · |L(u)

t |+
∑
u

|Q′′(u)
ti | · |L(u)

t |.

By the property of “small crossing number” that our partition has, it follows that∑
u |Q

′′(u)
ti | = O(|Kti|r), so∑

u

|Q′′(u)
ti | · |L(u)

t | = O

(|Kti| · |Lt|
r

)
.

Next consider the other sum
∑
u |Q

′(u)
ti | · |L(u)

t |. Since, for each line `′ ∈ Q′(u)
ti and

each line ` ∈ L(u)
t , the intersection point between ` and `′ lies in σj , and since the

corresponding expander Gti has no edge whose corresponding intersection point lies

in σj , it follows that Gti contains no edge connecting between Q′(u)
ti and L(u)

t . Hence,
by Corollary 2.4, it follows that

|Q′(u)
ti | · |L(u)

t | ≤
4(|Kti|+ |Lt|)2

d
.

1402 MATTHEW J. KATZ AND MICHA SHARIR

Since there are only r2 indices u, it follows that the corresponding sum satisfies∑
u

|Q′(u)
ti | · |L(u)

t | ≤
4r2(|Kti|+ |Lt|)2

d
.

Hence, as in the preceding sections,

Dti =
4r2(|Kti|+ |Lt|)2

d
+O

(|Kti| · |Lt|
r

)
= O

(
|Kti| · |Lt| ·

[
r2

d
+

1

r

])
.

If we now choose r = d1/3 and ρ to be appropriately proportional to 1/d
1
3 , then we

have, for each of these pairs, Dti ≤ ρ|Kti| · |Lt|, and, summing up all these inequalities,
we conclude that the total number of vertices of A(L) that fall in σj is at most ρ times
the number of these vertices within σj−1. This establishes the desired invariant, thus
completing the analysis of the algorithm, and yielding the following summary result.

Theorem 6.1. The above algorithm computes the kth leftmost vertex in an
arrangement of n lines in the plane in (deterministic) time O(n log3 n).

Remark. We have not used here the Cole-like improvement, since it does not
improve the overall running time of the algorithm; see a discussion concerning this
issue in the concluding section.

7. Other applications. In this section we briefly mention two other problems
for which our approach yields efficient algorithms that are comparable with the cor-
responding known algorithms, which are based on parametric searching.

7.1. The two-center problem. In this subsection we present an algorithm for
the planar two-center problem, defined as follows. Let P be a given set of n points in
the plane in general position. We wish to find two closed discs whose union contains
P , so that the larger radius r∗ of the two discs is as small as possible. Note that r∗

is determined either by a pair of points of P , in which case r∗ is half the distance
between these points, or by a triple of points of P , in which case r∗ is the radius of the
circumcircle of the triangle spanned by these points. We use the recent algorithm of
Hershberger [23] (see also [6, 24]), whose running time is O(n2), for the corresponding
decision problem: given a value r > 0, determine whether r∗ < r, r∗ > r, or r∗ = r.
We begin our algorithm with a preliminary stage in which we perform a binary search
for r∗ among the

(
n
2

)
half-distances determined by pairs of points in P . The complexity

of this stage is O(n2 logn), and at its end we have either found r∗ (if r∗ is determined
by a pair of points in P) or obtained an open interval (α0, β0) such that r∗ is known
to lie in this interval and none of the half-distances determined by pairs of points in
P is in (α0, β0).

The main algorithm is very similar to the algorithm of section 5 for the two-line
center problem. We therefore describe only the range-searching part of the jth stage.

For each pair of points p, q ∈ P , at distance less than 2βj−1, draw the two open
discs Crp,q, D

r
p,q of respective radii αj−1 and βj−1, whose centers lie to the right of

the segment pq and whose bounding circles pass through p and q. Let Lrp,q denote

the symmetric difference of these two discs. Let Llp,q denote the symmetric difference
of the two discs with the same radii whose centers lie to the left of pq and whose
bounding circles pass through p and q. We will refer to ranges like Lrp,q and Llp,q
as double lunes (see Figure 6). Note that, for p1, p2, p3 ∈ P , we have p3 ∈ Lrp1,p2

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1403

q

p αj−1

βj−1

Fig. 6. The double lune Lrp,q defined by p and q.

(resp., p3 ∈ Llp1,p2) if and only if the radius of the circumcircle of p1, p2, p3 lies in
(αj−1, βj−1), and the center of this circle lies to the right (resp., to the left) of p1p2.
We thus must compute the collection of all pairs of the form (Lxp1,p2 , p3), where x
stands for either r or l and where p3 lies in the double lune Lxp1,p2 , and represent it as
a collection of complete bipartite graphs as in the previous examples. We distinguish
among four types of such pairs, according to whether x is r or l and whether p3 lies
in Cxp1,p2 − Dx

p1,p2 or in Dx
p1,p2 − Cxp1,p2 . Each type is handled separately. We will

show how to compute the collection of all pairs of the form (Lrp1,p2 , p3), where p3 lies
in Crp1,p2 − Dr

p1,p2 ; the other three types are computed in a similar and symmetric
fashion.

Let Cr (resp., Dr) denote the set of discs Crp,q (resp., Dr
p,q), and let A denote

the set of discs of radius αj−1 centered at the points of P . We construct a (1/n)-
cutting for the set A, using the hierarchical decomposition technique of Chazelle [11],
appropriately adapted to the case of circles. We retain the tree T that is obtained
in the construction, where the nodes of the kth level of the tree represent the cells of
the cutting at the kth level in the hierarchy (this is a (1/rk0)-cutting of A for some
constant r0). We denote the set of centers of the discs of Cr by Cr. We perform

(
n
2

)
point-location queries in the final cutting, with the points of Cr, in batched mode;
each query is performed by searching with the query point through an appropriate
path of T , so it takes O(logn) time, for a total of O(n2 logn) time for all queries. At
each node v of T , excluding the root, we obtain a pair (Av, Crv) of sets, where Av ⊆ A
is the set of discs whose bounding circles cross the cell associated with the parent of
v and which fully contain the cell associated with v, and where Crv ⊆ Cr is the set of
query points passing through v, i.e., lying within the cell associated with v. Note that∑
v |Av|, over all nodes v of T , is O(n2) and that

∑
v |Crv |, over all nodes v at a fixed

level of T , is O(n2). For each node v we obtain the following subproblem: denote by
Drv the subset of Dr that corresponds to the subset Crv , that is, the set of discs Dr

p1,p2 ,

where the centers of the corresponding discs Crp1,p2 belong to Crv . Denote by Pv ⊆ P

1404 MATTHEW J. KATZ AND MICHA SHARIR

the set of centers of the discs of Av. We want to report, in compact form, all pairs
(Dr

p1,p2 , p3), where Dr
p1,p2 ∈ Drv and p3 ∈ Pv such that p3 does not lie in the interior

of Dr
p1,p2 . Put |Crv | = mv and |Av| = nv.
We now apply the algorithm of Theorem 3.1 to each of these subproblems. This

requires a few (simple and straightforward) modifications because here we are inter-
ested in points lying in the exterior of the given discs; we omit the easy details. We
can thus report the desired pairs, for the subproblem at a node v, in time and storage
O(n2

v lognv+mv lognv) (for this, we need to interchange the roles of discs and points).
The overall cost of the computation at all the nodes of the kth level of the tree is

O(sk(n/rk−1
0)2 log(n/rk−1

0)) +
∑

v at level k

O(mv log(n/rk−1
0))

= O(sk(n/rk−1
0)2 logn+ n2 logn),

where sk is the size of the kth level cutting. Since the construction of [11] ensures

that sk ≤ r2(k+1)
0 , assuming that r0 is sufficiently large, it follows that the cost of the

computations at the nodes of the kth level of the tree is O(r40n
2 logn) = O(n2 logn).

Thus, summing over all nodes of the tree, we get that the total cost of a single
application of the range-searching step, as well as the overall size of the bipartite
graphs that it produces, is O(n2 log2 n). This completes the description of the range-
searching stage, and the rest of the algorithm remains essentially as in the previous
examples. The total running time of the algorithm is thus O(n2 log3 n), matching the
running time of the best previous algorithm of [6]. (Note that here we do not need
to apply our Cole-like improvement because we can afford to perform O(logn) oracle
calls per stage without increasing the overall running time.)

7.2. The minimum output rate problem. In this subsection we present al-
gorithms for the minimum output rate problem: given consecutive time intervals
T1, . . . , Tn, input rates I1, . . . , In (where Ij is the input rate during the jth time in-
terval), and a buffer size B, find the minimum output rate R∗ required to assure that
the buffer does not overflow. This problem was defined and solved by Megiddo, Naor,
and Anderson [35], who give an O(n logn log logn) deterministic algorithm and an
O(n logn) randomized algorithm, both based on parametric searching. Let ai ≡ TiIi
denote the total amount of data received during the ith interval, for i = 1, . . . , n, and
define a set H of

(
n
2

)
+ n lines of negative slope in the plane:

li,j = (ai + · · ·+ aj)− (Ti + · · ·+ Tj)x, 1 ≤ i ≤ j ≤ n.

Megiddo, Naor, and Anderson prove that the desired rate R∗ is equal to the x-
coordinate of the intersection point of the upper envelope of H and the horizontal
line at height B, which we denote by l. That is, it is equal to the x-coordinate of the
rightmost intersection point of the lines of H with l (see Figure 7).

Given some value x0, we would like to compute a compact representation of the
lines intersecting l to the right of x0. Define (as in [35]) Wi = Wi(x0) =

∑i
k=1(ak −

Tkx0), i = 1, . . . , n, and W0 = 0. (The values W1, . . . ,Wn can be computed in

O(n) time by computing the auxiliary values Ui =
∑i
k=1 ak and Vi =

∑i
k=1 Tkx0,

i = 1, . . . , n.) Note that the line li,j intersects l to the right of x0 if and only if it
intersects the vertical line through x0 above l, that is, if and only if Wj −Wi−1 > B.
We compute a compact representation of the pairs (i, j), 0 ≤ i < j ≤ n, such that
Wj −Wi > B, as follows. Map the value Wi to the point (i,Wi − B), i = 0, . . . , n,

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1405

l

(R∗, B)

Fig. 7. The minimum output rate problem in geometric setting.

and let P denote the resulting set of points. Note that for any fixed index i, the set
of pairs (i, j) with Wj −Wi > B is determined by the set of points of P lying in the
(open) northeast quadrant whose apex is the point (i,Wi). Thus we preprocess the
points in P for efficient quadrant range searching. We can actually perform n batched
queries to obtain in total time O(n log2 n) the desired set of pairs as a collection of
O(n log2 n) complete bipartite graphs with vertex sets of total size O(n log2 n).

The above simple method to compute a compact representation for the set of lines
of H intersecting l to the right of some given x-value gives rise to a simple, expander-
based O(n log3 n) deterministic algorithm for the minimum output rate problem. We
omit here the details, which are very similar to those in earlier sections.

We also note that the above method gives rise to an O(n logn) randomized algo-
rithm, which we believe to be simpler than the one presented in [35]. We describe it
here, even though it is not within the scope of this paper, since it is very simple and
short (it also resembles the algorithms considered in [36]). Pick a random sample of
size O(n logn) from the set H. (A random line can be chosen by picking randomly
two indices i and j.) We regard the sample as a random sample of the intersection
points of the lines of H with the line l. It is easy to show that, with high probability,
the number of intersection points between any two consecutive sample points (alter-
natively, the number of intersection points to the left of the leftmost sample point or
to the right of the rightmost sample point) is less than cn for some constant c. Let
x0 be the rightmost point in the sample. Below we describe a simple procedure for
reporting the k intersection points to the right of x0 in time O(n logn + k). By the
above remark, the expected running time of this procedure is only O(n logn). After
applying this procedure, we select the rightmost intersection point from the linear
number of points that were output. The x-coordinate of this point is the desired R∗.

The reporting of the required intersections is equivalent to the reporting of all
pairs (i, j) for which i < j and Wj −Wi > B. We do this in stages. In the jth stage,
for j = 0, . . . , n, we report all pairs (i, j) such that i < j and Wj − Wi > B. At
the beginning of the jth stage the values W0, . . . ,Wj−1 are already stored in some

1406 MATTHEW J. KATZ AND MICHA SHARIR

balanced binary search tree (which is empty initially). We search in this tree with the
value Wj−B and report all pairs (i, j) such that Wi is smaller than Wj−B. Next we
insert the value Wj into the tree and proceed to the next stage. The cost of the jth
stage is clearly O(logn+ kj), where kj is the number of pairs reported in this stage,
implying a total reporting cost of O(n logn+ k), as claimed.

8. Conclusion. In this paper we have proposed a new approach to geomet-
ric optimization problems which is based on expander graphs combined with range-
searching techniques and have demonstrated its applicability to several specific prob-
lems, including the slope selection problem, the distance selection problem, and
the two-line center problem. Our approach can be used instead of the parametric-
searching technique or instead of randomized approaches of the sort suggested in
[19, 28, 29]. It yields deterministic and rather simple algorithms, avoids the paral-
lelization that is required in parametric searching, and also avoids some of the more
complex generic comparisons that standard parametric-searching algorithms tend to
generate.

How general is our technique? Roughly speaking, it works well when the critical
values of the problem, through which we want to run a binary search, are obtained
by interaction between pairs (or triples, or any fixed-size tuples) of the input objects.
Rather than constructing all such critical values, we construct expanders on certain
subsets of the data items and use their edges to retrieve only a small subset of critical
values, thus speeding up the algorithm considerably. The cost of the algorithm is
generally dominated by two terms: (i) O(logn) times the cost of the binary search
oracle and (ii) O(logn) times the cost of the batched range searching that is per-
formed at each stage of the algorithm. Often these two costs are similar, up to a
polylogarithmic factor, and then our solution tends to be (more or less) as efficient
as the solutions obtained by the previous methods. In fact, part (i) of the cost of
our technique is at least as fast as the cost of the other (parametric-searching or ran-
domized) approaches, and can be faster in cases where Cole’s improvement cannot
be applied in the parametric-searching solution. Inspecting the three main examples
given above, we see that (a) in the slope selection problem the range-searching part
was the bottleneck (so that we didn’t even have to apply our Cole-like improvement);
(b) in the two-line center problem the oracle cost was the bottleneck (so we didn’t
have to use a particularly fast batched range-searching technique); (c) only in the
distance selection problem do the two parts of the cost balance each other.

To see what kinds of limitations and/or challenges are imposed by our technique,
consider the problem of computing the diameter of a set P of n points in 3-space. The
oracle for this problem is rather efficient [10] and can be implemented in deterministic
O(n logn) time (see also [12], [33], and [16]). However, the range searching that seems
to be required here is much more expensive: we are given the n points of P and n
ranges, each being the exterior of a ball of some fixed radius centered at a point of
P , and we want to perform these range-searching queries in batch mode. This seems
to be much more expensive than an oracle call (the only techniques we are aware of
require time close to O(n4/3)), so the naive application of our technique seems to be
much less efficient than previous solutions. We pose it as an open problem to find
an alternative and more efficient range-searching setting for this problem which will
make our technique yield a solution with close-to-linear running time. Intuitively, the
oracle is so efficient here because it exploits the delicate combinatorial property that
the intersection of n congruent balls in 3-space has only linear complexity. So far we
seem to lose this property when applying the range searching mentioned above. The

AN EXPANDER-BASED APPROACH TO GEOMETRIC OPTIMIZATION 1407

irony is that our approach does not need the oracle at all: assuming all the critical
values are induced by expander edges, these values are distances between pairs of
points of P , so the diameter must clearly be at least the largest of these values, so no
binary search and thus no oracle calls are required.

We finally note that our approach could also be applied to other, nongeometric
optimization problems, provided that the search for the optimal value of the parameter
can be guided by an appropriate range-searching mechanism, for which the underlying
range space has finite VC dimension (see [14, 22] for details). However, we will not
elaborate on this possibility; rather, we leave it as another open problem to explore.

Acknowledgments. We wish to thank Noga Alon for several helpful discussions
that provided valuable information concerning expanders and their applications, and
Pankaj Agarwal for helpful discussions and suggestions concerning the range-searching
technique of section 3.

REFERENCES

[1] P. K. Agarwal, personal communication.
[2] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane,

Algorithmica, 9 (1993), pp. 495–514.
[3] P. K. Agarwal, A. Efrat, M. Sharir, and S. Toledo, Computing a segment center for a

planar point set, J. Algorithms, 15 (1993), pp. 314–323.
[4] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput.,

22 (1993), pp. 794–806.
[5] P. K. Agarwal and J. Matoušek, On range searching with semi-algebraic sets, Discrete

Comput. Geom., 11 (1994), pp. 393–418.
[6] P. K. Agarwal and M. Sharir, Planar geometric location problems, Algorithmica, 11 (1994),

pp. 185–195.
[7] P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geomet-

ric optimization, J. Algorithms, 17 (1994), pp. 292–318.
[8] M. Ajtai and N. Megiddo, A deterministic Poly(log logn)-time n-processor algorithm for lin-

ear programming in fixed dimension, in Proc. 24th ACM Symp. on Theory of Computing,
Victoria, British Columbia, 1992, pp. 327–338.

[9] N. Alon and J. Spencer, The Probabilistic Method , Wiley-Interscience, New York, 1992.
[10] H. Brönnimann, B. Chazelle, and J. Matoušek, Product range spaces, sensitive sampling,

and derandomization, in Proc. 34th IEEE Symp. on Foundations of Computer Science,
Palo Alto, CA, 1993, pp. 400–409.

[11] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom., 9 (1993),
pp. 145–158.

[12] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line-
pair, and parametric searching, Discrete Comput. Geom., 10 (1993), pp. 183–196.

[13] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica, 8 (1992), pp. 407–429.

[14] B. Chazelle and E. Welzl, Quasi-optimal range searching in spaces of finite VC-dimension,
Discrete Comput. Geom., 4 (1989), pp. 467–489.

[15] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5
(1990), pp. 99–160.

[16] K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,
Discrete Comput. Geom., 4 (1989), pp. 387–421.

[17] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM, 34
(1987), pp. 200–208.

[18] R. Cole, J. Salowe, W. Steiger, and E. Szemerédi, Optimal slope selection, SIAM J.
Comput., 18 (1989), pp. 792–810.

[19] M. Dillencourt, D. Mount, and N. Netanyahu, A randomized algorithm for slope selection,
Internat. J. Comput. Geom. Appl., 2 (1992), pp. 1–27.

[20] A. Efrat, M. Sharir, and A. Ziv, Computing the smallest k-enclosing circle and related
problems, Comput. Geom. Theory Appl., 4 (1994), pp. 119–136.

1408 MATTHEW J. KATZ AND MICHA SHARIR

[21] M. Goodrich, Geometric partitioning made easier, even in parallel, in Proc. 9th ACM Symp.
on Computational Geometry, San Diego, CA, 1993, pp. 73–82.

[22] D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Discrete Comput. Geom.,
2 (1987), pp. 127–151.

[23] J. Hershberger, A faster algorithm for the two-center decision problem, Inform. Process.
Lett., 47 (1993), pp. 23–29.

[24] J. Hershberger and S. Suri, Finding tailored partitions, J. Algorithms, 12 (1991), pp. 431–
463.

[25] M. J. Katz and M. Sharir, Optimal slope selection via expanders, Inform. Process. Lett., 47
(1993), pp. 115–122.

[26] A. Lubotzky, R. Phillips, and P. Sarnak, Explicit expanders and the Ramanujan conjec-
tures, in Proc. 18th ACM Symp. on Theory of Computing, Berkeley, CA, 1986, pp. 240–246;
see also Ramanujan graphs, Combinatorica, 8 (1988), pp. 261–277.

[27] G. A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their
applications to the design of expanders and superconcentrators, Problemy Peredachi Infor-
matsii, 24 (1988), pp. 51–60 (in Russian). English translation in Problems Inform. Trans-
mission, 24 (1988), pp. 39–46.

[28] J. Matoušek, Randomized optimal algorithm for slope selection, Inform. Process. Lett., 39
(1991), pp. 183–187.

[29] J. Matoušek, On enclosing k points by a circle, Inform. Process. Lett., 53 (1995), pp. 217–221.
[30] J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput. System

Sci., 50 (1995), pp. 203–208.
[31] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315–334.
[32] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom.,

10 (1993), pp. 157–182.
[33] J. Matoušek and O. Schwarzkopf, A deterministic algorithm for the three-dimensional

diameter problem, Comput. Geom. Theory Appl., 6 (1996), pp. 253–262.
[34] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.

ACM, 30 (1983), pp. 852–865.
[35] N. Megiddo, M. Naor, and D.P. Anderson, The minimum reservation rate problem in digital

audio/video systems, in Proc. 2nd Israel Symp. on Theory of Computing and Systems,
1993, pp. 43–48.

[36] L. Shafer and W. Steiger, Randomizing optimal geometric algorithms, in Proc. 5th Canadian
Conf. on Computational Geometry, Waterloo, Ontario, 1993, pp. 133–138.

[37] M. Sharir and S. Toledo, Extremal polygon containment problems, Comput. Geom. Theory
Appl., 4 (1994), pp. 99–118.

[38] L. Valiant, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348–355.

Introduction to Special Section on Quantum Computation

The rapid evolution of computers in the half century since their invention has resulted in

dramatically smaller and faster computers. However, from a computational point of view, all these
computers look alike; for example, they are built out of simple logic gates. A fundamental thesis of
computer science---the modern form of the Church--Turing thesis---asserts that this is inevitable in a
deep sense. Any computer can be simulated with at most a polynomial factor slowdown by a
probabilistic Turing machine. Quantum computation poses the first credible challenge to this thesis. It
goes back to a suggestion by Feynman [4], who pointed out that there appears to be no efficient way
of simulating a quantum mechanical system on a computer, and suggested that, perhaps, a computer
based on quantum physical principles might be able to carry out the simulation efficiently. Two formal
models for quantum computers---the quantum Turing machine [2] and quantum computational
networks [3] ---were defined by Deutsch.

The first three papers in this issue describe efficient quantum algorithms for computational tasks
that we do not know how to solve classically. In "Quantum Complexity Theory," Bernstein and
Vazirani give the first formal evidence that quantum computers violate the modern form of the
Church--Turing thesis. They show that a certain problem---the recursive Fourier sampling problem---
can be solved in polynomial time on a quantum Turing machine, but relative to an oracle, requires
superpolynomial time on a classical probabilistic Turing machine. Simon, in the paper "On the Power
of Quantum Computation" introduces a fundamental projection technique and uses it to design an
efficient quantum algorithm to determine whether a certain type of function is 2-1 or 1-1. He further
shows that, relative to an oracle, this problem requires exponential time on a classical probabilistic
Turing machine. In the paper "Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer," Shor gives remarkable polynomial time quantum algorithms for
two of the most famous problems in computer science: factoring and discrete log. Since the
computational hardness of these problems is the basis of several famous cryptosystems, Shor's paper
very dramatically underlines the power of quantum computers.

To understand the computational power of quantum computers, it is helpful to consider a
quantum mechanical system of n particles, each of which can be in one of two states, labeled |0 and
|1 . If this were a classical system, then its instantaneous state could be described by n bits. However,
in quantum physics, the system is allowed to be in a linear superposition of configurations, and indeed
the instantaneous state of the system is described by a unit vector in the 2n dimensional vector space,
whose basis vectors correspond to all the 2n classical configurations. Therefore, to describe the
instantaneous state of the system, we must specify 2n complex numbers. Nature must update 2n
complex numbers at each instant to evolve the system in time. This is an extraordinary amount of
effort, since even for n = 200, 2n is larger than estimates of the number of elementary particles in the
visible universe.

Nonetheless, there are limits to the power of quantum computers. In "Strengths and Weaknesses
of Quantum Computing," Bennett, Bernstein, Brassard, and Vazirani show that, relative to a random
oracle, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2n/2).
This bound is tight, since recent work of Grover [5] has shown how to accept any language in NP in
time O(2n/2) on a quantum Turing machine.

Quantum computers are necessarily time reversible. Indeed, Bennett's work [1] on reversible
computation inspired early work on quantum computation that preceded Feynman's paper [4]. The
reversibility requirement makes it quite complex to implement even basic computational primitives
such as looping or composition. In "Quantum Complexity Theory," Bernstein and Vazirani show how
to implement quantum programming primitives and give a construction for an efficient universal
quantum Turing machine. The structure of the universal quantum Turing machine is quite simple: it
consists of a deterministic Turing machine with a single "quantum coin flip." In "Quantum
Computability," Adleman, DeMarrais, and Huang greatly simplify this further by showing that a very
simple type of coin flip is sufficient---a rotation by an angle θ such that sinθ = 3/5.

Making quantum computers robust against noise and decoherence is an important and challenging
problem. In "Stabilization of Quantum Computations by Symmetrization," Barenco, Berthiaume,
Deutsch, Ekert, Jozsa, and Macchiavello show how to use the quantum watchdog effect to stabilize a
quantum computation against noise. Their method is based on running several copies of the quantum
computer in parallel and projecting its state into the symmetric subspace at frequent intervals. They
show that the quantum watchdog effect results in the suppression of errors that lie outside the
symmetric subspace.

Quantum computation touches upon the foundations of both computer science and quantum
physics. It is not unlikely that the issues raised by quantum computation will stimulate further research
into the foundations of quantum physics.

I wish to express my gratitude to several people who made this special section possible. Oded
Goldreich acted as editor for two of the papers in the issue and dealt with them with his characteristic
efficiency and judgment. The editorial staff at SIAM, most notably Lisa Dougherty, Beth Gallagher,
Deidre Wunderlich, and Sam Young, were extremely helpful, patient, and resourceful. Finally, I
would like to thank a number of referees whose careful and timely reviews were critical to putting
together this issue.

Umesh Vazirani

References

[1] C.H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525-
-532.

[2] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer, Proc. Roy. Soc. London Ser. A., 400 (1985), pp. 97--117.

[3] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425 (1989),
pp. 73--90.

[4] R. Feyman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982), pp. 467-
-488.

[5] L. Grover, Searching for a Needle in a Haystack---A Fast Mechanical Algorithm, manuscript,
1995.

QUANTUM COMPLEXITY THEORY∗

ETHAN BERNSTEIN† AND UMESH VAZIRANI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1411–1473, October 1997 007

Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint.
Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model
of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This
construction is substantially more complicated than the corresponding construction for classical
Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition
are not straightforward in the context of quantum Turing machines. We establish how these familiar
primitives can be implemented and introduce some new, purely quantum mechanical primitives,
such as changing the computational basis and carrying out an arbitrary unitary transformation of
polynomially bounded dimension.

We also consider the precision to which the transition amplitudes of a quantum Turing machine
need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation.
This justifies the claim that the quantum Turing machine model should be regarded as a discrete
model of computation and not an analog one.

We give the first formal evidence that quantum Turing machines violate the modern (complexity
theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative
to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires
superpolynomial time on a bounded-error probabilistic Turing machine, and thus not in the class
BPP. The class BQP of languages that are efficiently decidable (with small error-probability) on a
quantum Turing machine satisfies BPP ⊆ BQP ⊆ P]P. Therefore, there is no possibility of giving
a mathematical proof that quantum Turing machines are more powerful than classical probabilistic
Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity
theory.

Key words. quantum computation, quantum Turing machines, reversibility, quantum polyno-
mial time, Fourier sampling, universal quantum Turing machine

AMS subject classifications. 68Q05, 68Q15, 03D10, 03D15

PII. S0097539796300921

1. Introduction. Just as the theory of computability has its foundations in
the Church–Turing thesis, computational complexity theory rests upon a modern
strengthening of this thesis, which asserts that any “reasonable” model of compu-
tation can be efficiently simulated on a probabilistic Turing machine (an efficient
simulation is one whose running time is bounded by some polynomial in the running
time of the simulated machine). Here, we take reasonable to mean in principle phys-
ically realizable. Some models of computation, though interesting for other reasons,
do not meet this criterion. For example, it is clear that computers that operate on
arbitrary length words in unit time or that exactly compute with infinite precision
real numbers are not realizable. It has been argued that the TM (actually, the poly-
nomial time equivalent cellular automaton model) is the inevitable choice once we
assume that we can implement only finite precision computational primitives. Given
the widespread belief that NP 6⊆ BPP, this would seem to put a wide range of im-

∗Received by the editors March 21, 1996; accepted for publication (in revised form) December
2, 1996. A preliminary version of this paper appeared in Proc. 25th Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, NY, 1993, pp. 11–20.

http://www.siam.org/journals/sicomp/26-5/30092.html
†Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 (ethanb@microsoft.com). The

work of this author was supported by NSF grant CCR-9310214.
‡Computer Science Division, University of California, Berkeley, CA 94720 (vazirani@cs.

berkeley.edu). The work of this author was supported by NSF grant CCR-9310214.

1411

1412 ETHAN BERNSTEIN AND UMESH VAZIRANI

portant computational problems (the NP-hard problems) well beyond the capability
of computers.

However, the TM fails to capture all physically realizable computing devices for
a fundamental reason: the TM is based on a classical physics model of the universe,
whereas current physical theory asserts that the universe is quantum physical. Can we
get inherently new kinds of (discrete) computing devices based on quantum physics?
Early work on the computational possibilities of quantum physics [6] asked the oppo-
site question: does quantum mechanics’ insistence on unitary evolution restrict the
class of efficiently computable problems? They concluded that as far as determin-
istic computation is concerned, the only additional constraint imposed by quantum
mechanics is that the computation must be reversible, and therefore by Bennett’s [7]
work it follows that quantum computers are at least as powerful as classical computers.
The issue of the extra computational power of quantum mechanics over probabilistic
computers was first raised by Feynman [25] in 1982. In that paper, Feynman pointed
out a very curious problem: the natural simulation of a quantum physical system on
a probabilistic TM requires an exponential slowdown. Moreover, it is unclear how to
carry out the simulation more efficiently. In view of Feynman’s observation, we must
re-examine the foundations of computational complexity theory, and the complexity-
theoretic form of the Church–Turing thesis, and study the computational power of
computing devices based on quantum physics.

A precise model of a quantum physical computer—hereafter referred to as the
QTM—was formulated by Deutsch [20]. There are two ways of thinking about quan-
tum computers. One way that may appeal to computer scientists is to think of a
quantum TM as a quantum physical analogue of a probabilistic TM—it has an in-
finite tape and a transition function, and the actions of the machine are local and
completely specified by this transition function. Unlike probabilistic TMs, QTMs
allow branching with complex “probability amplitudes” but impose the further re-
quirement that the machine’s evolution be time reversible. This view is elaborated in
section 3.2. Another way is to view a quantum computer as effecting a transforma-
tion in a space of complex superpositions of configurations. Quantum physics requires
that this transformation be unitary. A quantum algorithm may then be regarded as
the decomposition of a unitary transformation into a product of unitary transforma-
tions, each of which makes only simple local changes. This view is elaborated on
in section 3.3. Both formulations play an important role in the study of quantum
computation.

One important concern is whether QTMs are really analog devices, since they
involve complex transition amplitudes. It is instructive to examine the analogous
question for probabilistic TMs. There, one might worry that probabilistic machines
are not discrete and therefore not “reasonable,” since they allow transition probabil-
ities to be real numbers. However, there is extensive work showing that probabilistic
computation can be carried out in a such a way that it is so insensitive to the transition
probabilities that they can be allowed to vary arbitrarily in a large range [34, 44, 47].
In this paper, we show in a similar sense that QTMs are discrete devices: the transi-
tion amplitudes need only be accurate to O(log T) bits of precision to support T steps
of computation. As Lipton [30] pointed out, it is crucial that the number of bits is
O(log T) and not O(T) (as it was in an early version of this paper), since k bits of
precision require pinning down the transition amplitude to one part in 2k. Since the
transition amplitude is some physical quantity such as the angle of a polarizer or the

QUANTUM COMPLEXITY THEORY 1413

length of a π pulse, we must not assume that we can specify it to better than one
part in some polynomial in T , and therefore the precision must be O(log T).

Another basic question one may ask is whether it is possible to define the notion of
a general purpose quantum computer. In the classical case, this question is answered
affirmatively by showing that there is an efficient universal TM. In this paper, we prove
that there is an efficient QTM. When given as input the specification of an arbitrary
QTM M , an input x to M , a time bound T , and an accuracy ε, the universal machine
produces a superposition whose Euclidean distance from the time T superposition of
M on x is at most ε. Moreover, the simulation time is bounded by a polynomial in
T , |x|, and 1

ε . Deutsch [20] gave a different construction of a universal QTM. The
simulation overhead in Deutsch’s construction is exponential in T (the issue Deutsch
was interested in was computability, not computational complexity). The structure
of the efficient universal QTM constructed in this paper is very simple. It is just
a deterministic TM with a single type of quantum operation—a quantum coin flip
(an operation that performs a rotation on a single bit). The existence of this simple
universal QTM has a bearing on the physical realizability of QTMs in general, since
it establishes that it is sufficient to physically realize a simple quantum operation
on a single bit (in addition to maintaining coherence and carrying out deterministic
operations, of course). Adleman, DeMarrais, and Huang [1] and Solovay and Yao [40]
have further clarified this point by showing that quantum coin flips with amplitudes
3
5 and 4

5 are sufficient for universal quantum computation.

Quantum computation is necessarily time reversible, since quantum physics re-
quires unitary evolution. This makes it quite complicated to correctly implement even
simple primitives such as looping, branching, and composition. These are described
in section 4.2. In addition, we also require programming primitives, such as changing
the computational basis, which are purely quantum mechanical. These are described
in section 5.1. Another important primitive is the ability to carry out any specified
unitary transformation of polynomial dimension to a specified degree of accuracy. In
section 6 we show how to build a QTM that implements this primitive. Finally, all
these pieces are put together in section 7 to construct the universal QTM.

We can still ask whether the QTM is the most general model for a computing
device based on quantum physics. One approach to arguing affirmatively is to consider
various other reasonable models and to show that the QTM can efficiently simulate
each of them. An earlier version of this work [11] left open the question of whether
standard variants of a QTM, such as machines with multiple tapes or with modified
tape access, are more powerful than the basic model. Yao [46] showed that these
models are polynomially equivalent to the basic model, as are quantum circuits (which
were introduced in [21]). The efficiency of Yao’s simulation has been improved in [10]
to show that the simulation overhead is a polynomial with degree independent of the
number of tapes. Arguably, the full computational power of quantum physics for
discrete systems is captured by the quantum analogue of a cellular automaton. It is
still an open question whether a quantum cellular automaton might be more powerful
than a QTM (there is also an issue about the correct definition of a quantum cellular
automaton). The difficulty has to do with decomposing a unitary transformation that
represents many overlapping sites of activity into a product of simple, local unitary
transformations. This problem has been solved in the special case of linearly bounded
quantum cellular automata [24, 45].

Finally, several researchers have explored the computational power of QTMs.
Early work by Deutsch and Jozsa [22] showed how to exploit some inherently quan-

1414 ETHAN BERNSTEIN AND UMESH VAZIRANI

tum mechanical features of QTMs. Their results, in conjunction with subsequent
results by Berthiaume and Brassard [12, 13], established the existence of oracles un-
der which there are computational problems that QTMs can solve in polynomial time
with certainty, whereas if we require a classical probabilistic TM to produce the cor-
rect answer with certainty, then it must take exponential time on some inputs. On
the other hand, these computational problems are in BPP—the class of problems
that can be solved in polynomial time by probabilistic TMs that are allowed to give
the wrong answer with small probability. Since BPP is widely considered the class
of efficiently computable problems, these results left open the question of whether
quantum computers are more powerful than classical computers.

In this paper, we give the first formal evidence that quantum Turing machines
violate the modern form of the Church–Turing thesis by showing that, relative to an
oracle, there is a problem that can be solved in polynomial time on a quantum Turing
machine, but cannot be solved in no(log n) time on a probabilistic Turing machine
with any fixed error probability < 1/2. A detailed discussion about the implications
of these oracle results is in the introduction of section 8.4. Simon [39] subsequently
strengthened our result in the time parameter by proving the existence of an oracle
relative to which a certain problem can be solved in polynomial time on a quantum
Turing machine, but cannot be solved in less than 2n/2 steps on a probabilistic Tur-
ing machine (Simon’s problem is in NP∩ co–NP and therefore does not address the
nondeterminism issue). More importantly, Simon’s paper also introduced an impor-
tant new technique which was one of the ingredients in a remarkable result proved
subsequently by Shor [37]. Shor gave polynomial time quantum algorithms for the
factoring and discrete log problems. These two problems have been well studied, and
their presumed intractability forms the basis of much of modern cryptography. These
results have injected a greater sense of urgency into the actual implementation of a
quantum computer. The class BQP of languages that are efficiently decidable (with
small error-probability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P]P.
This rules out the possibility of giving a mathematical proof that quantum Turing
machines are more powerful than classical probabilistic Turing machines (in the un-
relativized setting) unless there is a major breakthrough in complexity theory.

It is natural to ask whether QTMs can solve every problem in NP in polynomial
time. Bennett, Bernstein, Brassard, and Vazirani [9] give evidence showing the limi-
tations of QTMs. They show that relative to an oracle chosen uniformly at random,
with probability 1, the class NP cannot be solved on a QTM in time o(2n/2). They
also show that relative to a permutation oracle chosen uniformly at random, with
probability 1, the class NP ∩ co–NP cannot be solved on a QTM in time o(2n/3).
The former bound is tight since recent work of Grover [28] shows how to accept the
class NP relative to any oracle on a quantum computer in time O(2n/2).

Several designs have been proposed for realizing quantum computers [17, 23, 31].
A number of authors have argued that there are fundamental problems in building
quantum computers, most notably the effects of the decoherence of quantum super-
positions or the entanglement of the system with the environment [14, 18, 29, 35,
42]. Very recently, there has been a sequence of important results showing how to
implement quantum error-correcting codes and also how to use these codes to make
quantum algorithms (quite) robust against the effects of decoherence [16, 38].

Quantum computation touches upon the foundations of both computer science
and quantum physics. The nature of quantum physics was clarified by the Einstein–
Podolsky–Rosen paradox and Bell’s inequalities (discussed in [25]), which demonstrate

QUANTUM COMPLEXITY THEORY 1415

the difference between its statistical properties and those of any “classical” model. The
computational differences between quantum and classical physics are if anything more
striking and can be expected to offer new insights into the nature of quantum physics.
For example, one might naively argue that it is impossible to experimentally verify
the exponentially large size of the Hilbert space associated with a discrete quantum
system, since any observation leads to a collapse of its superposition. However, an
experiment demonstrating the exponential speedup offered by quantum computation
over classical computation would establish that something like the exponentially large
Hilbert space must exist. Finally, it is important, as Feynman pointed out [25], to clar-
ify the computational overhead required to simulate a quantum mechanical system.
The simple form of the universal QTM constructed here—the fact that it has only a
single nontrivial quantum operation defined on a single bit—suggests that even very
simple quantum mechanical systems are capable of universal quantum computation
and are therefore hard to simulate on classical computers.

This paper is organized as follows. Section 2 introduces some of the mathematical
machinery and notation we will use. In section 3 we introduce the QTM as a natural
extension of classical probabilistic TMs. We also show that QTMs need not be spec-
ified with an unreasonable amount of precision. In sections 4 and 5 we demonstrate
the basic constructions which will allow us to build up large, complicated QTMs in
subsequent sections. Many actions which are quite easy for classical machines, such
as completing a partially specified machine, running one machine after another, or
repeating the operation of a machine a given number of times, will require nontrivial
constructions for QTMs. In section 6, we show how to build a single QTM which can
carry out any unitary transformation which is provided as input. Then, in section 7,
we use this simulation of unitary transformations to build a universal quantum com-
puter. Finally, in section 8 we give our results, both positive and negative, on the
power of QTMs.

2. Preliminaries. Let C denote the field of complex numbers. For α ∈ C, we
denote by α∗ its complex conjugate.

Let V be a vector space over C. An inner product over V is a complex function
(·, ·) defined on V × V which satisfies the following.

1. ∀x ∈ V, (x, x) ≥ 0. Moreover (x, x) = 0 iff x = 0.
2. ∀x, y, z ∈ V, (αx+ βy, z) = α(x, z) + β(y, z).
3. ∀x, y ∈ V, (x, y) = (y, x)∗.

The inner product yields a norm given by ‖x‖ = (x, x)1/2. In addition to the
triangle inequality ‖x+ y‖ ≤ ‖x‖+‖y‖, the norm also satisfies the Schwarz inequality
‖(x, y)‖ ≤ ‖x‖‖y‖.

An inner-product space is a vector space V together with an inner product (·, ·).
An inner-product space H over C is a Hilbert space if it is complete under the

induced norm, where H is complete if every Cauchy sequence converges. For example,
if {xn} is a sequence with xn ∈ H such that limn,m→∞ ‖xn − xm‖ = 0, then there is
an x in H with limn→∞ ‖xn − x‖ = 0.

Given any inner-product space V , each vector x ∈ V defines a linear functional
x∗ : V → C, where x∗(y) = (x, y). The set of such linear functionals is also an
inner-product space and will be referred to as the vector dual of V and denoted V ∗.
In the case that V is a Hilbert space, V ∗ is called the dual of V and is the set of all
continuous linear functionals on V , and the dual space V ∗ is also a Hilbert space.

In Dirac’s notation, a vector from an inner-product space V is identified using
the “ket” notation | 〉, with some symbol(s) placed inside to distinguish that vector

1416 ETHAN BERNSTEIN AND UMESH VAZIRANI

from all others. We denote elements of the dual space using the “bra” notation 〈 |.
Thus the dual of |φ〉 is 〈φ|, and the inner product of vectors |ψ〉 and |φ〉, which is the
same as the result of applying functional 〈ψ| to the vector |φ〉, is denoted by 〈ψ|φ〉.

Let U be a linear operator on V . In Dirac’s notation, we denote the result of
applying U to |φ〉 as U |φ〉. U also acts as a linear operator on the dual space V ∗

mapping each linear functional 〈φ| of the dual space to the linear functional which
applies U followed by 〈φ|. We denote the result of applying U to 〈φ| by 〈φ|U .

For any inner-product space V , we can consider the usual vector space basis
or Hamel basis {|θi〉}i∈I . Every vector |φ〉 ∈ V can be expressed as a finite linear
combination of basis vectors. In the case that ‖θi‖ = 1 and (〈θi|, |θj〉) = 0 for i 6= j,
we refer to the basis as an orthonormal basis. With respect to an orthonormal basis,
we can write each vector |φ〉 ∈ V as |φ〉 =

∑
i∈I αi|θi〉, where αi = 〈θi|φ〉. Similarly

each dual vector 〈φ| ∈ V ∗ can be written as 〈φ| =
∑

i∈I βi〈θi|, where αi = 〈φ|θi〉.
Thus each element |φ〉 ∈ V can be thought of as a column vector of the αi’s, and
each element 〈φ| ∈ V can be thought of as a row vector of the βi’s. Similarly each
linear operator U may be represented by the set of matrix elements {〈θi|U |θj〉}i,j∈I ,
arranged in a “square” matrix with rows and columns both indexed by I. Then, the
“column” of U with index i is the vector U |θi〉, and the “row” of U with index i is
the dual vector 〈θi|U .

For a Hilbert space H, {|θi〉}i∈I is a Hilbert space basis for H if it is a maximal
set of orthonormal vectors in H. Every vector |φ〉 ∈ H can be expressed as the limit
of a sequence of vectors, each of which can be expressed as a finite linear combination
of basis vectors.

Given a linear operator U in an inner product space, if there is a linear operator
U∗ which satisfies 〈U∗φ|ψ〉 = 〈φ|Uψ〉 for all φ, ψ, then U∗ is called the adjoint or
Hermitian conjugate of U . If a linear operator in an inner product space has an
adjoint, it is unique. The adjoint of a linear operator in a Hilbert space or in a finite-
dimensional inner product space always exists. It is easy to see that if the adjoints of
U1 and U2 exist, then (U1 +U2)

∗ = U∗1 +U∗2 and (U1U2)
∗ = U∗2U

∗
1 . An operator U is

called Hermitian or self-adjoint if it is its own adjoint (U∗ = U). The linear operator
U is called unitary if its adjoint exists and satisfies U∗U = UU∗ = I.

If we represent linear operators as “square” matrices indexed over an orthonormal
basis, then U∗ is represented by the conjugate transpose of U . So, in Dirac’s notation
we have the convenient identity 〈φ|U∗|ψ〉 = (〈ψ|U |φ〉)∗.

Recall that if the inner-product space V is the tensor product of two inner-product
spaces V1, V2, then for each pair of vectors |φ1〉 ∈ V1, |φ2〉 ∈ V2 there is an associated
tensor product |φ1〉⊗|φ2〉 in V . In Dirac’s notation, we denote |φ1〉⊗|φ2〉 as |φ1〉|φ2〉.

The norm of U is defined as ‖U‖ = sup‖|x〉‖=1 ‖U |x〉‖. A linear operator is called
bounded if ‖U‖ is finite. We will freely use the following standard facts about bounded
linear operators:

if U∗ exists then ‖U∗‖ = ‖U‖,(2.1)

‖U1U2‖ ≤ ‖U1‖‖U2‖,(2.2)

‖U1‖ − ‖U2‖ ≤ ‖U1 + U2‖ ≤ ‖U1‖+ ‖U2‖.(2.3)

Notice that a unitary operator U must satisfy ‖U‖ = 1. We will often use the
following fact which tells us that if we approximate a series of unitary transformations
with other unitary transformations, the error increases only additively.

QUANTUM COMPLEXITY THEORY 1417

Fact 2.1. If U1, U
′
1, U2, U

′
2 are unitary transformations on an inner-product

space, then

‖U ′1U ′2 − U1U2‖ ≤ ‖U ′1 − U1‖+ ‖U ′2 − U2‖.

This fact follows from statements (2.3) and (2.2) above, since

‖U ′1U ′2 − U1U2‖ ≤ ‖U ′1U ′2 − U1U
′
2‖ + ‖U1U

′
2 − U1U2‖

≤ ‖U ′1 − U1‖‖U ′2‖ + ‖U1‖‖U ′2 − U2‖.

2.1. Miscellaneous notation. If d is a direction ∈ {L,R}, then d̄ is the oppo-
site of d.

Given two probability distributions P1 and P2 over the same domain I, the total
variation distance between P1 and P2 is equal to 1

2

∑
i∈I |P1(i)− P2(i)|.

We will refer to the cardinality of a set S as card(S) and the length of a string x
as |x|.

3. QTMs.

3.1. A physics-like view of randomized computation. Before we formally
define a QTM, we introduce the necessary terminology in the familiar setting of prob-
abilistic computation. As a bonus, we will be able to precisely locate the point of
departure in the definition of a QTM.

Quantum mechanics makes a distinction between a system’s evolution and its
measurement. In the absence of measurement, the time evolution of a probabilistic
TM can be described by a sequence of probability distributions. The distribution
at each step gives the likelihood of each possible configuration of the machine. We
can also think of the probabilistic TM as specifying an infinite-dimensional stochastic
matrix1 M whose rows and columns are indexed by configurations. Each column
of this matrix gives the distribution resulting from the corresponding configuration
after a single step of the machine. If we represent the probability distribution at
one time step by a vector |v〉, then the distribution at the next step is given by
the product M |v〉. In quantum physics terminology, we call the distribution at each
step a “linear superposition” of configurations, and we call the coefficient of each
configuration (its probability) its “amplitude.” The stochastic matrix is referred to
as the “time evolution operator.”

Three comments are in order. First, not every stochastic matrix has an associated
probabilistic TM. Stochastic matrices obtained from probabilistic TM are finitely
specified and map each configuration by making only local changes to it. Second, the
support of the superposition can be exponential in the running time of the machine.
Third, we need to constrain the entries allowed in the transition function of our
probabilistic TM. Otherwise, it is possible to smuggle hard-to-compute quantities into
the transition amplitudes, for instance by letting the ith bit indicate whether the ith
deterministic TM halts on a blank tape. A common restriction is to allow amplitudes
only from the set {0, 1

2 , 1}. More generally, we might allow any real number in the
interval [0, 1] which can be computed by some deterministic algorithm to within any
desired 2−n in time polynomial in n. It is easily shown that the first possibility is
computationally no more restrictive than the second.

1Recall that a matrix is stochastic if it has nonnegative real entries that sum to 1 in each column.

1418 ETHAN BERNSTEIN AND UMESH VAZIRANI

Returning to the evolution of the probabilistic TM, when we observe the machine
after some number of steps, we do not see the linear superposition (probability distri-
bution) but just a sample from it. If we “observe” the entire machine, then we see a
configuration sampled at random according to the superposition. The same holds if we
observe just a part of the machine. In this case, the superposition “collapses” to one
that corresponds to the probability distribution conditioned on the value observed.
By the linearity of the law of alternatives,2 the mere act of making observations at
times earlier than t does not change the probability for each outcome in an obser-
vation at time t. So, even though the unobserved superposition may have support
that grows exponentially with running time, we need only keep track of a constant
amount of information when simulating a probabilistic TM which is observed at each
step. The computational possibilities of quantum physics arise out of the fact that
observing a quantum system changes its later behavior.

3.2. Defining a QTM. Our model of randomized computation is already sur-
prisingly close to Deutsch’s model of a QTM. The major change that is required is
that in quantum physics, the amplitudes in a system’s linear superposition and the
matrix elements in a system’s time evolution operator are allowed to be complex num-
bers rather than just positive reals. When an observation is made, the probability
associated with each configuration is not the configuration’s amplitude in the super-
position, but rather the squared magnitude of its amplitude. So instead of always
having a linear superposition whose entries sum to 1, we will now always have a linear
superposition whose Euclidean length is 1. This means that QTMs must be defined
so that their time evolution preserves the Euclidean length of superpositions.

Making these changes to our model, we arrive at the following definitions.

For completeness, let us recall the definition of a deterministic TM. There are
many standard variations to the definition of a deterministic TM, none of which
affect their computational power. In this paper we will make our choices consistent
with those in Deutsch’s paper [20]: we consider TMs with a two-way infinite tape and
a single tape head which must move left or right one square on each step. We also
give standard definitions for interpreting the input, output, and running time of a
deterministic TM. Note that although we usually restrict our discussion to TMs with
tape head movements {L,R}, we will sometimes consider generalized TMs with tape
head movements {L,N,R} (where N means no head movement).

Definition 3.1. A deterministic TM is defined by a triplet (Σ, Q, δ), where Σ is
a finite alphabet with an identified blank symbol #, Q is a finite set of states with an
identified initial state q0 and final state qf 6= q0, and δ, the deterministic transition
function, is a function

δ : Q × Σ → Σ × Q × {L,R}.

The TM has a two-way infinite tape of cells indexed by Z and a single read/write tape
head that moves along the tape.

A configuration or instantaneous description of the TM is a complete description
of the contents of the tape, the location of the tape head, and the state q ∈ Q of the
finite control. At any time only a finite number of tape cells may contain nonblank
symbols.

2The law of alternatives says exactly that the probability of an event A doesn’t change if we first
check to see whether event B has happened, P (A) = P (A|B)P (B) + P (A|B)P (B).

QUANTUM COMPLEXITY THEORY 1419

For any configuration c of TM M , the successor configuration c′ is defined by
applying the transition function to the current state q and currently scanned symbol
σ in the obvious way. We write c→M c′ to denote that c′ follows from c in one step.

By convention, we require that the initial configuration of M to satisfies the fol-
lowing conditions: the tape head is in cell 0, called the start cell, and the machine is in
state q0. An initial configuration has input x ∈ (Σ−#)∗ if x is written on the tape in
positions 0, 1, 2, . . . , and all other tape cells are blank. The TM halts on input x if it
eventually enters the final state qf . The number of steps a TM takes to halt on input
x is its running time on input x. If a TM halts then its output is the string in Σ∗

consisting of those tape contents from the leftmost nonblank symbol to the rightmost
nonblank symbol, or the empty string if the entire tape is blank. A TM which halts on
all inputs therefore computes a function from (Σ−#)∗ to Σ∗.

We now give a slightly modified version of the definition of a QTM provided
by Deutsch [20]. As in the case of probabilistic TM, we must limit the transition
amplitudes to efficiently computable numbers. Adleman, DeMarrais, and Huang [1]
and Solovay and Yao [40] have separately shown that further restricting QTMs to
rational amplitudes does not reduce their computational power. In fact, they have
shown that the set of amplitudes {0,± 3

5 ,± 4
5 , 1} are sufficient to construct a universal

QTM. We give a definition of the computation of a QTM with a particular string as
input, but we defer discussing what it means for a QTM to halt or give output until
section 3.5. Again, we will usually restrict our discussion to QTMs with tape head
movements {L,R} but will sometimes consider “generalized” QTMs with tape head
movements {L,N,R}. As we pointed out in the introduction, unlike in the case of
deterministic TMs, these choices do make a greater difference in the case of QTMs.
This point is also discussed later in the paper.

Definition 3.2. Call C̃ the set consisting of α ∈ C such that there is a deter-
ministic algorithm that computes the real and imaginary parts of α to within 2−n in
time polynomial in n.

A QTM M is defined by a triplet (Σ, Q, δ), where Σ is a finite alphabet with an
identified blank symbol #, Q is a finite set of states with an identified initial state q0
and final state qf 6= q0, and δ, the quantum transition function, is a function

δ : Q × Σ → C̃Σ × Q × {L,R}.

The QTM has a two-way infinite tape of cells indexed by Z and a single read/write
tape head that moves along the tape. We define configurations, initial configurations,
and final configurations exactly as for deterministic TMs.

Let S be the inner-product space of finite complex linear combinations of config-
urations of M with the Euclidean norm. We call each element φ ∈ S a superposition
of M . The QTM M defines a linear operator UM : S → S, called the time evolution
operator of M , as follows: if M starts in configuration c with current state p and
scanned symbol σ, then after one step M will be in superposition of configurations
ψ =

∑
i αici, where each nonzero αi corresponds to a transition δ(p, σ, τ, q, d), and ci

is the new configuration that results from applying this transition to c. Extending this
map to the entire space S through linearity gives the linear time evolution operator
UM .

Note that we defined S by giving an orthonormal basis for it: namely, the con-
figurations of M . In terms of this standard basis, each superposition ψ ∈ S may
be represented as a vector of complex numbers indexed by configurations. The time
evolution operator UM may be represented by the (countable dimensional) “square”

1420 ETHAN BERNSTEIN AND UMESH VAZIRANI

matrix with columns and rows indexed by configurations where the matrix element
from column c and row c′ gives the amplitude with which configuration c leads to
configuration c′ in a single step of M .

For convenience, we will overload notation and use the expression δ(p, σ, τ, q, d)
to denote the amplitude in δ(p, σ) of |τ〉|q〉|d〉.

The next definition provides an extremely important condition that QTMs must
satisfy to be consistent with quantum physics. We have introduced this condition in
the form stated below for expository purposes. As we shall see later (in section 3.3),
there are other equivalent formulations of this condition that are more familiar to
quantum physics.

Definition 3.3. We will say that M is well formed if its time evolution operator
UM preserves Euclidean length.

Wellformedness is a necessary condition for a QTM to be consistent with quantum
physics. As we shall see in the next subsection, wellformedness is equivalent to unitary
time evolution, which is a fundamental requirement of quantum physics.

Next, we define the rules for observing the QTM M . For those familiar with
quantum mechanics, we should state that the definition below restricts the measure-
ments to be in the computational basis of S. This is because the actual basis in which
the measurement is performed must be efficiently computable, and therefore we may,
without loss of generality, perform the rotation to that basis during the computation
itself.

Definition 3.4. When QTM M in superposition ψ =
∑

i αici is observed or

measured, configuration ci is seen with probability |α|2. Moreover, the superposition
of M is updated to ψ′ = ci.

We may also perform a partial measurement, say only on the first cell of the tape.
In this case, suppose that the first cell may contain the values 0 or 1, and suppose the
superposition was ψ =

∑
i α0ic0i +

∑
i α1ic1i, where the c0i are those configurations

that have a 0 in the first cell, and c1i are those configurations that have a 1 in the first
cell. Measuring the first cell results in Pr[0] =

∑
i |α0i|2. Moreover, if a 0 is observed,

the new superposition is given by 1√
Pr[0]

∑
i α0ic0i, i.e., the part of the superposition

consistent with the answer, with amplitudes scaled to give a unit vector.

Note that the wellformedness condition on a QTM simply says that the time
evolution operator of a QTM must satisfy the condition that in each successive su-
perposition, the sum of the probabilities of all possible configurations must be 1.

Notice that a QTM differs from a classical TM in that the “user” has decisions
beyond just choosing an input. A priori it is not clear whether multiple observations
might increase the power of QTMs This point is discussed in more detail in [10], and
there it is shown that one may assume without loss of generality that the QTM is only
observed once. Therefore in this paper we shall make simplifying assumptions about
the measurement of the final result of the QTM. The fact that these assumptions do
not result in any loss of generality follows from the results in [10].

In general, the “output” of a QTM is a sample from a probability distribution.
We can regard two QTMs as functionally equivalent, for practical purposes, if their
output distributions are sufficiently close to each other. A formal definition of what
it means for one QTM to simulate another is also given in [10]. As in the case of
classical TMs, the formal definition is quite unwieldy. In the actual constructions, it
will be easy to see in what sense they are simulations. Therefore we will not replicate
the formal definitions from [10] here. We give a more informal definition below.

QUANTUM COMPLEXITY THEORY 1421

Definition 3.5. We say that QTM M ′ simulates M with slowdown f with
accuracy ε if the following holds: let D be a distribution such that observing M on
input x after T steps produces a sample from D. Let D′ be a distribution such that
observing M ′ on input x after f(T) steps produces a sample from D′. Then we say
that M ′ simulates M with accuracy ε if |D − D′| ≤ ε.

We will sometimes find it convenient to measure the accuracy of a simulation by
calculating the Euclidean distance between the target superposition and the super-
position achieved by the simulation. The following shows that the variation distance
between the resulting distributions is at most four times this Euclidean distance.

Lemma 3.6. Let φ, ψ ∈ S such that ‖φ‖ = ‖ψ‖ = 1, and ‖φ− ψ‖ ≤ ε. Then the
total variation distance between the probability distributions resulting from measure-
ments of φ and ψ is at most 4ε.

Proof. Let φ =
∑

i αi|i〉 and ψ =
∑

i βi|i〉. Observing φ gives each |i〉 with

probability |αi|2, while observing ψ gives each |i〉 with probability |βi|2. Let π =

φ− ψ =
∑

i(αi − βi)|i〉. Then the latter probability |βi|2 can be expressed as

βiβ
∗
i = (αi + γi)(αi + γi)

∗ = |αi|2 + |γi|2 + αiγ
∗
i + γiα

∗
i .

Therefore, the total variation distance between these two distributions is at most∑
i

‖γi‖2 + |αiγ∗i |+ |γiα∗i | ≤
∑
i

|γi|2 + 〈γ||α〉+ 〈α||γ〉 ≤ ε2 + 2‖α‖‖γ‖ ≤ ε2 + 2ε.

Finally, note that since we have unit superpositions, we must have ε ≤ 2.

3.3. Quantum computing as a unitary transformation. In the preceding
sections, we introduced QTMs as extensions of the notion of probabilistic TMs. We
stated there that a QTM is well formed if it preserves the norm of the superpositions.
In this section, we explore a different, and extremely useful, alternative view of QTMs:
in terms of properties of the time evolution operator. We prove that a QTM is well
formed iff its time evolution is unitary. Indeed unitary time evolution is a fundamental
constraint imposed by quantum mechanics, and we chose to state the wellformedness
condition in the last section mainly for expository purposes.

Understanding unitary evolution from an intuitive point of view is quite impor-
tant to comprehending the computational possibilities of quantum mechanics. Let us
explore this in the setting of a quantum mechanical system that consists of n parts,
each of which can be in one of two states labeled |0〉 and |1〉 (these could be n parti-
cles, each with a spin state). If this were a classical system, then at any given instant
it would be in a single configuration which could be described by n bits. However, in
quantum physics, the system is allowed to be in a linear superposition of configura-
tions, and indeed the instantaneous state of the system is described by a unit vector
in the 2n-dimensional vector space, whose basis vectors correspond to all the 2n con-
figurations. Therefore, to describe the instantaneous state of the system, we must
specify 2n complex numbers. The implications of this are quite extraordinary: even
for a small system consisting of 200 particles, nature must keep track of 2200 complex
numbers just to “remember” its instantaneous state. Moreover, it must update these
numbers at each instant to evolve the system in time. This is an extravagant amount
of effort, since 2200 is larger than the standard estimates on the number of particles in
the visible universe. So if nature puts in such extravagant amounts of effort to evolve
even a tiny system at the level of quantum mechanics, it would make sense that we
should design our computers to take advantage of this.

1422 ETHAN BERNSTEIN AND UMESH VAZIRANI

However, unitary evolution and the rules for measurement in quantum mechanics
place significant constraints on how these features can be exploited for computational
purposes. One of the basic primitives that allows these features to be exploited
while respecting the unitarity constraints is the discrete fourier transform—this is
described in more detail in section 8.4. Here we consider some very simple cases:
one interesting phenomenon supported by unitary evolution is the interference of
computational paths. In a probabilistic computation the probability of moving from
one configuration to another is the sum of the probabilities of each possible path from
the former to the latter. The same is true of the probability amplitudes in quantum
computation but not necessarily of the probabilities of observations. Consider, for
example, applying the transformation

U =

(
1√
2

1√
2

1√
2

− 1√
2

)

twice in sequence to the same tape cell which at first contains the symbol 0. If we
observe the cell after the first application of U , we see either symbol with probability
1
2 . If we then observe after applying U a second time, the symbols are again equally
likely. However, since U2 is the identity, if we only observe at the end, we see a 0
with probability 1. So, even though there are two computational paths that lead from
the initial 0 to a final symbol 1, they interfere destructively cancelling each other
out. The two paths leading to a 0 interfere constructively so that even though both
have probability 1

4 , when we observe twice we have probability 1 of reaching 0 if we
observe only once. Such a boosting of probabilities, by an exponential factor, lies
at the heart of the QTM’s advantage over a probabilistic TM in solving the Fourier
sampling problem.

Another constraint inherent in computation using unitary transformations is re-
versibility. We show in section 4.2 that for any QTM M there is a corresponding
QTM MR, whose time evolution operator is the conjugate transpose of the time evo-
lution operator of M , and therefore undoes the actions of M . Sections 3.5 and 4.1
are devoted to defining the machinery to deal with this feature of QTMs.

We prove below in Appendix A that a QTM is well formed if its time evolution op-
erator is unitary. This establishes that our definition (which did not mention unitary
evolution for expository purposes) does satisfy the fundamental constraint imposed
by quantum mechanics—unitary evolution. Actually one could still ask why this is
consistent with quantum mechanics, since the space S of finite linear combinations of
configurations is not a Hilbert space since it is not complete. To see that this doesn’t
present a problem, notice that S is a dense subset of the Hilbert space H of all (not
just finite) linear combinations of configurations. Moreover, any unitary operator U
on S has a unique extension Û to H; and Û is unitary and its inverse is Û∗. The
proof is quite simple. Let Û and Û∗ be the continuous extensions of U and U∗ to
H. Let x, y ∈ H. Then there are sequences {xn}, {yn} ∈ S such that xn → x and
yn → y. Moreover, for all n, (Uxn, yn) = (xn, U

∗yn). Taking limits, we get that
(Ûx, y) = (x, Û∗y), as desired.

As an aside, we should briefly mention that another resolution of this issue is
achieved by following Feynman [26], who suggested that if we use a quantum me-
chanical system with Hamiltonian U +U∗, then the resulting system has a local, time
invariant Hamiltonian. It is easy to probabilistically recover the computation of the
original system from the computation of the new one.

QUANTUM COMPLEXITY THEORY 1423

It is interesting to note that the following theorem would not be true if we defined
QTMs using a one-way infinite tape. In that case, the trivial QTM which always moves
its tape head right would be well formed, but its time evolution would not be unitary
since its start configuration could not be reached from any other configuration.

Theorem A.5. A QTM is well formed iff its time evolution operator is unitary.

3.4. Precision required in a QTM. One important concern is whether QTMs
are really analog devices, since they involve complex transition amplitudes. The issue
here is how accurately these transition amplitudes must be specified to ensure that
the correctness of the computation is not compromised. In an earlier version of this
paper, we showed that TO(1) bits of precision are sufficient to correctly carry out T
steps of computation to within accuracy ε for any constant ε. Lipton [30] pointed
out that for the device to be regarded as a discrete device, we must require that its
transition amplitudes be specified to at most one part in TO(1) (as opposed to accurate
to within TO(1) bits of precision). This is because the transition amplitude represents
some physical quantity such as the angle of a polarizer or the length of a π pulse, and
we must not assume that we can specify it to better than one part in some polynomial
in T , and therefore the number of bits of precision must be O(log T). This is exactly
what we proved shortly after Lipton’s observation, and we present that proof in this
section.

The next theorem shows that because of the unitary time evolution errors in the
superposition made over a sequence of steps will, in the worst case, only add.

Theorem 3.7. Let U be the time evolution operator of a QTM M and T > 0. If
|φ0〉, |φ̃0〉, . . . , |φT 〉, |φ̃T 〉 are superpositions of U such that

‖|φi〉 − |φ̃i〉‖ ≤ ε,

|φi〉 = U |φ̃i−1〉,

then ‖|φ̃T 〉 − UT |φ0〉‖ ≤ Tε.
Proof. Let |ψi〉 = |φ̃i〉 − |φi〉. Then we have

|φ̃T 〉 = UT |φ0〉+ UT |ψ0〉+ UT−1|ψ1〉+ · · ·+ |ψT 〉

The theorem follows by the triangle inequality since U is unitary and ‖|ψi〉‖
≤ ε.

Definition 3.8. We say that QTMs M and M ′ are ε-close if they have the
same state set and alphabet and if the difference between each pair of corresponding
transition amplitudes has magnitude at most ε. Note that M and M ′ can be ε-close
even if one or both are not well formed.

The following theorem shows that two QTMs which are close in the above sense
give rise to time evolution operators which are close to each other, even if the QTMs
are not well formed. As a simple consequence, the time evolution operator of a QTM
is always bounded, even if the QTM is not well formed.

Theorem 3.9. If QTMs M and M ′ with alphabet Σ and state set Q are ε-close,
then the difference in their time evolutions has norm at most 2 card(Σ) card(Q)ε.
Moreover, this statement holds even if one or both of the machines are not well
formed.

Proof. Let QTMs M and M ′ with alphabet Σ and state set Q be given which are
ε-close. Let U be the time evolution of M , and let U ′ be the time evolution of M ′.

1424 ETHAN BERNSTEIN AND UMESH VAZIRANI

Now, consider any unit length superposition of configurations |φ〉 =
∑

j αj |cj〉.
Then we can express the difference in the machines’ operations on |φ〉 as follows:

U |φ〉 − U ′|φ〉 =
∑
j

 ∑
i∈P (j)

(λi,j − λ′i,j)αi

 |cj〉,
where P (j) is the set of i such that configuration ci can lead to cj in a single step of
M or M ′ and where λi,j and λ′i,j are the amplitudes with which ci leads to cj in M
and M ′.

Applying the triangle inequality and the fact that the square of the sum of n reals
is at most n times the sum of their squares, we have

‖U |φ〉 − U ′|φ〉‖2 =
∑

j

∣∣∣∑i∈P (j)(λi,j − λ′i,j)αi
∣∣∣2

≤ ∑
j 2 card(Σ) card(Q)

∑
i∈P (j)

∣∣(λi,j − λ′i,j)αi
∣∣2.

Then since M and M ′ are ε-close, we have∑
j 2 card(Σ) card(Q)

∑
i∈P (j)

∣∣(λi,j − λ′i,j)αi
∣∣2

= 2 card(Σ) card(Q)
∑

j

∑
i∈P (j)

∣∣λi,j − λ′i,j
∣∣2|αi|2

≤ 2 card(Σ) card(Q)ε2
∑

j

∑
i∈P (j) |αi|2.

Finally since for any configuration cj , there are at most 2 card(Σ) card(Q) con-
figurations that can lead to cj in a single step, we have

2 card(Σ) card(Q)ε2
∑

j

∑
i∈P (j) |αi|2 ≤ 4 card(Σ)

2
card(Q)

2
ε2
∑

i |αi|2
= 4 card(Σ)

2
card(Q)

2
ε2.

Therefore, for any unit length superposition |φ〉
‖(U − U ′)|φ〉‖ ≤ 2 card(Σ) card(Q)ε.

The following corollary shows that O(log T) bits of precision are sufficient in the
transition amplitudes to simulate T steps of a QTM to within accuracy ε for any
constant ε.

Corollary 3.10. Let M = (Σ, Q, δ) be a well-formed QTM, and let M ′ be a
QTM which is ε

24 card(Σ) card(Q)T -close to M , where ε > 0. Then M ′ simulates M

for time T with accuracy ε. Moreover, this statement holds even if M ′ is not well
formed.

Proof. Let b = 1
24 card(Σ) card(Q)T . Without loss of generality, we further assume

ε < 1
2 .
Consider running M and M ′ with the same initial superposition. Since M is well

formed, by Theorem A.5, its time evolution operator U is unitary. By Theorem 3.9
the time evolution operator of M ′, U ′ is within δ = ε

12T of U .
Applying U ′ can always be expressed as applying U and then adding a perturba-

tion of length at most δ times the length of the current superposition. So, the length
of the superposition of U ′ at time t is at most (1 + δ)t. Since δ ≤ 1

T , this length is
at most e. Therefore, appealing to Theorem 3.7 above, the difference between the
superpositions of M and M ′ at time T is a superposition of norm at most 3δT ≤ ε

4 .
Finally, Lemma 3.6 tells us that observing M ′ at time T gives a sample from a dis-
tribution which is within total variation distance ε of the distributions sampled from
by observing M at time T .

QUANTUM COMPLEXITY THEORY 1425

3.5. Input/output conventions for QTMs. Timing is crucial to the oper-
ation of a QTM, because computational paths can only interfere if they take the
same number of time steps. Equally important are the position of the tape head and
alignment of the tape contents. In this subsection, we introduce several input/output
conventions on QTMs and deterministic TMs which will help us maintain these rela-
tionships while manipulating and combining machines.

We would like to think of our QTMs as finishing their computation when they
reach the final state qf . However, it is unclear how we should regard a machine that
reaches a superposition in which some configurations are in state qf but others are
not. We try to avoid such difficulties by saying that a QTM halts on a particular
input if it reaches a superposition consisting entirely of configurations in state qf .

Definition 3.11. A final configuration of a QTM is any configuration in state
qf . If when QTM M is run with input x, at time T the superposition contains only
final configurations, and at any time less than T the superposition contains no final
configuration, then M halts with running time T on input x. The superposition of M
at time T is called the final superposition of M run on input x. A polynomial-time
QTM is a well-formed QTM, which on every input x halts in time polynomial in the
length of x.

We would like to define the output of a QTM which halts as the superposition of
the tape contents of the configurations in the machine’s final superposition. However,
we must be careful to note the position of the tape head and the alignment relative to
the start cell in each configuration since these details determine whether later paths
interfere. Recall that the output string of a final configuration of a TM is its tape
contents from the leftmost nonblank symbol to the rightmost nonblank symbol. This
means that giving an output string leaves unspecified the alignment of this string on
the tape and the location of the tape head to be identified. When describing the
input/output behavior of a QTM we will sometimes describe this additional infor-
mation. When we do not, the additional information will be clear from context. For
example, we will often build machines in which all final configurations have the output
string beginning in the start cell with the tape head scanning its first symbol.

Definition 3.12. A QTM is called well behaved if it halts on all input strings in
a final superposition where each configuration has the tape head in the same cell. If this
cell is always the start cell, we call the machine stationary. Similarly, a deterministic
TM is called stationary if it halts on all inputs with its tape head back in the start
cell.

To simplify our constructions, we will often build QTMs and then combine them
in simple ways, like running one after the other or iterating one a varying number
of times. To do so we must be able to add new transitions into the initial state q0
of a machine. However, since there may already be transitions into q0, the resulting
machine may not be reversible. But, we can certainly redirect the transitions out of
the final state qf of a reversible TM or a well-behaved QTM without affecting its
behavior. Note that for a well-formed QTM, if qf always leads back to q0, then there
can be no more transitions into q0. In that case, redirecting the transitions out of
qf will allow us to add new ones into q0 without violating reversibility. We will say
that a machine with this property is in normal form. Note that a well-behaved QTM
in normal form always halts before using any transition out of qf and therefore also
before using any transition into q0. This means that altering these transitions will not
alter the relevant part of the machine’s computation. For simplicity, we arbitrarily

1426 ETHAN BERNSTEIN AND UMESH VAZIRANI

define normal form QTMs to step right and leave the tape unchanged as they go from
state qf to q0.

Definition 3.13. A QTM or deterministic TM M = (Σ, Q, δ) is in normal form
if

∀σ ∈ Σ δ(qf , σ) = |σ〉|q0〉|R〉.

We will need to consider QTMs with the special property that any particular state
can be entered while the machine’s tape head steps in only one direction. Though
not all QTMs are “unidirectional,” we will show that any QTM can be efficiently
simulated by one that is. Unidirectionality will be a critical concept in reversing a
QTM, in completing a partially described QTM, and in building our universal QTM.
We further describe the advantages of unidirectional machines after Theorem 5.3 in
section 5.2.

Definition 3.14. A QTM M = (Σ, Q, δ) is called unidirectional if each state
can be entered from only one direction: in other words, if δ(p1, σ1, τ1, q, d1) and
δ(p2, σ2, τ2, q, d2) are both nonzero, then d1 = d2.

Finally, we will find it convenient to use the common tool of thinking of the tape
of a QTM or deterministic TM as consisting of several tracks.

Definition 3.15. A multitrack TM with k tracks is a TM whose alphabet Σ is
of the form Σ1 × Σ2 × · · · × Σk with a special blank symbol # in each Σi so that the
blank in Σ is (#, . . . ,#). We specify the input by specifying the string on each “track”
and optionally by specifying the alignment of the contents of the tracks. So, a TM
run on input x1;x2; . . . ;xk ∈ Πk

i=1(Σi−#)∗ is started in the (superposition consisting
only of the) initial configuration with the nonblank portion of the ith coordinate of
the tape containing the string xi starting in the start cell. More generally, on input
x1|y1;x2|y1; . . . ;xk|yk with xi, yi ∈ Σ∗i the nonblank portion of the ith track is xiyi
aligned so that the first symbol of each yi is in the start cell. Also, input x1;x2; . . . ;xk
with xl+1, . . . , xk = ε is abbreviated as x1;x2; . . . ;xl.

4. Programming a QTM. In this section we explore the fundamentals of build-
ing up a QTM from several simpler QTMs. Implementing basic programming primi-
tives such as looping, branching, and reversing, a computation is straightforward for
deterministic TMs. However, these constructions are more difficult for QTMs because
one must be very careful to maintain reversibility. In fact, the same difficulties arise
when building reversible deterministic TMs. However, building up reversible TMs
out of simpler reversible TMs has never been necessary. This is because Bennett [7]
showed how to efficiently simulate any deterministic TM with one which is reversible.
So, one can build a reversible TM by first building the desired computation with a
nonreversible machine and then by using Bennett’s construction. None of the con-
structions in this section make any special use of the quantum nature of QTMs, and
in fact all techniques used are the same as those required to make the analogous
construction for reversible TMs.

We will show in this section that reversible TMs are a special case of QTMs. So,
as Deutsch [20] noted, Bennett’s result allows any desired deterministic computation
to be carried out on a QTM. However, Bennett’s result is not sufficient to allow us
to use deterministic computations when building up QTMs, because the different
computation paths of a QTM will only interfere properly provided that they take
exactly the same number of steps. We will therefore carry out a modified version of
Bennett’s construction to show that any deterministic computation can be carried out

QUANTUM COMPLEXITY THEORY 1427

by a reversible TM whose running time depends only on the length of its input. Then,
different computation paths of a QTM will take the same number of steps provided
that they carry out the same deterministic computation on inputs of the same length.

4.1. Reversible TMs.
Definition 4.1. A reversible TM is a deterministic TM for which each config-

uration has at most one predecessor.
Note that we have altered the definition of a reversible TM from the one used by

Bennett [7, 8], so that our reversible TMs are a special case of our QTMs. First, we
have restricted our reversible TM to move its head only left and right, instead of also
allowing it to stay still. Second, we insist that the transition function δ be a complete
function rather than a partial function. Finally, we consider only reversible TMs with
a single tape, though Bennett worked with multitape machines.

Theorem 4.2. Any reversible TM is also a well-formed QTM.
Proof. The transition function δ of a deterministic TM maps the current state and

symbol to an update triple. If we think of it as instead giving the unit superposition
with amplitude 1 for that triple and 0 elsewhere, then δ is also a quantum transition
function and we have a QTM. The time evolution matrix corresponding to this QTM
contains only the entries 1 and 0. Since Corollary B.2 proven below in Appendix B
tells us that each configuration of a reversible TM has exactly one predecessor, this
matrix must be a permutation matrix. If the TM is reversible then there must be at
most one 1 in each row. Therefore, any superposition of configurations

∑
i αi|ci〉 is

mapped by this time evolution matrix to some other superposition of configurations∑
i αi|c′i〉. So, the time evolution preserves length, and the QTM is well formed.

Previous work of Bennett shows that reversible machines can efficiently simulate
deterministic TMs. Of course, if a deterministic TM computes a function which is not
one-to-one, then no reversible machine can simulate it exactly. Bennett [7] showed
that a generalized reversible TM can do the next best thing, which is to take any input
x and compute x;M(x), where M(x) is the output of M on input x. He also showed
that if a deterministic TM computes a function which is one-to-one, then there is a
generalized reversible TM that computes the same function. For both constructions,
he used a multitape TM and also suggested how the simulation could be carried out
using only a single-tape machine. Morita, Shirasaki, and Gono [33] use Bennett’s ideas
and some further techniques to show that any deterministic TM can be simulated by
a generalized reversible TM with a two symbol alphabet.

We will give a slightly different simulation of a deterministic TM with a reversible
machine that preserves an important timing property.

First, we describe why timing is critical. In later sections, we will build QTMs
with interesting and complex interference patterns. However, two computational
paths can only interfere if they reach the same configuration at the same time. We
will often want paths to interfere which run much of the same computation but with
different inputs. We can only be sure they interfere if we know that these computa-
tions can be carried out in exactly the same running time. We therefore want to show
that any function computable in deterministic polynomial time can be computed by
a polynomial time reversible TM in such a way that the running time of the latter is
determined entirely by the length of its input. Then, provided that all computation
paths carry out the same deterministic algorithms on the inputs of the same length,
they will all take exactly the same number of steps.

We prove the following theorem in Appendix B on page 1465 using ideas from
the constructions of Bennett and Morita, Shirasaki, and Gono.

1428 ETHAN BERNSTEIN AND UMESH VAZIRANI

Theorem 4.3 (synchronization theorem). If f is a function mapping strings
to strings which can be computed in deterministic polynomial time and such that
the length of f(x) depends only on the length of x, then there is a polynomial time,
stationary, normal form reversible TM which given input x, produces output x; f(x),
and whose running time depends only on the length of x.

If f is a function from strings to strings such that both f and f−1 can be computed
in deterministic polynomial time and such that the length of f(x) depends only on the
length of x, then there is a polynomial time, stationary, normal form reversible TM
which given input x, produces output f(x), and whose running time depends only on
the length of x.

4.2. Programming primitives. We now show how to carry out several pro-
gramming primitives reversibly. The branching, reversal, and looping lemmas will be
used frequently in subsequent sections.

The proofs of the following two lemmas are straightforward and are omitted.
However, they will be quite useful as we build complicated machines, since they allow
us to build a series of simpler machines while ignoring the contents of tracks not
currently being used.

Lemma 4.4. Given any QTM (reversible TM) M = (Σ, Q, δ) and any set Σ′,
there is a QTM (reversible TM) M ′ = (Σ×Σ′, Q, δ′) such that M ′ behaves exactly as
M while leaving its second track unchanged.

Lemma 4.5. Given any QTM (reversible TM) M = (Σ1 × · · · × Σk, Q, δ) and
permutation π : [1, k] → [1, k], there is a QTM (reversible TM) M ′ = (Σπ(1) × · · · ×
Σπ(k), Q, δ

′) such that the M ′ behaves exactly as M except that its tracks are permuted
according to π.

The following two lemmas are also straightforward, but stating them separately
makes Lemma 4.8 below easy to prove. The first deals with swapping transitions of
states in a QTM. We can swap the outgoing transitions of states p1 and p2 for tran-
sition function δ by defining δ′(p1, σ) = δ(p2, σ), δ′(p2, σ) = δ(p1, σ), and δ′(p, σ) =
δ(p, σ) for p 6= p1, p2. Similarly, we can swap the incoming transitions of states q1 and
q2 by defining δ′(p, σ, τ, q1, d) = δ(p, σ, τ, q2, d), δ

′(p, σ, τ, q2, d) = δ(p, σ, τ, q1, d), and
δ′(p, σ, τ, q, d) = δ(p, σ, τ, q, d) for q 6= q1, q2.

Lemma 4.6. If M is a well-formed QTM (reversible TM), then swapping the
incoming or outgoing transitions between a pair of states in M gives another well-
formed QTM (reversible TM).

Lemma 4.7. Let M1 = (Σ, Q1, δ1) and M2 = (Σ, Q2, δ2) be two well-formed
QTMs (reversible TMs) with the same alphabet and disjoint state sets. Then the
union of the two machines, M = (Σ, Q1 ∪ Q2, δ1 ∪ δ2), with arbitrarily chosen start
state q0 ∈ Q1 ∪Q2, is also a well-formed QTM (reversible TM).

Using the two preceding lemmas, we can insert one machine in place of a state in
another. When we perform such an insertion, the computations of the two machines
might disturb each other. However, sometimes this can easily be seen not to be the
case. For example, in the insertion used by the dovetailing lemma below, we will insert
one machine for the final state of a well-behaved QTM, so that the computation of
the original machine has been completed before the inserted machine begins. In the
rest of the insertions we carry out, the two machines will operate on different tracks,
so the only possible disturbance involves the position of the tape head.

Lemma 4.8. If M1 and M2 are normal form QTMs (reversible TMs) with the
same alphabet and q is a state of M1, then there is a normal form QTM M which
acts as M1 except that each time it would enter state q, it instead runs machine M2.

QUANTUM COMPLEXITY THEORY 1429

Proof. Let M1 and M2 be as stated with initial and final states q1,0, q2,0, q1,f , q2,f ,
and with q a state of M1.

Then we can construct the desired machine M as follows. First, take the union
of M1 and M2 according to Lemma 4.7 on page 1428 and make the start state q1,0 if
q 6= q1,0 and q2,0 otherwise, and make the final state q1,f if q 6= q1,f and q2,f otherwise.
Then, according to Lemma 4.6, swap the incoming transitions of q and q2,0 and the
outgoing transitions of q and q2,f to get the well-formed machine M .

Since M1 is in normal form, the final state of M leads back to its initial state no
matter whether q is the initial state of M1, the final state of M1, or neither.

Next, we show how to take two machines and form a third by “dovetailing”
one onto the end of the other. Notice that when we dovetail QTMs, the second
QTM will be started with the final superposition of the first machine as its input
superposition. If the second machine has differing running times for various strings
in this superposition, then the dovetailed machine might not halt even though the
two original machines were well behaved. Therefore, a QTM built by dovetailing two
well-behaved QTMs may not itself be well behaved.

Lemma 4.9 (dovetailing lemma). If M1 and M2 are well-behaved, normal form
QTMs (reversible TMs) with the same alphabet, then there is a normal form QTM (re-
versible TM) M which carries out the computation of M1 followed by the computation
of M2.

Proof. Let M1 and M2 be well-behaved, normal form QTMs (reversible TMs)
with the same alphabet and with start states and final states q1,0, q2,0, q1,f , q2,f .

To construct M , we simply insert M2 for the final state of M1 using Lemma 4.8
on page 1428.

To complete the proof we need to show that M carries out the computation of
M1 followed by that of M2.

To see this, first recall that since M1 and M2 are in normal form, the only tran-
sitions into q1,0 and q2,0 are from q1,f and q2,f , respectively. This means that no
transitions in M1 have been changed except for those into or out of state q1,f . There-
fore, since M1 is well behaved and does not prematurely enter state q1,f , the machine
M , when started in state q1,0, will compute exactly as M1 until M1 would halt. At
that point M will instead reach a superposition with all configurations in state q2,0.
Then, since no transitions in M2 have been changed except for those into or out of
q2,f , M will proceed exactly as if M2 had been started in the superposition of outputs
computed by M1.

Now we show how to build a conditional branch around two existing QTMs or
reversible TMs. The branching machine will run one of the two machines on its first
track input, depending on its second track input. Since a TM can have only one final
state, we must rejoin the two branches at the end. We can join reversibly if we write
back out the bit that determined which machine was used. The construction will
simply build a reversible TM that accomplishes the desired branching and rejoining
and then insert the two machines for states in this branching machine.

Lemma 4.10 (branching lemma). If M1 and M2 are well-behaved, normal form
QTMs (reversible TMs) with the same alphabet, then there is a well-behaved, normal
form QTM (reversible TM) M such that if the second track is empty, M runs M1

on its first track and leaves its second track empty, and if the second track has a 1 in
the start cell (and all other cells blank), M runs M2 on its first track and leaves the
1 where its tape head ends up. In either case, M takes exactly four more time steps
than the appropriate Mi.

1430 ETHAN BERNSTEIN AND UMESH VAZIRANI

Proof. Let M1 and M2 be well-behaved, normal form QTMs (reversible TMs)
with the same alphabet.

Then we can construct the desired QTM as follows. We will show how to build
a stationary, normal form reversible TM BR which always takes four time steps
and leaves its input unchanged, always has a superposition consisting of a single
configuration, and has two states q1 and q2 with the following properties. If BR is
run with a 1 in the start cell and blanks elsewhere, then BR visits q1 once with a
blank tape and with its tape head in the start cell and doesn’t visit q2 at all. Similarly,
if BR is run with a blank tape, then BR visits q2 once with a blank tape and with its
tape head in the start cell and doesn’t visit q1 at all. Then if we extend M1 and M2

to have a second track with the alphabet of BR, extend BR to have a first track with
the common alphabet of M1 and M2, and insert M1 for state q1 and M2 for state q2
in BR, we will have the desired QTM M .

We complete the construction by exhibiting the reversible TM BR. The machine
enters state q′1 or q′2 depending on whether the start cell contains a 1 and steps left
and enters the corresponding q1 or q2 while stepping back right. Then it enters state
q3 while stepping left and state qf while stepping back right.

So, we let BR have alphabet {#, 1}, state set {q0, q1, q′1, q2, q′2, q3, qf}, and tran-
sition function defined by the following table

1
q0 #, q′2, L #, q′1, L
q′1 #, q1, R
q′2 #, q2, R
q1 1, q3, L
q2 #, q3, L
q3 #, qf , R
qf #, q0, R 1, q0, R

It can be verified that the transition function of BR is one-to-one and that it
can enter each state while moving in only one direction. Therefore, appealing to
Corollary B.3 on page 1466 it can be completed to give a reversible TM.

Finally, we show how to take a unidirectional QTM or reversible TM and build
its reverse. Two computational paths of a QTM will interfere only if they reach
configurations that do not differ in any way. This means that when building a QTM
we must be careful to erase any information that might differ along paths which we
want to interfere. We will therefore sometimes use this lemma when constructing a
QTM to allow us to completely erase an intermediate computation.

Since the time evolution of a well-formed QTM is unitary, we could reverse a QTM
by applying the unitary inverse of its time evolution. However, this transformation
is not the time evolution of a QTM since it acts on a configuration by changing
tape symbols to the left and right of the tape head. However, since each state in a
unidirectional QTM can be entered while moving in only one direction, we can reverse
the head movements one step ahead of the reversal of the tape and state. Then, the
reversal will have its tape head in the proper cell each time a symbol must be changed.

Definition 4.11. If QTMs M1 and M2 have the same alphabet, then we say that
M2 reverses the computation of M1 if identifying the final state of M1 with the initial
state of M2 and the initial state of M1 with the final state of M2 gives the following.
For any input x on which M1 halts, if cx and φx are the initial configuration and final
superposition of M1 on input x, then M2 halts on initial superposition φx with final
superposition consisting entirely of configuration cx.

QUANTUM COMPLEXITY THEORY 1431

Lemma 4.12 (reversal lemma). If M is a normal form, reversible TM or unidi-
rectional QTM, then there is a normal form, reversible TM or QTM M ′ that reverses
the computation of M while taking two extra time steps.

Proof. We will prove the lemma for normal form, unidirectional QTMs, but the
same argument proves the lemma for normal form reversible TMs.

Let M = (Σ, Q, δ) be a normal form, unidirectional QTM with initial and final
states q0 and qf , and for each q ∈ Q let dq be the direction which M must move
while entering state q. Then, we define a bijection π on the set of configurations of
M as follows. For configuration c in state q, let π(c) be the configuration derived
from c by moving the tape head one square in direction d̄q (the opposite of direction
dq). Since the set of superpositions of the form |c〉 give an orthonormal basis for the
space of superpositions of M , we can extend π to act as a linear operator on this
space of superpositions by defining π|c〉 = |πc〉. It is easy to see that π is a unitary
transformation on the space of superpositions on M .

Our new machine M ′ will have the same alphabet as M and state set given by Q
together with new initial and final states q′0 and q′f . The following three statements
suffice to prove that M ′ reverses the computation of M while taking two extra time
steps.

1. If c is a final configuration of M and c′ is the configuration c with state qf
replaced by state q′0, then a single step of M ′ takes superposition |c′〉 to superposition
π(|c〉).

2. If a single step of M takes superposition |φ1〉 to superposition |φ2〉, where
|φ2〉 has no support on a configuration in state q0, then a single step of M ′ takes
superposition π(|φ2〉) to superposition π(|φ1〉).

3. If c is an initial configuration of M and c′ is the configuration c with state
q0 replaced by state q′f , then a single step of M ′ takes superposition π(|c〉) to super-
position |c′〉.

To see this, let x be an input on which M halts, and let |φ1〉, . . . , |φn〉 be the
sequence of superpositions of M on input x, so that |φ1〉 = |cx〉 where cx is the initial
superposition ofM on x and |φn〉 has support only on final configurations ofM . Then,
since the time evolution operator of M is linear, statement 1 tells us that if we form
the initial configuration |φ′n〉 of M ′ by replacing each state qf in the |φn〉 with state
q′0, then M ′ takes |φ′n〉 to π(|φn〉) in a single step. Since M is in normal form, none
of |φ2〉, . . . , |φn〉 have support on any superposition in state q0. Therefore, statement
2 tells us that the next n steps of M ′ lead to superpositions π(|φn−1〉), . . . , π(|φ1〉).
Finally, statement 3 tells us that a single step of M ′ maps superposition π(|cx〉) to
superposition |c′x〉.

We define the transition function δ′ to give a well-formed M ′ satisfying these
three statements with the following transition rules.

1. δ′(q′0, σ) = |σ〉|qf 〉|d̄qf 〉.
2. For each q ∈ Q− q0 and each τ ∈ Σ,

δ′(q, τ) =
∑
p,σ

δ(p, σ, τ, q, dq)
∗|σ〉|p〉|d̄p〉.

3. δ′(q0, σ) = |σ〉|q′f 〉|dq0〉.
4. δ′(q′f , σ) = |σ〉|q′0〉|R〉.

The first and third rules can easily be seen to ensure statements 1 and 3. The
second rule can be seen to ensure statement 2 as follows: Since M is in normal
form, it maps a superposition |φ1〉 to a superposition |φ2〉 with no support on any

1432 ETHAN BERNSTEIN AND UMESH VAZIRANI

configuration in state q0 if and only if |φ1〉 has no support on any configurations in
state qf . Therefore, the time evolution ofM defines a unitary transformation from the
space S1 of superpositions of configurations in states from the set Q1 = Q− qf to the
space of superpositions S2 of configurations in states from the set Q2 = Q− q0. This
fact also tells us that the second rule above defines a linear transformation from space
S2 back to space S1. Moreover, if M takes configuration c1 with a state from Q1 with
amplitude α to configuration c2 with a state from Q2, then M ′ takes configuration
π(c2) to configuration π(c1) with amplitude α∗. Therefore, the time evolution of M ′

on space S2 is the composition of π and its inverse around the conjugate transpose
of the time evolution of M . Since this conjugate transpose must also be unitary, the
second rule above actually gives a unitary transformation from the space S2 to the
space S1 which satisfies statement 2 above.

Since M ′ is clearly in normal form, we complete the proof by showing that M ′

is well formed. To see this, just note that each of the four rules defines a unitary
transformation to one of a set of four mutually orthogonal subspaces of the spaces of
superpositions of M ′.

The synchronization theorem will allow us to take an existing QTM and put it
inside a loop so that the machine can be run any specified number of times.

Building a reversible machine that loops indefinitely is trivial. However, if we
want to loop some finite number of times, we need to carefully construct a reversible
entrance and exit. As with the branching lemma above, the construction will proceed
by building a reversible TM that accomplishes the desired looping and then inserting
the QTM for a particular state in this looping machine. However, there are several
difficulties. First, in this construction, as opposed to the branching construction, the
reversible TM leaves an intermediate computation written on its tape while the QTM
runs. This means that inserting a nonstationary QTM would destroy the proper
functioning of the reversible TM. Second, even if we insert a stationary QTM, the
second (and any subsequent) time the QTM is run, it may be started in superposition
on inputs of different lengths and hence may not halt. Therefore, there is no general
statement we are able to make about the behavior of the machine once the insertion
is carried out. Instead, we describe here the reversible looping TM constructed in
Appendix C on page 1470 and argue about specific QTMs resulting from this machine
when they are constructed.

Lemma 4.13 (looping lemma). There is a stationary, normal form, reversible
TM M and a constant c with the following properties. On input any positive integer
k written in binary, M runs for time O(k logc k) and halts with its tape unchanged.
Moreover, M has a special state q∗ such that on input k, M visits state q∗ exactly k
times, each time with its tape head back in the start cell.

5. Changing the basis of a QTM’s computation. In this section we intro-
duce a fundamentally quantum mechanical feature of quantum computation, namely
changing the computational basis during the evolution of a QTM. In particular, we
will find it useful to change to a new orthonormal basis for the transition function in
the middle of the computation—each state in the new state set is a linear combination
of states from the original machine.

This will allow us to simulate a general QTM with one that is unidirectional.
It will also allow us to prove that any partially defined quantum transition function
which preserves length can be extended to give a well-formed QTM.

We start by showing how to change the basis of the states of a QTM. Then we give
a set of conditions for a quantum transition function that is necessary and sufficient

QUANTUM COMPLEXITY THEORY 1433

for a QTM to be well formed. The last of these conditions, called separability, will
allow us to construct a basis of the states of a QTM which will allow us to prove the
unidirection and completion lemmas below.

5.1. The change of basis. If we take a well-formed QTM and choose a new
orthonormal basis for the space of superpositions of its states, then translating its
transition function into this new basis will give another well-formed QTM that evolves
just as the first under the change of basis. Note that in this construction the new
QTM has the same time evolution operator as the original machine. However, the
states of the new machine differ from those of the old. This change of basis will allow
us to prove Lemmas 5.5 and 5.7 below.

Lemma 5.1. Given a QTM M = (Σ, Q, δ) and a set of vectors B from C̃Q which
forms an orthonormal basis for CQ, there is a QTM M ′ = (Σ, B, δ′) which evolves
exactly as M under a change of basis from Q to B.

Proof. Let M = (Σ, Q, δ) be a QTM, and let B be an orthonormal basis for CQ.
Since B is an orthonormal basis, this establishes a unitary transformation from

the space of superpositions of states in Q to the space of superpositions of states in
B. Specifically, for each p ∈ Q we have the mapping

|p〉 →
∑
v∈B

〈p||v〉 |v〉.

Similarly, we have a unitary transformation from the space of superpositions of con-
figurations with states in Q to the space of configurations with states in B. In this
second transformation, a configuration with state p is mapped to the superposition
of configurations, where the corresponding configuration with state v appears with
amplitude 〈p||v〉.

Let us see what the time evolution of M should look like under this change of
basis. In M a configuration in state p reading a σ evolves in a single time step to the
superposition of configurations corresponding to the superposition δ(p, σ):

δ(p, σ) =
∑
τ,q,d

δ(p, σ, τ, q, d) |τ〉|q〉|d〉.

With the change of basis, the superposition on the right-hand side will instead be∑
τ,v,d

(∑
q

〈q|v〉 δ(p, σ, τ, q, d)
)
|τ〉|v〉|d〉.

Now, since the state symbol pair |v〉|σ〉 in M ′ corresponds to the superposition∑
p

〈v|p〉 |p〉|σ〉

in M , we should have in M ′

δ′(v, σ) =
∑
p

〈v|p〉
∑

τ,v′,d

(∑
q

〈q|v′〉 δ(p, σ, τ, q, d)
) |τ〉|v′〉|d〉.

Therefore, M ′ will behave exactly as M under the change of basis if we define δ′

by saying that for each v, σ ∈ B × Σ,

δ′(v, σ) =
∑
τ,v′,d

(∑
p,q

〈v|p〉 〈q|v′〉 δ(p, σ, τ, q, d)
)
|τ〉|v′〉|d〉.

1434 ETHAN BERNSTEIN AND UMESH VAZIRANI

Since the vectors in B are contained in C̃Q, each amplitude of δ′ is contained in C̃.
Finally, note that the time evolution of M ′ must preserve Euclidean length since

it is exactly the time evolution of the well-formed M under the change of basis.

5.2. Local conditions for QTM wellformedness. In our discussion of re-
versible TMs in Appendix B we find properties of a deterministic transition function
which are necessary and sufficient for it to be reversible. Similarly, our next theorem
gives three properties of a quantum transition function which together are necessary
and sufficient for it to be well formed. The first property ensures that the time evolu-
tion operator preserves length when applied to any particular configuration. Adding
the second ensures that the time evolution preserves the length of superpositions
of configurations with their tape head in the same cell. The third property, which
concerns “restricted” update superpositions, handles superpositions of configurations
with tape heads in differing locations. This third property will be of critical use in
the constructions of Lemmas 5.5 and 5.7 below.

Definition 5.2. We will also refer to the superposition of states∑
q∈Q

δ(p, σ, τ, q, d)|q〉

resulting from restricting δ(p, σ) to those pieces writing symbol τ and moving in di-
rection d as a direction d-going restricted superposition, denoted by δ(p, σ|τ, d).

Theorem 5.3. A QTM M = (Σ, Q, δ) is well formed iff the following conditions
hold:

unit length

∀ p, σ ∈ Q× Σ ‖δ(p, σ)‖ = 1,

orthogonality

∀ (p1, σ1) 6= (p2, σ2) ∈ Q× Σ δ(p1, σ1) · δ(p2, σ2) = 0,

separability

∀ (p1, σ1, τ1), (p2, σ2, τ2) ∈ Q× Σ× Σ δ(p1, σ1|τ1, L) · δ(p2, σ2|τ2, R) = 0.

Proof. Let U be the time evolution of a proposed QTM M = (Σ, Q, δ). We
know M is well formed iff U∗ exists and U∗U gives the identity or, equivalently,
iff the columns of U have unit length and are mutually orthogonal. Clearly, the first
condition specifies exactly that each column has unit length. In general, configurations
whose tapes differ in a cell not under either of their heads, or whose tape heads are not
either in the same cell or exactly two cells apart, cannot yield the same configuration
in a single step. Therefore, such pairs of columns are guaranteed to be orthogonal,
and we need only consider pairs of configurations for which this is not the case. The
second condition specifies the orthogonality of pairs of columns for configurations that
differ only in that one is in state p1 reading σ1 while the other is in state p2 reading
σ2.

Finally, we must consider pairs of configurations with their tape heads two cells
apart. Such pairs can only interfere in a single step if they differ at most in their
states and in the symbol written in these cells. The third condition specifies the
orthogonality of pairs of columns for configurations which are identical except that
the second has its tape head two cells to the left, is in state p2 instead of p1, has a σ2

QUANTUM COMPLEXITY THEORY 1435

instead of a τ2 in the cell under its tape head, and has a τ1 instead of a σ1 two cells
to the left.

Now consider again unidirectional QTMs, those in which each state can be entered
while moving in only one direction. When we considered this property for determinis-
tic TMs, it meant that when looking at a deterministic transition function δ, we could
ignore the direction update and think of δ as giving a bijection from the current state
and tape symbol to the new symbol and state. Here, if δ is a unidirectional quan-
tum transition function, then it certainly satisfies the separability condition since no
left-going and right-going restricted superpositions have a state in common. More-
over, update triples will always share the same direction if they share the same state.
Therefore, a unidirectional δ is well formed iff, ignoring the direction update, δ gives
a unitary transformation from superpositions of current state and tape symbol to
superpositions of new symbol and state.

5.3. Unidirection and completion lemmas. The separability condition of
Theorem 5.3 allows us to simulate any QTM with a unidirectional QTM by applying
a change of basis. The same change of basis will also allow us to complete any partially
specified quantum transition function which preserves length.

It is straightforward to simulate a deterministic TM with one which is unidirec-
tional. Simply split each state q into two states qr and ql, both of which are given the
same transitions that q had, and then edit the transition function so that transitions
moving right into q enter qr and transitions moving left into q enter ql. The resulting
machine is clearly not reversible since the transition function operates the same on
each pair of states qr, ql.

To simplify the unidirection construction, we first show how to interleave a series
of quantum transition functions.

Lemma 5.4. Given k state sets Q0, . . . , Qk−1, Qk = Q0 and k transition functions
each mapping from one state set to the next

δi : Qi × Σ → C̃Σ×Qi+1×{L,R}

such that each δi preserves length, there is a well-formed QTM M with state set⋃
i(Qi, i) which alternates stepping according to each of the k transition functions.

Proof. Suppose we have k state sets transition functions as stated above. Then
we let M be the QTM with the same alphabet, with state set given by the union of
the individual state sets

⋃
i(Qi, i), and with transition function according to the δi,

δ((p, i), σ) =
∑
τ,q,d

δi(p, σ, τ, q, d)|τ〉|q, i+ 1〉|d〉.

Clearly, the machine M alternates stepping according to δ0, . . . , δk−1. It is also easy
to see that the time evolution of M preserves length. If |φ〉 is a superposition of
configurations with squared length αi in the subspace with configurations with states
from Qi, then δ maps φ to a superposition with squared length αi in the subspace
with configurations with states from Qi+1.

Lemma 5.5 (unidirection lemma). Any QTM M is simulated, with slowdown by
a factor of 5, by a unidirectional QTM M ′. Furthermore, if M is well behaved and
in normal form, then so is M ′.

Proof. The key idea is that the separability condition of a well-formed QTM
allows a change of basis to a state set in which each state can be entered from only
one direction.

1436 ETHAN BERNSTEIN AND UMESH VAZIRANI

The separability condition says that

∀ (p1, σ1, τ1), (p2, σ2, τ2) ∈ Q× Σ× Σ,

δ(p1, σ1|τ1, L) · δ(p2, σ2|τ2, R) = 0.

This means that we can split CQ into mutually orthogonal subspaces CL and CR

such that span(CL,CR) = CQ and

∀ (p1, σ1, τ1) ∈ Q× Σ× Σ,

δ(p1, σ1|τ1, d) ∈ Cd.

Now, as shown in Lemma 5.1 above, under a change of basis from state set Q to
state set B the new transition function is defined by

δ′(v, σ, τ, v′, d) =
∑
p,q

〈v|p〉〈q|v′〉δ(p, σ, τ, q, d).

So, choose orthonormal bases BL and BR for the spaces CL and CR and let M ′ =
(Σ, BL ∪ BR, δ

′) be the QTM constructed according to Lemma 5.1 which evolves
exactly as M under a change of basis from state set Q to state set B = BL ∪ BR.
Then any state in M ′ can be entered in only one direction. To see this, first note that
since δ(p, σ|τ, d) ∈ Bd and v =

∑
q 〈v|q〉|q〉, the separability condition implies that for

v ∈ Bd, ∑
q

δ(p, σ, τ, q, d)〈v|q〉∗ = 0.

Therefore, for any v, σ, τ, v′ ∈ B × Σ× Σ×Bd,

δ′(v, σ, τ, v′, d) =
∑
p,q

〈v|p〉〈q|v′〉δ(p, σ, τ, q, d)

=
∑
p

〈v|p〉
∑
q

〈q|v′〉δ(p, σ, τ, q, d) = 0.

Therefore, any state in B can be entered while traveling in only one direction.
Unfortunately, this new QTM M ′ might not be able to simulate M . The problem

is that the start state and final state of M might correspond under the change of basis
isomorphism to superpositions of states in M ′, meaning that we would be unable to
define the necessary start and final states for M ′. To fix this problem, we use five
time steps to simulate each step of M and interleave the five transition functions using
Lemma 5.4 on page 1435.

1. Step right leaving the tape and state unchanged:

δ0(p, σ) = |σ〉|p〉|R〉.
2. Change basis from Q to B while stepping left:

δ1(p, σ) =
∑
b∈B

〈p|b〉|σ〉|b〉|L〉.

QUANTUM COMPLEXITY THEORY 1437

3. M ′ carries out a step of the computation of M . So, δ2 is just the quantum
transition function δ′ from QTM M ′ constructed above.

4. Change basis back from B to Q while stepping left:

δ3(b, σ) =
∑
p∈Q

〈b|p〉|σ〉|p〉|L〉.

5. Step right leaving the tape and state unchanged:

δ4(p, σ) = |σ〉|p〉|R〉.
If we construct QTMM ′ with state set (Q×{0, 1, 4}∪(B×{2, 3}) using Lemma 5.4

on page 1435 and let M ′ have start and final states (q0, 0) and (qf , 0), then M ′

simulates M with slowdown by a factor of 5.
Next, we must show that each of the five transition functions obeys the well-

formedness conditions and hence according to Lemma 5.4 that the interleaved machine
is well formed.

The transition function δ2 = δ′ certainly obeys the wellformedness conditions
since M ′ is a well formed QTM. Also, δ0 and δ4 obey the three wellformedness con-
ditions since they are deterministic and reversible. Finally, the transition functions
δ1 and δ3 satisfy the unit length and orthogonality conditions since they implement a
change of basis, and they obey the separability condition since they only move in one
direction.

Finally, we must show that if M is well-behaved and in normal form, then we can
make M ′ well behaved and in normal form.

So, suppose M is well behaved and in normal form. Then there is a T such that
at time T the superposition includes only configurations in state qf with the tape
head back in the start cell, and at any time less than T the superposition contains
no configuration in state qf . But this means that when M ′ is run on input x, the
superposition at time 5T includes only configurations in state (qf , 0) with the tape
head back in the start cell, and the superposition at any time less than 5T contains
no configuration in state (qf , 0). Therefore, M ′ is also well behaved.

Then for any input x there is a T such thatM enters a series of T−1 superpositions
of configurations all with states in Q − {q0, qf} and then enters a superposition of
configurations all in state qf with the tape head back in the start cell. Therefore, on
input x, M ′ enters a series of 5T − 1 superpositions of configurations all with states
in Q′ − {(qf , 0), (q0, 4)} and then enters a superposition of configurations all in state
(qf , 0) with the tape head back in the start cell. Therefore, M ′ is well behaved. Also,
swapping the outgoing transitions of (qf , 0) and (q0, 4), which puts M ′ in normal
form, will not change the computation of M ′ on any input x.

When we construct a QTM, we will often only be concerned with a subset of its
transitions. Luckily, any partially defined transition function that preserves length
can be extended to give a well-formed QTM.

Definition 5.6. A QTM M whose quantum transition function δ′ is only defined
for a subset S ⊆ Q×Σ is called a partial QTM. If the defined entries of δ′ satisfy the
three conditions of Theorem 5.3 on page 1434 then M is called a well-formed partial
QTM.

Lemma 5.7 (completion lemma). Suppose M is a well-formed partial QTM with
quantum transition function δ. Then there is a well-formed QTM M ′ with the same
state set and alphabet whose quantum transition function δ′ agrees with δ wherever
the latter is defined.

1438 ETHAN BERNSTEIN AND UMESH VAZIRANI

Proof. We noted above that a unidirectional quantum transition function is well
formed iff, ignoring the direction update, it gives a unitary transformation from su-
perpositions of current state and tape symbol to superpositions of new symbol and
state. So if our partial QTM is unidirectional, then we can easily fill in the undefined
entries of δ by extending the set of update superpositions of δ to an orthonormal basis
for the space of superpositions of new symbol and state.

For a general δ, we can use the technique of Lemma 5.1 on page 1433 to change
the basis of δ away from Q so that each state can be entered while moving in only
one direction, extend the transition function, and then rotate back to the basis Q.

We can formalize this as follows: let M = (Σ, Q, δ) be a well-formed partial QTM
with δ defined on the subset S ⊆ Q×Σ. Denote by S the complement of S in Q×Σ.

As in the proof of the unidirection lemma above, the separability condition al-
lows us to partition CQ into mutually orthogonal subspaces CL and CR such that
span(CL,CR) = CQ and

∀ (p1, σ1, τ1) ∈ S × Σ,

δ(p1, σ1|τ1, d) ∈ Cd.

Then, we choose orthonormal bases BL and BR for CL and CR and consider the
unitary transformation from superpositions of configurations with states in Q to the
space of configurations with states in B = BL ∪ BR, where any configuration with
state p is mapped to the superposition of configurations where the corresponding
configuration with state v appears with amplitude 〈p|v〉.

If we call δ′ the partial function δ followed by this unitary change of basis, then
we have

δ′(p, σ) =
∑
τ,v,d

(∑
q

〈q|v〉δ(p, σ, τ, q, d)
)
|τ〉|v〉|d〉.

Since δ preserves length and δ′ is δ followed by a unitary transformation, δ′ also
preserves length.

But now δ′ can enter any state in B while moving in only one direction. To
see this, first note that since δ(p, σ; τ, d) ∈ Bd and v =

∑
q 〈v|q〉|q〉, the separability

condition implies that for v ∈ Bd,∑
q

δ(p, σ, τ, q, d)〈v|q〉∗ = 0.

Therefore, for any p, σ, τ, v ∈ S × Σ×Bd,

δ′(p, σ, τ, v, d) =
∑
q

〈q|v〉δ(p, σ, τ, q,) = 0.

Therefore, any state in B can be entered while traveling in only one direction.
Then, since the direction is implied by the new state, we can think of δ′ as mapping

the current state and symbol to a superposition of new symbol and state. Since δ′

preserves length, the set δ′(S) is a set of orthonormal vectors, and we can expand this
set to an orthonormal basis of the space of superpositions of new symbol and state.
Adding the appropriate direction updates and assigning these new vectors arbitrarily
to δ′(S̄), we have a completely defined δ′ that preserves length. Therefore, assigning
δ(S̄) as δ′(S̄) followed by the inverse of the basis transformation gives a completion
for δ that preserves length.

QUANTUM COMPLEXITY THEORY 1439

6. An efficient QTM implementing any given unitary transformation.
Suppose that the tape head of a QTM is confined to a region consisting of k con-
tiguous tape cells (the tape is blank outside this region). Then the time evolution
of the QTM can be described by a d-dimensional unitary transformation, where
d = kcard(Q)card(Σ)

k
. In this section we show conversely that there is a QTM

that, given any d-dimensional unitary transformation as input, carries out that trans-
formation (on a region of its tape). To make this claim precise we must say how the
d-dimensional unitary transformation is specified. We assume that an approximation
to the unitary transformation is specified by a d × d complex matrix whose entries
are approximations to the entries of the actual unitary matrix corresponding to the
desired transformation. We show in Theorem 6.11 on page 1447 that there is a QTM
that, on input ε and a d-dimensional transformation which is within distance ε

2(10
√
d)d

of a unitary transformation, carries out a transformation which is an ε approximation
to the desired unitary transformation. Moreover, the running time of the QTM is
bounded by a polynomial in d and 1

ε .

In a single step, a QTM can map a single configuration into a superposition of a
bounded number of configurations. Therefore, in order to carry out an (approximation
to an) arbitrary unitary transformation on a QTM, we show how to approximate it by
a product of simple unitary transformations—each such simple transformation acts as
the identity in all but two dimensions. We then show that there is a particular simple
unitary transformation such that any given simple transformation can be expressed
as a product of permutation matrices and powers of this fixed simple matrix. Finally,
we put it all together and show how to design a single QTM that carries out an
arbitrary unitary transformation—this QTM is deterministic except for a single kind
of quantum coin flip.

The decomposition of an arbitrary unitary transformation into a product of sim-
ple unitary transformations is similar to work carried out by Deutsch [21]. Deutsch’s
work, although phrased in terms of quantum computation networks, can be viewed
as showing that a d-dimensional unitary transformation can be decomposed into a
product of transformations where each applies a particular unitary transformation
to three dimensions and acts as the identity elsewhere. We must consider here sev-
eral issues of efficiency not addressed by Deutsch. First, we are concerned that the
decomposition contains a number of transformations which is polynomial in the di-
mension of the unitary transformation and in the desired accuracy. Second, we desire
that the decomposition can itself be efficiently computed given the desired unitary
transformation as input. For more recent work on the efficient simulation of a unitary
transformation by a quantum computation network see [5] and the references therein.

6.1. Measuring errors in approximated transformations. In this section,
we will deal with operators (linear transformations) on finite-dimensional Hilbert
spaces. It is often convenient to fix an orthonormal basis for the Hilbert space and de-
scribe the operator by a finite matrix with respect to the chosen basis. Let e1, . . . , ed
be an orthonormal basis for Hilbert space H = Cd. Then we can represent an op-
erator U on H by a d × d complex matrix M , whose i, jth entry mi,j is (Uej , ei).
The ith row of the matrix M is given by ei

TM , and we will denote it by Mi. We
denote by Mi

∗ the conjugate transpose of Mi. The jth column of M is given by
Mej . U

∗, the adjoint of U , is represented by the d × d matrix M∗. M is unitary iff
MM∗ = M∗M = I. It follows that if M is unitary then the rows (and columns) of
M are orthonormal.

1440 ETHAN BERNSTEIN AND UMESH VAZIRANI

Recall that for a bounded linear operator U on a Hilbert space H, the norm of U
is defined as

|U | = sup
‖x‖=1

|Ux|.

If we represent U by the matrix M , then we can define the norm of the matrix M to
be same as the norm of U . Thus, since we’re working in a finite-dimensional space,

‖M‖ = max
‖v‖=1

‖Mv‖.

Fact 6.1. If U is unitary, then ‖U‖ = ‖U∗‖ = 1.

Proof. ∀x ∈ H, ‖Ux‖2 = (Ux,Ux) = (x, U∗Ux) = (x, x) = ‖x‖2. Therefore,
‖U‖ = 1, and similar reasoning shows ‖U∗‖ = 1.

We will find it useful to keep track of how far our approximations are from being
unitary. We will use the following simple measure of a transformation’s distance from
being unitary.

Definition 6.2. A bounded linear operator U is called ε-close to unitary if there
is a unitary operator Ũ such that ‖U − Ũ‖ ≤ ε. If we represent U by the matrix M ,
then we can equivalently say that M is ε-close to unitary if there is a unitary matrix
M̃ such that ‖M − M̃‖ ≤ ε.

Notice that, appealing to statement (2.3) in section 2 if U is ε-close to unitary,
then 1− ε ≤ ‖U‖ ≤ 1 + ε. However, the converse is not true. For example the linear
transformation (1

0
0
0) has norm 1, but is 1 away from unitary.

Next, we show that if M is close to unitary, then the rows of M are close to unit
length and will be close to orthogonal.

Lemma 6.3. If a d-dimensional complex matrix M is ε-close to unitary, then

1− ε ≤ ‖Mi‖ ≤ 1 + ε,(6.1)

∀i 6= j, ‖MiMj
∗‖ ≤ 2ε+ 3ε2.(6.2)

Proof. Let M̃ be the unitary matrix such that ‖M − M̃‖ ≤ ε. Let N = M − M̃ .
Then we know that for each i, ‖M̃i‖ = 1 and ‖Ni‖ ≤ ε.

So, for any i, we have Mi = Ni + M̃i. Therefore, 1− ε ≤ ‖Mi‖ ≤ 1 + ε.
Next, since M̃ is unitary, it follows that for i 6= j, M̃iM̃

∗
j = 0. Therefore,

(Mi −Ni)(M
∗
j −N∗

j) = 0. Expanding this as a sum of four terms, we get

MiM
∗
j = MiN

∗
j +NiM

∗
j −NiN

∗
j .

Since ‖M‖ ≤ 1 + ε and ‖N‖ ≤ ε, the Schwarz inequality tells us that ‖MiN
∗
j ‖ ≤

(1 + ε)ε, ‖NiM
∗
j ‖ ≤ ε(1 + ε), and ‖NiN

∗
j ‖ ≤ ε2. Using the triangle inequality we

conclude that ‖MiM
∗
j ‖ ≤ 2(1 + ε)ε+ ε2. Therefore, ‖MiMj

∗‖ ≤ 2ε+ 3ε2.
We will also use the following standard fact that a matrix with small entries must

have small norm.
Lemma 6.4. If M is a d-dimensional square complex matrix such that |mi,j | ≤ ε

for all i, j, then ‖M‖ ≤ dε.
Proof. If each entry of M has magnitude at most ε, then clearly each row Mi

of M must have norm at most
√
dε. So, if v is a d-dimensional column vector with

|v| = 1, we must have

‖Mv‖2 =
∑
i

‖Miv‖2 ≤
∑
i

dε2 = d2ε2,

where the inequality follows from the Schwarz inequality. Therefore, ‖M‖ ≤ dε.

QUANTUM COMPLEXITY THEORY 1441

6.2. Decomposing a unitary transformation. We now describe a class of
exceedingly simple unitary transformations which we will be able to carry out using
a single QTM. These “near-trivial” transformations either apply a phase shift in one
dimension or apply a rotation between two dimensions, while acting as the identity
otherwise.

Definition 6.5. A d × d unitary matrix M is near trivial if it satisfies one of
the following two conditions.

1. M is the identity except that one of its diagonal entries is eiθ for some θ ∈
[0, 2π]. For example, ∃j mj,j = eiθ ∀k 6= j mk,k = 1, and ∀k 6= l mk,l = 0.

2. M is the identity except that the submatrix in one pair of distinct dimensions
j and k is the rotation by some angle θ ∈ [0, 2π] : (cos θ

sin θ
− sin θ
cos θ). So, as a transforma-

tion M is near trivial if there exists θ and i 6= j such that Mei = (cos θ)ei +(sin θ)ej,
Mej = −(sin θ)ei + (cos θ)ej, and ∀k 6= i, j Mek = ek.

We call a transformation which satisfies statement 1 a near-trivial phase shift,
and we call a transformation which satisfies Statement 2 a near-trivial rotation.

We will write a near-trivial matrix M in the following way. If M is a phase
shift of eiθ in dimension j, then we will write down [j, j, θ] and if M is a rotation
of angle θ between dimensions j and k we will write down [j, k, θ]. This convention
guarantees that the matrix that we are specifying is a near-trivial matrix and therefore
a unitary matrix, even if for precision reasons we write down an approximation to
the matrix that we really wish to specify. This feature will substantially simplify our
error analyses.

Before we show how to use near-trivial transformations to carry out an arbitrary
unitary transformation, we first show how to use them to map any particular vector
to a desired target direction.

Lemma 6.6. There is a deterministic algorithm which on input a vector v ∈ Cd

and a bound ε > 0 computes near-trivial matrices U1, . . . , U2d−1 such that

‖U1 · · ·U2d−1v − ‖v‖e1‖ ≤ ε,

where e1 is the unit vector in the first coordinate direction. The running time of the
algorithm is bounded by a polynomial in d, log 1

ε and the length of the input.

Proof. First, we use d phase shifts to map v into the space IRd. We therefore want

to apply the phase shift
v∗i
‖vi‖ to each dimension i with vi 6= 0. So, we let Pi be the near-

trivial matrix which applies to dimension i the phase shift by angle φi, where φi = 0 if

vi = 0 and otherwise φi = 2π− cos−1 Re(vi)
‖vi‖ or cos−1 Re(vi)

‖vi‖ depending whether Im(vi)

is positive or negative. Then P1 · · ·Pdv is the vector with ith coordinate ‖vi‖.
Next, we use d−1 rotations to move all of the weight of the vector into dimension

1. So, we let Ri be the near-trivial matrix which applies the rotation by angle θi to
dimensions i and i+ 1, where

θi = cos−1 ‖vi‖√∑d
j=i ‖vj‖2

if the sum in the denominator is not 0 and θi = 0 otherwise. Then

R1 · · ·Rd−1P1 · · ·Pdv = ‖v‖e1.
Now, instead of producing these values φi, θi exactly, we can compute, in time

polynomial in d and log 1
ε and the length of the input, values φ′i and θ′i which are

1442 ETHAN BERNSTEIN AND UMESH VAZIRANI

within δ = ε
(2d−1)‖v‖ of the desired values. Call P ′i and R′i the near-trivial matrices

corresponding to Pi and Ri but using these approximations. Then, since the distance
between points at angle θ and θ′ on the unit circle in the real plane is at most |θ − θ′|,

‖Ri −R′i‖ ≤ δ.

Thinking of the same inequality on the unit circle in the complex plane, we have

‖Pi − P ′i‖ ≤ δ.

Finally, since each matrix Pi, P
′
i , Ri, R

′
i is unitary, Fact 2.1 on page 1417 gives us

‖R′1 · · ·R′d−1P
′
1 · · ·P ′d − R1 · · ·Rd−1P1 · · ·Pd‖ ≤ (2d− 1)δ

and therefore

‖R′1 · · ·R′d−1P
′
1 · · ·P ′dv − ‖v‖e1‖ ≤ (2d− 1)δ‖v‖ = ε.

We now show how the ability to map a particular vector to a desired target
direction allows us to approximate an arbitrary unitary transformation.

Theorem 6.7. There is a deterministic algorithm running in time polynomial
in d and log 1/ε and the length of the input which when given as input U, ε where
ε > 0 and U is a d × d complex matrix which is ε

2(10
√
d)d

-close to unitary, com-

putes d-dimensional near-trivial matrices U1, . . . , Un, with n polynomial in d such
that ‖U − Un · · ·U1‖ ≤ ε.

Proof. First we introduce notation to simplify the proof. Let U be a d×d complex
matrix. Then we say U is k-simple if its first k rows and columns are the same as
those of the d-dimensional identity. Notice that the product of two d × d k-simple
matrices is also k-simple.

If U were d-simple, we would have U = I and the desired computation would be
trivial. In general, the U which our algorithm must approximate will not even be 1-
simple. So, our algorithm will proceed through d phases such that during the ith phase
the remaining problem is reduced to approximating a matrix which is i+ 1-simple.

Suppose we start to approximate a k-simple U with a series of near-trivial matrices
with the product V . Then to approximate U we would still need to produce a series
of near-trivial matrices whose product W satisfies W ≈ UV ∗. To reduce the problem
we must therefore compute near-trivial matrices whose product V is such that UV ∗

is close to being k + 1-simple. We can accomplish this by using the algorithm of
Lemma 6.6 above.

So, let U be given which is k-simple and is δ-close to unitary, and let Z be the
lower right d− k × d− k submatrix of Z. We invoke the procedure of Lemma 6.6 on
inputs ZT

1 (the vector corresponding to the first row of Z) and δ. The output is a
sequence of d − k-dimensional near trivial matrices V1, . . . , V2d−2k−1 such that their
product V = V1 × · · · × V2d−2k−1 has the property that ‖V ZT

1 − ‖Z1‖e1‖ ≤ δ.
Now suppose that we extend V and the Vi back to d-dimensional, k-simple ma-

trices, and we let W = UV ∗. Then clearly V is unitary and V and W are k-simple.
In fact, since V is unitary and U is δ-close to unitary, W is also δ-close to unitary.
Moreover, W is close to being k + 1-simple as desired. We will show below that the
k + 1st row of W satisfies ‖Wk+1 − eTk+1‖ ≤ 2δ and that the entries of the k + 1st
column of W satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k + 1.

QUANTUM COMPLEXITY THEORY 1443

So, let X be the d× d, k + 1-simple matrix such that

x1,1 = 1, xj,1 = 0 for j 6= 1, x1,j = 0 for j 6= 1, xj,l = wj,l for j, l > l + 1.

It follows from our bounds on the norm of the first row of W and on the entries of
the first column of W that ‖W −X‖ ≤ 2δ + 6

√
dδ. Since W is δ-close to unitary, we

can then conclude that X is 3δ + 6
√
dδ-close to unitary.

Unfortunately, we cannot compute the entries of W = UV ∗ exactly. Instead,
appealing to Lemma 6.4 on page 1440, we compute them to within δ

d to obtain a matrix

Ŵ such that ‖Ŵ −W‖ ≤ δ. Let’s use the entries of Ŵ to define matrix X̂ analogous to
X. Using the triangle inequality, it is easy to see that ‖W − X̂‖ ≤ 3δ+6

√
dδ and X̂ is

4δ+6
√
dδ-close to unitary. If we are willing to incur an error of ‖W − X̂‖ ≤ 3δ+6

√
dδ,

then we are left with the problem of approximating the k + 1-simple X̂ by a product
of near-trivial matrices. Therefore, we have reduced the problem of approximating
the k-simple matrix U by near-trivial matrices to the problem of approximating the
k + 1-simple matrix X̂ by near-trivial matrices while incurring two sources of error:

1. an error of ‖W − X̂‖ ≤ 3δ+ 6
√
dδ, since we are approximating X̂ instead of

W ;
2. the new matrix X̂ is only 4δ + 6

√
dδ-close to unitary.

Let δ′ = 10
√
dδ. Clearly δ′ is an upper bound on both sources of error cited above.

Therefore, the total error in the approximation is just
∑d

j=1(10
√
d)jδ ≤ 2(10

√
d)dδ.

The last inequality follows since 10
√
d ≥ 2, and therefore the sum can be bounded by

a geometric series. Therefore, the total error in the approximation is bounded by ε,
since by assumption U is δ-close to unitary for δ = ε

2(10
√
d)d

.

It is easy to see that this algorithm runs in time polynomial in d and log 1
ε . Our

algorithm consists of d iterations of first calling the algorithm from Lemma 6.6 on
page 1441 to compute V and then computing the matrix X̂. Since the each iteration

takes time polynomial in d and log (10
√
d)d

ε , these d calls take a total time polynomial
in d and log 1

ε .
Finally, we show as required that the k+1st row of W satisfies ‖Wk+1 − eTk+1‖ ≤

2δ and that the entries of the k+1st column of W satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k+1.
To see this, first recall that the lower dimension V satisfies ‖V ZT

1 − ‖Z1‖e1‖ ≤ δ,
where Z1 is the first row of the lower right k×k submatrix of U . Therefore, the higher
dimension V satisfies ‖V UT

k+1 − ‖Uk+1‖ek+1‖ ≤ δ. Then, since 1−δ ≤ ‖Uk+1‖ ≤ 1+δ,

it follows that ‖V UT
k+1 − ek+1‖ ≤ 2δ. Therefore, the k + 1st row of W satisfies

‖Wk+1 − eTk+1‖ ≤ 2δ.
Next, we will show that this implies that the entries of the k + 1st column of W

satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k + 1. To see this, first notice that since V is unitary
and U is delta close to unitary, W is also δ-close to unitary. This means that by
statement (6.2) of Lemma 6.3 on page 1440,

∣∣Wk+1W
∗
j

∣∣ ≤ 2δ + 3δ2. Now let us use

the condition ‖Wk+1 − eTk+1‖ ≤ 2δ. This implies that |wk+1,k+1| ≥ 1 − 2δ. Also, let

us denote by Ŵj the d−1-dimensional row vector arrived at by dropping wj,k+1 from

Wj . Then the condition that Wk+1 is close to eTk+1 also implies that ‖ ˆWk+1‖ ≤ 2δ.

Also, the fact that W is δ-close to unitary implies that ‖Ŵj‖ ≤ 1 + δ. Putting

all this together, we have 2δ + 3δ2 ≥ |Wk+1W
∗
j | = |wk+1,k+1w

∗
j,k+1 + ˆWk+1Ŵj

∗| ≥
|wk+1,k+1w

∗
j,k+1|−| ˆWk+1Ŵj

∗|. Therefore, |wk+1,k+1w
∗
j,k+1| ≤ 2δ+3δ2+| ˆWk+1Ŵj

∗| ≤
2δ + 3δ2 + 2δ(1 + δ) ≤ 4δ + 5δ2. Therefore, |wj,k+1| ≤ 4δ+5δ2

1−2δ . Finally, since we may

assume that δ ≤ 1
10 , we have |wj,k+1| ≤ 6δ.

1444 ETHAN BERNSTEIN AND UMESH VAZIRANI

6.3. Carrying out near-trivial transformations. In this section, we show
how to construct a single QTM that can carry out, at least approximately, any spec-
ified near-trivial transformation. Since a near-trivial transformation can apply an
arbitrary rotation, either between two dimensions or in the phase of a single dimen-
sion, we must first show how a fixed rotation can be used to efficiently approximate
an arbitrary rotation. Note that a single copy of this fixed rotation gives the only
“nonclassical” amplitudes (those other than 0, 1) in the transition function of the uni-
versal QTM constructed below. See Adleman, DeMarrais, and Huang [1] and Solovay
and Yao [40] for the constructions of universal QTMs whose amplitudes are restricted
to a small set of rationals.

Lemma 6.8. Let R = 2π
∑∞

i=1 2−2i . Then there is a deterministic algorithm
taking time polynomial in log 1

ε and the length of the input which on input θ, ε with
θ ∈ [0, 2π] and ε > 0 produces integer output k bounded by a polynomial in 1

ε such
that

|kR− θ| mod 2π ≤ ε.

Proof. First, we describe a procedure for computing such a k.
Start by calculating n, a power of 2, such that ε > 2π

2n−1 . Next, approximate θ
2π

as a fraction with denominator 2n. In other words, find an integer m ∈ [1, 2n] such
that ∣∣∣∣ θ2π − m

2n

∣∣∣∣ ≤ 1

2n
.

Then we can let k = m2n because

m2nRmod 2π =

(
2πm

∞∑
i=1

2n−2i

)
mod 2π

=

2πm

∞∑
i=log n+1

2n−2i

mod 2π

=

2πm

2n
+ 2πm

∞∑
i=log n+2

2n−2i

mod 2π

and since

m

∞∑
i=log n+2

2n−2i ≤ m2n−4n+1

≤ 2n−3n+1

≤ 2−2n+1

we have

|m2nR− θ| mod 2π ≤
∣∣∣∣m2nR− 2πm

2n

∣∣∣∣mod 2π +

∣∣∣∣2πm2n
− θ

∣∣∣∣
≤ 2π

22n−1
+

2π

2n

<
2π

2n−1

< ε.

QUANTUM COMPLEXITY THEORY 1445

At this point it should be clear that a single QTM can carry out any sequence of
near-trivial transformations to any desired accuracy ε. We formalize this notion below
by showing that there is a QTM that accepts as input the descriptions of a sequence
of near-trivial transformations and an error bound ε and applies an ε approximation
of the product of these transformations on any given superposition. The formalization
is quite tedious, and the reader is encouraged to skip the rest of the subsection if the
above statement is convincing.

Below, we give a formal definition of what it means for a QTM to carry out a
transformation.

Definition 6.9. Let Σ∪# be the alphabet of the first track of QTM M . Let V be
the complex vector space of superpositions of k length strings over Σ. Let U be a linear
transformation on V, and let xU be a string that encodes U (perhaps approximately).
We say that xU causes M to carry out the k cell transformation U with accuracy ε
in time T if for every |φ〉 ∈ V, on input |φ〉|xU 〉|ε〉, M halts in exactly T steps with
its tape head back in the start cell and with final superposition (U ′|φ〉)|x〉, where U ′ is
a unitary transformation on V such that ‖U − U ′‖ ≤ ε. Moreover, for a family A of
transformations, we say that M carries out these transformations in polynomial time
if T is bounded by a polynomial in 1

ε and the length of the input.

In the case that A contains transformations that are not unitary, we say that M
carries out the set of transformations A with closeness factor c if for any ε > 0 and
any U ∈ A which is cε-close to unitary, there is a unitary transformation U ′ with
‖U ′ − U‖ ≤ ε such that |xU 〉|ε〉 causes M to carry out the transformation U ′ in time
which is polynomial in 1

ε and the length of its input.

Recall that a near-trivial transformation written as x, y, θ calls for a rotation
between dimensions x and y of angle θ if x 6= y and a phase shift of eiθ to dimension
x otherwise. So, we want to build a stationary, normal form QTM that takes as input
w;x, y, θ; ε and transforms w according to the near-trivial transformation described
by x, y, θ with accuracy ε. We also need this QTM’s running time to depend only on
the length of w but not its value. If this is the case then the machine will also halt
on an initial superposition of the form |φ〉|x, y, θ〉|ε〉 where |φ〉 is a superposition of
equal-length strings w.

Lemma 6.10. There is a stationary, normal form QTM M with first track alpha-
bet {#, 0, 1} that carries out the set of near-trivial transformations on its first track
in polynomial time.

Proof. Using the encoding x, y, θ for near-trivial transformations described above
in section 6.2, we will show how to construct QTMs M1 and M2 with first track
alphabet {#, 0, 1} such that M1 carries out the set of near-trivial rotations on its
first track in polynomial time, and M2 carries out the set of near-trivial phase shifts
on its first track in polynomial time. Using the branching lemma (page 1429) on
these two machines, we can construct a QTM that behaves correctly provided there
is an extra track containing a 1 when x = y and we have a phase shift to perform,
and containing a 0 when x 6= y and we have a rotation to perform. We can then
construct the desired QTM M by dovetailing before and after with machines that
compute and erase this extra bit based on x, y. The synchronization theorem lets us
construct two such stationary, normal form QTMs whose running times depend only
on the lengths of x and y. Therefore, this additional computation will not disturb the
synchronization of the computation.

Next, we show how to construct the QTM M1 to carry out near-trivial rotations.

1446 ETHAN BERNSTEIN AND UMESH VAZIRANI

It is easy to construct a QTM which on input b applies a rotation by angle θ
between |0〉 and |1〉, while leaving b alone if b = #. But Lemma 6.8 above tells
us that we can achieve any rotation by applying the single rotation R at most a
polynomial number of times. Therefore, the following five-step process will allow us
to apply a near-trivial rotation. We must be careful that when we apply the rotation,
the two computational paths with b ∈ {0, 1} differ only in b since otherwise they will
not interfere.

1. Calculate k such that k Rmod 2π ∈ [θ − ε, θ + ε].
2. Transform w, x, y into b, x, y, z, where b = 0 if w = x, b = 1 if w = y and

w 6= x, and b = # otherwise and where z = w if b = # and z is the empty string
otherwise.

3. Run the rotation applying machine k times on the first bit of z.
4. Reverse step 2 transforming #, x, y, w with w 6= x, y into w, x, y, transforming

0, x, y into x, x, y, and transforming 1, x, y with x 6= y into y, x, y.
5. Reverse step 1 erasing k.

We build the desired QTM M by constructing a QTM for each of these five steps
and then dovetailing them together.

First, notice that the length of the desired output of steps 1, 2, 4, and 5 can
be computed just from the length of the input. Therefore, using Lemma 6.8 from
page 1444 and the synchronization theorem from page 1428, we can build polynomial
time, stationary, normal form QTMs for steps 1, 2, 4, and 5 which run in time that
depend on the lengths of w, x, y but not their particular values.

To complete the construction we must build a machine for the rotation with these
same properties. The stationary, normal form QTM R with alphabet {#, 0, 1}, state
set {q0, q1, qf}, and transition function defined by

0 1
q0 |#〉|q1〉|L〉 cosR|0〉|q1〉|L〉 − sinR|0〉|q1〉|L〉

+ sinR|1〉|q1〉|L〉 + cosR|1〉|q1〉|L〉
q1 |#〉|qf 〉|R〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

runs for constant time and applies rotation R between start cell contents |0〉 and |1〉
while leaving other inputs unchanged. InsertingR for the special state in the reversible
TM from the looping lemma, we can construct a normal form QTM which applies
rotation kR between inputs |0, k〉 and |1, k〉 while leaving input |#w, k〉 unchanged.
Since the machine we loop on is stationary and takes constant time regardless of its
input, the resulting looping machine is stationary and takes time depending only on
k.

Finally, with appropriate use of Lemmas 4.4 and 4.5 on page 1428 we can dovetail
these five stationary, normal form QTMs to achieve a stationary, normal form QTM
M that implements the desired computation. Since, the phase application machine
run in time which is independent of w, x, and y, and the other four run in time
which depends only on the length of w, x, and y, the running time of M depends
on the length of w, x, and y but not on their particular values. Therefore, it halts
with the proper output not only if run on an input with a single string w but also if
run on an initial superposition with different strings w and with the same near-trivial
transformation and ε.

The QTM M2 to carry out near-trivial phase shifts is the same as M1 except
that we replace the transition function of the simple QTM which applies a phase shift

QUANTUM COMPLEXITY THEORY 1447

rotation by angle R as follows giving a stationary QTM which applies phase shift eiR

if b is a 0 and phase shift 1 otherwise.

0 1
q0 |#〉|q1〉|L〉 eiR|0〉|q1〉|L〉 |1〉|q1〉|L〉
q1 |#〉|qf 〉|R〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

The proof that this gives the desired M2 is identical to the proof for M1 and is
omitted.

6.4. Carrying out a unitary transformation on a QTM. Now that we
can approximate a unitary transformation by a product of near-trivial transforma-
tions, and we have a QTM to carry out the latter, we can build a QTM to apply an
approximation of a given unitary transformation.

Theorem 6.11 (unitary transformation theorem). There is a stationary, normal
form QTM M with first track alphabet {#, 0, 1} that carries out the set of all trans-
formations on its first track in polynomial time with required closeness factor 1

2(10
√
d)d

for transformations of dimension d.
Proof. Given an ε > 0 and a transformation U of dimension d = 2k, which is
ε

2(10
√
d)d

-close to unitary, we can carry out U to within ε on the first k cells of the

first track using the following steps.
1. Calculate and write on clean tracks ε

2n and a list of near-trivial U1, . . . , Un
such that ‖U − Un · · ·U1‖ ≤ ε

2 and such that n is polynomial in 2k.
2. Apply the list of transformations U1, . . . , Un, each to within ε

2n .
3. Erase U1, . . . , Un and ε

2n .
We can construct a QTM to accomplish these steps as follows. First, using The-

orem 6.7 on page 1442 and the synchronization theorem on page 1428, we can build
polynomial time, stationary, normal form QTMs for steps 1 and 3 that run in time,
which depend only on U and ε. Finally, we can build a stationary, normal form QTM
to accomplish step 2 in time, which is polynomial in 2k, and 1

ε as follows. We have
a stationary, normal form QTM constructed in Lemma 6.10 on page 1445 to apply
any specified near-trivial transformation to within a given bound ε. We dovetail this
with a machine, constructed using the synchronization theorem on page 1428, that
rotates U1 around to the end of the list of transformations. Since the resulting QTM
is stationary and takes time that depends only on ε and the Ui, we can insert it for
the special state in the machine of the looping lemma to give the desired QTM for
step 2.

With the appropriate use of Lemmas 4.4 and 4.5 on page 1428, dovetailing the
QTMs for these three steps gives the desired M ′. Since the running times of the three
QTMs are independent of the contents of the first track, so is the running time of M ′.
Finally, notice that when we run M ′ we apply to the first k cells of the first track, we
apply a unitary transformation U ′ with

‖U ′ − U‖ ≤ ‖U ′ − Un · · ·U1‖+ ‖Un · · ·U1 − U‖ ≤ n
ε

2n
+
ε

2
≤ ε

as desired.

7. Constructing a universal QTM. A universal QTM must inevitably de-
compose one step of the simulated machine using many simple steps. A step of the

1448 ETHAN BERNSTEIN AND UMESH VAZIRANI

simulated QTM is a mapping from the computational basis to a new orthonormal ba-
sis. A single step of the universal QTM can only map some of the computational basis
vectors to their desired destinations. In general this partial transformation will not be
unitary, because the destination vectors will not be orthogonal to the computational
bases which have not yet been operated on. The key construction that enables us to
achieve a unitary decomposition is the unidirection lemma. Applying this lemma, we
get a QTM whose mapping of the computational basis has the following property:
there is a decomposition of the space into subspaces of constant dimension such that
each subspace gets mapped onto another.

More specifically, we saw in the previous section that we can construct a QTM
that carries out to a close approximation any specified unitary transformation. On
the other hand, we have also noted that the transition function of a unidirectional
QTM specifies a unitary transformation from superpositions of current state and tape
symbol to superpositions of new symbol and state. This means a unidirectional QTM
can be simulated by repeatedly applying this fixed-dimensional unitary transformation
followed by the reversible deterministic transformation that moves the simulated tape
head according to the new state. So, our universal machine will first convert its
input to a unidirectional QTM using the construction of the unidirection lemma and
then simulate this new QTM by repeatedly applying this unitary transformation and
reversible deterministic transformation.

Since we wish to construct a single machine that can simulate every QTM, we
must build it in such a way that every QTM can be provided as input. Much of the
definition of a QTM is easily encoded: we can write down the size of the alphabet
Σ, with the first symbol assumed to be the blank symbol, and we can write down
the size of the state set Q, with the first state assumed to be the start state. To
complete the specification, we need to describe the transition function δ by giving the
2 card(Σ)

2
card(Q)

2
amplitudes of the form δ(i1, i2, i3, i4, d). If we had restricted the

definition of a QTM to include only machines with rational transition amplitudes, then
we could write down each amplitude explicitly as the ratio of two integers. However,
we have instead restricted the definition of a QTM to include only those machines
with amplitudes in C̃, which means that for each amplitude there is a deterministic
algorithm which computes the amplitude’s real and imaginary parts to within 2−n in
time polynomial in n. We will therefore specify δ by giving a deterministic algorithm
that computes each transition amplitude to within 2−n in time polynomial in n.

Since the universal QTM that we will construct returns its tape head to the start
cell after simulating each step of the desired machine, it will incur a slowdown which
is (at least) linear in T . We conjecture that with more care a universal QTM can be
constructed whose slowdown is only polylogarithmic in T .

Theorem 7.1. There is a normal form QTM M such that for any well-formed
QTM M , any ε > 0, and any T , M can simulate M with accuracy ε for T steps with
slowdown polynomial in T and 1

ε .

Proof. As described above, our approach will be first to use the construction
of the unidirection lemma to build a unidirectional QTM M ′, which simulates M
with slowdown by a factor of 5, and then to simulate M ′. We will first describe the
simulation of M ′ and then return to describe the easily computable preprocessing
that needs to be carried out.

So, suppose M = (Σ, Q, δ) is a unidirectional QTM that we wish to simulate on
our universal QTM.

QUANTUM COMPLEXITY THEORY 1449

We start by reviewing the standard technique of representing the configuration of
a target TM on the tape of a universal TM. We will use one track of the tape of our
universal QTM to simulate the current configuration of M . Since the alphabet and
state set of M could have any fixed size, we will use a series of log card(Q× Σ) cells
of our tape, referred to as a “supercell,” to simulate each cell of M . Each supercell
holds a pair of integers p, σ, where σ ∈ [1, card(Σ)] represents the contents of the
corresponding cell of M , and p ∈ [0, card(Q)] represents the state of M if its tape
head is scanning the corresponding cell and p = 0 otherwise. Since the tape head
of M can only move distance T away from the start cell in time T , we only need
supercells for the 2T + 1 cells at the center of M ’s tape (and we place markers to
denote the ends).

Now we know that if we ignore the update direction, then δ gives a unitary
transformation U of dimension d = card(Q× Σ) from superpositions of current state
and tape symbol to superpositions of new state and symbol. So, we can properly
update the superposition on the simulation tracks if we first apply U to the current
state and symbol of M and then move the new state specification left or right one
supercell according to the direction in which that state of M can be entered.

We will therefore build a QTM STEP that carries out one step of the simulation
as follows. In addition to the simulation track, this machine is provided as input a
desired accuracy γ, a specification of U (which is guaranteed to be γ

2(10
√
d)d

-close to

the unitary), and a string s ∈ {0, 1}card(Q), which gives the direction in which each
state of M can be entered. The machine STEP operates as follows.

1. Transfer the current state and symbol p;σ to empty workspace near the start
cell, leaving a special marker in their places.

2. Apply U to p;σ to within γ, transforming p;σ into a superposition of new
state and symbol q; τ .

3. Reverse step 1, transferring q, τ back to the marked, empty supercell (and
emptying the workspace).

4. Transfer the state specification q one supercell to the right or left depending
whether the qth bit of s is a 0 or 1.

Using the synchronization theorem on page 1428, we can construct stationary,
normal form QTMs for steps 1, 3, and 4 that take time which is polynomial in T and
(for a fixed M) depend only on T . Step 2 can be carried out in time polynomial in
card(Σ), card(Q), and γ with the unitary transformation applying QTM constructed
in the unitary transformation theorem. With appropriate use of Lemmas 4.4 and 4.5
on page 1428, dovetailing these four normal form QTMs gives us the desired normal
form QTM STEP .

Since each of the four QTMs takes time that depends (for a fixed M) only on
T and ε, so does STEP . Therefore, if we insert STEP for the special state in the
reversible TM constructed in the looping lemma and provide additional input T , the
resulting QTM STEP ′ will halt after time polynomial in T and 1

ε after simulating T
steps of M with accuracy Tε.

Finally, we construct the desired universal QTMM by dovetailing STEP ′ after a
QTM which carries out the necessary preprocessing. In general, the universal machine
must simulate QTMs that are not unidirectional. So, the preprocessing for desired
QTM M , desired input x, and desired simulation accuracy ε consists of first carrying
out the construction of the unidirection lemma to build a unidirectional QTM M ′

1450 ETHAN BERNSTEIN AND UMESH VAZIRANI

which simulates M with slowdown by a factor of 5.3 The following inputs are then
computed for STEP ′:

1. the proper 2T + 1 supercell representation of the initial configuration of M ′

with input x,
2. the d-dimensional transformation U for M ′ with each entry written to accu-

racy ε
40T (10

√
d)d+2

,

3. the string of directions s for M ′,
4. the desired number of simulation steps 5T and the desired accuracy γ = ε

40T .
It can be verified that each of these inputs toM can be computed in deterministic

time which is polynomial in T , 1
ε , and the length of the input. If the transformation U

is computed to the specified accuracy, the transformation actually provided to STEP
will be within ε

40T (10
√
d)d

of the desired unitary U and therefore will be ε

40T (10
√
d
d
)
-

close to unitary as required for the operation of STEP . So, each time STEP runs
with accuracy ε

40T , it will have applied a unitary transformation which is within ε
20T of

U . Therefore, after 5T runs of STEP , we will have applied a unitary transformation
which is within ε

4 of the 5T step transformation of M ′. This means that observing
the simulation track of M after it has been completed will give a sample from a
distribution which is within total variation distance ε of the distribution sampled by
observing M on input x at time T .

8. The computational power of QTMs. In this section, we explore the com-
putational power of QTMs from a complexity theoretic point of view. It is natural to
define quantum analogues of classical complexity classes [13]. In classical complexity
theory, BPP is regarded as the class of all languages that is efficiently computable on
a classical computer. The quantum analogue of BPP—BQP (bounded-error quan-
tum polynomial time)—should similarly be regarded as the class of all languages that
is efficiently computable on a QTM.

8.1. Accepting languages with QTMs.
Definition 8.1. Let M be a stationary, normal form, multitrack QTM M whose

last track has alphabet {#, 0, 1}. If we run M with string x on the first track and the
empty string elsewhere, wait until M halts,4 and then observe the last track of the
start cell, we will see a 1 with some probability p. We will say that M accepts x with
probability p and rejects x with probability 1− p.

Consider any language L ⊆ (Σ−#)∗.
We say that QTM M exactly accepts the L if M accepts every string x ∈ L with

probability 1 and rejects every string x ∈ (Σ−#)∗ − L with probability 1.
We define the class EQP (exact or error-free quantum polynomial time) as the

set of languages which are exactly accepted by some polynomial time QTM. More
generally, we define the class EQTime (T (n)) as the set of languages which are exactly
accepted by some QTM whose running time on any input of length n is bounded by
T (n).

A QTM accepts the language L ⊆ (Σ−#)∗ with probability p if M accepts with
probability at least p every string x ∈ L and rejects with probability at least p every
string x ∈ (Σ −#)∗ − L. We define the class BQP as the set of languages that are

3Note that the transition function of M ′ is again specified with a deterministic algorithm, which
depends on the algorithm for the transition function of M .

4This can be accomplished by performing a measurement to check whether the machine is in the
final state qf . Making this partial measurement does not have any other effect on the computation
of the QTM.

QUANTUM COMPLEXITY THEORY 1451

accepted with probability 2
3 by some polynomial time QTM. More generally, we define

the class BQTime (T (n)) as the set of languages that are accepted with probability 2
3

by some QTM whose running time on any input of length n is bounded by T (n).

The limitation of considering only stationary, normal form QTMs in these defini-
tions is easily seen to not limit the computational power by appealing to the stationary,
normal form universal QTM constructed in Theorem 7.1 on page 1448.

8.2. Upper and lower bounds on the power of QTMs. Clearly EQP ⊆
BQP. Since reversible TMs are a special case of QTMs, Bennett’s results imply that
P ⊆ EQP and BPP ⊆ BQP. We include these two simple proofs for completeness.

Theorem 8.2. P ⊆ EQP.

Proof. Let L be a language in P. Then there is some polynomial time determinis-
tic algorithm that on input x produces output 1 if x ∈ L and 0 otherwise. Appealing
to the synchronization theorem on page 1428, there is therefore a stationary, normal
form QTM running in polynomial time which on input x produces output x; 1 if x ∈ L
and x; 0 otherwise. This is an EQP machine accepting L.

Theorem 8.3. BPP ⊆ BQP.

Proof. Let L be a language in BPP. Then there must be a polynomial p(n) and
a polynomial time deterministic TM M with 0, 1 output which satisfy the following.
For any string x of length n, if we call Sx the set of 2p(n) bits computed by M on
the inputs x; y with y ∈ {0, 1}p(n), then the proportion of 1’s in Sx is at least 2

3 when
x ∈ L and at most 1

3 otherwise. We can use a QTM to decide whether a string x is
in the language L by first breaking into a superposition split equally among all |x〉|y〉
and then running this deterministic algorithm.

First, we dovetail a stationary, normal form QTM that takes input x to output
x; 0p(n) with a stationary, normal form QTM constructed as in Theorem 8.8 below
which applies a Fourier transform to the contents of its second track. This gives
us a stationary, normal form QTM which on input x produces the superposition∑

y∈{0,1}p(n)
1

2p(n)/2 |x〉|y〉. Dovetailing this with a synchronized, normal form version
of M built according to the synchronization theorem on page 1428 gives a polynomial
time QTM which on input x produces a final superposition∑

y∈{0,1}p(n)

1

2p(n)/2
|x〉|y〉|M(x; y)〉.

Since the proportion of 1’s in Sx is at least 2
3 if x ∈ L and at most 1

3 otherwise,
observing the bit on the third track will give the proper classification for string x
with probability at least 2

3 . Therefore, this is a BQP machine accepting the language
L.

Clearly BQP is in exponential time. The next result gives the first nontrivial
upper bound on BQP.

Theorem 8.4. BQP ⊆ PSPACE .

Proof. Let M = (Σ, Q, δ) be a BQP machine with running time p(n).

According to Theorem 3.9 on page 1423, any QTM M ′ which is

ε

24 card(Σ) card(Q)p(n)
-close

to M will simulate M for p(n) steps with accuracy ε. If we simulate M with accuracy
1
12 , then the success probability will still be at least 7

12 . Therefore, we need only work

1452 ETHAN BERNSTEIN AND UMESH VAZIRANI

with the QTM M ′ where each transition amplitude from M is computed to its first
log (288 card(Σ) card(Q)p(n)) bits.

Now the amplitude of any particular configuration at time T is the sum of the
amplitudes of each possible computational path of M ′ of length T from the start
configuration to the desired configuration. The amplitude of each such path can
be computed exactly in polynomial time. So, if we maintain a stack of at most p(n)
intermediate configurations we can carry out a depth-first search of the computational
tree to calculate the amplitude of any particular configuration using only polynomial
space (but exponential time).

Finally, we can determine whether a string x of length n is accepted by M by
computing the sum of squared magnitudes at time p(n) of all configurations that M ′

can reach that have a 1 in the start cell and comparing this sum to 7
12 . Clearly the

only reachable “accepting” configurations of M ′ are those with a 1 in the start cell
and blanks in all but the 2p(n) cells within distance p(n) of the start cell. So, using
only polynomial space, we can step through all of these configurations computing a
running sum of the their squared magnitudes.

Following Valiant’s suggestion [43], the upper bound can be further improved to
P]P. This proof can be simplified by using a theorem from [9] that shows how any
BQP machine can be turned into a “clean” version M that on input x produces a
final superposition with almost all of its weight on x;M(x) where M(x) is a 1 if M
accepts x and a 0 otherwise. This means we need only estimate the amplitude of this
one configuration in the final superposition of M .

Now, the amplitude of a single configuration can be broken down into not only
the sum of the amplitudes of all of the computational paths that reach it but also into
the sum of positive real contributions, the sum of negative real contributions, the sum
of positive imaginary contributions, and the sum of negative imaginary contributions.
We will show that each of these four pieces can be computed using a]P machine.

Recall that]P is the set of functions f mapping strings to integers for which there
exists a polynomial p(n) and a language L ∈ P such that for any string x, the value
f(x) is the number of strings y of length p(|x|) for which xy is contained in L.

Theorem 8.5. If the language L is contained in the class BQTime (T (n)) with
T (n) > n, with T (n) time constructible, then for any ε > 0 there is a QTM M ′ which
accepts L with probability 1 − ε and has the following property. When run on input
x of length n, M ′ runs for time bounded by cT (n), where c is a polynomial in log 1

ε
and produces a final superposition in which |x〉|L(x)〉, with L(x) = 1 if x ∈ L and 0
otherwise, has squared magnitude at least 1− ε.

Theorem 8.6. BQP ⊆ P]P.

Proof. Let M = (Σ, Q, δ) be a BQP machine with observation time p(n). Ap-
pealing to Theorem 8.5 above, we can conclude without loss of generality that M is
a “clean BQP machine.” For example, on any input x at time p(|x|), the squared
magnitude of the final configuration with output x;M(x) is at least 2

3 .

Now as above, we will appeal to Theorem 3.9 on page 1423 which tells us that
if we work with the QTM M ′, where each amplitude of M is computed to its first
b = log (288 card(Σ) card(Q)p(n)) bits, and we run M ′ on input x, then the squared
magnitude at time p(|x|) of the final configuration with output x;M(x) will be at
least 7

12 .

We will carry out the proof by showing how to use an oracle for the class]P
to efficiently compute with error magnitude less than 1

36 the amplitude of the final
configuration x; 1 of M ′ at time T . Since the true amplitude has magnitude at most

QUANTUM COMPLEXITY THEORY 1453

1, the squared magnitude of this approximated amplitude must be within 1
12 of the

squared magnitude of the true amplitude. To see this, just note that if α is the true
amplitude and ‖α′ − α‖ < 1

36 , then∣∣∣‖α‖2 − ‖α′‖2∣∣∣ ≤ ‖α′ − α‖2 + 2‖α‖‖α′ − α‖ ≤ 1

36

(
2 +

1

36

)
<

1

12
.

Since the success probability of M ′ is at least 7
12 , comparing the squared magnitude

of this approximated amplitude to 1
2 lets us correctly classify the string x.

We will now show how to approximate the amplitude described above. First,
notice that the amplitude of a configuration at time T is the sum of the amplitudes
of each computational path of length T from the start configuration to the desired
configuration. The amplitude of any particular path is the product of the amplitudes
in the transition function ofM ′ used in each step along the path. Since each amplitude
consists of a real part and an imaginary part, we can think of this product as consisting
of the sum of 2T terms each of which is either purely real or purely imaginary. So, the
amplitude of the desired configuration at time T is the sum of these 2T terms over
each path. We will break this sum into four pieces, the sum of the positive real terms,
the sum of the negative real terms, the sum of the positive imaginary terms, and
the sum of the negative imaginary terms, and we will compute each to within error
magnitude less than 1

144 with the aid of a]P algorithm. Taking the difference of the
first two and the last two will then give us the amplitude of the desired configuration
to within an error of magnitude at most 1

36 as desired.
We can compute the sum of the positive real contributions for all paths as follows.

Suppose for some fixed constant c which is polynomial in T we are given the following
three inputs, all of length polynomial in T : a specification of a T step computational
path p of M ′, a specification t of one of the 2T terms, and an integer w between 0
and 2cT . Then it is easy to see that we could decide in deterministic time polynomial
in T whether p is really a path from the start configuration of M on x to the desired
final configuration, whether the term t is real and positive, and whether the tth term
of the amplitude for path p is greater than w/2cT . If we fix a path p and term t
satisfying these constraints, then the number of w for which this algorithm accepts,
divided by 2cT , is within 1/2cT of the value of the tth for path p. So, if we fix only a
path p satisfying these constraints, then the number of t, w for which the algorithm
accepts, divided by 2cT , is within 1/2(c−1)T of the sum of the positive real terms for
path p. Therefore, the number of p, t, w for which the algorithm accepts, divided by
2cT , is within N/2(c−1)T of the sum of all of the positive real terms of all of the T step
paths of M ′ from the start configuration to the desired configuration. Since there are
at most 2card(Σ)card(Q) possible successors for any configuration in a legal path of

M , choosing c > 1 + log 144
T + 2card(Σ)card(Q) log T

T gives N/2(c−1)T < 1
144 as desired.

Similar reasoning gives P]P algorithms for approximating each of the remaining three
sums of terms.

8.3. Oracle QTMs. In this subsection and the next, we will assume without
loss of generality that the TM alphabet for each track is {0, 1,#}. Initially all tracks
are blank except that the input track contains the actual input surrounded by blanks.
We will use Σ to denote {0, 1}.

In the classical setting, an oracle may be described informally as a device for eval-
uating some Boolean function f : Σ∗ → Σ, on arbitrary arguments, at unit cost per
evaluation. This allows us to formulate questions such as, “if f were efficiently com-
putable by a TM, which other functions (or languages) could be efficiently computed

1454 ETHAN BERNSTEIN AND UMESH VAZIRANI

by TMs?” In this section we define oracle QTMs so that the equivalent question can
be asked in the quantum setting.

An oracle QTM has a special query track on which the machine will place its
questions for the oracle. Oracle QTMs have two distinguished internal states: a
prequery state qq and a postquery state qa. A query is executed whenever the machine
enters the prequery state with a single (nonempty) block of nonblank cells on the query
track.5 Assume that the nonblank region on the query tape is in state |x · b〉 when
the prequery state is entered, where x ∈ Σ∗, b ∈ Σ, and “·” denotes concatenation.
Let f be the Boolean function computed by the oracle. The result of the oracle call
is that the state of the query tape becomes |x · b ⊕ f(x)〉, where “⊕” denotes the
exclusive-or (addition modulo 2), after which the machine’s internal control passes to
the postquery state. Except for the query tape and internal control, other parts of
the oracle QTM do not change during the query. If the target bit |b〉 was supplied in
initial state |0〉, then its final state will be |f(x)〉, just as in a classical oracle machine.
Conversely, if the target bit is already in state |f(x)〉, calling the oracle will reset it
to |0〉, a process known as “uncomputing,” which is essential for proper interference
to take place.

The power of quantum computers comes from their ability to follow a coherent
superposition of computation paths. Similarly, oracle QTMs derive great power from
the ability to perform superpositions of queries. For example, an oracle for Boolean
function f might be called when the query tape is in state |ψ, 0〉 =

∑
x αx|x, 0〉, where

αx are complex coefficients, corresponding to an arbitrary superposition of queries
with a constant |0〉 in the target bit. In this case, after the query, the query string
will be left in the entangled state

∑
x αx|x, f(x)〉.

That the above definition of oracle QTMs yields unitary evolutions is self-evident
if we restrict ourselves to machines that are well formed in other respects, in particular
evolving unitarily as they enter the prequery state and leave the postquery state.

Let us define BQTime (T (n))O as the sets of languages accepted with probability
at least 2

3 by some oracle QTM MO whose running time is bounded by T (n). This
bound on the running time applies to each individual input, not just on the average.
Notice that whether or not MO is a BQP-machine might depend upon the oracle O;
thus MO might be a BQP-machine while MO′

might not be one.
We have carefully defined oracle QTMs so that the same technique used to reverse

a QTM in the reversal lemma can also be used to reverse an oracle QTM.
Lemma 8.7. If M is a normal form, unidirectional oracle QTM, then there

is a normal form oracle QTM M ′ such that for any oracle O, M ′O reverses the
computation of MO while taking two extra time steps.

Proof. Let M = (Σ, Q, δ) be a normal form, unidirectional oracle QTM with
initial and final states q0 and qf and with query states qq 6= qf and qa. We construct
M ′ from M exactly as in the proof of the reversal lemma. We further give M ′ the
same query states qq, qa as M but with roles reversed. Since M is in normal form, and
qq 6= qf , we must have qa 6= q0. Recall that the transition function of M ′ is defined
so that for q 6= q0

δ′(q, τ) =
∑
p,σ

δ(p, σ, τ, q, dq)
∗|σ〉|p〉|d̂p〉.

5Since a QTM must be careful to avoid leaving around intermediate computations on its tape,
requiring that the query track contains only the query string, adds no further difficulty to the
construction of oracle QTMs.

QUANTUM COMPLEXITY THEORY 1455

Therefore, since state qq always leads to state qa in M , state qa always leads to state
qq in M ′. Therefore, M ′ is an oracle QTM.

Next, note that since the tape head position is irrelevant for the functioning of
the oracle, the operation of the oracle in M ′O reverses the operation of the oracle in
MO. Finally, the same argument used in the reversal lemma can be used again here
to prove that M ′O is well formed and that M ′O reverses the computation of MO while
taking two extra time steps.

The above definition of a quantum oracle for an arbitrary Boolean function will
suffice for the purposes of the present paper, but the ability of quantum computers
to perform general unitary transformations suggests a broader definition, which may
be useful in other contexts. For example, oracles that perform more general, non-
Boolean unitary operations have been considered in computational learning theory [15]
and have been used to obtain large separations [32] between quantum and classical
relativized complexity classes. See [9] for a discussion of more general definitions of
oracle quantum computing.

8.4. Fourier sampling and the power of QTMs. In this section we give ev-
idence that QTMs are more powerful than bounded-error probabilistic TMs. We de-
fine the recursive Fourier sampling problem which on input the program for a Boolean
function takes on value 0 or 1. We show that the recursive Fourier sampling problem
is in BQP. On the other hand, we prove that if the Boolean function is specified by
an oracle, then the recursive Fourier sampling problem is not in BQTime (no(log n)).
This result provided the first evidence that QTMs are more powerful than classical
probabilistic TMs with bounded error probability [11].

One could ask what the relevance of these oracle results is, in view of the non-
relativizing results on probabilistically checkable proofs [36, 3]. Moreover, Arora,
Impagliazzo, and Vazirani [2] make the case that the fact that the P versus NP
question relativizes does not imply that the question “cannot be resolved by current
techniques in complexity theory.” On the other hand, in our oracle results (and also
in the subsequent results of [39]), the key property of oracles that is exploited is their
black-box nature, and for the reasons sketched below, these results did indeed pro-
vide strong evidence that BQP 6= BPP (of course, the later results of [36] gave even
stronger evidence). This is because if one assumes that P 6= NP and the existence of
one-way functions (both these hypotheses are unproven but widely believed by com-
plexity theorists), it is also reasonable to assume that, in general, it is impossible to
(efficiently) figure out the function computed by a program by just looking at its text
(i.e., without explicitly running it on various inputs). Such a program would have
to be treated as a black box. Of course, such assumptions cannot be made if the

question at hand is whether P
?
= NP.

Fourier sampling. Consider the vector space of complex-valued functions f :
Zn

2 → C. There is a natural inner product on this space given by

(f, g) =
∑
x∈Zn

2

f(x)g(x)
∗
.

The standard orthonormal basis for the vector space is the set of delta functions
δy : Zn

2 → C, given by δy(y) = 1 and δy(x) = 0 for x 6= y. Expressing a function
in this basis is equivalent to specifying its values at each point in the domain. The
characters of the group Zn

2 yield a different orthonormal basis consisting of the parity
basis functions χs : Zn

2 → C, given by χs(x) = −1s·x
2n/2

, where s · x =
∑n

i=1 sixi. Given

1456 ETHAN BERNSTEIN AND UMESH VAZIRANI

any function f : Zn
2 → C, we may write it in the new parity basis as f =

∑
s f̂(s)χs,

where f̂ : Zn
2 → C is given by f̂(s) = (f, χs). The function f̂ is called the discrete

Fourier transform or Hadamard transform of f . Here the latter name refers to the
fact that the linear transformation that maps a function f to its Fourier transform f̂
is the Hadamard matrix Hn. Clearly this transformation is unitary, since it is just
effecting a change of basis from one orthonormal basis (the delta function basis) to

another (the parity function basis). It follows that
∑

x |f(x)|2 =
∑

s |f̂(s)|2.
Moreover, the discrete Fourier transform on Zn

2 can be written as the Kronecker
product of the transform on each of n copies of Z2—the transform in that case is
given by the matrix (

1√
2

1√
2

1√
2

− 1√
2

)
.

This fact can be used to write a simple and efficient QTM that affects the discrete
Fourier transformation in the following sense: suppose the QTM has tape alphabet
{0, 1,#} and the cells initially that have only n tape contain nonblank symbols.
Then we can express the initial superposition as

∑
x∈{0,1}n f(x)|x〉, where f(x) is the

amplitude of the configuration with x in the nonblank cells. Then there is a QTM that
affects the Fourier transformation by applying the above transform on each of the n
bits in the n nonblank cells. This takesO(n) steps and results in the final configuration∑

s∈{0,1}n f̂(s)|s〉 (Theorem 8.8 below). Notice that this Fourier transformation is
taking place over a vector space of dimension 2n. On the other hand, the result
of the Fourier transform f̂ resides in the amplitudes of the quantum superposition
and is thus not directly accessible. We can, however, perform a measurement on
the n nonblank tape cells to obtain a sample from the probability distribution P
such that P [s] = |f̂(s)|2. We shall refer to this operation as Fourier sampling. As

we shall see, this is a very powerful operation. The reason is that each value f̂(s)
depends upon all the (exponentially many values) of f , and it does not seem possible
to anticipate which values of s will have large probability (constructive interference)
without actually carrying out an exponential search.

Given a Boolean function g : Zn
2 → {1,−1}, we may define a function f : Zn

2 → C

of norm 1 by letting f(x) = g(x)
2n/2

. Following Deutsch and Jozsa [22], if g is a poly-
nomial time computable function, there is a QTM that produces the superposition∑

x∈{0,1}n g(x)|x〉 in time polynomial in n. Combining this with the Fourier sampling
operation above, we get a polynomial time QTM that samples from a certain dis-
tribution related to the given polynomial time computable function g (Theorem 8.9
below). We shall call this composite operation Fourier sampling with respect to g.

Theorem 8.8. There is a normal form QTM which when run on an initial
superposition of n-bit strings |φ〉 halts in time 2n + 4 with its tape head back in the
start cell and produces final superposition Hn|φ〉.

Proof. We can construct the desired machine using the alphabet {#, 0, 1} and the
set of states {q0, qa, qb, qc, qf}. The machine will operate as follows when started with
a string of length n as input. In state q0, the machine steps right and left and enters
state qb. In state qb, the machine steps right along the input string until it reaches
the # at the end and enters state qc stepping back left to the string’s last symbol.
During this rightward scan, the machine applies the transformation(

1√
2

1√
2

1√
2

− 1√
2

)

QUANTUM COMPLEXITY THEORY 1457

to the bit in each cell. In state qc, the machine steps left until it reaches the # to the
left of the start cell, at which point it steps back right and halts. The following gives
the quantum transition function of the desired machine.

0 1
q0 |0〉|qa〉|R〉 |1〉|qa〉|R〉
qa |#〉|qb〉|L〉
qb |#〉|qc〉|L〉 1√

2
|0〉|qb〉|R〉+ 1√

2
|1〉|qb〉|R〉 1√

2
|0〉|qb〉|R〉 − 1√

2
|1〉|qb〉|R〉

qc |#〉|qf 〉|L〉 |0〉|qc〉|L〉 |1〉|qc〉|L〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

It is can be easily verified that the completion lemma can be used to extend this ma-
chine to a well-formed QTM and that this machine has the desired behavior described
above.

Theorem 8.9. For every polynomial time computable function g : {0, 1}n →
{−1, 1}, there is a polynomial time, stationary QTM where observing the final superpo-

sition on input 0n gives each n-bit string s with probability |f̂(s)|2, where f(x) = g(x)
2n/2

.
Proof. We build a QTM to carry out the following steps.

1. Apply a Fourier transform to 0n to produce
∑

i∈{0,1}n
1

2n/2
|i〉.

2. Compute f to produce
∑

i∈{0,1}n
1

2n/2
|i〉|f(i)〉.

3. Apply a phase-applying machine to produce
∑

i∈{0,1}n
1

2n/2
f(i)|i〉|f(i)〉.

4. Apply the reverse of the machine in step 2 to produce
∑

i∈{0,1}n
1

2n/2
f(i)|i〉.

5. Apply another Fourier transform to produce
∑

i∈{0,1}n
1

2n/2
f̂(s)|s〉 as desired.

We have already constructed above the Fourier transform machine for steps 1 and
5. Since f can be computed in deterministic polynomial time, the synchronization
theorem on page 1428 lets us construct polynomial time QTMs for steps 2 and 4
which take input |i〉 to output |i〉|f(i)〉 and vice versa, with running time independent
of the particular value of i.

Finally, we can apply phase according to f(i) in step 3 by extending to two tracks
the stationary, normal form QTM with alphabet {#,−1, 1} defined by

−1 1
q0 |#〉|q1〉|R〉 −| − 1〉|q1〉|R〉 |1〉|q1〉|R〉
q1 |#〉|qf 〉|L〉 | − 1〉|qf 〉|L〉 |1〉|qf 〉|L〉
qf |#〉|q0〉|R〉 | − 1〉|q0〉|R〉 |1〉|q0〉|R〉

Dovetailing these five stationary, normal form QTMs gives the desired machine.
Remarkably, this quantum algorithm performs Fourier sampling with respect to f

while calling the algorithm for f only twice. To see more clearly why this is remarkable,
consider the special case of the sampling problem where the function f is one of the
(unnormalized) parity functions. Suppose f corresponds to the parity function χk;
i.e., f(i) = (−1)i·k, where i, k ∈ {0, 1}n. Then the result of Fourier sampling with
respect to f is always k. Let us call this promise problem the parity problem: on input
a program that computes f where f is an (unnormalized) parity function, determine
k. Notice that the QTM for Fourier sampling extracts n bits of information (the value
of k) using just two invocations of the subroutine for computing Boolean function f .
It is not hard to show that if f is specified by an oracle, then in a probabilistic setting,
extracting n bits of information must require at least n invocations of the Boolean
function. We now show how to amplify this advantage of quantum computers over

1458 ETHAN BERNSTEIN AND UMESH VAZIRANI

probabilistic computers by defining a recursive version of the parity problem: the
recursive Fourier sampling problem.

To ready this problem for recursion, we first need to turn the parity problem into
a problem with range {−1, 1}. This is easily done by adding a second function g and
requiring the answer g(k) rather than k itself.

Now, we will make the problem recursive. For each problem instance of size n,
we will replace the 2n values of f with 2n independent recursive subproblems of size
n
2 , and so on, stopping the recursion with function calls at the bottom. Since a QTM
needs only two calls to f to solve the parity problem, it will be able to solve an
instance of the recursive problem of size n recursively in time T (n), where

T (n) ≤ poly(n) + 4T
(n

2

)
=⇒ T (n) ≤ poly(n).

However, since a PTM needs n calls to f to solve the parity problem, the straight-
forward recursive solution to the recursive problem on a PTM will require time T (n),
where

T (n) ≥ nT
(n

2

)
=⇒ T (n) ≥ nlog n.

To allow us to prove a separation between quantum and classical machines, we will
replace the functions with an oracle. For any “legal” oracle O, any oracle satisfying
some special constraints to be described below, we will define the language RO. We
will show that there is a QTM which, given access to any legal oracle O, accepts RO

in time O(n logn) with success probability 1 but that there is a legal oracle O such
that RO is not contained in BPTime (no(log n))O.

Our language will consist of strings from {0, 1}∗ with length a power of 2. We
will call all such strings candidates. The decision whether a candidate x is contained
in the language will depend on a recursive tree. If candidate x has length n, then
it will have 2n/2 children in the tree, and in general a node at level l ≥ 0 (counting

from the bottom with leaves at level −1 for convenience) will have 22l children. So,
the root of the tree for a candidate x of length n is identified by the string x, its 2n/2

children are each identified by a string x$x1 where x1 ∈ {0, 1}n/2, and, in general, a
descendent in the tree at level l is identified by a string of the form x$x1$x2$. . . $xm
with |x| = n, |x1| = n

2 , . . . , |xm| = 2l+1. Notice that any string of this form for
some n a power of 2 and l ∈ [0, logn − 1] defines a node in some tree. So, we will
consider oracles O which map queries over the alphabet {0, 1, $} to answers {−1,+1},
and we will use each such oracle O to define a function VO that gives each node a
value {−1,+1}. The language RO will contain exactly those candidates x for which
VO(x) = 1.

We will define VO for leaves (level 0 nodes) based directly on the oracle O. So, if
x is a leaf, then we let VO(x) = O(x).

We will define VO for all other nodes by looking at the answer of O to a particular
query which is chosen depending on the values of VO for its children. Consider node x

at level l ≥ 0. We will insist that the oracle O be such that there is some kx ∈ {0, 1}2l
such that the children of x all have values determined by their parity with kx

∀y ∈ {0, 1}2l , VO(x$y) = (−1)y·kx ,

and we will then give VO(x) the value O(x$kx). We will say that the oracle O is legal
if this process allows us to successfully define VO for all nodes whose level is ≥ 0. Any

QUANTUM COMPLEXITY THEORY 1459

query of the form x$k with x a node at level l ≥ 0 and k ∈ {0, 1}2l , or of the form
x with x a leaf, is called a query at node x. A query which is located in the same
recursive tree as node x, but not in the subtree rooted at x, is called outside of x.
Notice that for any candidate x, the values of VO at nodes in the tree rooted at x and
the decision whether x is in RO all depend only on the answers of queries located at
nodes in the tree rooted at x.

Theorem 8.10. There is an oracle QTM M such that for every legal oracle O,
MO runs in polynomial time and accepts the language RO with probability 1.

Proof. We have built the language RO so that it can be accepted efficiently using
a recursive quantum algorithm. To avoid working through the details required to
implement a recursive algorithm reversibly, we will instead implement the algorithm
with a machine that writes down an iteration that “unwraps” the desired recursion.
Then the looping lemma will let us build a QTM to carry out this iteration.

First consider the recursive algorithm to compute VO for a node x. If x is a leaf,
then the value VO(x) can be found by querying the string x$. If x is a node at level
l ≥ 0, then calculate VO as follows.

1. Split into an equal superposition of the 22l children of x.
2. Recursively compute VO for these children in superposition.
3. Apply phase to each child given by that child’s value VO.
4. Reverse the computation of step 2 to erase the value VO.
5. Apply the Fourier transform converting the superposition of children of x

into a superposition consisting entirely of the single string kx.
6. Query x$kx to find the value VO for x.
7. Reverse steps 1–5 to erase kx (leaving only x and VO(x)).

Notice that the number of steps required in the iteration obeys the recursion
discussed above and hence is polynomial in the length of x. So, we can use the
synchronization theorem on page 1428 to construct a polynomial time QTM which,
for any particular x, writes a list of the steps which must be carried out. Therefore,
we complete the proof by constructing a polynomial time QTM to carry out any such
list of steps.

Since our algorithm requires us to recursively run both the algorithm and its
reverse, we need to see how to handle each step and its reverse. Before we start, we
will fill out the node x to a description of a leaf by adding strings of 0’s. Then, steps
1 and 5 at level l ≥ 0 just require applying the Fourier transform QTM to the 2l bit
string at level l in the current node description. Since the Fourier transform is its
own reverse, the same machine also reverses steps 1 and 5. Step 3 is handled by the
phase-applying machine already constructed above as part of the Fourier sampling
QTM in Theorem 8.9. Again, the transformation in step 3 is its own reverse, so the
same machine can be used to reverse step 3. Step 6 and its reverse can be handled by
a reversible TM that copies the relevant part of the current node description, queries
the oracle, and then returns the node description from the query tape. Notice that
each of these machines takes time which depends only on the length of its input.

Since we have stationary, normal form QTMs to handle each step at level l and
its reverse in time bounded by a polynomial in 2l, we can use the branching lemma
to construct a stationary, normal form QTM to carry out any specified step of the
computation. Dovetailing with a machine which rotates the first step in the list to the
end and inserting the resulting machine into the reversible TM of the looping lemma
gives the desired QTM.

1460 ETHAN BERNSTEIN AND UMESH VAZIRANI

Computing the function VO takes time Ω(nlog n) even for a probabilistic computer
that is allowed a bounded probability of error. We can see this with the following
intuition. First, consider asking some set of queries of a legal O that determine the
value of VO for a node x described by the string x1$. . . $xm at level l. There are two
ways that the asked queries might fix the value at x. The first is that the queries
outside of the subtree rooted at x might be enough to fix VO for x. If this happens,
we say that VO(x) is fixed by constraint. An example of this is that if we asked all of
the queries in the subtrees rooted at all of the siblings of x, then we have fixed VO
for all of the siblings, thereby fixing the string k such that VO(x1$. . . xmy) equals
(−1)y·k.

The only other way that the value of the node x might be fixed is the following.
If the queries fix the value of VO for some of the children of x then this will restrict
the possible values for the string kx such that VO(x$y) always equals (−1)y⊕kx and
such that VO(x) = O(x$kx). If the query x$kx for each possible kx has been asked
and all have the same answers, then this fixes the value VO at x. If the query x$kx
for the correct kx has been asked, then we call x a hit .

Now notice that fixing the values of a set of children of a level l node x restricts

the value of kx to a set of 22l−c possibilities, where c is the maximum size of a linearly
independent subset of the children whose values are fixed. This can be used to prove
that it takes n · n2 · · · 1 = nΩ(log n).

However, this intuition is not yet enough since we are interested in arguing against
a probabilistic TM rather than a deterministic TM. So, we will argue not just that it
takes nΩ(log n) queries to fix the value of a candidate of length n but that if fewer than
nΩ(log n) queries are fixed, then choosing a random legal oracle consistent with those
queries gives to a candidate of length n the value 1 with probability extremely close to
1
2 . This will give the desired result. To see this, call the set of queries actually asked
and the answers given to those queries a run of the probabilistic TM. We will have
shown that if we take any run on a candidate of length n with fewer than nΩ(log n)

queries, then the probability that a random legal oracle agreeing with the run assigns
to x the value 1 is extremely close to 1

2 . This means that a probabilistic TM whose

running time is no(log n/2) will fail with probability 1 to accept RO for a random legal
oracle O.

Definition 8.11. A run of size k is defined as a pair S, f where S is a set of k
query strings and f is map from S to {0, 1} such that there is at least one legal oracle
agreeing with f .

Let r be a run, let y be a node at level l ≥ 2, and let O be a legal oracle at and below
y which agrees with r. Then O determines the string ky for which VO(y) = O(y$ky).
If y$ky is a query in r, then we say O makes y a hit for r. Suppressing the dependency
on r in the notation, we define P (y) as the probability that y is a hit for r when we
choose a legal oracle at and below y uniformly at random from the set of all such
oracles at and below y which agree with r. Similarly, for x an ancestor of y, we define
Px(y) as the probability that y is a hit when a legal oracle is chosen at and below x
uniformly at random from the set of all oracles at and below x which agree with r.

Lemma 8.12. Px(y) ≤ 2P (y).

Proof. Let S be the set of legal oracles at and below y which agree with r. We
can write S as the disjoint union of Sh and Sn, where the former is the set of those
oracles in S that make y a hit for r. Further splitting Sh and Sn according to the
value VO(y), we can write S as the disjoint union of four sets Sh+, Sh−, Sn+, Sn−.

QUANTUM COMPLEXITY THEORY 1461

Using this notation, we have P (y) = card(Sh)
card(Sh)+card(Sn) . It is easy to see that, since the

oracles in Sn do not make y a hit for r, card(Sn+) = card(Sn−) = card(Sn)
2 .

Next consider the set T of all legal oracles defined at and below x, but outside
y, which agree with r. Each oracle O ∈ T determines by constraint the value VO(y)
but leaves the string ky completely undetermined. If we again write T as the disjoint
union of T+ and T− according to the constrained value VO(y), we notice that the set
of legal oracles at and below x is exactly (T+ × S+) ∪ (T− × S−). So, we have

Px(y) =
card(T+)card(Sh+) + card(T−)card(Sh−)

card(T+)card(S+) + card(T−)card(S−)

=
card(T+)card(Sh+) + card(T−)card(Sh−)

card(T+)card(Sh+) + card(T−)card(Sh−) + card(T)card(Sn)/2
.

Without loss of generality, let card(T+) ≥ card(T−). Then since n
n+c with c, n > 0

increases with n, we have

Px(y) ≤ card(T+)card(Sh)

card(T+)card(Sh) + card(T)card(Sn)/2

≤ card(T+)card(Sh)

card(T+)card(Sh) + card(T+)card(Sn)/2

=
2card(Sh)

2card(Sh) + card(Sn)
≤ 2P (y).

For a positive integer n, we define γ(n) = n(n2) · · · 1. Notice that γ(n) > n(log n)/2.

Theorem 8.13. Suppose r is a run, y is a node at level l ≥ 2 with q queries from
r at or below y, and x is an ancestor of y. Then Px(y) ≤ q

γ(n/4) where n = 2l.

Proof. We prove the theorem by induction on l.

So, fix a run r and a node y at level 2 with q queries from r at or below y. If
q = 0, y can never be a hit. So, certainly the probability that y is a hit is at most q
as desired.

Next, we perform the inductive step. So, assume the theorem holds true for any
r and y at level less than l with l ≥ 2. Then, fix a run r and a node y at level l with
q queries from r at or below y. Let n = 2l. We will show that P (y) ≤ q

2γ(n/4) , and

then the theorem will follow from Lemma 8.12. So, for the remainder of the proof,
all probabilities are taken over the choice of a legal oracle at and below y uniformly
at random from the set of all those legal oracles at and below y which agree with r.

Now, suppose that q′ of the q queries are actually at y. Clearly, if we condition
on there being no hits among the children of y, then ky will be chosen uniformly

among all n-bit strings, and hence the probability y is a hit would be q′

2n . If we
instead condition on there being exactly c hits among the 2n children of y, then the

probability that y is a hit must be at most q′

2n−c . Therefore, the probability y is a

hit is bounded above by the sum of q′

2n/2
and the probability that at least n

2 of the
children of y are hits.

Now consider any child z of y. Applying the inductive hypothesis with y and z
taking the roles of x and y, we know that if r has qz queries at and below z, then
Py(z) ≤ qz

γ(n/8) . Therefore the expected number of hits among the children of y is at

most (q−q′)
γ(n/8) . This means that the probability that at least n

2 of the children of y are

1462 ETHAN BERNSTEIN AND UMESH VAZIRANI

hits is at most

(q − q′)
γ(n/8)n/2

=
(q − q′)
2γ(n/4)

.

Therefore,

P (y) ≤ q − q′

2γ(n/4)
+

q′

2n/2
≤ q

2γ(n/4)

since 2γ(n4) < 2n/2 for n > 4.

Corollary 8.14. For any T (n) which is no(log n) relative to a random legal
oracle O, with probability 1, RO is not contained in BPTime (T (n)).

Proof. Fix T (n) which is no(log n).
We will show that for any probabilistic TMM , when we pick a random legal oracle

O, with probability 1, MO either fails to run in time cno(log n) or it fails to accept
RO with error probability bounded by 1

3 . Then since there are a countable number of
probabilistic TMs and the intersection of a countable number of probability 1 events
still has probability 1, we conclude that with probability 1, RO is not contained in
BPTime (no(log n)).

We prove the corollary by showing that, for large enough n, the probability that
MO runs in time greater than T (n) or has error greater than 1

3 on input 0n is at least
1
8 for every way of fixing the oracle answers for trees other than the tree rooted at 0n.
The probability is taken over the random choices of the oracle for the tree rooted at
0n.

Arbitrarily fix a legal behavior for O on all trees other than the one rooted at 0n.
Then consider picking a legal behavior for O for the tree rooted at 0n uniformly at
random and run MO on input 0n. We can classify runs of MO on input 0n based on
the run r that lists the queries the machines asks and the answers it receives. If we
take all probabilities over both the randomness in M and the choice of oracle O, then
the probability that MO correctly classifies 0n in time T (n) is∑

r

Pr[r]Pr[correct | r],

where Pr[r] is the probability of run r, where Pr[correct | r] is the probability the
answer is correct given run r, and where r ranges over all runs with at most T (n)
queries. Theorem 8.13 tells us that if we condition on any run r with fewer than
1
12γ(

n
4) queries, then the probability 0n is a hit is less than 1

12 . This means that
the probability the algorithm correctly classifies 0n, conditioned on any particular
run r with fewer than 1

12γ(
n
4) queries, is at most 7

12 . Therefore, for n large enough
that T (n) is less than 1

12γ(n), the probability MO correctly classifies 0n in time T (n)
is at most 7

12 . So, for sufficiently large n, when we choose O, then with probability
at least 1

8 M
O either fails to run in time T (n) or has success probability less than 2

3
on input 0n.

Appendix A. A QTM is well formed iff its time evolution is unitary.
First, we note that the time evolution operator of a QTM always exists. Note that
this is true even if the QTM is not well formed.

Lemma A.1. If M is a QTM with time evolution operator U , then U has an
adjoint operator U∗ in the inner-product space of superpositions of the machine M .

QUANTUM COMPLEXITY THEORY 1463

Proof. Let M be a QTM with time evolution operator U . Then the adjoint of U is
the operator U ′ and is the operator whose matrix element in any pair of dimensions i, j
is the complex conjugate of the matrix element of U in dimensions j, i. The operator
U ′ defined in this fashion still maps all superpositions to other superpositions (= finite
linear combinations of configurations), since any particular configuration of M can be
reached with nonzero weight from only a finite number of other configurations. It is
also easy to see that for any superpositions φ, ψ,

〈U ′φ|ψ〉 = 〈φ|Uψ〉
as desired.

We include the proofs of the following standard facts for completeness. We will
use them in the proof of the theorem below.

Fact A.2. If U is a linear operator on an inner-product space V and U∗ exists,
then U preserves norm iff U∗U = I.

Proof. For any x ∈ V , the square of the norm of Ux is (Ux,Ux) = (x, U∗Ux).
It clearly follows that if U∗U = I, then U preserves norm. For the converse, let
B = U∗U−I. Since U preserves norm, for every x ∈ V , (x, U∗Ux) = (x, x). Therefore,
for every x ∈ V , (x,Bx) = 0. It follows that B = 0 and therefore U∗U = I.

This further implies the following useful fact.
Fact A.3. Suppose U is an linear operator in an inner-product space V and U∗

exists. Then

∀x ∈ V ‖Ux‖ = ‖x‖ ↔ ∀x, y ∈ V (Ux,Uy) = (x, y).

Proof. Since ‖Ux‖ = ‖x‖ ↔ (Ux,Ux) = (x, x), one direction follows by substi-
tuting x = y. For the other direction, if U preserves norm then by Fact A.2, U∗U = I.
Therefore, (Ux,Uy) = (x, U∗Uy) = (x, y).

We need to establish one additional fact about norm-preserving operators before
we can prove our theorem.

Fact A.4. Let V be a countable inner-product space, and let {|i〉}i∈I be an
orthonormal basis for V . If U is a norm-preserving linear operator on V and U∗

exists, then ∀i ∈ I ‖U∗|i〉‖ ≤ 1. Moreover, if ∀i ∈ I ‖U∗|i〉‖ = 1 then U is unitary.
Proof. Since U preserves norm, ‖UU∗|i〉‖ = ‖U∗|i〉‖. But the projection of UU∗|i〉

on |i〉 has norm |〈i|UU∗|i〉| = ‖U∗|i〉‖2. Therefore ‖U∗|i〉‖ ≥ ‖U∗|i〉‖2, and therefore
‖U∗|i〉‖ ≤ 1.

Moreover, if ‖U∗|i〉‖ = 1, then, since U is norm preserving, ‖UU∗|i〉‖ = 1. On

the other hand, the projection of UU∗|i〉 on |i〉 has norm ‖U∗|i〉‖2 = 1. It follows that
for j 6= i, the projection of UU∗|i〉 on |j〉 must have norm 0. Thus |〈j|UU∗|i〉| = 0. It
follows that UU∗ = I.

If V is finite dimensional, then U∗U = I implies UU∗ = I, and therefore an opera-
tor is norm preserving if and only if it is unitary. However, ifH is infinite dimensional,
then U∗U = I does not imply UU∗ = I.6 Nevertheless, the time evolution operators
of QTMs have a special structure, and in fact these two conditions are equivalent for
the time evolution operator of a QTM.

Theorem A.5. A QTM is well formed iff its time evolution operator is unitary.
Proof. Let U be the norm preserving time evolution operator of a well-formed

QTM M = (Σ, Q, δ). Consider the standard orthonormal basis for the superpositions

6Consider, for example, the space of finite complex linear combinations of positive integers and
the linear operator which maps |i〉 to |i+ 1〉.

1464 ETHAN BERNSTEIN AND UMESH VAZIRANI

of M given by the set of vectors |c〉, where c ranges over all configurations of M (as
always, |c〉 is the superposition with amplitude 1 for configuration c and 0 elsewhere).
We may express the action of U with respect to this standard basis by a countable
dimensional matrix whose c, c′th entry uc,c′ = 〈c′|U |c〉. This matrix has some special
properties. First, each row and column of the matrix has only a finite number of
nonzero entries. Second, there are only finitely many different types of rows, where
two rows are of the same type if their entries are just permutations of each other. We
shall show that each row of the matrix has norm 1, and therefore by Fact A.4 above
U is unitary. To do so we will identify a set of n columns of the matrix (for arbitrarily
large n) and restrict attention to the finite matrix consisting of all the chosen rows and
all columns with nonzero entries in these rows. Let this matrix be the m× n matrix
B. By construction, B satisfies two properties: (1) it is almost square; m

n ≤ 1 + ε for
arbitrarily small ε. (2) There is a constant a such that each distinct row type of the
infinite matrix occurs at least m

a times among the rows of B.

Now the sum of the squared norms of the rows of B is equal to the sum of the
squared norms of the columns. The latter quantity is just n (since the columns of the
infinite matrix are orthonormal by Fact A.2 above). If we assume that some row of
the infinite matrix has norm 1− δ for δ > 0, then we can choose n sufficiently large
and ε sufficiently small so that the sum of the squared norms of the rows is at most
m(1 − 1

a) + m/a(1 − δ) ≤ m −mδ/a ≤ n + nε − nδ/a < n. This gives the required
contradiction, and therefore all rows of the infinite matrix have norm 1 and, therefore,
by Fact A.4 U is unitary.

To construct the finite matrix B let k > 2 and fix some contiguous set of k cells
on the tape. Consider the set of all configurations S such that the tape head is located
within these k cells and such that the tape is blank outside of these k cells. It is easy
to see that the number of such configurations n = k card(Σ)

k
card(Q). The columns

indexed by configurations in S are used to define the finite matrix B referred to above.
The nonzero entries in these columns are restricted to rows indexed by configurations
in S together with rows indexed by configurations where the tape head is in the cell
immediately to the left or right of the k special cells, and such that the tape is blank
outside of these k + 1 cells. The number of these additional configurations over and
above S is at most 2 card(Σ)

k+1
card(Q). Therefore, m = n(1 + 2/kcard(Σ)). For

any ε > 0, we can choose k large enough such that m ≤ n(1 + ε).

Recall that a row of the infinite matrix (corresponding to the operator U) is
indexed by configurations. We say that a configuration c is of type q, σ1, σ2, σ3 if
c is in state q ∈ Q and the three adjacent tape cells centered about the tape head
contain the three symbols σ1, σ2, σ3 ∈ Σ. The entries of a row indexed by c must be a
permutation of the entries of a row indexed by any configuration c′ of the same type
as c. This is because a transition of the QTM M depends only on the state of M and
the symbol under the tape head and since the tape head moves to an adjacent cell
during a transition. Moreover, any configuration d that yields configuration c with
nonzero amplitude as a result of a single step must have tape contents identical to
those of c in all but these three cells. It follows that there are only a finite number
of such configurations d, and the row indexed by c can have only a finite number of
nonzero entries. A similar argument shows that each column has only a finite number
of nonzero entries.

Now for given q, σ1, σ2, σ3 consider the rows of the finite matrix B indexed by
configurations of type q, σ1, σ2, σ3 and such that the tape head is located at one of
the k − 2 nonborder cells. Then |T | = (k − 2)card(Σ)

k−3
. Each row of B indexed

QUANTUM COMPLEXITY THEORY 1465

by a configuration c ∈ T has the property that if d is any configuration that yields c
with nonzero amplitude in a single step, then d ∈ S. Therefore, the row indexed by
c in the finite matrix B has the same nonzero entries as the row indexed by c in the
infinite matrix. Therefore, it makes sense to say that row c of B is of the same type
as row c of the infinite matrix. Finally, the rows of each type constitute a fraction at
least |T |/m of all rows of B. Substituting the bounds from above, we get that this

fraction is at least (k−2)card(Σ)k−3

k card(Σ)k card(Q)(1+2/kcard(Σ))
. Since k ≥ 4, this is at least 1

a for

constant a = 2card(Σ)
3
card(Q)(1 + 1/2card(Σ)). This establishes all the properties

of the matrix B used in the proof above.

Appendix B. Reversible TMs are as powerful as deterministic TM. In
this appendix, we prove the synchronization theorem of section 4.1.

We begin with a few simple facts about reversible TMs. We give necessary and
sufficient conditions for a deterministic TM to be reversible, and we show that, just
as for QTMs, a partially defined reversible TM can always be completed to give a
well-formed reversible TM. We also give, as an aside, an easy proof that reversible
TMs can efficiently simulate reversible, generalized TMs.

Theorem B.1. A TM or generalized TM M is reversible iff both of the following
two conditions hold.

1. Each state of M can be entered while moving in only one direction. In other
words, if δ(p1, σ1) = (τ1, q, d1) and δ(p2, σ2) = (τ2, q, d2) then d1 = d2.

2. The transition function δ is one-to-one when direction is ignored.

Proof. First we show that these two conditions imply reversibility.

Suppose M = (Σ, Q, δ) is a TM or generalized TM satisfying these two conditions.
Then, the following procedure lets us take any configuration of M and compute its
predecessor if it has one. First, since each state can be entered while moving in only
one direction, the state of the configuration tells us in which cell the tape head must
have been in the previous configuration. Looking at this cell, we can see what tape
symbol was written in the last step. Then, since δ is one-to-one we know the update
rule, if any, that was used on the previous step, allowing us to reconstruct the previous
configuration.

Next, we show that the first property is necessary for reversibility. So, for example,
consider a TM or generalized TM M = (Σ, Q, δ) such that δ(p1, σ1) = (τ1, q, L) and
δ(p2, σ2) = (τ2, q, R). Then, we can easily construct two configurations which lead
to the same next configuration: let c1 be any configuration where the machine is in
state p1 reading a σ1 and where the symbol two cells to the left of the tape head is a
τ2, and let c2 be identical to c1 except that the σ1 and τ2 are changed to τ1 and σ2,
the machine is in state p2, and the tape head is two cells further left. Therefore, M is
not reversible. Since similar arguments apply for each pair of distinct directions, the
first condition in the theorem must be necessary for reversibility.

Finally, we show that the second condition is also necessary for reversibility. Sup-
pose that M = (Σ, Q, δ) is a TM or generalized TM with δ(p1, σ1) = δ(p2, σ2). Then,
any pair of configurations which differ only in the state and symbol under the tape
head, where one has (p1, σ1) and the other (p2, σ2), lead to the same next configura-
tion, and again M is not reversible.

Corollary B.2. If M is a reversible TM, then every configuration of M has
exactly one predecessor.

Proof. Let M = (Σ, Q, δ) be a reversible TM. By the definition of reversibility,
each configuration of M has at most one predecessor.

1466 ETHAN BERNSTEIN AND UMESH VAZIRANI

So, let c be a configuration of M in state q. Theorem B.1 tells us that M can
enter state q while moving its tape head in only one direction dq. Since Theorem B.1
tells us that, ignoring direction, δ is one-to-one, taking the inverse of δ on the state q
and the symbol in direction d̄q tells us how to transform c into its predecessor.

Corollary B.3. If δ is a partial function from Q × Σ to Σ×Q×{L,R} satisfying
the two conditions of Theorem B.1, then δ can be extended to a total function that
still satisfies Theorem B.1.

Proof. Suppose δ is a partial function from Q×Σ to Σ×Q×{L,R} that satisfies
the properties of Theorem B.1. Then, for each q ∈ Q let dq be the one direction,
if any, in which q can be entered, and let dq be (arbitrarily) L otherwise. Then we
can fill in undefined values of δ with as yet unused triples of the form (τ, q, dq) so
as to maintain the conditions of Theorem B.1. Since the number of such triples is
card(Σ) card(Q), there will be exactly enough to fully define δ.

Theorem B.4. If M is a generalized reversible TM, then there is a reversible
TM M ′ that simulates M with slowdown at most 2.

Proof. The idea is to replace any transition that has the tape head stand still
with two transitions. The first updates the tape and moves to the right, remembering
which state it should enter. The second steps back to the left and enters the desired
state.

So, if M = (Σ, Q, δ) is a generalized reversible TM then we let M ′ be identical
to M except that for each state q with a transition of the form δ(p, σ) = (τ, q,N)
we add a new state q′ and we also add a new transition rule δ(q′, σ) = σ, q, L for
each σ ∈ Σ. Finally, we replace each transition δ(p, σ) = (τ, q,N) with the transition
δ(p, σ) = (τ, q′, R). Clearly M ′ simulates M with slowdown by a factor of at most 2.

To complete the proof, we need to show that M ′ is also reversible.

So, consider a configuration c of M ′. We need to show that c has at most
one predecessor. If c is in state q ∈ Q and M enters q moving left or right, then the
transitions into q in M ′ are identical to those in M and therefore since M is reversible,
c has at most one predecessor in M ′. Similarly, if c is in one of the new states q′

then the transitions into q′ in M ′ are exactly the same as those into q in M , except
that the tape head moves right instead of staying still. So, again the reversibility of
M implies that c has at most one predecessor. Finally, suppose c is in state q ∈ Q,
where M enters q while standing still. Then, Theorem B.1 tells us that all transitions
in M that enter q have direction N . Therefore, all of them have been removed, and
the only transitions entering q in M ′ are the new ones of the form δ(q′, σ) = σ, q, L.
Again, this means that c can have only one predecessor.

We will prove the synchronization theorem in the following way. Using ideas from
the constructions of Bennett [7] and Morita, Shirasaki, and Gono [33], we will show
that given any deterministic TMM there is a reversible multitrack TM which on input
x produces output x;M(x), and whose running time depends only on the sequence of
head movements of M on input x. Then, since any deterministic computation can be
simulated efficiently by an “oblivious” machine whose head movements depend only
on the length of its input, we will be able to construct the desired “synchronized”
reversible TM.

The idea of Bennett’s simulation is to run the target machine, keeping a history
to maintain reversibility. Then the output can be copied and the simulation run
backward so that the history is exactly erased while the input is recovered. Since the
target tape head moves back and forth, while the history steadily grows, Bennett uses
a multitape TM for the simulation.

QUANTUM COMPLEXITY THEORY 1467

The idea of Morita, Shirasaki, and Gono’s simulation is to use a simulation tape
with several tracks, some of which are used to simulate the tape of the desired machine
and some of which are used to keep the history. Provided that the machine can move
reversibly between the current head position of the target machine and the end of
the history, it can carry out Bennett’s simulation with a quadratic slowdown. Morita,
Shirasaki, and Gono work with TMs with one-way infinite tapes so that the simulating
machine can move between the simulation and the history by moving left to the end of
the tape and then searching back toward the right. In our simulation, we write down
history for every step the target machine takes, rather than just the nonreversible
steps. This means that the end of the history will always be further right than the
simulation, allowing us to work with two-way infinite tapes. Also, we use reversible
TMs that can only move their head in the directions {L,R} rather than the generalized
reversible TMs used by Bennett, Morita, Shirasaki, and Gono.

Definition B.5. A deterministic TM is oblivious if its running time and the
position of its tape head at each time step depend only on the length of its input.

In carrying out our single tape Bennett constructions we will find it useful to
first build simple reversible TMs to copy a string from one track to another and to
exchange the strings on two tracks. We will copy strings delimited by blanks in the
single tape Bennett construction but will copy strings with other delimiters in a later
section.

Lemma B.6. For any alphabet Σ, there is a normal form, reversible TM M
with alphabet Σ×Σ with the following property. When run on input x; y M runs for
2 max(|x|, |y|) + 4 steps, returns the tape head to the start cell, and outputs y;x.

Proof. We let M have alphabet Σ×Σ, state set {q0, q1, q2, q3, qf}, and transition
function defined by

(#,#) other (σ1, σ2)
q0 (#,#), q1, L (σ1, σ2), q1, L
q1 (#,#), q2, R
q2 (#,#), q3, L (σ2, σ1), q2, R
q3 (#,#), qf , R (σ1, σ2), q3, L
qf (#,#), q0, R (σ1, σ2), q0, R

Since each state in M can be entered in only one direction and its transition
function is one-to-one, M is reversible. Also, it can be verified that M performs the
desired computation in the stated number of steps.

Lemma B.7. For any alphabet Σ, there is a normal form, reversible TM M with
alphabet Σ × Σ with the following property. When run on input x, M outputs x;x,
and when run on input x;x it outputs x. In either case, M runs for 2|x| + 4 steps
and leaves the tape head back in the start cell.

Proof. We let M have alphabet Σ×Σ, state set {q0, q1, q2, q3, qf}, and transition
function defined by the following where each transition is duplicated for each nonblank
σ ∈ Σ:

(#,#) (σ,#) (σ, σ)
q0 (#,#), q1, L (σ,#), q1, L (σ, σ), q1, L
q1 (#,#), q2, R
q2 (#,#), q3, L (σ, σ), q2, R (σ,#), q2, R
q3 (#,#), qf , R (σ,#), q3, L (σ, σ), q3, L
qf (#,#), q0, R (σ,#), q0, R (σ, σ), q0, R

1468 ETHAN BERNSTEIN AND UMESH VAZIRANI

Since each state in M can be entered in only one direction and its transition
function is one-to-one, M can be extended to a reversible TM. Also, it can be verified
that M performs the desired computation in the stated number of steps.

Theorem B.8. Let M be an oblivious deterministic TM which on any input
x produces output M(x), with no embedded blanks, with its tape head back in the
start cell, and with M(x) beginning in the start cell. Then there is a reversible TM
M ′ which on input x produces output x;M(x) and on input x;M(x) produces output
x. In both cases, M ′ halts with its tape head back in the start cell and takes time
which depends only on the lengths of x and M(x) and which is bounded by a quadratic
polynomial in the running time of M on input x.

Proof. Let M = (Σ, Q, δ) be an oblivious deterministic TM as stated in the
theorem and let q0, qf be the initial and final states of M .

The simulation will run in three stages.
1. M ′ will simulate M maintaining a history to make the simulation reversible.
2. M ′ will copy its first track, as shown in Lemma B.7.
3. M ′ runs the reverse of the simulation of M erasing the history while restoring

the input.
We will construct a normal form reversible TM for each of the three stages and

then dovetail them together.
Each of our machines will be a four-track TM with the same alphabet. The first

track, with alphabet Σ1 = Σ, will be used to simulate the tape of M . The second
track, with alphabet Σ2 = {#, 1}, will be used to store a single 1 locating the tape
head of M . The third track, with alphabet Σ3 = {#, $} ∪ (Q × Σ), will be used to
write down a list of the transitions taken by M , starting with the marker $. This $
will help us find the start cell when we enter and leave the copying phase. The fourth
track, with alphabet Σ4 = Σ, will be used to write the output of M .

In describing the first machine, we will give a partial list of transitions obeying
the conditions of Theorem B.1 and then appeal to Corollary B.3. Our machines will
usually only be reading and writing one track at a time. So, for convenience we will
list a transition with one or more occurrences of the symbols of the form vi and v′i to
stand for all possible transitions with vi replaced by a symbol from the appropriate
Σi other than the special marker $, and with v′i replaced by a symbol from Σi other
than $ and #.

The first phase of the simulation will be handled by the machine M1 with state
set given by the union of sets Q, Q×Q×Σ× [1, 4], Q× [5, 7], and {qa, qb}. Its start
state will be qa and the final state qf .

The transitions of M1 are defined as follows. First, we mark the position of the
tape head of M in the start cell, mark the start of the history in cell 1, and enter
state q0.

qa, (v1,#,#, v4) → (v1, 1,#, v4), qb, R,
qb, (v1,#,#, v4) → (v1,#, $, v4), q0, R.

Then, for each pair p, σ with p 6= qf and with transition δ(p, σ) = (τ, q, d) in M
we include transitions to go from state p to state q updating the simulated tape of
M while adding (p, σ) to the end of the history. We first carry out the update of
the simulated tape, remembering the transition taken, and then move to the end of
the history to deposit the information on the transition. If we are in the middle of
the history, we reach the end of the history by walking right until we hit a blank.
However, if we are to the left of the history, then we must first walk right over blanks
until we reach the start of the history.

QUANTUM COMPLEXITY THEORY 1469

p, (σ, 1, v3, v4) → (τ,#, v3, v4), (q, p, σ, 1), d
(q, p, σ, 1), (v1,#, $, v4) → (v1, 1, $, v4), (q, p, σ, 3), R
(q, p, σ, 1), (v1,#, v

′
3, v4) → (v1, 1, v

′
3, v4), (q, p, σ, 3), R

(q, p, σ, 1), (v1,#,#, v4) → (v1, 1,#, v4), (q, p, σ, 2), R
(q, p, σ, 2), (v1,#,#, v4) → (v1,#,#, v4), (q, p, σ, 2), R
(q, p, σ, 2), (v1,#, $, v4) → (v1,#, $, v4), (q, p, σ, 3), R
(q, p, σ, 3), (v1,#, v

′
3, v4) → (v1,#, v

′
3, v4), (q, p, σ, 3), R

(q, p, σ, 3), (v1,#,#, v4) → (v1,#, (p, σ), v4), (q, 4), R

When the machine reaches state (q, 4) it is standing on the first blank after the
end of the history. So, for each state q ∈ Q, we include transitions to move from the
end of the history back left to the head position of M . We enter our walk-left state
(q, 5) while writing a # on the history tape. So, to maintain reversibility, we must
enter a second left-walking state (q, 6) to look for the tape head marker past the left
end of the history. When we reach the tape head position, we step left and right
entering state q.

(q, 4), (v1,#,#, v4) → (v1,#,#, v4), (q, 5), L
(q, 5), (v1,#, v

′
3, v4) → (v1,#, v

′
3, v4), (q, 5), L

(q, 5), (v1,#, $, v4) → (v1,#, $, v4), (q, 6), L
(q, 5), (v1, 1, v

′
3, v4) → (v1, 1, v

′
3, v4), (q, 7), L

(q, 5), (v1, 1, $, v4) → (v1, 1, $, v4), (q, 7), L
(q, 6), (v1,#,#, v4) → (v1,#,#, v4), (q, 6), L
(q, 6), (v1, 1,#, v4) → (v1, 1,#, v4), (q, 7), L
(q, 7), (v1, v2, v3, v4) → (v1, v2, v3, v4), q, R

Finally, we put M1 in normal form by including the transition

qf , σ → σ, qa, R

for each σ in the simulation alphabet.
It can be verified that each state can be entered in only one direction using the

above transitions, and relying on the fact that M is in normal form, and we don’t
simulate its transitions from qf back to q0, it can also be verified that the partial
transition function described is one-to-one. Therefore, Corollary B.3 says that we can
extend these transitions to give a reversible TM M1. Notice also that the operation of
M1 is independent of the contents of the fourth track and that it leaves these contents
unaltered.

For the second and third machines, we simply use the copying machine con-
structed in Lemma B.7 above, and the reverse of M1 constructed using Lemma 4.12
on page 1431. Since M1 operated independently of the fourth track, so will its rever-
sal. Therefore, dovetailing these three TMs gives a reversible TM M ′, which on input
x produces output x; ε; ε;M(x) with its tape head back in the start cell, and on input
x; ε; ε;M(x) produces output x.

Notice that the time required by M1 to simulate a step of M is bounded by a
polynomial in the running time of M and depends only on the current head position
of M , the direction M moves in the step, and how many steps have already been
carried out. Therefore, the running time of the first phase of M ′ depends only on
the series of head movements of M . In fact, since M is oblivious, this running time

1470 ETHAN BERNSTEIN AND UMESH VAZIRANI

depends only the length of x. The same is true of the third phase of M ′, since the
reversal of M1 takes exactly two extra time steps. Finally, the running time of the
copying machine depends only on the length of M(x). Therefore, the running time
of M ′ on input x depends only on the lengths of x and M(x) and is bounded by a
quadratic polynomial in the running time of M on x.

Theorem B.9. Let M1 be an oblivious deterministic TM which on any input
x produces output M1(x), with no embedded blanks, with its tape head back in the
start cell, with M1(x) beginning in the start cell, and such that the length of M1(x)
depends only on the length of x. Let M2 be an oblivious deterministic TM with the
same alphabet as M1 which on any input M1(x) produces output x, with its tape head
back in the start cell, and with x beginning in the start cell. Then there is a reversible
TM M ′ which on input x produces output M1(x). Moreover, M ′ on input x halts with
its tape head back in the start cell, and takes time which depends only on the length
of x and which is bounded by a polynomial in the running time of M1 on input x and
the running time of M2 on M1(x).

Proof. Let M1 and M2 be as stated in the theorem with the common alphabet Σ.
Then the idea to construct the desired M ′ is first to run M1 to compute x;M(x),

then to run an exchange routine to produce M(x);x and finally to run M2 to erase the
string x, where each of the three phases starts and ends with the tape head in the start
cell. Using the construction in Theorem B.8, we build normal form, reversible TMs
to accomplish the first and third phases in times which depend only on the lengths of
x and M1(x) and are bounded by a polynomial in the running times of M1 on input
x and M2 on input M1(x). In Lemma B.6 on page 1467 we have already constructed
a reversible TM that performs the exchange in time depending only on the lengths of
the two strings. Dovetailing these three machines gives the desired M .

Since any function computable in deterministic polynomial time can be com-
puted in polynomial time by an oblivious generalized deterministic TM, Theorems B.8
and B.9 together with Theorem 4.2 give us the following.

Theorem 4.3 (synchronization theorem). If f is a function mapping strings
to strings which can be computed in deterministic polynomial time and such that
the length of f(x) depends only on the length of x, then there is a polynomial time,
stationary, normal form QTM which given input x, produces output x; f(x), and whose
running time depends only on the length of x.

If f is a function from strings to strings such that both f and f−1 can be computed
in deterministic polynomial time and such that the length of f(x) depends only on the
length of x, then there is a polynomial time, stationary, normal form QTM, which,
given input x, produces output f(x), and whose running time depends only on the
length of x.

Appendix C. A reversible looping TM. We prove here the looping lemma
from section 4.2.

Lemma 4.13 (looping lemma). There is a stationary, normal form, reversible
TM M and a constant c with the following properties. On input any positive integer
k written in binary, M runs for time O(k logc k) and halts with its tape unchanged.
Moreover, M has a special state q∗ such that on input k, M visits state q∗ exactly k
times, each time with its tape head back in the start cell.

Proof. As mentioned above in section 4.2, the difficulty is to construct a loop
with a reversible entrance and exit. We accomplish this as follows. Using the syn-
chronization theorem, we can build three-track stationary, normal form, reversible
TM M1 = (Σ, Q, δ) running in time polynomial in log k that on input b;x; k where

QUANTUM COMPLEXITY THEORY 1471

b ∈ {0, 1} outputs b′;x + 1; k where b′ is the opposite of b if x = 0 or k − 1 (but not
both) and b′ = b otherwise. Calling the initial and final states of this machine q0, qf ,
we construct a reversible M2 that loops on machine M1 as follows. We will give M2

new initial and final states qa, qz and ensure that it has the following three properties.

1. Started in state qa with a 0 on the first track, M2 steps left and back right,
changing the 0 to a 1, and entering state q0.

2. When in state qf with a 0 on the first track, M2 steps left and back right
into state q0.

3. When in state qf with a 1 on the first track, M2 steps left and back right,
changing the 1 to a 0, and halts.

So, on input 0; 0; k M2 will step left and right into state q0, changing the tape
contents to 1; 0; k. Then machine M1 will run for the first time changing 1; 0;k to
0; 1; k and halting in state qf . Whenever M2 is in state qf with a 0 on the first track,
it reenters q0 to run M2 again. So, machine M2 will run k − 1 more times until it
finally produces 1; k; k. At that point, M2 changes the tape contents to 0; k; k and
halts. So on input 0; 0; k, M2 visits state qf exactly k times, each time with its tape
head back in the start cell. This means we can construct the desired M by identifying
qf as q∗ and dovetailing M2 before and after with reversible TMs, constructed using
the synchronization theorem, to transform k to 0; 0; k and 0; k; k back to k.

We complete the proof by constructing a normal form, reversible M2 that satisfies
the three properties above. We giveM2 the same alphabet asM1 and additional states
qa, qb, qy, qz. The transition function for M2 is the same as that of M1 for states in
Q− qf and otherwise depends only on the first track (leaving the others unchanged)
and is given by the following table

0 1
qa (1, qb, L)
qb (#, q0, R)
qf (0, qb, L) (0, qy, L)
qy (#, qz, R)
qz (#, qa, R) (0, qa, R) (1, qa, R)

It is easy to see that M2 is normal form and satisfies the three properties stated above.
Moreover, since M1 is reversible and obeys the two conditions of Theorem B.1, it
can be verified that the transition function of M2 also obeys the two conditions of
Theorem B.1. Therefore, according to Theorem B.3, the transition function of M2

can be completed giving a reversible TM.

Acknowledgements. This paper has greatly benefited from the careful reading
and many useful comments of Richard Jozsa and Bob Solovay. We wish to thank
them as well as Gilles Brassard, Charles Bennett, Noam Nisan, and Dan Simon.

1472 ETHAN BERNSTEIN AND UMESH VAZIRANI

REFERENCES

[1] L. Adleman, J. DeMarrais, and M. Huang, Quantum computability, SIAM J. Comput., 26
(1997), pp. 1524–1540.

[2] S. Arora, R. Impagliazzo, and U. Vazirani, On the Role of the Cook-Levin Theorem in
Complexity Theory, manuscript, 1993.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and in-
tractability of approximation problems, in Proc. 33rd Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Press, Piscataway, NJ, 1992, pp. 14–23.

[4] L. Babai and S. Moran, Arthur–Merlin games: A randomized proof system, and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[5] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev.
A, 52 (1995), pp. 3457–3467.

[6] P. Benioff, Quantum Hamiltonian models of Turing machines, J. Statist. Phys., 29 (1982),
pp. 515–546.

[7] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525–
532.

[8] C. H. Bennett, Time/space tradeoffs for reversible computation, SIAM J. Comput., 18 (1989),
pp. 766–776.

[9] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of
quantum computing, SIAM J. Comput., 26 (1997), pp. 1510–1523.

[10] E. Bernstein, Quantum Complexity Theory, Ph.D. dissertation, Univ. of California, Berkeley,
May, 1997.

[11] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 11–20.

[12] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory, in
Proc. 7th IEEE Conference on Structure in Complexity Theory, 1992, pp. 132–137.

[13] A. Berthiaume and G. Brassard, Oracle quantum computing, J. Modern Optics, 41 (1994),
pp. 2521–2535.

[14] A. Berthiaume, D. Deutsch, and R. Jozsa, The stabilisation of quantum computation, in
Proc. Workshop on Physics and Computation, Dallas, TX, IEEE Computer Society Press,
Los Alamitos, CA, 1994, p. 60.

[15] N. Bshouty and J. Jackson, Learning DNF over uniform distribution using a quantum ex-
ample oracle, in Proc. 8th Annual ACM Conference on Computational Learning Theory,
ACM, New York, 1995, pp. 118–127.

[16] A. R. Calderbank and P. Shor, Good quantum error correcting codes exist, Phys. Rev. A,
54 (1996), pp. 1098–1106.

[17] Cirac and Zoller, Quantum computation using trapped cold ions, Phys. Rev. Lett., 74 (1995),
pp. 4091–4094.

[18] I. Chuang, R. LaFlamme, P. Shor, and W. Zurek, Quantum computers, factoring and
decoherence, Science, Dec. 8, 1995, pp. 1633–1635.

[19] C. Cohen-Tannoudji, B. Diu, and F. LaLoe, Quantum Mechanics, Longman Scientific &
Technical, Essex, 1977, pp. 108–181.

[20] D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum com-
puter, in Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.

[21] D. Deutsch, Quantum computational networks, in Proc. Roy. Soc. London Ser. A, 425 (1989),
pp. 73–90.

[22] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, in Proc. Roy.
Soc. London Ser. A, 439 (1992), pp. 553–558.

[23] D. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev. A, 51 (1995),
pp. 1015–1022.

[24] C. Dürr, M. Santha, and Thanh, A decision procedure for unitary linear quantum cellular
automata, in Proc. 37th IEEE Symposium on the Foundations of Computer Science, IEEE
Press, Piscataway, NJ, 1996, pp. 38–45.

[25] R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),
pp. 467–488.

[26] R. Feynman, Quantum mechanical computers, Found. Phys., 16 (1986), pp. 507–531; Optics
News, February 1985.

[27] E. Fredkin and T. Toffoli, Conservative Logic, Internat. J. Theoret. Phys., 21 (1982), p. 219.
[28] L. Grover, A fast quantum mechanical algorithm for database search, in Proc. 28th Annual

ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 212–219.

QUANTUM COMPLEXITY THEORY 1473

[29] R. Landauer, Is quantum mechanics useful?, Phil. Trans. R. Soc. A, 353 (1995), pp. 367–376.
[30] R. Lipton, Personal communication, 1994.
[31] S. Lloyd, A potentially realizable quantum computer, Science, 261 (1993), pp. 1569–1571.
[32] J. Machta, Phase Information in Quantum Oracle Computing, Physics Department, Univer-

sity of Massachusetts, Amherst, MA, manuscript, 1996.
[33] K. Morita, A. Shirasaki, and Y. Gono, A 1-tape 2-symbol reversible Turing machine, IEEE

Trans. IEICE, E72 (1989), pp. 223–228.
[34] J. von Neumann, Various Techniques Used in Connection with Random Digits, Notes by G.

E. Forsythe, National Bureau of Standards, Applied Math Series, 12 (1951), pp. 36–38.
Reprinted in von Neumann’s Collected Works, Vol. 5, A. H. Taub, ed., Pergamon Press,
Elmsford, NY, 1963, pp. 768–770.

[35] G. Palma, K. Suominen, and A. Ekert, Quantum Computers and Dissipation, Proc. Roy.
Soc. London Ser. A, 452 (1996), pp. 567–584.

[36] A. Shamir, IP=PSPACE, in Proc. 22nd ACM Symposium on the Theory of Computing, ACM,
New York, 1990, pp. 11–15.

[37] P. Shor, Algorithms for quantum computation: Discrete log and factoring, in Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1994, pp. 124–134.

[38] P. Shor, Fault-tolerant quantum computation, in Proc. 37th Annual IEEE Symposium on the
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1996, pp. 56–65.

[39] D. Simon, On the power of quantum computation, in Proc. 35th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1994, pp. 116–123; SIAM
J. Comput., 26 (1997), pp. 1474–1483.

[40] R. Solovay and A. Yao, manuscript, 1996.
[41] T. Toffoli, Bicontinuous extensions of invertible combinatorial functions, Math. Systems

Theory, 14 (1981), pp. 13–23.
[42] W. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A, 51 (1995), p. 992.
[43] L. Valiant, Personal communication, 1992.
[44] U. Vazirani and V. Vazirani, Random polynomial time is equal to semi-random polynomial

time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, 1985,
pp. 417–428.

[45] J. Watrous, On one dimensional quantum cellular automata, in Proc. 36th Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1995, pp. 528–
537.

[46] A. Yao, Quantum circuit complexity, in Proc. 34th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Press, Piscataway, NJ, 1993, pp. 352–361.

[47] D. Zuckerman, Weak Random Sources, Ph.D. dissertation, Univ. of California, Berkeley, 1990.

ON THE POWER OF QUANTUM COMPUTATION∗

DANIEL R. SIMON†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1474–1483, October 1997 008

Abstract. The quantum model of computation is a model, analogous to the probabilistic Turing
machine (PTM), in which the normal laws of chance are replaced by those obeyed by particles on
a quantum mechanical scale, rather than the rules familiar to us from the macroscopic world. We
present here a problem of distinguishing between two fairly natural classes of functions, which can
provably be solved exponentially faster in the quantum model than in the classical probabilistic
one, when the function is given as an oracle drawn equiprobably from the uniform distribution on
either class. We thus offer compelling evidence that the quantum model may have significantly more
complexity theoretic power than the PTM. In fact, drawing on this work, Shor has recently developed
remarkable new quantum polynomial-time algorithms for the discrete logarithm and integer factoring
problems.

Key words. quantum computation, complexity theory, oracles

AMS subject classifications. 03D15, 68Q10, 81P10

PII. S0097539796298637

1. Introduction. You have nothing to do but mention the quantum theory, and
people will take your voice for the voice of science, and believe anything.

—Bernard Shaw, Geneva (1938)

The suggestion that the computational power of quantum mechanical processes
might be beyond that of traditional computation models was first raised by Feynman
[Fey82]. Benioff [Beni82] had already determined that such processes were at least as
powerful as Turing machines (TMs); Feynman asked in turn whether such quantum
processes could in general be efficiently simulated on a traditional computer. He also
identified some reasons why the task appears difficult and pointed out that a “quan-
tum computer” might be imagined that could perform such simulations efficiently.
His ideas were elaborated on by Deutsch [Deu85], who proposed that such machines,
using quantum mechanical processes, might be able to perform computations that
“classical” computing devices (those that do not exploit quantum mechanical effects)
can only perform very inefficiently. To that end, he developed a (theoretically) physi-
cally realizable model for the “quantum computer” that he conjectured might be more
efficient than a classical TM for certain types of computations.

Since the construction of such a computer is beyond the realm of present technol-
ogy, and would require overcoming a number of daunting practical barriers, it is worth
asking first whether the proposed model even theoretically offers any substantial com-
putational benefits over the classical TM model. The first hint of such a possibility
was given by Deutsch and Jozsa [DJ92], who presented a simple “promise problem”
that can be solved efficiently without error on Deutsch’s quantum computer but that
requires exhaustive search to solve deterministically without error in a classical set-
ting. Berthiaume and Brassard [BB92] recast this problem in complexity theoretic

∗ Received by the editors February 7, 1996; accepted for publication (in revised form) December
2, 1996. A preliminary version of this paper appeared in Proceedings of the 35th IEEE Symposium
on the Foundations of Computer Science (FOCS), Santa Fe, NM, Shafi Goldwasser, ed., IEEE
Computer Society Press, Los Alamitos, CA, 1994, pp. 116–123.

http://www.siam.org/journals/sicomp/26-5/29863.html
† Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 (dansimon@

microsoft.com).

1474

ON THE POWER OF QUANTUM COMPUTATION 1475

terms, constructing an oracle relative to which the quantum computer is exponen-
tially more efficient than any classical (zero-error) PTM. In [BB93], they exhibited a
similar separation for nondeterministic (zero-error) TMs.

Unfortunately, the problems explored in [BB92, BB93] are all efficiently solved by
a (classical) PTM with exponentially small error probability. However, Bernstein and
Vazirani [BV93] subsequently constructed an oracle which produces a superpolyno-
mial relativized separation between the quantum and (classical) probabilistic models.
They also gave the first efficient construction of a universal quantum computer which
can simulate any quantum computer (as defined by Deutsch, subject to a slight con-
straint later removed in [Yao93]) with only polynomial overhead (Deutsch’s universal
quantum computer was subject to exponential slowdown).

In this paper,1 we present an expected polynomial-time algorithm for a quantum
computer that distinguishes between two reasonably natural classes of polynomial-
time computable functions. This task appears computationally difficult in the classical
setting; in particular, if the function is supplied as an oracle, then distinguishing (with
nonnegligible probability) between a random function from one class and a random
member of the other would take exponential time for a classical PTM. (A direct
consequence is an oracle which produces an exponential relativized gap between the
quantum and classical probabilistic models.) Recently Shor [Sho94], drawing on the
general approach presented here and using a number of ingenious new techniques,
has constructed quantum polynomial-time algorithms for the discrete logarithm and
integer factoring problems.

2. The quantum computation model.

2.1. Classical probability versus the quantum model. We can represent
a (classical) probabilistic computation on a TM as a leveled tree, as follows: each
node corresponds to a state of the machine (i.e., a configuration), and each level
represents a step of the computation. The root corresponds to the machine’s starting
configuration, and each other node corresponds to a different configuration reachable
with nonzero probability, in one computation step, from the configuration represented
by its parent node. Each edge, directed from parent to child, is associated with the
probability that the computation follows that edge to the child node’s configuration
once reaching the parent node’s configuration. Obviously, configurations may be
duplicated across a single level of the tree, as children of different parents, as well as
appear on different levels of the tree; nevertheless we represent each such appearance
by a separate node. Also, we say that any such computation tree is well defined,
meaning that the probabilities on the edges emanating from a parent node, and the
configurations associated with its children, are strictly a function of the configuration
associated with the parent node, regardless of the node’s position in the tree.

Of course, this tree must necessarily conform not only to the constraints set by
the definition of the TM whose computation it represents but also to the laws of
probability. For example, the probability of following a particular path from the root
to a node is simply the product of the probabilities along its edges. Hence we can
associate a probability with each node, corresponding to the probability that that node
is reached in the computation, and equal to the product of the probabilities assigned
to the edges in the path leading to it from the root. Moreover, the probability that
a particular configuration is reached at a certain step i in the computation is simply
the sum of the probabilities of all the nodes corresponding to that configuration at

1 An earlier version of this paper appears in [Sim94].

1476 DANIEL R. SIMON

level i in the tree. (For example, the probability of a particular final configuration
is the sum of the probabilities of all leaf nodes corresponding to that configuration.)
Finally, the sum of the probabilities of all the configurations at any level of the tree
must always be 1, regardless of the starting configuration. A necessary and sufficient
condition for a well-defined computation tree to always satisfy this constraint is that
the sum of the probabilities on edges leaving any single node always be 1.

A familiar equivalent representation of our well-defined computation, of course,
is the Markov chain, in which a vector of probabilities for each possible configuration
at a given step is multiplied by a fixed matrix to obtain the vector of probabilities of
each configuration at the next step. For example, a space-S(n)-bounded computation
can be represented by a Markov process with 2O(S(n)) states. Such a process can
always be translated into a PTM, as long as (a) it never takes one configuration to
another with nonzero probability unless the second can be obtained from the first via
a single TM operation (i.e., changing the control state, and/or changing the contents
of the cell under the tape head, and/or moving the head position by one cell); and
(b) it assigns probabilities to new configurations consistently for any set of original
configurations in which the control state and the contents of the cell under the tape
head are identical. We say that processes with this property are local; obviously, the
computation of any PTM can be represented as a computation tree which is not only
well defined but also local.

A computation on a quantum Turing machine (QTM) (as described in [Deu85])
can be represented by a similar tree, but the laws of quantum mechanics require that
we make some adjustments to it. Instead of a probability, each edge is associated
with an amplitude. (In general, an amplitude is a complex number with magnitude at
most 1, but it is shown in [BV93] that it is sufficient for complexity theoretic purposes
to consider only real amplitudes in the interval [−1, 1].) As before, the amplitude of
a node is simply the product of the amplitudes of the edges on the path from the
root to that node. The amplitude of a particular configuration at any step in the
computation is simply the sum of the amplitudes of all nodes corresponding to that
configuration at the level in the tree corresponding to that step. In the vector–matrix
representation corresponding to the classical Markov process, a quantum computation
step corresponds to multiplying the vector of amplitudes of all possible configurations
at the current step by a fixed matrix to obtain the vector representing the amplitude
of each configuration in the next step.

Now, the probability of a configuration at any step is the square of its amplitude.
For example, the probability of a particular final configuration is the square of the sum
(not the sum of the squares) of the amplitudes of all leaf nodes corresponding to that
configuration. This way of calculating probability has some remarkable consequences;
for instance, a particular configuration c could correspond to two leaf nodes with am-
plitudes α and −α, respectively, and the probability of c being the final configuration
would therefore be zero. Yet the parent nodes of these two nodes might both have
nonzero probability. In fact, the computation would produce c with probability α2 if
only the configuration of one of the leaf nodes were in some way different. Similarly,
if both leaf nodes had amplitude α, then the probability of c being the final config-
uration would be, not 2α2, but rather 4α2—that is, more than twice the probability
we would obtain if either of the nodes corresponded to a different configuration. This
mutual influence between different branches of the computation is called interference,
and it is the reason why quantum computation is conjectured to be more powerful, in
a complexity theoretic sense, than classical probabilistic computation. (It also means
that probability is a rather abstract notion for a nonleaf node, with little intuitive

ON THE POWER OF QUANTUM COMPUTATION 1477

connection to the ultimate probability of any particular computation result.)
However, even a quantum computation tree must obey the property that the sum

of the probabilities of configurations at any level must always equal 1. The choice
of amplitudes on the edges leading from a node to its children must therefore be re-
stricted so as to ensure that this condition is always obeyed, regardless of the starting
configuration. Now, it turns out that it is not sufficient simply to require that for
each node the sum of the squares of the amplitudes on edges leading to its children
be 1. In fact, even deterministic (“classical”) computation steps, in which a single
outgoing edge to a single child has amplitude 1, can violate this constraint by causing
previously different configurations in different branches of the tree to become identi-
cal. Such an event might change the pattern of interference, thereby altering the sum
of the probabilities of the configurations.

Computation steps which never violate this constraint are called unitary, because
they are equivalent to multiplying the vector of amplitudes of all possible configu-
rations by a unitary matrix. (Recall that a unitary matrix is one whose inverse is
its conjugate transpose; when we restrict ourselves to real amplitudes, such a matrix
becomes orthogonal—that is, equal to the inverse of its transpose.) A QTM must
always execute unitary steps; for instance, its deterministic steps must be reversible,
in the sense that the preceding configuration can always be determined given the
current one. (This restriction eliminates the aforementioned problem of distinct con-
figurations suddenly becoming identical.) To be unitary, nonclassical steps must also
be reversible, in the sense that some unitary (nonclassical) step “undoes” the step.
Such “unflipping” of quantum coins is made possible by the counterintuitive effects
of interference, which can cause alternative branches to cancel each other out, leaving
the remaining ones (possibly all leading to an identical outcome) certain.

The QTM model of computation described here is simply a PTM in which the
rules described above replace those of classical probability. (A more formal defini-
tion of an essentially equivalent QTM model can be found in [BV93].) Just as the
computation tree of a classical probabilistic computation is always well defined and
local, with probabilities always summing to 1, the computation tree of a quantum
computation is always well defined, local, and unitary. At each step, the amplitudes
of possible next configurations are determined by the amplitudes of possible current
configurations, according to a fixed, local, unitary transformation representable by a
matrix analogous to the stochastic matrix of a Markov process.

It is important to note that the standard equivalent characterization of a classi-
cal probabilistic computation tree, in which a deterministic machine simply reads a
tape containing prewritten outcomes of independent fair coin tosses, does not appear
to have a counterpart in the quantum model. It is true that an efficient universal
QTM was shown in [BV93] to require only a fixed, standard set of amplitudes for
all its nonclassical steps. However, the reversibility condition guarantees that no new
interference will be introduced once those steps have been completed (say, after all
the “quantum coins” have been tossed), and any remaining computation will thus be
unable to exploit quantum effects. Hence the classical and nonclassical parts of the
quantum computation tree cannot be “teased apart,” as can the deterministic and
probabilistic parts of a classical computation tree, and we must always keep an entire
tree in mind when we deal with quantum computation, rather than assuming we can
just follow a particular (deterministic) branch after some point. We therefore refer
to a quantum computation as resulting, at any one step, in a superposition of all the
branches of its tree simultaneously.

1478 DANIEL R. SIMON

2.2. Notation and an example. It is useful to have a notation to denote
superpositions (that is, entire levels of a computation tree). We say that at any step
i, the computation is in a superposition of all the configurations |c1〉, . . . , |ck〉 corre-
sponding to nodes that appear in level i of the tree representing the computation, each
|cj〉 having amplitude αj . (Borrowing quantum mechanics notation, we distinguish
symbols representing configurations from those representing amplitudes by placing |〉
brackets around configuration symbols.) An abbreviated notation for this superpo-
sition is

∑
j αj |cj〉; as we shall see, the suggestive addition/summation notation for

superpositions is quite appropriate. A simple example of a unitary quantum step is
the quantum “fair coin flip” performed upon a single bit. It is represented by the
following matrix M :

1√
2

[
1 1
1 −1

]
.

M acts on 2-element column vectors whose top and bottom entries represent the
amplitudes of the states |0〉 and |1〉, respectively. A bit in state |0〉 is transformed
by M into a superposition of |0〉 and |1〉, both with amplitude 1/

√
2. Similarly, a

bit in state |1〉 is transformed into a superposition of |0〉 and |1〉 with amplitude of
magnitude 1/

√
2 in each case, but with the sign, or phase of the amplitude of |1〉 being

negative. In other words, the state |0〉 is transformed into (1/
√

2)|0〉+(1/
√

2)|1〉, and
|1〉 becomes (1/

√
2)|0〉+ (−1/

√
2)|1〉.

It turns out that this transformation is its own inverse. For example, performing
it a second time on a bit that was originally in state |0〉 produces (1/

√
2)((1/

√
2)|0〉+

(1/
√

2)|1〉)+(1/
√

2)((1/
√

2)|0〉+(−1/
√

2)|1〉). Collecting like terms in this expression
(here we see the aptness of the addition/summation notation) allows us to obtain the
amplitude of each distinct configuration, which in this case is 1 for |0〉 and 0 for |1〉.
Similarly, performing this same transformation twice on the initial configuration |1〉
gives us |1〉 (with amplitude 1, and hence probability 1) again.

In a system of n bits, with 2n possible configurations, we can perform such a
transformation on each bit independently in sequence. The matrices representing
these transformations will be of dimension 2n × 2n, of course; their rows, each corre-
sponding to a different configuration, will each have two nonzero entries, taken from
either the top or bottom row of M . Their columns will similarly have two nonzero
entries each, taken from either the left or right column of M . Also, they will all be
unitary, since they each represent a local, unitary transformation.

The result of performing these n different transformations in sequence will be
a superposition of all possible n-bit strings. The amplitude of each string at the
end of the n transformations will have magnitude 2−n/2. As the transformations are
applied in turn, the phase of a resulting configuration is changed when a bit that was
previously a 1 remains a 1 after the transformation is performed. Hence, the phase of
the amplitude of string x is determined by the parity of the dot product of the original
configuration string and x. More precisely, if the string w is the original configuration,
then performing the product transformation composed of these n transformations in
sequence will result in the superposition

2−n/2
∑
x

(−1)w·x|x〉.

This product transformation was introduced in [DJ92] and is referred to in [BV93] as
the Fourier transformation F .

ON THE POWER OF QUANTUM COMPUTATION 1479

3. Using quantum computation.

3.1. Problem: Is a function invariant under some xor-mask? Suppose
we are given a function f : {0, 1}n → {0, 1}m, with m ≥ n, and we are promised that
either f is one-to-one, or there exists a nontrivial n-bit string s such that for any pair
of distinct inputs x and x′, f(x) and f(x′) are equal if and only if the bits of x and
x′ differ in exactly those positions where the bits of s are 1. We wish to determine
which of these conditions holds for f , and, in the second case, to find s.

Definition 3.1. Given a function f : {0, 1}n → {0, 1}m, with m ≥ n, the
xor-mask invariance of f (XMI(f)) is

• s, if there exists a nontrivial string s of length n such that ∀x 6= x′(f(x) =
f(x′) ⇔ x′ = x⊕ s), where ⊕ denotes bitwise exclusive-or ;

• 0n, if f is one-to-one; and
• undefined otherwise.

Theorem 3.2. There exists an algorithm for a QTM which computes XMI(f) (if
it is defined), with zero error probability, in expected time O(nTf (n) + G(n)), where
Tf (n) is the time required to compute f on inputs of size n, and G(n) is the time
required to solve an n× n linear system of equations over Z2.

Proof. The algorithm is very simple, consisting essentially of (an expected) O(n)
repetitions of the following routine.

Routine Fourier-twice

1. Perform the transformation F described above on a string of n zeros, pro-
ducing 2−n/2

∑
x |x〉.

2. Compute f(x), concatenating the answer to x, thus producing 2−n/2
∑

x |(x,
f(x))〉.

3. Perform F on x, producing 2−n
∑

y

∑
x(−1)x·y|(y, f(x))〉.

End Fourier-twice

Note that the (deterministic) computation of (x, f(x)) from x in time Tf (n) in
step 2 can always be made reversible (and hence unitary) at the cost of only a con-
stant factor in the number of computation steps. This is due to a result obtained
independently by Lecerf [Lec63] and Bennett [Benn73].

Suppose f is one-to-one. Then after each performance of Fourier-twice, all the
possible configurations |(y, f(x))〉 in the superposition will be distinct, and their am-
plitudes will therefore all be 2−n, up to phase. Their probabilities will therefore each
be 2−2n, and k independent repetitions of Fourier-twice will thus yield k configu-
rations each distributed uniformly and independently over configurations of the form
|(y, f(x))〉.

Now suppose that there is some s such that ∀x 6= x′(f(x) = f(x′) ⇔ x′ = x⊕ s).
Then for each y and x, the configurations |(y, f(x))〉 and |(y, f(x⊕ s))〉 are identical,
and the amplitude α(x, y) of this configuration will be 2−n((−1)x·y + (−1)(x⊕s)·y).
Note that if y ·s ≡ 0 (mod 2), then x ·y ≡ (x⊕s) ·y (mod 2), and α(x, y) = 2−n+1;
otherwise α(x, y) = 0. Thus k independent repetitions of Fourier-twice will yield
k configurations distributed uniformly and independently over configurations of the
form |(y, f(x))〉 such that y · s ≡ 0 (mod 2).

In both cases, after an expected O(n) repetitions of Fourier-twice, sufficiently
many linearly independent values of y will have been collected that the nontrivial
string s∗ whose dot product with each is even is uniquely determined. s∗ can then
easily be obtained by solving the linear system of equations defined by these values
of y. (Once the solution space is constrained to one d imension in (Z2)

n, it will yield

1480 DANIEL R. SIMON

exactly two solutions, one of which is nontrivial.) In the second case, this string s∗

must be the s we are looking for, since we know that y · s ≡ 0 (mod 2) for each y
generated in the second case. On the other hand, in the first case, where f is one-
to-one, s∗ will simply be a random string. Hence, evaluation of, say, f(0n) and f(s∗)
will reveal whether we have found the true s (in the second case) or simply selected
a random string (in the first case).

If we allow a bounded error probability, we can use essentially the same algorithm
to solve slightly less constrained promise problems. For example, in the case where f is
one-to-one, the outputs of n/ε repetitions of Fourier-twice (for constants ε < 1) will
with probability 1−2O(n) contain a basis for (Z2)

n. On the other hand, if there exists
an s such that for a fraction at least 1− ε/n of possible choices of x, f(x) = f(x⊕ s),
then the outputs of n/ε repetitions of Fourier-twice will still all satisfy y · s ≡ 0
(mod 2), with constant probability, regardless of any other properties of f . Hence we
can efficiently distinguish between these two classes of function (for appropriate ε) on
a quantum computer with negligible error probability.

3.2. Relativized hardness of our problem. Now, in a relativized setting,
suppose that an oracle is equiprobably either an oracle uniformly distributed among
permutations on n-bit values or an oracle uniformly distributed among those two-to-
one functions f for which there exists a unique nontrivial s such that f(x) always
equals f(x ⊕ s). Then a classical probabilistic oracle TM would require exponen-
tially many oracle queries to successfully distinguish the two cases with probability
nonnegligibly greater than 1/2.

Theorem 3.3. Let O be an oracle constructed as follows: for each n, a random
n-bit string s(n) and a random bit b(n) are uniformly chosen from {0, 1}n and {0, 1},
respectively. If b(n) = 0, then the function fn : {0, 1}n → {0, 1}n chosen for O to
compute on n-bit queries is a random function uniformly distributed over permutations
on {0, 1}n; otherwise, it is a random function uniformly distributed over two-to-one
functions such that fn(x) = fn(x⊕ s(n)) for all x, where ⊕ denotes bitwise exclusive-
or. Then any PTM that queries O no more than 2n/4 times cannot correctly guess
b(n) with probability greater than (1/2)+2−n/2, over choices made in the construction
of O.

Proof. Consider any such PTM M . We say that M ’s choice of the first k queries
is good for n if M queries O at two n-bit input values whose exclusive or is s(n). If M
makes a good choice of 2n/4 queries for n, then the distribution on answers given by
O differs depending on b(n); otherwise, the distributions are identical (i.e., random,
uniformly distributed distinct values for each distinct query). Since the probability
that M guesses b(n) is only greater than 1/2 when its choices are good for n, this
probability is also bounded above by 1/2 + δ, where δ is the probability that M ’s
queries are good for n. Hence, we need only calculate a bound on δ to obtain a bound
on M ’s probability of guessing b(n).

Note that the probability that M ’s first k queries are good for n is equal to the
sum of the conditional probabilities, for each of the queries, that M ’s queries up to
and including that query are good for n, given that the previous ones were not. Note
also that given a particular fixed sequence of j queries (and their answers) which is
not good for n, the conditional distribution on s(n) (over choices made in constructing
O) is uniform over the elements of {0, 1}n for which those j queries are still not good
for n. (This is because all such possible sequences are equally likely for any s(n),
and there are equally many such sequences regardless of s(n).) For example, if the j
queries are such that their pairwise bitwise exclusive-ors are all distinct, then s(n) is

ON THE POWER OF QUANTUM COMPUTATION 1481

conditionally distributed uniformly over the 2n − j(j − 1)/2 possible values for which
the sequence of queries is still not good for n.

Now, consider M ’s kth oracle query to O, assuming that M ’s first k − 1 queries
were not good for n. This kth query is completely determined by O’s answers to the
first k − 1 queries and by M ’s probabilistic choices; we will call it q. The probability
(over choices made in constructing O) that O’s answer to q is the same as its answer
to (a distinct) one of the k − 1 previous queries (and hence that M ’s first k queries
are good for n) is at most k/(2n − (k − 2)(k − 1)/2), since there are at most k
choices of s(n) (which was uniformly chosen from {0, 1}n) for which such a “collision”
occurs, and s(n) is conditionally distributed uniformly over all but the (at most)
(k − 1)(k − 2)/2 values for which M ’s first k − 1 queries is not good. Hence, for
any sequence of j = 2n/4 queries, the probability that it is good for n is at most∑j

k=1(k/(2
n− (k−2)(k−1)/2)) ≤∑j

k=1(k/(j
4−j2)) ≤ (j2 +j)/(2(j4−j2)) ≤ 2−n/2

(for n ≥ 1). It follows that M cannot estimate b(n) with probability better than
(1/2) + 2−n/2.

We can also use Theorem 3.3 to prove the existence of a specific oracle relative
to which there is an exponential gap (in terms of classical computing time) between
BPP and its quantum analogue, BQP (defined in the natural way; see [BV93]). Let
E be the (countable) set of classical oracle PTMs making at most 2n/4 queries on
input 1n. We say that M ∈ E solves an oracle O generated as in the above theorem if
for infinitely many n, M computes b(n), with error bounded away from 1/2 by some
constant, on input 1n. Theorem 3.3 tells us that for any M , the probability that
M solves an O so chosen is 0. Since E is countable, an oracle O so generated will
therefore with probability 1 be solved by no M ∈ E. Hence with probability 1 the
language {1n|b(n) = 1}, for b(n) chosen as in Theorem 3.3, cannot be accepted with
error bounded away from 1/2 by any M ∈ E.

Theorem 3.4. There exist an oracle O and constant ε relative to which BQP 6⊆
PTIME(2εn) (with two-sided error).

4. Conclusion. Since any quantum computer running in polynomial time can
be fairly easily simulated in PSPACE, as was pointed out in [BV93], we are unlikely
to be able to prove anytime soon that BQP is larger than P . However, Shor [Sho94]
has recently made a huge advance toward establishing the complexity-theoretic ad-
vantage of the quantum model compared to the classical one, by giving quantum
polynomial-time algorithms for two well-known presumed-hard problems: computing
discrete logarithms modulo an arbitrary prime and factoring integers. His algorithms
follow the very rough outline of the ones presented here, but with many additional so-
phistications that allow them to work over the field Z∗

p (for primes p such that p−1 is
smooth) rather than (Z2)

n, and to extract much more than a single bit of information
per iteration. A logical next step might be to try to separate BPP and BQP based on
a more general complexity-theoretic assumption such as P 6= NP or the existence of
one-way functions. Alternatively, it may be possible to prove limits to the advantages
of quantum computation through simulation results of some kind. (In [BBBV94], for
example, oracle methods are used to give evidence that NP 6⊆ BQP . On the other
hand, Grover [Gro96] has recently shown that for NP -complete decision problems,
the associated search problem with solutions of size n can be solved probabilistically,
with bounded error, in time 2n/2 on a quantum computer—i.e., more efficiently than
any known classical probabilistic algorithm.)

Another natural question regarding the model is whether the “fair quantum coin
flip” suffices as a universal nonclassical step, the way its classical counterpart, the

1482 DANIEL R. SIMON

fair coin flip, suffices as a universal (classical) probabilistic step. Recent work in
this direction (see, for instance, [DiV95], [BBCD95]) has shown that there are many
choices of a single nonclassical operation that will in fact suffice in simulating quantum
computations which use arbitrary feasible quantum operations; however, it is not
known whether the “fair quantum coin flip” is one such choice.

Another issue is that of alternative models of quantum computation. Yao [Yao93]
has presented a quantum circuit model (following [Deu89]) and proven it equivalent
to the QTM. In contrast, it is not yet known whether a quantum cellular automa-
ton is equivalent or more powerful (see [DST96]). Still other distinct quantum-based
computational models may exist, as well. For example, any unitary “evolution” ma-
trix describing a quantum computation (in any model) is related (by Schrodinger’s
equation) to a corresponding Hermitian “Hamiltonian” matrix which describes the
same process. There is also a natural notion of locality for Hamiltonians—but evo-
lution matrices and their associated Hamiltonians are not necessarily both local or
both nonlocal. It is therefore unclear whether even the definition of BQP (for QTMs
or for any other model) is the same for operator-based and Hamiltonian-based en-
codings. (Feynman has shown, in [Fey86], that the Hamiltonian-based model is at
least as powerful as the unitary operator-based one; whether the reverse is true is not
known.)

Beyond the question of models is the matter of their implementation. For exam-
ple, any physical realization of a quantum computer would necessarily be subject to
some error; exact superpositions would end up being represented by approximations
just as deterministic discrete computations and random coin flips are approximated
in modern computers using analog quantities such as voltages. Considerable work
has been done on the feasibility of resiliently simulating true randomness with “ap-
proximate randomness” (see, for example, [VV85], [CG88]); similar work is necessary
to determine if computation using approximations of quantum superpositions can be
made comparably resilient. Recent work by Shor [Sho96] on quantum error-correcting
codes has made progress toward this goal, showing that errors conforming to a cer-
tain restrictive model can in fact be corrected. However, it is not known how well
that model covers the types of error likely to be encountered in a practical quantum
computer. Resolution of these and other theoretical issues would be a crucial step
toward understanding both the utility and the ultimate feasibility of implementing a
quantum computer.

Acknowledgments. Many thanks to Charles Bennett, Ethan Bernstein, Gilles
Brassard, Jeroen van de Graaf, Richard Jozsa, and Dominic Mayers for valuable
insights and helpful discussion.

REFERENCES

[Beni82] P. Benioff, Quantum mechanical Hamiltonian models of Turing machines, J. Statist.
Phys., 29 (1982), pp. 515–546.

[Benn73] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973),
pp. 525–532.

[BBBV94] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weak-
nesses of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510–1523.

[BB92] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity the-
ory, in Proc. 7th IEEE Conference on Structure in Complexity Theory, Boston, MA,
1992, pp. 132–137.

[BB93] A. Berthiaume and G. Brassard, Oracle quantum computing, J. Modern Optics, 41
(1994), pp. 2521–2535.

ON THE POWER OF QUANTUM COMPUTATION 1483

[BBCD95] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T.

Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computa-
tion, Phys. Rev. A, 52 (1995), pp. 3457–3467.

[BV93] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th ACM Symp.
on Theory of Computation, San Diego, CA, 1993, pp. 11–20; SIAM J. Comput., 26
(1997), pp. 1411–1473.

[CG88] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[Deu85] D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum
computer, in Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 73–90.

[Deu89] D. Deutsch, Quantum computational networks, in Proc. Roy. Soc. London Ser. A, 425
(1989), pp. 73–90.

[DiV95] D. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev. A, 51
(1995), pp. 1015–1022.

[DJ92] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, in Proc.
Roy. Soc. London Ser. A, 439 (1992), pp. 553–558.

[DST96] C. Dürr, H. Lê Thanh, and M. Santha, A decision procedure for well-formed lin-
ear quantum cellular automata, in Proc. 13th Symposium on Theoretical Aspects of
Computer Science, Grenoble, France, 1996, pp. 281–292.

[Fey82] R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),
pp. 467–488.

[Fey86] R. Feynman, Quantum mechanical computers, Found. Phys., 16 (1986), pp. 507–531.
[Gro96] L. Grover, A fast quantum mechanical algorithm for database search, in Proc. 28th ACM

Symp. on Theory of Computation, Philadelphia, PA, 1996, pp. 212–219.
[Lec63] Y. Lecerf, Machines de Turing reversibles. Récursive insolubilité en nεN de l’équation

u = θn ou θ est un “isomorphism de codes”, Comptes Rendus de L’Academie Fran-
caise des Sciences, 257 (1963), pp. 2597–2600.

[Sho94] P. Shor, Algorithms for quantum computation: Discrete log and factoring, in Proc. 35th
IEEE Symp. on Foundations of Computer Science, Santa Fe, NM, 1994, pp. 124–134.

[Sho96] P. Shor, Fault-tolerant quantum computation, in Proc. 37th IEEE Symp. on Foundations
of Computer Science, Burlington, VT, 1996, pp. 56–65.

[Sim94] D. Simon, On the power of quantum computation, in Proc. 35th IEEE Symp. on Foun-
dations of Computer Science, Santa Fe, NM, 1994, pp. 116–123.

[VV85] U. V. Vazirani and V. V. Vazirani, Random polynomial time is equal to slightly-random
polynomial time, in Proc. 26th IEEE Symp. on Foundations of Computer Science,
Portland, OR, 1985, pp. 417–428.

[Yao93] A. Yao, Quantum circuit complexity, in Proc. 34th IEEE Symp. on Foundations of Com-
puter Science, Palo Alto, CA, 1993, pp. 352–361.

POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION
AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER∗

PETER W. SHOR†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1484–1509, October 1997 009

Abstract. A digital computer is generally believed to be an efficient universal computing device;
that is, it is believed able to simulate any physical computing device with an increase in computation
time by at most a polynomial factor. This may not be true when quantum mechanics is taken into
consideration. This paper considers factoring integers and finding discrete logarithms, two problems
which are generally thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems
on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the
input size, e.g., the number of digits of the integer to be factored.

Key words. algorithmic number theory, prime factorization, discrete logarithms, Church’s
thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

AMS subject classifications. 81P10, 11Y05, 68Q10, 03D10

PII. S0097539795293172

1. Introduction. One of the first results in the mathematics of computation,
which underlies the subsequent development of much of theoretical computer science,
was the distinction between computable and noncomputable functions shown in pa-
pers of Church [1936], Post [1936], and Turing [1936]. The observation that several
apparently different definitions of what it meant for a function to be computable
yielded the same set of computable functions led to the proposal of Church’s thesis,
which says that all computing devices can be simulated by a Turing machine. This
thesis greatly simplifies the study of computation, since it reduces the potential field
of study from any of an infinite number of potential computing devices to Turing ma-
chines. Church’s thesis is not a mathematical theorem; to make it one would require
a precise mathematical description of a computing device. Such a description, how-
ever, would leave open the possibility of some practical computing device which did
not satisfy this precise mathematical description and thus would make the resulting
theorem weaker than Church’s original thesis.

With the development of practical computers, it became apparent that the dis-
tinction between computable and noncomputable functions was much too coarse; com-
puter scientists are now interested in the exact efficiency with which specific functions
can be computed. This exact efficiency, on the other hand, was found to be too precise
a quantity to work with easily. The generally accepted compromise between coarse-
ness and precision distinguishes efficiently from inefficiently computable functions by
whether the length of the computation scales polynomially or superpolynomially with
the input size. The class of problems which can be solved by algorithms having a
number of steps polynomial in the input size is known as P.

For this classification to make sense, it must be machine independent. That is, the
question of whether a function is computable in polynomial time must be independent

∗Received by the editors October 16, 1995; accepted for publication (in revised form) December 2,
1996. This paper is an expanded version of a paper that appeared in Proc. 35th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 124–134.

http://www.siam.org/journals/sicomp/26-5/29317.html
†AT&T Labs–Research, Room C237, 180 Park Avenue, Florham Park, NJ 07932 (shor@

research.att.com).

1484

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1485

of the type of computing device used. This corresponds to the following quantitative
version of Church’s thesis, which has been called the “strong Church’s thesis” by
Vergis, Steiglitz, and Dickinson [1986] and which makes up half of the “invariance
thesis” of van Emde Boas [1990].

Thesis 1.1 (quantitative Church’s thesis). Any physical computing device can be
simulated by a Turing machine in a number of steps polynomial in the resources used
by the computing device.

Readers who are not comfortable with Turing machines may think instead of
digital computers having an amount of memory that grows linearly with the length of
the computation, as these two classes of computing machines can efficiently simulate
each other. In statements of this thesis, the Turing machine is sometimes augmented
with a random number generator, as it has not yet been determined whether there are
pseudorandom number generators which can efficiently simulate truly random number
generators for all purposes.

There are two escape clauses in the above thesis. One of these is the word “phys-
ical.” Researchers have produced machine models that violate the above quantitative
Church’s thesis, but most of these have been ruled out by some reason for why they
are not physical, that is, why they could not be built and made to work. The other
escape clause in the above thesis is the word “resources,” the meaning of which is
not completely specified above. There are generally two resources which limit the
ability of digital computers to solve large problems: time (computational steps) and
space (memory). There are more resources pertinent to analog computation; some
proposed analog machines that seem able to solve NP-complete problems in poly-
nomial time have required exponentially precise parts or an exponential amount of
energy. (See Vergis, Steiglitz, and Dickinson [1986] and Steiglitz [1988]; this issue is
also implicit in the papers of Canny and Reif [1987] and Choi, Sellen, and Yap [1995]
on three-dimensional shortest paths.)

For quantum computation, in addition to space and time there is also a third
potentially important resource: precision. For a quantum computer to work, at least
in any currently envisioned implementation, it must be able to make changes in the
quantum states of objects (e.g., atoms, photons, or nuclear spins). These changes
can clearly not be perfectly accurate but must contain some small amount of inherent
imprecision. If this imprecision is constant (i.e., it does not depend on the size of the
input), then it is not known how to compute any functions in polynomial time on a
quantum computer that cannot also be computed in polynomial time on a classical
computer with a random number generator1. However, if we let the precision grow
polynomially in the input size (so the number of bits of precision grows logarithmically
in the input size), we appear to obtain a more powerful type of computer. Allowing
the same polynomial growth in precision does not appear to confer extra computing
power to classical mechanics, although allowing exponential growth in precision may
[Hartmanis and Simon 1974; Vergis, Steiglitz, and Dickinson 1986].

As far as we know, what precision is possible in quantum state manipulation is
dictated not by fundamental physical laws but by the properties of the materials from
which and the architecture with which a quantum computer is built. It is currently not
clear which architectures, if any, will give high precision, and what this precision will
be. If the precision of a quantum computer is large enough to make it more powerful

1Note added in proof. This is no longer true. See Aharonov and Ben-Or [Proc. 29th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1997, pp. 176–188]; Gottesman, Evslin,
Kakade, and Preskill [manuscript, 1997]; Kitaev [manuscript, 1997], Knill, Laflamme, and Zurek
[LANL e-print quant-ph/9702058, Los Alamos National Laboratories, Los Alamos, NM, 1997].

1486 PETER W. SHOR

than a classical computer, then in order to understand its potential it is important
to think of precision as a resource that can vary. Treating the precision as a large
constant (even though it is almost certain to be constant for any given machine) would
be comparable to treating a classical digital computer as a finite automaton—since
any given computer has a fixed amount of memory, this view is technically correct;
however, it is not particularly useful.

Because of the remarkable effectiveness of our mathematical models of computa-
tion, computer scientists have tended to forget that computation is dependent on the
laws of physics. This can be seen in the statement of the quantitative Church’s thesis
in van Emde Boas [1990], where the word “physical” in the above phrasing is replaced
by the word “reasonable.” It is difficult to imagine any definition of “reasonable” in
this context which does not mean “physically realizable,” i.e., that this computing
machine could actually be built and would work.

Computer scientists have become convinced of the truth of the quantitative
Church’s thesis through the failure of all proposed counterexamples. Most of these
proposed counterexamples have been based on the laws of classical mechanics; how-
ever, the universe is in reality quantum mechanical. Quantum mechanical objects
often behave quite differently from how our intuition, based on classical mechanics,
tells us they should. It thus seems plausible that the natural computing power of clas-
sical mechanics corresponds to that of Turing machines,2 while the natural computing
power of quantum mechanics might be greater.

The first person to look at the interaction between computation and quantum
mechanics appears to have been Benioff [1980, 1982a, 1982b]. Although he did not
ask whether quantum mechanics conferred extra power to computation, he showed
that reversible unitary evolution was sufficient to realize the computational power
of a Turing machine, thus showing that quantum mechanics is computationally at
least as powerful as classical computers. This work was fundamental in making later
investigation of quantum computers possible.

Feynman [1982, 1986] seems to have been the first to suggest that quantum me-
chanics might be computationally more powerful than Turing machines. He gave
arguments as to why quantum mechanics is intrinsically computationally expensive
to simulate on a classical computer. He also raised the possibility of using a computer
based on quantum mechanical principles to avoid this problem, thus implicitly asking
the converse question, “By using quantum mechanics in a computer can you compute
more efficiently than on a classical computer?” The first to ask this question explicitly
was Deutsch [1985, 1989]. In order to study this question, he defined both quantum
Turing machines and quantum circuits and investigated some of their properties.

The question of whether using quantum mechanics in a computer allows one
to obtain more computational power was more recently addressed by Deutsch and
Jozsa [1992] and Berthiaume and Brassard [1992, 1994]. These papers showed that
there are problems which quantum computers can quickly solve exactly, but that
classical computers can only solve quickly with high probability and the aid of a
random number generator. However, these papers did not show how to solve any
problem in quantum polynomial time that was not already known to be solvable
in polynomial time with the aid of a random number generator, allowing a small

2See Vergis, Steiglitz, and Dickinson [1986], Steiglitz [1988], and Rubel [1989]. I believe that
this question has not yet been settled and is worthy of further investigation. In particular, tur-
bulence seems a good candidate for a counterexample to the quantitative Church’s thesis because
the nontrivial dynamics on many length scales appear to make it difficult to simulate on a classical
computer.

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1487

probability of error; this is the characterization of the complexity class BPP (bounded
error probability probabilistic polynomial time), which is widely viewed as the class
of efficiently solvable problems.

Further work on this problem was stimulated by Bernstein and Vazirani [1993].
One of the results contained in their paper was an oracle problem (that is, a problem
involving a “black box” subroutine that the computer is allowed to perform but for
which no code is accessible) which can be done in polynomial time on a quantum
Turing machine but which requires superpolynomial time on a classical computer.
This result was improved by Simon [1994], who gave a much simpler construction of
an oracle problem which takes polynomial time on a quantum computer but requires
exponential time on a classical computer. Indeed, while Bernstein and Vaziarni’s
problem appears contrived, Simon’s problem looks quite natural. Simon’s algorithm
inspired the work presented in this paper.

Two number theory problems which have been studied extensively but for which
no polynomial-time algorithms have yet been discovered are finding discrete loga-
rithms and factoring integers [Pomerance 1987, Gordon 1993, Lenstra and Lenstra
1993, Adleman and McCurley 1994]. These problems are so widely believed to be
hard that several cryptosystems based on their difficulty have been proposed, includ-
ing the widely used RSA public key cryptosystem developed by Rivest, Shamir, and
Adleman [1978]. We show that these problems can be solved in polynomial time on
a quantum computer with a small probability of error.

Currently, nobody knows how to build a quantum computer, although it seems
as though it might be possible within the laws of quantum mechanics. Some sugges-
tions have been made as to possible designs for such computers [Teich, Obermayer,
and Mahler 1988; Lloyd 1993, 1994; Cirac and Zoller 1995; DiVincenzo 1995; Sleator
and Weinfurter 1995; Barenco et al. 1995b; Chuang and Yamomoto 1995], but there
will be substantial difficulty in building any of these [Landauer 1995, 1997; Unruh
1995; Chuang et al. 1995; Palma, Suominen, and Ekert 1996]. The most difficult
obstacles appear to involve the decoherence of quantum superpositions through the
interaction of the computer with the environment, and the implementation of quan-
tum state transformations with enough precision to give accurate results after many
computation steps. Both of these obstacles become more difficult as the size of the
computer grows, so it may turn out to be possible to build small quantum computers,
while scaling up to machines large enough to do interesting computations may present
fundamental difficulties.

Even if no useful quantum computer is ever built, this research does illuminate
the problem of simulating quantum mechanics on a classical computer. Any method
of doing this for an arbitrary Hamiltonian would necessarily be able to simulate a
quantum computer. Thus, any general method for simulating quantum mechanics
with at most a polynomial slowdown would lead to a polynomial-time algorithm for
factoring.

The rest of this paper is organized as follows. In section 2, we introduce the model
of quantum computation, the quantum gate array, that we use in the rest of the pa-
per. In sections 3 and 4, we explain two subroutines that are used in our algorithms:
reversible modular exponentiation in section 3 and quantum Fourier transforms in sec-
tion 4. In section 5, we give our algorithm for prime factorization, and in section 6,
we give our algorithm for extracting discrete logarithms. In section 7, we give a brief
discussion of the practicality of quantum computation and suggest possible directions
for further work.

1488 PETER W. SHOR

2. Quantum computation. In this section we give a brief introduction to quan-
tum computation, emphasizing the properties that we will use. We will describe only
quantum gate arrays, or quantum acyclic circuits, which are analogous to acyclic cir-
cuits in classical computer science. This model was originally studied by Yao [1993]
and is closely related to the quantum computational networks discussed by Deutsch
[1989]. For other models of quantum computers, see references on quantum Turing
machines [Deutsch 1985; Bernstein and Vazirani 1993; Yao 1993] and quantum cel-
lular automata [Feynman 1986; Margolus 1986, 1990; Lloyd 1993; Biafore 1994]. If
they are allowed a small probability of error, quantum Turing machines and quantum
gate arrays can compute the same functions in polynomial time [Yao 1993]. This may
also be true for the various models of quantum cellular automata, but it has not yet
been proved. This gives evidence that the class of functions computable in quantum
polynomial time with a small probability of error is robust in that it does not depend
on the exact architecture of a quantum computer. By analogy with the classical class
BPP, this class is called BQP (bounded error probability quantum polynomial time).

Consider a system with n components, each of which can have two states.
Whereas in classical physics, a complete description of the state of this system re-
quires only n bits, in quantum physics, a complete description of the state of this
system requires 2n − 1 complex numbers. To be more precise, the state of the quan-
tum system is a point in a 2n-dimensional vector space. For each of the 2n possible
classical positions of the components, there is a basis state of this vector space which
we represent, for example, by |011 · · · 0〉 meaning that the first bit is 0, the second bit
is 1, and so on. Here, the ket notation |x〉 means that x is a (pure) quantum state.
(Mixed states will not be discussed in this paper, and thus we do not define them;
see a quantum theory book such as Peres [1993] for their definition.) The Hilbert
space associated with this quantum system is the complex vector space with these 2n

states as basis vectors, and the state of the system at any time is represented by a
unit-length vector in this Hilbert space. As multiplying this state vector by a unit-
length complex phase does not change any behavior of the state, we need only 2n− 1
complex numbers to completely describe the state. We represent this superposition
of states by

2n−1∑
i=0

ai|Si〉,(2.1)

where the amplitudes ai are complex numbers such that
∑

i |ai|2 = 1 and each |Si〉
is a basis vector of the Hilbert space. If the machine is measured (with respect to
this basis) at any particular step, the probability of seeing basis state |Si〉 is |ai|2;
however, measuring the state of the machine projects this state to the observed basis
vector |Si〉. Thus, looking at the machine during the computation will invalidate the
rest of the computation. General quantum mechanical measurements, i.e., POVMs
(positive operator valued measurement, see [Peres 1993]), can be considerably more
complicated than the case of projection onto the canonical basis to which we restrict
ourselves in this paper. This does not greatly restrict our model of computation, since
measurements in other reasonable bases, as well as other local measurements, can be
simulated by first using quantum computation to perform a change of basis and then
performing a measurement in the canonical basis.

In order to use a physical system for computation, we must be able to change the
state of the system. The laws of quantum mechanics permit only unitary transforma-
tions of state vectors. A unitary matrix is one whose conjugate transpose is equal to

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1489

its inverse, and requiring state transformations to be represented by unitary matrices
ensures that summing the probability over all possible outcomes yields 1. The defi-
nition of quantum circuits (and quantum Turing machines) allows only local unitary
transformations—that is, unitary transformations on a fixed number of bits. This is
physically justified because, given a general unitary transformation on n bits, it is
not clear how one could efficiently implement it physically, whereas two-bit transfor-
mations can at least in theory be implemented by relatively simple physical systems
[Cirac and Zoller 1995; DiVincenzo 1995; Sleator and Weinfurter 1995; Chuang and
Yamomoto 1995]. While general n-bit transformations can always be built out of
two-bit transformations [DiVincenzo 1995; Sleator and Weinfurter 1995; Lloyd 1995;
Deutsch, Barenco, and Ekert 1995], the number required will often be exponential
in n [Barenco et al. 1995a]. Thus, the set of two-bit transformations form a set of
building blocks for quantum circuits in a manner analogous to the way a universal set
of classical gates (such as the AND, OR, and NOT gates) form a set of building blocks
for classical circuits. In fact, for a universal set of quantum gates, it is sufficient to
take all one-bit gates and a single type of two-bit gate, the controlled NOT gate (also
called the XOR or parity gate), which negates the second bit if and only if the first
bit is 1.

Perhaps an example will be informative at this point. A quantum gate can be
expressed as a truth table: for each input basis vector we need to give the output of
the gate. One such gate is

|00〉 → |00〉,
|01〉 → |01〉,(2.2)

|10〉 → 1√
2
(|10〉+ |11〉),

|11〉 → 1√
2
(|10〉 − |11〉).

Not all truth tables correspond to physically feasible quantum gates, as many truth
tables will not give rise to unitary transformations.

The same gate can also be represented as a matrix. The rows correspond to input
basis vectors. The columns correspond to output basis vectors. The (i, j) entry gives,
when the ith basis vector is input to the gate, the coefficient of the jth basis vector in
the corresponding output of the gate. The truth table above would then correspond
to the following matrix:

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 1√
2

1√
2

|11〉 0 0 1√
2

− 1√
2

.

(2.3)

A quantum gate is feasible if and only if the corresponding matrix is unitary, i.e., its
inverse is its conjugate transpose.

Suppose that our machine is in the superposition of states

1√
2
|10〉 − 1√

2
|11〉(2.4)

and we apply the unitary transformation represented by (2.2) and (2.3) to this state.
The resulting output will be the result of multiplying the vector (2.4) by the ma-
trix (2.3). The machine will thus go to the superposition of states

1
2 (|10〉+ |11〉)− 1

2 (|10〉 − |11〉) = |11〉.(2.5)

1490 PETER W. SHOR

This example shows the potential effects of interference on quantum computation.
Had we started with either the state |10〉 or the state |11〉, there would have been a
chance of observing the state |10〉 after the application of the gate (2.3). However,
when we start with a superposition of these two states, the probability amplitudes for
the state |10〉 cancel, and we have no possibility of observing |10〉 after the application
of the gate. Notice that the output of the gate would have been |10〉 instead of |11〉
had we started with the superposition of states

1√
2
|10〉+ 1√

2
|11〉,(2.6)

which has the same probabilities of being in any particular configuration if it is ob-
served as does the superposition (2.4).

If we apply a gate to only two bits of a longer vector (now our circuit must have
more than two wires), for each basis vector we apply the transformation given by the
gate’s truth table to the two bits on which the gate is operating, and leave the other
bits alone. This corresponds to multiplying the whole state by the tensor product of
the gate matrix on those two bits with the identity matrix on the remaining bits. For
example, applying the transformation represented by (2.2) and (2.3) to the first two
bits of the basis vector |110〉 yields the vector 1√

2
(|100〉 − |110〉).

A quantum gate array is a set of quantum gates with logical “wires” connecting
their inputs and outputs. The input to the gate array, possibly along with extra
work bits that are initially set to 0, is fed through a sequence of quantum gates. The
values of the bits are observed after the last quantum gate, and these values are the
output. This model is analogous to classical acyclic circuits in theoretical computer
science, and was previously studied by Yao [1993]. As in the classical case, in order
to compare quantum gate arrays with quantum Turing machines, we need to make
the gate arrays a uniform complexity class. In other words, because we use a different
gate array for each size of input, we need to keep the designer of the gate arrays from
hiding noncomputable (or hard to compute) information in the arrangement of the
gates. To make quantum gate arrays uniform, we must add two requirements to the
definition of gate arrays. The first is the standard uniformity requirement that the
design of the gate array be produced by a polynomial-time (classical) computation.
The second uniformity requirement should be a standard part of the definition of
analog complexity classes; however, since analog complexity classes have not been
as widely studied, this requirement is not well known. The requirement is that the
entries in the unitary matrices describing the gates must be computable numbers.
Specifically, the first logn bits of each entry should be classically computable in time
polynomial in n [Solovay 1995]. This keeps noncomputable (or hard to compute)
information from being hidden in the bits of the amplitudes of the quantum gates.

3. Reversible logic and modular exponentiation. The definition of quan-
tum gate arrays gives rise to completely reversible computation. That is, knowing the
quantum state on the wires leading out of a gate tells uniquely what the quantum
state must have been on the wires leading into that gate. This is a reflection of the
fact that, despite the macroscopic arrow of time, the laws of physics appear to be
completely reversible. This would seem to imply that anything built with the laws
of physics must be completely reversible; however, classical computers get around
this by dissipating energy and thus making their computations thermodynamically
irreversible. This appears impossible to do for quantum computers because superpo-
sitions of quantum states need to be maintained throughout the computation. Thus,
quantum computers necessarily have to use reversible computation. This imposes

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1491

Table 3.1

Truth tables for Toffoli and Fredkin gates.

Toffoli gate

INPUT OUTPUT
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Fredkin gate

INPUT OUTPUT
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

extra costs when doing classical computations on a quantum computer, which can be
necessary in subroutines of quantum computations.

Because of the reversibility of quantum computation, a deterministic computation
is performable on a quantum computer only if it is reversible. Luckily, it has already
been shown that any deterministic computation can be made reversible [Lecerf 1963;
Bennett 1973]. In fact, reversible classical gate arrays (or reversible acyclic circuits)
have been studied. Much like the result that any classical computation can be done
using NAND gates, there are also universal gates for reversible computation. Two
of these are Toffoli gates [Toffoli 1980] and Fredkin gates [Fredkin and Toffoli 1982];
these are illustrated in Table 3.1.

The Toffoli gate is just a doubly controlled NOT, i.e., the last bit is negated if
and only if the first two bits are 1. In a Toffoli gate, if the third input bit is set to 1,
then the third output bit is the NAND of the first two input bits. Since NAND is a
universal gate for classical gate arrays, this shows that the Toffoli gate is universal.
In a Fredkin gate, the last two bits are swapped if the first bit is 0, and left untouched
if the first bit is 1. For a Fredkin gate, if the third input bit is set to 0, the second
output bit is the AND of the first two input bits; and if the last two input bits are
set to 0 and 1 respectively, the second output bit is the NOT of the first input bit.
Thus, both AND and NOT gates are realizable using Fredkin gates, showing that the
Fredkin gate is universal.

From results on reversible computation [Lecerf 1963, Bennett 1973], we can effi-
ciently compute any polynomial time function F (x) as long as we keep the input x
in the computer. We do this by adapting the method for computing the function F
nonreversibly. These results can easily be extended to work for gate arrays [Toffoli
1980; Fredkin and Toffoli 1982]. When AND, OR, or NOT gates are changed to Fred-
kin or Toffoli gates, one obtains both additional input bits, which must be preset to
specified values, and additional output bits, which contain the information needed to
reverse the computation. While the additional input bits do not present difficulties
in designing quantum computers, the additional output bits do, because unless they
are all reset to 0, they will affect the interference patterns in quantum computation.
Bennett’s method for resetting these bits to 0 is shown in the top half of Table 3.2.
A nonreversible gate array may thus be turned into a reversible gate array as fol-
lows. First, duplicate the input bits as many times as necessary (since each input
bit could be used more than once by the gate array). Next, keeping one copy of the
input around, use Toffoli and Fredkin gates to simulate nonreversible gates, putting
the extra output bits into the RECORD register. These extra output bits preserve
enough of a record of the operations to enable the computation of the gate array to be

1492 PETER W. SHOR

Table 3.2

Bennett’s method for making a computation reversible.

INPUT - - - - - - - - - - - - - - - - - -
INPUT OUTPUT RECORD(F) - - - - - -
INPUT OUTPUT RECORD(F) OUTPUT
INPUT - - - - - - - - - - - - OUTPUT
INPUT INPUT RECORD(F−1) OUTPUT
- - - - - - INPUT RECORD(F−1) OUTPUT
- - - - - - - - - - - - - - - - - - OUTPUT

reversed. Once the output F (x) has been computed, copy it into a register that has
been preset to zero, and then undo the computation to erase both the first OUTPUT
register and the RECORD register.

To erase x and replace it with F (x), in addition to a polynomial-time algorithm
for F , we also need a polynomial-time algorithm for computing x from F (x); i.e., we
need that F is one-to-one and that both F and F−1 are polynomial-time computable.
The method for this computation is given in the whole of Table 3.2. There are two
stages to this computation. The first is the same as before, taking x to (x, F (x)).
For the second stage, shown in the bottom half of Table 3.2, note that if we have
a method to compute F−1 nonreversibly in polynomial time, we can use the same
technique to reversibly map F (x) to (F (x), F−1(F (x))) = (F (x), x). However, since
this is a reversible computation, we can reverse it to go from (x, F (x)) to F (x). Put
together, these two stages take x to F (x).

The above discussion shows that computations can be made reversible for only
a constant factor cost in time, but the above method uses as much space as it does
time. If the classical computation requires much less space than time, then making it
reversible in this manner will result in a large increase in the space required. There
are methods that do not use as much space, but use more time, to make computa-
tions reversible [Bennett 1989, Levine and Sherman 1990]. While there is no general
method that does not cause an increase in either space or time, specific algorithms can
sometimes be made reversible without paying a large penalty in either space or time;
at the end of this section we will show how to do this for modular exponentiation,
which is a subroutine necessary for quantum factoring.

The bottleneck in the quantum factoring algorithm—i.e., the piece of the factoring
algorithm that consumes the most time and space—is modular exponentiation. The
modular exponentiation problem is, given n, x, and r, find xr (mod n). The best

classical method for doing this is to repeatedly square of x (mod n) to get x2i (mod n)
for i ≤ log2 r, and then multiply a subset of these powers (mod n) to get xr (mod n).
If we are working with l-bit numbers, this requires O(l) squarings and multiplications
of l-bit numbers (mod n). Asymptotically, the best classical result for gate arrays
for multiplication is the Schönhage–Strassen algorithm [Schönhage and Strassen 1971,
Knuth 1981, Schönhage 1982]. This gives a gate array for integer multiplication that
uses O(l log l log log l) gates to multiply two l-bit numbers. Thus, asymptotically,
modular exponentiation requiresO(l2 log l log log l) time. Making this reversible would
näıvely cost the same amount in space; however, one can reuse the space used in the
repeated squaring part of the algorithm, and thus reduce the amount of space needed
to essentially that required for multiplying two l-bit numbers; one simple method for
reducing this space (although not the most versatile one) will be given later in this
section. Thus, modular exponentiation can be done in O(l2 log l log log l) time and
O(l log l log log l) space.

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1493

While the Schönhage–Strassen algorithm is the best multiplication algorithm dis-
covered to date for large l, it does not scale well for small l. For small numbers, the
best gate arrays for multiplication essentially use elementary-school longhand multi-
plication in binary. This method requires O(l2) time to multiply two l-bit numbers,
and thus modular exponentiation requires O(l3) time with this method. These gate
arrays can be made reversible, however, using only O(l) space.

We now give the method for constructing a reversible gate array that takes only
O(l) space and O(l3) time to compute (a, xa (mod n)) from a, where a, x, and n
are l-bit numbers and x and n are relatively prime. This case, where x and n are
relatively prime, is sufficient for our factoring and discrete logarithm algorithms. A
detailed analysis of essentially this method, giving an exact number of quantum gates
sufficient for factoring, was performed by Beckman et al. [1996].

The basic building block used is a gate array that takes b as input and outputs
b + c (mod n). Note that here b is the gate array’s input but c and n are built into
the structure of the gate array. Since addition (mod n) is computable in O(logn)
time classically, this reversible gate array can be made with only O(logn) gates and
O(logn) work bits using the techniques explained earlier in this section.

The technique we use for computing xa (mod n) is essentially the same as the

classical method. First, by repeated squaring we compute x2i (mod n) for all i < l.

Then, to obtain xa (mod n) we multiply the powers x2i (mod n), where 2i appears in
the binary expansion of a. In our algorithm for factoring n, we need only to compute
xa (mod n), where a is in a superposition of states but x is some fixed integer. This
makes things much easier, because we can use a reversible gate array where a is input
but where x and n are built into the structure of the gate array. Thus, we can use
the algorithm described by the following pseudocode; here ai represents the ith bit of
a in binary, where the bits are indexed from right to left and the rightmost bit of a
is a0.

power := 1

for i = 0 to l−1
if (ai == 1) then

power := power ∗ x 2i (mod n)
endif

endfor

The variable a is left unchanged by the code and xa (mod n) is output as the variable
power . Thus, this code takes the pair of values (a, 1) to (a, xa (mod n)).

This pseudocode can easily be turned into a gate array; the only hard part of this
is the fourth line, where we multiply the variable power by x2i (mod n); to do this we

need to use a fairly complicated gate array as a subroutine. Recall that x2i (mod n)
can be computed classically and then built into the structure of the gate array. Thus,
to implement this line, we need a reversible gate array that takes b as input and
gives bc (mod n) as output, where the structure of the gate array can depend on c
and n. Of course, this step can only be reversible if gcd(c, n) = 1—i.e., if c and n
have no common factors—as otherwise two distinct values of b will be mapped to the
same value of bc (mod n). Fortunately, x and n being relatively prime in modular
exponentiation implies that c and n are relatively prime in this subroutine.

We will show how to build this gate array in two stages. The first stage is directly
analogous to exponentiation by repeated multiplication; we obtain multiplication from
repeated addition (mod n). Pseudocode for this stage is as follows.

1494 PETER W. SHOR

result := 0

for i = 0 to l−1
if (bi == 1) then

result := result + 2ic (mod n)
endif

endfor

Again, 2ic (mod n) can be precomputed and built into the structure of the gate array.
The above pseudocode takes b as input and gives (b, bc (mod n)) as output. To

get the desired result, we now need to erase b. Recall that gcd(c, n) = 1, so there is
a c−1 (mod n) with c c−1 ≡ 1 (mod n). Multiplication by this c−1 could be used to
reversibly take bc (mod n) to (bc (mod n), bcc−1 (mod n)) = (bc (mod n), b). This is
just the reverse of the operation we want, and since we are working with reversible
computing, we can turn this operation around to erase b. The pseudocode for this
follows.

for i = 0 to l−1
if (result i == 1) then

b := b − 2ic−1 (mod n)
endif

endfor

As before, result i is the ith bit of result.
Note that at this stage of the computation, b should be 0. However, we did not set

b directly to zero, as this would not have been a reversible operation and thus impos-
sible on a quantum computer, but instead we did a relatively complicated sequence
of operations which ended with b = 0 and which in fact depended on multiplication
being a group (mod n). At this point, then, we could do something somewhat sneaky:
we could measure b to see if it actually is 0. If it is not, we know that there has been an
error somewhere in the quantum computation, i.e., that the results are worthless and
we should stop the computer and start over again. However, if we do find that b is 0,
then we know (because we just observed it) that it is now exactly 0. This measurement
thus may bring the quantum computation back on track in that any amplitude that
b had for being nonzero has been eliminated. Further, because the probability that
we observe a state is proportional to the square of the amplitude of that state, doing
the modular exponentiation and measuring b every time that we know it should be 0
may result in a higher probability of overall success than the same computation done
without the repeated measurements of b. This is the quantum watchdog (or quantum
Zeno) effect [Peres 1993], and whether it is applicable in this setting depends on the
error model for our quantum circuits. The argument above does not actually show
that repeated measurement of b is indeed beneficial, because there is a cost (in time,
if nothing else) of measuring b. Before this is implemented, then, it should be checked
with analysis or experiment that the benefit of such measurements exceeds their cost.
In general, I believe that partial measurements such as this one are a promising way
of trying to stabilize quantum computations.

Currently, Schönhage–Strassen is the algorithm of choice for multiplying very
large numbers, and longhand multiplication is the algorithm of choice for small num-
bers. There are also multiplication algorithms which have asymptotic efficiencies be-
tween these two algorithms and which are superior for intermediate length numbers
[Karatsuba and Ofman 1962; Knuth 1981; Schönhage, Grotefeld, and Vetter 1994]. It
is not clear which algorithms are best for which size numbers. While this is known to

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1495

some extent for classical computation [Schönhage, Grotefeld, and Vetter 1994], using
data on which algorithms work better on classical computers could be misleading for
two reasons. First, classical computers need not be reversible, and the cost of making
an algorithm reversible depends on the algorithm. Second, existing computers gener-
ally have multiplication for 32- or 64-bit numbers built into their hardware, and this
tends to increase the optimal changeover points. To further confuse matters, some
multiplication algorithms can take better advantage of hardwired multiplication than
others. In order to program quantum computers most efficiently, work thus needs
to be done on the best way of implementing elementary arithmetic operations on
quantum computers. One tantalizing fact is that the Schönhage–Strassen fast multi-
plication algorithm uses the fast Fourier transform, which is also the basis for all the
fast algorithms on quantum computers discovered to date. It is thus tempting to spec-
ulate that integer multiplication itself might be speeded up by a quantum algorithm;
if possible, this would result in a somewhat faster asymptotic bound for factoring
on a quantum computer, and indeed could even make breaking RSA on a quantum
computer asymptotically faster than encrypting with RSA on a classical computer.

4. Quantum Fourier transforms. Since quantum computation deals with uni-
tary transformations, it is helpful to know how to build certain useful unitary trans-
formations. In this section we give a technique for constructing in polynomial time
on quantum computers one particular unitary transformation, which is essentially a
discrete Fourier transform. This transformation will be given as a matrix, with both
rows and columns indexed by states. These states correspond to binary representa-
tions of integers on the computer; in particular, the rows and columns will be indexed
beginning with 0 unless otherwise specified.

This transformation is as follows. Consider a number a with 0 ≤ a < q for some
q. We will perform the transformation that takes the state |a〉 to the state

1

q1/2

q−1∑
c=0

|c〉 exp(2πiac/q).(4.1)

That is, we apply the unitary matrix whose (a, c) entry is 1
q1/2

exp(2πiac/q). This

Fourier transform is at the heart of our algorithms, and we call this matrix Aq.
In our factoring and discrete logarithm algorithms, we will use Aq for q of expo-

nential size (i.e., the number of bits of q grows polynomially with the length of our
input). We must thus show how this transformation can be done in time polynomial
in the number of bits of q. In this paper, we give a simple construction for Aq when q
is a power of 2 that was discovered independently by Coppersmith [1994] and Deutsch
[see Ekert and Jozsa 1996]. This construction is essentially the standard fast Fourier
transform (FFT) algorithm [Knuth 1981] adapted for a quantum computer; the fol-
lowing description of it follows that of Ekert and Jozsa [1996]. In the earlier version
of this paper [Shor 1994], we gave a construction for Aq when q was in the special
class of smooth numbers having only small prime power factors. In fact, Cleve [1994]
has shown how to construct Aq for all smooth numbers q whose prime factors are at
most O(logn).

Take q = 2l, and let us represent an integer a in binary as |al−1al−2 . . . a0〉. For
the quantum Fourier transform Aq, we need only to use two types of quantum gates.

1496 PETER W. SHOR

These gates are Rj , which operates on the jth bit of the quantum computer:

Rj =

|0〉 |1〉
|0〉 1√

2
1√
2

|1〉 1√
2

− 1√
2

,

(4.2)

and Sj,k, which operates on the bits in positions j and k with j < k:

Sj,k =

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 1 0

|11〉 0 0 0 eiθk−j ,

(4.3)

where θk−j = π/2k−j . To perform a quantum Fourier transform, we apply the matri-
ces in the order (from left to right)

Rl−1 Sl−2,l−1 Rl−2 Sl−3,l−1 Sl−3,l−2 Rl−3 . . . R1 S0,l−1 S0,l−2 . . . S0,2 S0,1 R0;(4.4)

that is, we apply the gates Rj in reverse order from Rl−1 to R0, and between Rj+1

and Rj we apply all the gates Sj,k where k > j. For example, on 3 bits, the matrices
would be applied in the order R2S1,2R1S0,2S0,1R0. To take the Fourier transform Aq

when q = 2l, we thus need to use l(l − 1)/2 quantum gates.
Applying this sequence of transformations will result in a quantum state

1
q1/2

∑
b exp(2πiac/q)|b〉, where b is the bit-reversal of c, i.e., the binary number ob-

tained by reading the bits of c from right to left. Thus, to obtain the actual quantum
Fourier transform, we need either to do further computation to reverse the bits of |b〉
to obtain |c〉, or to leave these bits in place and read them in reverse order; either
alternative is easy to implement.

To show that this operation actually performs a quantum Fourier transform,
consider the amplitude of going from |a〉 = |al−1 . . . a0〉 to |b〉 = |bl−1 . . . b0〉. First,
the factors of 1/

√
2 in the R matrices multiply to produce a factor of 1/q1/2 overall;

thus we need only worry about the exp(2πiac/q) phase factor in the expression (4.1).
The matrices Sj,k do not change the values of any bits, but merely change their phases.
There is thus only one way to switch the jth bit from aj to bj , and that is to use
the appropriate entry in the matrix Rj . This entry adds π to the phase if the bits aj
and bj are both 1, and leaves it unchanged otherwise. Further, the matrix Sj,k adds
π/2k−j to the phase if aj and bk are both 1 and leaves it unchanged otherwise. Thus,
the phase on the path from |a〉 to |b〉 is∑

0≤j<l

πajbj +
∑

0≤j<k<l

π

2k−j
ajbk.(4.5)

This expression can be rewritten as∑
0≤j≤k<l

π

2k−j
ajbk.(4.6)

Since c is the bit-reversal of b, this expression can be further rewritten as∑
0≤j≤k<l

π

2k−j
ajcl−1−k.(4.7)

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1497

Making the substitution l − k − 1 for k in this sum, we obtain

∑
0≤j+k<l

2π
2j2k

2l
ajck.(4.8)

Now, since adding multiples of 2π do not affect the phase, we obtain the same phase
if we sum over all j and k less than l, obtaining

l−1∑
j,k=0

2π
2j2k

2l
ajck =

2π

2l

l−1∑
j=0

2jaj

l−1∑
k=0

2kck,(4.9)

where the last equality follows from the distributive law of multiplication. Now, q = 2l

and

a =
l−1∑
j=0

2jaj , c =
l−1∑
k=0

2kck,(4.10)

so the expression (4.9) is equal to 2πac/q, which is the phase for the amplitude
|a〉 → |c〉 in the transformation (4.1).

When k − j is large in the gate Sj,k in (4.3), we are multiplying by a very small
phase factor. This would be very difficult to do accurately physically, and thus it would
be somewhat disturbing if this were necessary for quantum computation. In fact, Cop-
persmith [1994] has shown that one can use an approximate Fourier transform that
ignores these tiny phase factors but which approximates the Fourier transform closely
enough that it can also be used for factoring. In fact, this technique reduces the num-
ber of quantum gates needed for the (approximate) Fourier transform considerably,
as it leaves out most of the gates Sj,k.

Recently, Griffiths and Niu [1996] have shown that this Fourier transform can be
carried out using only one-bit gates and measurements of single bits. Both of these
operations are potentially easier to implement in a physical system than two-bit gates.
The use of two-bit gates, however, is still required during the modular exponentiation
step of the factoring and discrete logarithm algorithms.

5. Prime factorization. It has been known since before Euclid that every
integer n is uniquely decomposable into a product of primes. For nearly as long,
mathematicians have been interested in the question of how to factor a number into
this product of primes. It was only in the 1970s, however, that researchers applied
the paradigms of theoretical computer science to number theory, and looked at the
asymptotic running times of factoring algorithms [Adleman 1994]. This has resulted
in a great improvement in the efficiency of factoring algorithms. Currently the best
factoring algorithm, both asymptotically and in practice, is the number field sieve
[Lenstra et al. 1990, Lenstra and Lenstra 1993], which in order to factor an integer n
takes asymptotic running time exp(c(logn)1/3(log log n)2/3) for some constant c. Since
the input n is only logn bits in length, this algorithm is an exponential-time algo-
rithm. Our quantum factoring algorithm takes asymptotically O((logn)2(log log n)
(log log log n)) steps on a quantum computer, along with a polynomial (in logn)
amount of post-processing time on a classical computer that is used to convert the
output of the quantum computer to factors of n. While this post-processing could in
principle be done on a quantum computer, there is no reason not to use a classical
computer for this step.

1498 PETER W. SHOR

Instead of giving a quantum computer algorithm for factoring n directly, we give
a quantum computer algorithm for finding the order r of an element x in the multi-
plicative group (mod n); that is, the least integer r such that xr ≡ 1 (mod n). It is
known that using randomization, factorization can be reduced to finding the order of
an element [Miller 1976]; we now briefly give this reduction.

To find a factor of an odd number n, given a method for computing the order
r of x, choose a random x (mod n), find its order r, and compute gcd(xr/2 − 1, n).
Here, gcd(a, b) is the greatest common divisor of a and b, i.e., the largest integer that
divides both a and b. The Euclidean algorithm [Knuth 1981] can be used to compute
gcd(a, b) in polynomial time. Since (xr/2 − 1)(xr/2 + 1) = xr − 1 ≡ 0 (mod n), the
numbers gcd(xr/2 +1, n) and gcd(xr/2−1, n) will be two factors of n. This procedure
fails only if r is odd, in which case r/2 is not integral, or if xr/2 ≡ −1 (mod n), in
which case the procedure yields the trivial factors 1 and n. Using this criterion, it
can be shown that this procedure, when applied to a random x (mod n), yields a
nontrivial factor of n with probability at least 1− 1/2k−1, where k is the number of
distinct odd prime factors of n. A brief sketch of the proof of this result follows.

Suppose that n =
∏k

i=1 p
αi
i is the prime factorization of n. Let ri be the order of

x (mod pαii). Then r is the least common multiple of all the ri. Consider the largest
power of 2 dividing each ri. The algorithm only fails if all of these powers of 2 agree:
if they are all 1, then r is odd and r/2 does not exist; if they are all equal and larger
than 1, then xr/2 ≡ −1 (mod pαii) for every i, so xr/2 ≡ −1 (mod n). By the Chinese
remainder theorem [Knuth 1981; Hardy and Wright 1979, Theorem 121], choosing
an x (mod n) at random is the same as choosing for each i a number xi (mod pαii)
at random, where x ≡ xi (mod pαii). The multiplicative group (mod pα) for any odd
prime power pα is cyclic [Knuth 1981], so for the odd prime power pαii , the probability
is at most 1/2 of choosing an xi having a particular power of 2 as the largest divisor of
its order ri. Thus each of these powers of 2 has at most a 50% probability of agreeing
with the previous ones, so all k of them agree with probability at most 1/2k−1. There
is thus at least a 1− 1/2k−1 probability that the x we choose is good. This argument
shows the scheme will work as long as n is odd and not a prime power; finding a factor
of even numbers and of prime powers can be done efficiently with classical methods.

We now describe the algorithm for finding the order of x (mod n) on a quantum
computer. This algorithm will use two quantum registers which hold integers repre-
sented in binary. There will also be some amount of workspace. This workspace gets
reset to 0 after each subroutine of our algorithm, so we will not include it when we
write down the state of our machine.

Given x and n, to find the order of x, i.e., the least r such that xr ≡ 1 (mod n),
we do the following. First, we find q, the power of 2 with n2 ≤ q < 2n2. We will not
include n, x, or q when we write down the state of our machine, because we never
change these values. In a quantum gate array we need not even keep these values in
memory, as they can be built into the structure of the gate array.

Next, we put the first register in the uniform superposition of states representing
numbers a (mod q). This leaves our machine in state

1

q1/2

q−1∑
a=0

|a〉|0〉.(5.1)

This step is relatively easy, since all it entails is putting each bit in the first register
into the superposition 1√

2
(|0〉+ |1〉).

Next, we compute xa (mod n) in the second register as described in section 3.

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1499

Since we keep a in the first register this can be done reversibly. This leaves our
machine in the state

1

q1/2

q−1∑
a=0

|a〉|xa (mod n)〉.(5.2)

We then perform our Fourier transform Aq on the first register, as described
in section 4, mapping |a〉 to

1

q1/2

q−1∑
c=0

exp(2πiac/q)|c〉.(5.3)

That is, we apply the unitary matrix with the (a, c) entry equal to 1
q1/2

exp(2πiac/q).

This leaves our machine in state

1

q

q−1∑
a=0

q−1∑
c=0

exp(2πiac/q)|c〉|xa (mod n)〉.(5.4)

Finally, we observe the machine. It would be sufficient to observe solely the value
of |c〉 in the first register, but for clarity we will assume that we observe both |c〉 and
|xa (mod n)〉. We now compute the probability that our machine ends in a particular
state |c, xk (mod n)〉, where we may assume 0 ≤ k < r. Summing over all possible
ways to reach the state |c, xk (mod n)〉, we find that this probability is∣∣∣∣∣1q ∑

a: xa≡xk

exp(2πiac/q)

∣∣∣∣∣
2

,(5.5)

where the sum is over all a, 0 ≤ a < q, such that xa ≡ xk (mod n). Because the order
of x is r, this sum is over all a satisfying a ≡ k (mod r). Writing a = br + k, we find
that the above probability is∣∣∣∣∣∣1q

b(q−k−1)/rc∑
b=0

exp(2πi(br + k)c/q)

∣∣∣∣∣∣
2

.(5.6)

We can ignore the term of exp(2πikc/q), as it can be factored out of the sum and has
magnitude 1. We can also replace rc with {rc}q, where {rc}q is the residue which is
congruent to rc (mod q) and is in the range −q/2 < {rc}q ≤ q/2. This leaves us with
the expression ∣∣∣∣∣∣1q

b(q−k−1)/rc∑
b=0

exp(2πib{rc}q/q)
∣∣∣∣∣∣
2

.(5.7)

We will now show that if {rc}q is small enough, all the amplitudes in this sum will
be in nearly the same direction, i.e., have close to the same phase, and thus make the
sum large. Turning the sum into an integral, we obtain

(5.8)

1

q

∫ b(q−k−1)/rc

0

exp(2πib{rc}q/q)db + O

(b(q − k − 1)/rc
q

(exp(2πi{rc}q/q)− 1)

)
.

1500 PETER W. SHOR

If |{rc}q| ≤ r/2, the error term in the above expression is easily seen to be bounded
by O(1/q). We now show that if |{rc}q| ≤ r/2, the above integral is large, so the
probability of obtaining a state |c, xk (mod n)〉 is large. Note that this condition
depends only on c and is independent of k. Substituting u = rb/q in the above
integral, we get

1

r

∫ b(q−k−1)/rcr/q

0

exp

(
2πi

{rc}q
r

u

)
du.(5.9)

Since k < r, approximating the upper limit of integration by 1 results in only a O(1/q)
error in the above expression. If we do this, we obtain the integral

1

r

∫ 1

0

exp

(
2πi

{rc}q
r

u

)
du.(5.10)

Letting {rc}q/r vary between − 1
2 and 1

2 , the absolute magnitude of the integral (5.10)
is easily seen to be minimized when {rc}q/r = ± 1

2 , in which case the absolute value
of expression (5.10) is 2/(πr). The square of this quantity is a lower bound on the
probability that we see any particular state |c, xk (mod n)〉 with {rc}q ≤ r/2; this
probability is thus asymptotically bounded below by 4/(π2r2), and so is at least 1/3r2

for sufficiently large n.
The probability of seeing a given state |c, xk (mod n)〉 will thus be at least 1/3r2

if

−r
2

≤ {rc}q ≤ r

2
,(5.11)

i.e., if there is a d such that

−r
2

≤ rc− dq ≤ r

2
.(5.12)

Dividing by rq and rearranging the terms give∣∣∣∣ cq − d

r

∣∣∣∣ ≤ 1

2q
.(5.13)

We know c and q. Because q > n2, there is at most one fraction d/r with r < n that
satisfies the above inequality. Thus, we can obtain the fraction d/r in lowest terms
by rounding c/q to the nearest fraction having a denominator smaller than n. This
fraction can be found in polynomial time by using a continued fraction expansion of
c/q, which finds all the best approximations of c/q by fractions [Knuth 1981; Hardy
and Wright 1979, Chapter X].

The exact probabilities as given by (5.7) for an example case with r = 10 and
q = 256 are plotted in Fig. 5.1. For example, the value r = 10 could occur when
factoring 33 if x were chosen to be 5. Here q is taken smaller than 332 so as to
make the values of c in the plot distinguishable; this does not change the functional
structure of P(c). Note that with high probability the observed value of c is near an
integral multiple of q/r = 256/10.

If we have the fraction d/r in lowest terms, and if d happens to be relatively prime
to r, this will give us r. We will now count the number of states |c, xk (mod n)〉 which
enable us to compute r in this way. There are φ(r) possible values of d relatively
prime to r, where φ is Euler’s totient function [Knuth 1981; Hardy and Wright 1979,

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1501

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 32 64 96 128 160 192 224 256

P

c

Fig. 5.1. The probability P of observing values of c between 0 and 255, given q = 256 and r = 10.

section 5.5]. Each of these fractions d/r is close to one fraction c/q with |c/q−d/r| ≤
1/2q. There are also r possible values for xk, since r is the order of x. Thus, there are
rφ(r) states |c, xk (mod n)〉 which would enable us to obtain r. Since each of these
states occurs with probability at least 1/3r2, we obtain r with probability at least
φ(r)/3r. Using the theorem that φ(r)/r > δ/ log log r for some constant δ [Hardy and
Wright 1979, Theorem 328], this shows that we find r at least a δ/ log log r fraction
of the time, so by repeating this experiment only O(log log r) times, we are assured
of a high probability of success.

In practice, assuming that quantum computation is more expensive than classical
computation, it would be worthwhile to alter the above algorithm so as to perform
less quantum computation and more postprocessing. First, if the observed state is
|c〉, it would be wise to also try numbers close to c such as c± 1, c± 2, . . . , since these
also have a reasonable chance of being close to a fraction qd/r. Second, if c/q ≈ d/r
where d and r have a common factor, this factor is likely to be small. Thus, if the
observed value of c/q is rounded off to d′/r′ in lowest terms, for a candidate r one
should consider not only r′ but also its small multiples 2r′, 3r′, . . . , to see if these
are the actual order of x. Although the first technique will only reduce the expected
number of trials required to find r by a constant factor, the second technique will
reduce the expected number of trials for the hardest n from O(log log n) to O(1) if
the first (logn)1+ε multiples of r′ are considered [Odylzko 1995]. A third technique,
if two candidates for r—say, r1 and r2—have been found, is to test the least common
multiple of r1 and r2 as a candidate r. This third technique is also able to reduce
the expected number of trials to a constant [Knill 1995] and will work in some cases
where the first two techniques fail.

Note that in this algorithm for determining the order of an element, we did not use
many of the properties of multiplication (mod n). In fact, if we have a permutation
f mapping the set {0, 1, 2, . . . , n − 1} into itself such that its kth iterate, f (k)(a), is
computable in time polynomial in logn and log k, the same algorithm will be able to
find the order of an element a under f , i.e., the minimum r such that f (r)(a) = a.

6. Discrete logarithms. For every prime p, the multiplicative group (mod p)
is cyclic, that is, there are generators g such that 1, g, g2, . . . , gp−2 comprise all the
nonzero residues (mod p) [Hardy and Wright 1979, Theorem 111; Knuth 1981]. Sup-
pose that we are given a prime p and such a generator g. The discrete logarithm of

1502 PETER W. SHOR

a number x with respect to p and g is the integer r with 0 ≤ r < p − 1 such that
gr ≡ x (mod p). The fastest algorithm known for finding discrete logarithms modulo
arbitrary primes p is Gordon’s [1993] adaptation of the number field sieve, which runs
in time exp(O(log p)1/3(log log p)2/3). We show how to find discrete logarithms on
a quantum computer using two modular exponentiations and two quantum Fourier
transforms.

This algorithm will use three quantum registers. We first find q a power of 2 such
that q is close to p, i.e., with p < q < 2p. Next, we put the first two registers in
our quantum computer in the uniform superposition of all |a〉 and |b〉 (mod p − 1).
One way to do this in quantum polynomial time is to put the register in a uniform
superposition of all the numbers from 0 to q − 1, use quantum computation to test
whether the number is less than p, and restart the algorithm if the results of this test
are unfavorable. We next compute gax−b (mod p) in the third register. This leaves
our machine in the state

1

p− 1

p−2∑
a=0

p−2∑
b=0

|a, b, gax−b (mod p)〉.(6.1)

As before, we use the Fourier transform Aq to send |a〉 → |c〉 and |b〉 → |d〉 with
probability amplitude 1

q exp(2πi(ac + bd)/q). That is, we take the state |a, b〉 to the
state

1

q

q−1∑
c=0

q−1∑
d=0

exp

(
2πi

q
(ac + bd)

)
|c, d〉.(6.2)

This leaves our quantum computer in the state

1

(p− 1)q

p−2∑
a,b=0

q−1∑
c,d=0

exp

(
2πi

q
(ac + bd)

)
|c, d, gax−b (mod p)〉.(6.3)

Finally, we observe the state of the quantum computer.
The probability of observing a state |c, d, y〉 with y ≡ gk (mod p) is∣∣∣∣∣∣∣

1

(p− 1)q

∑
a,b

a−rb≡k

exp

(
2πi

q
(ac + bd)

) ∣∣∣∣∣∣∣
2

,(6.4)

where the sum is over all (a, b) such that a− rb ≡ k (mod p− 1). Note that we now
have two moduli to deal with, p− 1 and q. While this makes keeping track of things
more confusing, it does not pose serious problems. We now use the relation

a = br + k − (p− 1)

⌊
br + k

p− 1

⌋
(6.5)

and substitute (6.5) in the expression (6.4) to obtain the amplitude on
|c, d, gk (mod p)〉, which is

1

(p− 1)q

p−2∑
b=0

exp

(
2πi

q

(
brc + kc + bd− c(p− 1)

⌊
br + k

p− 1

⌋))
.(6.6)

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1503

The square of the absolute value of this amplitude is the probability of observing
the state |c, d, gk (mod p)〉. We will now analyze the expression (6.6). First, a factor
of exp(2πikc/q) can be taken out of all the terms and ignored, because it does not
change the probability. Next, we split the exponent into two parts and factor out b
to obtain

1

(p− 1)q

p−2∑
b=0

exp

(
2πi

q
bT

)
exp

(
2πi

q
V

)
,(6.7)

where

T = rc + d− r

p− 1
{c(p− 1)}q,(6.8)

and

V =

(
br

p− 1
−
⌊
br + k

p− 1

⌋)
{c(p− 1)}q.(6.9)

Here by {z}q we mean the residue of z (mod q) with −q/2 < {z}q ≤ q/2, as in (5.7).
We now classify possible outputs (observed states) of the quantum computer as

“good” or “bad.” We will show that if we get enough good outputs, then we will
likely be able to deduce r, and that furthermore, the chance of getting a good output
is constant. The idea is that if∣∣{T}q∣∣ = ∣∣rc + d− r

p− 1
{c(p− 1)}q − jq

∣∣ ≤ 1

2
,(6.10)

where j is the closest integer to T/q, then as b varies between 0 and p− 2, the phase
of the first exponential term in (6.7) only varies over at most half of the unit circle.
Further, if

|{c(p− 1)}q| ≤ q/12,(6.11)

then |V | is always at most q/12, so the phase of the second exponential term in
(6.7) never is farther than exp(πi/6) from 1. If conditions (6.10) and (6.11) both
hold, we will say that an output is good. We will show that if both conditions hold,
then the contribution to the probability from the corresponding term is significant.
Furthermore, both conditions will hold with constant probability, and a reasonable
sample of c’s for which condition (6.10) holds will allow us to deduce r.

We now give a lower bound on the probability of each good output, i.e., an output
that satisfies conditions (6.10) and (6.11). We know that as b ranges from 0 to p− 2,
the phase of exp(2πibT/q) ranges from 0 to 2πiW where

W =
p− 2

q

(
rc + d− r

p− 1
{c(p− 1)}q − jq

)
.(6.12)

It follows from (6.10) that |W | ≤ (p − 2)/(2q) ≤ 1/2. Thus, the component of the
amplitude of the first exponential in the summand of (6.7) in the direction

exp (πiW)(6.13)

is at least cos(2π(W/2−Wb/(p− 2))), where 2π(W/2−Wb/(p− 2)) is between −π
2

and π
2 . By condition (6.11), the phase can vary by at most πi/6 due to the second

1504 PETER W. SHOR

exponential exp(2πiV/q). Applying this variation in the manner that minimizes the
component in the direction (6.13), we get that the component in this direction is at
least

cos
(
2π |W/2−Wb/(p− 2)|+ π

6

)
.(6.14)

Thus we get that the absolute value of the amplitude (6.7) is at least

1

(p− 1)q

p−2∑
b=0

cos
(
2π |W/2−Wb/(p− 2)|+ π

6

)
.(6.15)

Replacing this sum with an integral, we get that the absolute value of this amplitude
is at least

2

q

∫ 1/2

0

cos
(π

6
+ 2π|W |u

)
du + O

(
W

pq

)
.(6.16)

From condition (6.10), |W | ≤ 1
2 , so the error term is O(1

pq). As W varies between

− 1
2 and 1

2 , the integral (6.16) is minimized when |W | = 1
2 . Thus, the probability of

arriving at a state |c, d, y〉 that satisfies both conditions (6.10) and (6.11) is at least(
1

q

2

π

∫ 2π/3

π/6

cosu du

)2

,(6.17)

or at least .054/q2 > 1/(20q2).
We will now count the number of pairs (c, d) satisfying conditions (6.10)

and (6.11). The number of pairs (c, d) such that (6.10) holds is exactly the num-
ber of possible c’s, since for every c there is exactly one d such that (6.10) holds.
Unless gcd(p−1, q) is large, the number of c’s for which (6.11) holds is approximately
q/6, and even if it is large, this number is at least q/12. Thus, there are at least
q/12 pairs (c, d) satisfying both conditions. Multiplying by p − 1, which is the num-
ber of possible y’s, gives approximately pq/12 good states |c, d, y〉. Combining this
calculation with the lower bound 1/(20q2) on the probability of observing each good
state gives us that the probability of observing some good state is at least p/(240q),
or at least 1/480 (since q < 2p). Note that each good c has a probability of at least
(p−1)/(20q2) ≥ 1/(40q) of being observed, since there p−1 values of y and one value
of d with which c can make a good state |c, d, y〉.

We now want to recover r from a pair c, d such that

− 1

2q
≤ d

q
+ r

(
c(p− 1)− {c(p− 1)}q

(p− 1)q

)
≤ 1

2q
(mod 1),(6.18)

where this equation was obtained from condition (6.10) by dividing by q. The first
thing to notice is that the multiplier on r is a fraction with denominator p−1, since q
evenly divides c(p− 1)−{c(p− 1)}q. Thus, we need only round d/q off to the nearest
multiple of 1/(p− 1) and divide (mod p− 1) by the integer

c′ =
c(p− 1)− {c(p− 1)}q

q
(6.19)

to find a candidate r. To show that the quantum calculation need only be repeated
a polynomial number of times to find the correct r requires only a few more details.

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1505

The problem is that we cannot divide by a number c′ which is not relatively prime to
p− 1.

For the discrete log algorithm, we do not know that all possible values of c′ are
generated with reasonable likelihood; we only know this about one-twelfth of them.
This additional difficulty makes the next step harder than the corresponding step in
the algorithm for factoring. If we knew the remainder of r modulo all prime powers
dividing p−1, we could use the Chinese remainder theorem to recover r in polynomial
time. We will only be able to prove that we can find this remainder for primes larger
than 18, but with a little extra work we will still be able to recover r.

Recall that each good (c, d) pair is generated with probability at least 1/(20q2),
and that at least one-twelfth of the possible c’s are in a good (c, d) pair. From (6.19),
it follows that these c’s are mapped from c/q to c′/(p− 1) by rounding to the nearest
integral multiple of 1/(p− 1). Further, the good c’s are exactly those in which c/q is
close to c′/(p− 1). Thus, each good c corresponds with exactly one c′. We would like
to show that for any prime power pαii dividing p− 1, a random good c′ is unlikely to
contain pi. If we are willing to accept a large constant for our algorithm, we can just
ignore the prime powers under 18; if we know r modulo all prime powers over 18, we
can try all possible residues for primes under 18 with only a (large) constant factor
increase in running time. Because at least one-twelfth of the c’s were in a good (c, d)
pair, at least one-twelfth of the c′’s are good. Thus, for a prime power pαii , a random
good c′ is divisible by pαii with probability at most 12/pαii . If we have t good c′’s, the
probability of having a prime power over 18 that divides all of them is therefore at
most ∑

18<p
αi
i

∣∣(p−1)

(
12

pαii

)t

,(6.20)

where a|b means that a evenly divides b, so the sum is over all prime powers greater
than 18 that divide p− 1. This sum (over all integers > 18) converges for t = 2, and
goes down by at least a factor of 2/3 for each further increase of t by 1; thus for some
constant t it is less than 1/2.

Recall that each good c′ is obtained with probability at least 1/(40q) from any
experiment. Since there are q/12 good c′’s, after 480t experiments, we are likely to
obtain a sample of t good c′’s chosen equally likely from all good c′’s. Thus, we will
be able to find a set of c′’s such that all prime powers pαii > 20 dividing p − 1 are
relatively prime to at least one of these c′’s. To obtain a polynomial time algorithm,
all one need do is try all possible sets of c′’s of size t; in practice, one would use an
algorithm to find sets of c′’s with large common factors. This set gives the residue
of r for all primes larger than 18. For each prime pi less than 18, we have at most
18 possibilities for the residue modulo pαii , where αi is the exponent on prime pi in
the prime factorization of p− 1. We can thus try all possibilities for residues modulo
powers of primes less than 18: for each possibility we can calculate the corresponding r
using the Chinese remainder theorem and then check to see whether it is the desired
discrete logarithm.

If one were to actually program this algorithm there are many ways in which the
efficiency could be increased over the efficiency shown in this paper. For example,
the estimate for the number of good c′’s is likely too low, especially since weaker
conditions than (6.10) and (6.11) should suffice. This means that the number of
times the experiment need be run could be reduced. It also seems improbable that
the distribution of bad values of c′ would have any relationship to primes under 18;

1506 PETER W. SHOR

if this is true, we need not treat small prime powers separately.
This algorithm does not use very many properties of Zp, so we can use the same

algorithm to find discrete logarithms over other fields such as Zpα , as long as the
field has a cyclic multiplicative group. All we need is that we know the order of the
generator, and that we can multiply and take inverses of elements in polynomial time.
The order of the generator could in fact be computed using the quantum order-finding
algorithm given in section 5 of this paper. Boneh and Lipton [1995] have generalized
the algorithm so as to be able to find discrete logarithms when the group is abelian
but not cyclic.

7. Comments and open problems. It is currently believed that the most diffi-
cult aspect of building an actual quantum computer will be dealing with the problems
of imprecision and decoherence. It was shown by Bernstein and Vazirani [1993] that
the quantum gates need only have precision O(1/t) in order to have a reasonable
probability of completing t steps of quantum computation; that is, there is a c such
that if the amplitudes in the unitary matrices representing the quantum gates are all
perturbed by at most c/t, the quantum computer will still have a reasonable chance
of producing the desired output. Similarly, the decoherence needs to be only poly-
nomially small in t in order to have a reasonable probability of completing t steps of
computation successfully. This holds not only for the simple model of decoherence
where each bit has a fixed probability of decohering at each time step, but also for more
complicated models of decoherence which are derived from fundamental quantum me-
chanical considerations [Unruh 1995; Palma, Suominen, and Ekert 1996; Chuang et
al. 1995]. However, building quantum computers with high enough precision and low
enough decoherence to accurately perform long computations may present formidable
difficulties to experimental physicists. In classical computers, error probabilities can
be reduced not only through hardware but also through software, by the use of redun-
dancy and error-correcting codes. The most obvious method of using redundancy in
quantum computers is ruled out by the theorem that quantum bits cannot be cloned
[Peres 1993, section 9-4], but this argument does not rule out more complicated ways
of reducing inaccuracy or decoherence using software. In fact, some progress in the
direction of reducing inaccuracy [Berthiaume, Deutsch, and Jozsa 1994] and decoher-
ence [Shor 1995] has already been made. The result of Bennett et al. [1996] that
quantum bits can be faithfully transmitted over a noisy quantum channel gives fur-
ther hope that quantum computations can similarly be faithfully carried out using
noisy quantum bits and noisy quantum gates.

Discrete logarithms and factoring are not in themselves widely useful problems.
They have become useful only because they have been found to be crucial for public-
key cryptography, and this application is in turn possible only because they have been
presumed to be difficult. This is also true of the generalizations of Boneh and Lipton
[1995] of these algorithms. If the only uses of quantum computation remain discrete
logarithms and factoring, it will likely become a special-purpose technique whose only
raison d’être is to thwart public key cryptosystems. However, there may be other
hard problems which could be solved asymptotically faster with quantum computers.
In particular, of interesting problems not known to be NP-complete, the problem
of finding a short vector in a lattice [Adleman 1994, Adleman and McCurley 1994]
seems as if it might potentially be amenable to solution by a quantum computer.

In the history of computer science, however, most important problems have turned
out to be either polynomial-time or NP-complete. Thus quantum computers will likely
not become widely useful unless they can solve NP-complete problems. Solving NP-

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1507

complete problems efficiently is a Holy Grail of theoretical computer science which
very few people expect to be possible on a classical computer. Finding polynomial-
time algorithms for solving these problems on a quantum computer would be a mo-
mentous discovery. There are some weak indications that quantum computers are not
powerful enough to solve NP-complete problems [Bennett et al. 1997], but I do not
believe that this potentiality should be ruled out as yet.

Acknowledgments. I would like to thank Jeff Lagarias for finding and fixing
a critical error in the first version of the discrete log algorithm. I would also like
to thank him, David Applegate, Charlie Bennett, Gilles Brassard, Andrew Odlyzko,
Dan Simon, Bob Solovay, Umesh Vazirani, and correspondents too numerous to list,
for productive discussions, for corrections to and improvements of early drafts of this
paper, and for pointers to the literature.

REFERENCES

L. M. Adleman (1994), Algorithmic number theory—The complexity contribution, in Proc. 35th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, pp. 88–113.

L. M. Adleman and K. S. McCurley (1994), Open problems in number-theoretic complexity II, in
Algorithmic Number Theory, Proc. 1994 Algorithmic Number Theory Symposium, Ithaca, NY,
Lecture Notes in Computer Science 877, L. M. Adleman and M.-D. Huang, eds., Springer-Verlag,
Berlin, pp. 291–322.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter (1995a), Elementary gates for quantum computation, Phys.
Rev. A, 52, pp. 3457–3467.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa (1995b), Conditional quantum dynamics and
logic gates, Phys. Rev. Lett., 74, pp. 4083–4086.

D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill (1996), Efficient networks for
quantum factoring, Phys. Rev. A, 54, pp. 1034–1063.

P. Benioff (1980), The computer as a physical system: A microscopic quantum mechanical Hamil-
tonian model of computers as represented by Turing machines, J. Statist. Phys., 22, pp. 563–591.

P. Benioff (1982a), Quantum mechanical Hamiltonian models of Turing machines, J. Statist. Phys.,
29, pp. 515–546.

P. Benioff (1982b), Quantum mechanical Hamiltonian models of Turing machines that dissipate
no energy, Phys. Rev. Lett., 48, pp. 1581–1585.

C. H. Bennett (1973), Logical reversibility of computation, IBM J. Res. Develop., 17, pp. 525–532.
C. H. Bennett (1989), Time/space trade-offs for reversible computation, SIAM J. Comput., 18,

pp. 766–776.
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani (1997), Strengths and weaknesses

of quantum computing, SIAM J. Comput., 26, pp. 1510–1523.
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wooters

(1996), Purification of noisy entanglement and faithful teleportation via noisy channels, Phys.
Rev. Lett., 76, pp. 722–725.

E. Bernstein and U. Vazirani (1993), Quantum complexity theory, in Proc. 25th Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York, pp. 11–
20; SIAM J. Comput., 26 (1997), pp. 1411–1473.

A. Berthiaume and G. Brassard (1992), The quantum challenge to structural complexity theory,
in Proc. 7th Annual Structure in Complexity Theory Conference, IEEE Computer Society Press,
Los Alamitos, CA, pp. 132–137.

A. Berthiaume and G. Brassard (1994), Oracle quantum computing, J. Modern Opt., 41, pp.
2521–2535.

A. Berthiaume, D. Deutsch, and R. Jozsa (1994), The stabilisation of quantum computations,
in Proc. Workshop on Physics of Computation: PhysComp ’94, IEEE Computer Society Press,
Los Alamitos, CA, pp. 60–62.

M. Biafore (1994), Can quantum computers have simple Hamiltonians, in Proc. Workshop on
Physics of Computation: PhysComp ’94, IEEE Computer Society Press, Los Alamitos, CA,
pp. 63–68.

1508 PETER W. SHOR

D. Boneh and R. J. Lipton (1995), Quantum cryptanalysis of hidden linear functions, Advances
in Cryptology—CRYPTO ’95, Proc. 15th Annual International Cryptology Conference, Santa
Barbara, CA, D. Coppersmith, ed. Springer-Verlag, Berlin, pp. 424–437.

J. F. Canny and J. Reif (1987), New lower bound techniques for robot motion planning problems,
in Proc. 28th Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, pp. 49–60.

J. Choi, J. Sellen, and C.-K. Yap (1995), Precision-sensitive Euclidean shortest path in 3-space,
in Proc. 11th Annual Symposium on Computational Geometry, Association for Computing Ma-
chinery, New York, pp. 350–359.

I. L. Chuang, R. Laflamme, P. W. Shor, and W. H. Zurek (1995), Quantum computers, factoring
and decoherence, Science, 270, pp. 1633–1635.

I. L. Chuang and Y. Yamamoto (1995), A simple quantum computer, Phys. Rev. A, 52, pp. 3489–
3496.

A. Church (1936), An unsolvable problem of elementary number theory, Amer. J. Math., 58, pp. 345–
363.

J. I. Cirac and P. Zoller (1995), Quantum computations with cold trapped ions, Phys. Rev. Lett.,
74, pp. 4091–4094.

R. Cleve (1994), A note on computing Fourier transforms by quantum programs, preprint.
D. Coppersmith (1994), An Approximate Fourier Transform Useful in Quantum Factoring, IBM

Research Report RC 19642.
D. Deutsch (1985), Quantum theory, the Church–Turing principle and the universal quantum com-

puter, Proc. Roy. Soc. London Ser. A, 400, pp. 96–117.
D. Deutsch (1989), Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425, pp. 73–

90.
D. Deutsch, A. Barenco, and A. Ekert (1995), Universality of quantum computation, Proc. Roy.

Soc. London Ser. A, 449, pp. 669-677.
D. Deutsch and R. Jozsa (1992), Rapid solution of problems by quantum computation, Proc. Roy.

Soc. London Ser. A, 439, pp. 553–558.
D. P. DiVincenzo (1995), Two-bit gates are universal for quantum computation, Phys. Rev. A, 51,

pp. 1015–1022.
A. Ekert and R. Jozsa (1996), Shor’s quantum algorithm for factorising numbers, Rev. Mod.

Phys., 68, pp. 733–753.
R. Feynman (1982), Simulating physics with computers, Internat. J. Theoret. Phys., 21, pp. 467–488.
R. Feynman (1986), Quantum mechanical computers, Found. Phys., 16, pp. 507–531; originally

published in Optics News (February 1985), pp. 11–20.
E. Fredkin and T. Toffoli (1982), Conservative logic, Internat. J. Theoret. Phys., 21, pp. 219–253.
D. M. Gordon (1993), Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete

Math., 6, pp. 124–139.
R. B. Griffiths and C.-S. Niu (1996), Semiclassical Fourier tranform for quantum computation,

Phys. Rev. Lett., 76, pp. 3228–3231.
G. H. Hardy and E. M. Wright (1979), An Introduction to the Theory of Numbers, 5th ed., Oxford

University Press, New York.
J. Hartmanis and J. Simon (1974), On the power of multiplication in random access machines, in

Proc. 15th Annual Symposium on Switching and Automata Theory, IEEE Computer Society,
Long Beach, CA, pp. 13–23.

A. Karatsuba and Yu. Ofman (1962), Multiplication of multidigit numbers on automata, Dokl.
Akad. Nauk SSSR, 145, pp. 293–294 (in Russian); Sov. Phys. Dokl., 7 (1963), pp. 595–596
(English translation).

E. Knill (1995), personal communication.
D. E. Knuth (1981), The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd

ed., Addison-Wesley, Reading, MA.
R. Landauer (1995), Is quantum mechanics useful? Philos. Trans. Roy. Soc. London Ser. A, 353,

pp. 367-376.
R. Landauer (1997), Is quantum mechanically coherent computation useful?, in Proc. Drexel-4

Symposium on Quantum Nonintegrability—Quantum Classical Correspondence, D. H. Feng and
B-L. Hu, eds., International Press, Cambridge, MA, to appear.

Y. Lecerf (1963), Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation
u = θnu, où θ est un isomorphisme de codes, C. R. Acad. Française Sci., 257, pp. 2597–2600.

A. K. Lenstra and H. W. Lenstra, Jr., eds. (1993), The Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard (1990), The number field
sieve, in Proc. 22nd Annual ACM Symposium on Theory of Computing, Association for Com-
puting Machinery, New York, pp. 564–572; expanded version appears in Lenstra and Lenstra,

PRIME FACTORIZATION ON A QUANTUM COMPUTER 1509

Jr. [1993], pp. 11–42.
R. Y. Levine and A. T. Sherman (1990), A note on Bennett’s time-space tradeoff for reversible

computation, SIAM J. Comput., 19, pp. 673–677.
S. Lloyd (1993), A potentially realizable quantum computer, Science, 261, pp. 1569–1571.
S. Lloyd (1994), Envisioning a quantum supercomputer, Science, 263, p. 695.
S. Lloyd (1995), Almost any quantum logic gate is universal, Phys. Rev. Lett., 75, pp. 346–349.
N. Margolus (1986), Quantum computation, Ann. New York Acad. Sci., 480, pp. 487–497.
N. Margolus (1990), Parallel quantum computation, in Complexity, Entropy and the Physics of

Information, Santa Fe Institute Studies in the Sciences of Complexity, Vol. VIII, W. H. Zurek,
ed., Addison-Wesley, Reading, MA, pp. 273–287.

G. L. Miller (1976), Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13,
pp. 300–317.

A. M. Odlyzko (1995), personal communication.
G. M. Palma, K.-A. Suominen, and A. K. Ekert (1996), Quantum computers and dissipation,

Proc. Roy. Soc. London Ser. A, 452, pp. 567–584.
A. Peres (1993), Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht,

The Netherlands.
C. Pomerance (1987), Fast, rigorous factorization and discrete logarithm algorithms, in Discrete

Algorithms and Complexity, Proc. Japan–US Joint Seminar, 1986, Kyoto, D. S. Johnson, T.
Nishizeki, A. Nozaki, and H. S. Wilf, eds., Academic Press, New York, pp. 119–143.

E. Post (1936), Finite combinatory processes. Formulation I, J. Symbolic Logic, 1, pp. 103–105.
R. L. Rivest, A. Shamir, and L. Adleman (1978), A method of obtaining digital signatures and

public-key cryptosystems, Comm. Assoc. Comput. Mach., 21, pp. 120–126.
L. A. Rubel (1989), Digital simulation of analog computation and Church’s thesis, J. Symbolic

Logic, 54, pp. 1011–1017.
A. Schönhage (1982), Asymptotically fast algorithms for the numerical multiplication and division

of polynomials with complex coefficients, in Computer Algebra EUROCAM ’82, Lecture Notes
in Computer Science 144, J. Calmet, ed., Springer-Verlag, Berlin, pp. 3–15.

A. Schönhage, A. F. W. Grotefeld, and E. Vetter (1994), Fast Algorithms: A Multitape Turing
Machine Implementation, B. I. Wissenschaftsverlag, Mannheim, Germany.

A. Schönhage and V. Strassen (1971), Schnelle Multiplikation grosser Zahlen, Computing, 7,
pp. 281–292.

P. W. Shor (1994), Algorithms for quantum computation: Discrete logarithms and factoring, in
Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, pp. 124–134.

P. W. Shor (1995), Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A,
52, pp. 2493–2496.

D. Simon (1994), On the power of quantum computation, in Proc. 35th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 116–
123; SIAM J. Comput., 26 (1997), pp. 1474–1483.

T. Sleator and H. Weinfurter (1995), Realizable universal quantum logic gates, Phys. Rev. Lett.,
74, pp. 4087–4090.

R. Solovay (1995), personal communication.
K. Steiglitz (1988), Two non-standard paradigms for computation: Analog machines and cellular

automata, in Performance Limits in Communication Theory and Practice, Proc. NATO Ad-
vanced Study Institute, Il Ciocco, Castelvecchio Pascoli, Tuscany, Italy, 1986, J. K. Skwirzynski,
ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 173–192.

W. G. Teich, K. Obermayer, and G. Mahler (1988), Structural basis of multistationary quantum
systems II: Effective few-particle dynamics, Phys. Rev. B, 37, pp. 8111–8121.

T. Toffoli (1980), Reversible computing, in Automata, Languages and Programming, 7th Collo-
quium, Lecture Notes in Computer Science 84, J. W. de Bakker and J. van Leeuwen, eds.,
Springer-Verlag, Berlin, pp. 632–644.

A. M. Turing (1936), On computable numbers, with an application to the Entscheidungsproblem,
in Proc. London Math. Soc. (2), 42, pp. 230–265; corrections in Proc. London Math. Soc. (2),
43 (1937), pp. 544–546.

W. G. Unruh (1995), Maintaining coherence in quantum computers, Phys. Rev. A, 51, pp. 992–997.
P. van Emde Boas (1990), Machine models and simulations, in Handbook of Theoretical Computer

Science, Vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, pp. 1–66.
A. Vergis, K. Steiglitz, and B. Dickinson (1986), The complexity of analog computation, Math.

Comput. Simulation, 28, pp. 91–113.
A. Yao (1993), Quantum circuit complexity, in Proc. 34th Annual Symposium on Foundations of

Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 352–361.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING∗

CHARLES H. BENNETT† , ETHAN BERNSTEIN‡ , GILLES BRASSARD§ , AND

UMESH VAZIRANI¶

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1510–1523, October 1997 010

Abstract. Recently a great deal of attention has been focused on quantum computation follow-
ing a sequence of results [Bernstein and Vazirani, in Proc. 25th Annual ACM Symposium Theory
Comput., 1993, pp. 11–20, SIAM J. Comput., 26 (1997), pp. 1411–1473], [Simon, in Proc. 35th
Annual IEEE Symposium Foundations Comput. Sci., 1994, pp. 116–123, SIAM J. Comput., 26
(1997), pp. 1474–1483], [Shor, in Proc. 35th Annual IEEE Symposium Foundations Comput. Sci.,
1994, pp. 124–134] suggesting that quantum computers are more powerful than classical probabilistic
computers. Following Shor’s result that factoring and the extraction of discrete logarithms are both
solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved
in quantum polynomial time. In this paper, we address this question by proving that relative to an
oracle chosen uniformly at random with probability 1 the class NP cannot be solved on a quantum
Turing machine (QTM) in time o(2n/2). We also show that relative to a permutation oracle chosen
uniformly at random with probability 1 the class NP ∩ co-NP cannot be solved on a QTM in time
o(2n/3). The former bound is tight since recent work of Grover [in Proc. 28th Annual ACM Sympo-
sium Theory Comput., 1996] shows how to accept the class NP relative to any oracle on a quantum
computer in time O(2n/2).

Key words. quantum Turing machines, oracle quantum Turing machines, quantum polynomial
time

AMS subject classifications. 68Q05, 68Q15, 03D10, 03D15

PII. S0097539796300933

1. Introduction. Quantum computational complexity is an exciting new area
that touches upon the foundations of both theoretical computer science and quantum
physics. In the early eighties, Feynman [12] pointed out that straightforward simu-
lations of quantum mechanics on a classical computer appear to require a simulation
overhead that is exponential in the size of the system and the simulated time; he
asked whether this is inherent, and whether it is possible to design a universal quan-
tum computer. Deutsch [9] defined a general model of quantum computation—the
QTM. Bernstein and Vazirani [4] proved that there is an efficient universal QTM.
Yao [17] extended this by proving that quantum circuits (introduced by Deutsch [10])
are polynomially equivalent to QTMs.

The computational power of QTMs has been explored by several researchers.
Early work by Deutsch and Jozsa [11] showed how to exploit some inherently quan-
tum mechanical features of QTMs. Their results, in conjunction with subsequent
results by Berthiaume and Brassard [5, 6], established the existence of oracles un-
der which there are computational problems that QTMs can solve in polynomial

∗Received by the editors March 21, 1996; accepted for publication (in revised form) December 2,
1996.

http://www.siam.org/journals/sicomp/26-5/30093.html
†IBM T. J. Watson Research Laboratory, Yorktown Heights, New York, NY 10598 (bennetc@

watson.ibm.com).
‡Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 (ethanb@microsoft.com). The

research of this author was supported by NSF grant CCR-9310214.
§Département IRO, Université de Montréal, C. P. 6128, succursale centre-ville, Montréal

(Québec), Canada H3C 3J7 (brassard@iro.umontreal.ca). The research of this author was supported
in part by Canada’s NSERC and Québec’s FCAR.

¶Computer Science Division, University of California, Berkeley, CA 94720 (vazirani@
cs.berkeley.edu). The research of this author was supported by NSF grant CCR-9310214.

1510

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1511

time with certainty; whereas if we require a classical probabilistic Turing machine
to produce the correct answer with certainty, then it must take exponential time on
some inputs. On the other hand, these computational problems are in BPP1 rel-
ative to the same oracle and are therefore efficiently solvable in the classical sense.
The quantum analogue of the class BPP is the class BQP2 [5]. Bernstein and Vazi-
rani [4] proved that BPP ⊆ BQP ⊆ PSPACE, thus establishing that it will not
be possible to conclusively prove that BQP 6= BPP without resolving the major

open problem P
?
= PSPACE. They also gave the first evidence that BQP 6= BPP

(polynomial-time QTMs are more powerful than polynomial-time probabilistic Turing
machines) by proving the existence of an oracle relative to which there are problems
in BQP that cannot be solved with small error probability by probabilistic machines
restricted to running in no(log n) steps. Since BPP is regarded as the class of all
“efficiently computable” languages (computational problems), this provided evidence
that quantum computers are inherently more powerful than classical computers in a
model-independent way. Simon [16] strengthened this evidence by proving the exis-
tence of an oracle relative to which BQP cannot even be simulated by probabilistic
machines allowed to run for 2n/2 steps. In addition, Simon’s paper also introduced
an important new technique which was one of the ingredients in a remarkable result
proved subsequently by Shor [15]. Shor gave polynomial-time quantum algorithms
for the factoring and discrete logarithm problems. These two problems have been
well studied, and their presumed intractability forms the basis of much of modern
cryptography. In view of these results, it is natural to ask whether NP ⊆ BQP;
i.e., can quantum computers solve NP-complete problems in polynomial time?

In this paper, we address this question by proving that relative to an oracle chosen
uniformly at random [3], with probability 1, the class NP cannot be solved on a QTM
in time o(2n/2). We also show that relative to a permutation oracle chosen uniformly
at random, with probability 1, the class NP ∩ co-NP cannot be solved on a QTM
in time o(2n/3). The former bound is tight since recent work of Grover [13] shows
how to accept the class NP relative to any oracle on a quantum computer in time
O(2n/2). See [7] for a detailed analysis of Grover’s algorithm.

What is the relevance of these oracle results? We should emphasize that they
do not rule out the possibility that NP ⊆ BQP. What these results do establish is
that there is no black-box approach to solving NP-complete problems by using some
uniquely quantum-mechanical features of QTMs. That this was a real possibility is
clear from Grover’s [13] result, which gives a black-box approach to solving NP-com-
plete problems in square-root as much time as is required classically.

One way to think of an oracle is as a special subroutine call whose invocation only
costs unit time. In the context of QTMs, subroutine calls pose a special problem that
has no classical counterpart. The problem is that the subroutine must not leave around
any bits beyond its computed answer, because, otherwise, computational paths with
different residual information do not interfere. This is easily achieved for deterministic
subroutines since any classical deterministic computation can be carried out reversibly
so that only the input and the answer remain. However, this leaves open the more

1 BPP is the class of decision problems (languages) that can be solved in polynomial time by
probabilistic Turing machines with error probability bounded by 1/3 (for all inputs). Using standard
boosting techniques, the error probability can then be made exponentially small in k by iterating
the algorithm k times and returning the majority answer.

2 BQP is the class of decision problems (languages) that can be solved in polynomial time by
QTMs with error probability bounded by 1/3 (for all inputs)—see [4] for a formal definition. We prove
in section 4 that, as is the case with BPP, the error probability of BQP machines can be made
exponentially small.

1512 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

general question of whether a BQP machine can be used as a subroutine. Our final
result in this paper is to show how any BQP machine can be modified into a tidy BQP
machine whose final superposition consists almost entirely of a tape configuration
containing just the input and the single bit answer. Since these tidy BQP machines
can be safely used as subroutines, this allows us to show that BQPBQP = BQP.
The result also justifies the definition of oracle quantum machines that we now give.

2. Oracle QTMs. In this section and the next, we shall assume without loss
of generality that the Turing machine alphabet (for each track or tape) is {0, 1,#},
where “#” denotes the blank symbol. Initially all tapes are blank except that the
input tape contains the actual input surrounded by blanks. We shall use Σ to denote
{0, 1}.

In the classical setting, an oracle may be described informally as a device for eval-
uating some Boolean function A : Σ∗ → Σ on arbitrary arguments at unit cost per
evaluation. This allows us to formulate questions such as, “If A were efficiently com-
putable by a Turing machine, which other functions (or languages) could be efficiently
computed by Turing machines?” In the quantum setting, an equivalent question can
be asked, provided we define oracle QTMs appropriately, which we do in this section,
and provided bounded-error QTMs can be composed, which we show in section 4.

An oracle QTM has a special query tape (or track), all of whose cells are blank
except for a single block of nonblank cells. In a well-formed oracle QTM, the Turing
machine rules may allow this region to grow and shrink but prevent it from frag-
menting into noncontiguous blocks.3 Oracle QTMs have two distinguished internal
states: a prequery state qq and a postquery state qa. A query is executed whenever
the machine enters the prequery state. If the query string is empty, a no-op occurs,
and the machine passes directly to the postquery state with no change. If the query
string is nonempty, it can be written in the form x ◦ b where x ∈ Σ∗, b ∈ Σ, and “◦”
denotes concatenation. In that case, the result of a call on oracle A is that internal
control passes to the postquery state while the contents of the query tape changes
from |x ◦ b〉 to |x ◦ (b ⊕ A(x))〉, where “⊕” denotes the exclusive-or (addition mod-
ulo 2). Except for the query tape and internal control, other parts of the oracle QTM
do not change during the query. If the target bit |b〉 is supplied in initial state |0〉,
then its final state will be |A(x)〉, just as in a classical oracle machine. Conversely,
if the target bit is already in state |A(x)〉, calling the oracle will reset it to |0〉. This
ability to “uncompute” will often prove essential to allow proper interference among
computation paths to take place. Using this fact, it is also easy to see that the above
definition of oracle QTMs yields unitary evolutions if we restrict ourselves to machines
that are well formed in other respects, in particular evolving unitarily as they enter
the prequery state and leave the postquery state.

The power of quantum computers comes from their ability to follow a coherent
superposition of computation paths. Similarly oracle quantum machines derive great
power from the ability to perform superpositions of queries. For example, oracle A
might be called when the query tape is in state |ψ ◦ 0〉 =

∑
x αx|x ◦ 0〉, where αx

are complex coefficients, corresponding to an arbitrary superposition of queries with
a constant |0〉 in the target bit. In this case, after the query, the query string will
be left in the entangled state

∑
x αx|x ◦A(x)〉. It is also useful to be able to put the

target bit b into a superposition. For example, the conditional phase inversion used
in Grover’s algorithm can be achieved by performing queries with the target bit b in
the nonclassical superposition β = (|0〉 − |1〉)/√2. It can readily be verified that an

3 This restriction can be made without loss of generality and it can be verified syntactically by
allowing only machines that make sure they do not break the rule before writing on the query tape.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1513

oracle call with the query tape in state x◦β leaves the entire machine state, including
the query tape, unchanged if A(x) = 0, and leaves the entire state unchanged while
introducing a phase factor −1 if A(x) = 1.

It is often convenient to think of a Boolean oracle as defining a length-preserving
function on Σ∗. This is easily accomplished by interpreting the oracle answer on the
pair (x, i) as the ith bit of the function value. The pair (x, i) is encoded as a binary
string using any standard pairing function. A permutation oracle is an oracle which,
when interpreted as a length-preserving function, acts for each n ≥ 0 as a permutation
on Σn. Henceforth, when no confusion may arise, we shall use A(x) to denote the
length-preserving function associated with oracle A rather than the Boolean function
that gives rise to it.

Let us define BQTime(T (n))A as the sets of languages accepted with probabil-
ity at least 2/3 by some oracle QTM MA whose running time is bounded by T (n).
This bound on the running time applies to each individual input, not just on the
average. Notice that whether or not MA is a BQP-machine might depend upon the
oracle A—thus MA might be a BQP-machine while MB might not be one.

Note: The above definition of a quantum oracle for an arbitrary Boolean function
will suffice for the purposes of the present paper, but the ability of quantum comput-
ers to perform general unitary transformations suggests a broader definition, which
may be useful in other contexts. For example, oracles that perform more general,
non-Boolean unitary operations have been considered in computational learning the-
ory [8] and for hiding information against classical queries [14].

Most broadly, a quantum oracle may be defined as a device that, when called,
applies a fixed unitary transformation U to the current contents |z〉 of the query
tape, replacing it by U |z〉. Such an oracle U must be defined on a countably
infinite-dimensional Hilbert space, such as that spanned by the binary basis vectors
|ε〉, |0〉, |1〉, |00〉, |01〉, |10〉, |11〉, |000〉, . . . , where ε denotes the empty string. Clearly,
the use of such general unitary oracles still yields unitary evolution for well-formed
oracle QTMs. Naturally, these oracles can map inputs onto superpositions of outputs,
and vice versa, and they need not even be length preserving. However, in order to
obey the dictum that a single machine cycle ought not to make infinite changes in
the tape, one might require that U |z〉 have amplitude zero on all but finitely many
basis vectors. (One could even insist on a uniform and effective version of the above
restriction.) Another natural restriction one may wish to impose upon U is that it be
an involution, U2 = I, so that the effect of an oracle call can be undone by a further
call on the same oracle. Again this may be crucial to allow proper interference to take
place. Note that the special case of unitary transformation considered in this paper,
which corresponds to evaluating a classical Boolean function, is an involution.

3. On the difficulty of simulating nondeterminism on QTMs. The com-
putational power of QTMs lies in their ability to maintain and compute with exponen-
tially large superpositions. It is tempting to try to use this “exponential parallelism”
to simulate nondeterminism. However, there are inherent constraints on the scope of
this parallelism, which are imposed by the formalism of quantum mechanics.4 In this
section, we explore some of these constraints.

4 There is a superficial similarity between this exponential parallelism in quantum computation
and the fact that probabilistic computations yield probability distributions over exponentially large
domains. The difference is that in the probabilistic case, the computational path is chosen by making
a sequence of random choices—one for each step. In the quantum-mechanical case, it is possible for
several computational paths to interfere destructively, and therefore it is necessary to keep track of
the entire superposition at each step to accurately simulate the system.

1514 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

To see why quantum interference can speed up NP problems quadratically but
not exponentially, consider the problem of distinguishing the empty oracle (∀xA(x)=
0) from an oracle containing a single random unknown string y of known length n
(i.e., A(y) = 1, but ∀x 6=yA(x) = 0). We require that the computer never answer yes
on an empty oracle and seek to maximize its “success probability” of answering yes
on a nonempty oracle. A classical computer can do no better than to query distinct
n-bit strings at random, giving a success probability 1/2n after one query and k/2n

after k queries. How can a quantum computer do better, while respecting the rule
that its overall evolution be unitary and, in a computation with a nonempty oracle,
all computation paths querying empty locations evolve exactly as they would for an
empty oracle? A direct quantum analogue of the classical algorithm would start in
an equally weighted superposition of 2n computation paths, query a different string
on each path, and finally collapse the superposition by asking whether the query had
found the nonempty location. This yields a success probability 1/2n, the same as the
classical computer. However, this is not the best way to exploit quantum parallelism.
Our goal should be to maximize the separation between the state vector |ψk〉 after k
interactions with an empty oracle and the state vector |ψk(y)〉 after k interactions with
an oracle nonempty at an unknown location y. Starting with a uniform superposition

|ψ0〉 =
1√
2n

∑
x

|x〉,

it is easily seen that the separation after one query is maximized by a unitary evolution
to

|ψ1(y)〉 =
1√
2n

∑
x

(−1)δx,y |x〉 = |ψ0〉 − 2√
2n
|y〉.

This is a phase inversion of the term corresponding to the nonempty location. By
testing whether the postquery state agrees with |ψ0〉 we obtain a success probability

1− |〈ψ0|ψ1(y)〉|2 ≈ 4/2n

approximately four times better than the classical value. Thus, if we are allowed
only one query, quantum parallelism gives a modest improvement but is still over-
whelmingly likely to fail because the state vector after interaction with a nonempty
oracle is almost the same as after interaction with an empty oracle. The only way
of producing a large difference after one query would be to concentrate much of the
initial superposition in the y term before the query, which cannot be done because
that location is unknown.

Having achieved the maximum separation after one query, how best can that
separation be increased by subsequent queries? Various strategies can be imagined,
but a good one (called “inversion about the average” by Grover [13]) is to perform
an oracle-independent unitary transformation so as to change the phase difference
into an amplitude difference, leaving the y term with the same sign as all the other
terms but a magnitude approximately threefold larger. Subsequent phase-inverting
interactions with the oracle, alternating with oracle-independent phase-to-amplitude
conversions, cause the distance between |ψ0〉 and |ψk(y)〉 to grow linearly with k,
approximately as 2k/

√
2n when k ≤ √

N/2. This results in a quadratic growth of the
success probability, approximately as 4k2/2n for small k. The proof of Theorem 3.5
shows that this approach is essentially optimal; no quantum algorithm can gain more
than this quadratic factor in success probability compared with classical algorithms
when attempting to answer NP-type questions formulated relative to a random oracle.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1515

3.1. Lower bounds on quantum search. We will sometimes find it conve-
nient to measure the accuracy of a simulation by calculating the Euclidean distance5

between the target and simulation superpositions. The following theorem from [4]
shows that the simulation accuracy is at most four times worse than this Euclidean
distance.

Theorem 3.1. If two unit-length superpositions are within Euclidean distance
ε, then observing the two superpositions gives samples from distributions which are
within total variation distance6 at most 4ε.

Definition 3.2. Let |φi〉 be the superposition of MA on input x at time i. We
denote by qy(|φi〉) the sum of squared magnitudes in |φi〉 of configurations of M which
are querying the oracle on string y. We refer to qy(|φi〉) as the query magnitude of y
in |φi〉.

Theorem 3.3. Let |φi〉 be the superposition of MA on input x at time i. Let ε >

0. Let F ⊆ [0, T−1]×Σ∗ be a set of time-string pairs such that
∑

(i,y)∈F qy(|φi〉) ≤ ε2

T .

Now suppose the answer to each query (i, y) ∈ F is modified to some arbitrary fixed ai,y
(these answers need not be consistent with an oracle). Let |φ′i〉 be the time i superposi-
tion of M on input x with oracle A modified as stated above. Then ||φT 〉 − |φ′T 〉| ≤ ε.

Proof. Let U be the unitary time evolution operator of MA. Let Ai denote an
oracle such that if (i, y) ∈ F then Ai(y) = ai,y and if (i, y) /∈ F then Ai(y) = A(y).
Let Ui be the unitary time evolution operator of MAi . Let |φi〉 be the superposition
of MA on input x at time i. We define |Ei〉 to be the error in the ith step caused by
replacing the oracle A with Ai. Then

|Ei〉 = Ui|φi〉 − U |φi〉.
So we have

|φT 〉 = U |φT−1〉 = UT−1|φT−1〉+|ET−1〉 = · · · = UT−1 · · ·U0|φ0〉+
T−1∑
i=0

UT−1 · · ·Ui+1|Ei〉.

Since all of the Ui are unitary, |UT−1 · · ·Ui|Ei〉| = ||Ei〉|.
The sum of squared magnitudes of all of the Ei is equal to 2

∑
(i,y)∈F qy(|φi〉)

and therefore at most ε2

T . In the worst case, the UT−1 · · ·Ui|Ei〉’s could interfere
constructively; however, the squared magnitude of their sum is at most T times the
sum of their squared magnitudes, i.e., ε2. Therefore ||φT 〉 − |φ′T 〉| ≤ ε.

Corollary 3.4. Let A be an oracle over alphabet Σ. For y ∈ Σ∗, let Ay be any
oracle such that ∀x 6= y Ay(x) = A(x). Let |φi〉 be the time i superposition of MA

on input x and |φi〉(y) be the time i superposition of MAy on input x. Then for every

ε > 0 there is a set S of cardinality at most 2T 2

ε2 such that ∀y /∈ S
∣∣∣|φT 〉 − |φT 〉(y)

∣∣∣ ≤ ε.

Proof. Since each |φt〉 has unit length,
∑T−1

i=0

∑
y qy(|φi〉) ≤ T . Let S be the set

of strings y such that
∑T−1

i=0 qy(|φi〉) ≥ ε2

2T . Clearly card(S) ≤ 2T 2

ε2 .

If y /∈ S then
∑T−1

i=0 qy(|φi〉) < ε2

2T . Therefore, by Theorem 3.3 ∀y /∈ S
∣∣∣|φi〉 − |φi〉(y)

∣∣∣
≤ ε.

Theorem 3.5. For any T (n) which is o(2n/2) relative to a random oracle with
probability 1, BQTime(T (n)) does not contain NP.

5 The Euclidean distance between |φ〉 =
∑

x
αx|x〉 and |ψ〉 =

∑
x
β|x〉 is defined as(∑

x
|αx − βx|2

)1/2
.

6 The total variation distance between two distributions D and D′ is
∑

x
|D(x)−D′(x)|.

1516 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

Proof. Recall from section 2 that an oracle can be thought of as a length-
preserving function; this is what we mean below byA(x). Let LA = {y : ∃x A(x) = y}.
Clearly, this language is contained in NPA. Let T (n) = o(2n/2). We show that for
any bounded-error oracle QTM MA running in time at most T (n), with probability
1, MA does not accept the language LA. The probability is taken over the choice
of a random length-preserving oracle A. Then, since there are a countable number
of QTMs and the intersection of a countable number of probability 1 events still has
probability 1, we conclude that with probability 1 no bounded error oracle QTM
accepts LA in time bounded by T (n).

Since T (n) = o(2n/2), we can pick n large enough so that T (n) ≤ 2n/2

20 . We will
show that the probability that M gives the wrong answer on input 1n is at least 1/8
for every way of fixing the oracle answers on inputs of length not equal to n. The
probability is taken over the random choices of the oracle for inputs of length n.

Let us fix an arbitrary length-preserving function from strings of lengths other
than n over alphabet Σ. Let C denote the set of oracles consistent with this arbitrary
function. Let A be the set of oracles in C such that 1n has no inverse (does not belong
to LA). If the oracle answers to length n strings are chosen uniformly at random, then
the probability that the oracle is in A is at least 1/4. This is because the probability
that 1n has no inverse is (2n−1

2n)2
n

which is at least 1/4 (for n sufficiently large). Let B
be the set of oracles in C such that 1n has a unique inverse. As above, the probability
that a randomly chosen oracle is in B is (2n−1

2n)2
n−1 which is at least 1/e.

Given an oracle A in A, we can modify its answer on any single input, say y,
to 1n and therefore get an oracle Ay in B. We will show that for most choices of
y, the acceptance probability of MA on input 1n is almost equal to the acceptance
probability of MAy on input 1n. On the other hand, MA must reject 1n and MAy

must accept 1n. Therefore M cannot accept both LA and LAy
. By working through

the details more carefully, it is easy to show that M fails on input 1n with probability
at least 1/8 when the oracle is a uniformly random function on strings of length n
and is an arbitrary function on all other strings.

Let Ay be the oracle such that Ay(y) = 1n and ∀z 6= y Ay(z) = A(z). By
Corollary 3.4 there is a set S of at most 338T 2(n) strings such that the difference
between the T (n)th superposition of MAy on input 1n and MA on input 1n has
norm at most 1/13. Using Theorem 3.1 we can conclude that the difference between
the acceptance probabilities of MAy on input 1n and MA on input 1n is at most
1/13 × 4 < 1/3. Since MAy should accept 1n with probability at least 2/3 and MA

should reject 1n with probability at least 2/3, we can conclude that M fails to accept
either LA or LAy

.

So, each oracle A ∈ A for which M correctly decides whether 1n ∈ LA can, by
changing a single answer of A to 1n, be mapped to at least (2n − card(S)) ≥ 2n−1

different oracles Af ∈ B for which M fails to correctly decide whether 1n ∈ LAf
.

Moreover, any particular Af ∈ B is the image under this mapping of at most 2n − 1
oracles A ∈ A, since where it now answers 1n, it must have given one of the 2n − 1
other possible answers. Therefore, the number of oracles in B for which M fails must
be at least 1/2 the number of oracles in A for which M succeeds. So, calling a the
number of oracles in A for which M fails, M must fail for at least a+1/2(card(A)−a)
oracles. Therefore M fails to correctly decide whether 1n ∈ LA with probability at
least (1/2)P [A] ≥ 1/8.

It is easy to conclude that M decides membership in LA with probability 0 for a
uniformly chosen oracle A.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1517

Note: Theorem 3.3 and its Corollary 3.4 isolate the constraints on “quantum
parallelism” imposed by unitary evolution. The rest of the proof of the above theorem
is similar in spirit to standard techniques used to separate BPP from NP relative
to a random oracle [3]. For example, these techniques can be used to show that,
relative to a random oracle A, no classical probabilistic machine can recognize LA in
time o(2n). However, quantum machines can recognize this language quadratically
faster, in time O(

√
2n), using Grover’s algorithm [13]. This explains why a substantial

modification of the standard technique was required to prove the above theorem.

The next result about NP ∩ co-NP relative to a random permutation oracle
requires a more subtle argument; ideally we would like to apply Theorem 3.3 after
asserting that the total query magnitude with which A−1(1n) is probed is small.
However, this is precisely what we are trying to prove in the first place.

Theorem 3.6. For any T (n) which is o(2n/3), relative to a random permutation
oracle, with probability 1, BQTime(T (n)) does not contain NP ∩ co-NP.

Proof. For any permutation oracle A, let LA = {y : first bit of A−1(y) is 1}.
Clearly, this language is contained in (NP ∩ co-NP)A. Let T (n) = o(2n/3). We
show that for any bounded-error oracle QTM MA running in time at most T (n),
with probability 1, MA does not accept the language LA. The probability is taken
over the choice of a random permutation oracle A. Then, since there are a countable
number of QTMs and the intersection of a countable number of probability 1 events
still has probability 1, we conclude that with probability 1, no bounded error oracle
QTM accepts LA in time bounded by T (n).

Since T (n) = o(2n/3), we can pick n large enough so that T (n) ≤ 2n/3

100 . We will
show that the probability that M gives the wrong answer on input 1n is at least 1/8
for every way of fixing the oracle answers on inputs of length not equal to n. The
probability is taken over the random choices of the permutation oracle for inputs of
length n.

Consider the following method of defining random permutations on {0, 1}n: let
x0, x1, . . . , xT+1 be a sequence of strings chosen uniformly at random in {0, 1}n. Pick
π0 uniformly at random among permutations such that π(x0) = 1n. Let πi = πi−1 ·
τ , where τ is the transposition (xi−1, xi), i.e., πi(xi) = πi−1(xi−1) and πi(xi−1) =
πi−1(xi). Clearly each πi is a random permutation on {0, 1}n.

Consider a sequence of permutation oracles Ai such that Ai(y) = Aj(y) if y /∈
{0, 1}n and Ai(y) = πi(y) if y ∈ {0, 1}n. Denote by |φi〉 the time i superposition of
MAT (n) on input 1n, and by |φ′i〉 the time i superposition of MAT (n)−1 on input 1n. By
construction, with probability exactly 1/2, the string 1n is a member of exactly one

of the two languages LAT (n)
and LAT (n)−1

. We will show that E[
∣∣∣|φT (n)〉 − |φ′T (n)〉

∣∣∣] ≤
1/50. Here the expectation is taken over the random choice of the oracles. By

Markov’s bound, P [
∣∣∣|φT (n)〉 − |φ′T (n)〉

∣∣∣ ≤ 2/25] ≥ 3/4. Applying Theorem 3.1 we

conclude that if
∣∣∣|φT (n)〉 − |φ′T (n)〉

∣∣∣ ≤ 2/25, then the acceptance probability of MAT (n)

and MAT (n)−1 differ by at most 8/25 < 1/3, and hence either both machines accept
input 1n or both reject that input. Therefore MAT (n) and MAT (n)−1 give the same
answers on input 1n with probability at least 3/4. By construction, the probability
that the string 1n belongs to exactly one of the two languages LAT (n)

and LAT (n)−1
is

equal to P [first bit of xT (n)−1 6= first bit of xT (n)] = 1/2. Therefore, we can conclude

that with probability at least 1/4, either MAT (n) or MAT (n)−1 gives the wrong answer
on input 1n. Since each of AT (n) and AT (n)−1 are chosen from the same distribution,

1518 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

we can conclude that MAT (n) gives the wrong answer on input 1n with probability at
least 1/8.

To bound E[
∣∣∣|φT (n)〉 − |φ′T (n)〉

∣∣∣], we show that |φT (n)〉 and |φ′T (n)〉 are each close

to a certain superposition |ψT (n)〉. To define this superposition, run M on input 1n

with a different oracle on each step; on step i, use Ai to answer the oracle queries.
Denote by |ψi〉, the time i superposition that results. Consider the set of time-string
pairs S = {(i, xj) : j ≥ i, 0 ≤ i ≤ T}. It is easily checked that the oracle queries in
the computation described above and those of MAT (n) and MAT (n)+1 differ only on
the set S. We claim that the expected query magnitude of any pair in the set is at
most 1/2n, since for j ≥ i we may think of xj as having been randomly chosen during
step j, after the superposition of oracle queries to be performed has already been
written on the oracle tape. Let α be the sum of the query magnitudes for time-string
pairs in S. Then

E[α] ≤ card(S)/2n =

(
T (n) + 1

2

)
/2n ≤ T (n)2

2n

for T (n) ≥ 4. Let ε be a random variable such that α = ε2/2T (n). Then by Theo-

rem 3.3,
∣∣|φ〉 − |φT (n)〉

∣∣ ≤ ε and
∣∣∣|φ〉 − |φ′T (n)〉

∣∣∣ ≤ ε. We showed above that

E[ε2/T (n)] = E[α] ≤ T (n)2

2n
.

But E[ε/
√

2T (n)]2 ≤ E[ε2/2T (n)]. Therefore,

E[ε] =
√

2T (n)E[ε/
√

2T (n)] ≤
√

2T (n)E[ε2/2T (n)] ≤
√

2T (n)
T (n)2

2n

≤
√

2

1003
< 1/100.

Therefore E[
∣∣|φ〉 − |φT (n)〉

∣∣] ≤ E[ε] < 1/100 and E[
∣∣∣|φ〉 − |φ′T (n)〉

∣∣∣] ≤ E[ε] < 1/100.

It follows that E[
∣∣∣|φT (n)〉 − |φ′T (n)〉

∣∣∣] < 1/50.

Finally, it is easy to conclude that M decides membership in LA with probability
0 for a uniformly random permutation oracle A.

Note: In view of Grover’s algorithm [13], we know that the constant “1/2” in
the statement of Theorem 3.5 cannot be improved. On the other hand, there is no
evidence that the constant “1/3” in the statement of Theorem 3.6 is fundamental.
It may well be that Theorem 3.6 would still hold (albeit not its current proof) with
1/2 substituted for 1/3.

Corollary 3.7. Relative to a random permutation oracle, with probability 1,
there exists a quantum one-way permutation. Given the oracle, this permutation can
be computed efficiently even with a classical deterministic machine, yet it requires
exponential time to invert even on a quantum machine.

Proof. Given an arbitrary permutation oracle A for which A−1 can be computed
in time o(2n/3) on a QTM, it is just as easy to decide LA as defined in the proof of
Theorem 3.6. It follows from that proof that this happens with probability 0 when A
is a uniformly random permutation oracle.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1519

4. Using a bounded-error QTM as a subroutine. The notion of a subrou-
tine call or an oracle invocation provides a simple and useful abstraction in the context
of classical computation. Before making this abstraction in the context of quantum
computation, there are some subtle considerations that must be thought through. For
example, if the subroutine computes the function f , we would like to think of an invo-
cation of the subroutine on the string x as magically writing f(x) in some designated
spot (actually xoring it to ensure unitarity). In the context of quantum algorithms,
this abstraction is only valid if the subroutine cleans up all traces of its intermediate
calculations and leaves just the final answer on the tape. This is because if the sub-
routine is invoked on a superposition of x’s, then different values of x would result in
different scratch work on the tape and would prevent these different computational
paths from interfering. Since erasing is not a unitary operation, the scratch work
cannot, in general, be erased postfacto. In the special case where f can be efficiently
computed deterministically, it is easy to design the subroutine so that it reversibly
erases the scratch work—simply compute f(x), copy f(x) into safe storage, and then
uncompute f(x) to get rid of the scratch work [2]. However, in the case that f is com-
puted by a BQP machine, the situation is more complicated. This is because only
some of the computational paths of the machine lead to the correct answer f(x), and
therefore if we copy f(x) into safe storage and then uncompute f(x), computational
paths with different values of f(x) will no longer interfere with each other, and we will
not reverse the first phase of the computation. We show, nonetheless, that if we boost
the success probability of the BQP machine before copying f(x) into safe storage and
uncomputing f(x), then most of the weight of the final superposition has a clean tape
with only the input x and the answer f(x). Since such tidy BQP machines can be
safely used as subroutines, this allows us to show that BQPBQP = BQP. The result
also justifies our definition of oracle quantum machines.

The correctness of the boosting procedure is proved in Theorems 4.13 and 4.14.
The proof follows the same outline as in the classical case, except that we have to
be much more careful in simple programming constructs such as looping, etc. We
therefore borrow the machinery developed in [4] for this purpose and present the
statements of the relevant lemmas and theorems in the first part of this section. The
main new contribution in this section is in the proofs of Theorems 4.13 and 4.14. The
reader may therefore wish to skip directly ahead to these proofs.

4.1. Some programming primitives for QTMs. In this subsection, we present
several definitions, lemmas and theorems from [4].

Recall that a QTM M is defined by a triplet (Σ, Q, δ) where Σ is a finite alphabet
with an identified blank symbol #, Q is a finite set of states with an identified initial
state q0 and final state qf 6= q0, and δ, the quantum transition function, is a function

δ : Q × Σ → C̃
Σ × Q × {L,R}

where C̃ is the set of complex numbers whose real and imaginary parts can be ap-
proximated to within 2−n in time polynomial in n.

Definition 4.1. A final configuration of a QTM is any configuration in state
qf . If when QTM M is run with input x, at time T the superposition contains only
final configurations and at any time less than T the superposition contains no final
configuration, then M halts with running time T on input x. The superposition of M
at time T is called the final superposition of M run on input x. A polynomial-time
QTM is a well-formed QTM which on every input x halts in time polynomial in the
length of x.

1520 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

Definition 4.2. A QTM M is called well behaved if it halts on all input strings
in a final superposition where each configuration has the tape head in the same cell.
If this cell is always the start cell, we call the QTM stationary.

We will say that a QTM M is in normal form if all transitions from the distin-
guished state qf lead to the distinguished state q0, the symbol in the scanned cell
is left unchanged, and the head moves right, say. We formally state the following
definition.

Definition 4.3. A QTM M = (Σ, Q, δ) is in normal form if

∀σ ∈ Σ δ(qf , σ) = |σ〉|q0〉|R〉.

Theorem 4.4. If f is a function mapping strings to strings which can be com-
puted in deterministic polynomial time and such that the length of f(x) depends only
on the length of x, then there is a polynomial-time, stationary, normal form QTM
which, given input x, produces output x; f(x) and whose running time depends only
on the length of x.

If f is a one-to-one function from strings to strings such that both f and f−1 can
be computed in deterministic polynomial time, and such that the length of f(x) depends
only on the length of x, then there is a polynomial-time, stationary, normal form QTM
which, given input x, produces output f(x) and whose running time depends only on
the length of x.

Definition 4.5. A multitrack Turing machine with k tracks is a Turing machine
whose alphabet Σ is of the form Σ1 × Σ2 × · · · × Σk with a special blank symbol # in
each Σi so that the blank in Σ is (#, . . . ,#). We specify the input by specifying the
string on each “track” (separated by “;”), and optionally by specifying the alignment
of the contents of the tracks.

Lemma 4.6. Given any QTM M = (Σ, Q, δ) and any set Σ′, there is a QTM
M ′ = (Σ×Σ′, Q, δ′) such that M ′ behaves exactly like M while leaving its second track
unchanged.

Lemma 4.7. Given any QTM M = (Σ1 × · · · × Σk, Q, δ) and permutation π :
[1, k] → [1, k], there is a QTM M ′ = (Σπ(1) × · · · × Σπ(k), Q, δ

′) such that the M ′

behaves exactly as M except that its tracks are permuted according to π.
Lemma 4.8. If M1 and M2 are well-behaved, normal form QTMs with the same

alphabet, then there is a normal form QTM M which carries out the computation of
M1 followed by the computation of M2.

Lemma 4.9. Suppose that M is a well-behaved, normal form QTM. Then there
is a normal form QTM M ′ such that on input x; k with k > 0, the machine M ′ runs
M for k iterations on its first track.

Definition 4.10. If QTMs M1 and M2 have the same alphabet, then we say
that M2 reverses the computation of M1 if the following holds: for any input x on
which M1 halts, let cx and φx be the initial configuration and final superposition of
M1 on input x. Then M2 on input the superposition φx, halts with final superposition
consisting entirely of configuration cx. Note that for M2 to reverse M1, the final state
of M2 must be equal to the initial state of M1 and vice versa.

Lemma 4.11. If M is a normal form QTM which halts on all inputs, then there
is a normal form QTM M ′ that reverses the computation of M with slowdown by a
factor of 5.

Finally, recall the definition of the class BQP.
Definition 4.12. Let M be a stationary, normal form, multitrack QTM M

whose last track has alphabet {#, 0, 1}. We say that M accepts x if it halts with a 1
in the last track of the start cell. Otherwise, we say that M rejects x.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1521

A QTM accepts the language L ⊆ (Σ − #)∗ with probability p if M accepts
with probability at least p every string x ∈ L and rejects with probability at least p
every string x ∈ (Σ − #)∗ − L. We define the class BQP (bounded-error quantum
polynomial time) as the set of languages which are accepted with probability 2/3 by
some polynomial-time QTM. More generally, we define the class BQTime(T (n)) as
the set of languages which are accepted with probability 2/3 by some QTM whose
running time on any input of length n is bounded by T (n).

4.2. Boosting and subroutine calls.

Theorem 4.13. If QTM M accepts language L with probability 2/3 in time
T (n) > n, with T (n) time constructible, then for any ε > 0 there is a QTM M ′ which
accepts L with probability 1 − ε in time cT (n) where c is polynomial in log 1/ε but
independent of n.

Proof. Let M be a stationary QTM which accepts the language L in time T (n).

We will build a machine that runs k independent copies of M and then takes the
majority vote of the k answers. On any input x, M will have some final superposition
of strings

∑
i αi|xi〉. If we call A the set of i for which xi has the correct answer M(x)

then
∑

i∈A |αi|2 ≥ 2/3. Now running M on separate copies of its input k times will
produce

∑
i1,...,ik

αi1 · · ·αik |xi1〉 · · · |xik〉. Then the probability of seeing |xi1〉 · · · |xik〉
such that the majority have the correct answer M(x) is the sum of |αi1 |2 · · · |αik |2
such that the majority of i1, . . . , ik lie in A. But this is just like taking the majority
of k independent coin flips each with probability at least 2/3 of heads. Therefore,
there is some constant b such that when k = b log 1/ε, the probability of seeing the
correct answer will be at least 1− ε.

So, we will build a machine to carry out the following steps.

1. Compute n = T (|x|).
2. Write out k copies of the input x spaced out with 2n blank cells in between,

and write down k and n on other tracks.
3. Loop k times on a machine that runs M and then steps n times to the right.
4. Calculate the majority of the k answers and write it back in the start cell.

We construct the desired QTM by building a QTM for each of these four steps
and then dovetailing them together.

Since steps 1, 2, and 4 require easily computable functions whose output length
depends only on k and the length of x, we can carry them out using well-behaved,
normal form QTMs, constructed using Theorem 4.4, whose running times also depend
only on k and the length of x.

So, we complete the proof by constructing a QTM to run the given machine k
times. First, using Theorem 4.4 we can construct a stationary, normal form QTM
which drags the integers k and n one square to the right on its work track. If we
add a single step right to the end of this QTM and apply Lemma 4.9, we can build
a well-behaved, normal form QTM moves which n squares to the right, dragging k
and n along with it. Dovetailing this machine after M and then applying Lemma 4.9
gives a normal form QTM that runs M on each of the k copies of the input. Finally,
we can dovetail with a machine to return with k and n to the start cell by using
Lemma 4.9 two more times around a QTM which carries k and n one step to the
left.

The extra information on the output tape of a QTM can be erased by copying
the desired output to another track and then running the reverse of the QTM. If the
output is the same in every configuration in the final superposition, then this reversal
will exactly recover the input. Unfortunately, if the output differs in different con-

1522 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI

figurations, then saving the output will prevent these configurations from interfering
when the machine is reversed, and the input will not be recovered. We show that the
output is the same in most of the final superpositions; then the reversal must lead us
close to the input.

Theorem 4.14. If the language L is contained in the class BQTime(T (n)),
with T (n) > n and T (n) time constructible, then for any ε > 0 there is a QTM M ′

which accepts L with probability 1 − ε and has the following property. When run on
input x of length n, M ′ runs for time bounded by cT (n), where c is a polynomial in
log 1/ε, and produces a final superposition in which |x〉|L(x)〉 with L(x) = 1 if x ∈ L
and 0 otherwise has squared magnitude at least 1− ε.

Proof. Let M = (Σ, Q, δ) be a stationary, normal form QTM which accepts
language L in time bounded by T (n).

According to Theorem 4.13, at the expense of a slowdown by factor which is
polynomial in log 1/ε but independent of n, we can assume that M accepts L with
probability 1− ε/2 on every input.

Then we can construct the desired M ′ by running M , copying the answer to
another track, and then running the reverse of M . The copy is easily accomplished
with a simple two-step machine that steps left and back right while writing the answer
on a clean track. Using Lemma 4.11, we can construct a normal form QTM MR which
reverses M . Finally, with appropriate use of Lemmas 4.6 and 4.7, we can construct the
desired stationary QTM M ′ by dovetailing machines M and MR around the copying
machine.

To see that this M ′ has the desired properties, consider running M ′ on input x of
length n. M ′ will first runM on x producing some final superposition of configurations∑

y αy|y〉 of M on input x. Then it will write a 0 or 1 in the extra track of the start

cell of each configuration, and runMR on this superposition |φ〉 =
∑

y αy|y〉|by〉. If we

were to instead run MR on the superposition |φ′〉 =
∑

y αy|y〉|M(x)〉 we would after
T (n) steps have the superposition consisting entirely of the final configuration with
output x;M(x). Clearly, 〈φ|φ′〉 is real, and since M has success probability at least
1 − ε/2, 〈φ|φ′〉 ≥ √

1− ε. Therefore, since the time evolution of MR is unitary and
hence preserves the inner product, the final superposition of M ′ must have an inner
product with |x〉|M(x)〉 which is real and at least 1 − ε/2. Therefore, the squared
magnitude in the final superposition of M ′ of the final configuration with output
x;M(x) must be at least (1− ε/2)2 ≥ 1− ε.

Corollary 4.15. BQPBQP = BQP.

Acknowledgment. We wish to thank Bob Solovay for several useful discussions.

REFERENCES

[1] L. Babai and S. Moran, Arthur–Merlin games: A randomized proof system, and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[2] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525–
532.

[3] C. H. Bennett and J. Gill, Relative to a random oracle A, PA 6= NPA 6= co−−NPA with
probability 1, SIAM J. Comput., 10 (1981), pp. 96–113.

[4] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th Annual ACM
Symposium Theory Comput., San Diego, CA, 1993, pp. 11–20; SIAM J. Comput., 26
(1997), pp. 1411–1473.

[5] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory,
in Proc. 7th IEEE Conference on Structure in Complexity Theory, Boston, MA, 1992,
pp. 132–137.

STRENGTHS AND WEAKNESSES OF QUANTUM COMPUTING 1523

[6] A. Berthiaume and G. Brassard, Oracle quantum computing, J. Modern Opt., 41 (1994),
pp. 2521–2535.

[7] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum searching, in
Proc. 4th Workshop on Phys. Comput., New England Complex Systems Institute, Boston,
1996, pp. 36–43. Available online in the InterJournal at http://interjournal.org.

[8] N. Bshouty and J. Jackson, Learning DNF over uniform distribution using a quantum ex-
ample oracle, in Proc. 8th Annual ACM Conference on Comput. Learning Theory, Santa
Cruz, CA, 1995, pp. 118–127.

[9] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum com-
puter, Proc. Roy. Soc. London A, 400 (1985), pp. 97–117.

[10] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London A, 425 (1989), pp. 73–
90.

[11] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. Roy.
Soc. London A, 439 (1992), pp. 553–558.

[12] R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),
pp. 467–488.

[13] L. Grover, A fast quantum mechanical algorithm for database search, in Proc. 28th Annual
ACM Symposium on Theory of Comput., Philadelphia, PA, 1996, pp. 212–219.

[14] J. Machta, Phase Information in Quantum Oracle Computing, manuscript, Physics Dept.,
University of Massachusetts at Amherst, Amherst, MA, 1996.

[15] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in
Proc. 35th Annual IEEE Symposium on Foundations of Comput. Sci., Santa Fe, NM,
1994, pp. 124–134.

[16] D. Simon, On the power of quantum computation, in Proc. 35th Annual IEEE Symposium
on Foundations of Comput. Sci., Santa Fe, NM, 1994, pp. 116–123; SIAM J. Comput., 26
(1997), pp. 1474–1483.

[17] A. Yao, Quantum circuit complexity, in Proc. 34th Annual IEEE Symposium on Foundations
of Comput. Sci., Palo Alto, CA, 1993, pp. 352–361.

QUANTUM COMPUTABILITY∗

LEONARD M. ADLEMAN† , JONATHAN DEMARRAIS† , AND MING-DEH A. HUANG†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1524–1540, October 1997 011

Abstract. In this paper some theoretical and (potentially) practical aspects of quantum comput-
ing are considered. Using the tools of transcendental number theory it is demonstrated that quantum
Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error
quantum polynomial time (BQP) introduced by Bernstein and Vazirani [Proc. 25th ACM Symposium
on Theory of Computation, 1993, pp. 11–20, SIAM J. Comput., 26 (1997), pp. 1411–1473]. On the
other hand, if quantum Turing machines are allowed unrestricted amplitudes (i.e., arbitrary complex
amplitudes), then the corresponding BQP class has uncountable cardinality and contains sets of all
Turing degrees. In contrast, allowing unrestricted amplitudes does not increase the power of compu-
tation for error-free quantum polynomial time (EQP). Moreover, with unrestricted amplitudes, BQP
is not equal to EQP. The relationship between quantum complexity classes and classical complexity
classes is also investigated. It is shown that when quantum Turing machines are restricted to have
transition amplitudes which are algebraic numbers, BQP, EQP, and nondeterministic quantum poly-
nomial time (NQP) are all contained in PP, hence in P#P and PSPACE. A potentially practical issue
of designing “machine independent” quantum programs is also addressed. A single (“almost univer-
sal”) quantum algorithm based on Shor’s method for factoring integers is developed which would
run correctly on almost all quantum computers, even if the underlying unitary transformations are
unknown to the programmer and the device builder.

Key words. quantum Turing machines, quantum complexity classes

AMS subject classifications. 68Q05, 68Q10, 68Q15

PII. S0097539795293639

1. Introduction. In 1982, Feynman [F] considered computers based on quan-
tum mechanical principles and speculated about the existence of a universal quantum
simulator analogous to a universal Turing machine. That work was followed by a
sequence of important papers by Deutsch [D1, D2], Deutch and Jouzsa [DJ], Bern-
stein and Vazirani [BV], and others which brought the topic to a state of development
suitable for rigorous investigation [Y, Si]. Recently, the topic garnered great attention
when Shor [Sh] argued that integer factoring (and the discrete logarithm problem)
could be solved in polynomial time on a quantum machine. More formally, Shor as-
serted that a problem polynomial time equivalent to integer factoring was in the class
BQP defined by Bernstein and Vazirani [BV]. Since much of public key cryptography
is dependent on the difficulty of factoring and discrete logarithms, the existence of
these machines could have a profound effect on cryptography. It is not yet known
whether these machines can be built in practice.

In this paper we study some of the theoretical and (potentially) practical aspects
of quantum computing. In addition to the class BQP, the classes EQP and NQP, the
analogues of the classes P and NP, are also investigated.

The results in [BV] demonstrated that when considering BQP1 one could restrict

attention to QTMs which use rotations by the angle R = 2π
∑∞

i=1 2−2i . In this paper,
the tools of transcendental number theory are used to demonstrate that, rather than
R, the angle θ such that cos(θ) = 3/5 and sin(θ) = 4/5 is sufficient (the same result

∗Received by the editors October 20, 1995; accepted for publication (in revised form) December
2, 1996. The research of the first and second authors was supported by NSF grant CCR-9403662.
The research of the third author was supported by NSF grant CCR-9412383.

http://www.siam.org/journals/sicomp/26-5/29363.html
†Department of Computer Science, University of Southern California, Los Angeles, CA 90089-0781

(adleman@pollux.usc.edu, jed@pollux.usc.edu, huang@pollux.usc.edu).
1BQPpoly(1/ε) to be precise; see section 2.

1524

QUANTUM COMPUTABILITY 1525

has been announced by Solovay [So]). As a result, when considering BQP, one can
restrict one’s attention to QTMs with rational amplitudes.

We also address an issue concerning implementation of quantum computation.
Building a physical device on which to run quantum algorithms apparently requires
selecting from the physical universe a set of unitary transformations (e.g., rotations)
which will be used as “primitive” operations. It is unclear to what extent the builder
of such a device can choose or even know with arbitrary accuracy which unitary trans-
formations have been selected. We show that a single (“almost universal”) quantum
algorithm based on Shor’s result would run correctly on almost all devices (i.e., the set
of unacceptable rotations has Lebesgue measure 0)—even if the underlying unitary
transformations are unknown to the programmer and the device builder.

Whereas QTMs with rational amplitudes are sufficient for investigating BQP, it
is of theoretical interest to understand the power of QTMs with no restrictions on
the amplitudes allowed. It is shown that when QTMs are allowed “unrestricted”
amplitudes (i.e., arbitrary complex amplitudes), the class of sets which are decidable
with bounded error in polynomial time has uncountable cardinality and contains sets
of all Turing degrees. In contrast, allowing unrestricted amplitudes does not increase
the power of computation for the EQP class. In fact, it is shown that if a set is
accepted in EQP by a QTM with unrestricted amplitudes, it is also accepted in EQP
by a QTM with amplitudes that are (real) algebraic numbers. It is also shown that,
with unrestricted amplitudes, BQP is not equal to EQP.

The relationship between quantum complexity classes and classical complexity
classes is also investigated. It is shown that when QTMs are restricted to have tran-
sition amplitudes which are algebraic numbers, BQP, EQP, and NQP are all con-
tained in PP, hence in P#P and PSPACE. Finally, let EQPθ consist of the sets in
EQP accepted by QTMs equipped with a single primitive rotation by angle θ. It is
demonstrated that for θ such that cos(θ) is transcendental, EQPθ = P, in particular
assuming cos(R) is transcendental, EQPR = P.

2. Definitions and results. As defined in [BV], a QTM M is a Turing machine
where each tuple specifying a transition is assigned an amplitude which is a complex
number. As in [BV], we assume that M has no stationary transition. The transition
function δ of M maps each transition tuple to its amplitude. It induces a linear map,
called the time evolution operator of M , on the infinite-dimensional linear space H
which has the set of all configurations as an orthonormal basis. A vector in H is a su-
perposition of configuration. Thus, if, for example, C1, . . . , Cm are the configurations
M can reach in one step from a configuration C under δ, with amplitudes a1, . . . , am,
then the time evolution operator maps C to a1C1 + · · · + amCm. A QTM M is well
formed if its time evolution operator preserves the L2-norm.2

Later we will have the need to refer to subsets of QTMs with restricted amplitudes.
We introduce notation to facilitate this.

Given any field K, we define QTMK to be the subset of QTMs whose amplitudes
(i.e., the range of δ) are all in K. Examples include QTMC, QTMR, QTMQ̄, and
QTMQ. We will write QTM to refer to QTMC.

According to [BV], one can assume without loss of generality that the ampli-
tudes of δ are all real and that M enters any particular state from one direction.
One can therefore define the local matrix Lδ whose columns are indexed by pairs of
current state and symbol and rows by pairs of new state and symbol; and the entry

2A probabilistic Turing machine is in fact a Turing machine with a transition function δ whose
amplitudes are restricted to 0,1 and 1/2 and whose time evolution operator preserves the L1-norm.

1526 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

corresponding to a column and a row is the amplitude for the associated transition.
If θ ∈ R<2π

≥0 , then we will define QTMθ, to be the subset of QTM M whose local
matrix is block diagonal (up to permutations of rows and columns) with each block
either 1, −1, or 2 by 2 of the form

cos(θ) − sin(θ)
sin(θ) cos(θ).

Note that the 2 × 2 block represents rotation by angle θ. The universal QTM con-
structed by Bernstein and Vazirani [BV], for example, belongs to QTMR, where

R = 2π
∑∞

i=1 2−2i . We will also call this class QTMBV . Another example is QTMπ,
which consists of deterministic Turing machines with all entries either 0,±1.

On occasion we will use an ad hoc notation. For example, M is in QTMpoly(1/ε)

iff there exist an f ∈ Z[x] and a deterministic algorithm which, on input 1/ε, where
ε ∈ Q<1

>0, approximates all transition amplitudes of M within ε in f(1/ε) time.3

If Q1 and Q2 are subsets of QTM, then we will write Q1 � Q2 iff for all ε ∈ Q<1
>0,

for all machines M1 ∈ Q1, there exists a machine M2 ∈ Q2 such that M2 simulates
M1 to within ε with at most a polynomial slowdown, in the sense of [BV].4 We use
≺, �, and � in the expected ways. For example, QTMC � QTMR as was shown by
Bernstein and Vazirani [BV].

The classes BQP and EQP are due to Bernstein and Vazirani [BV]. The next
definitions define restricted notions of BQP and EQP.

In this paper, | | denotes length in binary, except in section 3 where it denotes
absolute value.

Definition 2.1. For all T ⊆ QTM, for all S ⊆ N, S ∈ BQPT iff there exists an
f ∈ Z[x] and an M ∈ T such that, for all x ∈ N,

x ∈ S ⇒ for input x, M accepts with probability greater than 2/3 after f(|x|)
steps;

x ∈ S ⇒ for input x, M rejects with probability greater than 2/3 after f(|x|)
steps.

Definition 2.2. For all T ⊆ QTM, for all S ⊆ N, S ∈ EQPT iff there exists an
f ∈ Z[x] and an M ∈ T such that, for all x ∈ N,

x ∈ S ⇒ for input x, M accepts with probability 1 after f(|x|) steps;
x ∈ S ⇒ for input x, M rejects with probability 1 after f(|x|) steps.
Definition 2.3. For all T ⊆ QTM, for all S ⊆ N, S ∈ NQPT iff there exists

an f ∈ Z[x] and an M ∈ T such that, for all x ∈ N,
x ∈ S ⇒ for input x, M accepts with positive probability after f(|x|) steps;
x ∈ S ⇒ for input x, M accepts with probability 0 after f(|x|) steps.
For convenience, for all fields K, when T=QTMK , we will write BQPK or EQPK .

For all θ ∈ R<2π
≥0 , when T = QTMθ, we will write BQPθ or EQPθ. Similarly, when

T=QTMpoly(1/ε), we will write BQPpoly(1/ε).

2.1. Results. Let T1, T2 ⊆QTM . Then T1 � T2 implies that BQPT1
⊆ BQPT2

.
(This is not merely an observation but requires a short proof which will not be given
here.) The results in [BV] imply that QTMpoly(1/ε) � QTMR, and since R is ap-
proximable in polynomial time within ε, it follows that BQPpoly(1/ε) = BQPR. Con-
sequently, rotation by angle R serves as a universal primitive for BQPpoly(1/ε). It is

3One can define QTMrpoly(1/ε) as above, but where instead of a deterministic algorithm a “prob-
abilistic” one is used.

4That is, suppose in t steps M1 produces, on input x, a superposition of configuration φ1. Then
in time polynomial in 1/ε and t, M2 produces, on the same input x, a superposition of configuration
φ2 such that the L2-norm of φ1 − φ2 is less than ε.

QUANTUM COMPUTABILITY 1527

natural to ask if R can be replaced by other angles, particularly an angle θ with ra-
tional cos(θ) and sin(θ). We show that for all angles θ in a set S of Lebesgue measure
1, QTMR � QTMθ, consequently any such θ can replace R as a universal angle. In
particular the angle θ with cos(θ) = 3/5 is in S; hence, BQPpoly(1/ε) = BQPQ. These
results are presented in section 3.

The proof technique for the fact that QTMR � QTMθ for all θ ∈ S can be applied
to construct a program based on Shor’s factoring algorithm which works universally
for all QTMθ with θ ∈ S. This makes it possible to write a single program for
a quantum computer without knowing the primitive rotation used by the machine.
This is discussed in section 4.

The next set of results addresses the following question: would unrestricted am-
plitudes for transition functions increase the power of quantum computation? It is
shown in section 5 that BQPC contains sets of arbitrary Turing degrees, hence unde-
cidable sets in particular. In contrast, it is shown in section 6 that EQPC = EQPQ̄.

Moreover, BQPpoly(1/ε), EQPQ̄, and NQPQ̄ are all contained in PP, hence in P#P

and PSPACE. As a result, BQPC 6= EQPC. The proofs for these equalities explore
algebraic geometric structures underlying the EQP and NQP classes. The techniques
also yield the following result: for angles θ with cos θ transcendental, EQPθ = P. In
particular, assuming cos(R) is transcendental, EQPR = P.

3. QTMQ � QTMBV .
Theorem 3.1. QTMBV � QTMQ � QTMQ̄ � QTMpoly(1/ε).
Corollary 3.2. BQPBV = BQPQ = BQPQ̄ = BQPpoly(1/ε).
Essentially the same result has been announced by Solovay [So].
It can be easily demonstrated that QTMQ � QTMQ̄ � QTMpoly(1/ε), and it

follows from results on approximations [BV, BBBV] that QTMpoly(1/ε) �QTMBV .
Hence, Theorem 3.1 will follow from establishing that QTMBV � QTMθ for some θ
with rational cos θ and sin θ. More generally, one would like to understand for what
angles θ, QTMBV � QTMθ. The following theorem provides an answer.

Theorem 3.3. For all θ ∈ R<2π
≥0 if either

(a) θ/2π is not rational and not Liouville;
(b) θ/2π ∈ Q̄−Q;
(c) eiθ ∈ Q̄ and eiθ not a root of unity;
(d) cos(θ), sin(θ) ∈ Q− {0};
(e) cos(θ) = 3/5, sin(θ) = 4/5;

then QTMBV � QTMθ.
Thus Theorem 3.1 follows from (e) of Theorem 3.3. It will be shown that (b)–(e)

of Theorem 3.3 are actually subcases of (a). We also recall for Theorem 3.3 that (see,
e.g., [Ni, B]) a real number ξ is a Liouville number if for every positive integer m there
is a distinct rational number hm/km with km > 1 such that |ξ − hm/km| < (km)−m.

Corollary 3.4. For almost all θ ∈ R<2π
≥0 , QTMBV � QTMθ, where “almost

all” means S = {θ|θ ∈ R<2π
≥0 and QTMBV � QTMθ} has Lebesgue measure 1.

Corollary 3.4 follows from Theorem 3.3 and the fact that the set of Liouville
numbers has Lebesgue measure 0 (see, e.g., [B, p. 86]).

To prove Theorem 3.3 we will need the following lemma.
Lemma 3.5. For all θ ∈ R with θ/(2π) not rational and not Liouville, there

exists an f ∈ Z[X] such that for all γ ∈ R and all ε ∈ R<1
>0 there exist x ∈ Z≥0 and

w ∈ Z such that |xθ − 2πw − γ| < ε and x < f(1/ε).
Proof of Lemma 3.5. Given any irrational α and any positive integer n, there

exist integers h and k with 0 < k ≤ n such that |kα − h| < 1/n (see Theorem 4.2 of

1528 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

[Ni, p. 44]). Since θ/2π is irrational, if n = d2π/εe, then there exist h, k ∈ Z with
0 < k ≤ n such that |(kθ/(2π))− h| < 1/n or, equivalently, |kθ − 2πh| < 2π/n ≤ ε.

Since θ/2π is not Liouville and not rational, there exists an m ∈ Z>0 such that
for all h′, k′ ∈ Z with k′ > 1, |(θ/(2π))− h′/k′| ≥ 1/k′m, and therefore |k′θ− 2πh′| ≥
2π/k′m−1. Hence 2π/km−1 ≤ |kθ − 2πh| < ε.

Let β = γ + 2πy′ such that y′ ∈ Z, −2π < β < 2π, and β/(kθ − 2πh) ≥
0. Let x′ = dβ/(kθ − 2πh)e. Let x = x′k, and y = x′h, then |xθ − 2πy − β| =
|(kθ − 2πh)x′ − β| < |(kθ − 2πh)((β/(kθ − 2πh)) + 1) − β| = |kθ − 2πh| < ε. Also
|x′| < |β/(kθ−2πh)|+1 ≤ (|β|/|kθ−2πh|)+1 ≤ (|β|/(2π/km−1))+1 < km−1+1 since
|β| < 2π. Hence |x| = x′k < km + k, and since k ≤ n = d2π/εe, if f = 8mXm + 8X,
then x < f(1/ε). Let w = y + y′, then |xθ − 2πw − γ| = |xθ − 2πy − 2πy′ − γ| =
|xθ − 2πy − β| < ε as required.

Remark. When θ, γ ∈ R<2π
>0 , then it follows easily from the lemma that |w| ≤ x+2.

The proof which follows demonstrates the capacity of a quantum computer to
obtain an approximation to its intrinsic angle through experimentation. This capacity
will also play an important role in the subsequent section on almost universal quantum
programs.

Proof of Theorem 3.3(a). Given an M ∈ QTMBV and ε ∈ Q<1
>0, we will construct

an M ′ ∈ QTMθ such that M ′ simulates M with accuracy ε and slowdown polynomial
in 1/ε and time t. The QTM M ′ will determine a natural number a such that aθ

approximates the angle R = 2π
∑∞

i=1 2−2i used by machines in QTMBV . Once a
is determined, M ′ simulates M by replacing each R-transition with a sequence of a
θ-transitions.

In order to determine the number a, M ′ needs to compute an accurate enough
rational approximation θ̂ of its underlying angle θ. Unlike R, the angle θ will not
in general be easy to approximate deterministically. However, it is possible to have
the QTM compute its own internal angle up to reflection about the x-axis and y-axis
with arbitrary accuracy. That is, it is possible to compute approximations to | sin(θ)|
and | cos(θ)|. From these approximations an angle θ̂ which approximates θ can be

determined. The correct θ̂ (of the four which are consistent with the approximated
| sin(θ)| and | cos(θ)|) depends on the quadrant that θ is in; however, in this existence
proof, we may assume that this is known. For convenience, we will proceed under the
assumption that θ is in the first quadrant. The other cases are handled in a similar
manner.

Consider the following procedure that can be implemented on a machine in QTMθ.
On input n,m ∈ Z>0,

(i) begin with n,m on the tape;
(ii) place m2n2 0’s on the tape, and for each 0 do a quantum step such that the

symbol stays the same with probability cos2(θ) and becomes a 1 with probability
sin2(θ);

(iii) observe the bits after the quantum flips and record the ratio r of the number
of 0’s to m2n2;

(iv) output θ̂ ∈ Q such that |θ̂ − θ′| < 1/n, where θ′ = arccos(
√
r).

In the above procedure, the number of 0’s follows the binomial distribution with
mean µ = m2n2 cos2(θ) and standard deviation σ = mn cos(θ) sin(θ). From Cheby-
shev’s inequality it follows that with probability at least 1− 1/m2,∣∣r − cos2(θ)

∣∣ = | cos2(θ′)− cos2(θ)| < mσ/m2n2 = sin(2θ)/2n < 1/2n.

Hence the ratio r approximates cos2(θ) better and better with increasing n. When n is
large enough so that the recorded r = cos2(θ′) is greater than 2/n, we have cos2(θ) >

QUANTUM COMPUTABILITY 1529

cos2(θ′)− 1/2n > 1/n, and it also follows that cos2(θ′) > cos2(θ)− 1/2n > cos2(θ)/2.
Since θ is in the first quadrant, it follows that cos(θ′) > cos(θ)/

√
2. A similar argument

shows that sin(θ′) > sin(θ)/
√

2. Moreover if ψ is an angle between θ and θ′, then
cos(ψ) > cos(θ)/

√
2 and sin(ψ) > sin(θ)/

√
2; hence 2 sin(ψ) cos(ψ) > sin(θ) cos(θ).

By the mean value theorem,

|θ − θ′| = | cos2(θ)− cos2(θ′)|/2 sin(ψ) cos(ψ)

for some ψ between θ and θ′. It follows that

|θ − θ′| < | cos2(θ)− cos2(θ′)|/ sin(θ) cos(θ) < 1/n.

Hence

|θ − θ̂| ≤ |θ − θ′|+ |θ̂ − θ′| < 2/n.

Consequently the probability that |θ − θ̂| < 2/n is at least 1− 1/m2.
We will choose m so that m > 1/ε. Let δ = ε

6t . We will run the above procedure
on input m and increasing value of n, until the following conditions are met:

(a) the recorded number r > 2/n;

(b) there are integers a, b with 0 ≤ a, |b| < (nδ)/6 such that |aθ̂ − b2π̂ − R̂| < 2δ,
where R̂, π̂ ∈ Q such that |R− R̂| < δ/3 and |2π − 2π̂| < 1/n.

Let f be the polynomial in Lemma 3.5 for θ. We argue that the condition (b)

will be met before n exceeds 6(f(1/δ)+2)
δ , which is polynomial in t and 1/ε.

Indeed let n = 6(f(1/δ)+2)
δ . Then Lemma 3.5 implies the existence of a, b with

0 ≤ a, |b| < f(1/δ) + 2 = (nδ)/6 such that |aθ − b2π − R| < δ. With such a and b,

|a||θ − θ̂|, |b||2π − 2π̂|, and |R − R̂| are all bounded by δ/3. Since |aθ̂ − b2π̂ − R̂| ≤
|aθ− b2π−R|+ |a||θ− θ̂|+ |b||2π− 2π̂|+ |R− R̂|, it follows that |aθ̂− b2π̂− R̂| < 2δ
as required.

With the computed θ̂ and a, b, we have

|aθ − b2π −R| ≤ |aθ̂ − b2π̂ − R̂|+ |a||θ − θ̂|+ |b||2π − 2π̂|+ |R− R̂| < 3δ.

Hence rotation by the angle θ a times approximates rotation by angle R to within
3δ = ε/(2t).

Now on input x, M ′ can simulate M on input x by replacing each R-transition
with a sequence of a θ-transitions appropriately.

Finally, the following argument adapted from [BBBV] (see also [BV]) shows that
the superposition of configurations produced by M in t steps is approximated by M ′

within ε after the t steps of M are all simulated.
Let {C1, C2, ...} be the set of configurations and H be the space of superpositions

of configurations of M . Let U be the time evolution operator of M . Let Û be the
linear map on H determined by the local matrix which is obtained from the local
matrix of M by replacing each 2 × 2 block representing rotation by angle R with
a 2 × 2 block representing rotation by angle aθ. Suppose at a certain time that φ
is the superposition of configurations that M has. Then U tφ is the superposition of
configurationsM arrives at after t steps, and Û tφ is the superposition of configurations
M ′ arrives at after simulating these t steps of M . Hence it suffices to show that
‖Û tφ− U tφ‖ < ε, for all φ ∈ H with ‖φ‖ = 1, where ‖ ‖ denotes the L2-norm.

First we show that ‖Ûφ−Uφ‖2 < ε2/t2. To see this, let I(i) be the set of Cj such
that there is a transition from Cj to Ci with nonzero amplitude; let E(i) be the set

1530 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

of Cj such that there is a transition from Ci to Cj with nonzero amplitude. Since the
local matrix is block diagonal with each block of size at most 2× 2, the cardinality of
I(i) and E(i) are bounded by 2. Let UCi =

∑
j αijCj and ÛCi =

∑
j α̂ijCj . Then

|αij − α̂ij | < ∆ where ∆ = 3δ = ε/(2t). Let φ =
∑

j βjCj be of L2-norm equal to 1.
Then

Uφ =
∑
i

 ∑
j∈I(i)

αjiβj

Ci;

hence

‖Ûφ− Uφ‖2 =
∑
i

∣∣∣∣∣∣
∑
j∈I(i)

(α̂ji − αji)βj

∣∣∣∣∣∣
2

≤
∑
i

|I(i)|
∑
j∈I(i)

|(α̂ji − αji)βj |2

< 2∆2
∑
i

∑
j∈I(i)

β2
j = 2∆2

∑
j

|E(j)|β2
j ≤ 4∆2

∑
j

β2
j = 4∆2 = ε2/t2.

It is easy to see by induction that

Û tφ− U tφ =
t∑

i=1

Û t−iEi,

where Ei = ÛU i−1φ− U iφ. Since U i−1φ is of L2-norm equal to 1,

‖Ei‖2 = ‖Û(U i−1φ)− U(U i−1φ)‖2 ≤ ε2/t2.

So

‖Û tφ− U tφ‖2 =

∥∥∥∥∥
t∑

i=1

Û t−iEi

∥∥∥∥∥
2

≤ t

t∑
i=1

‖Û t−iEi‖2 = t

t∑
i=1

‖Ei‖2 < ε2.

For the proof of Theorem 3.3(b)–(e), we need a lemma and proof which were
generously provided to us by Harold Stark.

Lemma 3.6. For all θ ∈ R<2π
>0 , if eiθ ∈ Q̄ and eiθ is not a root of unity, then

θ/(2π) is not Liouville.
Note that if θ satisfies the conditions in Lemma 3.6, then θ/(2π) is also not

rational. Lemma 3.6 is a consequence of the next theorem which follows from results
of Feldman [Fe].

Theorem 3.7. For all a = cos(b) + i sin(b) = exp(ib) ∈ Q̄, with a not a root
of unity, there exists a C,N ∈ Z>0 such that for all p ∈ Z, q ∈ Z>1, |p2 log(−1) −
q log(a)| > Cq−N , where C and N depend only on a and on the choice of the branch
of logarithms used.

Since eiθ is algebraic and not a root of unity, by choosing the branch of logarithm
such that 2 log(−1) = 2πi, and log(eiθ) = iθ, we have that for all p ∈ Z, q ∈ Z>1,
|p2πi− qiθ| = |p2π − qθ| > Cq−N . Hence |θ/2π − p/q| > C/(2πqN+1) from which it
follows that θ/2π is not Liouville. This proves Lemma 3.6.

Proof of Theorem 3.3(b)–(e). (b) follows from (a) since Liouville numbers are
transcendental (see, e.g., [Ni, p. 92]). (c) follows from (a) and Lemma 3.6. (d) follows
from (c) and the fact that the only roots of unity with rational real and imaginary
parts are 1 and i. Finally, (e) follows from (d).

QUANTUM COMPUTABILITY 1531

4. Almost universal quantum programs. Shor’s quantum factoring method
is of interest for purely mathematical reasons. However, it is unclear whether devices
can be built which will actually implement Shor’s method. It follows from the previous
section that apparently it is enough to build a device capable of a rotation θ with
cos(θ) = 3/5. But can such a device be built? To what extent can a device builder
choose the angles of rotations which will be provided? To what accuracy can the
device builder or the programmer know the angles of rotation inherent in the device?
It turns out that these questions may be irrelevant and that one can write a single
“program” which will factor with high probability on virtually any device which can
be built.

This is done essentially as indicated in the proof of Theorem 3.3. One starts with
a program for Shor’s method which will factor with high probability on a device with
rotation by the angle θ with cos(θ) = 3/5 as primitive. One then writes a new “almost
universal program” which will, in the manner described in the proof of Theorem 3.3,
calculate “on line” a sufficiently accurate estimation of whatever angle of rotation γ
the underlying physical device provides and then use that estimate to simulate the
original program with sufficient accuracy to insure factoring. Since the estimate of
γ is only unique up to the sign of cos(γ) and sin(γ), we will simultaneously run all
four possible approximations; however, this will neither increase the running time
significantly nor decrease the probability of a successful factorization substantially. It
follows from Corollary 3.4 that the “almost universal program” will factor with high
probability on all but those devices with an angle of rotation in a set of Lebesgue
measure 0.

5. Unrestricted quantum computation. We have demonstrated that re-
stricting attention to quantum machines with rational amplitudes is sufficient to define
the class BQP. However, it is of theoretical interest to understand the power of “un-
restricted” quantum computation. In this section, it is shown that BQPC has sets of
all possible Turing degrees.

Theorem 5.1. For all S ⊆ N, there exists an S′ ⊆ N such that
1. S ≡T S

′ (Turing equivalent);
2. S′ ∈ BQPC.

Proof. Throughout this proof, for all x ∈ N, |x| will denote the length of x. Let
S ⊆ N and let H : N → {1,−1} be such that for all x ∈ N, H(x) = 1 if x ∈ S,
H(x) = −1 if x ∈ S. Let S′ ⊆ N such that for all x ∈ N, x ∈ S′ if and only if
H(i + 1) = 1 where i is the greatest integer such that 8i ≤ |x|. It is clear from the
definition that S and S′ are Turing equivalent.

Let θ = 2π(
∑∞

x=1H(x)/8x). Then θ ∈ R (i.e., the series converges).
Let M be a QTM which on input x ∈ N.

1. Calculate the greatest l such that l ≤ |x| and l = 8i for some i ∈ N.
2. Place a 0 on the tape.
3. Perform l rotations by the angle θ on this tape location followed by a single

rotation by the angle π/4, so that the amplitude of the configuration with 0 on the
tape is cos(lθ + π/4), and the amplitude with 1 on the tape is sin(lθ + π/4). This is
done in a manner similar to the method used by Bernstein and Vazirani [BV].

4. Output 0 or 1 based on the value of the given tape location. If the output is
1, the machine accepts, and if the output is 0, the machine rejects.

It is clear from the algorithm that for all x ∈ N, the number of steps taken by M
on input x is polynomially bounded in |x|.

After the third step of the algorithm, the configuration that corresponds to an
output of 0 has amplitude cos(lθ + π/4), and the configuration that corresponds to

1532 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

an output of 1 has amplitude sin(lθ + π/4) for the greatest l such that l ≤ |x| and l
is power of 8. Let l = 8i. Then

lθ = 2π(H(1)8i−1 +H(2)8i−2 + · · ·+H(i) +H(i+ 1)/8 +H(i+ 2)/82 + · · ·).
Let k = π/4 + lθ mod 2π. If H(i + 1) = 1, then π/2 − π/28 ≤ k ≤ π/2 + π/28, in
this case sin2(π/4 + lθ) > 0.98; hence the input x is accepted with probability greater
than 0.98. On the other hand if H(i + 1) = −1, then −π/28 ≤ k ≤ π/28, in this
case cos2(π/4 + lθ) > 0.98; hence x is rejected with probability greater than 0.98.
Therefore M accepts S′ in BQPC and the theorem follows.

Since there are uncountably many subsets of N and each Turing class can contain
at most countably many subsets of N (since there are only this many TM), it follows
that BQPC has uncountable cardinality. From this it follows that BQPQ (which
clearly has countable cardinality) is a proper subset of BQPC. From this in turn (see
section 2) it follows that QTMQ ≺QTMC and not QTMQ �QTMC.

6. EQP and NQP. Let M be a QTM with transition function δ. Following
[BV] we can assume without loss of generality that δ is a real-valued function.

Suppose there are N tuples T1, . . . , TN in the domain of δ. Let v = (v1, . . . , vN)
where vi = δ(Ti), the amplitude of δ on transition Ti, for i = 1, . . . , N . We shall call
v the amplitude vector of δ.

Replacing v by x = (x1, . . . , xN), where xi are distinct complex variables, we
obtain a “symbolic” QTM M(x). By assigning a vector u ∈ CN to x we obtain a
QTM denoted by M(u), in particular, M = M(v). The QTMs obtained in this way
have transition functions with the same domain, the same set of configurations, hence
the same space of superpositions of configurations. They are distinguished by having
different amplitude vectors associated with the transition function.

For u ∈ RN , M(u) is well formed iff u satisfies a finite set of polynomial equations
which can be obtained as follows.

Let A(x) denote the infinite-dimensional matrix representing the (symbolic) time
evolution operator of M(x), the linear map induced by δ, on the infinite-dimensional
space of superpositions of configurations [BV] with respect to the basis consisting of
the whole set of configurations of M(x). The rows and columns of A(x) are labelled
by the set of configurations. If upon applying the ith transition, a configuration C
yields C ′, then xi will be the entry corresponding to column labelled by C and the row
labelled by C ′. If no such transition exists, the corresponding entry will be 0. Thus
each entry of A(x) is one of the variables x1, . . . , xN , and for all u = (u1, . . . , uN) ∈
RN , by substituting xi with ui for i = 1, . . . , N , we obtain the time evolution matrix
A(u) for M(u). For all i, j ∈ Z>0, let Pij(x) denote the dot product of the ith and
jth columns of A(x). Then since each column of A(x) has at most N nonzero entries,
Pij is the sum of at most N monomials in x1, . . . , xN of degree 2. In particular the
set of Pij is finite.

By [BV], M(u) is well formed iff A(u)∗A(u) = A(u)A(u)∗ = I, where A(u)∗

denotes the transpose conjugate of A(u). Since u is real, A(u)∗ is just the transpose
of A(u). Hence M(u) is well formed iff for all i, j, if i 6= j, then Pij(u) = 0; if i = j,
then Pij(u) = 1. Hence let JW be the set of polynomials Pij for i 6= j and 1− Pii for
all i. Then M(u) is well formed iff u is a zero to all polynomials in JW . Note that
JW is finite since the set of Pij is finite.

As will be demonstrated below, whether M(u) accepts or rejects an input with
probability 1 can also be characterized algebraically.

For all i ∈ Z>0, let Ai(x) denote the product of A(x) by itself i times. We note
that each entry in Ai(x) is a polynomial (possibly 0) in Z[X]. Let α be an input string.

QUANTUM COMPUTABILITY 1533

Let Cα be the initial configuration of M(x) (hence of M and for all u ∈ RN , of M(u))
on input α. Then for all configurations C, for all t ∈ Z>0, we denote by ampα,t,C
the polynomial which is in the entry of At(x) corresponding to the column labelled
by Cα and the row labelled by C. For all u ∈ CN , ampα,t,C(u) is the amplitude for
C at time t on input α to M(u).

Let CA denote the set of accepting configurations and CR = C − CA the set of
rejecting configurations. Suppose u ∈ RN , and assuming M(u) is well formed, then
an input α is accepted at time t with probability 1 iff∑

C∈CR
|ampα,t,C(u)|2 =

∑
C∈CR

amp2
α,t,C(u) = 0,

iff ampα,t,C(u) = 0 for all C ∈ CR. Hence let

JA(t, α) = {ampα,t,C : C ∈ CR}.

Then M(u) accepts α at time t with probability 1 iff u is a zero of all polynomials in
JA(t, α). Similarly, let

JR(t, α) = {ampα,t,C : C ∈ CA}.

Then M(u) rejects α with probability 1 iff u is a zero of all polynomials in JR(t, α).
Let L be a language over the input alphabet of M . Let p be a polynomial function

where p(n) is a positive integer for all n ∈ Z>0. For all inputs α, let tα = p(n) where
n is the length of α. Let

J(p, L) = JW ∪α∈L JA(tα, α) ∪α 6∈L JR(tα, α).

From the discussion above we see that for all u ∈ RN , M(u) is well formed and
accepts L in EQP at time p(n) iff u is a zero of all polynomials in J(p, L).

We recall the following proposition.
Proposition 6.1. Let I be an ideal in Q[x1, . . . , xN]. If the polynomials in I

have a common zero in RN , then they have a common zero in (Q̄ ∩R)N .
The proposition follows immediately from Tarski’s theorem (see, e.g., [J, p. 323]),

noting the fact that I is finitely generated and that both R and Q̄∩R are real closed
fields. It is a direct consequence of the mathematical principle implied by Tarski’s
theorem that any elementary sentence of algebra which is true in one real closed field
is true in every real closed field.

Suppose L is accepted by M = M(v) in EQP at time p(n). Then v is a real zero of
polynomials in the ideal I of Q[x1, . . . , xN] generated by J(p, L). From Proposition 6.1
it follows that the polynomials in I also have a common zero u ∈ (Q̄ ∩R)N . Since u
is a zero of all polynomials in J(p, L), it follows that M(u) is well formed and accepts
L in EQP at time p(n).

Hence we have the following.
Theorem 6.2. EQPC = EQPQ̄∩R.
Finally, we give two results which relate quantum complexity classes to classical

complexity classes.
Theorem 6.3. For all θ ∈ R<2π

≥0 such that cos θ is transcendental, EQPθ = P.
In particular assuming cos(R) is transcendental, EQPR = P.

Proof. Let M ∈ EQPθ with amplitude vector v = (v1, . . . , vN) ∈ RN . Then vi
is 0, ±1, ± cos θ, or ± sin θ. Suppose vi ∈ {0,±1} for all i. Since the time evolution

1534 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

operator of M preserves the L2-norm, there is at most one transition tuple with
amplitude ±1 for every pair of current state and symbol. Hence M is deterministic.

Suppose on the other hand that v contains some transcendental coordinates. Let
L be accepted by M in EQP at time p(n) for some polynomial p. Let x = (x1, . . . , xN).
Form the symbolic QTM M(x) and the set of polynomials J(p, L) as before. Then for
u ∈ RN , M(u) is well formed and accepts L in EQP at time p(n) iff u is a common
zero of all polynomials in J(p, L). Let s and t be variables and u(s, t) be the N -vector
obtained from x as follows: for all i, replace xi by vi if vi is 0 or ±1, replace xi by
±s if vi = ± cos θ, and replace xi by ±t if vi = ± sin θ. Let J ′(p, L) ⊂ Q[s, t] be
obtained from J(p, L) by specializing each polynomial F (x) in J(p, L) to F (u(s, t)).
Then for all a, b ∈ R, M(u(a, b)) accepts L in EQP at time p(n) iff a, b is a common
zero of all polynomials in J ′(p, L). In particular we note that v = u(cos θ, sin θ) and
that (cos θ, sin θ) is a common zero of all polynomials in J ′(p, L). Since (cos θ, sin θ) is
generic for the curve s2 + t2 = 1, it follows that every polynomial in J ′(p, L) is in the
ideal generated by s2 + t2 − 1. But since (1, 0) is a zero of s2 + t2 − 1, it follows that
(1, 0) is also a zero of all polynomials in J ′(p, L). This implies that M(u(1, 0)) accepts
L in EQP. As u(1, 0) ∈ {0,±1}N , M(u(1, 0)) is deterministic as observed before, and
the theorem follows.

Theorem 6.4. BQPpoly(1/ε),EQPC,NQPQ̄∩R ⊆ PP ⊆ P#P.

From Theorems 5.1 and 6.4 we have the following.

Corollary 6.5. BQPC 6= EQPC.

We remark that the result BQPpoly(1/ε) ⊆ P#P was first announced by Valiant
(see [BV]). The rest of this section is devoted to the proof of Theorem 6.4. We begin
by deriving some additional facts about QTMs with real algebraic amplitudes.

Let M be a QTM with real algebraic amplitude; that is, M ∈ QTMQ̄∩R. Let
the local matrix Lδ of M be an n ×m matrix with λi,j as the entry corresponding
to the ith row and jth column for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let K be the field
generated by all λi,j over Q. Let D be the degree of K over Q. Then K = Q[β] for
some β ∈ Q̄∩R, and the irreducible polynomial for β over Q is of degree D. We will
call K the field of amplitudes for M .

For all i, j, k ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ D − 1, let ri,j,k ∈ Q be the

values such that λi,j =
∑D−1

k=0 ri,j,kβ
k. For all i, j, k ∈ Z, 0 ≤ i ≤ D − 1, 0 ≤ j ≤

D−1, 0 ≤ k ≤ D−1, let si,j,k ∈ Q be the values such that βiβj =
∑D−1

k=0 si,j,kβ
k. Let

d1 ∈ Z be a common denominator of the ri,j,k and d2 ∈ Z be a common denominator
of the si,j,k. These values will be used below.

Let C be the set of all possible configurations of the machine M . Consider running
machine M for t steps on input α. We can define a path of length t for input α leading
to configuration C as a sequence of t configurations 〈C0, C1, C2, . . . , Ct〉 such that C0

corresponds to the initial configuration for input α, Ct = C, and Ci+1 can be reached
from Ci with one step of the machine (including 0 amplitude moves) for 0 ≤ i ≤ t−1.
Let Pα,t,C be the set of paths of length t for input α leading to configuration C. For all

paths p = 〈C0, C1, . . . , Ct〉, there is an associated amplitude ρp =
∏t−1

k=0 λip,k,jp,k where
ip,k and jp,k are the row and column in the local matrix that correspond to moving
from configuration Ck to configuration Ck+1. Let dt = dt1d

t−1
2 , and let ap,i ∈ Q be the

values such that ρp =
∑D−1

i=0 (ap,i/dt)β
i. The following lemma shows that the ap,i’s

are integers.

Lemma 6.6. There exists a g ∈ Z such that for all input strings α, for all
configurations C ∈ C, for all t ∈ Z>0, for all p ∈ Pα,t,C , for all i ∈ Z<D

≥0 , ap,i ∈ Z,

and abs(ap,i) ≤ gt.

QUANTUM COMPUTABILITY 1535

Proof of Lemma 6.6.

ρp =

t−1∏
k=0

λip,k,jp,k =

t−1∏
k=0

D−1∑
l=0

rip,k,jp,k,lβ
l =

∑
0≤l0,...,lt−1≤D−1

t−1∏
k=0

rip,k,jp,k,lk

t−1∏
k=0

βlk .

Since d1 is the common denominator of the ri,j,k, dt1 will be a common denomi-
nator of any product of t ri,j,k’s. Since d2 is a common denominator of the si,j,k’s, it
is possible to show by induction that dt−1

2 is a common denominator of the product
of t βi’s. Hence dt = dt1d

t−1
2 is a common denominator of the sum above and for all

paths p and i ∈ ZD−1
0 , ap,i ∈ Z.

Let

m1 = max{abs(ri,j,k) | 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ D − 1}
and

m2 = max{abs(si,j,k) | 0 ≤ i, j, k ≤ D − 1}.
Then it can also be shown from the above equation that

abs(ap,i) ≤ dtD
tmt

1D
t−1mt−1

2 .

Hence there exists a g ∈ Z such that abs(ap,i) < gt.
We summarize the constants that we have associated with a QTM M with real

algebraic amplitudes. Let K = Q[β] ⊆ Q̄ ∩R be the field of amplitudes for M . Let
the local matrix of M be an n×m matrix with λi,j as the (i, j)th entry. Then

D = D(M) be the degree of K over Q;
d1 = d1(M) is the least natural number such that λi,j ∈ 1

d1
Z[β] for all i, j with

1 ≤ i ≤ n, 1 ≤ j ≤ m;
d2 = d2(M) is the least natural number such that βiβj ∈ (1/d2)Z[β] for all i, j

with 1 ≤ i, j ≤ D;
g = g(M) is the least natural number determined in Lemma 6.6 such that for all

α ∈ N and all t ∈ Z>0 and for all paths p of t steps on input α, the amplitude ρp
associated with p has the form ρp =

∑D−1
i=0 (ap,i/dt)β

i, where dt = dt1d
t−1
2 , ap,i ∈ Z,

and abs(ap,i) ≤ gt for all i.
Lemma 6.7. For all inputs α, for all t ∈ Z>0, the following hold.

1. If α is accepted in time t with probability 0, then

D−1∑
i=0

∑
C∈CA

 ∑
p∈Pα,t,C

ap,i

2

= 0.

2. If α is accepted in time t with probability > 0, then

D−1∑
i=0

∑
C∈CA

 ∑
p∈Pα,t,C

ap,i

2

> 0.

Proof of Lemma 6.7. For all configurations, C ∈ C, for all t ∈ Z>0, for input
strings α, then

ampα,t,C(u) =
∑

p∈Pα,t,C
ρp =

∑
p∈Pα,t,C

D−1∑
i=0

(api/dt)β
i.

1536 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

Switching the sums we get

ampα,t,C(u) =
D−1∑
i=0

((∑
p∈Pα,t,C

ap,i

)
/dt

)
βi.

For all inputs α and t ∈ Z>0, if input α is accepted in time t with probability 0,
then ∑

C∈CA
amp2

α,t,C(u) = 0,

and for all C ∈ CA, ampα,t,C(u) = 0. Hence, for all i ∈ Z<D
≥0 ,

∑
p∈Pα,t,C ap,i = 0, and

therefore

D−1∑
i=0

∑
C∈CA

 ∑
p∈Pα,t,C

ap,i

2

= 0,

which proves case 1.
For all inputs α and t ∈ Z>0, if input α is accepted in time t with probability

> 0, then ∑
C∈CA

amp2
α,t,C(u) > 0,

so there exists a C ∈ CA such that ampα,t,C(u) 6= 0, which implies that there exists
an i ∈ Z<D

≥0 such that
∑

p∈Pα,t,C ap,i 6= 0, and, therefore,

D∑
i=0

∑
C∈CA

 ∑
p∈Pα,t,C

ap.i

2

> 0,

which proves case 2.
Theorem 6.4 will be proved by the three lemmas given below.
Lemma 6.8. NQPQ̄∩R ⊆ PP ⊆ P#P.
Proof of Lemma 6.8. For all S ⊆ N such that S ∈ NQPQ̄∩R, we will show that

there exists a nondeterministic Turing machine M ′ that for all x ∈ N the following
hold:

if x ∈ S, then M ′ on input x says “yes” on more than 1/2 its paths;
if x ∈ S, then M ′ on input x says “no” on more than 1/2 its paths.
It will follow that S ∈ PP and hence NQPQ̄∩R ⊆ PP ⊆ P#P.
From the definition of NQPQ̄∩R, there exist a c ∈ N>0 and an M membership

QTMQ̄∩R such that for all x ∈ N the following hold:
x ∈ S → after |x|c steps M on input x accepts with probability > 0;
x ∈ S → after |x|c steps M on input x rejects with probability 0.
Let K = Q[β] ⊆ Q̄ ∩ R be the field of amplitudes for M . Let n = n(M),

D = D(M), d1 = d1(M), d2 = d2(M), and g = g(M) be the constants associated
with M as defined before.

We observe that for all x ∈ N, for all t ∈ Z>0, a path < C0, . . . , Ct > of M of
length t on input x can be specified by a natural number P < nt as follows. Write
P =

∑t−1
i=0 min

i with 0 ≤ mi ≤ n − 1. Inductively for i = 0, . . . , t − 1, from Ci one

QUANTUM COMPUTABILITY 1537

chooses the (mi + 1)st entry from the corresponding column in the local matrix for
transition to determine the next configuration Ci+1. We shall identify P with the
path determined by it on input x, and let ρP denote the amplitude associated with
P . Let dt = dt1d

t−1
2 . Then from Lemma 6.6, ρP =

∑D−1
i=0 (aP,i/dt)β

i, where aP,i ∈ Z,
and abs(aP,i) ≤ gt for all i. We will call aP,i the ith integral coefficient of ρP for
i = 0, . . . , D − 1.

Let M ′ on input x proceed as follows.
1. Compute t = |x|c.
2. Guess seven numbers 〈P1, G1, P2, G2, E, i, F 〉 (“〈” denotes any “reasonable”

pairing function) where P1, P2 ∈ Z<nt

≥0 , G1, G2 ∈ Z≤g
t+1

≥0 , E,F are 0 or 1 and i ∈ Z<D
≥0 .

3. Use P1 to choose a path of length t for M on input x. Compute the config-
uration C1, which results along this path, and aP1,i, the ith integral coefficient of the
amplitude ρP1 associated with P1. Similarly, use P2 to choose a second path of length
t for M on input x, and compute C2 and aP2,i.

4. (trivial guesses)
(i) If C1 6= C2, then output “yes” if E = 0 and “no” if E = 1.
(ii) If C1 ∈ CR, then output “yes” if E = 0 and “no” if E = 1, except when

P1 = P2 = E = i = F = 0 and G1 = G2 = gt + 1.
(iii) If G1 ≥ abs(aP1,i) or G2 ≥ abs(aP2,i), then output “yes” if E = 1 and “no”

if E = 0, except when P1 = P2 = E = i = F = 0 and G1 = G2 = gt + 1.
5. Else (nontrivial guesses)
(i) If P1 = P2 = E = i = F = 0 and G1 = G2 = gt + 1, output “no.”

(ii) If aP1,i and aP2,i have the same sign, then output “yes.”
(iii) If aP1,i and aP2,i have opposite signs, then output “no.”

Any path with G1 = gt + 1 or G2 = gt + 1 is trivial since G1 ≥ abs(aP1,i) or G2 ≥
abs(aP2,i), respectively, except for the special case when P1 = P2 = E = i = F = 0
and G1 = G2 = gt + 1. The number of trivial guesses plus this additional special
guess give two more “no” outputs than “yes” outputs.

For all configurations C ∈ CA which can be reached with t steps of M (including
transitions that have amplitude of 0), for all P1, P2 ∈ Px,t,C , for all i ∈ Z<D

≥0 , for all

G1 ∈ Z
<abs(aP1,i

)

≥0 , for all G2 ∈ Z
<abs(aP2,i

)

≥0 , the guess is nontrivial. In all other cases
(except one) the guess will be trivial.

If we count the number of “yes” outputs minus the number of “no” outputs we
get 4

∑
C∈CA

D−1∑
i=0

∑
P1∈Px,t,C

∑
P2∈Px,t,C

aP1,iaP2,i

− 2,

since for a fixed set of paths P1, P2 leading to the same configuration, there are
abs(aP1,iaP2,i) sets of pairs G1, G2 for each value of E and F.

The above equation can be rewritten as4
∑
C∈CA

D−1∑
i=0

 ∑
p∈Px,t,C

ap,i

2
− 2.

If x ∈ S then x is accepted with positive probability, so from part 2 of Lemma 6.7
the sum is greater than 0, and there are more “yes” outputs than “no” outputs.

If x ∈ S then x is accepted with probability 0, so from part 1 of Lemma 6.7 this
sum is −2 and there are more “no” outputs than “yes” outputs.

1538 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

Lemma 6.9. EQPC ⊆ PP ⊆ P#P.

Proof of Lemma 6.9. By Theorem 6.2, EQPC = EQPQ̄∩R. Since EQPK ⊆ NQPK

for any field K, it follows from Lemma 6.8 that

EQPC = EQPQ̄∩R ⊆ NQPQ̄∩R ⊆ PP ⊆ P#P.

Lemma 6.10. BQPpoly(1/ε) ⊆ PP ⊆ P#P.

Proof of Lemma 6.10. From section 3, BQPpoly(1/ε) = BQPθ, where cos(θ) = 3/5.

For all S ⊆ N such that S ∈ BQPθ, we will show that there exists a non-
deterministic Turing machine M ′ that for all x ∈ N the following hold:

if x ∈ S, then M ′ on input x says “yes” on more than 1/2 its paths;

if x ∈ S, then M ′ on input x says “no” on more than 1/2 its paths.

It will follow that S ∈ PP and hence BQPpoly(1/ε) = BQPθ ⊆ PP ⊆ P#P.

From the definition of BQPθ, there exists a c ∈ N>0 and M a QTMθ such that
for all x ∈ N the following hold:

x ∈ S → after |x|c steps M on input x accepts with probability > 2/3,

x ∈ S → after |x|c steps M on input x rejects with probability > 2/3.

Let n = n(M), D = D(M), d1 = d1(M), d2 = d2(M), and g = g(M) be the
constants associated with M as defined before.

Let M ′ on input x proceed as follows.

1. Compute t = |x|c.
2. Guess five numbers 〈P1, G1, P2, G2, E〉 (“〈” denotes any “reasonable” pairing

function) where P1, P2 ∈ Z<nt

≥0 , G1, G2 ∈ Z≤g
t

≥0 , and E is 0 or 1.
3. Use P1 to choose a path of length t for M on input x. Compute the config-

uration C1, which results along this path, and aP1,i, the ith integral coefficient of the
amplitude ρP1

associated with P1. Similarly, use P2 to choose a second path of length
t for M on input x, and compute C2 and aP2,i.

4. (trivial guesses)
(i) If C1 6= C2, then output “yes” if E = 0 and “no” if E = 1.
(ii) If G1 ≥ abs(aP1,0) or G2 ≥ abs(aP2,0), then output “yes” if E = 0 and “no”

if E = 1.
5. Else (nontrivial guesses)
(i) If aP1,0 and aP2,0 have the same sign, then output “yes” if C1 is an accept

configuration and “no” if C1 is a reject configuration.
(ii) If aP1,0 and aP2,0 have opposite signs, then output “yes” if C1 is a reject

configuration and “no” if C1 is an accept configuration.

Since the entries in the local matrix are rational, the degree of K = Q equals 1,
and so

ampα,t,C(u) =
∑

p∈Pα,t,C
ap,0/dt.

Again all the trivial paths have equal “yes” and “no” results.

For all configurations C ∈ C which can be reached with t steps of M (including

transitions that have amplitude of 0), for all P1, P2 ∈ Px,t,C , for all G1 ∈ Z
<abs(aP1,0

)

≥0 ,

for all G2 ∈ Z
<abs(aP2,0

)

≥0 , the guess is nontrivial. In all other cases the guess will be
trivial.

If we count the number of “yes” outputs minus the number of “no” outputs we
get

QUANTUM COMPUTABILITY 1539

2

 ∑
C∈CA

∑
P1∈Px,t,C

∑
P2∈Px,t,C

aP1,0aP2,0 −
∑
C∈CR

∑
P1∈Px,t,C

∑
P2∈Px,t,C

aP1,0aP2,0

 ,

since for a fixed set of paths P1, P2 leading to the same configuration, there are
abs(aP1,0aP2,0) sets of pairs G1, G2 for each value of E.

The above equation can be rewritten as

2

 ∑
C∈CA

 ∑
p∈Px,t,C

ap,i

2

−
∑
C∈CR

 ∑
p∈Px,t,C

ap,i

2

= 2d2
t

(∑
C∈CA

(
amp2

α,t,C(u)
)− ∑

C∈CR

(
amp2

α,t,C(u)
))

.

If x ∈ S, then x is accepted with probability greater than 2/3 and rejected with
probability less than 1/3 and so the above sum is greater than 0, giving more paths
in M ′ with a “yes” result than a “no” result.

If x ∈ S, then x is rejected with probability greater than 2/3 and accepted with
probability less than 1/3 and so the above sum is less than 0, giving more paths in
M ′ with a “no” result than a “yes” result.

This concludes the proof of Lemma 6.10 and therefore Theorem 6.4.

7. Discussion. If one is concerned about minimizing (or precisely calculating)
the polynomial slowdown in the approximations implicit in Theorem 3.3, then more
recent results of Baker and others on transcendental numbers may be useful. Angles
θ with θ/2π ∈ Q̄−Q may be particularly good in this regard.

There are many unsettled issues and open questions involving quantum compu-
tation. For example, letting K be a field, is BQPK =EQPK? We have shown that
BQPC 6=EQPC. It seems unlikely that BQPQ =EQPQ.

One can ask whether NQPK =EQPK , an analogue of the NP = P question.

One can consider the relationship between classical classes and quantum classes.
For example does EQP=P? We suspect not, but since EQP⊆ PSPACE, a yes answer
would not be entirely out of the question. Does BQPQ=BPP?

One can generalize the notion of a “classical” probabilistic Turing machine to
allow for amplitudes in C and consider the relationship between natural classes on
a classical probabilistic Turing machine and on a quantum machine. For example,
is it the case that BQPC =BPPC (when BPPK is appropriately defined)? Does
BQPQ =BPPQ? An affirmative answer would inform us that the power of quantum
computation is not found in the use of the L2-norm but rather in the use of general
(possibly negative) amplitudes.

One can ask similar questions for QTMθ rather than QTMK . For example, let
θ and θ′ have cos = 3/5 and 5/12, respectively. Then QTMθ � QTMθ′ and hence
BQPθ = BQPθ′ ; however, does EQPθ =EQPθ′? If θ/2π 6∈ Q, does EQPθ =P?

To what extent would demonstrating relationships between various complexity
classes over various fields (or with various angles) have implications similar to those
which arise when relationships between classical classes are demonstrated with respect
to an oracle?

1540 LEONARD M. ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH A. HUANG

One could consider very general notions of machines (amplitudes in C, arbitrary
norms, for example). Would an investigation of these shed light on the basic open
problems of computational complexity?

On a more concrete level, is the “shortest vector in a lattice” problem in BQPQ

(this has been asked by numerous researchers)? Is primality in EQPC? Is primality
in EQPQ? Can integers be multiplied in linear time on a QTM?

Acknowledgments. We thank Harold Stark for providing us with Lemma 3.6,
Charles Bennett for contributing to our understanding of methods of approximating
θ used in the proof of Theorem 3.3, and Don Coppersmith for enlightening comments
regarding a previous version of this paper. Finally, we thank the anonymous referees
for bringing Proposition 6.1 to our attention, for pointing out a mistake in an earlier
version, and for many valuable comments.

REFERENCES

[B] A. Baker, Transcendental Number Theory, Cambridge University Press, London, 1979.
[Be] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973),

pp. 525–532.
[BBBV] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses

of quantum computing, SIAM J. Comput., 26(1997), pp. 1510–1523.
[BV] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th ACM Sympo-

sium on Theory of Computation, San Diego, CA, 1993, pp. 11–20; SIAM J. Comput.,
26 (1997), pp. 1411–1473.

[D1] D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum
computer, Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 96–117.

[D2] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A., 425
(1989), pp. 73–90.

[DJ] D. Deutsch and R. Jouzsa, Rapid solution of problems by quantum computation, Proc.
Roy. Soc. London Ser. A, 439 (1992), pp. 553–558.

[F] R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),
pp. 467–488.

[Fe] N. I. Feldman, An improvement of the estimate of a linear form in the logarithms of
algebraic numbers, Mat. Sb. (N.S.), 77 (119) (1968), pp. 423–436 (in Russian).

[J] N. Jacobson, Basic Algebra I, W. H. Freeman, San Francisco, 1980.
[Ni] I. Niven, Irrational Numbers, The Mathematics Association of America, Rahway, NJ,

1956.
[Sh] P. Shor, Algorithms for quantum computation: Discrete log and factoring, in Proc.

35th IEEE Symposium on Foundations of Computer Science, IEEE Computer So-
ciety Press, Los Alamitos, CA, 1994, pp. 124–134.

[Si] D. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–
1483.

[So] R. Solovay, Virtual Reading Group Communication, Internet, 14 August 1994.
[Y] A. Yao, Quantum circuit complexity, in Proc. 34th IEEE Symposium on Foundations of

Computer Science, Palo Alto, CA, IEEE Computer Society Press, Los Alamitos, CA,
1993, pp. 352–361.

STABILIZATION OF QUANTUM COMPUTATIONS BY
SYMMETRIZATION ∗

ADRIANO BARENCO† , ANDRÉ BERTHIAUME‡ , DAVID DEUTSCH§ , ARTUR EKERT¶,
RICHARD JOZSA‖, AND CHIARA MACCHIAVELLO∗∗

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1541–1557, October 1997 012

Abstract. We propose a method for the stabilization of quantum computations (including quan-
tum state storage). The method is based on the operation of projection into SYM, the symmetric
subspace of the full state space of R redundant copies of the computer. We describe an efficient
algorithm and quantum network effecting SYM–projection and discuss the stabilizing effect of the
proposed method in the context of unitary errors generated by hardware imprecision, and nonuni-
tary errors arising from external environmental interaction. Finally, limitations of the method are
discussed.

Key words. quantum computation, error correction

AMS subject classifications. 68, 81

PII. S0097539796302452

1. Introduction. Any realistic model of computation must conform to certain
requirements imposed not by the mathematical properties of the model but by the
laws of physics. Computations which require an exponentially increasing precision or
exponential amount of time, space, energy, or any other physical resource are normally
regarded as unrealistic and intractable.

Any actual computational process is subject to unavoidable hardware impreci-
sion and spurious interaction with the environment, whose nature is dictated by the
laws of physics. These effects introduce errors and destabilize the progress of the
desired computation. It is, therefore, essential to have some method of stabilizing the
computation against these effects.

For classical computation there is a simple and highly effective method of stabi-
lization. Each computational variable is represented redundantly using many more
physical degrees of freedom than are logically required, and a majority vote (or av-
erage) of all the copies is taken followed by resetting all the copies to the majority

∗ Received by the editors April 22, 1996; accepted for publication (in revised form) December 2,
1996. Part of this work was carried out during the Quantum Computation Workshops, conducted
with the support of ELSAG-Bailey, Genova, and the Institute for Scientific Interchange, Torino. This
work was also partly supported by the European Commission TMR Network grant FMRX-CT96-
0087.

http://www.siam.org/journals/sicomp/26-5/30245.html
† Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.

(barenco@mildred.physics.ox.ac.uk). The research of this author was supported by Berrow’s Fund
at Lincoln College, Oxford.
‡ AT&T Labs–Research, 600 Mountain Avenue, Murray Hill, NJ 07974 (berthiau@

research.att.com).
§ Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.

(deutsch@mildred.physics.ox.ac.uk).
¶ Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K. (ekert@

mildred.physics.ox.ac.uk). The research of this author was supported by the Royal Society, London.

‖ School of Mathematics and Statistics, University of Plymouth, Plymouth, Devon PL4 8AA,
U.K. (rjozsa@plymouth.ac.uk). The research of this author was supported by the Royal Society,
London.
∗∗ Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.

(chiara@mildred.physics.ox.ac.uk). The research of this author was supported by the European
HCM Programme.

1541

1542 A. BARENCO ET AL.

answer. This process is applied periodically during the course of the computation. If
we use R copies and the probability of producing the correct answer is 1

2 +η then it can
be shown ([1, p. 258]) that the probability E that the majority vote is wrong, is less
than exp(−η2R/6). This is an extremely resource-efficient stabilization in that the
probability of error decreases exponentially with the degree of redundancy R. Indeed,
suppose that a polynomial-time algorithm runs for M steps, each of which is correct
with probability 1

2 + η and majority voting is used after each step. The probability
that the final answer will be correct is greater than (1−E)M . Thus any desired success
probability 1 − δ may be achieved using a degree of redundancy R = O(log(M/δ)),
which is only logarithmic in the input size.

The majority vote method just described cannot be applied in the case of quan-
tum computation because quantum algorithms depend essentially on the maintenance
of coherent superpositions of different computational states at each step. The laws
of quantum mechanics forbid the identification of an unknown quantum state [17],
[18] and forbid even the cloning of an unknown state [19]. Thus the majority voting
method is inapplicable as we can neither determine the majority state nor reset the
remaining copies to that state. In this paper we propose an alternative quantum me-
chanical method of stabilization which utilizes redundancy but which has no classical
analogue. We discuss its applicability and limitations. The method was first proposed
by Deutsch [2] and a brief outline of its underlying principles was given in [3].

An alternative approach to the stabilization of classical computation involves
the use of error correcting codes [20]. A quantum mechanical generalization of this
approach was recently introduced by Shor [9] and subsequently developed in [13], [10],
[12], [11]. These methods are unrelated to those proposed in this paper and provide
an interesting supplementary method of stabilizing quantum computation.

The process of simply repeating a whole computation a sufficient number of times
may serve to stabilize it in certain circumstances. Suppose that we have a quantum
algorithm which succeeds with probability 1 − ε (where ε may increase with input
size) and suppose that we know when the computation has been successful. For
example, the computation may produce a candidate factor of an input integer which
can then be efficiently checked by trial division. For any input size L the success
probability can be amplified to any prescribed level 1− δ by repeating the algorithm
a sufficiently large number, R, of times since the probability of at least one success
in R repetitions is 1− εR → 1 as R →∞. Suppose now that the success probability
1− ε decreases with input size L as 1/poly(L). Then we can maintain any prescribed
success probability by allowing R to increase as a suitable polynomial function of
L. Thus if the original algorithm was efficient (i.e., polynomial time) then its R-fold
repetition is still efficient, i.e., the algorithm has been stabilized in an efficient manner.
(Note that Shor’s quantum factoring algorithm [7], [8] is of this type with success
probability decreasing as 1/L with input size.) However, if the success probability falls
exponentially with input size L then we must use R ∼ exp(L) to maintain any constant
level of success probability. This implies an exponential increase of physical resources
for stabilization and hence this method is inefficient in this case. Unfortunately, just
such an exponential decay of success probability appears to be a generic feature of
any physical implementation of computation, as described below.

In quantum theory, the issue of preventing information from leaking into the
environment from a system (“the computer”) is generally known as the decoherence
problem [4], [5], [6]. According to the analysis of [6], decoherence generally causes
an exponential decrease in success probability with input size L. Decoherence is

STABILIZATION OF QUANTUM COMPUTATIONS 1543

a universal phenomenon and is expected to affect—to some extent—any physical
implementation of quantum computation whatever. Thus without some efficient form
of stabilization, quantum algorithms which are polynomially efficient in the error-free
case (like Shor’s factoring algorithm) cannot be considered polynomially efficient in
practice.

Consider any efficient computation which gives the correct result at each step
with probability 1 − ε where ε is constant. This would typically be the case if each
step of a computation consisted of the application of an elementary gate operation
having a standard tolerance of error. Then after N steps the probability of success
is (at least) (1 − ε)N ∼ exp(−εN), which again decreases exponentially with N .
Suppose that we have a stabilization scheme utilizing redundancy R which reduces
the error in each step only by a factor 1/R, i.e., ε→ ε/R (rather than the exponential
decrease given by classical majority voting). After N steps the probability of success
is now exp(−εN/R). This can be kept at any prescribed level 1 − δ by taking R =
εN/(− log(1 − δ)) which is polynomial in N and hence in the input size L. Thus an
exponentially growing error (such as results from decoherence) in a polynomial-time
computation can be efficiently stabilized by a method which reduces the error per
step only as 1/R with the degree of redundancy. Our proposed method below will
have this property.

An essential ingredient in our stabilization method is the so-called “quantum
watched pot” effect (or quantum Zeno effect) [16]. Our method will require the
repeated projection of the quantum state of R computers into the symmetric subspace
SYM, a subspace of the total state space of the R computers. This projection has a
nonzero failure probability so that (in view of the previous paragraph) the cumulative
probability of repeated successful projection may be expected to fall exponentially
with the number of projections. The quantum watched pot effect provides a means
of maintaining the cumulative probability of successful projection arbitrarily close to
unity. The basic principle is illustrated in the following simplified example. Consider
a quantum system initially in state |0〉 which rotates into |1〉 with angular frequency
ω. The state at time t (in the absence of any projections) is cosωt |0〉+ sinωt |1〉. If
we project this state into Λ0, the subspace spanned by |0〉, then the probability of
successful projection is cos2 ωt. If we project repeatedly n times between t = 0 and
t = 1, i.e., at time intervals δt = 1/n, then the probability that all projections will be
successful is (

cos2
ω

n

)n
≈
(

1− ω2

n2

)n
→ 1 as n→∞.

Thus if the projections are performed with sufficient frequency then the state may
be confined to the subspace Λ0 with arbitrarily high probability. This is the quan-
tum watched pot effect. In quantum mechanics projection operations correspond to
measurements on the system so the above may be loosely phrased as “a frequently
observed state never evolves” or “a watched pot never boils,” giving the origin of the
terminology. A similar analysis holds for Λ0 replaced by any subspace such as SYM,
and for any unitary evolution of a state initially lying in the subspace as elaborated
in section 5.

It will be useful in the following to keep in mind the simplest possible example
of the stabilization problem where the computer consists of one qubit (i.e., one two-
level system) and is performing no computation. In fact this simple model captures
the essential features of the stabilization problem for general quantum computations.

1544 A. BARENCO ET AL.

The problem of stabilization concerns the time evolution of an “accuracy” observ-
able which has only two eigenvalues. As we shall see our analysis of error correction
depends only on such simple observables and is independent of the substance of the
computation. Thus we are addressing the problem of stabilizing the storage of an (un-
known) quantum state of one qubit against environmental interaction and (suitably
random) imprecision in the construction of the storage device.

2. The symmetric subspace. Our proposed stabilization method will exploit
redundancy but in contrast to the classical majority voting method, it will be based on
essentially quantum mechanical properties through use of the symmetric subspace of
the full state space of R copies of a physical system. Consider R copies of a quantum
system each with state space H. Denote the full state space H⊗H⊗ . . .H by HR.

Remark 1. Here we require that the R copies be distinguishable, e.g., being
located in separate regions of space so that the position coordinate provides an extra
“external” degree of freedom for distinguishability. The state space H can be thought
of as representing the “internal” degrees of freedom of each system. In our application
these are the computational degrees of freedom of each replica of the computer. In our
notation we suppress explicit mention of the distinguishing degree of freedom which
is implicitly given by the written order of component states in a tensor product state
(cf. Remark 2 below).

The symmetric subspace SYM of HR may be characterized by either of the two
following equivalent definitions.

Definition 1. SYM is the smallest subspace of HR containing all states of the
form |ψ〉 |ψ〉 . . . |ψ〉 for all |ψ〉 ∈ H.

Definition 2. SYM is the subspace of all states in HR which are symmetric
(i.e., unchanged) under the interchange of states for any pair of positions in the tensor
product. (Here we interchange only the internal degrees of freedom leaving the external
degrees fixed.)

Remark 2. To clarify the notion of symmetrization in Definition 2 note that, for
example, |φ〉 |ψ〉+ |ψ〉 |φ〉 ∈ H2 is in SYM. If we were to show the external degrees of
freedom then this state would be written |φ;x1〉 |ψ;x2〉+ |ψ;x1〉 |φ;x2〉. Consequently,
the notion of symmetrization in Definition 2 is different from bosonic symmetrization
which requires symmetrization of all degrees of freedom. For a pair of bosons the
previous state would be |φ;x1〉 |ψ;x2〉+ |ψ;x2〉 |φ;x1〉.

Definition 1 has the following interpretation. Suppose that we have R copies of
a quantum computer. If there were no errors then at each time the joint state would
have the form

|ψ〉 |ψ〉 . . . |ψ〉 ∈ HR.(1)

In the presence of errors the states will evolve differently resulting in a joint state
of the form |ψ1〉 |ψ2〉 . . . |ψR〉 or more generally a mixture of superpositions of such
states. In quantum mechanics any test (“yes/no” question) that we can apply to a
physical system must correspond to a subspace of the total state space. States of the
form (1) for all |ψ〉 ∈ H do not, by themselves, form a subspace of HR. According to
Definition 1, SYM is the smallest subspace containing all possible error-free states.
It thus corresponds to the “most probing” test we can legitimately apply, which will
be passed by all error-free states. Recall that we cannot generally identify the actual
quantum state during the course of the computation or indeed gain any information
about it without causing some irreparable disturbance [18]. The characterization

STABILIZATION OF QUANTUM COMPUTATIONS 1545

given in Definition 2 is especially useful in treating mathematical properties of SYM
as follows.

The equivalence of the two definitions may be proved by viewing the ith compo-
nent space in the tensor product HR as the space of complex polynomials of degree
≤ n−1 in the variable xi (where n is the dimension ofH). By the fundamental theorem
of algebra any such polynomial may be factored as (xi −α1)(xi −α2) . . . (xi −αn−1).
Then Definition 1 defines the subspace of all polynomials p(x1, . . . , xR) of degree
≤ n− 1 in each variable, which arise as sums of products of functions of the form

fα(x1, x2, . . . , xR) =
R∏
i=1

(xi − α)(2)

for any α. On the other hand, Definition 2 defines the space of all symmetric polyno-
mials (of degree ≤ n − 1 in each variable). The equivalence of these subspaces then
follows easily from basic properties of the standard elementary symmetric functions
[14], which are defined as the coefficients of the powers of α in the expansion of (2).

The equivalence of the two definitions may also be understood via the following
illustrative example which gives further insight into the structure of SYM.

Example 1. Suppose that H is two-dimensional (i.e., a qubit) with computational
basis states |0〉 and |1〉. Consider triple redundancyR = 3 and the symmetric subspace
SYM ⊂ H3. Let us tentatively denote the symmetric subspaces of Definitions 1 and
2 by SYMdef1 and SYMdef2, respectively. We wish to show that these coincide.
Note first that SYMdef1 is the span of all states of the form |ψ〉 |ψ〉 |ψ〉, which are
clearly symmetrical in the sense of Definition 2. Hence, SYMdef1 ⊆ SYMdef2. For
the reverse inclusion consider a general state in H3:

|α〉 = a0 |0〉 |0〉 |0〉
+a1 |1〉 |0〉 |0〉+ a2 |0〉 |1〉 |0〉+ a3 |0〉 |0〉 |1〉(3)

+a4 |1〉 |1〉 |0〉+ a5 |1〉 |0〉 |1〉+ a6 |0〉 |1〉 |1〉
+a7 |1〉 |1〉 |1〉 .

Interchange of states for any given pair of positions (in the sense of Definition 2)
preserves the number of |0〉’s and |1〉’s in each term so that |α〉 will be in SYMdef2

if and only if a1 = a2 = a3 and a4 = a5 = a6. Indeed, we see that SYMdef2 is four
dimensional with orthonormal basis states (labelled by the number of |1〉’s):

|e0〉 = |0〉 |0〉 |0〉
|e1〉 = (|1〉 |0〉 |0〉+ |0〉 |1〉 |0〉+ |0〉 |0〉 |1〉)/

√
3(4)

|e2〉 = (|1〉 |1〉 |0〉+ |1〉 |0〉 |1〉+ |0〉 |1〉 |1〉)/
√

3

|e3〉 = |1〉 |1〉 |1〉 .

(The four normalizing factors 1,
√

3,
√

3, and 1 are square roots of the binomial coef-
ficients 3C0,

3 C1,
3 C2,

3 C3.) Now for any |ψ1〉 of the form a |0〉 + |1〉 we get directly
that

|ψ1〉 |ψ1〉 |ψ1〉 = a3 |e0〉+ a2
√

3 |e1〉+ a
√

3 |e2〉+ |e3〉 .

1546 A. BARENCO ET AL.

Repeating this for four different values of the parameter a we get the following:
a3 a2 a 1
b3 b2 b 1
c3 c2 c 1
d3 d2 d 1

|e0〉√
3 |e1〉√
3 |e2〉
|e3〉

 =

|ψ1〉 |ψ1〉 |ψ1〉
|ψ2〉 |ψ2〉 |ψ2〉
|ψ3〉 |ψ3〉 |ψ3〉
|ψ4〉 |ψ4〉 |ψ4〉

 .

Choosing a, b, c, and d so that the coefficient matrix is invertible, we see that the basis
states (4) are all in SYMdef1 so that SYMdef2 ⊆ SYMdef1. Hence, these subspaces
coincide.

From the above considerations (cf. especially (4)) we readily see that the dimen-
sion of SYM for R qubits is R+ 1 so that SYM is an exponentially small subspace
of HR (of dimension 2R). This is also true in the general case. Suppose that H has
dimension d with orthonormal basis |0〉 , |1〉 . . . |d− 1〉. Then SYM has an orthogonal
basis labelled by all possible ways of making R choices from the d basis states with
repetitions possible and the ordering of choices being irrelevant (c.f. (3) and (4)). The
solution of this combinatorial problem gives

Dimension of SYM = R+d−1Cd−1 =
1

(d− 1)!
Rd−1 +O(Rd−2),(5)

which is a polynomial in R (for fixed d). Hence, SYM is again exponentially small
inside HR of dimension dR.

3. Projection into SYM. Our proposed method of stabilization consists of
frequently repeated projection of the joint state of R computers into the symmet-
ric subspace SYM. According to the interpretation of SYM above, the error free
component of any state always lies in SYM so that upon successful projection this
component will be unchanged and part of the error will have been removed. Note,
however, that the projected state is generally not error-free since, for example, SYM
contains many states which are not of the simple product form |ψ〉 |ψ〉 . . . |ψ〉. Nev-
ertheless, the error probability will be suppressed by a factor of 1/R as discussed in
subsequent sections. Thus the method is not one of error correction but rather of
stabilization. By choosing R sufficiently large and the rate of symmetric projection
sufficiently high, the residual error at the end of a computation can, in principle, be
controlled to lie within any desired small tolerance.

The operation of projection into SYM is a computation in itself. For our sta-
bilization method to be efficient it is essential that this operation be executable effi-
ciently, i.e., in a number of steps that increases at most polynomially with L and R
where L = log2 d is the number of qubits required to hold the state of each computer
entering into the symmetrization and R is the degree of redundancy. (Also note that
R can clearly be at most a polynomial function of L in any efficient scheme.) Only
then will a nominally efficient computation remain efficient after stabilization.

We next describe an algorithm for projecting into SYM and show that it is
efficient in the above sense. Consider first a product state |Ψ〉 = |a1〉 |a2〉 . . . |aR〉 ∈
HR. To project |Ψ〉 into SYM we carry out the following steps.

Step 1. Introduce an ancilla in a standard state |0〉 with a state space A of at
least R! dimensions.

Step 2. Make an equal amplitude superposition of the ancilla

U : |0〉 → 1√
R!

R!−1∑
i=0

|i〉 .

STABILIZATION OF QUANTUM COMPUTATIONS 1547

Step 3. Carry out the following computation: if the ancilla state is |i〉 then per-
form the ith permutation σi of the component states of |a1〉 |a2〉 . . . |aR〉

|a1〉 |a2〉 . . . |aR〉 |i〉 →
∣∣aσi(1)〉 ∣∣aσi(2)〉 . . . ∣∣aσi(R)

〉 |i〉 .
This results in the entangled state∑

i

∣∣aσi(1)〉 ∣∣aσi(2)〉 . . . ∣∣aσi(R)

〉 |i〉 ∈ HR ⊗A.
Step 4. Apply the reverse computation U−1 of step 2 to the ancilla. The resulting

state may be written

|Υ〉 =
∑
i

|ξi〉 |i〉 ∈ HR ⊗A.

Since U transforms |0〉 to each |i〉 with equal amplitude it follows that U−1

transforms each |i〉 back to |0〉 with equal amplitude. Hence the coeffi-
cient of ancilla state |0〉 in |Υ〉 is the required symmetrized state, i.e., an
equal amplitude superposition of all permutations of the R factor states of
|a1〉 |a2〉 . . . |aR〉.

Step 5. Measure the ancilla in its natural basis. If the outcome is “0” then |Ψ〉
has been successfully projected into SYM. If the outcome is not “0” then
the symmetrization has failed. (The issue of the probability of successful
symmetrization is discussed in a later section.)

Finally note that by linearity of the process, it will symmetrize a general state in HR
(not just the product states considered above). If the input state is already symmetric
then we get it back unchanged with certainty at the end.

Now consider the computational effort involved in the above steps. Let d = dim H
and write L = log2 d. Step 1 requires no computational effort. The ancilla requires
log2(R!) = O(R logR) qubits. Step 2 may be achieved by applying the discrete Fourier
transform [7], [8] to the ancilla. This requires O((R logR)2) steps. For step 3 we note
that a general permutation can be effected with O(R logR) swaps. Swapping states
of L qubits requires O(L) operations so overall step 3 requires O(LR logR) steps.
Restoring the ancilla in step 4 requires the same number of operations as step 2. In
step 5 we examine separately each of the O(R logR) qubits occupied by the ancilla,
requiring O(R logR) steps. Overall we require O(LR logR + (R logR)2) steps which
is less than O(LR2 +R4). Hence the process is efficient.

4. A quantum network for SYM projection. We now describe how the op-
eration of SYM projection can be implemented by a network of simple quantum gates.
Consider first the following inductive definition of the general permutation of k+1 ele-
ments a1, . . . , ak, ak+1 [23]. Starting from the general permutation aσ(1), . . . , aσ(k) of
the k elements a1, . . . , ak we adjoin ak+1 giving aσ(1), . . . , aσ(k), ak+1 and then per-
form separately the k+ 1 operations: identity, swap aσ(1) with ak+1, swap aσ(2) with
ak+1, . . . swap aσ(k) with ak+1. This generates all possible permutations of k+ 1 ele-
ments. In terms of state symmetrization, if we have already symmetrized |ψ1〉⊗ · · ·⊗
|ψk〉 (i.e., we have an equal superposition of all permutations of the states) then we
can symmetrize k+1 states |ψ1〉⊗· · ·⊗|ψk〉⊗|ψk+1〉 by applying only the operation of
state swapping (in suitable superposition). Thus the operation of symmetrization of R
states can be built up from |ψ1〉 by first symmetrizing |ψ1〉 and |ψ2〉, then successively

1548 A. BARENCO ET AL.

including |ψ3〉 up to |ψR〉 always using only state swappings in suitably controlled
superpositions.

The basic ingredient in this process is the “controlled swap gate” or Fredkin
gate, acting on three input qubits. If the first (“control”) quit is |0〉 (respectively,
|1〉) then the other two (“target”) qubits are unaffected (respectively, swapped). We
describe this diagrammatically in Fig. 1. The operation of state swapping itself (i.e.,
|ψ1〉 ⊗ |ψ2〉 7→ |ψ2〉 ⊗ |ψ1〉) can be implemented using three controlled–NOT gates as
described in [15].

Fig. 1. Schematic representation of a Fredkin gate. A Fredkin gate exchanges the state of the
second and third qubit if and only if the first qubit is in state |a〉 = |1〉.

To symmetrize k + 1 qubits given that the first k are already symmetrized we
introduce k control qubits initially in state |0〉 |0〉 . . . |0〉 and apply a suitable unitary
transformation, denoted Uk to generate the superposition

1√
k + 1

(|00 . . . 0〉+ |10 . . . 0〉+ |01 . . . 0〉+ · · ·+ |00 . . . 1〉) .(6)

The unitary transformation Uk can be readily obtained by a quantum network con-
sisting of a one bit gate performing the transformation

1√
k + 1

(
1 −√k√
k 1

)
(7)

on the first quit and a sequence of k−1 two bit gates Tj,j+1 for j = 1, . . . , k−1 acting
on the jth and j + 1th qubits. In the basis {|0〉 , |1〉}, Tj,j+1 is given by:

Tj,j+1 =
1√

k − j + 1

√
k − j + 1 0 0 0

0 1
√
k − j 0

0 −√k − j 1 0
0 0 0

√
k − j + 1

 .(8)

Having thus initialized the k control qubits, we then apply k Fredkin gates—the jth
Fredkin gate (for j = 1, . . . k) uses the jth control quit to control the swapping of
the jth and (k+ 1)th target qubits. This leads to an entangled state of the k control
qubits and the k + 1 target qubits but after applying U−1

k to the control qubits, the
coefficient of |0〉 |0〉 . . . |0〉 will be the required symmetrization of the k + 1 qubits
(c.f. step 4 of section 3). Finally, a measurement of the control qubits will effect the
projection into SYM (cf. step 5 of section 3).

Thus to symmetrize R qubits we cascade the above construction with k = 1, 2, . . .
up to k = R−1 requiring a total number 1+2+ · · ·+(R−1) = R(R−1)/2 of control
qubits. The size of the overall network is clearly quadratic in R. For example, for the
symmetrization of R = 4 qubits we obtain the network shown in Fig. 2.

STABILIZATION OF QUANTUM COMPUTATIONS 1549

Fig. 2. Quantum network for symmetrizing R = 4 qubits. Six auxiliary qubits initially in state
|0〉 are needed. The auxiliary qubits are put into an entangled state and used to control the state
swapping of the four computer qubits. The operations are then undone and the auxiliary qubits
measured. If every auxiliary quit is found in state |0〉 the symmetrization has been successful.

5. Stabilization against unitary errors. So far we have given an efficient
algorithm for projection into the symmetric subspace and provided an intuitive reason
why it would be expected to reduce the error while preserving the correct computation.
We now turn to a quantitative study of the effect of SYM-projection as a basis for
stabilization in the presence of various modes of error production. It is convenient to
separate the discussion into two parts considering the case where the joint state of
the computers remains in a pure state, in this section, and the case of decoherence
due to external environmental interaction in the following section.

Consider the simple model of R qubits initially in state (the “correct” state)
|0〉 |0〉 . . . |0〉 with computation being the identity, i.e., we are considering the state
storage problem with R–fold redundancy. Suppose that the R storage devices are
subject to independent hardware errors which cause the jth state to drift as eiHjt |0〉.
Here the Hamiltonians Hj are random and independent. Since the devices were
intended for state storage we assume that the rate of drift is suitably bounded. This
is expressed by requiring that all eigenvalues of the Hj ’s are suitably small

|eigenvalues of Hj | ≤ ε, j = 1, . . . , R(9)

for some (small) constant ε. The stabilization process consists of projecting the joint
state of the R copies into the symmetric subspace at short time intervals δt. For
simplicity we will assume that the projection can be performed essentially instanta-
neously. Furthermore, we assume that (unlike the computation being stabilized) the
projection process itself is error free. These and other assumptions will be discussed
in section 7. Under these assumptions we can readily compare the growth of errors
with and without the stabilization process.

1550 A. BARENCO ET AL.

In the basis {|0〉 , |1〉} write

Hj =

(
aj c∗j
cj bj

)
(10)

so that

|cj | ≤ |λ1|+ |λ2| ≤ 2ε(11)

(where λ1, λ2 are the eigenvalues of Hj). We will assume that δt is small and we
retain only the lowest order terms in δt. After time δt the state will be

|Ψ(δt)〉 =

R⊗
k=1

{(1 + iakδt) |0〉+ ickδt |1〉} .(12)

Thus without symmetrization the probability that the ith qubit shows an error is

|ci|2δt2 ≈ 4ε2δt2.(13)

If we expand out the product in (12) we obtain 2R terms corresponding to the expo-
nentially large dimension of the full space of R qubits. However, the amplitudes of
terms involving k errors (i.e., products of |0〉’s and |1〉’s involving k |1〉’s) will have size
O(δtk) and only the R terms involving one error will have size O(δt). Thus the erro-
neous state (12) does not occupy these exponentially many dimensions of HR equally.
We noted previously that SYM is exponentially small inside HR but the preceding
observation indicates that SYM–projection will not generally remove exponentially
much of the error since only R of these exponentially many dimensions are entered
(to lowest order) by the erroneous evolution. We now calculate the stabilizing effect
of the SYM-projection.

Consider the basis of SYM given by the R + 1 orthonormal states (cf. (4) for
the case R = 3):

|ek〉 =
1√
RCk

∑
all “k-error” σ’s

|σ〉 , k = 0, . . . , R.(14)

Here the sum is over all RCk possible strings of 0’s and 1’s of length R containing
exactly k 1’s and R − k 0’s. Under SYM-projection the lowest order error terms
(single-error terms) of (12) will project only onto |e1〉. For the term with an error in
the kth place we get

ickδt |0〉 . . . |0〉 |1〉 |0〉 . . . |0〉 SYM proj
−→

ickδt√
RC1

|e1〉 .

Thus the normalized projected state has the form1 + iδt
R∑
j=1

aj

 |0〉 . . . |0〉+ α1 |e1〉+O(δt2)

where

α1 =
iδt√
R

R∑
j=1

cj .(15)

STABILIZATION OF QUANTUM COMPUTATIONS 1551

To estimate the size of α1, using (11) we write cj ≈ 2εeiθj where θj are random phases.
The expectation value of α1 is then clearly zero but from

Expectation value of

∣∣∣∣∣∣
R∑
j=1

eiθj

∣∣∣∣∣∣ =
√
R(16)

we get 1

Expectation value of |α1|2 = 4ε2δt2.(17)

Thus, somewhat surprisingly, this probability of a single symmetrized error does not
decrease with R. However, it is associated with R copies and to see its residual effect
on any one copy we use the following fact.

Proposition 1. Consider the state

|Ξ〉 =

R∑
k=0

αk |ek〉 ∈ SYM ⊆ HR

where |ek〉 are as given in (14). If one qubit is measured in the basis {|0〉 , |1〉} the

probability of obtaining |1〉 is 1
R

∑R
k=0 |αk|2k.

Proof. Since the state is symmetric the probability of obtaining the result |1〉
for the ith qubit is the same as this probability for the first qubit. Now |ek〉 in (14)
consists of RCk orthogonal terms of which R−1Ck−1 have |1〉 in the first place. Hence,
the term αk |ek〉 in |Ξ〉 contributes probability

R−1Ck−1

∣∣∣∣∣ αk√
RCk

∣∣∣∣∣
2

= |αk|2k/R

of obtaining outcome |1〉.
Applying this result to (15) and using (17) we see that after successful sym-

metrization the probability of error (to lowest order in δt) is 4ε2δt2/R, i.e., the error
is suppressed by a factor of 1/R compared to the case (13) of no symmetrization and
in each step the amplitude of correct computation is correspondingly enhanced.

The above result is conditional on the success of the symmetrization, i.e., that the
state projects to SYM rather than SYM⊥. If the projections are done frequently
enough then the cumulative probability that they all succeed can be made as close
as desired to unity. This is a consequence of the so-called “quantum watched pot
effect” [16]. Consider a normalized joint state |Ξ〉 of R copies initially in SYM. Its
initial probability of successful projection is 1 which is a maximum. Thus as the state
evolves by some unitary transformation into the ambient space HR the probability of
successful projection will begin to change only to second order in time. If we project
n times per unit time interval, i.e., δt = 1/n then the cumulative probability that all
projections in one unit time interval succeed, is

(1− kδt2)n =

(
1− k

n2

)n
→ 1 as n→∞.

1 Remark [21]. If instead of qubit systems we consider computers with dimensions large compared
to the degree of redundancy R, then we would expect the individual random errors to be mutually
orthogonal, so when the state is symmetrized their sum does not exhibit the cancelling effects which
are present for qubits and lead to (16) and (17). However in that case, (17) and subsequent con-
clusions still hold because (16) may be replaced by Pythagoras’ theorem, i.e., that the sum of R
orthonormal vectors has length

√
R.

1552 A. BARENCO ET AL.

Here k is a constant depending on the rate of rotation of the state out of SYM. For
redundancy degree R and the model of random unitary errors considered above we find
that k grows linearly with R (as can be seen by directly calculating the length of the
SYM-projection of (12) to O(δt2) terms). Thus to achieve a cumulative probability
of successful projection of 1 − ζ in a unit time interval we would require a rate of
symmetric projection which increases linearly with −R/ log(1− ζ).

The above conclusions—for a model of random independent unitary errors—will
also apply to computations which are not the identity. Formally, we may view the
computation in a moving basis relative to which the correct computation is the identity
and the previous arguments are unchanged, i.e., none of the arguments depends on
the actual identity of the computational basis states.

6. Stabilization against environmental interaction. We now consider the
problem of state storage with R-fold redundancy, in the presence of decoherence,
i.e., interaction with an external environment. In general each qubit will become
entangled with an environment and the state of the qubit alone will no longer be
describable by a pure state. It will be represented by a density matrix [16] resulting
from forming a partial trace over the environment, of the joint (pure) state of the
total qubit-environment system.

Consider R copies of the qubit initially all prepared in pure state ρ0 = |0〉 〈0|.
We will assume that they interact with independent environments (this assumption is
valid if the coherence length of the reservoir is less than the spatial separation between
the copies [6]) so that after some short period of time δt the state of the R copies will
have undergone an evolution

ρ(R)(0) = ρ0 ⊗ · · · ⊗ ρ0 −→ ρ(R)(δt) = ρ1 ⊗ · · · ⊗ ρR,(18)

where ρi = ρ0 +σi for some Hermitian traceless σi and the superscript R denotes the
number of states involved. We will retain only terms of first order in the perturbations
σi so that the overall state at time δt is

ρ(R) = ρ0 ⊗ · · · ⊗ ρ0+σ1 ⊗ ρ0 ⊗ · · · ⊗ ρ0

+ρ0 ⊗ σ2 ⊗ · · · ⊗ ρ0 . . .(19)

+ρ0 ⊗ ρ0 ⊗ · · · ⊗ σR
+O(σiσj),

and we wish to compute the projection of the state (19) into the symmetric subspace
SYM. Then we construct the state of the ith qubit by partial trace over all qubits
except the ith and finally compare the resulting state with ρ0 + σi and see that its
purity has been suitably enhanced, bringing it closer to ρ0.

The mathematical formalism for symmetrization of mixed states has some curious
features which we digress to clarify before treating (19) itself. Consider a state ρ1⊗ρ2

of two qubits. The state 1
2 (ρ1 ⊗ ρ2 + ρ2 ⊗ ρ1) is not a symmetric state and in fact

ρ ⊗ ρ is not symmetric (i.e., it is not a density matrix supported on the subspace
SYM) unless ρ is pure! To see this consider ρ written in its diagonalizing basis of
orthonormal eigenstates:

ρ = λ1 |λ1〉 〈λ1|+ λ2 |λ2〉 〈λ2| .(20)

Thus we can represent ρ as a mixture of its two eigenstates, and ρ ⊗ ρ as a mixture
of the four orthonormal states |λi〉 ⊗ |λj〉 with a priori probabilities pij = λiλj . This
latter mixture involves nonsymmetric states (like |λ1〉⊗|λ2〉) so ρ⊗ρ is not symmetric.

STABILIZATION OF QUANTUM COMPUTATIONS 1553

One way of constructing the projection of ρ ⊗ ρ into SYM is to project each
state of the above mixture into SYM. Let |µij〉 denote the SYM-projection of

|λi〉 ⊗ |λj〉 and ˆ|µij〉 denote the corresponding normalized state. The probability of
successful projection is qij = 〈µij |µij〉. Then the SYM-projection of ρ ⊗ ρ is the

state corresponding to the mixture ˆ|µij〉 with a priori probabilities pijqij/(
∑
pijqij),

which are the conditional probabilities of occurrence of states ˆ|µij〉 given that the
SYM-projection was successful.

More formally we may introduce the (Hermitian) permutation operators P12 =
“identity” and P21 = “swap” acting on pure states of two qubits and define the
symmetrization operator:

S =
1

2
(P12 + P21).(21)

The SYM-projection of a pure state |Ψ12〉 of two qubits is just S |Ψ12〉, which is then
renormalized to unity. It follows that the induced map on mixed states of two qubits
(including renormalization) is

ρ1 ⊗ ρ2 −→ S(ρ1 ⊗ ρ2)S†

TrS(ρ1 ⊗ ρ2)S†
.(22)

The state of either qubit is obtained separately by partial trace over the other qubit.
As an example consider the symmetric projection of ρ⊗ ρ followed by renormal-

ization and partial trace (over either qubit) to obtain the final state ρ̃ of one qubit,
given that the SYM-projection was successful. A direct calculation based on (22)
yields

ρ 7→ ρ̃ =
ρ+ ρ2

Tr (ρ+ ρ2)
.(23)

For any mixed state ξ of a qubit the expression Tr ξ2 provides a measure of the purity
of the state, ranging from 1/4 for the completely mixed state I/2 (where I is the unit
operator) to 1 for any pure state. From (23) we get

Tr ρ̃2 > Tr ρ2

so that ρ̃ is purer than ρ. This example illustrates a generic fact (cf. below), that
successful projection of a mixed state into SYM tends to enhance the purity of the in-
dividual systems. Indeed, consider further the state ⊗Rρ consisting of R independent
copies of ρ. The symmetrization operator is

S =
1

R!

R!∑
α=1

Pα,(24)

where the sum ranges over all R! permutations of the R indices. If we project ⊗Rρ
into SYM and renormalize (as in (22)) and calculate the partial trace over all but
one of the qubits, we obtain a reduced state ρ̃R which asymptotically tends to a pure
state as R→∞. This limiting pure state is the eigenstate of ρ belonging to its largest
eigenvalue.

Let us now return to the consideration of (19) and its SYM-projection. The
application of the symmetrization operator (24) to each of the R terms of ρ0 ⊗ · · · ⊗

1554 A. BARENCO ET AL.

σi ⊗ · · · ⊗ ρ0 of equation (19) generates R!2 terms of the form

1

R!2
Pαρ0 ⊗ · · · ⊗ σi ⊗ · · · ⊗ ρ0Pβ ,(25)

where Pα and Pβ are permutation operators on the state space HR of R qubits as
above. To calculate the reduced density operator of the first qubit we take the partial
trace over the R − 1 remaining qubits. Note that the reduced states of all qubits
individually are equal since the total overall state is symmetric. (To systematize
the calculation of the partial traces we have found it very convenient to use the
diagrammatic notation for tensor operations introduced by Penrose in [22].) For each
σi we find that the R!2 terms in (25) then reduce to the following cases:

(i) (R − 1)!2 terms each equal to σi/R!2 corresponding to all permutations Pα
and Pβ which place σi in the first position in (25). In this case the partial
trace contracts out all the ρ0 terms leaving a coefficient of 1/R!2 (as the trace
of any power of ρ0 is 1).

(ii) (R− 1)!2(R− 1)R terms of the forms ρ0σiρ0, ρ0σi, σiρ0, or ρ0Tr(σiρ0), each
one divided by R!2. These correspond to all pairs of permutations which
result in σi contracted onto ρ0 in all possible ways in the partial traces.

(iii) (R − 1)!2(R − 1) terms which result in σi being contracted onto itself in the
partial traces. These terms are all zero since Trσi = 0.

Note that each term in (ii) has trace given by Trσiρ0/R!2 and each term in (i) has
zero trace. Thus the resulting density operator, before normalization, has a trace
given by

1 + (R− 1)Tr(ρ0σ̃),(26)

where we have introduced σ̃ = 1
R

∑R
i=1 σi. We normalize the density operator by

dividing the sum of all terms in (i) and (ii) for all i = 1, . . . , R by (26), the resulting
symmetrized density operator ρ̃ can be written

ρ̃ = [1− (R− 1)Tr(ρ0σ̃)]ρ0 +
1

R
σ̃

+ (R− 1)[Aρ0σ̃ρ0 +B(ρ0σ̃ + σ̃ρ0) + Cρ0Tr(σ̃ρ0)] +O(σiσj),(27)

where A, B, and C depend on R and A+ 2B + C = 1.
If a general mixed state ξ of a qubit is measured in the basis {|0〉 , |1〉} then the

probability that the outcome is 0 is given by 〈0| ξ |0〉 = Tr ρ0ξ. This provides the
success probability in our present model. Thus the average success probability before
symmetrization of the perturbed qubits is

1

R

∑
i

Tr ρ0(ρ0 + σi) = 1 + Tr ρ0σ̃(28)

(note that consequently Tr ρ0σ̃ is necessarily negative). After symmetrization, using
(27) we see that

Tr ρ0ρ̃ = 1 +
1

R
Tr ρ0σ̃.(29)

Hence, the probability of error has again been reduced by a factor of R—exactly as
found in the previous section.

STABILIZATION OF QUANTUM COMPUTATIONS 1555

We can calculate the average purity of the R copies before symmetrization by
calculating the average trace of the squared states:

1

R

R∑
i=1

Tr((ρ0 + σi)
2) = 1 + 2Tr(ρ0σ̃).(30)

After symmetrization each qubit has purity

Tr(ρ̃2) = 1 + 2
1

R
Tr(ρ0σ̃).(31)

Since Tr ρ̃2 is closer to 1 than (30), the resulting symmetrized system ρ̃ is left in a
purer state. Indeed it follows from (29) that ρ̃ approaches the unperturbed state ρ0

as R tends to infinity.

7. Limitations. Error correction is itself a quantum computation. The above
analysis has ignored the inevitable build up of errors in the computer performing that
computation. Indeed for the symmetrization of R qubits the projection algorithm
requires an ancilla of at least R! dimensions, i.e., O(R logR) qubits (in fact O(R2) in
our explicit network). Thus the correcting apparatus is slightly larger than the total
system being corrected so the error correction ought to be subject to a similar level of
error as is present in the original system. In a situation where the redundancy degree
R is small compared to the number L of qubits per computer, the correcting appara-
tus (still of O(R2) qubits) will be small compared to the size RL of the system being
corrected. However, as seen in section 5, the stabilization of a linear computation on
input size L requires redundancy degree R ∼ L so that the correcting apparatus and
the computer are again of comparable size. This means that each error correcting step
introduces errors of a similar, or even greater, probability than those it is correcting.
This does not, however, necessarily render it ineffective. Consider the following il-
lustrative example. A certain clock is accurate to one second per day. Each day at
noon it is reset using a standard time signal, the resetting operation being accurate
only to one minute, i.e., 60 times worse than the error being corrected. Nevertheless,
after 10 years the corrected clock will still be in error by at most one minute. If
left uncorrected the error could be almost an hour. In our stabilization method the
analogue of “resetting noon to within one minute” is projection into SYM with some
error tolerance. Thus although the projection is imperfect, the state never drifts very
far from SYM as it would do in the absence of any stabilization.

The main factor limiting the efficiency of our proposed method will be the fre-
quency with which the error correcting operations can be physically performed. As
noted at the end of section 5, to achieve a cumulative probability 1 − δ of repeated
successful projection in a unit time interval, the rate of symmetric projection must
increase linearly with the degree of redundancy R. Also as noted in section 1, the
stabilization of a computer with input size L, running for L steps, requires R to in-
crease linearly with L. Hence, we need the overall rate of symmetric projection to
increase linearly with L even for a linear time computation. Thus, beyond a certain
input size, each symmetrization will have to be performed in a time shorter than that
needed to perform the elementary quantum gate operations. Since increasing the rate
of computation by a factor k presumably requires resources exponential in k, our
method would necessarily require exponential resources for sufficiently large L. This
property is shared by all quantum error correction schemes that have been proposed
to date. Hence quantum algorithms (such as Shor’s factoring algorithm), which are

1556 A. BARENCO ET AL.

polynomially efficient in the absence of errors, would not be efficient if physically
implemented. We wish to stress that the traditional notion of efficiency (based on
the distinction between polynomial and exponential growth) is an asymptotic notion
referring to computations on unboundedly large inputs. This may not be appropriate
in assessing the feasibility of particular computations in practice. For example, if a
quantum computer could factorize a 1000-digit integer in a reasonable time it may
still exceed the abilities of any classical computer for the foreseeable future albeit that
the factorization of 2000-digit integers might be infeasible on any computer.

8. Conclusion. If the technology to implement the scheme we have described
were available, it would provide a method of stabilizing general coherent computations
though not with exponential efficiency. This is because although only polynomially
many steps are required in the stabilization computation, these need to be performed
in a fixed time, a characteristic time of error growth per bit.

Acknowledgments. We wish to thank Dorit Aharonov, Ethan Bernstein, Asher
Peres, and Umesh Vazirani for developmental discussions, and Rolf Landauer for
critical appraisal. We are grateful for the opportunity of collaboration provided by
ELSAG-Bailey, Genova, and the Institute for Scientific Interchange, Torino.

REFERENCES

[1] C. Papadimitriou (1994), Computational Complexity, Addison–Wesley, Reading, MA.
[2] D. Deutsch (1993), The Quantum Theory of Computation, talk presented at the Rank Prize

Funds Mini–Symposium on Quantum Communication and Cryptography, Broadway, Eng-
land.

[3] A. Berthiaume, D. Deutsch, and R. Jozsa (1994), The stabilization of quantum computa-
tions, in Proc. Workshop Physics Computation, PhysComp94, IEEE Computer Society
Press, Los Alamitos, CA, pp. 60–62.

[4] W. H. Zurek (1991), Decoherence and the transition from quantum to classical, Physics Today,
44, p. 36.

[5] R. Landauer (1995), Is quantum mechanics useful?, Phil. Trans. Roy. Soc., 353, pp. 367–376.
[6] G. M. Palma, K.-A. Suominen, and A. Ekert (1996), Quantum computation and dissipation,

Proc. Roy. Soc. London Ser. A, 452, pp. 567–584.
[7] P. Shor (1994), Algorithms for quantum computation: Discrete logarithms and factoring, in

Proc. 35th Annual Symposium Foundations of Computer Science, S. Goldwasser ed., IEEE
Computer Society Press, Los Alamitos, CA, pp. 124–134.

[8] A. Ekert and R. Jozsa (1996), Quantum computation and Shor’s factoring algorithm, Rev.
Modern Phys., 68, pp. 733–753.

[9] P. Shor (1995), Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 52,
pp. R2493–R2496.

[10] A. Steane (1996), Multiparticle interference and quantum error correction, Proc. Roy. Soc.
London Ser. A, 452, pp. 2551–2577.

[11] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek (1996), Perfect quantum error
correction code, Phys. Rev. Lett., 77, pp. 198–201.

[12] A. Ekert and C. Macchiavello (1996), Quantum error correction and communication, Phys.
Rev. Lett., 77, pp. 2585–2588.

[13] A. Calderbank and P. Shor (1996), Good quantum error correcting codes exist, Phys. Rev.
A, 54, pp. 1098–1106.

[14] S. Lang (1993), Algebra, 3rd ed., Addison–Wesley, Reading, MA.
[15] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa (1995), Conditional quantum dynamics

and logic gates, Phys. Rev. Lett., 74, pp. 4083–4087.
[16] A. Peres (1993), Quantum Theory: Concepts and Methods, Kluwer Academic Publishers,

Norwell, MA.
[17] A. Peres (1988), How to differentiate between non-orthogonal states, Phys. Lett. A, 128,

pp. 19–20.
[18] C. A. Fuchs and A. Peres (1996), Quantum state disturbance versus information gain: Un-

certainty relations for quantum information, Phys. Rev. A, 53, pp. 2038–2045.

STABILIZATION OF QUANTUM COMPUTATIONS 1557

[19] W. K. Wootters and W. Zurek (1982), A single quantum cannot be cloned, Nature, 299,
pp. 802-803.

[20] F. J. MacWilliams and N. J. Sloane (1977), The Theory of Error Correcting Codes, North–
Holland, Amsterdam.

[21] Dorit Aharonov, private communication, 1995.
[22] R. Penrose and W. Rindler (1984), Spinors and Spacetime, Vol. 1, Appendix, Cambridge

University Press, London.
[23] D. Knuth (1973), The Art of Computer Programming, Vol. 2, Addison–Wesley, Reading, MA.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE
FOR RANDOMIZED PARALLEL ALGORITHMS∗

PHILIP D. MACKENZIE†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1559–1580, December 1997 001

Abstract. The random-adversary technique is a general method for proving lower bounds on
randomized parallel algorithms. The bounds apply to the number of communication steps, and they
apply regardless of the processors’ instruction sets, the lengths of messages, etc. This paper intro-
duces the random-adversary technique and shows how it can be used to obtain lower bounds on
randomized parallel algorithms for load balancing, compaction, padded sorting, and finding Hamil-
tonian cycles in random graphs. Using the random-adversary technique, we obtain the first lower
bounds for randomized parallel algorithms which are provably faster than their deterministic coun-
terparts (specifically, for load balancing and related problems).

Key words. parallel algorithms, parallel computation, PRAM model, randomized parallel
algorithms, expected time, lower bounds, load balancing

AMS subject classifications. 68Q10, 68Q22, 68Q25

PII. S0097539791224030

1. Introduction. Randomization has been a useful tool in developing fast par-
allel algorithms for a vast spectrum of problems, from computational geometry and
graph theory to routing and load balancing. Often these randomized parallel algo-
rithms are significantly faster than the best possible deterministic parallel algorithms.
This prompts the question, “To what extent can randomization improve the speed
of parallel algorithms?” We have developed the random-adversary technique to help
answer this question.

The random-adversary technique can be thought of as an extension or gener-
alization of the random-restriction technique [18]. It is the most general technique
to date, and in fact, to date, all known asymptotic lower bounds for the randomized
parallel random access machine (PRAM) model (which assume no restrictions on pro-
cessors’ instruction sets nor restrictions on memory) can be proven using the random-
adversary technique. In this paper, we will focus on lower bounds for the strongest
of the PRAM models, the concurrent-read concurrent-write (CRCW) PRAM. There
has been a tremendous amount of work in the area of lower bounds on this model,
and tight lower bounds have been shown for many fundamental problems in the deter-
ministic case [4, 5, 8, 9, 11, 14, 16, 25]. The only previous parallel randomized lower
bounds known for this model (again, which assume no restrictions on processors’ in-
struction sets nor restrictions on memory), however, were the lower bounds for parity
and related problems [1, 4, 31]. Using the random-adversary technique, we have been
able to prove lower bounds on the randomized CRCW PRAM model for many other
problems, including the fundamental load-balancing problem. Moreover, the random-
adversary technique seems to be a very natural way for proving these lower bounds.
One key feature of the method is that one abstracts the difficulty of the problem (by

∗Received by the editors December 23, 1991; accepted for publication (in revised form) August
17, 1995.

http://www.siam.org/journals/sicomp/26-6/22403.html
†Department of Mathematics and Computer Science, Boise State University, Boise, ID 83725

(philmac@diamond.idbsu.edu). This research was performed while the author was at Sandia National
Laboratories and was supported in part by Department of Energy contract DE-AC04-76DP00789, at
the University of Texas supported by Texas Advanced Research Projects grant 003658480, and at the
University of Michigan supported by an AT&T Fellowship and by NSF/DARPA grant CCR-9004727.

1559

1560 PHILIP D. MACKENZIE

specifying the inputs that are difficult for an algorithm to deal with) before getting
into the detailed mechanics of the proof. Hopefully, this idea, and the outline of the
technique given later, will make it easier for researchers to prove lower bounds for
parallel randomized algorithms solving other problems. We certainly feel that given
its natural and fairly easy structure, the random-adversary technique should be the
first method one should try in proving any new lower bounds for parallel randomized
algorithms.

1.1. Load balancing. One of the most important applications of our technique
so far is to the problem of load balancing, which is one of the most fundamental
problems in parallel computing. While load balancing is implicit in most deterministic
PRAM algorithms, it is often necessary to have an explicit load-balancing procedure
in randomized PRAM algorithms. In these algorithms some processors might finish
quickly, and to make full use of them, they must be reallocated to help processors
which have not finished. Without this reallocation, the time of the algorithm will be
dependent on the processor with the most difficult subproblem. Unfortunately, the
time for load balancing itself can also increase the running time of an algorithm, and
that is what we will analyze in this paper.

We consider the following load-balancing problem, as defined by Gil, Matias, and
Vishkin [21].

Load balancing. Given h objects distributed among n processors, redistribute the
objects so that each processor gets O(1 + h/n) objects.

Note that under any definition of load balancing, at least one processor will end
with Ω(1+h/n) objects. Consequently, by solving the load-balancing problem defined
above, the objects will be balanced in an asymptotically optimal manner. Then,
assuming the objects are equal length tasks, after this load-balancing operation the
tasks can be completed by the processors in asymptotically optimal time. (Note that
for h ≥ n, a more applicable definition for load balancing might be to redistribute
objects so that a constant fraction of the processors contain at least one object.
However, for h ≤ n, the definition given above seems to be more appropriate. We are
more concerned with the case of h ≤ n, but for generality, we expand the definition
of the problem to deal with all h.)

In general we would like to perform this load balancing in constant time, since then
at each step, processors that have finished their tasks could be reassigned to help some
other processors right away. We show, however, that load balancing requires Ω(log∗ n)
expected time. We note that there might be a possibility of batching or pipelining the
load balancing, and so an algorithm which would take Θ(f(n)) time with a constant-
time load-balancing operation still might be made to take o(f(n) log∗ n) time. That
is beyond the scope of the paper.

Load-balancing procedures have been used in Chlebus et al. [12] to perform
simulations of strong CRCW PRAM models on weaker CRCW PRAM models, in
MacKenzie and Stout [37] for padded sorting, finding nearest neighbors, and con-
structing the Voronoi diagram, in Gil and Matias [20] to perform parallel hashing, in
Hagerup [27] to perform integer chain-sorting, and in Goodrich [24] to construct upper
envelopes, answer range queries, and perform hidden surface elimination. Recently,
Gil, Matias, and Vishkin [21], Hagerup [27], and Goodrich [24] have all developed
Θ(log∗ n) expected time randomized load-balancing algorithms for worst-case inputs,
so the lower bound given in this paper is tight. (The algorithm in Goodrich [24] is for
a slightly less general load-balancing problem.)

We will also show Ω(log∗ n) time lower bounds for the related problems of padded

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1561

sorting [37] and compaction [22, 28] on the CRCW PRAM. The definitions for these
problems are as follows.

Padded sort. Given n values taken from a uniform distribution over the unit
interval [0, 1], arrange them in sorted order in an array of size n+o(n), with the value
NULL in all unfilled locations.

Compaction. Given an array of n cells with at most h containing one item each
and all others being empty, insert the items into an array of size O(h).

Matias and Vishkin [39] give a Θ(log∗ n) expected time algorithm for compaction
with arbitrary h ∈ {1, . . . , n}, and Hagerup and Raman [29] give a Θ(log∗ n) expected
time algorithm for padded sort. Consequently, our lower bounds are tight.

Recently, Chaudhuri [10] gave an Ω(log logn) deterministic lower bound for com-
paction, proving that randomization is necessary in obtaining a faster solution. Our
lower bound for compaction is the first for a problem that has a provably faster parallel
randomized solution than parallel deterministic solution.

We should mention that a further result obtained from the lower bound on com-
paction is an Ω(log∗ n) time separation between the standard randomized CRCW

PRAM and the randomized CRCW-bit PRAM [6], in which O(log(k) n) processors
are allowed to simultaneously write into different bits of the same word, for some
constant k ≥ 1. This follows from the constant time algorithm for compaction in the
randomized CRCW-bit PRAM model given by Goodrich [24].

1.2. Random graph properties. By a random graph on n vertices, denoted
Gn,p, we mean that each of the

(
n
2

)
edges is included with probability p, where p is

a constant, 0 < p < 1. Random graphs have been extensively studied and have very
interesting properties. For instance, with high probability, in Gn,p a Hamiltonian
cycle exists; every breadth first spanning tree has height 2; and, for n even, there is
a maximal matching which includes all the vertices.

Bollobás, Fenner, and Frieze [7] give an algorithm which constructs a Hamiltonian
cycle in Gn,p if one exists. This algorithm runs in polynomial expected time for
p ≥ 1/2 [7, Theorem 1.2]. Gurevich and Shelah [26] and Thomason [40] independently
improve on this result, giving algorithms which run in linear expected time for any
constant p. These algorithms are optimal, since linear time is needed just to write the
output. Frieze [17] gives a parallel algorithm which constructs a Hamiltonian cycle
from Gn,p in O((log logn)2) expected time and uses n log2 n processors. MacKenzie
and Stout [38] show that one can find a Hamiltonian cycle, a maximal matching,
and a breadth first spanning tree in Gn,p, all in Θ(log∗ n) expected time using only
n/ log∗ n processors.

Implicit in each of the problems above is finding an edge cover. Using the random-
adversary technique we show that finding an edge cover in Gn,p from its adjacency
matrix requires Ω(log∗ n) expected time on an n processor CRCW PRAM. MacKenzie
and Stout [38] give a simpler proof specific to this problem, but we wish to show
how the much more general random-adversary technique can produce the same lower
bound.

1.3. Parity on CRCW PRAMs. The random-adversary technique can also
prove a lower bound for computing parity using a randomized CRCW PRAM al-
gorithm. The problem of parity is important in that lower bounds for computing
parity (using a polynomial number of processors) provide lower bounds for sorting,
bit summation, majority, and many other problems (see [4]).

Beame and H̊astad [4] gave an Ω(logn/ log logn) lower bound for determinstic

1562 PHILIP D. MACKENZIE

CRCW PRAM algorithms, which matched the known upper bound. Using the results
of Ajtai and Ben-Or [1] on converting randomized circuits into deterministic circuits,
one could show that this lower bound also holds for randomized CRCW PRAM al-
gorithms. This can also be shown more directly. Beame and H̊astad show that given
a uniform distribution of inputs, with nonzero probability an algorithm taking fewer
than Ω(logn/ log logn) steps will output an incorrect answer, but H̊astad [32] shows
that in the circuit model, this can be extended to high probability. With minor ad-
justments, the high probability result also holds in the CRCW PRAM model, and it
was known that by using Yao’s theorem [41], one could obtain the equivalent lower
bound for randomized algorithms over a worst case input. This is actually the first
example of the random-adversary technique, though not in its most general form. (It
would not be sufficient to prove many of the other lower bounds shown in this paper.)

1.4. Related results. The random-adversary technique has been used in
MacKenzie [36] to prove lower bounds for computing some Boolean functions on
exclusive-write PRAMs which asymptotically match the previous best lower bounds
in Dietzfelbinger, Kuty lowski, and Reischuk [13] (and, in fact, improve the constants
on some of those lower bounds) and to prove lower bounds on restricted domain
compaction problems on exclusive-write PRAMs.

The random-adversary technique has also been used in Goldberg, Jerrum, and
MacKenzie [23] to prove a lower bound for a fundamental routing problem on the
optical communication parallel computer (as defined by Anderson and Miller [2] under
the name “local memory PRAM”). We refer the reader to that paper for a full overview
of the results and a discussion of the model and the specific routing problem.

Finally, the random-adversary technique has been used in MacKenzie [35] to prove
a lower bound for compaction on the queue-read queue-write (QRQW) PRAM (see
Gibbons, Matias, and Ramachandran [19] for a description of the QRQW PRAM).

2. Definitions. In this paper, we will be concerned only with the PRAM model.
See [23] for the definition changes required for the optical communication parallel
computer (OCPC) model. Relevant definitions for other models should be relatively
easy to develop.

In the PRAM model, processors communicate by reading and writing to a global
shared memory. The PRAM model is further subdivided depending on whether con-
current accesses are allowed to memory on reads and/or writes. An exclusive-read
(ER) model does not allow concurrent reads to a memory cell, whereas a concurrent-
read (CR) model does allow concurrent reads. An exclusive-write (EW) model does
not allow concurrent writes to a memory cell, whereas a concurrent-write (CW) model
does allow concurrent writes. On concurrent writes, there is also the issue of a con-
tention protocol. In the priority CW model, if two or more processors write to any
memory cell, the lowest-numbered processor succeeds in writing its value to that cell.
(For more information on PRAM models see, for example, [34].)

Consider an algorithm with multiple inputs. An instantiation of the set of inputs
to this algorithm will be called an input map. (This will be defined formally in the
next section.) We define a randomized algorithm as one in which each processor can
generate some number of random bits. In our lower bounds, we make no assumption
on the number of random bits a processor can generate. The expected time of a
randomized algorithm will be the average time of the algorithm over the distribution
of input maps and the random bits. If we make no assumptions on the distribution
of input maps, then the expected time will simply be the worst of the average times
(taken over the random bits) for any input map.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1563

We define high probability as meaning probability at least 1− n−1, and we define
very high probability as meaning probability at least 1−e−nα for some constant α > 0.

For any base z ≥ 2, we define log(1)
z n as logz n and log(i)

z n as logz(log(i−1)
z n).

We define log∗z n as the smallest integer i such that log(i)
z n ≤ 1. When z is omitted

we assume base 2. It is well known that log∗ n is an extremely slow growing function
of n, and, in fact, log∗ n ≤ 5 for n ≤ 265536. Lemma A.1 in the appendix shows a
relation between log∗ functions with different bases.

3. Random-adversary technique. The random-adversary technique allows
one to prove a lower bound on the time required for a parallel randomized algo-
rithm to solve a given problem. The first step of the technique is to decide on an
input distribution for the problem. By Yao’s theorem (see below), a lower bound
on deterministic algorithms over this distribution provides the same lower bound for
randomized algorithms.

The next step is to create a random adversary that proceeds through the given
deterministic algorithm step by step, fixing some of the inputs in order to ensure some
desired properties. (As shown below, this entails filling in the details of a procedure
called REFINE.) Note that the random adversary is similar to a standard determin-
istic adversary in most parallel lower-bound proofs. However, unlike deterministic
adversaries that can fix inputs arbitrarily, the random adversary must fix inputs ac-
cording to the chosen input distribution, i.e., using the procedure RANDOMSET, as
described below. Also, depending on how RANDOMSET fixes the inputs, the desired
properties might not hold. Therefore, it is possible that the random adversary might
have to make repeated calls to RANDOMSET to ensure the desired properties.

The final step is to show that these desired properties (such as knowledge about
the inputs still being widely dispersed among the processors and that the number of
inputs left unset is still large) hold with some given probability.

In the rest of this section we formalize this method.

3.1. Definitions. Let P be a problem with multiple inputs and let I be the set
of inputs to P . Let Q be the set of possible values to which each input could be set.
Define a partial input map to be a function f from I to {{∗} ∪ Q}. Here “∗” will
denote a “blank” or “unset” input. A partial input map is an input map if no inputs
are mapped to “∗.” Let f∗ denote the partial input map which maps every input
to “∗.” A partial input map f ′ is called a refinement of a partial input map f if for
all i ∈ I, and q ∈ Q, f(i) = q implies f ′(i) = q. (We denote this by f ′ ≤ f .) If we
wish to restrict our attention to a subset of the possible input maps, we would call
that subset the relevant input maps. Likewise, we would say that a partial input map
is a partial relevant input map if it has a refinement that is a relevant input map. We
will often omit the word relevant when it is clear from the context.

3.2. Yao’s theorem. The following theorem shows that a lower bound on the
average time of a deterministic algorithm over any distribution of input maps implies
the same lower bound for the expected time of any randomized algorithm over a
worst-case input map or over the same distribution of input maps.

Theorem 3.1 (see Yao [41]). Let D be a distribution of input maps. Let T1 be
the expected running time for a randomized algorithm solving problem P , either over
a worst-case input map or over the distribution D. Let T2 be the average running time
over the distribution D, minimized over all possible deterministic algorithms that solve
P . Then T1 ≥ T2.

A nice proof of this theorem is given in Fich et al. [16].

1564 PHILIP D. MACKENZIE

Function RANDOMSET(f, S)
For each i ∈ S (sequentially)

Set f(i) according to the conditional distribution of i given that
the input is drawn from D and is a refinement of f

Return f
End RANDOMSET

Fig. 3.1. The RANDOMSET function.

This theorem greatly simplifies the problem of proving lower bounds for random-
ized algorithms, as it converts the original problem to one where the only randomness
comes from the distribution of input maps, and this can often be set as one wishes.
It is of course necessary to choose a distribution that will be difficult for any deter-
ministic algorithm. Note that the distribution cannot place all the probability on one
input map (i.e., a worst-case input map), since then a simple deterministic algorithm
which checks for this input map and outputs the precomputed answer will succeed
with probability 1.

3.3. RANDOMSET procedure. We will assume the distribution chosen is
D. Function RANDOMSET in Figure 3.1 can be used to randomly generate an input
map one input at a time. It is called with a partial input map f obtained through calls
to RANDOMSET and a set S of elements which are mapped to “∗.” The elements
in S are then randomly set one by one according to the distribution D, conditional
on f .

Claim 3.2. If f is generated solely by calls to RANDOMSET, then f will be
generated according to the distribution D.

Proof. The proof is straightforward.

3.4. REFINE and GENERATE. Say f is t-good if it satisfies certain prop-
erties, which will be defined with respect to the problem P and the input distribution
D. For some T ≤ n, we would like to prove that the problem P cannot be solved
in T steps. Let A be an algorithm which allegedly solves problem P over the input
distribution D in T steps.

Given this algorithm A, we create a procedure REFINE, which tells the random
adversary how to fix the inputs at each step. Formally, REFINE(t, f) takes a time t
and a partial input map f and returns a new partial input map f ′ that is a refinement
of f . We need to prove that the procedure REFINE has two important properties,
the first of which is concerned with preservation of “t-goodness.”

Lemma 3.3. If t < T and REFINE is called with parameters (t, f), where f
is t-good, then with probability at least 1 − n−2 REFINE will return a partial input
map f ′ that is (t + 1)-good.

The second property is that REFINE is unbiased. Consider the function GENER-
ATE in Figure 3.2 that starts with the partial input map f0 = f∗ and applies REFINE
T times to generate a sequence of partial input maps f0 = f∗ ≥ f1 ≥ · · · ≥ fT ≥ f
in which each ft = REFINE(t, ft−1) is a refinement of ft−1, and f is an input map
generated according to the conditional distribution over D from the set of refinements
of fT . Then we need to prove the following lemma.

Lemma 3.4. The input map f returned by GENERATE is generated according
to the distribution D.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1565

Function GENERATE
Let f0 = f∗
Let f = f0

Let t = 1
While t ≤ T Do

If for some p, f(p) = “∗” Then
Let ft = REFINE(t, f)

Else
Let ft = f

Let f = ft
Let t = t + 1

Let P = {p|f(p) = “∗”}
Return RANDOMSET(f, P)

End GENERATE

Fig. 3.2. The GENERATE function.

In all REFINE procedures we construct in this paper, all inputs are set by calls
to RANDOMSET. Consequently, by Claim 3.2, Lemma 3.4 will always hold.

Note that from Lemma 3.3 we also have the following.

Lemma 3.5. With probability at least 1−n−1, the partial input map fT is T -good.

Proof. Let Zt be a binary random variable which is equal to 1 exactly when
REFINE returns a t-good function at step t. Then the probability of failing at any
step t ≤ T is

T∑
t=1

Pr(Zt = 0 | Zt−1 = 1, . . . , Z1 = 1).

By Lemma 3.3, this is at most Tn−2 ≤ n−1.

In summary, to fill in the random-adversary framework for a specific problem P ,
we must specify

1. an input distribution D,
2. a definition for t-good,
3. a function REFINE,
4. a time T , and
5. a proof for Lemma 3.3.

Once this is done, we can use Lemmas 3.4 and 3.5, along with the specific definition
of t-good, to prove the desired lower bound. Since this is highly problem dependent,
we do not include it in the description of the general random-adversary technique.

3.5. Comparison to random restriction. In the random-restriction proce-
dure first used in Furst, Saxe, and Sipser [18], a random set of inputs is randomly
set according to a uniform distribution over binary inputs. The random adversary
extends this idea to carefully chosen sets of inputs, and possibly other input distribu-
tions, some in which the inputs are not independent. Also, with random restrictions,
there was never a notion of possibly setting more inputs in a single step. In the ran-
dom adversary, the adversary is allowed to randomly set more inputs if the induction
hypothesis does not yet hold.

1566 PHILIP D. MACKENZIE

A recent paper by Impagliazzo, Paturi, and Saks [33] gives a proof of a lower bound
for the depth of threshold circuits computing majority using a technique similar to the
random adversary, where inputs to be randomly set are chosen carefully. However,
the inputs are not set according to any predefined distribution. Thus Yao’s theorem
would not apply, and this would not translate into a lower-bound proof for randomized
threshold circuits.

4. PRAM-specific definitions. Let A be any deterministic algorithm for an
n processor PRAM, and let f be any input map. Trace(p, 0, f) is defined to be the
tuple 〈p〉. Trace(p, t, f) (for t > 0) is defined to be the tuple 〈p, λ1, . . . , λt〉 in which
λj is the contents of the cell read in step j, if any, and λj is the null symbol otherwise.
Similarly, Trace(c, 0, f) is defined to be the tuple 〈c, λ0〉, where λ0 is the initial value
in cell c. Trace(c, t, f) (for t > 0) is defined to be the tuple 〈c, λ0, . . . , λt〉 in which λj
is the contents of the cell after step j.

For the following, assume that v is either a processor or a cell. Let g be any
relevant partial input map. We will define Know(v, t, g) as the smallest set of inputs
such that the following property PK is satisfied: for any relevant input maps f1 and f2

that refine g and have f1(q) = f2(q) for all q ∈ Know(v, t, g), Trace(v, t, f1) is the same
as Trace(v, t, f2). (Intuitively, v is not dependent on inputs outside Know(v, t, g), since
these could not affect its trace, and v is dependent on every input inside Know(v, t, g)
by the fact that it is the minimum set of inputs which could affect its trace.)

Claim 4.1. For all v, t, g, Know(v, t, g) exists and is unique.
Proof. Know(v, t, g) exists since at least one set (the set of all inputs) satisfies

PK, and there are a finite number of sets from which the smallest can be chosen.
Know(v, t, g) is unique since if two sets satisfy PK, then their intersection satisfies

PK (i.e., there cannot be two different smallest sets, since the intersection of them
is smaller than either and also satisfies PK). To see this consider two sets A and
B which satisfy PK. Consider two input maps f1 and f2 that refine g and have
f1(q) = f2(q) for all q ∈ A ∩B. Define f3 as follows.

f3(q) =

{
f1(q) for q ∈ A,
f2(q) for q 6∈ A.

Then by the property PK, Trace(v, t, f1) = Trace(v, t, f3), and Trace(v, t, f3) =
Trace(v, t, f2). Thus Trace(v, t, f1) = Trace(v, t, f2).

Let AffProc(i, t, g) contain each processor p for which i ∈ Know(p, t, g). Let
AffCell(i, t, g) contain each cell c for which i ∈ Know(c, t, g).

5. General CRCW PRAM lower bound. Before we prove a lower bound
on load balancing, we will prove a general lower bound on the amount of information
which can be transferred between processors given a general random input.

Assume the set of possible values for inputs Q = {v1, . . . , v|Q|}. The input dis-
tribution we will use is that each input is independently assigned value vj (1 ≤
j ≤ |Q|) with probability pj for some p1, . . . , p|Q| with p1 + · · · + p|Q| = 1. Let
p0 = min{p1, . . . , p|Q|}, and P = 1/p0.

We now define the following constants and functions of n: k0 = 1, for i > 0
ki = (2400P 3)ki−1 , r0 = 0, and for i ≥ 1, ri = (n/8)

∑i
j=1 2−j . Let T = log∗ n −

log∗(2400P 3) − 3. Then the following facts are easily proved (use Lemma A.1 for
Fact 5.1).

Fact 5.1. kT ≤ log logn.
Fact 5.2. For all i ≥ 1, ri ≤ n/8.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1567

Function REFINE(t, f)
(1) Let g = f
(2) For each c ∈ L
(3) Let g = RANDOMSET(g,Know(c, t, g))
(4) Let W = WRITE(c, g)
(5) For each p ∈W (in order by proc. number)
(6) Let g = RANDOMSET(g,Know(p, t, g))
(7) If p does not write to c
(8) Next p
(9) Next c
(10) Let f ′ = g
(11) Return f ′

End REFINE

Fig. 5.1. The REFINE procedure.

A partial input map f is called t-good if the following three conditions are satisfied.

1. For each processor or cell v, |Know(v, t, f)| ≤ kt.
2. For each input i, |AffProc(i, t, f)| ≤ kt and |AffCell(i, t, f)| ≤ kt.
3. f maps at most rt inputs to something other than “∗.”

We now describe the algorithm REFINE (shown in Figure 5.1) which is called
with a time t and a partial input map f , and which returns a partial input map f ′

which is a random refinement of f . This random refinement is based on the action
of algorithm A at step t + 1. (A step is assumed to be a write followed by a read.)
Let U be the set of inputs that f maps to “∗.” Let U ′ be the set of inputs that f ′

maps to “∗.” Say a processor p write-affects a cell c with a partial input map g if
for some input map g′ which refines g, p writes to cell c at step t + 1. Say a cell c
read-affects a processor p with a partial input map g if for some input map g′ which
refines g, p reads from cell c at step t + 1. Let WRITE(c, g) be the set of processors
that write-affect cell c with a partial input map g, and let READ(c, g) be the set of
processors that c read-affects with a partial input map g. Let L be the set of cells
for which |WRITE(c, f)| ≥ (400P 2)kt or |READ(c, f)| ≥ (400P 2)kt . In algorithm
REFINE, we simply go through the processors (in order by processor number) which
write-affect (with the current partial input map) each cell in L, and randomly set
the inputs in their knowledge sets until one is sure to write or none of them write.
Note that at step (4), we use the set WRITE(c, g) instead of WRITE(c, f). Since
g ≤ f , WRITE(c, g) ⊆ WRITE(c, f), but the sets may not be equal. We must use
WRITE(c, g) so as not to set all the inputs in a set Know(p, t, g) if p has already been
forced not to write to cell c by previous refinements to f .

We say REFINE fixes a processor p if REFINE executes step (6) for processor p.

The following claim formally proves the intuitive idea that when the inputs that
affect the state of a processor or cell are all fixed, then the state of the processor or
cell is fixed.

Claim 5.3. Let f be a partial input map, and let v be a processor or cell.
Then if f ′ refines f and for all i ∈ Know(v, t, f), f ′(i) does not equal “∗,” then
|Know(v, t, f ′)| = 0.

Proof. Take any input maps f1 and f2 which refine f ′, Then f1 and f2 also
refine f and for every input q ∈ Know(v, t, f), f1(q) = f2(q). By the definition of

1568 PHILIP D. MACKENZIE

Know(v, t, f), this implies that Trace(v, t, f1) = Trace(v, t, f2). Thus the minimum
set that satisfies the necessary conditions for Know(v, t, f ′) is the empty set.

The following claim formally proves that REFINE causes the contents of each cell
c ∈ L to become fixed. It does this by fixing the contents of c previous to the step and
then fixing processors that possibly write to c one-by-one until either (1) a processor
writes a fixed value to the cell and no lower numbered processor writes to the cell, or
(2) no processors write to the cell.

Claim 5.4. If f is t-good, and REFINE(t, f) returns f ′, then for every c ∈ L,
|Know(c, t + 1, f ′)| = 0.

Proof. From Step 3 of algorithm REFINE and Claim 5.3, |Know(c, t, f ′)| = 0.
Let p be the lowest-numbered processor that REFINE causes to write to c, if any.
Otherwise, let p = ∞. Let g be the partial input map computed just before the
set W is found in Step 4 for cell c. Note that for each processor p′ ∈ WRITE(c, g)
with p′ ≤ p, |Know(p′, t, f ′)| = 0, and thus the action of p′ is fixed at step t + 1 for
any input map which refines f ′. If p = ∞, then for any input map which refines
f ′, no processor writes to c (i.e., no processor affects Trace(c, t + 1, f ′)), and thus
Know(c, t + 1, f ′) will contain only those inputs in Know(c, t, f ′), which is empty. If
p 6= ∞, then the contents of c will contain the value written by p (i.e., only the inputs
in the Know(p, t, f ′) could affect the Trace(c, t + 1, f ′)), and thus Know(c, t + 1, f ′)
will contain only those inputs in Know(p, t, f ′), which is empty.

Recall that U ′ = {i ∈ I|f ′(i) = “∗”}.
Lemma 5.5. If f is t-good and REFINE(t, f) returns f ′, then (1) for each cell

c, |Know(c, t + 1, f ′)| ≤ kt+1; (2) for each processor p, |Know(p, t + 1, f ′)| ≤ kt+1;
(3) for each input i ∈ U ′, |AffCell(i, t + 1, f ′)| ≤ kt+1; and (4) for each input i ∈ U ′,
|AffProc(i, t + 1, f ′)| ≤ kt+1.

Proof. By Claim 5.4, for each cell c ∈ L, Know(c, t+1, f ′) contains no inputs. For
each cell c not in L, Know(c, t + 1, f ′) contains at most those inputs in Know(c, t, f)
and those inputs in Know(p, t, f) for each processor p of the (400P 2)kt processors
in WRITE(c, f), and thus affect Trace(c, t + 1, f ′). Therefore |Know(c, t + 1, f ′)| ≤
kt + kt(400P 2)kt .

For a processor p, let C be the set of cells c such that p ∈ READ(c, f). Then
|C| ≤ |Q|kt , since that is the maximum number of possible settings of inputs in
Know(p, t, f). Know(p, t + 1, f ′) contains at most the inputs in Know(p, t, f) plus
the inputs in Know(c, t + 1, f ′) for each c ∈ C. Therefore |Know(p, t + 1, f ′)| ≤
kt + |Q|kt(kt + kt(400P 2)kt).

For an input i ∈ U ′, let P ′ be the set of processors p for which i ∈ Know(p, t, f).
Then |P ′| ≤ kt. For a processor p ∈ P ′, let Cp be the set of cells c such that
p ∈ WRITE(c, f). Then |Cp| ≤ |Q|kt . Thus i could be contained in Know(c, t+ 1, f ′)
for at most those cells c ∈ ⋃p∈P ′ Cp and each of the at most kt cells c for which

i ∈ Know(c, t, f). Then i is contained in Know(c, t + 1, f ′) for at most kt + kt|Q|kt
cells c.

For an input i ∈ U ′, let C be the set of cells c for which i ∈ Know(c, t + 1, f ′).
Then |C| ≤ kt + kt|Q|kt . Note that C ∩ L = ∅. For a cell c ∈ C, let Pc be the
set of processors p such that p ∈ READ(c, f). Then |Pc| ≤ (400P 2)kt . Then i
could be contained in Know(p, t + 1, f ′) for at most those processors p ∈ ⋃c∈C Pc
and the at most kt processors p for which i ∈ Know(p, t, f). Then i is contained in
Know(p, t + 1, f ′) for at most kt + (kt + kt|Q|kt)(400P 2)kt processors p.

The four claims in the lemma then follow from the fact that 1 ≤ |Q| ≤ P and
Lemma A.2.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1569

We say that REFINE(t, f) is successful if it calls RANDOMSET with at most
n

8(2t+1) inputs.

Lemma 5.6. If f is t-good and REFINE is successful, then f ′ is t + 1-good.
Proof. This follows from Lemma 5.5 and the fact that

rt+1 − rt =
n

8(2t+1)
.

Without loss of generality, let the cells c ∈ L be numbered 1 to |L| in the order
in which they are processed by REFINE. Let f ′0 = f , and let f ′c be the partial input
map obtained after REFINE is finished with cell c.

Let M be the set of partial input maps which could possibly be obtained after
REFINE is finished with cell c− 1. For any g ∈M , let Wc,g be the set of processors
in WRITE(c, g) and assume without loss of generality that these processors are num-
bered from 0 to |Wc,g| − 1. Construct a set Sc,g from Wc,g inductively by inserting
into Sc,g the lowest-numbered processor p from Wc,g such that Know(p, t, g) is dis-
joint from Know(p′, t, g) for every processor p′ already in Sc,g. Say the jth processor
inserted into Sc,g has rank j.

Claim 5.7. The number of the jth processor inserted into Sc,g is at most k2
t (j −

1).
Proof. Let p be one of the first j − 1 processors inserted into Sc,g. Then

|Know(p, t, g)| ≤ kt, and since for each i ∈ Know(p, t, g), |AffProc(i, t, g)| ≤ kt, i
is contained in Know(p′, t, g) for at most kt processors p′. In total for processor p,
Know(p, t, g)∩Know(p′, t, g) 6= ∅ for at most k2

t processors p′. Then at most k2
t (j−1)

processors p′ have Know(p, t, g) ∩ Know(p′, t, g) 6= ∅ for some p which is one of the
first j − 1 processors inserted into Sc,g.

Let [g] be the event that g is the partial input map obtained after REFINE is
finished with cell c − 1. For a set G ⊆ M , let [G] be the event that the partial
input map obtained after REFINE is finished with cell c − 1 is contained in G. Let
Xc be the random variable denoting the number of processors in Sc,g that REFINE
fixes while fixing cell c. (Note that the probability distribution of Xc is taken over
the calls to RANDOMSET which define which g ∈ M is used, and over the calls to
RANDOMSET for fixing the processors in Sc,g.) Let Y be a random variable with a
geometric distribution with parameter P−kt .

Claim 5.8. For any real a ≥ 1 and any g ∈ M with Pr([g]) > 0, Pr(Xc >
a|[g]) ≤ Pr(Y > a).

Proof. Let j = bac. Given [g], the probability that REFINE has not forced
any processors numbered no larger than the jth ranked processor in Sc,g to write
is less than the probability that it has not forced the first j processors in Sc,g to
write. The probability of the processor of rank i writing given that the processors of
ranks 1 through i− 1 did not write is at least P−kt , since they are independent, and
RANDOMSET sets the at most kt inputs in Know(i, t, g) randomly. Then

Pr(Xc > a|[g]) ≤
j∏

i=1

(1− P−kt) = (1− P−kt)j = Pr(Y > a).

Claim 5.9. For any real a ≥ 1 and any G ⊆ M with Pr([G]) > 0, Pr(Xc >
a|[G]) ≤ Pr(Y > a).

Proof. Note that for any real a, the event (Xc > a) ∧ [G] can be formulated as∨
g∈G

((Xc > a) ∧ [g]).

1570 PHILIP D. MACKENZIE

Also note that the terms in this disjunction are disjoint. Then using Claim 5.8,

Pr(Xc > a|[G]) =
Pr((Xc > a) ∧ [G])

Pr([G])

=

∑
g∈G Pr(Xc > a ∧ [g])

Pr([G])

=

∑
g∈G Pr(Xc > a|[g]) Pr([g])

Pr([G])

≤ Pr(Y > a)

∑
g∈G Pr([g])

Pr([G])

= Pr(Y > a).

For any natural numbers b1, . . . , bc−1, let Gb1,...,bc−1
be the set of partial input

maps for which X1 = b1, . . . , Xc−1 = bc−1.
Lemma 5.10. Given independent random variables Y1, . . . , Y|L| with geometric

distributions with parameter P−kt ,

Pr(X1 + · · ·+ X|L| > a) ≤ Pr(Y1 + · · ·+ Y|L| > a).

Proof. Using Claim 5.9, for any natural numbers b1, . . . , bc−1, if Pr([Gb1,...,bc−1])
> 0,

Pr(Xc > a|X1 = b1, . . . , Xc−1 = bc−1) = Pr(Xc > a|[Gb1,...,bc−1])

≤ Pr(Y > a).

Then the lemma follows from Theorem B.1.
Lemma 5.11. If f is t-good then REFINE(t, f) is successful with probability at

least 1− n−2.
Proof. From Claim 5.7, given that REFINE fixes X1 + · · · + X|L| processors in

the sets Sc,g, (1 ≤ c ≤ |L|), it calls RANDOMSET with at most k3
t (X1 + · · · + X|L|)

inputs (at most kt inputs from Know(p, t, g) for each processor p ∈Wc,g is fixed).
Let m = |L| and let m∗ = 2nP kt/(400P 2)kt . Note that by the definition of the

set L, m ≤ m∗.
From Lemma 5.10 and using the Chernoff bound for sums of geometric distri-

butions given in the appendix to bound Y1 + · · · + YL (with β = 3m∗
L − 1 ≥ 2,

p = 1− q = P−kt , and the fact that 1
2 ≤ q < 1), we see that

Pr(X1 + · · ·+ XL > 3m∗(1− P−kt)P kt) ≤ Pr(Y1 + · · ·+ YL > 3m∗(1− P−kt)P kt)

≤ e−m
∗/4,

for kt ≥ 1. Note that for sufficiently large n, when kt ≤ log logn and P ≤ logn,
e−m

∗/4 ≤ e−
√
n. With very high probability then, the number of inputs set by

RANDOMSET in this step is bounded by

k3
t (3m∗P kt) ≤ 3k3

tnP
2kt

(400P 2)kt

≤ n

8(2kt)

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1571

for kt ≥ 1. Since k0 = 1, and kt grows much faster than t, it is easy to see that
kt ≥ t+ 1 for all t ≥ 0. Thus we have shown that with very high probability, at most
n/8(2t+1) processors are set by RANDOMSET at step t.

Lemma 5.12. If t < T and REFINE is called with parameters (t, f), where f
is t-good, then with probability at least 1 − n−2 REFINE will return a partial input
map f ′ that is (t + 1)-good.

Proof. This follows from Lemma 5.11 and Lemma 5.6.
From Lemma 5.12, Fact 5.1, and Fact 5.2 we obtain the following corollary.
Corollary 5.13. For any processor or cell p, |Know(p, T, fT)| ≤ kT ≤ log logn,

and the number of inputs set by RANDOMSET is at most rT ≤ n/8 with probability
at least 1− n−1.

6. Load-balancing lower bound. Instead of directly proving a lower bound
on the general load-balancing problem, it will be convenient to prove a lower bound
on the following variation of the load-balancing problem.

Chromatic load balancing (CLB). Let m ≥ 1, and let Q be a set of 8m colors.
Assume that there is a set of n groups of 4m objects each, and each group of objects
is randomly assigned a color from Q. Then the chromatic load-balancing problem is
to choose any color and distribute the objects of that color into n groups of at most
m objects.

Without loss of generality, we will assume the objects are tagged with their orig-
inal group number and their original rank (1 to 4m) within that group.

Enhanced chromatic load balancing (ECLB). The enhanced chromatic load-balancing
problem is the same as the CLB problem with the added requirement that one must
produce an n×4m array of pointers such that in each row corresponding to a group of
the chosen color, and each column corresponding to the rank of a given object, there
must be a pointer to the destination group of the object.

Claim 6.1. Given a solution to the CLB problem, one can construct a solution
to the ECLB problem on a priority CRCW PRAM in m additional steps.

Proof. Assign one processor per destination group (of the CLB solution) to step
through the at most m objects assigned to that group. For each object with tag (group,
rank), have the processor write that destination in the array at location (group,
rank).

Lemma 6.2. For m = o(log∗ n), a deterministic algorithm which solves the ECLB
problem on a priority CRCW PRAM requires Ω(log∗ n) expected time.

Proof. Assume we have finished step T of a deterministic algorithm that solves
the ECLB problem. Then kT ≤ log logn and rT ≤ n/8. Consider a color q ∈ Q.
Consider a group g that has not been assigned a color by fT (i.e., for such a group
i, fT (i) = “∗”) and an object o in group g. Let c be the cell holding the array
location (g, o) in the pointer array. Consider the contents of c (the pointer in (g, o))
assuming that the input map which was refined from fT assigned the color q to all
inputs (groups) in Know(c, T, fT). Do this for all objects in all such groups that have
not been assigned a color by fT . This defines a potential object map F . Then F is a
function with a domain of size at least (7n/8)(4m) = 28nm/8 and a range of size at
most n. By a simple counting argument, we can find n disjoint sets of m+1 cells, all of
which point to the same destination group. (To see this, consider iteratively removing
sets of m + 1 cells that point to the same destination group. One can do this until
there are at most m cells pointing to any destination group, or at most nm leftover
cells. Then the number of sets removed is at least (28nm/8− nm)/(m + 1) ≥ n.)

Let S be one of the disjoint sets of cells that we have just found. Each of the m+1

1572 PHILIP D. MACKENZIE

cells c ∈ S have Know(c, T, fT) ≤ kT ≤ log logn, and thus at most (m + 1) log logn
inputs affect the contents of these cells. Each of these inputs is in Know(c′, T, fT)
for at most log logn other cells c′, so at most (m + 1)(log logn)2 cells are affected
by the same inputs that affect the cells in set S. Thus from the n disjoint sets of
m + 1 cells which are mapped by F to the same processor, we can find a subset
of B = bn/(m + 1)(log logn)2c sets whose cell contents are completely independent.
Number these sets from 1 to B.

Claim 6.3. With very high probability, at least one of these B sets uses the same
pointers as F .

Proof. We can see that the probability of all cells c in one of these sets using the
pointers from F is at least the probability that f maps all inputs in Know(c, T, fT)
for each c in the set to the color q, which is at least 1/(8m)(m+1) log log n.

Now for all sets i, let Xi be a random variable which is one if this event occurs,
and zero otherwise. Let X ′

i = 1−Xi. Let Yi be a random variable which is one with
probability 1/(8m)(m+1) log log n, and zero otherwise. Let Y ′

i = 1−Yi. Then for all sets
i and any real number a, Pr(X ′

i > a) ≤ Pr(Y ′
i > a). Since the X ′

i’s are independent,
they obviously satisfy the conditions of Theorem B.1, and thus

Pr(X ′
1 + · · ·+ X ′

B > a) ≤ Pr(Y ′
1 + · · ·+ Y ′

B > a).

The number of sets in which this event occurs can then be bounded from below
using the Chernoff bound for binomial random variables given in the appendix, as
follows.

Pr(X1 + · · ·+ XB < B/2(8m)(m+1) log log n)

≤ Pr(X ′
1 + · · ·+ X ′

B > B −B/2(8m)(m+1) log log n)

≤ Pr(Y ′
1 + · · ·+ Y ′

B > B −B/2(8m)(m+1) log log n)

≤ Pr(Y1 + · · ·+ YB < B/2(8m)(m+1) log log n)

≤ e−B/8(8m)(m+1) log logn

= exp

{
−
⌊

n

(m + 1)(log logn)2

⌋
1

8(8m)(m+1) log log n

}
.

For sufficiently large n, this implies a very high probability bound. Also for sufficiently
large n, B/2(8m)(m+1) log log n ≥ 1, and thus with very high probability, at least one
set of m + 1 objects will be mapped to the same processor.

By Claim 6.3, with very high probability the mapping provided by the algorithm
for the color q at this point will not be a valid solution to the ECLB problem. (Re-
member we required that at most m objects map to any one destination group.)

Since with very high probability the mapping will be invalid for any color we
choose, and since there are only 8m colors, with very high probability there will be no
valid solution to the ECLB problem. The lemma follows since T = Ω(log∗ n).

Corollary 6.4. For m = o(log∗ n), a deterministic algorithm which solves the
CLB problem on a priority CRCW PRAM requires Ω(log∗ n) expected time.

Proof. This follows from Claim 6.1 and Lemma 6.2.
Theorem 6.5. Solving the load-balancing problem on a randomized priority

CRCW PRAM requires Ω(log∗ n) expected time.
Proof. Assume there is an algorithm that solves load balancing in expected time t.

Then by Yao’s theorem, for any input distribution, there is a deterministic algorithm
which solves load balancing over that distribution in expected time t. Consider the

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1573

chromatic load-balancing problem (with m = log log∗ n) and choose one of the 8m
colors. (We choose log log∗ n because it increases with n and is o(log∗ n), as required
in Corollary 6.4.) Let D be the input distribution of the objects of that color, and let
A be the algorithm given by Yao’s theorem for distribution D. We can then solve the
chromatic load-balancing problem using the following procedure. First run A for the
objects of the chosen color. Without loss of generality, for some constant C assume
A assigns at most C(1 + h/n) objects to each processor, when h objects are given
as input. Also assume n is large enough so that 2C < m. If at most m objects are
assigned to each processor then one can easily assign each processor’s objects to a
destination group. If not, then run a Θ(logn) time algorithm to solve chromatic load
balancing (for example, using prefix operations).

We now analyze the expected time of this procedure. On average, there will be
4nm/8m objects of the chosen color, and with very high probability, there will be at
most n objects of that color. If there are at most n objects of that color, at most 2C of
them will be assigned to any one processor by A. Because of the very high probability
of this occurring, the Θ(logn) time algorithm (that is run when more than m objects
are assigned to any processor) will not asymptotically increase the expected time of
the procedure. Thus the chromatic load-balancing problem can be solved in the same
asymptotic expected time as A, and by Corollary 6.4, t = Ω(log∗ n).

7. Related lower bounds. In this section, we show further applications of the
lower-bound technique.

Theorem 7.1. Solving compaction on a randomized priority CRCW PRAM
requires Ω(log∗ n) expected time.

Proof. Assume there is an algorithm that solves compaction in expected time t.
Then by Yao’s theorem, for any input distribution, there is a deterministic algorithm
which solves compaction over that distribution in expected time t. Consider the
chromatic load-balancing problem (with m = log log∗ n) and choose one of the 8m
colors. Consider an item to be a group of objects of that color, and let D be the
input distribution of the items. Let A be the algorithm given by Yao’s theorem for
distribution D. We can then solve the chromatic load-balancing problem using the
following procedure. First run A with h = n/4m. Without loss of generality, for
some constant C assume A inserts the items into an array of size Ch, when h is the
parameter given in the definition of compaction and the input consists of at most h
items. Also assume n is large enough so that C < m. If A succeeds, then one can
easily assign each item to four destination groups (i.e., m objects to each destination
group), and this solves the chromatic load-balancing problem. If A does not succeed,
then run a Θ(logn) time algorithm to solve chromatic load balancing (for example,
using prefix operations).

We now analyze the expected time of this procedure. On average, there will be
n/8m items, and with very high probability, there will be at most n/4m items. If there
are at most n/4m items, then A will succeed. Because of the very high probability
of this occurring, the Θ(logn) time algorithm (that is run when A fails) will not
asymptotically increase the expected time of the procedure. Thus the chromatic
load-balancing problem can be solved in the same asymptotic expected time as A,
and by Corollary 6.4, t = Ω(log∗ n).

Theorem 7.2. Solving the padded-sort problem on a randomized priority CRCW
PRAM requires Ω(log∗ n) expected time.

Proof. (We actually prove that this lower bound holds for sorting into any array
of size linear in n, not just n + o(n).) We can reduce the chromatic load-balancing

1574 PHILIP D. MACKENZIE

problem (with m = log log∗ n) to the padded-sort problem with no asymptotic increase
in running time as follows. Assign the colors individual integers from 0 to 8m − 1.
For each group with color i, uniformly choose a random real number from the range
(i/8m, (i + 1)/8m]. Thus each group will be assigned a number from (0, 1] and these
will be uniformly distributed. Now assume we have a padded-sort algorithm which
will place these numbers in sorted order into an array A of size kn for some constant k.
Run this padded-sort algorithm. Next we find a color which is mapped to ≤ 3kn/8m
consecutive positions in constant time as follows.

Assign one processor to each group. Say a processor is of color i if it is assigned
to a group of color i. For each i ∈ {0, . . . , 8m − 1} perform the following steps.
Each processor of color i writes its group’s position in A to position i in a new array
P [0 . . 8m− 1]. (It can easily be detected if a color i has no representative processors,
and in that case, color i can be used as a trivial solution to the chromatic load-
balancing problem.) Then each processor of color i subtracts P [i − 1] from P [i + 1]
and checks if the result is ≤ 3kn/8m. Assuming all the colors are present, then one
color will find its result is ≤ 3kn/8m. (Otherwise, every set of three consecutively
numbered colors is mapped into > 3kn/8m consecutive positions, and thus |A| >
(3kn/8m)(8m/3) = kn.) Each processor of color i whose check succeeds writes i to a
variable V . We choose the color corresponding to the contents of V .

Assume this color is j. Since 3kn/8m ≤ n/4 for large enough n, we know that the
groups of color j are mapped into A[P [j − 1], P [j − 1] + n/4], so we can easily assign
four destination groups to each group of color j (i.e., m objects to each destination
group). This solves the chromatic load-balancing problem.

8. Random graphs. The input will consist of an adjacency matrix with a 1
entry if an edge exists, and a 0 entry otherwise. Thus Q = {0, 1}. For a random
graph Gn,p there will be will be

(
n
2

)
inputs, and the input distribution will be that

each input is 1 with probability p and 0 with probability 1− p.
Let T , the function REFINE, and the notion of t-good be defined as in the general

CRCW PRAM lower bound. Then Lemma 5.12 holds.
Theorem 8.1. For any constant 0 < p < 1, any problem which requires the con-

struction of an edge cover (with high probability) in a random graph Gn,p represented
as an adjacency matrix requires Ω(log∗ n) expected time on an n processor CRCW
PRAM.

Proof. Assume there is an algorithm that finds an edge cover in a random graph
Gn,p in expected time t. Then by Yao’s theorem, there is a deterministic algorithm
that finds an edge cover in a random graph Gn,p in the same expected time t. Thus
a lower bound for deterministic algorithms will provide the same lower bound for any
(randomized) algorithm.

Assume we have finished step T of a deterministic algorithm that finds an edge
cover in a random graph Gn,p. Assume the edge cover is given in an output array
EC[1..n] of size n such that EC[i] = j if (i, j) is the alleged edge covering vertex
i. (For the rest of the proof, we will also use the index i to denote the memory
cell corresponding to the array element EC[i].) By Lemma 5.12, kT ≤ log logn and
rT < n/8. Consider all the vertices which are only covered by edges which f maps to
“∗.” There will be at least 3n/4 of these. We will find a subset of the array indices
corresponding to these vertices for which the sets Know(i, T, fT) are disjoint. To do
this, we will use a greedy algorithm and obtain a set S of size

3n

4k2
T

≥ 3n

4(log logn)2
.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1575

Now consider for each index i ∈ S the value EC[i], if Know(i, T, fT) contains only
inputs set to 0 by the final input map f . Then the existence of edge (i, EC[i]) does
not affect EC[i] (assuming the algorithm doesn’t choose an edge that is known not
to exist).

The probability of this occurring for any index in S is ≥ (1 − p)log log n and is
independent of any other cells in S. Thus the average number of indices j in which
the existence of (j, EC[j]) does not affect EC[j] will be at least

3n

4(log logn)2
(1− p)log log n = Ω(

√
n).

Assuming n is large, and using a Chernoff bound, we can show that this occurs for
at least half of these indices with high probability. Thus Ω(

√
n) vertices will have a

1− p chance of not being covered. Since an edge can only possibly cover two vertices,
at most two vertices will point to the same alleged edge. Thus Ω(

√
n) vertices point

to different alleged edges. Then using another Chernoff bound, it is easy to show that
with high probability, many of these will point to nonexistent edges. Thus with high
probability the edge cover is invalid. Since T = Ω(log∗ n), the expected time of this
deterministic algorithm must be Ω(log∗ n).

Corollary 8.2. For any constant 0 < p < 1, in a random graph Gn,p repre-
sented as an adjacency matrix, constructing a Hamiltonian cycle, spanning tree, or
maximal matching requires Ω(log∗ n) expected time on an n processor CRCW PRAM.

Proof. With high probability a Hamiltonian cycle, a spanning tree, and a maximal
matching exist in Gn,p, and constructing any of these implies construction of an edge
cover. Thus by Theorem 8.1, the stated lower bound holds.

9. Conclusion. We have developed a technique which provides lower bounds
on randomized PRAM algorithms. Using this technique, we have been able to prove
tight lower bounds for many problems, including the fundamental problem of load
balancing, even on the most powerful CRCW PRAM model. In view of the increasing
amount of attention being paid to the area of fast randomized algorithms on the
PRAM, we believe this lower-bound technique is very important. We hope that this
general technique can be used to prove lower bounds on other problems for which
very fast randomized algorithms have been developed, including integer chain-sorting
[27] and parallel hashing [21].

Appendix A. Technical lemmas.
Lemma A.1. For z ≥ 4, log∗ n ≤ log∗z n + log∗ z.
Proof. First we claim that for z ≥ 4, 2 log z ≤ z. This is true as long as z−2 log z ≥

0. Let f(z) = z − 2 log z. Then f ′(z) = 1 − (2 log e)/z. We can check that f(4) = 0
and f ′(z) > 0, for z ≥ 4, which proves the claim.

Now we claim that log∗(z log(log∗z n−k)
z n) ≤ k + log∗ z, for 1 ≤ k ≤ log∗z n− 1 and

z ≥ 4. We show this by induction. For k = 1,

log∗(z log(log∗z n−1)
z n) ≤ log∗ z2 ≤ log∗ 2z = 1 + log∗ z.

For k > 1,

log∗(z log(log∗z n−k)
z n) = log∗ z1+log

(log∗z n−k+1)
z n

= log∗ 2log z(1+log
(log∗z n−k+1)
z n)

≤ log∗ 22 log z log
(log∗z n−k+1)
z n

1576 PHILIP D. MACKENZIE

= 1 + log∗
(

2 log z log(log∗z n−k+1)
z n

)

≤ 1 + log∗
(
z log(log∗z n−k+1)

z n
)

≤ 1 + k − 1 + log∗ z
= k + log∗ z,

where the first inequality uses the fact that log(log∗z n−k+1)
z n ≥ 1, the third uses the

fact that z ≥ 4 implies 2 log z ≤ z, and the fourth uses the induction property.
Now we prove the lemma. For n ≤ z, the lemma is obvious, since log∗ n ≤ log∗ z.

For n > z, using our previous claims we can see that

log∗ n = log∗ 2log n = log∗ 2log z logz n = 1 + log∗(log z logz n)

≤ 1 + log∗(z log(log∗z n−(log∗z n−1))
z n)

≤ 1 + log∗z n− 1 + log∗ z
= log∗z n + log∗ z.

Lemma A.2. For k, q ≥ 1, k + (400q2)k(k + kqk) ≤ (2400q3)k.
Proof. For k, q ≥ 1,

k + (400q2)k(k + kqk) ≤ k + (400q2)k(2kqk) ≤ k + 2k(800q3)k ≤ 3k(800q3)k.

Now we must show that that

(2400q3)k − (3k(800q3)k) ≥ 0,

or more simply that

800k(3k − 3k) ≥ 0.

Since 800k ≥ 0, we must show that 3k − 3k ≥ 0. Let f(k) = 3k − 3k. Then
f ′(k) = 3k ln 3 − 3. Since f(1) = 0 and f ′(k) > 0 for k ≥ 1, we know that f(k) ≥ 0
for k ≥ 1.

Appendix B. Probabilistic bounds. First we prove a theorem which allows
us to bound the sum of discrete dependent random variables by discrete independent
random variables. We note that a similar result for continuous random variables can
be proved analogously, using the more advanced probabilistic techniques involved in
conditional expectations of continuous random variables. For our purposes, however,
we will need to use only discrete random variables.

Theorem B.1. Take n discrete random variables X1, . . . , Xn, all with the same
range, which might be dependent, and n discrete random variables Y1, . . . , Yn, all with
the same range as the Xi’s, which are independent of each other and the Xi’s, such that
for any i ∈ {1, . . . , n}, for any real number a, and for any b1, . . . , bi−1 ∈ range(X1)
such that Pr(X1 = b1, . . . , Xi−1 = bi−1) ≥ 0,

Pr(Xi > a|X1 = b1, . . . , Xi−1 = bi−1) ≤ Pr(Yi > a).

Then for any real number a

Pr(X1 + · · ·+ Xn > a) ≤ Pr(Y1 + · · ·+ Yn > a).

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1577

Proof. Let Qb1,...,bn−1
be the event (X1 = b1, . . . , Xi−1 = bi−1, Yi+1 = bi, . . . , Yn =

bn−1). We can see that

Pr(X1 + · · ·+ Xi + Yi+1 + · · ·+ Yn > a)

=
∑

b1,...,bn−1∈range(X1)
Pr(Qb1,...,bn−1

)>0

Pr(Xi > a− b1 − · · · − bn−1|Qb1,...,bn−1) Pr(Qb1,...,bn−1)

≤
∑

b1,...,bn−1∈range(X1)
Pr(Qb1,...,bn−1

)>0

Pr(Yi > a− b1 − · · · − bn−1|Qb1,...,bn−1
) Pr(Qb1,...,bn−1

)

= Pr(X1 + · · ·+ Xi−1 + Yi + · · ·+ Yn > a),

in which the inequality holds because Xi is independent of all Yj ’s, and by the condi-
tion placed on Xi in the theorem.

Using this fact, we can see that

Pr(X1 + · · ·+ Xn > a) ≤ Pr(X1 + · · ·+ Xn−1 + Yn > a)

...

≤ Pr(X1 + Y2 + · · ·+ Yn > a)

≤ Pr(Y1 + · · ·+ Yn > a).

We use the Chernoff bound to bound the distribution of a random variable Z
which is the sum of n independent random variables. For a binomial random variable
Z ∼ B(n, p), where Z is the sum of n independent Bernoulli trials with probability
of success p, Angluin and Valiant [3] show that for 0 < β < 1, one can obtain the
bounds

Pr(Z ≥ (1 + β)np) ≤ e−β
2np/3,

and

Pr(Z ≤ (1− β)np) ≤ e−β
2np/2.

For a random variable Z, which is the sum of n independent random variables with
geometric distributions with parameter p, we obtain the bound (where q = 1− p and
β > 0)

Pr(Z ≥ (1 + β)nq/p) ≤
{

e−(qβ)2n/2eqβ if qβ < 1,
e−qβn/4 if qβ ≥ 1.

We prove this here. First we prove that for x ≥ 0,

1 + x

ex
≤ e−x

2/2ex .

This can be shown by using the facts that for all real y, 1 + y ≤ ey and

ey =
∑
i≥0

yi

i!
,

1578 PHILIP D. MACKENZIE

as follows.

1 + x

ex
=

∑
i≥0

xi

i! −
∑

i≥2
xi

i!

ex

= 1−
∑

i≥2
xi

i!

ex

≤ 1−
x2

2

ex

≤ e−x
2/2ex .

Next we prove that for x ≥ 1,

1 + x

ex
≤ e−x/4.

This follows from the fact that e3x/4−x−1 ≥ 0 for x ≥ 1, which can be derived from
the facts that e3/4 − 2 ≥ 0, and that the derivative of e3x/4 − x − 1 (3

4e
3x/4 − 1) is

positive for x ≥ 1.
Now let X1, . . . , Xn be independent random variables with geometric distributions

with parameter p, and let Z = X1 + · · · + Xn. Let β > 0 and t > 0. Then following
along the lines of Hagerup and Rüb [30],

Pr(Z ≥ (1 + β)nq/p) = e−t(1+β)nq/pet(1+β)nq/pP (etZ ≥ et(1+β)nq/p)

≤ e−t(1+β)nq/pE(etZ).

Then since X1, . . . , Xn are independent and identically distributed, we get

E(etZ) = E(et(X1+···+Xn)) = E(etX1 · · · etXn) =
n∏
i=1

E(etXi)

=
(
E(etX1)

)n
=

(
p

1− qet

)n
,

where the last equation holds for t < ln(1/q) [15, p. 269]. Putting t = ln((1 +β)/(1 +
qβ)) yields

Pr(Z ≥ (1 + β)nq/p) ≤
(

1 + qβ

1 + β

)(1+β)nq/p

(1 + qβ)n

=

(
1− pβ

1 + β

)(1+β)nq/p

(1 + qβ)n

≤ e−qβn(1 + qβ)n,

which can be bounded using the bounds on 1+x
ex derived above. Note that for 0 < q < 1

and β > 0, ln((1 + β)/(1 + qβ)) < ln(1/q).

Acknowledgments. Many thanks to Eric Hao, Doug Van Wieren, and the
anonymous referees for careful readings of earlier versions of this paper and many
helpful comments and suggestions. Also thanks to Leslie Goldberg for the improved
(and easier to understand) description of the random-adversary technique that ap-
pears in this version.

THE RANDOM ADVERSARY: A LOWER-BOUND TECHNIQUE 1579

REFERENCES

[1] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth computations, in Proc.
16th ACM Symp. on Theory of Computing, Washington, DC, Special Interest Group on
Algorithms and Computation Theory (SIGACT), 1984, pp. 471–474.

[2] R. J. Anderson and G. L. Miller, Optical Communication for Pointer Based Algorithms,
Tech. Report CRI 88-14, University of Southern California, Los Angeles, CA, 1988.

[3] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

[4] P. Beame and J. Håstad, Optimal bounds for decision problems on the CRCW PRAM, J.
Assoc. Comput. Mach., 36 (1989), pp. 643–670.

[5] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, Highly parallelizable
problems, in Proc. 21st ACM Symp. on Theory of Computing, Seattle, WA, SIGACT, 1989,
pp. 309–319.

[6] O. Berkman and U. Vishkin, Recursive *-tree parallel data-structure, SIAM J. Comput., 22
(1993), pp. 221–242.

[7] B. Bollobás, T. I. Fenner, and A. M. Frieze, An algorithm for finding Hamilton paths and
cycles in random graphs, Combinatorica, 7 (1987), pp. 327–341.

[8] R. B. Boppana, Optimal separations between concurrent-write parallel machines, in Proc. 21st
ACM Symp. on Theory of Computing, Seattle, WA, SIGACT, 1989, pp. 320–326.

[9] D. Breslauer and Z. Galil, A lower bound for parallel string matching, SIAM J. Comput.,
21 (1992), pp. 856–862.

[10] S. Chaudhuri, Sensitive functions and approximate problems, in Proc. 34th IEEE Symp. on
Found. of Comput. Sci., Palo Alto, CA, IEEE Computer Society Technical Committee on
Mathematical Foundations of Computing, 1993, pp. 186–193.

[11] S. Chaudhuri and J. Radhakrishnan, The complexity of parallel prefix problems on small
domains, in Proc. 33rd IEEE Symp. on Found. of Comput. Sci., Pittsburgh, PA, IEEE
Computer Society Technical Committee on Mathematical Foundations of Computing, 1992,
pp. 638–647.

[12] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New simulations between CRCW
PRAMs, in Proc. 7th Internat. Conf. on Fundamentals of Comput. Theory, Vol. 380,
Lecture Notes in Computer Science, 1989, Springer-Verlag, New York, pp. 95–104.

[13] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk, Exact lower time bounds for comput-
ing Boolean functions on CREW PRAMs, J. Comput. System Sci., 48 (1994), pp. 231–254.

[14] J. Edmonds, Lower bounds with smaller domain size on concurrent write parallel machines,
in Proc. Struc. in Complexity Theory, IEEE Computer Society Technical Committee on
Mathematical Foundations of Computing, 1991, pp. 322–331.

[15] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, John Wiley &
Sons, Inc., New York, 1950.

[16] F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson, One, two, three
. . . infinity: Lower bounds for parallel computation, in Proc. 17th ACM Symp. on Theory
of Computing, Providence, RI, SIGACT, 1985, pp. 48–58.

[17] A. M. Frieze, Parallel algorithms for finding Hamilton cycles in random graphs, Inform.
Process. Lett., 25 (1987), pp. 111–117.

[18] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[19] P. B. Gibbons, Y. Matias, and V. Ramachandran, The QRQW PRAM: Accounting for con-
tention in parallel algorithms, in 5th ACM-SIAM Symp. on Discrete Alg., Arlington, VA,
ACM SIGACT and SIAM Activity Group on Discrete Mathematics, SIAM, Philadelphia,
PA, 1994, pp. 638–648.

[20] J. Gil and Y. Matias, Fast hashing on a PRAM – designing by expectation, in 2nd ACM-
SIAM Symp. on Discrete Alg., San Francisco, CA, ACM SIGACT and SIAM Activity
Group on Discrete Mathematics, SIAM, Philadelphia, PA, 1991, pp. 271–280.

[21] J. Gil, Y. Matias, and U. Vishkin, Towards a theory of nearly constant time parallel algo-
rithms, in Proc. 32nd IEEE Symp. on Found. of Comput. Sci., San Juan, PR, IEEE Com-
puter Society Technical Committee on Mathematical Foundations of Computing, 1991,
pp. 698–710.

[22] J. Gil and L. Rudolph, Counting and packing in parallel, in Proc. 15th Internat. Conf. on
Parallel Process, IEEE Computer Society Press, Los Alamitos, CA, 1986, pp. 1000–1002.

[23] L. A. Goldberg, M. Jerrum, and P. D. MacKenzie, An Ω(
√

log logn) lower bound for rout-
ing in optical networks, in Proc. 6th ACM Symp. on Parallel Alg. and Arch., Cape May,
NJ, SIGACT, Special Interest Group on Computer Architecture (SIGARCH) in cooper-

1580 PHILIP D. MACKENZIE

ation with the European Association for Theoretical Computer Science (EATCS), 1994,
pp. 147–156.

[24] M. T. Goodrich, Using approximation algorithms to design parallel algorithms that may ignore
processor allocation, in Proc. 32nd IEEE Symp. on Found. of Comput. Sci., 1991, San
Juan, PR, IEEE Computer Society Technical Committee on Mathematical Foundations of
Computing, pp. 711–722.

[25] V. Grolmusz and P. Ragde, Incomparability in parallel computation, Discrete Appl. Math.,
29 (1990), pp. 63–78.

[26] Y. Gurevich and S. Shelah, Expected computation time for Hamiltonian path problem, SIAM
J. Comput., 16 (1987), pp. 486–502.

[27] T. Hagerup, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Report
MPI-I-91-106, Max-Planck-Institut für Informatik, Saarbrücken, 1991.

[28] T. Hagerup and M. Nowak, Parallel retrieval of scattered information, in Proc. 16th Internat.
Coll. on Automata, Languages, and Programming, Stresa, Italy, EATCS, 1989, pp. 439–
450.

[29] T. Hagerup and R. Raman, Waste makes haste: Tight bounds for loose parallel sorting,
in Proc. 33rd IEEE Symp. on Found. of Comput. Sci., Pittsburgh, PA, IEEE Computer
Society Technical Committee on Mathematical Foundations of Computing, 1992, pp. 628–
637.

[30] T. Hagerup and C. Rüb, A guided tour of Chernoff bounds, Inform. Process. Lett., 33 (1990),
pp. 305–308.

[31] J. Håstad, Almost optimal lower bounds for small depth circuits, in Proc. 18th ACM Symp.
on Theory of Computing, Berkeley, CA, SIGACT, 1986, pp. 6–20.

[32] J. Håstad, Computational Limitations for Small Depth Circuits, MIT Press, Cambridge, MA,
1987.

[33] R. Impagliazzo, R. Paturi, and M. E. Saks, Size-depth trade-offs for threshold circuits, in
Proc. 25th ACM Symp. on Theory of Computing, San Diego, CA, SIGACT, 1993, pp. 541–
550.

[34] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van
Leeuwen, ed., MIT Press/Elsevier, Cambridge, MA, 1990, pp. 869–941.

[35] P. D. MacKenzie, A lower bound for the QRQW PRAM, in Proc. 7th IEEE Symp. on Par-
allel and Distr. Proc., San Antonio, TX, IEEE Computer Society Technical Committee
on Computer Architecture and Technical Committee on Distributed Computing, 1995,
pp. 231–237.

[36] P. D. MacKenzie, Lower bounds for randomized exclusive-write PRAMs, in Proc. 7th ACM
Symp. on Parallel Alg. and Arch., Santa Barbara, CA, ACM SIGACT, ACM SIGARCH
in cooperation with EATCS, 1995, pp. 254–263.

[37] P. D. MacKenzie and Q. F. Stout, Ultra-fast expected time parallel algorithms, in 2nd ACM-
SIAM Symp. on Discrete Alg., San Francisco, CA, ACM SIGACT and SIAM Activity
Group on Discrete Mathematics, SIAM, Philadelphia, PA, 1991, pp. 414–423.

[38] P. D. MacKenzie and Q. F. Stout, Optimal parallel construction of Hamiltonian cycles and
spanning trees in random graphs, in 5th ACM Symp. on Parallel Alg. and Arch., Velen,
Germany, ACM SIGACT, ACM SIGARCH in cooperation with EATCS, 1993, pp. 224–229.

[39] Y. Matias and U. Vishkin, Converting high probability into nearly-constant time – with ap-
plications to parallel hashing, in Proc. 23rd ACM Symp. on Theory of Computing, New
Orleans, LA, SIGACT, 1991, pp. 307–316.

[40] A. Thomason, A simple linear expected time algorithm for the Hamilton cycle problem, Dis-
crete Math., 75 (1989), pp. 373–379.

[41] A. C.-C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proc.
18th IEEE Symp. on Found. of Comput. Sci., Berkeley, CA, IEEE Computer Society
Technical Committee on Mathematical Foundations of Computing, 1977, pp. 222–227.

RECONFIGURING ARRAYS WITH FAULTS PART I: WORST-CASE
FAULTS∗

RICHARD J. COLE† , BRUCE M. MAGGS‡ , AND RAMESH K. SITARAMAN§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1581–1611, December 1997 002

Abstract. In this paper we study the ability of array-based networks to tolerate worst-case
faults. We show that an N × N two-dimensional array can sustain N1−ε worst-case faults, for
any fixed ε > 0, and still emulate T steps of a fully functioning N × N array in O(T + N) steps,
i.e., with only constant slowdown. Previously, it was known only that an array could tolerate a
constant number of faults with constant slowdown. We also show that if faulty nodes are allowed to
communicate, but not compute, then an N -node one-dimensional array can tolerate logk N worst-
case faults, for any constant k > 0, and still emulate a fault-free array with constant slowdown, and
this bound is tight.

Key words. fault tolerance, array-based network, mesh network, network emulation

AMS subject classifications. 68M07, 68M10, 68M15, 68Q68

PII. S0097539793255011

1. Introduction. In a truly large parallel computer, some components are bound
to fail. Knowing this, a programmer can write software that explicitly copes with
faults in the computer. But building fault tolerance into every piece of software is
cumbersome. The programmer would prefer to program a fault-free virtual computer
and leave the job of coping with faults to the hardware. Ideally, the emulation of the
fault-free computer should entail little slowdown, even if there are many faults in the
actual hardware.

The emulation of the fault-free computer consists of two tasks. The faulty com-
puter must emulate the computations performed by the processors of the fault-free
computer, and it must emulate the communications between those processors. Emu-
lating the computations does not incur much slowdown. The computation performed
by each faulty processor is simply mapped to a fault-free processor. But once the
computations are moved around, processors that are neighbors in the fault-free com-
puter may no longer be neighbors in the faulty computer. Thus, there is a risk that
the communications will be slowed down. The solution to this problem depends on
the communication topology of the computer.

One of the most popular ways to construct a parallel computer is to arrange the
processors as a two-dimensional or three-dimensional array. Commercial machines
including the Cray T3D [10] and MasPar MP-1 [3] have this topology, as do exper-
imental machines such as iWarp [4] and the J-Machine [18]. In this paper we study
the ability of machines like these to tolerate faults. We show, for example, that an

∗ Received by the editors September 7, 1993; accepted for publication (in revised form) October
20, 1995. This research was conducted while the first author was visiting NEC Research Institute,
the second author was employed at NEC Research Institute, and the third author was a student at
Princeton University.

http://www.siam.org/journals/sicomp/26-6/25501.html
† Courant Institute, New York University, New York, NY 10012 (cole@cs.nyu.edu). This author’s

research was supported in part by NSF grants CCR-92-02900 and CCR-95-03309.
‡ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (bmm@cs.

cmu.edu). This author’s research was supported in part by an NSF National Young Investigator
Award, CCR-94-57766, with matching funds provided by NEC Research Institute, and by ARPA
contract F33615-93-1-1330.

§ Department of Computer Science, University of Massachusetts, Amherst, MA 01003 (ramesh@
cs.umass.edu). This author’s research was supported in part by NSF grant CCR-94-10077.

1581

1582 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

1

2

3

4

1 2 3 4

Column

Row

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Fig. 1. A 4× 4 mesh.

N ×N two-dimensional array can sustain N1−ε worst-case faults, for any fixed ε > 0,
and still emulate a fault-free N ×N array with constant slowdown.

1.1. Arrays and the fault model. A d-dimensional array with side length
N consists of Nd nodes, each labeled with a distinct d-tuple (r1, r2, . . . , rd), where
1 ≤ ri ≤ N for 1 ≤ i ≤ d. Two nodes are connected by a pair of oppositely directed
edges if their labels differ by 1 in precisely one coordinate. For example, in a four-
dimensional array with side length 8, nodes (3, 2, 4, 8) and (3, 2, 3, 8) are neighbors,
but (3, 2, 4, 8) and (3, 2, 3, 7) are not. A two-dimensional array is also called a mesh.
A 4 × 4 mesh is shown in Figure 1. For each i, the mesh nodes labeled (i, j), where
1 ≤ j ≤ N , are said to belong to the ith row. For each j, the mesh nodes labeled (i, j),
where 1 ≤ i ≤ N , are said to belong to the jth column. Sometimes two nodes are
considered to be neighbors if they differ in precisely one coordinate and their values
in that coordinate are 1 and N . In this case we say that the array has wraparound
edges. A two-dimensional array with wraparound edges is also called a torus. All of
the results in this paper hold whether or not the array has wraparound edges.

The nodes in an array represent processors and the edges represent communication
links. We assume that the array operates in a synchronous fashion. At each time step,
each node can receive a message from each of its neighbors, perform a simple local
computation, and then send a message to each of its neighbors.

In this paper we assume that only nodes fail, that these failures are static, and
that their locations are known. We also assume that the faults appear in a worst-case
pattern, i.e., that an adversary decides where to put the faults in the network. We
allow information about the locations of the faults to be used in reconfiguring the
network. We assume that a faulty node can neither compute nor communicate. All
of our results can be extended to handle edge failures by viewing an edge failure as
the failure of one of the nodes incident on the edge. In section 4, we use a weaker
fault model for one-dimensional arrays by allowing faulty nodes to communicate but
not compute. We observe that even in this weaker fault model linear arrays cannot
tolerate as many worst-case faults as two-dimensional arrays. In another paper, we

RECONFIGURING ARRAYS WITH FAULTS PART I 1583

consider random fault patterns. In the case of random faults, we assume that each
node fails independently with some fixed probability p.

1.2. Embeddings. The simplest way to show that a network with faults, H,
can emulate a fault-free network, G, is to find an embedding of G into H. We call
H the host network and G the guest network. An embedding maps nodes of G to
nonfaulty nodes of H, and edges of G to nonfaulty paths in H. The three important
measures of an embedding are its load, congestion, and dilation. The load of an
embedding is the maximum number of nodes of G that are mapped to any node of
H. The congestion of an embedding is the maximum number of paths that use any
edge of H. The dilation is the maximum length of any path. Given an embedding
of G into H, H can emulate each step of the computation of G by routing a packet
for each edge of G along the corresponding path in H. Leighton, Maggs, and Rao
[11] showed that if the embedding has load l, congestion c, and dilation d, then the
packets can be routed so that the slowdown of the emulation is O(l + c+ d).

In order for an embedding-based emulation scheme to have constant slowdown, the
load, congestion, and dilation of the embedding must all be constant. Unfortunately,
by placing f(N) faults in an N -node two- or three-dimensional array H, where f(N)
is any function that is ω(1), it is possible to force either the load, congestion, or
dilation of every embedding of an array G of the same size and dimension to be larger
than a constant [7, 8, 12]. Similarly, if Θ(N) faults are placed in H at random, then
with high probability every embedding of G in H will have ω(1) load, congestion, or
dilation. Thus, in order to tolerate more than a constant number of worst-case faults
or constant-probability failures, a more sophisticated emulation technique is required.

1.3. Redundant computation. All of the emulations in this paper use a tech-
nique called redundant computation. The basic idea is to allow H to emulate each
node of G in more than one place. This extra freedom makes it possible to tolerate
more faults, but it adds the complication of ensuring that different emulations of the
same node of G remain consistent over time. The technique of redundant computation
was previously used to tolerate faults in hypercubic networks [13], and to construct
work-preserving emulations in fault-free networks [6, 9, 15, 16, 17, 21].

1.4. Previous work. A large number of researchers have studied the ability of
arrays and other networks to tolerate faults. The most relevant papers are described
below.

Raghavan [20] devised a randomized algorithm for solving one-to-one routing
problems on N ×N meshes. He showed that even if each node fails with some fixed
probability p ≤ .29, then for almost all random fault patterns, any packet that can
reach its destination does so in O(N logN) steps, with high probability. Mathies [14]
improved the p ≤ .29 bound to p ≈ .4.

Kaklamanis et al. [8] improved Raghavan’s result by devising a deterministic
routing algorithm. For almost all random fault patterns, the algorithm guarantees
that any packet that can reach its destination does so within O(N) steps. This
algorithm can also tolerate worst-case faults. If there are k faults in the network, it
runs in time O(N + k2). Kaklamanis et al. also showed that an N × N mesh with
constant-probability failures or Θ(N) worst-case faults can sort or route N2 items,
or multiply two N × N matrices in O(N) time. They also showed that, with high
probability, an N × N mesh with constant-probability failures can emulate a fault-
free N

√
logN × N

√
logN mesh with O(logN) slowdown. (Throughout this paper

the base of the function log is 2.)

1584 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

Aumann and Ben-Or [2] used Rabin’s information dispersal technique [19] to show
that an N ×N mesh H with slack s, s = Ω(logN log logN), can emulate a fault-free
N × N mesh G with slack s with constant slowdown, even if every node or edge in
H fails with some fixed probability p > 0 at some point during the emulation. (In a
slack s computation, each node v in G emulates s virtual nodes. In each superstep, v
emulates one step of each virtual node, and each virtual node can transmit a message
to one of v’s four neighbors.) Aumann and Ben-Or assumed that in a single step, an
edge in H can transmit a message that is logN times as large as the largest message
that can be transmitted in a single step by G.

Bruck, Cypher, and Ho [5] showed that by adding some spare nodes and edges to
a mesh, it is possible for the mesh to sustain many faults and still contain a working
fault-free N×N mesh as a subgraph. In particular, they showed that by adding O(k3)
spare nodes, it is possible to tolerate k worst-case faults, and by adding k spare nodes,
for k = O(N2/3), it is possible to tolerate k random faults, with high probability. In
both cases, the networks have bounded degree. Tamaki [24] showed how to construct
an O(N)-node network with degree O(log logN) with the property that, for any d ≥ 2,
even if every node fails with constant probability, with high probability the network
contains a fault-free N -node d-dimensional array as a subgraph. He also showed how

to construct a bounded-degree network with the property that even if N (1−2−d)/d

worst-case faults are placed in the network, the network is guaranteed to contain an
N -node d-dimensional array as a subgraph. Ajtai et al. [1] analyzed the technique of
adding spare nodes to larger classes of networks that include meshes. In all of these
constructions the very large scale integration (VLSI) layout area requirements of the
networks with spare nodes and edges are much larger than those of the arrays that
they contain as subgraphs.

Leighton, Maggs, and Sitaraman [13] showed that an N -node butterfly can tol-
erate N1−ε worst-case faults, for any fixed ε > 0, and still emulate a fault-free N -
node butterfly with constant slowdown. They proved the same result for the shuffle-
exchange network. They also showed that, for any constant k > 0, an N -node mesh
of trees can tolerate logkN worst-case faults and still emulate a fault-free mesh of
trees with constant slowdown. Finally, they showed that, with high probability, an N -
node butterfly (or shuffle-exchange network) can tolerate constant-probability failures
with slowdown 2O(log∗N). Tamaki independently showed that, with high probability,
an N -node butterfly can be embedded in an N -node butterfly containing constant-
probability node failures with load O(1), congestion O((log logN)8.2), and dilation
O((log logN)2.6) [22]. In [23], he proved a similar result for a class of networks called
cube-connected arrays.

1.5. Our results. In section 2 we show that an N×N array can tolerate logkN
worst-case faults, for any constant k > 0, and still emulate T steps of a fault-free array
in O(T +N) steps, i.e., with constant slowdown. Previously it was only known that
a constant number of worst-case faults could be tolerated with constant slowdown.
Section 2 introduces most of the terminology that is used throughout this paper.

In section 3 we present a method called multiscale emulation for tolerating N1−ε

worst-case faults on an N × N mesh with constant slowdown, for any fixed ε > 0.
This result nearly matches the O(N) upper bound on the number of worst-case faults
that can be tolerated with constant slowdown.

In section 4 we show that if faulty nodes are allowed to communicate but not com-
pute, then an N -node one-dimensional array can tolerate logkN worst-case faults, for
any constant k > 0, and still emulate a fault-free N -node linear array only with

RECONFIGURING ARRAYS WITH FAULTS PART I 1585

K

K

CORE

SKIRT

Fig. 2. A finished box.

constant slowdown. We also show that an N -node linear array cannot tolerate more
than logkN worst-case faults without suffering more than constant slowdown, pro-
vided that the emulation is static. In a static emulation, each host node a emulates
a fixed set ψ(a) of guest nodes. Redundant computation is allowed; a guest node u
may belong to ψ(a) and ψ(b) for distinct host nodes a and b. In this case we say
that there are multiple instances of the guest node u. For each guest time step, host
node a emulates the computation performed by each node u in ψ(a). Furthermore,
for every guest edge e = (v, u) into u, for each instance u′ of u in the host, there is a
corresponding instance v′ of v at some host node such that for each guest time step
the same instance v′ sends a packet for the edge e to u′. (Note that v′ may also send
packets to other instances of u.) The emulations that use redundant computation in
this paper and in [6, 9, 13, 21] are all static.

2. A simple method for tolerating worst-case faults on the mesh. In
this section, we show that, for any constant k > 0, an N × N mesh with logkN
worst-case faults can emulate any computation of an N ×N fault-free mesh with only
constant slowdown. The procedure for reconfiguring the computation around faults
consists of two steps. The first is a process by which the faults are enclosed within
square regions of the mesh called boxes. We call this step the growth process. We
describe this process in section 2.1. The next is an emulation technique that maps the
computation of the fault-free mesh (the guest) to nodes in the faulty mesh (the host).
The boxes grown in the first step determine how the mapping of the computation is
done. This process is described in section 2.2. For simplicity, we assume that the
mesh has wraparound edges. This assumption can be easily done away with at the
cost of considering some special cases for faults near the border of the mesh.

2.1. The growth process. The growth process grows boxes on the faulty mesh,
i.e., the host. There are two types of boxes. The first type is called a core. A core
has too many faults in it to perform any role in the emulation. The second type is
a finished box . A finished box can emulate a submesh of the same side length with
constant slowdown. (The side length of a box or submesh is the number of nodes on
each side, i.e., a box or submesh with side length k has k2 nodes.) A finished box of
side length 3k consists of a core of side length k surrounded by a skirt , which contains
no faults, of width k as shown in Figure 2. (Like side length, width is measured in
nodes.)

At every stage of the growth process, the algorithm maintains a set of boxes, some
of which are cores while others are finished boxes. At the beginning of the growth

1586 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

process, every fault is enclosed in a box with unit side length that is a core. In every
stage of the growth process, we pick a core—say, of side length k—and grow a skirt of
width k around it. If the core or the skirt intersects some other core, we merge the two
cores to form a new core whose boundary is the smallest square that contains both
cores. If the core or the skirt intersects a finished box, we find the smallest square box
that contains both the core and the core of the finished box and turn this bounding
box into a core. We also remove the finished box from the list of finished boxes. If the
skirt does not intersect any other boxes, the newly created box is labeled a finished
box. We continue applying these rules until either some core grows to be too large
to grow a skirt around it or no core remains and no two finished boxes intersect. For
the former outcome, some core must have side length greater than N/3. (Recall that
the mesh has wraparound edges.) In Lemma 2.1 we show that this cannot happen if
there are fewer than (logN)/2 faults.

Our rules for growing cores assign each fault to a unique core. Initially, every
fault is assigned to the unit-sized core enclosing it. Inductively, when two or more
cores are merged to form a new core, every fault assigned to the old cores is now
assigned to the new core. A core is said to contain all the faults assigned to it. Note
that if two cores overlap, it is possible for a fault to be geometrically located inside
of a core and yet not be contained by that core.

Lemma 2.1. If the number of faults is less than (logN)/2, then the growth process
terminates with nonoverlapping finished boxes.

Proof. Let F (k) denote the minimum number of faults that a core of side length
k must contain. We show by induction that F (k) ≥ (log k)/2 + 1. As the base case,
F (1) = 1, which satisfies the hypothesis. Assume that we have a core of side length
k > 1. This core must have been created by merging two cores according to one of
the two merging rules stated previously. Let x and y denote the side lengths of these
two cores. In both cases, x+ y ≥ bk/2c+ 1. Using the inductive hypothesis, we have

F (k) ≥ F (x) + F (y)

≥ (log x)/2 + 1 + (log y)/2 + 1.

The values of x and y that minimize the right-hand side of this inequality are x =
bk/2c and y = 1. Substituting these values, we have

F (k) ≥ (log bk/2c)/2 + 2

≥ (log k)/2 + 1.(1)

This proves our inductive hypothesis.
Now suppose that there is a core of side length greater than N/3. Then it must

contain at least F (bN/3c+1) faults, which is more than (logN)/2, which is a contra-
diction. Therefore, the growth process must terminate with a set of nonintersecting
finished boxes.

2.2. The emulation. In this section, we show that if the growth process termi-
nates with a set of nonintersecting finished boxes, then the host H can emulate the
guest G with constant slowdown.

The emulation of G by H is described as a pebbling process. There are two kinds
of pebbles. With every node v of G and every time step t, we associate a state pebble
(s-pebble), 〈v, t〉, which contains the entire state of the computation performed at
node v at time t. With each directed edge e in G and every time step t, we associate

RECONFIGURING ARRAYS WITH FAULTS PART I 1587

a communication pebble (c-pebble), [e, t], which contains the message transmitted
along edge e at time step t.

The host H will emulate each step t of G by creating at least one s-pebble 〈v, t〉
for each node v of G and a c-pebble [e, t] for each edge e of G. A node of H can create
an s-pebble 〈v, t〉 only if it contains s-pebble 〈v, t−1〉 and all of the c-pebbles [e, t−1],
where e is an edge into v. The creation of an s-pebble takes unit time. A node of H
can create a c-pebble [g, t] for an edge g out of v only if it contains an s-pebble 〈v, t〉.
The creation of a c-pebble also takes unit time. Finally, a node of H can transmit a
c-pebble to a neighboring node in H in unit time. A node of H is not permitted to
transmit an s-pebble since an s-pebble may contain a lot of information. All of our
emulations are static, i.e., each node of H emulates a fixed set of nodes of G, and for
each guest edge e = (v, u) and each instance of u, there is a corresponding instance of
v such that for each guest time step, the host node creating s-pebbles for that instance
of v sends a c-pebble [e, t] to the host node creating s-pebbles for u. Initially, each
node of H contains an s-pebble 〈v, 0〉 for each node v of G that is mapped to it.

Using the growth process of the previous section, we grow a collection of nonin-
tersecting finished boxes on the faulty mesh H. If the faulty mesh H has fewer than
(logN)/2 faults, then the growth process will terminate with a set of nonintersecting
finished boxes. Every node of H that does not belong to any of the finished boxes
will emulate the computation of the corresponding node of G. Every finished box of
H will be responsible for emulating the corresponding submesh of G. However, since
some of the nodes inside the core of a finished box are faulty, we must make sure that
no computation is mapped to them. In fact, there will be no computation mapped
to any node inside a core. All the computations will be mapped to the skirt of the
finished box, which is completely fault free. Since we would like each finished box to
do its share of the emulation with constant slowdown, we need to avoid long commu-
nication delays caused by the fact that the core is unusable. As we shall see, we can
hide the latency involved in sending c-pebbles long distances across the mesh using
a technique called redundant computation. In an emulation that performs redundant
computation, some nodes of G are emulated by more than one node in H.

The computation of G corresponding to a finished box is mapped with replication
to the skirt of that finished box as follows (see Figure 3). Suppose that the core has
side length k and the finished box has side length 3k. We begin by dividing the
submesh of G corresponding to a finished box into two regions, the patch and the
outerskirt. The patch is a square region of side length 2k whose center is also the
center of the finished box. The outerskirt consists of the entire submesh of G with a
square of side length k removed from its center. As shown in Figure 3, the patch and
the host overlap in an annular region of width k. The patch and the outerskirt are
mapped to the finished box as follows. The outerskirt is the same size and shape as the
skirt of the finished box; every node in the outerskirt is mapped to its corresponding
node in the skirt. The patch, which is a square of side length 2k, is mapped to a
square of side length k/2 called the patch region shown in Figure 3; the patch region
is contained within the skirt of the finished box. This is done in the simplest manner
by mapping squares of side length 4 of the patch to one node of the square in the
finished box.

We now observe some properties of the mapping. A ring is a set of nodes that
form the four sides of a square. The nodes in the finished box to which the border of
the patch and the inner border of the outerskirt are mapped form rings in the finished
box. We call these rings the border rings, or b-rings for short. The nodes on the

1588 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

3k 2k k

outerskirt

patch

overlapping region
core

i-rings

patch region

b-rings

Fig. 3. Mapping the computation inside a finished box. A finished box in H is shown on the
right and the corresponding submesh in G is shown on the left.

border of the patch have duplicates in the interior of the outerskirt. Similarly, the
nodes on the inner border of the outerskirt have duplicates in the interior of the patch.
These duplicate nodes in the interior of the patch and the interior of the outerskirt
are also mapped to rings in the finished box. We call these rings the interior rings,
or i-rings for short.

In order for a node m in H to create an s-pebble for a node v in G, it must receive
c-pebbles for each of the edges into v in G. If v is in the interior of the patch or the
outerskirt, then the s-pebbles for the neighbors of v are created either by m or by the
neighbors of m. In this case the required c-pebbles can be obtained in constant time.
The s-pebbles for the neighbors of a node v on the border of the patch or outerskirt,
however, may not be created near m in H. In our emulation, every node v on the
border receives the c-pebbles for all of its incoming edges from its duplicate v′ that
is mapped to a node m′ on one of the i-rings in the finished box. These c-pebbles
are first created by the four neighbors of v′, then sent to m′ (in constant time), then
forwarded on to m along a path that we call a communication path. Thus, for each
node m′ on an i-ring, we will need to route a communication path to its duplicate
m on a b-ring. Note that these paths are determined off-line, before the start of the
emulation. The skirt, which is fault free, can be used as a crossbar to route the paths
with dilation O(k) and constant congestion. For the sake of brevity, the details are
omitted.

We now describe the actual emulation. Each node m of H executes the following
algorithm which proceeds as a sequence of macrosteps. Each macrostep consists of
the following three substeps.

(1) Computation step: For each node v of G that has been assigned to m, m
creates a new s-pebble 〈v, t〉, provided that m has already created 〈v, t − 1〉
and has received c-pebbles [e, t− 1] for every edge e into v.

(2) Communication step: For every node v such that s-pebble 〈v, t〉 was created
by m in the computation step of the current macrostep, and for every edge e
out of v, node m creates c-pebble [e, t]. If [e, t] is needed by a neighbor m′ of
m, then m sends [e, t] to m′.

(3) Routing step: If m lies on an i-ring, then m makes copies of any c-pebbles

RECONFIGURING ARRAYS WITH FAULTS PART I 1589

that were sent to m during the communication step of the current macrostep.
Then (whether or not m lies on an i-ring), for every c-pebble [e, t] at m
that has not yet reached its destination, m forwards it one step along its
communication path.

Lemma 2.2. A macrostep takes a constant number of time steps.

Proof. At each node of H, there are at most 17 s-pebbles to be updated in the
computation step and hence this step takes constant time. Each s-pebble update can
cause at most 4 c-pebbles (the outdegree of the node in G) to be sent. Thus the
communication step takes only constant time. If the s-pebble is on the i-ring, it must
send four additional c-pebbles to its duplicate on the b-ring. Since the paths used
for routing have constant congestion and since a c-pebble in transit to its destination
moves in every macrostep, there are at most a constant number of c-pebbles resident
in a node at any time step that have not yet reached their destinations. Therefore,
the routing step also takes constant time.

Theorem 2.3. Any computation on a fault-free mesh G that takes time T can be
emulated by the faulty mesh H with less than (logN)/2 worst-case faults in O(T +N)
time steps.

Proof. From Lemma 2.1, we know that since the number of worst-case faults in
H is less than (logN)/2, the growth process terminates with a set of nonintersecting
finished boxes. The computation of G is mapped inside each of these finished boxes
as described earlier in this section, and each node m of H performs the emulation
algorithm. We will show that only O(T + N) macrosteps are required to emulate a
T -step computation of G. The theorem will then follow from Lemma 2.2.

The dependency tree of an s-pebble represents the functional dependency of this
s-pebble on other s-pebbles and can be defined recursively as follows. As the base
case, if t = 0, the dependency tree of 〈v, t〉 is a single node, 〈v, 0〉. If t > 0, the
creation of s-pebble 〈v, t〉 requires an s-pebble 〈v, t−1〉 and all c-pebbles [e, t−1] such
that e is an incoming edge of node v in G. These c-pebbles are sent by some other
s-pebbles 〈u, t− 1〉, where u is a neighbor of v in G. The dependency tree of 〈v, t〉 is
defined recursively as follows. The root of the tree is 〈v, t〉. The subtrees of this tree
are the dependency trees of 〈v, t − 1〉 and 〈u, t − 1〉, for all s-pebbles 〈u, t − 1〉 that
send c-pebbles to 〈v, t〉.

We now look at the dependency tree of the s-pebble that was created last. Let
the emulation of T steps of G take T ′ time (in macrosteps) on H. Let 〈v, T 〉 be
an s-pebble that was updated in the last macrostep. For every tree node s, we can
associate a time (in macrosteps) τ(s) when that s-pebble was created. We choose a
critical path, sT , sT−1, . . . , s0, of tree nodes from the root to the leaves of the tree as
follows. Let sT = 〈v, T 〉 be the root of the tree. sT requires the s-pebble 〈v, T−1〉 and
c-pebbles [e, T −1]. Let φ be the function that maps an s-pebble, 〈v, t〉 to the node in
H that contains it. If the s-pebble 〈v, T − 1〉 was created after all the c-pebbles were
received then choose sT−1 to be 〈v, T − 1〉. Otherwise, choose the s-pebble that sent
the c-pebble that arrived last at node φ(〈v, T 〉) to be sT−1. After choosing sT−1, we
choose the rest of the sequence recursively in the subtree with sT−1 as the root. We
define a quantity li as follows. If φ(si) and φ(si−1) are the same node or neighbors in
H, then li = 1. Otherwise, li is the length of the path by which a c-pebble generated
by si−1 is sent to si. From the definition of our critical path, τ(si) − τ(si−1) equals
li. This is because a c-pebble moves once along its communication path in every

1590 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

macrostep. Therefore

T ′ =
∑

0<i≤T
(τ(si)− τ(si−1)) =

∑
0<i≤T

li.

Now suppose that some li is greater than 1. Then φ(si) must lie on the b-ring of
a finished box, and some c-pebble must have taken a communication path of length li
from a node m on an i-ring of the same finished box. In this case either φ(si−1) = m
or φ(si−1) is a neighbor of m. The key observation is that since φ(si−1) is either on
or next to an i-ring, in going down the critical path from si−1 to s0 we can encounter
no more communication paths until we reach an s-pebble embedded in the b-ring;
i.e., the values of li−1, li−2, . . . , lmax{i−q,1} are all equal to 1 for some q = Θ(li). As
li = O(N), for all i, T ′ =

∑
i li = O(T +N).

It is possible to apply the construction described in this section recursively to
show that, for any constant k > 0, an N × N mesh can sustain logkN worst-case
faults and still emulate a fault-free mesh with slowdown. Because a stronger result is
proven in section 3, the proof is omitted.

Theorem 2.4. For any constant k > 0, an N ×N mesh with logkN worst-case
faults can emulate T steps of the computation of a fault-free N×N mesh in O(T +N)
steps with constant slowdown.

The construction described in this section assumes that large buffers are available
at each node in the host to hold c-pebbles that reach their destinations early. Early
arrivals can be prevented by slowing down the computation of some nodes and by
finding communication paths with the property that all paths within a given finished
box have the same length.

3. Multiscale emulation. In this section, we show that an N × N mesh, H,
with any set of N1−ε faults, for any fixed ε > 0, can emulate any computation of a
fault-free N ×N mesh, G, with constant slowdown.

The major difference between the emulation scheme in this section and that in
section 2 is that in this section we allow a finished box to contain smaller finished
boxes. In emulating the region of the guest mesh assigned to it, a finished box will in
turn assign portions of this computation to each of the smaller boxes that it contains.
These smaller boxes might in turn contain even smaller boxes and hence the term
multiscale emulation.

For simplicity, we assume that the mesh has wraparound edges. This assumption
can be easily done away with at the cost of considering some special cases for faults
near the border of the mesh.

3.1. The growth process. In this section, we show how to grow boxes on the
faulty mesh H. There are two types of boxes: cores and finished boxes. A core is
not capable of performing any portion of the emulation. A finished box consists of a
core surrounded by a skirt. An (α-β)-ensemble is a collection of possibly intersecting
finished boxes. Every finished box B in an (α-β)-ensemble has a distinct round
number. The intersecting region of a finished box B in the ensemble is defined to be
the region formed by nodes that lie both in the skirt of B and in some other finished
box with a smaller round number than B. The boxes in an (α-β)-ensemble satisfy
the following properties.

(1) Every fault in the mesh H is contained in and assigned to the core of some
finished box in the ensemble.

(2) If the core of a finished box has side length k, then the width of the skirt of
the finished box is bαkc.

RECONFIGURING ARRAYS WITH FAULTS PART I 1591

(3) The sum of the side lengths of the finished boxes in the intersecting region of
every finished box B is at most β times the width of the skirt of B.

The growth process produces an (α-β)-ensemble of boxes, where 0 < α, β < 1. It
proceeds in rounds until there are no more cores left. Initially, every fault is enclosed
in a core with side length d1/αe. Each round produces either a new core or a new
finished box. Each new finished box is numbered with the round in which it was
created. At the beginning of each round, a core of the smallest side length (say, k) is
selected and a skirt of width bαkc is grown around it to form a box (call this box B).
If k+2bαkc > N , then the side length of B will have to be larger than the size of the
mesh itself and this is not possible. If this condition arises the growth process halts
and is said to have failed. If this condition does not arise then one of the following
steps is executed after which the growth process proceeds to the next round.

Expand Step. If the sum of the side lengths of the finished boxes in the intersecting
region of B is more than β times the width of the skirt of B (i.e., βbαkc), then we
find the smallest bounding box that contains the core of B as well as the cores of all
the finished boxes that intersect the skirt or core of B and turn this box into a new
core. The finished boxes whose cores were included in this new core cease to exist,
and their faults are assigned to the new core.

Create Step. Otherwise, if the sum of the side lengths of the finished boxes in the
intersecting region of B is at most βbαkc, then we declare box B to be a finished box.

Note that in the expand step the intersecting region of B is computed using the
collection of finished boxes that exist during that round.

Lemma 3.1. The growth process produces an (α-β)-ensemble of finished boxes,
provided that it does not fail.

Proof. We must show that all three of the properties of an (α-β)-ensemble are
satisfied when the growth process does not fail. The growth process must terminate
since at each round either the expand step increases the side length of a core without
changing the number of cores, or the create step decreases the total number of cores
by one. Property 1 is satisfied initially and since the expand step forms a new core
by enclosing a group of old cores, by induction this property will hold after every
round. Property 2 is satisfied by construction. Finally, when a finished box B is
created in the create step, the sum of the side lengths of the finished boxes in the
intersecting region of B is at most β times the width of the skirt of B. New finished
boxes created in later rounds do not affect this intersecting region since they all have
greater round numbers than B. Some of the finished boxes with round numbers less
than B may cease to exist due to the application of the expand step in some later
rounds. However, this can only decrease the sum of the side lengths of the finished
boxes in the intersecting region of B. Thus, Property 3 will be true for all of the
finished boxes when the growth process terminates.

Theorem 3.2. For any fixed constants β and ε, where 0 < β < 1 and 0 < ε < 1,
there is a constant α, where 0 < α < 1, such that for sufficiently large N , for any set
of N1−ε faults in H the growth process grows an (α-β)-ensemble of finished boxes.

Proof. We must show that for any fixed ε and β there is a constant α such that
the growth process never fails, i.e., no core of side length more than N/(2α + 1) is
ever created. Then, by using Lemma 3.1, we can infer the theorem.

The key idea is to prove a lower bound, F (k), on the number of faults that any
core of side length k must contain. Let δ = ε/2. We show by induction on k that
F (k) ≥ Ak1−δ, for some constant A. In order to satisfy the basis of the induction, we
will choose A to be small enough that F (k) ≥ Ak1−δ for small values of k. Inductively,

1592 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

suppose that a new core of side length k is formed in some round. Let x be the side
length of the core selected in this round and let y1, y2, . . . , ym be the side lengths of
the other cores that were enclosed to form the new core. Since the new core contains
these cores, we have k > x and k > yi, for 1 ≤ i ≤ m. Since the number of faults in
the new core is at least as large as the number of faults in the cores used to form it,
using the inductive hypothesis we have

F (k) ≥ F (x) + F (y1) + · · ·+ F (ym)

≥ Ax1−δ +Ay1−δ
1 + · · ·+Ay1−δ

m .(2)

Let y1 and y2 be the side lengths of the two largest cores. If a new core was formed,
then it must have been formed in the expand step. Thus, the side length k of the new
core is at most (y1 + y2)(1 +α) + x(1 + 2α). Thus, to prove the inductive hypothesis,
it suffices to show that

x1−δ +
m∑
i=1

y1−δ
i ≥ [(y1 + y2)(1 + α) + x(1 + 2α)]1−δ.(3)

Since the cores with side lengths yi belong to finished boxes created in earlier rounds,
yi ≤ x, for all i. Furthermore, since a new core was created,

∑m
i=1 (yi + 2bαyic) ≥

βbαxc, which implies that
∑m

i=1 yi ≥ βαx/6 for 0 < α < 1. Since β < 1, there

must be a largest index j ≥ 2 such that βαx/6 ≤ ∑j
i=1 yi ≤ 2x. Let y =

∑j
i=1 yi.

Then y ≥ y1 + y2. Also, because of the convexity of the function f(z) = z1−δ,
y1−δ ≤∑j

i=1 y
1−δ
i ≤∑m

i=1 y
1−δ
i . Thus, inequality (3) must hold if

[y(1 + α) + x(1 + 2α)]1−δ ≤ x1−δ + y1−δ(4)

holds for all y such that βαx/6 ≤ y ≤ 2x.
Proving that inequality (4) holds for sufficiently small α requires some elementary

(but painstaking) calculations. Let λ = y/x. In terms of λ, we need to show that for
sufficiently small α, the inequality

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ 0(5)

holds for all λ such that βα/6 ≤ λ ≤ 2. (As we shall see, α ≤ min{(β/24)1/δ, δ/16}
suffices.) There are three cases to consider.

First, suppose that λ ≤ α. In this case, we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ (1 + 4α)1−δ − 1− (βα/6)1−δ(6)

≤ 4α−
(

(β/6)1−δ

αδ

)
α(7)

≤
(

4− β

6αδ

)
α.(8)

Equation (6) is derived using the inequalities (1 + α) ≤ 2, λ ≤ α, and βα/6 ≤
λ. Equation (7) is derived from (6) using the inequality (1 + 4α)1−δ ≤ (1 + 4α).
Equation (8) is derived from (7) using the inequality β/6 ≤ (β/6)1−δ. For α ≤
(β/24)1/δ, the right-hand side of (8) is at most 0.

Second, suppose that α ≤ λ ≤ 1. In this case we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ [1 + λ+ 3α]1−δ − 1− λ1−δ(9)

≤ (1− δ)(λ+ 3α)− λ1−δ(10)

≤ 3α+ λ− δλ− λ1−δ.(11)

RECONFIGURING ARRAYS WITH FAULTS PART I 1593

Equation (9) is derived using the inequality λ ≤ 1. Equation (10) is derived from (9)
using the fact that (1 + a)b ≤ 1 + ab for any a ≥ 0 and 0 ≤ b ≤ 1. Equation (11) is
derived from (10) using the inequality 3αδ > 0. Now let h(λ) = 3α+ λ− δλ− λ1−δ.
Differentiating with respect to λ, we have h′(λ) = 1− δ − (1− δ)λ−δ. For 0 < λ < 1,
h′(λ) < 0, and for λ = 1, h′(λ) = 0. Thus for α ≤ λ ≤ 1, h(λ) takes on its maximum
value when λ = α. Returning to (9)–(11), we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ 4α− δα− α1−δ(12)

≤ (4− α−δ)α.(13)

Equation (13) is derived from (12) using the inequality δ > 0. The right-hand side of
(13) is at most 0, provided that α ≤ (β/24)1/δ, as in the first case.

Finally, suppose that 1 < λ ≤ 2. In this case, we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ(14)

≤ [(1 + λ) + 4α]1−δ − 1− λ1−δ

≤ (1 + λ)1−δ(1 + 4α)1−δ − 1− λ1−δ(15)

≤ λ1−δ
(

1 +
1− δ

λ

)
(1 + 4α(1− δ))− 1− λ1−δ(16)

=
1− δ

λδ
+ λ1−δ

(
1 +

1− δ

λ

)
(4α(1− δ))− 1(17)

≤ 16α− δ.(18)

Equation (14) is derived using the inequality λ ≤ 2. Equation (15) is derived from
(14) using the inequality 1/(1 + λ) ≤ 1. Equation (16) is derived from (15) using the
fact that (1+a)b ≤ 1+ab for any a ≥ 0 and 0 ≤ b ≤ 1 (in two places). Equation (18)
is derived from (17) using the inequalities 1/λδ < 1, λ1−δ < 2, (1 − δ)/λ < 1, and
1− δ < 1. For α ≤ δ/16 the right-hand side of (18) is at most 0.

The growth process fails only if a core of side length k is created where k+2dαke >
N . In this case k > (N −2)/(2α+1) > N/(2α+3), for N > 2α+3. Such a core must
contain at least F (k) ≥ Ak1−δ ≥ A(N/(2α+3))1−δ faults. Recall that δ = ε/2. Thus,
for sufficiently large N , A(N/(2α+ 3))1−δ > N1−ε. So, if there are fewer than N1−ε

faults in the mesh, then no such core is created, and the growth process produces an
(α-β)-ensemble of finished boxes.

3.2. Mapping the computation. In this section, we show how to map the
computation of the fault free N × N mesh G onto an N × N mesh H with N1−ε

faults. The mapping requires that an (α-β)-ensemble of finished boxes be grown in
H, for some constants α and β, where 0 < α < 1 and 0 < β < 1. As it turns out,
β can be chosen independently of α and ε. So we choose β first. Next, we choose α
such that for fixed β and ε and any set of N1−ε faults an (α-β)-ensemble of boxes can
be grown using the growth process outlined in section 3.1.

We will use the pebbling terminology introduced in section 2 to describe the
mapping. The mapping is produced by a mapping process that progresses iteratively
in rounds. Initially, an s-pebble for each node of G is mapped to the corresponding
node of H. Like a regular mesh computation, each s-pebble gets c-pebbles from the
s-pebbles mapped to the neighboring nodes in H. The mapping process selects a
finished box in the ensemble at the beginning of each round in the decreasing order
of their round numbers. In each round, the mapping process changes the mapping
inside the selected finished box so that no s-pebbles are mapped to the core of that

1594 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

finished box. This is done by removing s-pebbles from the core, duplicating some s-
pebbles, and setting up constant-congestion communication paths between duplicated
s-pebbles that avoid routing through any finished boxes with smaller round numbers.
The mapping process terminates when all finished boxes in the ensemble have been
selected.

A mapping of the computation of G to H is said to be valid if no s-pebble of G
is mapped to a faulty node in H and no communication path between two s-pebbles
passes through a faulty node in H. The initial mapping is not valid since it maps
s-pebbles to faulty nodes of H. After all the rounds are completed, no s-pebble will
be mapped to a faulty node and no communication will pass though a faulty node.
Thus, the final mapping will be valid.

The computation mapped onto a finished box B is said to be meshlike if each
node in B has exactly one s-pebble mapped to it and each s-pebble that is mapped to
a node m in B receives a c-pebble from each of the s-pebbles mapped to neighboring
nodes of m in B. Our mapping process will ensure that the following invariant will
hold true at the beginning of every round.

Invariant 3.3. Suppose that B is a finished box with round number l that is
selected at some round. At the beginning of the round, for every finished box B′

with round number k, k ≤ l, either no computation is mapped to B′, or a meshlike
computation is mapped to B′. Furthermore, no communication path passes through
any node in B′.

The invariant is true at the beginning of the first round since every finished box
has a meshlike computation mapped to it and there are no communication paths. At
the end of each round, this invariant will hold true inductively. Later in this section,
we will outline the steps involved in a specific round of the mapping process in which
the computation within the chosen finished box is remapped. We now show that the
invariant guarantees that upon termination the mapping process produces a mapping
that does not map computation or communication to faulty processors.

Theorem 3.4. The mapping process produces a valid mapping of the computation
of G into H.

Proof. We must show that every faulty node of H has neither an s-pebble mapped
to it nor a communication path passing through it in the final mapping produced by
the iterative mapping process. A node v of H is said to be active at a particular
round of the mapping process if it either has an s-pebble mapped to it or has a
communication path passing through it in the beginning of this round. A node is said
to be inactive if it is not active. In the first round, every node in H is active.

A key property of the iterative mapping process is that if in some round a node
v becomes inactive it remains inactive through the remaining rounds. For a contra-
diction, suppose that an inactive node v becomes active. Let B be the finished box
selected in the last round in which v was inactive. Since only nodes inside B are
affected by the remapping, v must be in B. From Invariant 3.3 and the fact that v
is inactive, it must be the case that no computation was mapped to B. This means
that no computation was remapped in this round, which is a contradiction.

We now show that no faulty node remains active at the end of the mapping
process. From Property 1 of an (α-β)-ensemble of finished boxes, every fault in H is
contained in some core of some finished box. Let v be a faulty node in H and let B be
the finished box whose core contains this fault. If v is already inactive in some round
before B is selected, it will remain inactive through the rest of the rounds. Otherwise,
if v is active in the round that B is selected, it follows from Invariant 3.3 that there

RECONFIGURING ARRAYS WITH FAULTS PART I 1595

must be an s-pebble mapped to v but no communication paths passing through v at
the beginning of this round. The remapping of computation inside B will remove the
computation from v and no new communication path will pass through v. Therefore,
v becomes inactive and remains that way through the rest of the mapping process.
Thus, no faulty node remains active at the end of the mapping process.

3.2.1. Remapping the computation within a finished box. In this section,
we show how to remap the computation within a finished box chosen in some round
of the iterative mapping process. Let B be a box with round number l and side length
(2α + 1)k that is selected at some round of the mapping process. (In the remainder
of this paper we ignore the issue of whether quantities such as 2αk are integral.) We
assume that Invariant 3.3 is true at the beginning of this round. Later we show that
this invariant is true at the end of the round after the remapping. If there is no
computation mapped to B at the beginning of the round, no remapping needs to be
done and the invariant holds at the end of the round.

The other possibility is that a meshlike computation is mapped to the nodes of B
at the beginning of this round. In this case, the computation is partitioned into two
overlapping pieces, the patch and the outerskirt. The precise sizes of the patch and
the outerskirt will be specified later. The set of nodes in the finished box to which
the border of the patch is mapped forms a ring in the finished box, as does the set
of nodes to which the inner border of the outerskirt is mapped. We call these rings
the border rings, or b-rings for short. Because the patch and the outerskirt overlap,
the nodes on the border of the patch have duplicates in the interior of the outerskirt
that perform the same computation. Similarly, the nodes in the inner border of the
outerskirt have duplicates in the interior of the patch. These duplicate nodes in the
interior of the outskirt and the interior of the patch are also mapped to rings in the
finished box. We call these rings the interior rings, or i-rings for short.

The region consisting of nodes in B not more than distance αk/5 from the outer
border of B is called the outer region. The outerskirt will be embedded in this region.
Similarly, a square box of side length 3αk/5 is called the patch region. As shown in
Figure 4, the patch region is located below and to the left of the core, and does not
intersect the outer region. The patch will be embedded in this region.

The first step in remapping the computation within B is to place a b-ring and
an i-ring in each of the two regions (see Figure 4). A free ring in the patch region
or outer region is defined to be a ring that does not pass through any finished boxes
B′ with smaller round numbers than B. The b- and i-rings satisfy the following ring
properties.

(1) The i-ring and the b-ring of the outer region must be free rings. Furthermore,
between the i-ring and the b-ring of the outer region there must be Θ(k) free
rings. The same condition must hold for the i-ring and the b-ring of the patch
region. Further, the i-ring of the patch region must have side length Θ(k).

(2) For any constant-load embedding of s-pebbles into a side of the i-ring of one
region and any constant-load embedding of the duplicates of these s-pebbles
into the corresponding side of the b-ring of the other region, there must be
paths of length Θ(k) from every s-pebble to its duplicate. These paths must
have constant congestion, must be completely contained in B, and must not
pass through any finished boxes B′ with smaller round numbers than B.

The procedure for finding rings with these properties is outlined in section 3.4.

Having determined the i-rings and the b-rings, the next step is to determine the
size and layout of the patch and the outerskirt. Recall that a meshlike computation

1596 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

Outer Region

Patch Region

I-Rings

Core

B-Rings

Fig. 4. Layout of finished box B in the host.

was mapped into box B at the beginning of this round. The size of the outerskirt
and patch will depend on the choice of the i- and b-rings. The computation mapped
between the b-ring of the outer region and the border of B at the beginning of this
round forms the outerskirt. The computation mapped within the i-ring of the outer
region at the beginning of this round forms the patch. Remapping the outerskirt and
the patch to nodes within B must be done with care so that Invariant 3.3 is true at
the end of this round.

The outerskirt is embedded in the region of B between the b-ring in the outer
region and the border of B. Since the size and shape of the outerskirt are the same
as the region in which it is embedded, we simply map each s-pebble in the outerskirt
to the corresponding node in that region of B.

The patch must be embedded into the square region enclosed by the b-ring in
the patch region. This is trickier since the patch is a constant factor larger in size
than the square region in which it is embedded. In particular, we must ensure that
each finished box B′ with a smaller round number than B that intersects this square
region receives a meshlike computation or receives no computation at all. A column
or row in this square region that intersects such a finished box B′ will be called a
bad column or a bad row . The remaining rows and columns are said to be good rows
and good columns respectively. Since the sum of the side lengths of such boxes B′

is at most βαk, if we choose β < 1/10, then a majority of the αk/5 columns and
rows will be good. Our embedding is described by two functions ρ and κ such that
a node in the ith row and the jth column of the patch is mapped to the ρ(i)th row
and the κ(j)th column of the square region. The function ρ is selected so that for all
i, ρ(i) ≤ ρ(i+ 1) ≤ ρ(i) + 1. Further, for any value of j there are at most a constant
number of values of i with ρ(i) = j and if the jth row is bad there is exactly one
value of i with ρ(i) = j. The function κ is chosen with similar properties for the
columns. That such functions ρ and κ exist follows from the fact that the patch is
at most a constant factor larger than the square region and that a majority of the
rows and columns of the square region are good. This completes the embedding of
the s-pebbles to nodes within B.

Finally, the constant-congestion paths between the s-pebbles in the i-ring and

RECONFIGURING ARRAYS WITH FAULTS PART I 1597

their duplicates in the b-ring are set up. These paths must not pass through any
finished boxes with round numbers smaller than that of B. These paths can be set
up since the i-ring and b-ring satisfy the second ring property. Using these paths,
each s-pebble on the b-ring receives c-pebbles from its duplicate on the i-ring. The
procedure for finding these paths is given in section 3.4.

Now we show inductively that Invariant 3.3 holds at the end of the round in which
B was selected.

Theorem 3.5. Invariant 3.3 is true after the computation within B has been
remapped.

Proof. We must show that each finished box B′ with a smaller round number
than B has a meshlike computation mapped to it or no computation mapped to it
at all. All such boxes B′ that do not intersect B are not affected by the remapping
at all. From ring property 1, we know that no box B′ with a smaller round number
than B can intersect the b-ring in the outer region. Therefore, any intersecting box
B′ not entirely contained in B must intersect the region only where the outerskirt is
embedded. Since the embedding of this region does not change in the course of the
remapping, all such boxes B′ still have a meshlike computation mapped to them.

We will now look at boxes B′ contained entirely within B. Since the b-rings and
i-rings do not pass through B′, either B′ is contained entirely in the region where
the outerskirt is embedded or entirely in the region between the b-ring of the outer
region and the core of the box or entirely inside the square region where the patch
is embedded. In the first case, the embedding inside B′ does not change by the
remapping and it continues to have a meshlike computation mapped to it. In the
second case, no computation is mapped to B′ and no communication path passes
through the nodes in it. In the third case, observe that every row or column of B′ is
in a bad row or bad column of the square region. Thus ρ and κ map exactly one row
and one column respectively of the patch to these rows and columns. Thus a meshlike
computation is mapped to B′. Finally, none of the newly formed communication
paths pass through any of the finished boxes B′.

3.3. The emulation. In this section, we show that if the growth process termi-
nates with a set of nonintersecting finished boxes, then the host H can emulate the
guest G with constant slowdown.

In order for a node in H to create an s-pebble for a node v of G, it must receive
c-pebbles for each of the edges into v in G. If this s-pebble is in the interior of a patch
or an outerskirt, the s-pebbles for the neighbors of v are created either by the same
node in H or by the neighbors of that node in H. Thus, the required c-pebbles can
be obtained in constant time. However, the s-pebbles for the neighbors of an s-pebble
on the border of the patch or on the inner border of the outerskirt may not be created
nearby in H. But, since the patch and the outerskirt overlap, for every s-pebble on
the border of the patch or the inner border of the outerskirt there is a duplicate in the
interior of the outerskirt or the patch, respectively. In our emulation, every s-pebble
on the border will receive the c-pebbles for all of its incoming edges from its duplicate
that is mapped to one of the i-rings in the finished box.

The emulation consists of a series of macrosteps as in section 2.2.
Lemma 3.6. Each macrostep takes only a constant number of time steps to

execute.
Proof. We will prove that the maximum number of s-pebbles mapped to any

node of H and the maximum number of communication paths passing through any
node of H is a constant when the mapping process terminates. We prove this by

1598 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

induction on the rounds of the mapping process. At the beginning of the first round
of the mapping process there is exactly one s-pebble mapped to every node of H
and no communication paths pass through any node, so the hypothesis is true at the
beginning of the first round. Suppose that the hypothesis is true at the beginning
of some round. Let the finished box selected at this round be B. There are two
possibilities. If there is no computation mapped to B and no communication passing
through it, no remapping is done and the hypothesis remains true at the beginning
of the next round. Otherwise, from Invariant 3.3, there is a meshlike computation
mapped to B and no communication path passes through any of its nodes. Remapping
the computation within each finished box B causes at most a constant number of s-
pebbles to be mapped to any node within it. Furthermore, the maximum number
of paths created in this round that pass through a node in B is a constant. Since
no communication path created before this round uses a node in B, the inductive
hypothesis is true at the beginning of the next round.

Since there are only a constant number of s-pebbles mapped to any node of H,
the computation step takes only constant time. Since each s-pebble can produce at
most four c-pebbles in the communication step, there are at most a constant number
of c-pebbles created at each step by each node. Thus, the communication step takes
only constant time. Since there are only a constant number of paths passing through
every node and since every c-pebble moves in every macrostep and only a constant
number of c-pebbles enter a particular path at any macrostep, there can be only a
constant number of c-pebbles on a particular path resident at a particular node at
a particular time. Thus the routing step also takes only a constant number of time
steps.

Theorem 3.7. For sufficiently large N , any computation on an N ×N fault-free
mesh G that takes time T can be emulated by an N × N faulty mesh H with N1−ε

worst-case faults (for any constant ε > 0) in time O(T +N).

Proof. We show that only O(T + N) macrosteps are required to emulate any
T -step computation of G. The final result then follows from Lemma 3.6.

Let B1, B2, . . . , Bm be the finished boxes in the descending order of their round
numbers and let their side lengths be k1, k2, . . . , km. The iterative mapping process
produces a series of mappings, φ0, φ1, . . . , φm, where φi is the mapping of s-pebbles
to H at the end of the ith round. The mapping φi is obtained from the mapping φi−1

by remapping the computation within box Bi. The final mapping generated by the
mapping process is φm. Note that because the guest network can be redundant, it is
possible for two distinct s-pebbles s and s′ to have the same label 〈v, t〉; i.e., v is the
node of G whose state after t steps of computation is represented by both s-pebbles
s and s′. Furthermore, it is possible for different mappings φi and φj , i 6= j, to map
different numbers of s-pebbles to H. For example, for each node v in G and each time
step t, φ0 maps only one s-pebble to H. For i > 0, however, unless there are no faults
in H, φi maps at least two s-pebbles s and s′ with the same label to different nodes
in H.

The dependency tree and critical path for the final mapping φm are defined as
in section 2.2. In general, a sequence of s-pebbles si,T , si,T−1, . . . , si,0 is called a T -
sequence with respect to a mapping φi if, for 0 ≤ j < T−1, ti,j+1 = ti,j+1, and either
vi,j and vi,j+1 are the same node of G and φi(si,j) = φi(si,j+1), or vi,j and vi,j+1 are
neighbors in G and under φi, si,j sends a c-pebble to si,j+1. For a given mapping φi
and a T -sequence si,T , si,T−1, . . . , si,0, li,j is 1 if nodes φi(si,j) and φi(si,j−1) are the
same node or neighbors in H. Otherwise, li,j is the length of the communication path

RECONFIGURING ARRAYS WITH FAULTS PART I 1599

by which a c-pebble generated by si,j−1 is sent to si,j . With each mapping φi we
associate one T -sequence. The T -sequence for φm is the critical path. For i < m, the
T -sequence for φi is derived from the T -sequence for φi+1. Let 〈vi+1,j , ti+1,j〉 be the
label of si+1,j . If φi+1 does not map si+1,j to the border of the patch or the outerskirt
of box Bi+1, then both φi+1 and φi map a single pebble labeled 〈vi+1,j , ti+1,j〉 to H.
In this case, si,j is the pebble with label 〈vi+1,j , ti+1,j〉 that φi maps to H. Otherwise,
φi+1 maps two duplicate s-pebbles, both labeled 〈vi+1,j , ti+1,j〉, to box Bi+1, but φi
maps only one pebble with that label to Bi+1. In this case, si,j is the one s-pebble
with label 〈vi+1,j , ti+1,j〉 that φi maps to Bi+1.

We now show that for any T -sequence sm,T , sm,T−1, . . . , sm,0 with respect to φm,∑
0<j≤T lm,j is O(T +N). For each mapping φi, we define a series of weights ci, di,

and wi,j , where 0 ≤ i ≤ m and 0 < j ≤ T . The weights are chosen such that for any
value i the following two properties are satisfied:

(1)
∑

j li,j ≤
∑

j wi,j +
∑

r≤i(cr + dr),
(2) For all j, wi,j is less than some fixed constant.

We will find an upper bound on
∑

j lm,j , and hence on T ′, by finding upper bounds
on the wm,j (they will be constant) and on

∑
r≤m(cr + dr) (which will be O(N)).

Initially, we define c0 = d0 = 0 and w0,j = l0,j for all values of j. Since φ0 simply
maps the s-pebbles of G to the corresponding nodes of H, every l0,j and hence every
w0,j is 1. Thus

∑
j l0,j =

∑
j w0,j + c0 + d0. Furthermore, for all values of j, w0,j can

be bounded from above by a fixed constant.

We choose ci, di, and wi,j , 0 < j ≤ T as follows. Inductively assume that we
have determined the weights cr, dr, 0 ≤ r ≤ i − 1, and wi−1,j , 0 < j ≤ T , such that
the two properties listed above are satisfied. Suppose that φi−1 maps no computation
onto box Bi. Then no remapping is necessary and so li,j = li−1,j for all values of
j. In this case we set wi,j = wi−1,j for all j and set ci = di = 0. Otherwise, from
Invariant 3.3, φi−1 maps a meshlike computation onto box Bi. The mapping φi differs
from φi−1 in that s-pebbles inside box Bi are remapped. Since s-pebbles outside Bi

are not affected, li,j = li−1,j for all j such that φi−1(si−1,j) is not in Bi. We define
wi,j = wi−1,j for all such values of j. (Note that if φi−1 maps an s-pebble si−1,j

outside Bi but adjacent to its border and maps si−1,j−1 to the border of Bi, then
li,j = li−1,j . This is because the remapping inside Bi will not the change the location
of the pebble with the same label as si−1,j−1.)

We now look at s-pebbles mapped inside Bi by φi−1. The new mapping φi
introduces communication paths for s-pebbles si,j such that φi−1(si−1,j) lies on a
b-ring of Bi. For all such s-pebbles si,j , li,j equals the length of the communica-
tion path in Bi which is Θ(ki), where ki is the side length of Bi. For all other
s-pebbles si,j , li,j = li−1,j . We determine the weights wi,j for each s-pebble si,j such
that φi−1(si−1,j) is in Bi as follows. We will consider every maximal subsequence,
si−1,h+p, si−1,h+p−1, . . . , si−1,h, of the T -sequence such that φi−1(si−1,h+q) is in Bi

for 0 ≤ q ≤ p. Let I be a set of integers q such that li,h+q > 1. There are three cases
depending on the value of |I|.

If |I| = 0, there are no communication paths and for every q such that 0 ≤ q ≤ p,
li,h+q = li−1,h+q = 1. Therefore, we will define wi,h+q = wi−1,h+q for every 0 ≤ q ≤ p
and set ci = di = 0.

If |I| 6= 0, let L =
∑

q∈I(li,h+q − li−1,h+q), which equals the net increase in the
values of li,h+q in the subsequence.

If |I| = 1, there is exactly one communication path. Note that this can happen
only if either φi−1(si−1,0) or φi−1(si−1,T) is in box Bi. This is so because a maximal

1600 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

subsequence of s-pebbles mapped to Bi that contains neither si−1,0 nor si−1,T must
necessarily begin and terminate with s-pebbles mapped to the border of Bi. Therefore
such a subsequence must necessarily use communication paths an even number of
times. If φi−1(si−1,0) is in Bi, make ci = L, where L = Θ(ki) (since there is only
one path). Otherwise set ci = 0. Similarly, if φi−1(si−1,T) is in Bi, make di = L.
Otherwise set di = 0. For every 0 ≤ q ≤ p, set wi,h+q = wi−1,h+q.

If |I| > 1, let J be the set of integers q such that φi(si−1,h+q) is in some free
ring either in the patch region or in the outer region. Recall that nodes in the free
rings are not contained in any finished box Bl, l > i. The value of L is |I|Θ(ki)
since each communication path in Bi is Θ(ki) in length. This increase must be
distributed evenly among the weights of the s-pebbles si,h+q, q ∈ J . Thus for all
q ∈ J , wi,h+q = wi−1,h+q + L/|J |. For any two s-pebbles si−1,h+q1 and si−1,h+q2

such that q1 < q2 and q1, q2 ∈ I, the subsequence si−1,h+q1 , . . . , si−1,h+q2 contains at
least Θ(ki) s-pebbles si−1,h+q′ , such that q′ ∈ J . This is so because the i-ring and
the b-ring of the patch region or the outer region were chosen such that there are
Θ(ki) free rings between them. This implies that |J | = Θ(ki|I|) and thus L/|J | is
a constant. For all other q 6∈ |J |, li,h+q = li−1,h+q and wi,h+q = wi−1,h+q. We also
set ci = di = 0. After all such subsequences have been dealt with we go to the next
iteration.

The weight assignments in all three cases maintain the condition that
∑

j li,j ≤∑
j wi,j +

∑
r≤i(cr +dr). Further, for all i and j, wi,j is at most a constant. This is so

because if the weight of some si−1,j increases at the ith iteration, i.e., wi,j > wi−1,j ,
then it will never increase again since φi−1(si−1,j) is in a free ring of the finished
box selected in the ith iteration and hence is not contained in any of the finished
boxes with smaller round numbers that will be considered in future rounds. Thus its
weight will never change after this iteration. Further, as we saw earlier, the increment
wi,j − wi−1,j is also a constant.

We bound
∑

j lm,j by bounding
∑

j wm,j and
∑

i≤m(ci + di). The fact that wm,j

is a constant for all j implies that
∑

j wm,j is O(T). We bound the summation∑
i(ci+di) as follows. The value of ci or di is either zero or Θ(ki). Thus

∑
i ci can be

no more than the sum of the side lengths of all the boxes in the (α-β)-ensemble, i.e.,∑
i ki. We show that this quantity is O(N). By the proof of Theorem 3.2 we know

that the core of each Bi has at least Ak
1−ε/2
i > Ak1−ε

i faults, where A is a constant.
Since each fault is contained in a unique core and there are at most N1−ε faults in
the mesh,

∑
i

Ak1−ε
i ≤ N1−ε.

The maximum value of
∑

i ki that satisfies the above constraint occurs when all but
one of the values of ki equal zero, i.e., when one value of ki is Θ(N) and the rest
are zero. Thus

∑
i ki and hence

∑
i ci is O(N). Similarly,

∑
i di can be shown to be

O(N). Therefore,

∑
j

lm,j ≤
∑
j

wm,j +
∑
i≤m

(ci + di) = O(T +N).

3.4. Finding the i- and b-rings. In this section, we show how to find i- and
b-rings in a finished box B in H with side length (2α + 1)k satisfying the two ring
properties listed in section 3.2.1.

RECONFIGURING ARRAYS WITH FAULTS PART I 1601

An Outer Trapezoid

A Fitting

Core

A Patch Trapezoid

Patch Region

Outer Region

Fig. 5. Finding i- and b-rings in H.

Recall that the patch region is a square region in B of side length 3αk/5 and the
outer region is an annular region of width αk/5. In the center of the patch region, we
place a square of size αk/5 (see Figure 5). The i-ring of the patch is required to enclose
this square. This guarantees that the i-ring of the patch has size Θ(k). A trapezoid is
a four-sided figure consisting of two parallel sides and two nonparallel sides. We define
the ith column of a trapezoid to be the set of nodes in the trapezoid at a distance i
from the longer parallel side of the trapezoid. By joining the corners of the square in
the patch region to the respective corners of the patch region, we partition the patch
region, excluding the area enclosed by the square, into four trapezoidal regions (one
of these regions is shown in Figure 5). Similarly, the outer region is also partitioned
into four trapezoidal regions by joining each corner of the box B to the corresponding
corner of the square forming the inner boundary of the outer region. Each ring in the
outer or patch region consists of four sides, and each side is a column of one of the
trapezoids.

We will define four distinct zones, each of which is made up of three parts. (A
zone is marked with dotted lines in Figure 5.) The first part of a zone consists of
one of the four trapezoids in the outer region (called the outer trapezoid) and the
last part consists of the corresponding trapezoid in the patch region (called the patch
trapezoid). The middle part is called the fitting and joins the outer trapezoid to
the patch trapezoid (see Figure 5). The fitting is either a trapezoidal region or a
rectangular region adjoining a trapezoidal region. (The patch region is positioned
below and to the left of the core so that this is true.) Each of the four sides of a
ring in the patch region or the outer region is a trapezoidal column in one of the four
zones. Choosing b- and i-rings is equivalent to finding two trapezoidal columns in the
patch trapezoid and two trapezoidal columns in the outer trapezoid of each of the
four zones. Further, the four trapezoidal columns, one in each zone, that correspond
to a particular ring must be chosen so as to have the same column number.

Since it is easier to work with rectangular grids than trapezoids, we will embed
each of the four zones into a single rectangular grid R with αk/5 rows and 3αk/5
columns. Note that R is not part of the guest or the host. It is a tool of the
construction only. The grid formed by the first αk/5 columns of R is called the outer
grid , the next αk/5 columns the fitting grid , and the last αk/5 columns the patch grid .

1602 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

The outer trapezoid, the fitting, and the patch trapezoid of each zone are embedded
into the outer grid, fitting grid, and patch grid, respectively.

Since the outer trapezoid and the patch trapezoid each have αk/5 columns, em-
bedding them into their respective grids can be done by embedding the nodes in the
ith trapezoidal column of the outer or the patch trapezoid to nodes in the ith column
of the respective grid. Any constant-load and constant-dilation embedding will do for
our purposes. We describe such an embedding below. The nodes in each trapezoidal
column are grouped into αk/5 groups such that each group contains some constant
number of consecutive nodes of the column. Further, the cardinality of any two groups
in a column differ by at most one and for all i < j the cardinality of the ith group is
at most the cardinality of the jth group of the same column. For every trapezoidal
column, the ith such group is mapped to the ith node of the corresponding column
of the grid. The dilation of this embedding is at most two and the load is constant.

Note that the four sides that form a ring either in the outer region or in the
patch region are embedded into the same column in the outer grid or the patch grid,
respectively. Therefore, a column in the outer or patch grid corresponds to the ring
in the outer or patch region that gets mapped to it.

We can use the above technique to embed the fitting as well. The only difference
is that since the fitting may have more than αk/5 columns, we may have to embed a
constant number of columns of the fitting in each column of the fitting grid.

We define regions in R called obstacles as follows. The region of R to which a
finished box B′ (or a portion of it) with a smaller round number than B is embedded
is defined to be an obstacle. Note that the total perimeter of the obstacles in R is at
most some constant times the total perimeter of the intersecting region of B.

A free column of R is defined to be one that does not pass through any obstacles.
From the correspondences between columns in R and rings in the finished box B, in
order to find i- and b-rings in B with the required ring properties, it is sufficient to
choose i- and b-columns in R with the following column properties.

(1) The i-column and the b-column of the outer grid must be free columns. Fur-
ther, between the i-column and the b-column of the outer grid there must be
Θ(k) free columns. A similar condition must hold for the i-column and the
b-column of the patch grid.

(2) The nodes of the i-column in one grid can be connected to the b-column of
the other grid in any permutation using constant-congestion paths of length
Θ(k) that do not pass through any of the obstacles.

Note that from the definition of the obstacles, if path p in R avoids all obstacles, then
the paths in the four zones that are mapped to p also avoid all the finished boxes with
smaller round numbers than B.

For technical reasons, we would like the placement of the obstacles in the outer
grid, the patch grid, and the entire rectangular grid R itself to be symmetric about
the columns in the centers of these respective grids, i.e., the obstacles in the first half
of the columns of the grid are a mirror image of the obstacles in the second half of
the columns of each of these three grids. To satisfy this condition we first copy every
obstacle in one half of the outer grid to the other half by reflecting this obstacle about
its center column. We do the same for the patch grid and then finally for the entire
rectangular grid R. This copying can increase the perimeter of the obstacles by at
most a constant factor.

We define a square box in R to be flowless as follows.

Definition 3.8. A square box F of side length q is said to be flowless if and

RECONFIGURING ARRAYS WITH FAULTS PART I 1603

only if either more than q/4 rows or more than q/4 columns pass through obstacles.

A column of R that does not intersect any of the flowless boxes is called a live
column. Note that a live column is also a free column, since a box of size 1 that is
not flowless can contain no obstacles.

Theorem 3.9. For a small enough value of β, a majority of the columns in the
outer grid, fitting grid, and patch grid are live columns.

Proof. Let f denote the number of columns in R that are not live. We can bound
f in terms of the total perimeter of the obstacles in the grid by the following counting
argument. Initially, let each nonlive column have one unit of credit associated with
it. The total amount of credit in the system is f . For each nonlive column h let the
largest flowless box that intersects h be box H. This nonlive column distributes its
unit of credit evenly to nodes on the perimeters of the obstacles contained entirely in
H. After every nonlive column has redistributed its unit of credit, the total number
of credits in the nodes on the perimeters of the obstacles is still f .

Now we will determine the maximum credit received by any node s on the perime-
ter of an obstacle. Node s may receive credits from many different nonlive columns.
First we look at nonlive columns with smaller column numbers than the column of s.
Let the farthest such column from s that contributes to s be at a distance q from s.
The flowless box F that intersects this nonlive column and contains s must have side
length at least q. The total perimeter of the obstacles of a flowless box of size at least
q must be at least q/4, since such a flowless box has at least q/4 rows or q/4 columns
that pass through obstacles. Therefore the contribution of this nonlive column is at
most 4/q. Further, note that every nonlive column between this nonlive column and
the column of s can contribute at most 4/q. This is because box F intersects all these
columns and hence the size of the largest flowless box intersecting these columns is at
least q. Thus the total contribution to s from nonlive columns with smaller column
numbers than its own column is at most q · 4/q, which equals 4. Similarly the total
contribution to s from nonlive columns with greater column numbers than its own
column can also be bounded by 4. Therefore s receives at most eight credits.

We will now bound f , the number of columns that are not live. The perimeter
of the obstacles is at most some constant c (independent of α and β) times the sum
of the side lengths of the finished boxes in the intersecting region of B, i.e., at most
cβαk. Thus the total number of credits in the nodes on the perimeters of the obstacles
is at most 8cβαk, so f ≤ 8cβαk. For β < 1/80c, the majority of the αk/5 columns in
each of the outer, fitting, and patch grids are live columns.

3.4.1. Permuting grids. We define a permuting grid as follows. An l × m
rectangular grid (i.e., a grid with l rows and m columns) is said to be a permuting
grid if

(1) Each node on the left side of the grid is connected by a path to a distinct
node on the right side of the grid. The paths have constant congestion, do
not pass through any obstacles, and each path has length Θ(m). These paths
are called the horizontal paths.

(2) There are at least m/4 paths from nodes on the top side of the grid to nodes
on the bottom side of the grid such that the congestion of these paths is also
a constant. These paths do not pass through any of the obstacles and each
path has length Θ(l). These paths are called the vertical paths.

Note that the horizontal and vertical paths in a permuting grid are required to satisfy
different properties.

1604 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

Lemma 3.10. The l nodes on the left side of an l × m permuting grid can be
connected in any permutation to the nodes on the right side of the grid using constant-
congestion paths of length Θ(m) that do not pass through any obstacles, provided that
l = O(m).

Proof. The idea is to use the horizontal and vertical paths in the grid as a crossbar.
Each node on the left side of the permuting grid is assigned a vertical path such that
no vertical path is assigned more than 4l/m nodes. Let π denote the permutation
to be routed. A path from node v in the left side to π(v) in the right side is routed
in three stages. In the first stage, a path is routed from v along the horizontal path
originating at v to the node where this horizontal path first meets the vertical path
assigned to v. In the next stage, the path goes along this vertical path to the node
where this vertical path first meets the horizontal path ending at π(v). In the last
stage, the path goes along this horizontal path to the destination node π(v). It is
easy to see that this path has length Θ(l +m) = Θ(m).

The total congestion on any node in the grid can be split into a sum of three
parts. The congestion of a node due to paths in the first (last) stage is at most the
congestion of the horizontal paths and hence is constant. The congestion due to paths
in the middle stage is constant since it is at most 4l/m times the congestion of the
vertical paths. Hence for l = O(m) the net congestion is a constant.

We choose the i- and b-columns from the live columns in the outer and patch
grids. Recall that live columns do not pass through flowless boxes. We choose β as
small as is required by Theorem 3.9 so that the majority of the columns in the outer,
fitting, and patch grids are live columns. Note that since the obstacles are symmetric
about the middle column of the outer grid, the live columns of the outer grid are
symmetric about the middle column as well. Similarly, the live columns in the patch
grid and the entire rectangular grid R are symmetric about their middle columns.
The live columns with the smallest column number in the outer grid and the patch
grid are chosen to be the i-column of the outer grid and the b-column of the patch
grid, respectively. The live columns with the largest column number in the outer grid
and the patch grid are chosen to be the b-column of the outer grid and the i-column
of the patch grid, respectively. The i- and b-rings in the finished box B are the rings
that correspond to the chosen i- and b-columns. Let the grid between the i-column
and b-column in the outer grid be O, the grid between the b-column of the outer grid
and b-column of the patch grid be F, and the grid between the b-column and i-column
of the patch be P.

Theorem 3.11. The grids O, F, and P are permuting grids.

Proof. First we show that O is a permuting grid. O is an αk/5 × m grid, for
some m ≤ αk/5. Since i- and b-rings in the outergrid are the leftmost and rightmost
live columns, respectively, O contains at least αk/10 ≥ m/2 ≥ m/4 live columns.
These live columns can serve as the vertical paths in the grid. Now we grow constant
congestion paths that do not hit obstacles from every node in the i-column that forms
the left side of O to the corresponding node in the b-column that forms the right side
of O. These will serve as the horizontal paths of the permuting grid.

The first step is to grow constant-congestion paths that do not hit obstacles from
every node in the i-column to nodes in the middle column of O. Every node in the
middle column need not have a path ending in it but every node in the i-column
must have a path originating in it. We define a series of square boxes of side length
2i, 0 ≤ i ≤ log2(αk/5). (For simplicity, we assume that αk/5 is a power of 2.) The left
side of every box consists of a set of consecutive nodes in the i-column. All the boxes

RECONFIGURING ARRAYS WITH FAULTS PART I 1605

Path in Q

Column of VRow of L

l

v

q

A new path

Fig. 6. A new path constructed from path q, column v, and row l.

of a particular size are numbered consecutively starting from the top and ending at
the bottom of the i-column. Boxes of size 1 are the individual nodes in the i-column
itself. Given boxes of size 2i, we obtain boxes of size 2i+1 by enclosing every odd
numbered box of size 2i and the succeeding even numbered box with a box of size
2i+1. There will be exactly one box of the largest size and this box encloses O. It is
important to note that none of these boxes are flowless since the i-column is a live
column.

We grow paths iteratively from smaller sized boxes to larger sized boxes. At the
beginning of the ith iteration, we assume that each box of size 2i−1 has paths with
maximum length 4 · 2i−1 originating from every node on its left side and ending at
some node on its right side. The paths are grouped into sets of 8, such that two paths
share an edge only if they belong to the same group. Hence, the congestion of the
paths is at most 8. We show how to construct the groups of 8 paths with maximum
length 4 · 2i for every box of size 2i.

For i = 0, it suffices to observe that each box of size 1 has no obstacles in it, since
these boxes are not flowless. For i > 0, each box of size 2i encloses two smaller boxes
of size 2i−1 (see Figure 6). Let D denote the rectangular box formed by the first half
of the columns of the big box. D encloses both of the smaller boxes of size 2i−1. Since
the big box is not flowless, there are at least (3/4)2i rows that do not hit obstacles
(call this set of rows L) and at least (3/4)2i columns that do not hit obstacles. Of
these (3/4)2i columns, at least (1/4)2i columns lie within D (call this set of columns
V). Let Q denote the set of paths that are inductively assumed to exist inside both
the smaller boxes. We use L and V to extend the paths in Q to nodes on the right
side of the big box (see Figure 6). The paths in Q can be ordered sequentially from
top to bottom. Likewise, the columns in V are ordered sequentially from left to right
and the rows in L are ordered sequentially from top to bottom.

1606 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

First we group the nodes on the left side of the big box into consecutive groups of
size 8 each. To the nodes in the ith such group we assign the ith row in L. The paths
from the left side of the big box to the right side of the big box are grown sequentially
starting from the first group of nodes.

The first group of nodes uses paths in Q until they hit the centermost column in
V . Then each of these eight nodes uses this column in V to reach its assigned row in
L. Then it takes this assigned row to reach the right side of the big box (see Figure 6).
When routing the next group we must make sure that we do not overlap these paths
with the paths already routed since this would increase the congestion. Let w be the
column in V that was used by the previous group of nodes. Further suppose that
the last node in this group turned upward into column w to reach its row in L. In
this case, we use the column in V that succeeds w for the current group of nodes.
Similarly, if the last node of the previous group turned downward into column w, we
use the column in V that precedes w for the current group. As before, the paths in
the current group follow paths in Q until they hit the chosen column in V and then
use this column until their assigned row in L. These paths do not share edges with
any of the previous paths. We use this procedure to route paths from all the groups
of nodes. Since we have 2i/8 columns to the right and to the left of the centermost
column in V and since there are at most 2i/8 groups of nodes, we will never run out
of columns in V . Since the paths outside of a group do not overlap, the congestion is
at most 8. The maximum length of any path is at most the maximum length of any
path in Q (4 · 2i−1 by the inductive hypothesis) added to the maximum length of the
newly added portion (at most 2 · 2i) which is 4 · 2i.

After constructing paths in progressively larger boxes, we will have constructed
a path from every node of the i-column to the right side of a square box of size αk/5.
These paths can be truncated at the middle column of O. Note that the obstacles in O
are symmetric about its middle column. From this symmetry, exactly the same paths
reflected about the middle column connect every node in the b-column to the same
set of nodes in the middle column. Concatenating these two sets of paths, we obtain
paths from every node in the b-column to a corresponding node in the i-column of
congestion at most 8 and length at most 8αk/5 = Θ(m). Thus O is a permuting grid.

The proof that F and P are permuting grids is similar.

Theorem 3.12. The b- and i-columns satisfy both of the column properties.

Proof. The first property is true since the i- and b-column of the outer grid or
the patch grid are chosen so that there are Θ(k) live columns between them. The
second property follows from Lemma 3.10 and Theorem 3.11. To connect the nodes
of the i-column of the patch grid to the b-column of the outer grid in some arbitrary
permutation, we use the permuting grid P followed by the permuting grid F. One of
the grids will be used to route the required permutation and the other will route the
identity permutation. From Lemma 3.10, the paths obtained have constant congestion
and do not pass through obstacles. Furthermore, each path is Θ(k) in length. To
connect the nodes from the b-column of the patch grid to the i-column of the outer
grid in an arbitrary permutation, we use grid F followed by grid O.

4. A limit on the fault-tolerance of linear arrays. Unlike two-dimensional
arrays, one-dimensional arrays are not very fault tolerant. For example, placing f(N)
evenly spaced faults in an N -node linear array splits the array into disjoint pieces
of size N/f(N), for any function f(N). Emulating the entire linear array on one of
these pieces entails a slowdown of at least f(N). Thus if f(N) grows as a function
of N , the slowdown is not constant. However, if we assume a weaker model of faults

RECONFIGURING ARRAYS WITH FAULTS PART I 1607

in which a faulty node cannot perform any computation but can communicate with
its neighbors, then the linear array becomes more fault tolerant. In particular, the
following theorem shows that an N -node linear array can tolerate logkN worst-case
faults, for any constant k > 0, and still emulate a fault-free N -node linear array with
constant slowdown.

Theorem 4.1. For any constant k > 0, an N -node linear array with logkN
worst-case faults can emulate T steps of any computation of a fault-free N -node lin-
ear array in O(T +N) steps, provided that faulty nodes can communicate with their
neighbors.

Proof. It is straightforward to apply the emulation scheme from section 2 to the
linear array.

In the remainder of this section we show that an N -node linear array with more
than logO(1)N worst-case faults cannot perform a static emulation of a fault-free
N -node array with constant slowdown.

4.1. Bounding the load, congestion, and dilation. For the sake of conve-
nience, we repeat the definition of a static emulation here. In a static emulation, a
redundant guest network G′ = (V ′, E′) is embedded in the host H. The redundant
network is defined as follows. For every node v in the guest network G = (V,E), there
is a set of nodes π(v) in V ′. Each set π(v) contains at least one node, and for u 6= v,
π(v) and π(u) are disjoint. We call the nodes in π(v) the instances of v in G′. The
network G′ is called redundant because it may contain several instances of each guest
node. For every node v′ ∈ π(v) and every edge (u, v) in E, the redundant network
contains a directed edge (u′, v′) for some u′ ∈ π(u). The embedding maps nodes of G′

to nonfaulty nodes in the host, and edges of G′ to paths in the host. In this section
we allow the paths to pass through faulty host nodes.

The host emulates T steps of the guest network’s computation as follows. The
embedding of G′ into H maps a set ψ(a) of nodes of G′ to each host node a. Node
a emulates each node v′ ∈ ψ(a) by creating an s-pebble 〈v′, t〉 for 1 ≤ t ≤ T . An
s-pebble 〈v′, t〉 represents the state of node v′ at time t. Initially, each node a of H
contains s-pebbles 〈v′, 0〉 for v′ ∈ ψ(a). Node a can create an s-pebble 〈v′, t〉 only if
it is not faulty, has already created an s-pebble 〈v′, t− 1〉, and has received all of the
c-pebbles of the form [e, t− 1], where e is an edge (u′, v′) into v′. A c-pebble [e, t− 1]
represents the communication that v′ receives from its neighbor u′ in step t−1. After
creating an s-pebble 〈v′, t〉, a nonfaulty node a can create all of the c-pebbles of the
form [g, t] for each edge g out of v′. At each host time step a nonfaulty host node a
can create a single s-pebble (and the corresponding c-pebbles). In this section, and
this section only, we assume that any node, faulty or nonfaulty, can send and receive
one c-pebble on each of its edges at each step. A c-pebble for an edge (u′, v′) is sent
along the path from u′ to v′ that is specified by the embedding. Note that a node u′

may send c-pebbles to a neighbor v′ but receive c-pebbles from a different instance
v′′ of guest node v.

The following three lemmas show that if a static emulation has slowdown s, then
the load and congestion of the embedding of G′ into H cannot exceed s, and the
average dilation of the edges on any cycle in G′ cannot exceed s.

Lemma 4.2. Suppose that there is a value T0 > 0 such that for all T > T0, the
host can perform a static emulation of a T -step guest computation in Ts steps. Then
the maximum load on any host node is at most s.

Proof. Let l be the load of the embedding. Then some node a in H must emulate
l nodes of G′. For each of these nodes, a must create T s-pebbles. Since a can create

1608 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

at most one s-pebble at each step, the total time is at least lT . Thus, if the slowdown
is s, the load can be at most s.

Lemma 4.3. Suppose that there is a value T0 > 0 such that for all T > T0, the
host can perform a static emulation of a T -step guest computation in Ts steps. Then
the maximum congestion on any host edge is at most s.

Proof. Let c be the congestion of the embedding. Then there is some host edge e
through which c paths pass. For each of these paths, T c-pebbles must pass through
e. Since e can transmit at most one c-pebble at each step, the total time is at least
cT . Thus, if the slowdown is s, the congestion can be at most s.

Lemma 4.4. Suppose that there is a value T0 > 0 such that for all T > T0,
the host can perform a static emulation of a T -step guest computation in at most Ts
steps. Then the average dilation of the edges on any cycle in G′ is at most s.

Proof. Suppose that there is a cycle of length L in G′ with dilation D (the dilation
of a cycle is the sum of the dilations of its edges). Let v′L−1, v

′
L−2, . . . , v

′
0 denote the

nodes on the cycle. For any t, the s-pebble 〈v′0, t〉 cannot be created until a c-pebble
[(v′1, v

′
0), t−1] arrives at the host node that emulates v′0. Since a c-pebble can traverse

at most one host edge at each time step, the time for the c-pebble to travel from the
node that emulates v′1 to the node that emulates v′0 is at least the dilation of the
edge (v′1, v

′
0). The dilation is also a lower bound on the time between the creation of

s-pebbles 〈v′1, t − 1〉 and 〈v′0, t〉. Working our way around the cycle, we see that the
time between the creation of s-pebbles 〈v′0, t − L〉 and 〈v′0, t〉 is at least the dilation
of the cycle, D. Thus, for any T that is a multiple of L, the time between the start
of the emulation and the creation of s-pebble 〈v′0, T 〉 is at least TD/L. For D/L > s,
this pebble is not created until after step Ts, a contradiction.

4.2. Bounding the number of faults.
Theorem 4.5. For any s, there is a pattern of h(s)(logN)2s worst-case faults,

for any h(s) > 26s+4s6s+5, such that it is not possible for an N -node host linear array
with these faults to perform a static emulation of an N -node guest linear array with
slowdown s.

Proof. We begin by placing a layer of g(s) blocks of f(s) consecutive faults in an
N -node array so that the number of nonfaulty nodes in the gap between each pair of
blocks is at most N/g(s). Formulas for g(s) and f(s) will be determined later.

Next we find a block of faults B that some edges of the redundant network must
cross. Because the slowdown is s, and at most N/g(s) host nodes lie between any pair
of blocks for g(s) > s, it is not possible for the entire emulation to take place in one
gap. (If it did, then the load in the gap would be greater than s, which is forbidden
by Lemma 4.2.) Since the emulation uses host nodes in at least two gaps, there must
be some block B such that some, but not all, of the the guest nodes are emulated on
its left, and some, but not all, of the guest nodes are emulated on its right.

Now we find a cycle C in the redundant network G′ that crosses B. Let u be a
node in the guest network G such that every instance of u in G′ on the right side of B
receives its left input from the left of B. If there is no such u, then let u be a node in
the guest network such that every instance of u on the right side of B receives its right
input from the left of B; in the latter case interchange the role of left and right inputs
in what follows. Note that since we have chosen B so that the host does not emulate
the entire guest on the right side of B, there must be such a node u. Select one of the
instances, u′, of u and follow the left input edge into u′ (i.e., the input edge coming
from the node in G′ that corresponds to the left neighbor of u in the guest) back to
where it came from. It must lead across B to some node v′ in G′ on the left side of B.

RECONFIGURING ARRAYS WITH FAULTS PART I 1609

Now follow the left input edge into v′ to some other node w′ in G′ (node w′ may be
on either side of B). Continue to follow left input edges until reaching a node x′ that
corresponds to the left endpoint of G. Then follow right input edges until reaching
the right endpoint of G, and reverse direction again. Repeat this process until some
edge of G′ is used twice. When this happens, a cycle C is formed. Furthermore, the
cycle C must cross B because it visits every node of G and we know that H does not
emulate all of G on one side of B.

The next thing to show is that on one side of B or the other, cycle C visits at
least l consecutive nodes of the guest network, where l > f(s)/2s, and these nodes
are emulated within distance 2sl of B in the host. If the slowdown of the emulation
is s, then by Lemma 4.4 the dilation of any cycle is at most s times the number of
redundant network nodes on the cycle. (The dilation of a cycle or path is equal to
the sum of the dilations of the edges on the cycle or path.) Let us define a segment
to be a maximal subpath of C that begins with an edge that crosses block B, but
does not cross B again. Note that every segment either consists of a sequence of right
input edges followed by a (possibly empty) sequence of left input edges, or vice versa.
Suppose that cycle C crosses block B a total of 2h times. Then there are 2h segments.
Associate with each segment the dilation of the edges on the segment. Note that the
average ratio of the dilation of a segment to the number of nodes on the segment
must be at most s (since the ratio for the entire cycle C is at most s). Now classify
segments into two types: long and short. A short segment is one containing fewer
than f(s)/s edges. Since every segment has dilation at least f(s) (due to the first
edge on the segment), the ratio of a short segment’s dilation to length (number of
nodes) is more than s. Since the average ratio over all of the segments is at most s,
there must be some long segment whose ratio of dilation to length is at most s. If
this segment has more left input edges than right input edges, then discard the right
input edges and the nodes that they visit. Otherwise, discard the left input edges.
We are left with some set of l ≥ f(s)/2s nodes emulated within distance 2sl of B.
Suppose that there are more left input edges, and let v′1, v

′
2, . . . , v

′
l denote the nodes

that were visited on (say) the right side of B, where v1 is the leftmost node in the
guest network. We will call the 2sl host nodes on the right of B the emulation region.
(Note that in the construction of the cycle, we visited v′l first and v′1 last.)

Now we show that some communication must pass over the emulation region.
Although nodes v1, v2, . . . , vl are consecutive in the guest network, their instances are
not necessarily embedded in the host in consecutive order. Suppose that v′i is the
node embedded the farthest to the right. If i > l/2, then the path in the cycle from
the left side of B to v′l to v′l−1 and on to v′i overlaps all of nodes v′1, v

′
2, . . . , v

′
l/2. On

the other hand, if i ≤ l/2, then the path from v′i to v′i−1 to v′1 and back across to the
left side of B overlaps all of nodes v′l/2+1, v

′
l/2+2, . . . , v

′
l. In either case, we have a set

of l/2 consecutive nodes in the guest network that the host emulates, and some other
edges of G′ overlap their emulation with congestion 1.

We now proceed recursively within the emulation region. One last issue that
must be dealt with is that some of the l/2 nodes that the host is emulating within the
emulation region may receive some of their right inputs from outside the emulation
region. However, since the embedding has congestion at most s (by Lemma 4.3), at
most 2s right inputs can enter the emulation region from outside. Thus, there must
be a set of at least (l/2)/2s = l/4s redundant network nodes that the host emulates
within the emulation region that are consecutive in the guest and receive all of their
inputs from within the emulation region. At this point we have placed g(s) blocks of

1610 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

f(s) faults in the network and we have proved that on one side of one of the blocks,
there is an emulation region of size 2sl in which at least l/4s consecutive nodes of
the guest are emulated, for some l ≥ f(s)/2s, and some other edges of G′ cause
congestion 1 in the emulation region. For recursion on sets of l/4s guest nodes, where
l ≥ f(s)/2s, we need f(s) > 8s2.

We are now going to place an additional layer of faults in the network. Because we
do not know where the emulation region is, we will place faults immediately adjacent
to both sides of each of the g(s) blocks of faults in the first layer. Also, because we
do not know how large the emulation region is, we will place the faults in patterns of
size 2, 4, 8, . . . , N on top of each other. (Note that N is the size of the entire array.)
In a pattern of size 2k, we will place g(s) blocks of f(s) consecutive faults at spacings
of 2k/g(s). Thus, in each pattern there are at most g(s)f(s) faults, and there are at
most logN patterns on each side of the blocks in the first layer. The total number of
faults in the second layer is 2g2(s)f(s) logN .

The entire emulation region must lie under some pattern P of faults of size 2k,
where 2k ≤ 4sl. The blocks of faults in this pattern are spaced at a distance of 2k/g(s),
which is at most 4sl/g(s). In this region, at least l/4s guest nodes are emulated. If
the slowdown is at most s, and (l/4s)/(2sl/g(s)) > s, then by Lemma 4.2 it is not
possible for the entire emulation to be performed entirely between two blocks of faults
in this pattern. (Thus, we need g(s) > 8s3.) Arguing as we did for the first layer,
we can show that, for some l′, on one side of one of the blocks of P , there is an
emulation region of size 2sl′ and a set of least l′/4s nodes that are consecutive in
the guest network that receive their inputs from within the emulation region. But
now two units of congestion pass over the new emulation region (possibly in opposite
directions).

A third layer of faults is now placed in the network. As before, a set of patterns of
faults is placed around each block in the second layer. There are 2g(s)2 logN blocks
in the second layer. Thus, there are 4g(s)3(logN)2f(s) faults in the third layer.

By applying 2s+1 layers of faults, we find an emulation region over which at least
s+1 units of congestion (in one direction) pass, which is a contradiction by Lemma 4.3.
The (2s + 1)st layer contains 22sg(s)2s+1(logN)2sf(s) faults. The total number of
faults contained in all the 2s+1 layers is at most twice the number of faults contained
in the (2s + 1)st layer alone, since the number of faults in the ith layer is at least
double the number of faults in the (i− 1)st layer. Thus the total number of faults is
at most 22s+1g(s)2s+1(logN)2sf(s) = h(s) log2sN , where h(s) = 22s+1g(s)2s+1f(s),
g(s) > 8s3, and f(s) > 8s2.

5. Remarks. The scheme described in section 2 for tolerating logkN faults in
an N ×N mesh can be easily generalized to tolerate logkN faults in a d-dimensional
array with side length N for any fixed d > 2. It seems plausible that the techniques
described in section 3 can also be generalized to arrays of higher dimension.

REFERENCES

[1] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. T. Ho, M. Naor, and E. Szemerédi, Fault
tolerant graphs, perfect hash functions and disjoint paths, in Proc. 33rd Annual IEEE
Symposium on Foundations of Computer Science, Pittsburgh, PA, 1992, pp. 693–702.

[2] Y. Aumann and M. Ben-Or, Computing with faulty arrays, in Proc. 24th Annual ACM Sym-
posium on the Theory of Computing, Victoria, BC, Canada, 1992, pp. 162–169.

[3] T. Blank, The MasPar MP-1 architecture, in compcon90, IEEE Computer Society Press, Los
Alamitos, CA, 1990, pp. 20–24.

RECONFIGURING ARRAYS WITH FAULTS PART I 1611

[4] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore,
C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb,
iWarp, an integrated solution to high-speed parallel computing, in Proc. Supercomputing
’88, Orlando, FL, 1988, IEEE Computer Society Press, Washington, DC, pp. 330–339.

[5] J. Bruck, R. Cypher, and C.–T. Ho, Fault-tolerant meshes with small degree, in Proc. 5th
Annual ACM Symposium on Parallel Algorithms and Architectures, Velen, Germany, 1993,
pp. 1–10.

[6] M. R. Fellows, Encoding Graphs in Graphs, Ph.D. thesis, Department of Computer Science,
University of California, San Diego, CA, 1985.

[7] J. W. Greene and A. El Gamal, Configuration of VLSI arrays in the presence of defects, J.
ACM, 31 (1984), pp. 694–717.

[8] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao,
C. Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proc. 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 285–296.

[9] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, Work-preserving emula-
tions of fixed-connection networks, in Proc. 21st Annual ACM Symposium on Theory of
Computing, Seattle, WA, 1989, pp. 227–240.

[10] R. K. Koeninger, M. Furtney, and M. Walker, A shared MPP from Cray research, Digital
Tech. J., 6 (1994), pp. 8–21.

[11] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–180.

[12] T. Leighton and C. E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans.
Comput., C–34 (1985), pp. 448–461.

[13] T. Leighton, B. Maggs, and R. Sitaraman, On the fault tolerance of some popular bounded-
degree networks, in Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, Pittsburgh, PA, 1992, pp. 542–552.

[14] T. R. Mathies, Percolation theory and computing with faulty arrays of processors, in Proc.
3rd Annual ACM–SIAM Symposium on Discrete Algorithms, Orlando, FL, 1992, SIAM,
Philadelphia, pp. 100–103.

[15] F. Meyer auf der Heide, Efficiency of universal parallel computers, Acta Inform., 19 (1983),
pp. 269–296.

[16] F. Meyer auf der Heide, Efficient simulations among several models of parallel computers,
SIAM J. Comput., 15 (1986), pp. 106–119.

[17] F. Meyer auf der Heide and R. Wanka, Time-optimal simulations of networks by univer-
sal parallel computers, in Proceedings of the 6th Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Comput. Sci. 349, Springer-Verlag, Heidelberg, 1989,
pp. 120–131.

[18] M. D. Noakes, D. A. Wallach, and W. J. Dally, The J-machine multicomputer: An archi-
tectural evaluation, in Proc. 20th Annual International Symposium on Computer Archi-
tecture, San Diego, CA, 1993, ACM, New York, pp. 224–235.

[19] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance,
J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.

[20] P. Raghavan, Robust algorithms for packet routing in a mesh, in Proc. 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, Sante Fe, NM, 1989, pp. 344–350.

[21] E. J. Schwabe, On the computational equivalence of hypercube-derived networks, in Proc. 2nd
Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, Greece, 1990,
pp. 388–397.

[22] H. Tamaki, Efficient self-embedding of butterfly networks with random faults, in Proc. 33rd
Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, 1992,
pp. 533–541.

[23] H. Tamaki, Robust bounded-degree networks with small diameters, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, San Diego, CA, 1992, pp. 247–256.

[24] H. Tamaki, Construction of the mesh and the torus tolerating a large number of faults, in
Proc. 6th Annual ACM Symposium on Parallel Algorithms and Architectures, Cape May,
NJ, 1994, pp. 268–277.

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC∗

JOHN HERSHBERGER† AND SUBHASH SURI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1612–1634, December 1997 003

Abstract. We present an O(n) time algorithm for computing row-wise maxima or minima of an
implicit, totally monotone n×n matrix whose entries represent shortest-path distances between pairs
of vertices in a simple polygon. We apply this result to derive improved algorithms for several well-
known problems in computational geometry. Most prominently, we obtain linear-time algorithms for
computing the geodesic diameter, all farthest neighbors, and external farthest neighbors of a simple
polygon, improving the previous best result by a factor of O(logn) in each case.

Key words. shortest paths, matrix searching, geodesic diameter, farthest neighbors, geometric
matching

AMS subject classifications. 68Q25, 68P05, 68PL0

PII. S0097539793253577

1. Introduction. Matrix-searching is the popular term for a technique intro-
duced by Aggarwal et al. [2] for computing row-wise maxima in a totally monotone
matrix. A matrix M is called totally monotone if

M(i, k) < M(i, l) =⇒ M(j, k) < M(j, l)

for any i < j and k < l. Aggarwal et al. [2] discovered the importance of totally
monotone matrices and showed that many problems in computational geometry can
be formulated as finding maxima in a totally monotone matrix. The problem of
finding farthest neighbors in a convex polygon is a prototypical application of this
technique; we repeat it here for the benefit of the uninitiated.

Consider a convex polygon P and partition its boundary into two disjoint chains
U = {u1, u2, . . . , up} and V = {v1, v2, . . . , vm}. The vertices in each chain are ordered
counterclockwise, as shown in Figure 2.1. Define a p × m matrix M that encodes
pairwise distances between the vertices of U and V : M(i, j) = d(ui, vj) for 1 ≤ i ≤ p
and 1 ≤ j ≤ m. One may easily check that M is totally monotone; the proof
follows from the triangle inequality. We observe that a maximum entry in row i of
M corresponds to the maximum distance between ui and any vertex in V . Thus, we
can find for all vertices of U a corresponding farthest neighbor in V by computing the
row-wise maxima in M .

The main result of Aggarwal et al. [2] says that the row-wise maxima of a totally
monotone n × n matrix can be found with only O(n) comparisons and evaluations
of the matrix entries. The matrix is defined implicitly—an entry is evaluated only
when needed by the algorithm. If evaluating a matrix entry takes f(n) time, then
the row-wise maxima can be computed in time O(nf(n)). This result leads to linear-
time algorithms for several computational geometry problems set in convex polygons,
where the matrix entries correspond to Euclidean distances.

∗Received by the editors August 12, 1993; accepted for publication (in revised form) October 24,
1995. A preliminary version of this paper appeared in the Proceedings of the 25th ACM Symposium
on Theory of Computing, ACM, New York, 1993, pp. 485–494. The research reported here was
performed while the first author was at the DEC Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301, and the second author was at Bellcore, 445 South Street, Morristown, NJ 07960.

http://www.siam.org/journals/sicomp/26-6/25357.html
†Mentor Graphics Corp., 1001 Ridder Park Drive, San Jose, CA 95131 (johnh@icx.com).
‡Department of Computer Science, Washington University, St. Louis, MO 63130 (suri@

cs.wustl.edu).

1612

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1613

In this paper, we propose a powerful extension of the basic matrix-searching
algorithm. We give a linear-time algorithm for computing row-wise maxima in a
totally monotone matrix whose entries represent shortest path distances between pairs
of vertices in a simple polygon. The shortest path distance, also called the geodesic
distance, is the natural distance measure in a simple nonconvex polygon. Observe,
however, that unlike the Euclidean distance, the geodesic distance in general cannot be
computed in constant time. Unless one precomputes all the distances, which requires
too much preprocessing, the best data structure for computing shortest-path distances
is one due to Guibas and Hershberger [6, 10], which achieves f(n) = O(logn). (After
an O(n) time and space preprocessing step, this data structure computes the geodesic
distance between two arbitrary points of a simple polygon in O(logn) time; n denotes
the number of vertices in the polygon.) A straightforward combination of the shortest-
path query data structure and the basic matrix-searching gives an O(n logn) time
algorithm for computing row-wise maxima of a totally monotone matrix with shortest
path distances. Our result in this paper improves the time complexity to optimal
O(n).

Our result has applications in computational geometry: we achieve linear-time
algorithms for several outstanding open problems. The most straightforward appli-
cation concerns geodesic diameter and all-farthest neighbors. We obtain O(n) time
algorithms for them, improving the previous O(n logn) bound. A similar improve-
ment also follows for the problem of computing the external farthest neighbors in a
simple polygon.

A somewhat less obvious application concerns finding a closest visible vertex pair
between two simple polygons. Although this problem does not involve the shortest
path metric in its formulation, we apply matrix-searching with shortest paths to get a
conceptually simple algorithm for the problem that runs in optimal linear time. Pre-
vious linear-time algorithms were quite complicated [3, 4]. In a separate paper [12] we
apply this result, along with some additional techniques, to obtain a linear-time algo-
rithm for computing a shortest diagonal of a simple polygon, improving the previous
O(n logn) algorithm.

We can also compute weighted-nearest neighbors between two disjoint chains of a
simple polygon in linear time; the weighted distance is defined as d(ui, vj)−w(ui)−
w(vj), where d(ui, vj) is the shortest path distance, and w is a real-valued weight
function. This improves the complexity of computing an optimal matching on the
vertices of a polygon from O(n log2 n) to O(n logn) [13], matching the best bound for
a convex polygon.

Our paper is organized in seven main sections. In section 2, we formulate the key
problem of our paper and provide a brief summary of the matrix-searching technique.
In section 3, we introduce the basic geometric infrastructure required by our algorithm.
The algorithm itself is described in section 4, and its analysis is presented in section 5.
The applications of our main result are presented in section 6, and we conclude with
some remarks in section 7.

2. Matrix-searching and the shortest-path metric. The centerpiece of our
paper is an algorithm for computing farthest neighbors between two chains of a simple
polygon under the shortest-path metric. In this section, we introduce the problem,
define terminology, and provide a brief review of the matrix-searching framework
of Aggarwal et al. [2]. Throughout, we assume that P is a simple polygon with n
vertices; π(x, y) is the shortest path between the points x and y in P ; d(x, y) is the
length of the path π(x, y); and y is a (geodesic) farthest neighbor of x if d(x, y) =

1614 JOHN HERSHBERGER AND SUBHASH SURI

max{d(x, x′) | x′ ∈ P}.
2.1. Farthest neighbors and the totally monotone matrix. Let U =

(u1, u2, . . . , up) and V = (v1, v2, . . . , vm) be two polygonal chains that together parti-
tion the vertices of P ; the vertices are ordered counterclockwise in each chain, and the
total number of vertices is n = p+m. We want to compute a farthest neighbor for each
vertex of U in the chain V . This problem can be reformulated as a maxima-finding
problem in the associated distance matrix.

Let M denote the p×m matrix that encodes the pairwise distances between the
vertices of U and V :

M(i, j) = d(ui, vj).(2.1)

See Figure 2.1. Our problem is to compute a maximum entry in each row of M .
(The equivalence is clear: M(i, j) is a maximum entry in row i if and only if vj is a
geodesic farthest neighbor of ui.) We break ties by choosing the leftmost maximum
in each row.

We use the matrix-searching framework of Aggarwal et al. [2], which depends
crucially on a matrix property called total monotonicity. The matrix M is totally
monotone if

M(i, k) < M(i, l) =⇒ M(j, k) < M(j, l)(2.2)

for any 1 ≤ i < j ≤ p and 1 ≤ k < l ≤ m. The total monotonicity of M follows
from the triangle inequality of the geodesic distance function. Total monotonicity also
implies that the leftmost maxima form a “staircase” in the matrix: as we move down
the rows, the maximum can move only right, but never left.

uu

v

v

v1

1p

m
U

V

vv

u
u

u

i

k

j
2

2

v1 vm
u1

up

(a) (b)

l

Fig. 2.1. A polygon, two chains, and the corresponding matrix. The triangle inequality implies
that M(i, k) + M(j, l) ≥M(i, l) + M(j, k), which in turn shows that M is totally monotone.

The matrix M is defined implicitly: an entry is computed only when needed.
The matrix-searching algorithm performs two kinds of operations: evaluation of a
matrix entry M(i, j) and comparison between two matrix entries. We use the term
matrix operation to describe either of these two steps. In general, the comparison
step can always be performed in constant time, but the evaluation step can be more
complicated. The main result of Aggarwal et al. [2] is the following lemma.

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1615

Lemma 2.1 (see [2]). The leftmost maximum in each row of a totally monotone
n×n matrix can be determined using O(n) matrix operations. If each matrix operation
takes f(n) time, then the row-maxima problem can be solved in time O(nf(n)).

If we use shortest path queries [6, 10] to compute the entries of M , then f(n) =
O(logn), and we get an O(n logn) time algorithm. Our contribution in this paper
is an algorithm that reduces f(n) to amortized O(1), giving an optimal linear-time
algorithm.

2.2. The matrix-searching algorithm. Our algorithm assumes some famil-
iarity with the matrix-searching algorithm of [2]. This section gives a brief overview
of the matrix-searching technique; however, the reader is encouraged to refer to the
original paper for details.

The matrix-searching algorithm of [2] finds the leftmost maximum in each row of
a totally monotone matrix using a linear number of matrix operations. The algorithm
is recursive; it proceeds in O(logn) phases. Each phase cuts down each dimension of
the matrix by half, after evaluating a linear number of matrix entries. The following
pseudocode gives a top-level view of the algorithm.

MSEARCH (M)

(∗ Compute the position and value of the leftmost maximum in each row of M ∗)
1. A ← REDUCE (M)
2. if |A| = 1 then return the value of A[1, 1] and its position in M
3. B ← the matrix consisting of even rows of A
4. MSEARCH (B)
5. MFILL(A,B) (∗ Finds maxima in the odd rows of A ∗)
6. Compute the positions and values of the maxima in M from their

positions in A.

REDUCE takes a p×m matrix M , where m ≥ p, and returns a p× p submatrix
A. (If m < p, REDUCE returns just M .) The leftmost maxima in the rows of A
and M are identical. REDUCE achieves this size reduction using only O(m) matrix
operations. In the pseudocode below, Ak refers to the kth column of A.

REDUCE (M)
A ← M ; k ← 1;
while A has more than p columns do

case
A(k, k) ≥ A(k, k + 1) and k < p: k ← k + 1.
A(k, k) ≥ A(k, k + 1) and k = p: Delete column Ak+1.
A(k, k) < A(k, k + 1): Delete column Ak;

if k > 1 then k ← k − 1.
endcase

return A.

Figure 2.2 illustrates the pattern of comparisons performed by REDUCE . No
entry in the shaded portion of the matrix can be a candidate for the leftmost maxima.

The code above, which is essentially in the form given by Aggarwal et al. [2],
operates on a dynamic matrix: when a column is deleted, all columns to its right are
renumbered. This property makes it somewhat difficult to identify which entries of
the original matrix are examined. Because our algorithm depends crucially on the
order in which matrix entries are computed, we rewrite the code for REDUCE to

1616 JOHN HERSHBERGER AND SUBHASH SURI

U

V

v

ui

jv1 vm
u1

up

U

V

v

u i

jv1 vm
u

1

up

U

V
v

ui

jv1 vm
u1

up

(a)

(b) (c)

M(i, j−1) M(i, j)>− <M(i, j−1) M(i, j)

Fig. 2.2. Illustrating REDUCE. The current comparison is between M(i, j − 1) and M(i, j),
shown by the highlighted cells in (a). If M(i, j − 1) ≥ M(i, j), then we arrive at Figure 2.2(b): the
first i rows of the jth column are eliminated, and the next comparison is between M(i + 1, j) and
M(i + 1, j + 1). Otherwise M(i, j − 1) < M(i, j) and we arrive at Figure 2.2(c): column j − 1
is eliminated entirely. In this case, the search backs up and next compares M(i − 1, j − 2) and
M(i− 1, j).

clarify the matrix access pattern. The revised version below uses a predecessor array
(essentially a linked list) to delete columns. Initially pred [i] is set to i − 1 for all i.
To delete a column j such that pred [k] = j, the algorithm resets pred [k] ← pred [j],
thereby splicing j out of the list. The following code avoids some of the matrix probes
in the version of REDUCE above by reusing previously computed values.

NEW-REDUCE (M)
for j ← 1 to m do pred [j]← j − 1;
ncols ← m; j ← 2; k ← 1;
value[1]←M(1, 1);
while ncols > p do

(∗ Note that value[pred [j]] = M(k, pred [j]) ∗)
if value[pred [j]] ≥M(k, j) then

if k < p then
k ← k + 1; value[j]←M(k, j);

else
pred [j + 1]← pred [j]; ncols ← ncols − 1;

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1617

endif
j ← j + 1;

else
pred [j]← pred [pred [j]]; ncols ← ncols − 1;
if k 6= 1 then k ← k − 1 else j ← j + 1 endif;

endif
endwhile

return the pred [∗] linked list.

Lemma 2.2. The two algorithms REDUCE and NEW-REDUCE are equivalent.

Proof. We need to prove the correspondence between the chain of pred [∗] pointers
in NEW-REDUCE and the dynamic matrix in REDUCE . To this end, define the
function length(j) to be the length of the chain of pred [∗] pointers starting at j. That
is, length(j) = h iff predh[j] = 0, but predh−1[j] 6= 0.

We maintain the invariant that at the top of each loop, if column k in REDUCE
is actually column j of the original matrix M , then length(j) = k in NEW-REDUCE .
This is established by the for loop of NEW-REDUCE . The main loop of REDUCE
corresponds to that of NEW-REDUCE . At the top of each while loop, column j
of NEW-REDUCE corresponds to column k + 1 in REDUCE , and column pred [j]
corresponds to column k.

We must prove that the matrix comparisons in REDUCE and NEW-REDUCE
are equivalent. The main loop of NEW-REDUCE explicitly computes the value
needed on the right-hand side of the comparison in that loop. The value needed
on the left-hand side of the comparison is referred to as A(k, k) in REDUCE ; that
is, it is the matrix element M(k, l) such that length(l) = k in NEW-REDUCE and
l = pred [j]. So, we must show that value[l] = M(k, l). If NEW-REDUCE does
not delete column j, it sets value[j] ← M(length(j), j) just before it advances to
column j + 1. Because NEW-REDUCE does not change length(l) for any l < j, it
follows that value[l] = M(k, l) = A(k, k). We leave it as an exercise to the reader to
prove the exact correspondence between the statements of REDUCE and
NEW-REDUCE .

In a high-level view of the algorithm, REDUCE and NEW-REDUCE are com-
pletely equivalent; the latter only fleshes out more details. The pred [∗] list that
NEW-REDUCE returns encodes the reduced matrix A returned by REDUCE . In
an implementation, MSEARCH and MFILL would also use pred pointers; however,
in order to preserve a close parallel with the basic algorithm of [2], we will use
NEW-REDUCE only in the next subsection, and use REDUCE in the remainder
of the paper.

Finally, the procedure MFILL(A,B) computes the leftmost maxima for the odd
rows of A, given the locations of the maxima for its even rows; recall that the matrix
B consists of precisely the even rows of A. This phase also requires O(m) matrix op-
erations. Let C2j denote the column index of the leftmost maximum in the even rows
of A, for j = 1, 2, . . . , dp/2e. Then total monotonicity implies that C2j+1 lies between
C2j and C2j+2. The following pseudocode implements MFILL. For convenience we
set C0 = 1 and C2bp/2c+2 = m.

MFILL (A,B)
for i← 1 to dp/2e do

max ← A(2i− 1, C2i−2);
C2i−1 ← C2i−2;

1618 JOHN HERSHBERGER AND SUBHASH SURI

for j ← C2i−2 + 1 to C2i do
if A(2i− 1, j) > max then

max ← A(2i− 1, j);
C2i−1 ← j;

endif
Evaluate A(2i, C2i); (∗ Extra work, for accounting purposes ∗)

endfor;

Our algorithm has exactly the same form as that of Aggarwal et al. [2]; only
the details of evaluating a matrix entry are different. In [2], each matrix evaluation
takes constant time. In our case, the evaluations are trickier and require a careful
implementation of a shortest-path algorithm. To this end, we need to understand
better the path followed by the matrix evaluations in the subroutine REDUCE .

2.3. Summary of matrix searching. Each phase of the recursive algorithm
MSEARCH halves the matrix dimensions. The core of the algorithm is REDUCE ,
which eliminates columns of the matrix. In the kth phase of the algorithm, REDUCE
operates on a submatrix Ak of size at most nk × 2nk, where nk =

⌊
p2−k

⌋
. From here

on we will assume that Ak is exactly nk × 2nk. Matrix-searching theory tells us that
REDUCE performs at most 3nk matrix operations and returns an nk×nk submatrix.

We call the vertices corresponding to rows and columns of Ak active vertices; the
remaining vertices of U and V are called dead. Thus, there are nk active vertices in
the U -chain and 2nk active vertices in the V -chain. Because MSEARCH deletes even
rows, the active vertices of U are uniformly spaced in U ; more precisely, two adjacent
active vertices are separated by 2k − 1 dead vertices. However, no such regularity
necessarily exists among the active vertices of V .

Our algorithm makes critical use of the order in which the matrix-searching al-
gorithm evaluates entries. This order is easier to analyze in NEW-REDUCE than in
the equivalent routine REDUCE . The first matrix entry evaluated by REDUCE (or
NEW-REDUCE) in the kth phase is Ak[1, 1]. In each new evaluation, either the row
or the column index is changed by one. In particular, the movement in the matrix
consists of steps that belong to {up, down, right}, where up and down decrement
and increment the row-index and right increments the column-index. The column-
index is never decremented, so there is no left movement in the matrix. We can break
the sequence of moves into blocks that start with a right move. Each right move is
followed by zero or more up moves and at most one down move. Thus the sequence
of moves satisfies the following regular expression:

(right up∗ (down | ε))
∗
,(2.3)

where ε is the null move. The sequence of evaluations in MFILL also satisfies the
same regular expression.

3. Geometric structures. In this section, we introduce the geometric infras-
tructure necessary for computing the shortest-path distances. We describe both the
geometric properties of these structures and their implementations. We start with
some notation. The shortest path between two points x and y in P is denoted π(x, y).
The two extreme vertices of the chain V play a distinguished role in our algorithm.
We refer to them with the shorthand notation a = v1 and b = vm.

3.1. The shortest-path tree. Let Ta and Tb denote the shortest-path trees of
the polygon P rooted at the vertices a = v1 and b = vm, respectively. (A shortest-path

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1619

tree Tp is the union of shortest paths from p to all the vertices of P .) We precompute
an array that stores, for every vertex x of P , the parents of x in Ta and Tb, along
with the distances from x to a and b. We first triangulate the polygon in linear time
using Chazelle’s algorithm [5] and then build the shortest-path trees Ta and Tb also in
linear time using an algorithm of Guibas et al. [7] or Hershberger and Snoeyink [11].

Lemma 3.1 (see [7, 11]). After linear-time preprocessing, the distances d(x, a)
and d(x, b), for any vertex x ∈ P , can be computed in O(1) time.

Given two arbitrary vertices x, y ∈ P , we let α(x, y) denote the lowest common
ancestor of x and y in Ta. Similarly, β(x, y) denotes the lowest common ancestor of x
and y in the tree Tb. In our discussion, we so frequently use lowest common ancestors
where one of the vertices is a or b that we also introduce the following abbreviated
notation:

α(x) = α(x, b),

β(x) = β(x, a).

In Figure 3.1, α(u19, v10) = v4, β(u19, v10) = u12, α(v10) = v4, and β(v10) = v17.
We use the linear-time algorithm of Harel and Tarjan [9] or that of Schieber and

Vishkin [15] to preprocess our trees for lowest common ancestor queries.
Lemma 3.2 (see [9, 15]). After linear-time preprocessing of Ta and Tb, we can

compute α(x, y) and β(x, y) in constant time for any two vertices x, y ∈ P .

3.2. The funnel and the funnel-difference. Consider a vertex v ∈ V and
the two shortest paths π(v, a) and π(v, b). These two paths may coincide for some
distance before they diverge at a vertex z, never to meet again. The funnel of v,
denoted F (v), is the set of edges in the shortest paths from z, called the apex of the
funnel, to the lowest common ancestor vertices α(v) and β(v):

F (v) = π(z, α(v)) ∪ π(z, β(v)).(3.1)

Both π(z, α(v)) and π(z, β(v)) are concave. See Figure 3.1 for an example of funnels.
In our analysis, the difference of two funnels turns out to be important. The idea

is applicable to both U and V chains, but we define it here just for the V -chain. Given
two vertices vi, vj ∈ V , where i > j, their funnel-difference is defined as

∆F (vi, vj) = F (vi) \ F (vj).(3.2)

That is, ∆F (vi, vj) is the set of edges that are in F (vi) but not in F (vj). The edges of
∆F (vi, vj) form a contiguous portion of F (vi) surrounding vi. The following property
of the funnel-difference will be most important to us.

Lemma 3.3. ∆F (vi, vj) is edge-disjoint from F (vk), for any k < j < i.
Proof. The proof uses the following elementary properties of the lowest common

ancestor in an ordered tree: (i) the lowest common ancestor relation is commutative
and associative, and (ii) the lowest common ancestor of two nodes x and y is above
or equal to the lowest common ancestor of any nodes lying between x and y (in
symmetric order). These properties imply that α(vi, vk) is above or equal to α(vi, vj)
in Ta and β(vi, vk) is above or equal to β(vi, vj), for any k < j < i. Thus, no edge of
F (vk) lies in ∆F (vi, vj). This completes the proof.

3.3. Data structures for computing tangents on funnels. Our main op-
eration on funnels is finding a common tangent between two funnels. Consider a

1620 JOHN HERSHBERGER AND SUBHASH SURI

v

v

v

u

u

u

u

1

p

1

a =

b = m

4

17

12

25u

u

v

v

10

6

19

Fig. 3.1. The example shows funnels for three vertices: v10, u6, and u19. Lowest common
ancestors bounding F (v10) are v4 and v17. The apex of F (v10) is v12. Similarly, F (u6) is bounded
by u6, u12, and b = vm; in this case, u6 itself is the apex.

vertex-pair u ∈ U and v ∈ V . The funnel-pair (F (u), F (v)) is closed if π(α(u), β(u))
and π(α(v), β(v)) are disjoint except perhaps at endpoints, and open otherwise.

An open funnel-pair always admits a unique common tangent. If (F (u), F (v))
is an open funnel-pair, then the shortest path π(u, v) necessarily uses the tangent
between their funnels. We denote the tangent for the funnel-pair (F (u), F (v)) by
`(u, v). The endpoints of `(u, v) are denoted u` and v`, where u` ∈ U and v` ∈ V .
(Throughout, we adopt the convention that the subscript ` will denote the endpoint
of a tangent.)

In Figure 3.1, funnels F (v10) and F (u6) form a closed pair, while F (v10) and
F (u19) form an open pair. The tangent between F (v10) and F (u19) is (u22, v15).

During each execution of REDUCE , we maintain funnels F (u) and F (v) for the
current vertices u and v. As observed in section 2.3, u moves backward and forward
among the active vertices of U , while v moves only forward through the active vertices
of V . After each movement of u or v, we compute the tangent for (F (u), F (v)), if it
is an open funnel-pair.

Let us focus on one of the shortest paths in F (u), say, π(z(u), a). We assume
that the apex z(u) of F (u) is precomputed; precomputation of all funnel-apexes takes
O(n) time altogether using the two shortest-path trees Ta and Tb.

A natural representation of π(z(u), a) is a doubly linked list of vertices, but un-
fortunately this data structure is too inefficient for searching in our application. We
speed up the search by breaking the path into subpaths, each represented by a su-
pernode that supports fast searches. In this representation, a shortest path is a list of
supernodes, linked by superedges. In phase k of the algorithm, the subpath within a
single supernode has at most 2k vertices. It is represented by a binary tree of height
at most k. The leaves store the subpath vertices. Each internal node represents the
subpath of its leaf descendants; it stores the edge linking its left and right subtrees’

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1621

paths.

Our tangent-finding algorithm starts its search from two start vertices us ∈ F (u)
and vs ∈ F (v). The algorithm is a standard binary search [8, 14], with a modified
search sequence. Instead of starting from the middle edge of the funnel and then re-
cursively cutting the funnel in half, the search on F (u) walks up from us to the root of
the supernode binary tree containing us, follows the superedges between supernodes,
and descends into the supernode binary tree containing the tangent endpoint u`. The
search uses funnel edges in its comparisons, namely, the superedges it follows between
supernodes and the edges above us and u` in the supernode binary trees containing
those vertices. See Figure 3.2. The following lemma bounds the time of the search.

Fig. 3.2. The supernode representation. The funnel path is shown schematically on top, and
its supernode representation on the bottom. The positions of us and u` are shown by arrows, us
on the left. The search path through the supernode representation is shaded gray, as are the funnel
edges examined by the search.

Lemma 3.4. Let (F (u), F (v)) be an open funnel-pair with a common tangent
`(u, v) = (u`, v`), with each funnel represented by two paths of supernodes. Let nu be
the number of supernodes on F (u) between the start vertex us and u` for a particular
tangent search; define nv analogously. If the search occurs during the kth phase of
MSEARCH , then computing the tangent `(u, v) takes O(nu + nv + k) time.

We need to show how to maintain this representation of F (u) (actually of the
path π(z(u), a)) as u moves among the active vertices of U , and how to initialize the
data structure at the start of each phase. To accomplish both tasks, we consider the
shortest path tree Ta. In the kth phase we will retain only the vertices of Ta that are
ancestors of at least one apex z(u) for some active u ∈ U . This gives a tree with at
most nk leaves, and hence with at most nk − 1 nodes of degree more than two. If we
cut Ta below each node of degree greater than two and below each active apex, we get
a decomposition of Ta into at most 2nk−1 paths. We partition each of these paths into
supernodes, each with at most 2k vertices. Linking the paths back together gives a
shortest path tree of supernodes. We will ensure that the total number of supernodes
in the tree is O(knk) = O(kn2−k).

Given this tree of supernodes and the path of supernodes representing π(z(u), a),
it is relatively easy to produce the path representing π(z(u′), a) for u′ an active neigh-
bor of u in U . We compute α(u, u′) and map it to the supernode X containing it. The
descendant of X is Y , a supernode ancestor of u but not of u′. One of the (at most
two) immediate siblings of Y in the shortest path tree is Z, a supernode ancestor of
u′ but not of u. We unlink X from Y , and link X to Z instead. (If u′ is an ancestor
or descendant of u, the work required is different but still easy.) All this takes only
constant time.

In phase 0 the shortest-path tree of supernodes is just the original tree Ta: all

1622 JOHN HERSHBERGER AND SUBHASH SURI

vertices of U are active and all supernodes contain exactly one vertex. To produce the
tree of supernodes for phase k+ 1, given the tree for phase k, we delete dead vertices
and combine neighboring supernodes. More precisely, we identify the supernodes that
contain active apexes in phase k+1 and delete all supernodes that are not (improper)
ancestors of at least one such supernode. We cut the tree below every supernode
of degree greater than two and every supernode containing an active apex. This
gives a decomposition into at most 2nk+1 − 1 paths. On each path with at least two
supernodes, we merge adjacent pairs of supernodes. “Merging” two supernodes means
that we build a new binary tree whose left and right subtrees are the old supernode
trees and whose root contains the superedge linking the old supernodes. It is not
hard to show by induction on k that the number of supernodes is at most (k+1

2)nk
for k > 0. We summarize our data structure’s properties in the following lemma.

Lemma 3.5. During phase k, the shortest-path tree of supernodes contains O(knk)
supernodes. The overhead to prepare the data structure for phase k is O(knk). Given
the supernode representation of F (u), we can modify it to obtain the representation
of F (u′) for a neighboring active vertex u′ in constant time.

Remark. The bound on the number of supernodes during the kth phase can be
improved to O(nk), at the expense of increasing the tree height to 2k. The O(knk)
bound results from merging each supernode tree with at most one other at each phase;
this allows the tree height to remain at most k in phase k. By performing two rounds
of merging per phase, we can ensure that the number of supernodes is O(nk), but
the two rounds of merging may increase the tree height to 2k. We use one round of
merging because the inferior supernode bound of O(knk) is sufficient for our purpose.

3.4. Distance computation. In this section, we show how the primitives of
the previous two subsections are used to perform a matrix evaluation. Suppose we
want to compute the distance d(u, v), where u ∈ U and v ∈ V . We start by com-
puting the four lowest common ancestors α(u), β(u), α(v), β(v). By performing three
ancestor queries, we can determine the exact order of these four vertices along the
path π(a, b). The funnel-pair (F (u), F (v)) is closed if and only if the order is ei-
ther (α(u), β(u), α(v), β(v)) or (α(v), β(v), α(u), β(u)). Otherwise, the pair is an open
funnel-pair. Since each ancestor query takes O(1) time, the time to determine whether
the funnel-pair is open or not is only a constant. The following two lemmas detail
how to compute the distance d(u, v), depending upon whether the funnel-pair is open
or closed.

Lemma 3.6. If the funnel-pair (F (u), F (v)) is closed, d(u, v) can be computed in
O(1) time.

Proof. Without loss of generality, assume that the lowest common ancestor ver-
tices α(v), β(v) precede α(u), β(u) on π(a, b). See Figure 3.1 for an illustration; the
funnel-pair (F (u6), F (v10)) is closed. Then it is easy to see that

d(u, v) = d(u, α(u)) + d(α(u), β(v)) + d(v, β(v)).(3.3)

These distances can be deduced from shortest-path trees Ta and Tb in constant time
each. For instance, d(u, α(u)) = d(a, u) − d(a, α(u)), and both the distances on the
right-hand side are precomputed in Ta. This completes the proof.

Lemma 3.7. If the funnel-pair (F (u), F (v)) is open, d(u, v) can be computed in
O(τ(u, v)) time, where τ(u, v) is the time to compute the tangent `(u, v).

Proof. We compute the tangent `(u, v) for the funnel-pair (F (u), F (v)). Refer to
Figure 3.1, where the funnel-pair (F (u19), F (v10)) is open. Then it is easy to see that

d(u, v) = d(u, u`) + d(u`, v`) + d(v`, v).(3.4)

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1623

The distance d(u`, v`) is the Euclidean distance between u` and v`. The remaining
two terms are deduced from the shortest path trees Ta and Tb in constant time.
For example, consider the distance d(u, u`). If u` is an ancestor of u in Ta, then
d(u, u`) = d(a, u) − d(a, u`); otherwise u` is an ancestor of u in Tb, and d(u, u`) =
d(b, u) − d(b, u`). In either case, the distances to a and b are precomputed and
accessible in constant time apiece.

The preceding two lemmas have established that the dominant term in matrix
operations is the cost of finding tangents between open funnel-pairs.The next two
sections contain the main result of our paper. Section 4 presents our algorithm for
computing tangents, and section 5 analyzes the algorithm, showing that it takes O(k)
amortized time to compute a tangent in the kth phase of the matrix-searching.

4. The algorithm. We describe how to perform the matrix operations during
one phase of the subroutine REDUCE . Suppose that we are in the kth phase of
the algorithm: the submatrix Ak has size nk × 2nk, where nk ≤ n2−k. Matrix-
searching theory tells us that REDUCE performs at most 3nk matrix evaluations.
We label the matrix evaluations in time-order, where time runs in integer steps from
1 to 3nk. By convention, the matrix entry being evaluated at time t is d(u(t), v(t)),
where 1 ≤ t ≤ 3nk and u(t) ∈ U and v(t) ∈ V are active vertices. The preceding
section shows that the dominant cost in computing d(u(t), v(t)) is finding the tangent
`(u(t), v(t)). Therefore, in the remainder of this section, we focus on the tangent-
finding component of the matrix operations.

We use the shorthand notation `(t) to denote the tangent computed at time t:

`(t) = `(u(t), v(t)).

The vertices u`(t) and v`(t), as before, denote the endpoints of `(t). Our main sub-
routine for implementing REDUCE is called ADVANCE ; it computes the tangent
`(t+ 1) = `(u(t+ 1), v(t+ 1)) and advances the current time from t to t + 1. We
maintain the following two auxiliary data fields to support the operations in the sub-
routine at the current time t:

1. `(t): This is the tangent computed at time t; that is, `(t) = `(u(t), v(t)). We
store u`(t) and v`(t), the two endpoints of `(t), at vertex v(t).

2. ˜̀(u): This is the most recent tangent computed at the vertex u prior to the
current time t; the time t is implicit in this definition. Each vertex u ∈ U
maintains its ˜̀(u), which is initially set to NIL.

The pseudocode for ADVANCE finds the tangent `(t+ 1) between the funnels
F (u(t+ 1)) and F (v(t+ 1)). The algorithm has two nearly identical parts, one exe-
cuted when the V -vertex advances, and the other when the U -vertex advances. The
two parts differ in one important detail: the choice of the vertex where the search for
new tangent begins. When the V -vertex advances (Step 1), the search starts at the
lowest common ancestor α(v(t), v(t+ 1)) in V , and at the previous tangent endpoint
u`(t) in U . However, when the U -vertex advances (Step 2), a more involved choice
of the start vertex is needed. We introduce these vertices, u∗(t+ 1) and v∗(t+ 1), in
the following; see Figure 4.1.

Let t′ denote the time when ˜̀(u(t+ 1)) was computed; it is undefined if ˜̀(u(t+ 1))
is NIL. Thus `(t′) = ˜̀(u(t+ 1)). The two endpoints of `(t′) are denoted u`(t

′) and
v`(t

′). Let uα = α(u(t), u(t+ 1)). Then the start vertex u∗(t+ 1) is defined as follows.

u∗(t+ 1) =

{
uα if t′ is undefined or if uα is a descendant of u`(t

′) in Ta,
u`(t

′) otherwise.

1624 JOHN HERSHBERGER AND SUBHASH SURI

u(t+1) u(t)

u

v

l

(t’)

(t’)

αu

v(t) = v(t+1)v(t’)

u(t)

v (t)l

v
v

α
β

(a) (b)

Fig. 4.1. The definition of the start vertices u∗(t + 1) and v∗(t + 1). In (a), u∗(t + 1) = uα,
and in (b), v∗(t + 1) = vβ .

We observe that u∗(t+ 1) is a vertex in the funnel-difference ∆F (u(t+ 1), u(t)).
Next, we define v∗(t+ 1), which is a vertex in the funnel-difference ∆F (v(t), v(t′));

recall that v(t′) is the vertex on the V -chain that was current at time t′. We define
vα and vβ as the vertices bounding the funnel-difference ∆F (v(t), v(t′)):

vα = α(v(t), v(t′)), vβ = β(v(t), v(t′)).

Finally, recall that v`(t) is the V -chain endpoint of the tangent `(t). The start vertex
v∗(t+ 1) is defined as follows.

v∗(t+ 1) =

vα if t′ is defined and vα is a descendant of v`(t) in Ta,
vβ if t′ is defined and vβ is a descendant of v`(t) in Tb,
v`(t) otherwise.

With these definitions, we are ready to present the pseudocode for ADVANCE .
The pseudocode talks about “painting” edges, which is merely a device used by our
analysis to prove the linearity of the algorithm. To perform the pseudocode test
whether `(t+ 1) is the same as a previously computed tangent `′, the algorithm checks
whether `′ is still tangent to F (u(t+ 1)) and F (v(t+ 1)) at its endpoints. This takes
constant time using lowest common ancestor queries.

ADVANCE (t)

(∗ By matrix-searching theory, either v(t+ 1) 6= v(t) or u(t+ 1) 6= u(t),
but not both. ∗)
1. if v(t+ 1) 6= v(t) then

(a) if `(t+ 1) = `(t) then
Set `(t+ 1) = `(t);

(b) else
Simultaneously search for v`(t+ 1) on F (v(t+ 1)) starting from

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1625

α(v(t), v(t+ 1)), and for u`(t+ 1) on F (u(t+ 1)) starting from u`(t).

Paint the edges of F (u(t+ 1)) between u`(t) and u`(t+ 1);

2. else (∗ u(t+ 1) 6= u(t) ∗)
(a) if `(t+ 1) ∈ {`(t), ˜̀(u(t+ 1))} then

Set `(t+ 1) accordingly;
(b) else

Simultaneously search for v`(t+ 1) on F (v(t+ 1)) starting from
v∗(t+ 1), and for u`(t+ 1) on F (u(t+ 1)) starting from u∗(t+ 1).

Paint the edges of F (v(t+ 1)) between v∗(t+ 1) and v`(t+ 1),
and paint the edges of F (u(t+ 1)) between u∗(t+ 1) and u`(t+ 1);

end ADVANCE

ADVANCE correctly computes the new tangent `(t+ 1): Steps 1a and 2a set
`(t+ 1) to a previously computed tangent if that tangent is still valid at time t + 1.
The remaining steps search for the tangent endpoints on funnels F (u(t+ 1)) and
F (v(t+ 1)). Since u`(t+ 1) ∈ F (u(t+ 1)) and v`(t+ 1) ∈ F (v(t+ 1)), these searches
are also correct. (The choice of the vertices where the search starts is relevant only
for analyzing the running time.)

5. The analysis. This section establishes the linearity of our matrix-searching
algorithm. In the kth phase of MSEARCH , the submatrix input to REDUCE has size
nk × 2nk, where nk ≤ n2−k, and the total number of matrix evaluations performed
by REDUCE is O(nk). The discussion in subsection 3.4 shows that the only part of a
matrix operation requiring nonconstant work is the tangent computation. Thus, the
running time of ADVANCE dominates the running time of REDUCE in a phase.

5.1. The analysis of ADVANCE . The running time of ADVANCE is dom-
inated by the searches performed in the tangent-finding steps. The remaining steps
take only constant time apiece per step: the tests of tangent equivalence in Steps 1a
and 2a can be made in constant time, and the start vertices u∗(t+ 1) and v∗(t+ 1)
can also be computed in constant time.

We bound the cost of computing tangents in ADVANCE during the kth phase by
arguing that each funnel edge is searched over at most twice. Using the terminology
of section 3.3, if us, vs are the start vertices for the tangent search, then the edges
of F (u) between us and u` and the edges of F (v) between vs and v` are considered
to be searched over when `(u, v) is computed. (The key point is that the actual cost
of computing the tangent is O(nu + nv + k), where nu + nv − 2 is the number of
superedges searched over during this tangent-finding operation; see Lemma 3.4.)

Except for the search on the V -chain in Step 1b, all other searches in ADVANCE
are accounted for by a “painting” paradigm: we paint the edges that are searched
over during a tangent computation, and each edge is painted at most once (Lemmas
5.3 and 5.4). We use a separate accounting scheme (Lemma 5.1) to count the edges
of V searched over in Step 1b. Together, these lemmas prove that no edge of either
U or V is searched over more than twice during a complete phase of REDUCE .

Lemma 5.1. During a phase of REDUCE, each edge in the V -chain is searched
over in Step 1b of ADVANCE at most once.

Proof. Step 1 is executed when u(t+ 1) = u(t), and v(t+ 1) 6= v(t). The search
in Step 1b is carried out if and only if `(t+ 1) 6= `(t). These two facts together

1626 JOHN HERSHBERGER AND SUBHASH SURI

imply that v`(t+ 1) necessarily lies in the funnel-difference ∆F (v(t+ 1), v(t)). Only
edges of the funnel-difference ∆F (v(t+ 1), v(t)) are searched over. By Lemma 3.3
the funnel-differences are disjoint at any two distinct times: ∆F (v(t′ + 1), v(t′)) ∩
∆F (v(t′′ + 1), v(t′′)) = ∅ for any 0 < t′ < t′′ < 3nk. This completes the proof.

The proofs of the two remaining lemmas (Lemmas 5.3 and 5.4) are more compli-
cated, and they rely on the following technical lemma.

Lemma 5.2. Whenever edges of the V -chain are painted at time t + 1, their
extensions hit the U -chain between u(t) and u(t+ 1). Similarly, whenever edges of
the U -chain are painted at time t+1, their extensions hit the V -chain before v(t+ 1).
If the edges of the U -chain are painted because v(t+ 1) 6= v(t), then their extensions
hit the V -chain between v(t) and v(t+ 1).

Proof. The proof of the lemma depends on the fact that the painted edges lie on
a funnel, and the edges of a funnel have either monotonically decreasing or monotoni-
cally increasing slopes from one end to the other. The edges of V painted at time t+1
are in F (v(t+ 1)), and they lie between v∗(t+ 1) and v`(t+ 1). Because v`(t+ 1) be-
longs to ∆F (v(t+ 1), v(t′)), v∗(t+ 1) lies on F (v(t+ 1)) between v`(t) and v`(t+ 1).
By the slope property, the slopes of all the painted edges are between the slopes of
`(t) and `(t+ 1). By the regular expression of section 2.3, u(t) and u(t+ 1) are two
adjacent active vertices in U ; notice that u(t+ 1) can be either the successor or the
predecessor of u(t), but the two vertices must be adjacent. Because the extensions
of all the painted edges lie between π(v(t), u(t)) and π(v(t), u(t+ 1)), they must hit
the U -chain between u(t) and u(t+ 1). Figure 5.1(a) illustrates this case: the edges
painted are shown with heavy lines.

The edges of U can be painted either in Step 1b or in Step 2b. If the edges are
painted in Step 1b, then v(t+ 1) 6= v(t), but u(t) = u(t+ 1). In this case, the painted
edges lie between u`(t) and u`(t+ 1), the U -endpoints of the tangents at times t
and t + 1. Again, by the slope property, all painted edges have slopes in the range
determined by the slopes of `(t) and `(t+ 1). Since v(t) and v(t+ 1) are adjacent
active vertices of V , the extensions of all painted edges hit the V -chain between v(t)
and v(t+ 1).

Finally, if the U -edges are painted in Step 2b, then v(t) = v(t+ 1), but u(t) 6=
u(t+ 1). In this case, the painted edges lie between u∗(t+ 1) and u`(t+ 1). Since
the matrix-searching algorithm never backs up on the V -chain, the tangent endpoint
on F (u(t+ 1)) moves monotonically clockwise with time. In particular, if the old
tangent ˜̀(u(t+ 1)) is not NIL, it lies on the shortest path to some vertex v(t′) that is
before v(t+ 1) in the V -chain order. Because u`(t+ 1) belongs to ∆F (u(t+ 1), u(t)),
u∗(t+ 1) lies on F (u(t+ 1)) between u`(t

′) and u`(t+ 1). If ˜̀(u(t+ 1)) is NIL, then
u∗(t+ 1) = α(u(t), u(t+ 1)) is counterclockwise of u`(t+ 1). In either case, the slope
property ensures that the extensions of the U -edges painted in Step 2b hit the V -chain
before v(t+ 1). Figure 5.1(b) illustrates this case: the edges painted are shown with
heavy lines. This completes the proof.

The next two lemmas show that no edge of U or V is painted more than once in a
phase. Both lemmas rely on the following observations about Step 2b of ADVANCE ,
in which v(t+ 1) = v(t) and u(t+ 1) 6= u(t), and the tangent `(t+ 1) equals neither
`(t) nor ˜̀(u(t+ 1)). Let t′ denote the time when ˜̀(u(t+ 1)) is computed, assuming
it is not NIL; that is, t′ is the most recent time before t when a tangent is computed
for F (u(t+ 1)). We observe the following vertex-relations:

u(t′) = u(t+ 1), u(t′ + 1) = u(t), v(t′) = v(t′ + 1).(5.1)

The first relation follows from the definition of t′. The third follows from the first: at

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1627

u
u

v

v

v

l

l

(t)

(t)

(t+1)

(t+1)

(t+1)
u(t+1) u(t)

v(t+1)

u

u

v

l

l

(t+1)

(t’)

(t’)

(a) (b)

u (t+1)*

Fig. 5.1. Illustration for the proof of Lemma 5.2. Part (a) shows the painting of V -edges; a
symmetric case arises when u(t) is after u(t + 1). Part (b) shows the painting of U-edges (in Step
2b); in this example, the start vertex is u∗(t + 1) = α(u(t), u(t + 1)), and t′ is the time when the
old tangent ˜̀(u(t + 1)) was computed.

time t′ + 1, the algorithm must have advanced the U -vertex from u(t′) to u(t′ + 1),
keeping the V -vertex the same, since assuming otherwise contradicts the choice of
time t′. Finally, the second relation follows from the important fact that ADVANCE
visits the vertices of U in chain order (either forward or backward), never skipping
an active vertex. The direction of movement in the U -chain at time t is opposite to
the direction at time t′. A key consequence of the vertex relations in Eq. (5.1) is
that between times t′ and t, the algorithm visits vertices that are all separated from
u(t+ 1) by u(t). That is, u(t) separates u(t+ 1) from u(t′′), for t′ + 1 < t′′ < t.

Lemma 5.3. An edge of the V -chain is painted at most once per phase.

Proof. The edges of V are painted only in Step 2b. Our analysis makes crucial
use of the funnel difference ∆F (v(t), v(t′)). Since `(t+ 1) 6= `(t′), it follows that
v`(t+ 1) ∈ ∆F (v(t), v(t′)). We break up our analysis in two cases, depending upon
whether or not v`(t) ∈ ∆F (v(t), v(t′)).

Case 1. v`(t) ∈ ∆F (v(t), v(t′)), or t′ is undefined. See Figure 5.2.

In this case, we observe that v∗(t+ 1) = v`(t). Since v`(t+ 1) lies in the funnel-
difference ∆F (v(t), v(t′)), all edges of V painted at time t+1 belong to ∆F (v(t), v(t′)).
By Lemma 5.2, the extensions of the newly painted edges hit the U -chain between u(t)
and u(t+ 1). If t′ is undefined, no painted edge’s extension has hit here before, so the
newly painted edges have never been painted before. If t′ is defined, the most recent
time ADVANCE traversed this portion of U was at time t′ + 1, when the U -vertex
moved from u(t′) to u(t′ + 1). Since the V -funnel at time t′ + 1, namely, F (v(t′)), is
edge-disjoint from ∆F (v(t), v(t′)), the newly painted edges were not painted at time
step t′+1. Because u(t) separates u(t+ 1) from u(t′′) for any t′+1 < t′′ < t, it follows

1628 JOHN HERSHBERGER AND SUBHASH SURI

from Lemma 5.2 that the edges were not painted between time t′ + 1 and time t. By
Lemma 3.3, these edges were not painted at any time t′′ ≤ t′, since ∆F (v(t), v(t′)) is
disjoint from F (v(t′′)). Thus, the edges of V painted at time t + 1 have never been
painted before.

v(t) = v(t+1)v(t’)

u(t)

u(t’+1)

u(t+1)

u(t’)

v(t) = v(t+1)v(t’)

u(t)

u(t’+1)

u(t+1)

u(t’)

(a) (b)

v

v

α

β

l

v

(t)

vα
βv

vl (t)

Fig. 5.2. Illustration for Case 1 of Lemma 5.3. Parts (a) and (b) show the two symmetric cases:
in (a), the algorithm is moving forward on the U-chain at time t, and in (b), it is moving backward
at time t. The motion is suggested by the arrow on top. The funnel-difference ∆F (v(t), v(t′)) is
shown in heavy lines.

Case 2. v`(t) 6∈ ∆F (v(t), v(t′)). See Figure 5.3.
Because v`(t) ∈ F (v(t′)), we have v`(t) = v`(t

′ + 1). Furthermore, v∗(t+ 1)
equals either vα or vβ , where vα = α(v(t), v(t′)) and vβ = β(v(t), v(t′)). As noted
above, u(t) separates u(t+ 1) from u(t′′), for t′ < t′′ < t. Since the V -vertex is
confined between v(t′) and v(t) during this time interval, we can be sure that tangent
endpoints on V lie outside the funnel-difference ∆F (v(t), v(t′)) between times t′ and
t. In particular, if v∗(t+ 1) = vβ , then v`(t

′′) lies at or above v`(t) in Tb, and if
v∗(t+ 1) = vα, then v`(t

′′) lies at or above v`(t) in Ta, for any t′ < t′′ < t. Thus,
any edges painted on V between times t′ + 1 and t are disjoint from ∆F (v(t), v(t′)).
Finally, no edge of ∆F (v(t), v(t′)) is painted at or before t′, since Lemma 3.3 ensures
that ∆F (v(t), v(t′)) is disjoint from F (v(t′′)), for any t′′ ≤ t′. This completes the
proof.

Lemma 5.4. An edge of the U -chain is painted at most once per phase.
Proof. The edges of U are painted either in Step 1b or in Step 2b. If the edges

are painted in Step 1b, then v(t+ 1) 6= v(t) and the painted edges lie between u`(t)
and u`(t+ 1). By Lemma 5.2, the extensions of the newly painted edges hit the V
chain between v(t) and v(t+ 1). Because v(t) separates v(t+ 1) from v(t′), for any
t′ < t, the newly painted edges cannot have been painted at an earlier time.

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1629

v(t) = v(t+1)v(t’)

u(t)
u(t’+1)

u(t+1)
u(t’)

v (t)l

t’’

Fig. 5.3. Illustration for Case 2 of Lemma 5.3. The symmetric case, in which the algorithm is
moving backward on the U-chain at time t, is not shown.

If the edges are painted in Step 2b, then u(t+ 1) 6= u(t), and the painted edges
lie between the start vertex u∗(t+ 1) and u`(t+ 1). Let t′ denote the time when
˜̀(u(t+ 1)) is computed (possibly undefined). Since u`(t+ 1) equals neither u`(t) nor
u`(t

′), we know that u`(t+ 1) lies in the funnel-difference ∆F (u(t+ 1), u(t)). Since
the start vertex u∗(t+ 1) is guaranteed to be in ∆F (u(t+ 1), u(t)), all the newly
painted edges belong to ∆F (u(t+ 1), u(t)). If t′ is undefined, then by Lemma 3.3
no edge of ∆F (u(t+ 1), u(t)) has appeared in F (u(t′′)), for t′′ ≤ t, so none has been
painted before. If t′ is defined, the edges lying between u`(t

′) and u`(t+ 1) have
not been painted at or before time t′, since their extensions hit the V -chain after
v(t′) (cf. Lemma 5.2). No edge of the funnel-difference ∆F (u(t+ 1), u(t)) is painted
between times t′ + 1 and t, since the lowest common ancestor property implies that
∆F (u(t+ 1), u(t)) is disjoint from F (u(t′′)), for any t′ < t′′ ≤ t. Thus, none of
the newly painted edges has been painted at an earlier time. This completes the
proof.

5.2. The analysis of REDUCE and MFILL. We show that the kth phase
of MSEARCH takes O(knk) time, where nk ≤ n2−k. The analysis of the preceding
section has shown that no edge of U or V is searched over more than twice. There are
at most 3nk matrix evaluations during REDUCE in the kth phase, and by Lemma 3.4
the time for one evaluation is O(k + nu + nv), where nu + nv − 2 is the number of
superedges searched over during the evaluation. The total number of superedges and
the total overhead cost of maintaining the funnel data structure during the kth phase
is O((k+ 1)nk). Thus, the total time spent on matrix evaluations in the kth phase of
REDUCE is O((k + 1)nk).

The running time of MFILL has the same bound. Section 2.3 shows that the ma-
trix evaluations in MFILL satisfy the same regular expression as those in REDUCE .
The same analysis applies, therefore, proving that the running time of MFILL at the
kth phase is also O((k + 1)nk).

5.3. The time complexity of MSEARCH . Finally, we are ready to show
that our matrix-searching algorithm runs in O(n) time overall. The algorithm consists
of O(logn) phases, and the matrix in the kth phase has size at most nk × 2nk,

1630 JOHN HERSHBERGER AND SUBHASH SURI

where nk ≤ n2−k. In each phase, the running time is dominated by the subroutines
REDUCE and MFILL; other steps take O(nk) time. The cost of executing REDUCE
and MFILL in the kth phase is O((k + 1)nk). Thus, the total cost of the matrix-
searching algorithm MSEARCH is

T (n) = O

dlog ne∑

k=0

(k + 1)nk

 = O

(∞∑
k=0

k
n

2k

)
= O(n).

We have established our main theorem.
Theorem 5.5. Let P be a simple polygon with n vertices, and let U and V be

subchains of its boundary that together partition the vertices of P . Let M denote a
p × m matrix with M(i, j) equal to the shortest path distance between the vertices
ui ∈ U and vj ∈ V , where p = |U | and m = |V |. Then we can compute the maximum
entry in each row of M in O(n) total time.

5.4. Computing row-wise minima. The algorithm of section 4 also works
for computing row-wise minima of M . In fact, by changing the ordering of columns
and negating all distances, we can directly apply our maxima-finding algorithm to
compute the minima. Let us define an auxiliary p×m matrix M ′, where

M ′(i, j) = −M(i,m− j + 1).(5.2)

Notice that the column-ordering of M ′ is reverse of the column-ordering of M . The
triangle inequality again implies that M ′ is totally monotone.

Lemma 5.6. The matrix M ′ defined in Eq. (5.2) is totally monotone.
We can find the row-wise maxima ofM ′ (which correspond to the row-wise minima

in M) using the matrix-searching algorithm of section 4. The direction of travel in the
V -chain is now reversed, due to the reversal of columns. To account for this change,
we set a = vm and b = v1. The algorithm and its analysis remain the same. We have
the following theorem.

Theorem 5.7. Let P be a simple polygon with n vertices, and let U and V be
subchains of its boundary that together partition the vertices of P . Let M denote a
p × m matrix with M(i, j) equal to the shortest path distance between the vertices
ui ∈ U and vj ∈ V , where p = |U | and m = |V |. Then we can compute the minimum
entry in each row of M in O(n) total time.

6. Applications. In this section, we give several applications of Theorems 5.5
and 5.7. Our applications concern problems in simple polygons, where the shortest-
path metric is the most natural distance function. In addition, in several problems,
we can use the shortest-path metric to mask visibility constraints. Throughout this
section, P denotes a simple polygon, whose vertices are labeled p1, p2, . . . , pn in coun-
terclockwise order around the boundary.

6.1. The geodesic diameter and farthest neighbors. This section describes
a linear-time algorithm for computing a farthest neighbor for each vertex of P un-
der the shortest-path metric; the previous best time bound for this problem was
O(n logn) [6, 16]. The geodesic diameter of P , denoted D(P), is the maximum length
of a shortest path in P :

D(P) = max{d(x, y) | x, y ∈ P}.
The diameter is always realized by two vertices of P [16], and so finding it is a
special case of the problem of computing farthest neighbors for all vertices of P . By

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1631

computing a farthest neighbor of a vertex p ∈ P , we mean two things: identifying a
vertex q ∈ P such that d(p, q) = max{d(p, p′) | p′ ∈ P}, and computing the distance
d(p, q). We use a lemma from [16] to decompose the all-farthest neighbor problem
into at most three instances of maxima-finding in totally monotone matrices.

Let pi, pj and pk be three vertices of P such that pj is a farthest neighbor of
pi, and pk is a farthest neighbor of pj : d(pi, pj) = max{d(pi, pl) | pl ∈ P}, and
d(pj , pk) = max{d(pj , pl) | pl ∈ P}. Without loss of generality, assume that pi, pj , pk
are in counterclockwise order. The triple pi, pj , pk divides the polygon into three
disjoint chains: P1 = (pi+1, pi+2, . . . , pj−1), P2 = (pj+1, pj+2, . . . , pk−1), and P3 =
(pk+1, pk+2, . . . , pi−1). Corresponding to these chains are the three complementary
chains: Q1 = (pj , pj+1, . . . , pi), Q2 = (pk, pk+1, . . . , pj), and Q3 = (pi, pi+1, . . . , pk).
Figure 6.1 shows a schematic diagram of this construction. The following lemma is
established in [16].

p

p

p

p

p

p

i

j

k

i−1

i+1

j−1

j+1

k−1

k+1

p

p

p

Fig. 6.1. A schematic diagram showing chains Pi, for i = 1, 2, 3, in Lemma 6.1.

Lemma 6.1 (see [16]). Every vertex of the chain Pi has a farthest neighbor in
chain Qi, for i = 1, 2, 3.

Since the farthest neighbors pj and pk can be computed in linear time, using
shortest path trees [7, 11], Lemma 6.1 gives a linear-time reduction from the farthest-
neighbors problem of P to three instances of the farthest-neighbors problem between
disjoint chains. The chains Pi, for i = 1, 2, 3, cover all vertices of P except pi, pj and
pk. Since the farthest neighbors of pi and pj are already computed, only pk remains,
and we can compute its farthest neighbor in linear additional time. The farthest-
neighbors problem for the chains Pi and Qi falls within the framework of section 4
and is therefore equivalent to the problem of computing row-wise maxima in a totally
monotone matrix. By Theorem 5.5, this can be done in O(n) time, and we have the
following theorem.

Theorem 6.2. Given a simple polygon P on n vertices, we can compute a
geodesic farthest neighbor for each of its vertices in O(n) total time. Consequently,
the geodesic diameter of P can also be computed in linear time.

6.2. The external farthest neighbors. Agarwal et al. [1] gave an O(n logn)
time algorithm for computing an external farthest neighbor for all vertices of a simple
polygon. (The external farthest neighbors are computed using the external shortest

1632 JOHN HERSHBERGER AND SUBHASH SURI

path metric: the distance between two points is the length of a shortest path in
the plane minus the interior of the polygon.) The bottleneck in their algorithm is the
computation of internal farthest neighbors; the (internal) farthest neighbors algorithm
is needed to compute the external farthest neighbors within a “pocket” of the polygon.
The remaining steps of the external farthest neighbors algorithm take only O(n) time.
Thus, the following result is a direct corollary of Theorem 6.2.

Theorem 6.3. Given a simple polygon P on n vertices, we can compute a
geodesic external farthest neighbor for each of its vertices in O(n) time. Consequently,
the geodesic external diameter of P can also be computed in linear time.

6.3. Weighted nearest neighbors and Euclidean matching. An internal
diagonal of P divides the polygon into two chains. Let U and V be two polygonal
chains obtained in this way, where p = |U | and m = |V |. Let w : P → < be a real-
valued weight function on the vertices of P , and define a p×m matrix M of weighted
distances:

M(i, j) = d(ui, vj)− w(ui)− w(vj);(6.1)

It is easily seen that M is totally monotone, by the triangle inequality. The problem
of computing a weighted nearest neighbor for each vertex of U in V is equivalent to
computing row-wise minima of M . This problem arises in an algorithm of Marcotte
and Suri [13] for solving the Euclidean matching problem for points on a polygon.
That algorithm finds an optimal matching for the vertices of a simple polygon, under
the constraint that each matching edge lies inside the polygon. The algorithm is based
on divide-and-conquer, and the dominating term in the conquer step is the complexity
of solving the weighted nearest-neighbors problem as defined above. Our algorithm
of section 4 solves the row-minima problem for M in linear time, thus improving the
result in [13] from O(n log2 n) to O(n logn).

Theorem 6.4. The algorithm of Marcotte and Suri [13] for computing an optimal
matching of the vertices of a simple polygon can be implemented in O(n logn) time,
where n denotes the number of vertices of the polygon.

6.4. Closest visible vertex pair between two chains. Given two disjoint
polygonal chains U and V , the closest visible vertex problem for U and V is to find a
closest pair of vertices u ∈ U and v ∈ V that are visible to each other. The visibility
constraint implies that some vertex-pairs are not legal candidates, and thus the as-
sociated distance matrix is not fully defined. Aggarwal et al. [3] gave a complicated
linear-time algorithm for this problem that exploits the special structure of the le-
gal entries in the matrix. A linear-time algorithm due to Amato [4] corrects minor
problems with the algorithm of Aggarwal et al. Amato’s algorithm can also be im-
plemented on a Concurrent Read Concurrent Write Parallel Random Access Machine
(CREW PRAM) in time O(logn) using O(n) processors. However, like the algorithm
of Aggarwal et al., Amato’s algorithm is quite complicated. In this section, we show
that a simpler and considerably more direct linear-time algorithm follows from our
paradigm of matrix-searching using the shortest path metric.

Let M denote the p × m matrix whose (i, j) entry denotes the shortest path
distance between ui and vj :

M(i, j) = d(ui, vj).

The triangle inequality implies that M is totally monotone, and so by Theorem 5.7,
we can compute its row-minima in O(n) time. Suppose that M(i∗, j∗) is the overall

MATRIX SEARCHING WITH THE SHORTEST-PATH METRIC 1633

Table 7.1

Problem Previous result New result
Geodesic diameter O(n logn) O(n)
All farthest neighbors O(n logn) O(n)
External farthest neighbors O(n logn) O(n)

Euclidean matching O(n log2 n) O(n logn)
2-chain closest visible pair O(n) O(n)

minimum entry of M ; clearly, this entry is also minimum in row i∗. We claim that
the pair (ui∗ , vj∗) is a closest visible pair in U × V . By assumption, the distance
between ui∗ and vj∗ is minimum over all u, v pairs, where u ∈ U and v ∈ V ; we need
to show only that ui∗ and vj∗ are mutually visible. We assume otherwise and arrive
at a contradiction. If ui∗ and vj∗ are not visible, then the shortest path π(ui∗ , vj∗)
has at least one intermediate vertex, say, z. If z ∈ U , then d(z, vj∗) < d(ui∗ , vj∗), and
if z ∈ V , then d(ui∗ , z) < d(ui∗ , vj∗). In either case, the minimality of M(i∗, j∗) =
d(ui∗ , vj∗) is contradicted. Thus we have the following theorem.

Theorem 6.5. Let U and V be two vertex-disjoint chains that partition the
vertices of a simple polygon P . Then a closest visible vertex pair of U and V can be
found in linear time.

Theorem 6.5 applies equally well to computing the closest visible pair of vertices
in two polygons. In linear time, we can easily transform the problem to two chains U
and V that satisfy the conditions of the theorem.

7. Closing remarks. We have presented a linear-time algorithm for computing
the row-wise maxima or minima of a totally monotone matrix whose entries corre-
spond to shortest path distances between two chains of a simple polygon. The result
appears to be quite powerful and has several applications in computational geometry.
The most direct applications concern distance-related problems in simple polygons,
since the shortest path metric is the natural metric for nonconvex simple polygons.
However, as Theorem 6.5 demonstrates, the result also has applications when the
distances are Euclidean but there is an additional visibility constraint. The gener-
alization to the shortest path metric helps mask the visibility constraint. Table 7.1
summarizes the main applications of our result.

Using some additional techniques in combination with the matrix-searching result
of this paper, we have also obtained a linear-time algorithm for computing a shortest
diagonal of a simple polygon [12].

REFERENCES

[1] P. K. Agarwal, A. Aggarwal, B. Aronov, S. R. Kosaraju, B. Schieber, and S. Suri,
Computing external-furthest neighbors for a simple polygon, Discrete Appl. Math., 31
(1991), pp. 97–111.

[2] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
matrix searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[3] A. Aggarwal, S. Moran, P. Shor, and S. Suri, Computing the minimum visible vertex dis-
tance between two polygons, in Proc. of 1st Workshop on Algorithms and Data Structures,
Springer-Verlag, New York, 1989, pp. 115–134.

[4] N. M. Amato, Finding a closest visible vertex pair between two polygons, Algorithmica, 14
(1995), pp. 183–201.

[5] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485–524.

1634 JOHN HERSHBERGER AND SUBHASH SURI

[6] L. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, J. Comput.
System Sci., 39 (1989), pp. 126–152. Special issue of selected papers from the 3rd Annual
ACM Symposium on Computational Geometry, 1987.

[7] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms
for visibility and shortest path problems inside triangulated simple polygons, Algorithmica,
2 (1987), pp. 209–233.

[8] L. Guibas, J. Hershberger, and J. Snoeyink, Compact interval trees: A data structure for
convex hulls, Internat. J. Comput. Geom. Appl., 1 (1991), pp. 1–22.

[9] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338–355.

[10] J. Hershberger, A new data structure for shortest path queries in a simple polygon, Inform.
Process. Lett., 38 (1991), pp. 231–235.

[11] J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy
class, Comput. Geom., 4 (1994), pp. 63–97.

[12] J. Hershberger and S. Suri, Finding a shortest diagonal of a simple polygon in linear time,
Comput. Geom., 7 (1997), pp. 149–204.

[13] O. Marcotte and S. Suri, Fast matching algorithms for points on a polygon, SIAM J. Com-
put., 20 (1991), pp. 405–422.

[14] M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane, J. Comput.
System Sci., 23 (1981), pp. 166–204.

[15] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[16] S. Suri, Computing geodesic furthest neighbors in simple polygons, J. Comput. System Sci., 39
(1989), pp. 220–235.

RANDOMIZED Õ(M(|V |)) ALGORITHMS FOR PROBLEMS IN
MATCHING THEORY∗

JOSEPH CHERIYAN†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1635–1655, December 1997 004

Abstract. A randomized (Las Vegas) algorithm is given for finding the Gallai–Edmonds de-
composition of a graph. Let n denote the number of vertices, and let M(n) denote the number of
arithmetic operations for multiplying two n×n matrices. The sequential running time (i.e., number
of bit operations) is within a poly-logarithmic factor of M(n). The parallel complexity is O((logn)2)
parallel time using a number of processors within a poly-logarithmic factor of M(n). The same
complexity bounds suffice for solving several other problems:

(i) finding a minimum vertex cover in a bipartite graph,
(ii) finding a minimum X→Y vertex separator in a directed graph, where X and Y are specified

sets of vertices,
(iii) finding the allowed edges (i.e., edges that occur in some maximum matching) of a graph,

and
(iv) finding the canonical partition of the vertex set of an elementary graph.

The sequential algorithms for problems (i), (ii), and (iv) are Las Vegas, and the algorithm for
problem (iii) is Monte Carlo. The new complexity bounds are significantly better than the best
previous ones, e.g., using the best value of M(n) currently known, the new sequential running time
is O(n2.38) versus the previous best O(n2.5/(logn)) or more.

Key words. randomized algorithms, matching theory, Gallai–Edmonds decomposition, allowed
edges, canonical partition, bipartite minimum vertex covers, digraph minimum vertex separators

AMS subject classifications. 68R10, 05C85, 05C50, 05C40, 05C70, 90C27

PII. S0097539793256223

1. Introduction. A matching of an undirected, possibly nonbipartite, graph
G = (V,E) is a subset E′ of the edges such that no two of the edges in E′ have a
vertex in common. A perfect matching is one with cardinality |V |/2. Tutte [T 47]
gave a good characterization of graphs that have perfect matchings, i.e., he showed
that the perfect matching decision problem (deciding whether or not a given graph
has a perfect matching) is in NP ∩ co-NP. One of Tutte’s innovations was introducing

the skew symmetric adjacency matrix B̃ of the graph G, defined as follows: Associate
each edge ij of G with a distinct variable xij . Then B̃ = B̃(xij) is a |V | × |V | matrix
whose entries are given by

B̃ij =

xij if i > j and ij ∈ E,
−xij if i < j and ij ∈ E,
0 otherwise.

Tutte observed thatG has a perfect matching iff the determinant of B̃(xij), det(B̃(xij)),

is not identically zero; here, det(B̃(xij)) is a polynomial in the variables xij . Lovász
[Lo 79] used this observation to give an efficient randomized algorithm for the perfect
matching decision problem: Choose a prime number q = |V |O(1), and substitute each

∗Received by the editors September 6, 1993; accepted for publication (in revised form) October
30, 1995.

http://www.siam.org/journals/sicomp/26-6/25622.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1 (jcheriyan@watdragon.uwaterloo.ca). This research was supported by NSERC
grant OGP0138432 (NSERC code OGPIN 007), by a University of Waterloo faculty research grant,

and by the Lucille and David Packard Fellowship of Éva Tardos.

1635

1636 JOSEPH CHERIYAN

variable xij in B̃ by an independent random number drawn from {1, 2, . . . , q − 1}.
Compute the determinant of the resulting random matrix B over the field of integers
modulo q. With high probability (i.e., probability ≥ 1 − 1/Ω(|V |); see Lemma 2.1),

det(B) 6= 0 mod q iff det(B̃(xij)) is not identically zero iff G has a perfect matching.
This algorithm has two especially attractive features: it is simple, solving the decision
problem by executing one “matrix operation,” and it is efficient, running in sequential
time Õ(M(|V |)) = O(|V |2.38) and in parallel time O((log |V |)2) using Õ(M(|V |)) pro-
cessors. Here, M(n) denotes the number of arithmetic operations for multiplying two
n×n matrices and is currently known to be O(n2.376); see Coppersmith and Winograd
[CW 90]. Throughout, the bounds on the sequential running time or on the number
of parallel processors are stated for the arithmetic complexity model (uniform-cost
RAM or PRAM), but they apply also to the bit complexity model because, for each
arithmetic operation, comparison, or data transfer, each operand has O(log |V |) bits,
hence the number of bit operations is at most O((log |V |)2) times the number of
arithmetic operations; see the last paragraph of section 2.

The problem of finding a perfect matching of a graph G in time polynomial
in |V (G)| remained open until Edmonds [E 65] gave the first algorithm. Edmonds’
algorithm solves the following more general problem: For every graphG, the algorithm
finds a matching of maximum cardinality in time |V (G)|O(1). One consequence of the
algorithm is a theorem that was discovered independently by Gallai [Ga 64], which is
the so-called Gallai–Edmonds theorem. According to this theorem, for every graph
G the vertex set can be partitioned into three sets A(G), C(G), D(G) in a unique
way such that certain properties hold (see Theorem 3.1). The partition gives much
useful information, e.g., the cardinality of a maximum matching, the vertices that
are incident to every maximum matching, etc. Several algorithms for constructing
the partition are known. Edmonds’ matching algorithm implicitly constructs the
partition. Lovász (see [Kf 86, section 2]) developed a randomized algorithm for finding

the Gallai–Edmonds decomposition that runs in time Õ(|V |M(|V |)); though there are
faster algorithms for finding the decomposition, the algorithm of [Kf 86] is interesting
for its simplicity.

This paper (see Figure 1) presents a simple and efficient randomized algorithm
for finding the Gallai–Edmonds decomposition. Lemma 3.3 shows that, with high
probability, the partition A(G) ∪ C(G), D(G) for a given graph G can be found by
computing a basis for the null space of a random skew symmetric adjacency ma-
trix B, i.e., executing one “matrix operation” on B yields this partition. Obtaining
the partition A(G), C(G), D(G) from A(G) ∪ C(G), D(G) is trivial. The sequential

running time is Õ(M(|V |)) and the parallel time is O((log |V |)2) using Õ(M(|V |))
processors. Our algorithm is closely related to Lovász’s algorithm (in [Kf 86]) for the
Gallai–Edmonds decomposition; also, the algorithm uses a technique due to Eberly
[E 91]. The algorithm, its proof, and running time analysis are all quite simple. Due
to the information provided by the Gallai–Edmonds decomposition, our algorithm can
be used to find a minimum cardinality vertex cover of a bipartite graph within the
same complexity bounds. The minimum cardinality bipartite vertex cover problem is
equivalent to the problem of finding a minimum vertex separator for two given vertex
sets X and Y in a directed graph (see Proposition 2.4); hence the directed graph
problem can be solved within the same complexity bounds.

An edge of a graph G is called allowed if it occurs in at least one maximum cardi-
nality matching. Consider the problem of finding the allowed edges. If G has a perfect
matching, then the Gallai–Edmonds decomposition gives no information about the al-

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1637

lowed edges because the partition A(G), C(G), D(G) is trivial with A(G) = ∅ = D(G).
Rabin and Vazirani [RV 89], in an elegant study of the random skew symmetric adja-
cency matrix B, observed that, if det(B) 6= 0 and the (i, j) minor of B (i.e., the deter-
minant of the submatrix obtained from B by removing row i and column j) is nonzero,
then the edge ij (if present) must be allowed. Moreover, all of the (i, j) minors of B
can be computed simultaneously by computing the inverse B−1; the (j, i) entry of B−1

equals (−1)i+j/ det(B) times the (i, j) minor of B. Combining Rabin and Vazirani’s
method with our algorithm for the Gallai–Edmonds decomposition gives a random-
ized algorithm for finding the allowed edges of arbitrary graphs (see section 3.3); the

sequential running time is Õ(M(|V |)) and the parallel time is O((log |V |)2) using

Õ(M(|V |)) processors. We also give a randomized algorithm, with the same com-
plexity bounds for finding the canonical partition of an elementary graph, where a

1

2

3 4

5
6

7 8

9 1011

12 13

14

D

A

C

graph G (|V | = 14, |E| = 19)

� for i = 1 : size(adj),
for j = 1 : size(adj),

B(i, j) = adj(i, j) ∗ (i− j);
end

end
� rank(B)
ans = 12
% compute basis for null space of B
� N = null(B)
ans =

0.1508 0.5161

0.1877 0.2578

−0.3753− 0.5156

0.1877 0.2578

0.2983− 0.5170

−0.8228 0.2599

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

Fig. 1. Finding the Gallai–Edmonds decomposition of an example graph G, using Lemma 3.3.
The MATLAB code forms a pseudorandom skew symmetric adjacency matrix B from the adjacency
matrix adj of G by substituting (i − j) for each nonzero adjij . With high probability, a vertex j
is noncritical iff row j of the basis N of the null space of B is nonzero. The resulting partition,
A = {v7, v8}, C = {v9, . . . , v14}, D = {v1, . . . , v6}, is shown. Note that each connected component
of D has odd cardinality and each connected component of C has even cardinality. Since rank(B) =
12 = |V | − (]components(D) − |A|), we have ν(G) = 6. It follows that this partition gives the
Gallai–Edmonds decomposition.

1638 JOSEPH CHERIYAN

graph is called elementary if it has a perfect matching and its allowed edges form a
connected spanning subgraph (see section 3.4).

Both Lovász’s algorithm for the perfect matching decision problem and our al-
gorithm for the Gallai–Edmonds decomposition are Monte Carlo; however, using re-
sults from matching theory, we show how to make both algorithms Las Vegas while
achieving the same sequential and parallel complexity bounds. While analyzing our
randomized algorithms, we assume that the random bits drawn by the execution have
no effect on the sequential or parallel complexity; this assumption may not be appro-
priate in other contexts. More precisely, for the execution of a randomized algorithm
on a fixed input, let us take the sequential running time (or parallel running time,
or number of parallel processors) to be the maximum sequential running time (or
maximum parallel running time, or maximum number of parallel processors) over all
possible choices of the random bits. A randomized algorithm is said to be Monte
Carlo if, for a fixed input, an execution may give incorrect results with small prob-
ability. For a randomized algorithm and a problem instance of size n, an event is
said to occur with small probability if the probability is ≤ 1/Ω(n). A randomized
algorithm is said to be Las Vegas if, for a fixed input, an execution either returns an
output guaranteed to be correct or reports failure, the latter with small probability.
A Las Vegas algorithm may be trivially converted into a Monte Carlo algorithm with-
out changing the complexity. To convert a Monte Carlo algorithm into a Las Vegas
algorithm, we need a subroutine for verifying whether the output of the Monte Carlo
algorithm is correct. If the complexity of the verifying subroutine is bounded by that
of the Monte Carlo algorithm, then the Las Vegas and Monte Carlo algorithms have
the same order of complexity. This raises a difficulty for our randomized algorithms:
We need to verify the correctness of results for problems in matching theory within a
complexity bound that is significantly less than that of the best algorithms known for
finding a maximum cardinality matching (see the next paragraph). Fortunately, the
partition of V (G) computed by our randomized algorithm for the Gallai–Edmonds

decomposition can be verified in sequential time Õ(|E| + |V |) (or in parallel time

O((log |V |)2) using Õ(|E| + |V |) parallel processors). Consequently, our algorithms
for the Gallai–Edmonds decomposition, a minimum vertex cover of a bipartite graph,
and a minimum vertex separator of a directed graph all can be made Las Vegas with-
out affecting the complexity. If the graph is bipartite, then our algorithm for finding
the allowed edges can be made Las Vegas without affecting the complexity, but for
nonbipartite graphs, we do not have a sufficiently efficient subroutine for verifying the
allowed edges. Given an elementary graph, there is a sequential Õ(|E|+ |V |)-time al-
gorithm for verifying whether the partition computed by our Monte Carlo algorithm
is a canonical partition (see [L 95]), so our sequential algorithm for the canonical
partition can be made Las Vegas without affecting the complexity.

We briefly discuss the best sequential and parallel complexities known for comput-
ing a maximum cardinality (or a perfect) matching. The fastest known sequential algo-
rithms for finding a maximum matching are due to Micali and Vazirani [MV 80], Blum
[B 90], and Gabow and Tarjan [GT 91] (also see [V 94]) and run in time O(|E|√|V |)
(for dense graphs this is O(|V |2.5) time). These algorithms are deterministic, how-
ever, and are significantly slower than Lovász’s randomized algorithm for the perfect
matching decision problem. At present, all efficient (i.e., poly-logarithmic time and
polynomial number of processors) parallel algorithms for matching problems use ran-
domization. The best parallel algorithms for finding a maximum matching are the
Monte Carlo algorithms of Mulmuley, Vazirani, and Vazirani [MVV 87], Galil and

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1639

Pan [GP 88], and Karp, Upfal, and Wigderson [KUW 86]; the parallel complexities

are O((log |V |)2) time using Õ(|V | |E|M(|V |)) processors and O((log |V |)3) time us-

ing Õ(|V |M(|V |)) processors, respectively. Our parallel complexity bounds are stated
for the Exclusive Read Exclusive Write (EREW) PRAM model. Efficient parallel Las
Vegas algorithms for matching problems have been designed by Karloff [Kf 86] and
Wein [W 91].

It turns out that our algorithm for finding a minimum vertex separator for two
given vertex sets X and Y in a directed graph can be developed independently of
matching theory; this is done in section 4, building on the work of Linial, Lovász,
and Wigderson [LLW 88] and Cheriyan and Reif [CR 94]. Preliminary versions of the
results of computing the Gallai–Edmonds decomposition and directed graph X→Y
separators have appeared in [C 94] and [C 93], respectively.

Section 2 contains notation, definitions, and preliminary results. Section 3 de-
velops the algorithms for problems in matching theory. Section 4 is independent
of section 3 and develops an algorithm for a minimum X→Y separator in a directed
graph. Finally, Section 5 contains conclusions, and the appendix contains some proofs.

2. Preliminaries. For the given graph G = (V,E), we use n and m to denote
the number of vertices and edges, i.e., n = |V | and m = |E|. For a subset X of V ,
X denotes V − X. For a matrix A with row and column indices from V and two
subsets X, Y of V , A(X,Y) denotes the submatrix of A formed by the X-rows and
the Y -columns. The vector with a 1 in position j and zeros elsewhere is denoted by
ej , and [Aej] denotes the (n+ 1)× n matrix formed by adding the (n+ 1)th row ej to

an n× n matrix A.

A few standard definitions from matching theory are needed; see [LP 86]. An
odd (even) component of a graph is a connected component whose vertex set has odd
(even) cardinality. A vertex cover of a graph G = (V,E) is a vertex set C ⊆ V such
that each edge is incident with some vertex of C. Given a graph G = (V,E) and a
matching E′, a vertex is called matched if it is incident to an edge of E′ and is called
exposed otherwise. A near perfect matching is one with exactly one exposed vertex.
For a graph G, ν(G) denotes the number of edges of a maximum matching. The
deficiency of G is the number of vertices exposed in a maximum matching n− 2ν(G).
A vertex x is called noncritical if it is exposed in at least one maximum matching,
otherwise x is called critical. Equivalently, x is noncritical if ν(G − x) = ν(G) and
is critical if ν(G − x) < ν(G). A graph H is called factor critical if for each of its
vertices x, H − x has a perfect matching.

The following lemma due to Zippel [Z 79] and Schwartz [Sc 80] (also see [Ko 91,
Corollary 40.2]) is useful for estimating the failure probability of a whole class of
randomized algorithms.

Lemma 2.1 (Zippel–Schwartz). If p(x1, x2, . . . , xm) is a nonzero polynomial of
degree d with coefficients in a field and S is a subset of the field, then the probability
that p evaluates to zero on a random element (s1, s2, . . . , sm) ∈ Sm is at most d/|S|.

Recall from section 1 the definition of the skew symmetric adjacency matrix B̃ =
B̃(xij) of a graph G and Tutte’s observation that det(B̃) is not identically zero iff G
has a perfect matching. Lovász generalized this observation; for a proof, see [RV 89].

Proposition 2.2 (Lovász). Let B̃ = B̃(xij) be the skew symmetric adjacency

matrix of a graph G. Then rank(B̃) = 2ν(G).

A random skew symmetric adjacency matrix B is obtained by substituting the
variables xij in B̃(xij) by independent random numbers wij from a subset {1, . . . ,W}

1640 JOSEPH CHERIYAN

of a field. The next result is due to Lovász [Lo 79] and follows from the previous one
by applying the Zippel–Schwartz lemma.

Proposition 2.3 (Lovász). Let B = B̃(wij) be a random skew symmetric
adjacency matrix of a graph G, where the wij are independent random numbers
from {1, . . . ,W}. Then rank(B) ≤ 2ν(G), and with probability at least 1 − (n/W),
rank(B) = 2ν(G).

Given a digraph (directed graph) G = (V,E) and a pair of subsets X and Y of
the vertices, an X→Y (vertex) separator is a set of vertices S such that G − S has
no path from a vertex in X − S to a vertex in Y − S. For a pair of subsets X and Y
of the vertices, p(X,Y) denotes the maximum number of vertex disjoint paths from
X to Y (any two of these paths have no vertices in common, not even the terminal
vertices). Clearly, every X→Y separator has cardinality at least p(X,Y). Menger’s
theorem states that for every pair of subsets X and Y of the vertices, there exists an
X→Y separator with cardinality p(X,Y). We call an X→Y separator minimum if
its cardinality is minimum, namely, p(X,Y).

Let us call two problems linear-time equivalent if there is a linear-time algorithm
to transform an instance of the first problem to an instance of the second such that
a solution to the second instance can be transformed in linear time to a solution of
the first instance, and vice versa. Part (i) of the next proposition is well known. The
novel point of part (ii) is that a digraph minimum vertex separator can be obtained in
linear time from an arbitrary minimum vertex cover of an appropriately constructed
bipartite graph. See the appendix for a proof of the proposition.

Proposition 2.4.

(i) The problem of finding a maximum cardinality matching in a bipartite graph
is linear-time equivalent to the problem of finding a maximum cardinality set
of vertex-disjoint X→Y paths in a digraph.

(ii) The problem of finding a minimum vertex cover in a bipartite graph is linear-
time equivalent to the problem of finding a minimum X→Y separator in a
digraph.

We use the soft-Oh notation to denote the complexity of algorithms. The soft-
Oh notation drops poly-logarithmic factors: For functions f and g, f is Õ(g) iff
there are constants n0, k ≥ 0 such that f(n) ≤ g(n)(logn)k, for all n ≥ n0. Note

that Õ(M(n)) = O(n2.38), since M(n) is known to be O(n2.376) (see section 1).
All computations of the algorithms presented below are over the field Zq of integers
modulo a prime number q. When choosing random numbers w, we assume that they
are drawn from the uniform distribution over {1, . . . ,W}, where W is an integer
and W < q. Throughout, we take q = |V (G)|O(1); i.e., q is polynomially bounded
in the number of vertices of the graph G. Consider the number of bit operations for
multiplying two |V |×|V | matrices over the field of integers modulo q. Since an integer
modulo q can be represented using O(log q) = O(log |V |) bits and the multiplication
of two q-bit numbers takes O(q2) bit operations, it follows that the number of bit

operations is Õ(M(|V |)).

3. Randomized algorithms for problems in matching theory. This sec-
tion develops randomized Õ(M(|V |))-time algorithms for the following problems in
matching theory: finding a Gallai–Edmonds decomposition; finding a minimum ver-
tex cover in a bipartite graph; finding the allowed edges of a graph; and finding the
canonical partition of an elementary graph.

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1641

3.1. A randomized algorithm for the Gallai–Edmonds decomposition.
Recall that a vertex x is called noncritical if it is exposed in at least one maximum
matching, otherwise x is called critical. We use D(G) to denote the set of noncritical
vertices and A(G) to denote the set of vertices in V (G) −D(G) adjacent to vertices
of D(G). The set of remaining vertices, V (G)− (D(G) ∪A(G)), is denoted by C(G).
For ease of notation, D(G) and C(G) are also used to denote the subgraphs of G
induced by the respective vertex sets. See [LP 86, Theorem 3.2.1] for a proof of the
next theorem.

Theorem 3.1 (Gallai–Edmonds). Let G be a graph, and let D(G), A(G), and
C(G) be as defined above. Then

(i) each component of the subgraph induced by C(G) has a perfect matching;
(ii) each component of the subgraph induced by D(G) is factor critical;
(iii) the deficiency of G equals

]components(D(G))− |A(G)|,

where]components(D(G)) denotes the number of connected components in
the subgraph induced by D(G);

(iv) every maximum matching of G contains a perfect matching of each component
of C(G), a near perfect matching of each component of D(G), and matches
all the vertices of A(G) with vertices in distinct components of D(G).

The key result for our algorithm follows. Recall the notation [Bej] from section 2.

Lemma 3.2. Let B = B̃(wij) be a random skew symmetric adjacency matrix of a
graph G, where the wij are independent random numbers from {1, . . . ,W}. Consider
any vertex x, and let j be its index in B.

(i) If x is noncritical, then with probability at least 1 − (2n/W) the rank of the
matrix [Bej] is greater than that of B.

(ii) If x is critical, then with probability at least 1− (n/W) the rank of the matrix
[Bej] equals that of B.

Proof. Consider the augmented graph G′ and its random skew symmetric adja-
cency matrix B′, where G′ is obtained from G by adding a new vertex z (with index
n + 1) and the edge xz, and B′ is obtained from B by adding a row r · ej and a
corresponding column, where r is a random number independent of the entries of B,
i.e.,

B′ =

B 0
...

−r
...

0 . . . r . . . 0

.

Consider the cardinality of a maximum matching of G′. If there exists a maximum
matching of G with x exposed, then ν(G′) is greater than ν(G) because the new edge
xz of G′ may be added to the maximum matching of G. However, if x is matched
in every maximum matching of G, then ν(G′) equals ν(G). In other words, x is
noncritical in G iff ν(G′) is greater than ν(G). Applying Proposition 2.3 to G′ and
B′, we see that if x is noncritical in G, then with probability at least 1− (2n/W),

rank(B′) = 2ν(G′) = 2ν(G) + 2 = rank(B) + 2.

1642 JOSEPH CHERIYAN

Consider the matrix [Bej] obtained from B′ by removing the last column and then

dividing the last row by r. Since rank([Bej]) ≥ rank(B′) − 1, part (i) of the lemma

follows.
For part (ii) we have seen that ν(G′) equals ν(G) if x is critical. Hence, with

probability at least 1−(n/W), rank(B) = 2ν(G) = 2ν(G′) ≥ rank(B′) ≥ rank([Bej]) ≥
rank(B).

Algorithm 1. Monte Carlo Gallai–Edmonds Decomposition
Input: Graph G = (V,E).
Output: With high probability, the Gallai–Edmonds decomposition of G.
Step 0:

Order the vertices, and number them 1, 2, . . . , n.
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
For each edge ij, choose a random weight w(ij) ∈ {1, 2, . . . ,W}.
Construct a random skew symmetric adjacency matrix B of G,
where for each edge ij, i > j,

Bij = w(ij) and Bji = −w(ij) (Bij = 0 if ij is not an edge).
Step 1:

Compute the rank r of B over the field Zq.
Step 2:

For each of the vectors ej , j = 1, . . . , n,
compute the rank rj of the matrix [B

ej
] over the field Zq.

Let D be the set of vertices j with rj > r.
Step 3:

Let A be the subset of V −D adjacent to D, and let C be the set
of vertices neither in D nor in A.

With high probability, the Gallai–Edmonds decomposition of G
is given by A,C,D.

Fig. 2.

The algorithm for finding the Gallai–Edmonds decomposition follows immediately
from both the previous lemma and Theorem 3.1. Find the set D(G) of noncritical
vertices with high probability by comparing the rank of each [Bej], j = 1, . . . , n, with

the rank of B. The probability that the set D(G) is correctly computed is at least

1−(2n2/W). Knowing D(G), the sets A(G) and C(G) can be found in Õ(n+m) time.
See Algorithm 1 in Figure 2 for a full description. The working of the algorithm on
an example is illustrated in Figure 1. The following straightforward implementation
of Algorithm 1 runs in Õ(n ·M(n)) = O(n ·n2.38) time: For each j = 1, . . . , n, use the

algorithm of [IMH 82] to find the rank of [Bej] in Õ(M(n)) time. We now improve the

running time from Õ(n ·M(n)) to Õ(M(n)). The Õ(M(n)) bound holds even for the
number of bit operations; to see this, recall the remarks at the end of section 2. To
obtain a faster implementation, observe that rank([Bej]) is greater than rank(B) iff ej
is not in the row space of B, i.e., iff ej is not a linear combination of the row vectors

of B. We can “simultaneously” compute the ranks of all the [Bej]’s by computing a

matrix N such that for any row vector v, v · N = 0 iff v is a linear combination
of the row vectors of B. Once N is computed, we simply find the product of the
n × n identity matrix In with N . The nonzero rows of N correspond exactly to the
vectors ej having rank([Bej]) greater than rank(B). Coming to the computation of

N , we take N to be a basis for the null space (i.e., kernel) of B. Note that for any

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1643

subspace U (e.g., the row space of B) of a finite-dimensional vector space W over a
finite field (e.g., the n-dimensional vector space over Zq), dimU + dimU⊥ = dimW ,

and so (U⊥)⊥ = U [Lo 93, Exercise 5.31]. Hence, even for the n-dimensional vector
space over Zq we can check whether a vector v is in the row space of B by checking
whether v ·N is zero. It is well known that for any n×n matrix B, a basis for the null
space can be computed in sequential time Õ(M(n)) (see [IMH 82, pp. 53–54]) and in

randomized parallel time O((logn)2) using Õ(M(n)) processors (see [KP 91, p. 190]).

Lemma 3.3. Let B = B̃(wij), wij ∈ {1, . . . ,W}, be a random skew symmetric
adjacency matrix of a graph, and let the n × (n − rank(B)) matrix N be a basis for
the null space of B. Let v be an arbitrary vertex, and let j be its index in B. If v
is critical (noncritical), then with probability at least 1− (2n/W) the jth row of N is
zero (nonzero).

Let A,C,D denote the partition of V computed by an execution of the Monte
Carlo algorithm. To make the algorithm Las Vegas, we need to verify whether A,C,D
is the Gallai–Edmonds decomposition. We first verify whether ν(G) is computed
correctly and then verify whether the set D equals the set of noncritical vertices D(G).
By Proposition 2.3, ν(G) is at least rank(B)/2, where B is the random skew symmetric
adjacency matrix. Suppose that each component of D is odd and each component of
C is even. Then ν(G) is at most (|V | − (]components(D) − |A|))/2, because every
matching E′ of G leaves at least]components(D)− |A| exposed vertices; to see this,
observe that for each odd component of G−A, either the odd component contains an
exposed vertex or an edge of E′ matches a vertex of the odd component to a vertex of
A. Our verification subroutine (in the Las Vegas algorithm) determines the odd and
even components of G−A and compares rank(B) with |V |−(]components(D)−|A|). If
equality fails to hold in the comparison, or one of the components ofD is even, or one of
the components of C is odd, then the Las Vegas algorithm reports failure. Otherwise,
ν(G) is guaranteed to equal rank(B)/2, and moreover, the set A is guaranteed to be
a barrier. A set X ⊆ V (G) is called a barrier if |V | − 2ν(G) (i.e., the deficiency of G)
equals the difference of the number of odd components of G−X and |X|. We claim
that if A is a barrier and ν(G) = rank(B)/2, then the computed partition A,C,D is
the Gallai–Edmonds decomposition. To see this, note that if a vertex with index j has
rank([Bej]) greater than rank(B) = 2ν(G), then the vertex is noncritical; hence, every

vertex in the computed set D is noncritical. Also, every noncritical vertex is contained
in D by the following result (see [LP 86, Theorem 3.3.17]): If X ⊆ V (G) is a barrier,
then every noncritical vertex is contained in the union of the odd components of
G−X. Consequently, D = D(G), and so, by construction, A = A(G) and C = C(G).

Theorem 3.4. There is a Las Vegas algorithm with a sequential running time
of Õ(M(n)) for finding the Gallai–Edmonds decomposition and the cardinality of a

maximum matching of a graph. A parallel version of the algorithm uses Õ(M(n))
processors and takes parallel time O((logn)2).

3.2. Finding a minimum vertex cover in a bipartite graph. Due to the
information provided by the Gallai–Edmonds decomposition, the above Las Vegas
algorithm may be applied to solve other problems in matching theory within the
same complexity bounds. In this subsection, we show how the algorithm may be used
to find a minimum vertex cover of a bipartite graph. Moreover, by the equivalence
of the bipartite minimum vertex cover problem and the digraph minimum X→Y
separator problem (see Proposition 2.4), we can also find a minimum X→Y separator
in a digraph. We need a theorem from matching theory; see [LP 86, Theorem 3.2.4].

1644 JOSEPH CHERIYAN

Theorem 3.5 (Dulmage and Mendelsohn). Let G = (V1, V2, E) be a bipartite
graph, where V1 and V2 are the sets of the vertex bipartition. For i = 1, 2 let Ai =
A(G) ∩ Vi, Ci = C(G) ∩ Vi, and Di = D(G) ∩ Vi, where A(G), C(G), and D(G) are
the three sets of the Gallai–Edmonds decomposition of G. Then C1 ∪ A1 ∪ A2 and
C2 ∪A1 ∪A2 are minimum vertex covers.

The above theorem, combined with the Las Vegas algorithm for the Gallai–
Edmonds decomposition, immediately yields an efficient Las Vegas algorithm for a
minimum vertex cover of a bipartite graph G = (V1, V2, E). The algorithm may be
simplified by focusing on just one of the sets Vi, i = 1, 2, of the vertex bipartition and
for each vertex in that set computing whether or not it is critical. Also, instead of
using the skew symmetric adjacency matrix we use the bipartite adjacency matrix H,
which has a row for each vertex in V1 and a column for each vertex in V2; an entry
Hij is nonzero iff G has the edge ij, i ∈ V1, j ∈ V2. See Algorithm 2 in Figure 3.

Algorithm 2. Monte Carlo Bipartite Minimum Vertex Cover
Input: Bipartite graph G = (V1, V2, E).
Output: With high probability, a minimum vertex cover of G.
Step 0:

Order the vertices of V1 and V2, and number them 1, 2,
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
For each edge ij, i ∈ V1, j ∈ V2, choose a random weight w(ij) ∈ {1, 2, . . . ,W}.
Construct a random bipartite adjacency matrix H of G,
where for each edge ij, i ∈ V1, j ∈ V2, Hij = w(ij) (Hij = 0 if ij is not an

edge).
Step 1:

Compute the rank r of H over the field Zq.
Step 2:

For each of the vectors ej , j = 1, . . . , |V2|,
compute the rank rj of the matrix [H

ej
] over the field Zq.

Let D2 ⊆ V2 be the set of vertices j ∈ V2 with rj > r.
Step 3:

Let A1 be the subset of V1 adjacent to D2, i.e.,
A1 = {i ∈ V1 : ij ∈ E and j ∈ D2}.

With high probability, a minimum vertex cover of G is given by
A1 ∪ (V2 −D2).

Fig. 3.

Theorem 3.6. There is a Las Vegas algorithm with a sequential running time
of Õ(M(n)) for finding a minimum cardinality vertex cover of a bipartite graph. A

parallel version of the algorithm uses Õ(M(n)) processors and takes parallel time
O((logn)2). The same complexity bounds apply for finding a minimum cardinality
X→Y separator of a digraph.

In section 4, an algorithm for finding minimum X→Y separators in digraphs
(and for finding bipartite minimum vertex covers) is designed using different methods
than those used in this section. Yet it turns out that the two algorithms for bipartite
minimum vertex covers are identical.

3.3. Finding the allowed edges. Recall from section 1 that an edge of a graph
G = (V,E) is called allowed if it is contained in at least one maximum matching. The
notion of an allowed edge is important in matching theory; see [LP 86, Chapter 5]. We
develop a Monte Carlo algorithm for finding the set of allowed edges of an arbitrary

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1645

graph; the sequential and parallel complexities are the same as those of our algorithm
in Theorem 3.4. The best previous sequential or parallel algorithms for finding the
set of allowed edges of a graph take at least as much sequential time (or, parallel time
and parallel processors) as needed for computing a maximum matching.

Our method for finding the set of allowed edges first constructs the Gallai–
Edmonds decomposition A(G), C(G), D(G) using the algorithm of Theorem 3.4. Now
observe that every edge incident to a noncritical vertex v is allowed: First, consider a
maximum matching such that v is exposed, and switch the matching by adding any
edge vw and removing the matched edge incident to w. Second, every edge with one
end vertex in A(G) and the other end vertex in either A(G) or C(G) is not allowed,
by Theorem 3.1. Finally, we are left with the edges with both end vertices in C(G).
Since every component of C(G) has a perfect matching, we apply the following result
of Rabin and Vazirani (see [RV 89, Lemma 4]) to find (with high probability) the
allowed edges of components of C(G).

Lemma 3.7 (Rabin and Vazirani). Let G be a graph with a perfect matching,
and let B be a random skew symmetric adjacency matrix of G. If det(B) 6= 0, then
for each index i, 1 ≤ i ≤ n, there is an index j, 1 ≤ j ≤ n, such that Bij 6= 0 and
(B−1)ji 6= 0; moreover, for each pair i, j satisfying this condition, the corresponding
edge vivj is in some perfect matching of G.

Theorem 3.8. With probability at least 1− (1/nΘ(1)), the set of allowed edges of

a graph can be computed in sequential time Õ(M(n)) and in parallel time O((logn)2)

using Õ(M(n)) processors.
The above algorithm is Monte Carlo but not Las Vegas; if the algorithm reports

that an edge with both end vertices in C(G) is not allowed, then there is a small
probability that the edge is actually allowed. In all other cases, the algorithm’s
output is correct. For the special case of bipartite graphs, we give a Las Vegas
algorithm that achieves the same complexity bounds. Focus on a component H =
(V1, V2, E) of C(G), where V1 and V2 are the sets of the vertex bipartition. We
construct the connected subgraphs H1, . . . , Hk of H formed by the computed set
of allowed edges. For each connected subgraph Hi, 1 ≤ i ≤ k, |V (Hi) ∩ V1| must
equal |V (Hi) ∩ V2| and each edge with both end vertices in Hi must be allowed (see
[LP 86, Theorem 4.1.1]); otherwise, the algorithm reports failure. Next we construct
a bipartite graph H ′ by contracting to a distinct single vertex each of the two sets
in the vertex bipartition of each of the connected subgraphs H1, . . . , Hk; i.e., each
V (Hi) ∩ Vj , 1 ≤ i ≤ k, j = 1, 2, is contracted to a distinct vertex. We also replace
any parallel edges with single edges. Thus each Hi, 1 ≤ i ≤ k is contracted to a
distinct edge; observe that these “contracted edges” form a perfect matching of the
contracted graph H ′. If the contracted graph H ′ has a unique perfect matching, then
the computed set of allowed edges of H is correct; otherwise, the algorithm reports
failure; see [LP 86, Lemma 4.3.1]. To test for a unique perfect matching in H ′, we start
with the perfect matching consisting of the edges formed by contracting H1, . . . , Hk,
and check whether there exists an alternating cycle with respect to this matching.
The claimed complexity bounds suffice for testing for an alternating cycle.

Theorem 3.9. There is a Las Vegas algorithm with a sequential running time of
Õ(M(n)) for finding the set of allowed edges of a bipartite graph. A parallel version

of the algorithm uses Õ(M(n)) processors and takes parallel time O((logn)2).

3.4. Finding the canonical partition of an elementary graph. Recall from
section 1 that a graph G = (V,E) is called elementary if it has a perfect matching
and its allowed edges form a connected spanning subgraph. Also recall that a set X

1646 JOSEPH CHERIYAN

of vertices is called a barrier if the deficiency of G, |V | − 2ν(G), equals the difference
of the number of odd components of G − X and |X|. For an elementary graph the
deficiency is zero, so X ⊆ V is a barrier iff |X| equals the number of odd components
of G−X. If G is elementary, then the (inclusionwise) maximal barriers of G form a
partition S1, S2, . . . , Sk of the vertex set V (G); this partition is called the canonical
partition [LP 86, section 5.2]. Here we develop an efficient randomized algorithm for
finding the canonical partition of an elementary graph. The Monte Carlo algorithm
for the canonical partition was discovered jointly with Padayachee. The sequential
Õ(m + n)-time algorithm for verifying the canonical partition is due to La Poutré
[L 95].

The following key result underlies our algorithm (see [LP 86, Theorem 5.2.2]):
Two (distinct) vertices x and y are in the same set Si of the canonical partition iff
G− {x, y} has no perfect matching. Based on this result and [RV 89, Lemma 3], we
find the canonical partition as follows: Assume that the given graph G is elementary.
We construct a random skew symmetric adjacency matrix B of G. If det(B) = 0,
then we stop and report failure. Otherwise we compute the inverse of B, B−1. To
compute the canonical partition of V (G), we attempt to construct an equivalence
relation Ψ on the vertex pairs such that vertices x and y are related iff the (x, y) entry
of B−1, (B−1)xy, is zero. If Ψ is indeed an equivalence relation, then the algorithm
outputs the equivalence classes of Ψ as the computed partition (with high probability,
this is the canonical partition); otherwise, if Ψ is not an equivalence relation, then we
stop and report failure. Verifying that Ψ is an equivalence relation and computing
its equivalence classes takes sequential time Õ(n2) and parallel time O((logn)2) using

Õ(n2) processors; first, observe that Ψ is reflexive ((x, x) ∈ Ψ,∀x ∈ V) and symmetric
((x, y) ∈ Ψ iff (y, x) ∈ Ψ) since B is skew symmetric and n is even; Ψ is transitive iff
each connected component of the graph (V,Ψ) is a clique.

Theorem 3.10 (with Padayachee). With probability at least 1 − (1/nΘ(1)),
the canonical partition of an elementary graph can be computed in sequential time
Õ(M(n)) and in parallel time O((logn)2) using Õ(M(n)) processors.

The above algorithm is Monte Carlo but not Las Vegas. For this paragraph, let
S1, . . . , Sk denote the partition computed by the Monte Carlo algorithm; the canonical
partition may differ from S1, . . . , Sk. If each set Si, 1 ≤ i ≤ k, is a barrier, then the
computed partition is the canonical partition. To see this, observe that for any two
vertices x and y in two different sets of the computed partition, the (x, y) entry of B−1

is nonzero; hence, by [RV 89, Lemma 3] the graph G−{x, y} has a perfect matching.
Consequently, by the key result on canonical partitions quoted above x and y must
be in different sets of the canonical partition. Hence, the canonical partition is a
refinement of the partition S1, . . . , Sk, and if the two partitions differ, then one of the
sets Si is the union of two or more maximal barriers. To obtain a Las Vegas algorithm
we do the following: For each set Si in the computed partition, we determine whether
it is a barrier by comparing the number of odd components of G−Si with |Si|. If every
set Si is a barrier, then we output S1, . . . , Sk as the canonical partition; otherwise we
report failure. There is a sufficiently efficient sequential algorithm due to La Poutré
[L 95] for the key computation in verifying the partition computed by our Monte
Carlo algorithm; this algorithm uses Sleator and Tarjan’s [ST 83] dynamic trees data
structure to maintain the connected components of the current subgraph and works
by appropriately deleting and inserting all edges incident to vertices in the set Si,
1 ≤ i ≤ k; also see La Poutré and Westbrook [LW 94].

Theorem 3.11 (La Poutré). Given a graph G = (V,E) and a collection of

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1647

pairwise disjoint vertex sets S1, . . . , Sk, the number of odd components in G− Si for
all i, 1 ≤ i ≤ k, can be determined in (deterministic) sequential time Õ(m+ n).

Alternatively, the sequential Õ(m + n) time bound can be achieved by a ran-
domized Las Vegas algorithm using dynamic data structures recently developed by
Henzinger and King [HK 95].

Theorem 3.12. Given an elementary graph as input, there is a sequential Las
Vegas algorithm with a running time of Õ(M(n)) for finding the canonical partition.

Fig. 4. A digraph with a unique minimum X→Y separator S, where X = {x1, x2, x3, x4} and
Y = {y1, y2, y3, y4}. Vertex w1 is in T (S) since p({w1} ∪X,Y) = 3 > |S|, but vertex w2 is not in
T (S) since p({w2} ∪X,Y) = 2 = |S|.

4. An algorithm for digraph minimum X→Y separators. Using meth-
ods different from those employed in the previous section, this section develops a
randomized Monte Carlo algorithm for finding a minimum X→Y separator of a given
digraph G = (V,E), where X and Y are specified sets of vertices. In every instance
the algorithm outputs a correct solution with high probability, but it may output an
incorrect result with small probability. The complexity bounds of this Monte Carlo
algorithm suffice for verifying that the computed solution is indeed a minimum X→Y
separator, thus giving a Las Vegas algorithm with the same complexity bounds.

For an X→Y separator S with |S| = p(X,Y), let T (S) denote the set of vertices
such that G− S has a path from each vertex in T (S) to at least one vertex in Y − S
(note that T (S) is empty iff S = Y). Informally, T (S) forms the “Y -side” of the
separator S.

First, consider the simple case when the digraph has a unique minimum X→Y
separator S, i.e., any other set of vertices whose removal from G leaves no X→Y
paths has cardinality at least |S| + 1. See Figure 4. Then the set T = T (S) has
the key property that a vertex v is in T if and only if p({v} ∪X,Y) is greater than
p(X,Y). To see this, deduce from Menger’s theorem that G must have a separator

1648 JOSEPH CHERIYAN

S′ of cardinality p({v} ∪X,Y) whose removal from G leaves no path from ({v} ∪X)
to Y . Clearly, S′ is also an X→Y separator, so p({v} ∪X,Y) ≥ p(X,Y). If v 6∈ T ,
take the separator S′ to be S, since G − S has no path from a vertex in {v} ∪X to
a vertex in Y . Otherwise, if the vertex v is in T , then v is a witness to the fact that
S 6= S′ and hence, by the uniqueness of S, |S′| > |S|. Suppose that there is an efficient
method of computing p(X,Y) for any specified pair of sets X and Y of the vertices,
i.e., suppose that a fast “black box” subroutine for computing p(X,Y) is available.
(Such a method is described below.) Then the separator S may be found as follows.
For each vertex v ∈ V , check whether p({v} ∪ X,Y) is greater than p(X,Y). Then
construct the set T of vertices v that satisfy the inequality. The required separator S
consists of the predecessors of T together with the Y -vertices not in T , i.e.,

S = {s ∈ V − T | (s, v) ∈ E and v ∈ T} ∪ (Y − T).

In general, a digraph may have many minimum X→Y separators. Fortunately, one
of these separators satisfies the key property of the separator S and the vertex set
T (S) used above. This is proved in the next lemma. Although a full proof is given,
the first part of the lemma is well known.

Lemma 4.1. Let S? be an X→Y separator with cardinality p(X,Y) = k such
that T (S?) is (inclusionwise) minimal over all X→Y separators with cardinality k.
Then

(i) S? is unique, and
(ii) for each vertex v of G,

v ∈ T (S?) iff p({v} ∪X,Y) > k.

Proof. For a subset A of G’s vertices, define ∆(A) to be the set of vertices

{u ∈ V −A | (u, v) ∈ E and v ∈ A} ∪ (Y −A),

i.e., ∆(A) consists of the predecessors of A as well as the Y -vertices not in A. Note
that if A is the empty set, then ∆(A) = Y . For every A ⊆ V , Y is a subset of
A∪∆(A), and moreover, if A is a subset of V −X, then note that ∆(A) is an X→Y
separator (since every path from a vertex in X to a vertex in A∪∆(A) must contain
a vertex in ∆(A)). Let δ(A) denote the cardinality of ∆(A). The proof hinges on the
fact that the function δ : 2V −→ Z is submodular, i.e., for any two subsets A and B
of G’s vertices,

δ(A ∩B) + δ(A ∪B) ≤ δ(A) + δ(B).(1)

To see this, observe that if a vertex u contributes two to the left-hand side (i.e.,
u ∈ ∆(A ∩ B) ∩ ∆(A ∪ B)), then either u ∈ Y − (A ∪ B) or u ∈ V − (A ∪ B ∪ Y)
and there is an edge uv, v ∈ A ∩ B, so u contributes two to the right-hand side;
otherwise, if u contributes one to the left-hand side, then u contributes at least one
to the right-hand side.

To prove the first part of the lemma, by way of contradiction, assume that there
are two minimum X→Y separators S1 and S2 such that T1 = T (S1) is minimal and
T2 = T (S2) is minimal. Then note that T1 ∩ T2 is both a proper subset of T1 and
a proper subset of T2 (possibly, T1 ∩ T2 is the empty set). Consider the vertex sets
T1 ∩ T2 and T1 ∪ T2. Neither T1 ∩ T2 nor T1 ∪ T2 has any X-vertices since T1 has
no X-vertices and T2 has no X-vertices. Hence, ∆(T1 ∩ T2) is an X→Y separator

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1649

and ∆(T1 ∪ T2) is an X→Y separator. Since the minimum cardinality of an X→Y
separator is p(X,Y) = k, it is clear that δ(T1∩T2) ≥ k and δ(T1∪T2) ≥ k. Now, using
the submodularity of δ (equation (1)), it follows that δ(T1∩T2) = k and δ(T1∪T2) = k.
Let S′ denote ∆(T1 ∩T2). Observe that T (S′) is a subset of T1 ∩T2 because, for each
vertex v 6∈ (T1∩T2), every path from v to a vertex in Y contains a vertex of ∆(T1∩T2).
This gives the desired contradiction and completes the first part of the lemma, since
neither T1 = T (S1) nor T2 = T (S2) is minimal.

For the second part of the lemma consider any vertex v ∈ T (S?). The maximum
number of vertex disjoint paths from ({v} ∪ X) to Y is either exactly k = p(X,Y)
or greater than k. Suppose that the number is k. Then, by Menger’s theorem,
there exists a separator S′ of cardinality k whose removal from G leaves no path
from ({v} ∪X) to Y . Clearly S′ is also a minimum X→Y separator. Now consider
a minimum X→Y separator S such that T (S) is a subset of T (S′) and T (S) is
(inclusionwise) minimal over all such separators; since S′ exists, S must exist. By the
first part of the lemma the separators S and S? are the same. This gives the desired
contradiction, since v ∈ T (S?) − T (S). We conclude that the maximum number of
vertex disjoint paths from ({v} ∪X) to Y is greater than k.

Two results are needed to develop a fast, probabilistic method for computing
p(X,Y). The first result is attributed to Ingleton and Piff [IP 73]; for completeness,
a proof that follows [LLW 88, Theorem 3.1] is included in the appendix. Associate
a variable x(i, i) with each vertex i and a variable x(i, j) with each edge (i, j) (all

variables are distinct). The free adjacency matrix F̃ = F̃ (x(i, j)) of G is an n × n
matrix whose entries are given by

F̃ij =

x(i, i) if i = j,
x(i, j) if i 6= j and (i, j) ∈ E,
0 otherwise.

Theorem 4.2 (Ingleton and Piff). Let G be a digraph, and let F̃ be its free
adjacency matrix. Then for any k-vertex set X and any k-vertex set Y ,

p(X,Y) = k iff det F̃ (Y ,X) is not identically zero.

We also need a matrix identity of Jacobi (see [BR 91, Lemma 9.2.10]).
Fact (Jacobi). If a matrix F is nonsingular, then a square submatrix F (Y ,X)

is nonsingular iff the complementary submatrix F−1(X,Y) is nonsingular. More pre-
cisely,

det(F−1(X,Y)) = det(F (Y ,X))/ det(F).

To apply the above theorem to the algorithm, the variables are substituted by
random values. This is motivated by the Zippel–Schwartz lemma (Lemma 2.1).

Theorem 4.3. Let G = (V,E) be a digraph, and let F = F̃ (w(i, j)) be obtained
from G’s free adjacency matrix by randomly and independently assigning each variable
x(i, j) a random number w(i, j) from {1, . . . ,W}. Then with probability at least 1 −
(n/W), F is nonsingular. If F is nonsingular, then for every pair of sets X and Y
of the vertices,

p(X,Y) ≥ rank(F−1(X,Y)),

and with probability at least 1− (n2/W), p(X,Y) equals rank(F−1(X,Y)).

1650 JOSEPH CHERIYAN

Proof. View the determinant of the free adjacency matrix F̃ as a polynomial of
degree n in the variables x(i, j), 1 ≤ i, j ≤ n, and notice that it is not identically zero
because the diagonal term Πn

i=1x(i, i) is nonzero and no two nonzero terms cancel
out. Hence by Lemma 2.1, F is nonsingular with probability at least 1− (n/W).

Consider a maximum-cardinality set of vertex disjoint paths from X to Y . Let A
be the set of start vertices of these X→Y paths, and let B be the set of end vertices.
Obviously, A ⊆ X, B ⊆ Y , and |A| = |B| = p(X,Y) = p(A,B). Let H̃ = H̃(x(i, j))

denote (det F̃)F̃−1, i.e., H̃ is the n × n matrix whose (k, `) entry is (−1)k+` times

the (`, k) minor of F̃ (x(i, j)); every entry of H̃ is a polynomial of degree n− 1 in the

variables x(i, j). By Jacobi’s identity and Theorem 4.2, det H̃(A,B) is not identically
zero, while for every integer q > p(X,Y) the determinant of every q × q submatrix

of H̃(X,Y) is identically zero. The second part of the theorem follows by observing

that if F is nonsingular, then F−1 = F̃ (w(i, j))−1 = H̃(w(i, j))/ det F̃ (w(i, j)); now

apply Lemma 2.1 to det H̃(A,B).
The algorithm can now be sketched. See Algorithm 3 in Figure 5. Fix a number

W = nO(1), and let q be a prime such that W < q = nO(1). All computations are over
the field Zq of integers modulo q. The matrix F is constructed, and with high prob-
ability it is nonsingular. Inverting F gives the matrix F−1. If r = rank(F−1(X,Y))
equals |Y |, then by Theorem 4.3 p(X,Y) equals |Y |; therefore Y is a minimum X→Y
separator. Otherwise consider the unique minimum X→Y separator S? with T (S?)
minimal. The algorithm attempts to compute the vertex set T (S?) by finding the set
T of vertices v such that rank(F−1({v}∪X,Y)) is greater than r. With probability at
least 1−Θ(n3)/W , T equals T (S?). Hence, with high probability, the set S = ∆(T)
(i.e., the set of the predecessors of T and the Y -vertices not in T) is the minimum
X→Y separator S?.

To efficiently compute for each vertex v whether rank(F−1({v} ∪X,Y)) > r, the
algorithm needs to check that v’s row vector F−1({v}, Y) is not a linear combination
of the row vectors of F−1(X,Y). As in section 3, we “simultaneously” compute the
ranks of all the matrices F−1({v} ∪ X,Y), v ∈ V , by computing a matrix N such
that for any row vector w, w ·N = 0 iff w is a linear combination of the row vectors
of F−1(X,Y). The matrix N is easily obtained by computing a basis for the null
space of F−1(X,Y). Once N is computed, we simply find the product of the matrix
F−1(V, Y) with N .

To check that the computed set S is indeed a minimum X→Y separator, observe
that the cardinality of every X→Y separator is at least p(X,Y) ≥ r. Consequently,
if the removal of S from G leaves no path from X − S to Y − S, and |S| = r, then
|S| = p(X,Y) = r and hence S is a minimum X→Y separator. Also, by using
Proposition 2.4 this algorithm may be applied to find a minimum vertex cover in a
bipartite graph.

Consider the sequential complexity of the above algorithm. Inverting F takes
Õ(M(n)) bit operations [AHU 74, Theorem 6.5]. Finding a basis for the null space

of F−1(X,Y) takes Õ(M(n)) bit operations [IMH 82, pp. 53–54]. The remaining
computations are easy to execute within this bound. Consider the randomized par-
allel complexity of the algorithm. Inverting F takes parallel time O((logn)2) using

Õ(M(n)) processors ([KP 91, Theorem 6]), and these complexity bounds suffice for
finding a basis for the null space of F−1(X,Y) ([KP 91, p. 190]) (both computations
are randomized, and on a given matrix the computed results may be incorrect with
small probability). The remaining steps are easy to implement within these complex-
ity bounds.

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1651

Algorithm 3. Monte Carlo Minimum X→Y Separator
Input: Graph G = (V,E).
Output: With high probability, a minimum X→Y separator of G.

Order the vertices, and number them 1, 2, . . . , n.
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
Construct the matrix F by replacing each nonzero entry in the free adjacency
matrix of G by an independent random number from {1, 2, . . . ,W}.

Invert F over the field Zq to obtain the matrix F−1.
(If F is singular, the algorithm stops and reports failure.)

Compute the rank r of the submatrix F−1(X,Y) over Zq.
If r = |Y |, then the required separator is S = Y . Stop.

Otherwise, compute a basis {N1, . . . , N|Y |−r} for the null space of the
submatrix F−1(X,Y) over Zq (each Ni is a vector of dimension |Y |).
Compute the matrix Z = F−1(V, Y) ·N over Zq,
where N is the matrix whose ith column is Ni.
Let Zv denote the row of Z given by F−1({v}, Y) ·N .
Construct the set of vertices T = {v | Zv is a nonzero vector}.

With high probability, the required separator S consists of the predecessors
of T together with the Y -vertices not in T , i.e.,

S = ∆(T) = {s ∈ V − T | (s, v) ∈ E and v ∈ T} ∪ (Y − T).

Making the algorithm Las Vegas:
If G− S has no path from X − S to Y − S, and |S| = r,
then guarantee that S is a minimum X→Y separator; otherwise, report failure.

Fig. 5.

Theorem 4.4. Given a digraph G and a pair of sets X, Y of G’s vertices, a
minimum X→Y separator can be computed by a Las Vegas algorithm. The sequential
running time is Õ(M(n)). The parallel complexity is O((logn)2) time using Õ(M(n))
processors. The same complexity bounds apply for finding a minimum vertex cover of
a bipartite graph.

5. Conclusions. The most important problem left open is whether a maximum
matching can be computed in deterministic or randomized time O(n2.5−ε), ε > 0. The
same problem specialized to bipartite graphs, or equivalently (by Proposition 2.4)
the problem of finding a maximum-cardinality set of vertex disjoint X→Y paths in
a digraph in (randomized) time O(n2.5−ε), is also open. Another interesting open
problem pertains to graphs with 0–1 weights on the edges: Can the maximum weight
of a perfect matching, but not necessarily the edge-set of the matching, be computed
in (randomized) time O(n2.5−ε)? Can the algorithm of Theorem 3.8 for finding the
allowed edges be made Las Vegas without affecting the complexity bounds? The
algorithm for finding a minimum bipartite vertex cover may be derived starting either

1652 JOSEPH CHERIYAN

from the Gallai–Edmonds theorem (Theorem 3.1) or from the theorem on the free
adjacency matrix (Theorem 4.2). Do these two theorems have other connections?

6. Appendix. Proofs of Proposition 2.4 and Theorem 4.2.

Proof of Proposition 2.4. First, we show how to transform instances and recover
solutions of the two bipartite graph problems using the corresponding digraph prob-
lems. Let H = (V1, V2, E) be a bipartite graph, where V1 and V2 are the sets of the
vertex bipartition. Construct a digraph G = (V1 ∪ V2, F) from H by orienting all
edges from V1 to V2. Every matching of H corresponds to a set of vertex disjoint
V1→V2 paths in G. Hence, a maximum matching of H can be found by computing a
maximum cardinality set of vertex disjoint V1→V2 paths in G. Consider the bipartite
graph minimum vertex cover problem. A subset of V1 ∪ V2 is a vertex cover of H iff
it is a V1→V2 separator of the digraph G. Therefore, a minimum vertex cover of H
can be found by computing a minimum V1→V2 separator of G.

Next consider the transformation of the two digraph problems to the correspond-
ing bipartite graph problems, and the transformation of the solutions. Let G = (V, F)
be the given digraph, and let X and Y be specified subsets of V . Without loss
of generality assume that X ∩ Y = ∅; the method here easily extends to the case
when X ∩ Y 6= ∅. Let n denote |V (G) − X − Y |. We construct a bipartite graph
H = (V1, V2, E) starting from G,X, Y . For each vertex v ∈ V (G)−X − Y , H has a
pair of vertices v1, v2 with v1 ∈ V1 and v2 ∈ V2; H also has the edge v1v2; for each
vertex x ∈ X, H has a vertex x1 ∈ V1; and for each vertex y ∈ Y , H has a vertex
y2 ∈ V2. For every vertex v of G let v1 and v2 denote the corresponding vertices in
V1 and V2 (if they exist); let X1 denote the set of vertices of H that corresponds to
X. For each edge (v, w) of G, v 6∈ Y and w 6∈ X, there is an edge v1w2 in H.

A set of vertex disjoint X→Y paths of G of maximum cardinality (namely,
p(X,Y)) gives a matching E′ of H with |E′| = p(X,Y) + n: start with E′ =
{v1v2 : v ∈ V (G)−X − Y } and then, sequentially for each of the X→Y paths of G
in the set mentioned above, augment E′ using the corresponding alternating path of
H. Moreover, we claim that a matching E′ of H gives a set of at least |E′| −n vertex
disjoint X→Y paths of G: starting from the vertices in X1 in H, use the matching E′

and the edges v1v2, v ∈ V (G)−X − Y , to construct a set of vertex disjoint paths in
G; each of these paths ends either at a vertex in Y or at a vertex v 6∈ Y such that in H
the corresponding vertex v1 is exposed; hence, at most |V1| − |E′| = |X1|+n− |E′| of
these paths in G have their end vertices in V −Y ; our claim follows since the number
of these paths in G is |X1|. Consequently, ν(H) = p(X,Y) + n, and every maximum
matching of H yields a set of p(X,Y) vertex disjoint X→Y paths of G.

Now consider the problem of finding a minimum X→Y separator S of G. We
find a minimum vertex cover C of H and then construct S as follows: S contains a
vertex x ∈ X iff C contains the vertex x1; S contains a vertex y ∈ Y iff C contains the
vertex y2; and S contains a vertex v ∈ V (G)−X − Y iff C contains both the vertices
v1 and v2. Since |C| = ν(H) = p(X,Y) + n, and since either v1 ∈ C or v2 ∈ C for
each vertex v ∈ V (G)−X − Y , we see that |S| = p(X,Y). We claim that S is an
X→Y separator of G. By way of contradiction, suppose that there is a path P in
G − S with start vertex x ∈ X and end vertex y ∈ Y . Focus on the subgraph H(P)
of H formed by the edges that correspond to the edges of P , together with the edges
v1v2 of H that correspond to the internal vertices v of P (i.e., v ∈ V (P)− {x, y}).
Since C is a vertex cover of H, every edge of H(P) must be incident with some vertex
of C. Consequently, either x ∈ C or y ∈ C or there is an internal vertex v of P
such that v1 ∈ C and v2 ∈ C. We have the desired contradiction since S intersects

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1653

Fig. 6. An illustration of the proof of Theorem 4.2. The submatrix F̃ (Y ,X) is indicated by
dashed lines.

P .
Proof of Theorem 4.2. First, consider the case when p(X,Y) is less than k = |Y |.

Let S be an X→Y separator of cardinality p(X,Y) and let T denote the set of vertices
that have paths to Y −S in G−S. Let R denote V − (S∪T). Note that X is a subset
of R ∪ S and Y is a subset of S ∪ T . Since G has no edges of the form (r, t), r ∈ R,

t ∈ T , each entry of the submatrix F̃ (R, T) is zero. (See Figure 6.) A line denotes
either a row or a column of a matrix. Focus on the number of lines needed to cover all
the nonzero entries of F̃ (Y ,X), and consider the columns corresponding to the vertex
set (R∪S)−X and the rows corresponding to the vertex set (S ∪T)−Y . Each entry

of F̃ (Y ,X) that is not covered by these lines is in an R-row and a T -column; hence
the entry is zero. Thus the number of lines needed is at most

((n− |T |)− k) + ((n− |R|)− k) ≤ (n− k − 1),

since n = |R|+ |S|+ |T | ≤ (k − 1) + |R|+ |T |. Now use the fact that for a bipartite
graph, the cardinality of every matching is less than or equal to the cardinality of
every vertex cover. It follows that there are at most (n − k − 1) nonzero entries in

F̃ (Y ,X) with no two of these entries on a line. Hence, det F̃ (Y ,X) is identically zero
since each term in the standard expansion of the determinant is zero.

Next suppose that p(X,Y) equals k = |Y |. Let P1, . . . , Pk be a maximum set of
vertex disjoint X→Y paths. Denote the start vertex of path Pi (1 ≤ i ≤ k) by xi and
denote the end vertex by yi. Let A denote the set of vertices not in these paths. For
each vertex v ∈ A define σ(v) to be v, and for each vertex v ∈ (V −A−Y), define σ(v)
to be the successor of v in the path Pi containing v. Note that σ is well defined even if
trivial paths Pi (having xi = yi) are present. For each v ∈ Y , note that σ(v) belongs

to X and that F̃v,σ(v) is a nonzero entry of the submatrix F̃ (Y ,X). Moreover, observe
that σ is one-one, i.e., σ(v) = σ(w) iff v = w, and therefore no two entries from the

set {F̃v,σ(v) | v ∈ Y } are on a line. It follows that the product (±1) · Πv∈Y F̃v,σ(v) is

one of the terms in the standard expansion of det F̃ (Y ,X). Clearly the product is

1654 JOSEPH CHERIYAN

nonzero. Hence, the determinant evaluates to ±1 when the value 1 is assigned to each
entry F̃v,σ(v), v ∈ Y , and the value 0 is assigned to the remaining entries of F̃ (Y ,X).
Therefore, the determinant is not identically zero.

Acknowledgments. Section 4 has benefited from discussions with Éva Tardos.
The Monte Carlo algorithm for the canonical partition in section 3.4 was discovered
jointly with K. Padayachee and is included with his consent. J. A. La Poutré com-
municated an almost linear-time algorithm for verifying the canonical partition. The
careful comments by the referees are appreciated.

REFERENCES

[AHU 74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[B 90] N. Blum, A new approach to maximum matching in general graphs, Proc. 17th ICALP,
Lecture Notes in Comput. Sci. 443, Springer-Verlag, Berlin, 1990, pp. 586–597.

[BR 91] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University
Press, New York, 1991.

[C 93] J. Cheriyan, Random weighted Laplacians, Lovász minimum digraphs and finding min-
imum separators, extended abstract in Proc. 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, Austin, TX, SIAM, Philadelphia, 1993, pp. 31–40.

[C 94] J. Cheriyan, A Las Vegas O(n2.38) algorithm for the cardinality of a maximum match-
ing, extended abstract in Proc. 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Arlington, VA, SIAM, Philadelphia, 1994, pp. 442–451.

[CR 94] J. Cheriyan and J. H. Reif, Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity, Combinatorica, 14 (1994), pp. 435–451.

[CW 90] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
J. Symbolic Comput., 9 (1990), pp. 251–280.

[E 91] W. Eberly, Efficient parallel independent subsets and matrix factorizations, in Proc. 3rd
IEEE Symposium on Parallel and Distributed Processing, IEEE Computer Society
Press, Los Alamitos, CA, 1991, pp. 204–211.

[E 65] J. Edmonds, Paths, trees and flowers, Canad. J. Math., 17 (1965), pp. 449–467.
[GT 91] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching

problems, J. Assoc. Comput. Mach., 38 (1991), pp. 815–853.
[GP 88] Z. Galil and V. Pan, Improved processor bounds for combinatorial problems in RNC,

Combinatorica, 8 (1988), pp. 189–200.
[Ga 64] T. Gallai, Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat. Kutató

Int. Közl, 9 (1964), pp. 401–413.
[HK 95] M. Rauch Henzinger and V. King, Randomized dynamic algorithms with polyloga-

rithmic time per operation, in Proc. 27th Annual ACM Symposium on Theory of
Computing, Las Vegas, NV, ACM, New York, 1995, pp. 519–527.

[IMH 82] O. H. Ibarra, S. Moran, and R. Hui, A generalization of the fast LUP matrix decom-
position algorithm and applications, J. Algorithms, 3 (1982), pp. 45–56.

[IP 73] A. W. Ingleton and M. J. Piff, Gammoids and transversal matroids, J. Combin.
Theory Ser. B, 15 (1973), pp. 51–68.

[KP 91] E. Kaltofen and V. Pan, Processor efficient parallel solution of linear systems over
an abstract field, in Proc. 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 1991, pp. 180–191.

[Kf 86] H. J. Karloff, A Las Vegas RNC algorithm for maximum matching, Combinatorica, 6
(1986), pp. 387–391.

[KUW 86] R. M. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching is in
Random NC, Combinatorica, 6 (1986), pp. 35–48.

[Ko 91] D. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, Berlin, 1991.
[L 95] J. A. La Poutré, Personal communication, 1995.
[LW 94] J. A. La Poutré and J. Westbrook, Dynamic two-connectivity with backtracking, in

Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA,
SIAM, Philadelphia, 1994, pp. 204–212.

[LLW 88] N. Linial, L. Lovász, and A. Wigderson, Rubber bands, convex embeddings and graph
connectivity, Combinatorica, 8 (1988), pp. 91–102.

[Lo 79] L. Lovász, On determinants, matchings and random algorithms, in Fundamentals of

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1655

Computation Theory, L. Budach, ed., Akademie-Verlag, Berlin, 1979, pp. 565–574.
[Lo 93] L. Lovász, Combinatorial Problems and Exercises, 2nd ed., North-Holland, Amsterdam,

1993.
[LP 86] L. Lovász and M. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, Hungary,

1986.
[MV 80] S. Micali and V. V. Vazirani, An O(

√
|V ||E|) algorithm for finding maximum match-

ing in general graphs, in Proc. 21st Annual IEEE Symposium on Foundations of
Computer Science, Syracuse, NY, IEEE Computer Society Press, Los Alamitos,
CA, 1980, pp. 17–27.

[MVV 87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica, 7 (1987), pp. 105–113.

[RV 89] M. O. Rabin and V. V. Vazirani, Maximum matchings in general graphs through
randomization, J. Algorithms, 10 (1989), pp. 557–567.

[Sc 80] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
J. ACM, 27 (1980), pp. 701–717.

[ST 83] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput.
System Sci., 26 (1983), pp. 362–391.

[T 47] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947),
pp. 107–111.

[V 94] V. V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the

O(
√
V E) general graph matching algorithm, Combinatorica, 14 (1994), pp. 71–109.

[W 91] J. Wein, Las Vegas RNC algorithms for unary weighted perfect matching and T -join
problems, Inform. Process. Lett., 40 (1991), pp. 161–167.

[Z 79] R. E. Zippel, Probabilistic algorithms for sparse polynomials, in Proc. EUROSAM 79,
Edward W. Ng, ed., Lecture Notes in Comput. Sci. 72, Springer-Verlag, Berlin, 1979,
pp. 216–226.

MAXIMUM AGREEMENT SUBTREE IN A SET OF
EVOLUTIONARY TREES: METRICS AND EFFICIENT

ALGORITHMS∗

AMIHOOD AMIR† AND DMITRY KESELMAN†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1656–1669, December 1997 005

Abstract. The maximum agreement subtree approach is one method of reconciling different
evolutionary trees for the same set of species. An agreement subtree enables choosing a subset of
the species for whom the restricted subtree is equivalent (under a suitable definition) in all given
evolutionary trees.

Recently, dynamic programming ideas were used to provide polynomial time algorithms for find-
ing a maximum homeomorphic agreement subtree of two trees. Generalizing these methods to sets
of more than two trees yields algorithms that are exponential in the number of trees. Unfortunately,
it turns out that in reality one is usually presented with more than two trees, sometimes as many as
thousands of trees.

In this paper we prove that the maximum homeomorphic agreement subtree problem is NP-
complete for three trees with unbounded degrees. We then show an approximation algorithm of time
O(kn5) for choosing the species that are not in a maximum agreement subtree of a set of k trees.
Our approximation is guaranteed to provide a set that is no more than 4 times the optimum solution.

While the set of evolutionary trees may be large in practice, the trees usually have very small
degrees, typically no larger than three. We develop a new method for finding a maximum agreement
subtree of k trees, of which one has degree bounded by d. This new method enables us to find a
maximum agreement subtree in time O(knd+1 + n2d).

Key words. evolutionary trees, maximum agreement subtrees, classification

AMS subject classifications. 68Q20, 68Q25

PII. S0097539794269461

1. Introduction. One of the methods for classifying hierarchical relations be-
tween different objects is by representing them in a tree [12]. In particular, trees have
been used to represent evolutionary splits among species (cf. [11, 18, 3]). Different
methods of classification may lead to different trees. It is natural to try to resolve
differing evolutionary trees in a manner that will increase our confidence in the results.

There are two ways one can go about handling different evolutionary trees for the
same species. One may try to construct a consensus tree that is “close” to all given
trees. This direction was taken by several researchers (e.g., [15]). Another direction,
the one that concerns us in this paper, is extracting a maximum set of species about
whom we are confident. This method, introduced by Gordon [10], involves obtaining
a maximum agreement subtree.

There are several alternate ways to define a maximum agreement subtree. One
approach was taken by Finden and Gordon [7].

Definition. Let S = {s1, . . . , sn} be a set of labels. An S-labeled tree T is a
tree with n leaves, each labeled with a distinct element of S; i.e., no two leaves have
the same label. Let T be an S-labeled tree and let S′ ⊆ S. H(T, S′) is the minimal

∗ Received by the editors June 10, 1994; accepted for publication (in revised form) October 30,
1995. A preliminary version of this paper appeared in Proc. FOCS 94, 35th IEEE Symposium on
Foundations of Computer Science, Santa Fe, NM, IEEE Computer Society Press, Los Alamitos, CA,
1994, pp. 758–769.

http://www.siam.org/journals/sicomp/26-6/26946.html
† College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280 (amir@

cc.gatech.edu, dmitry@cc.gatech.edu). Part of this work was completed while the first author was at
Bar-Ilan University, Israel. The research of the first author was partially supported by NSF grant
CCR-92-23699 and Israel Ministry of Science and Arts grant 6297.

1656

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1657

homeomorphic subtree of T (all degree 2 nodes are contracted) containing exactly the
leaves labeled by S′.

Let T1, . . . , Tk be S-labeled trees. A maximum homeomorphic agreement subtree
of T1, . . . , Tk (MHT (T1, . . . , Tk)) is a maximum cardinality set S′ ⊆ S such that
H(T1, S

′) = H(T2, S
′) = · · · = H(Tk, S

′). We will also refer to the problem of finding
a maximum homeomorphic agreement subtree as the MHT problem.

We will interchangeably refer to an MHT as a tree or set of labels. There is no
ambiguity since a set of labels uniquely defines the contracted subtree whose leaves
are exactly the given set, if that set of labels is in a homeomorphic agreement subtree.

The most general possible way to view agreement subtree is by assigning each edge
an interval weight, i.e., the conjectured range of time it took to evolve along this edge.
This idea is very similar to the “graph-sandwich” of Farach, Kannan, and Warnow [4].
Informally, the maximum interval weight agreement subtree (MIWT) of k S-labeled
trees T1, . . . , Tk is a maximum set S′ ⊆ S such that ∀s, t ∈ S′ the distance between
s and t is within the allowable range in all trees T1, . . . , Tk. A precise definition is
provided in section 7.

Finden and Gordon [7] gave a heuristic algorithm for the MHT problem for two
trees T1, T2. Their result is not guaranteed to be an MHT (T1, T2). An algorithm
of complexity O(n1/2+ε log2 n) was presented by E. Kubicka, G. Kubicki, and Mc-
Morris [14]. This algorithm is also for the MHT problem of two trees. This result
was improved by Warnow and Steel [17] to finding MHT (T1, T2) in time O(n2) for
bounded degree trees and O(n4.5 logn) for unbounded degree trees. A similar method
was independently found by Goddard et al. [9] for finding MHT (T1, T2) of binary trees

in time O(n2). Farach and Thorup [6] further improved these results to O(n2c
√

log n)
for unbounded degree trees.

The algorithms of [17, 6, 9] handle only the restricted case of two trees. They can
be generalized, but then they become exponential in the number of trees. In reality,
sometimes thousands of trees need to be considered [9]. As for the maximum interval
weight agreement subtree, there are currently no solutions to this problem.

In this paper we present the first known solution to the realistic versions of the
maximum agreement subtree problem. In addition, we use novel methods for tackling
this problem. The main idea behind our algorithms is to use divide and conquer
rather than dynamic programming. A naive top-down algorithm would quickly reach
exponential time, but we exploit some subtle internal properties of tree partitions in a
manner that assures an efficient algorithm. Surprisingly, the algorithm is simple and
easily programmable.

The main contributions of this paper are the following:

• We show that for unbounded degree trees, MHT (T1, T2, T3) and
MIWT (T1, T2, T3) are NP-complete.
• We present an approximation algorithm for finding a set of leaves that are

not in an MHT of k unbounded degree evolutionary trees. Our algorithm
runs in time O(kn5). The approximation factor of our algorithm is 4.

• For trees T1, . . . , Tk, where at least one of which has degree bounded by d,
we present algorithms for finding MHT (T1, . . . , Tk) and MIWT (T1, . . . , Tk)
in time O(knd+1 + n2d).

This paper is organized as follows. In section 2, we prove the NP-completeness of
the MHT (T1, T2, T3) and MIWT (T1, T2, T3) problem for unbounded degree trees. In
section 3 we give the approximation algorithm for the MHT problem of k unbounded
degree trees. In section 4, we define a very simple version of the MIWT problem (the

1658 AMIHOOD AMIR AND DMITRY KESELMAN

maximum isomorphic agreement subtree or MIT problem) and give an efficient algo-
rithm for trees of bounded degree. In section 5 we show the algorithm for computing
an MHT of k trees, one of which has degree bounded by d. In section 6 we consider
the special case of the MIWT problem where all weight ranges are a single weight
(the MWT problem). We give an efficient algorithm for finding MWT (T1, . . . , Tk),
where at least one of the trees has a small bounded degree. In section 7 we provide
an efficient algorithm for the maximum interval agreement subtree of a set of trees.
We conclude with open problems and future research.

2. Multiple unbounded degree trees. We show that finding the MHT (T1,
T2, T3) is an NP-complete problem (the same proof applies to MIWT (T1, T2, T3)).
First define the decision problem:

Homeomorphic agreement subtree of 3 unbounded degree trees (3-HUT).
INSTANCE: Three S-labeled trees T1, T2, T3 of unbounded degree, where S =
{s1, . . . , sn};
integer i ≤ n.

QUESTION: Is there a subset S′ ⊆ S of size i such that H(T1, S
′) = H(T2, S

′) =
H(T3, S

′)?
Theorem 1. The 3-HUT problem is NP-complete.
Proof. It is clearly in NP. We will reduce the 3-dimensional matching problem

(3DM) [8] to 3-HUT. In 3DM the input is a set M ⊆W ×X ×Y , where W,X, Y are
disjoint q-element sets. We need to answer if there is a set M ′ ⊆ M of size q, where
no two elements of M ′ agree in any coordinate.

Construct three trees T1, T2, T3 as follows. Each tree Ti has a root ri and each root
has q children. The children of r1 correspond to the elements of W , the children of r2
correspond to the elements of X, and the children of r3 correspond to the elements
of Y . Take S = M . For every element e = 〈w, x, y〉 ∈ M attach a child labeled e to
the node that corresponds to w in T1, to the node that corresponds to x in T2, and
to the node that corresponds to y in T3.

Assuming that the roots r1, r2, r3 appear in a maximum homeomorphic subtree,
then any two elements of M that agree on one or two coordinates will not be on a
homeomorphic subtree of all three trees. We force the roots to be in a maximum
homeomorphic subtree, by adding to each root q + 1 children labeled x1, . . . , xq+1,
where the xi are new and distinct symbols. Thus it is easy to see that there is an M ′

of size q iff there is a homeomorphic subtree of all three trees of size 2q + 1.

3. An approximation algorithm. We have seen that constructing the set of
leaves whose restricted subtree is homeomorphic to their restricted subtree in all trees
is anNP-hard problem. We now provide an approximation algorithm for constructing
the set of leaves that are not in an MHT. The approximation algorithm is based on
the following property, which was first proved by Bandelt and Dress [2]. We present
the theorem and a new proof.

Theorem 2. Two evolutionary trees are homeomorphic iff all 4-leaf subtrees
generate homeomorphic subtrees.

Proof. One direction is immediate. We will prove that if all 4-leaf subtrees
generate homeomorphic subtrees then the trees are homeomorphic.

Call a vertex of degree greater than 2 a non-2-vertex. Call two leaves twins if the
path connecting them has at most one intermediate non-2-vertex. Every tree contains
at least one pair of twins. This can be seen by the following argument. Consider a
path with the largest number of non-2-vertices. Let the leaf ends of this path be a
and b. Let v be the closest non-2-vertex to a (a similar argument works for b). There

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1659

is a path from v to a, to b, and to at least some other leaf c. In the path from v to
a and from v to c there are no non-2-vertices otherwise, the path from a to b would
not be maximal. Therefore, a and c are twins.

Proceed with proving theorem by induction on the number of leaves n. If n ≤ 4
theorem is trivially true. For n > 4 let x and y be a pair of twins in tree T1 whose
intermediate non-2-vertex is z. We claim that x and y are twins in tree T2 as well.
Otherwise, let z1 and z2 be two non-2-vertices on the path from x to y in T2. Since
both are non-2-vertices, there exist leaves p and q such that p branches off z1 and
q branches off z2. Thus, in the subtree generated by x, y, p, q in T2, x and y are
separated by 2 non-2-vertices; whereas in the subtree generated by x, y, p, q in T1

they are separated by only one non-2-vertex. Hence, these two subtrees cannot be
homeomorphic. See Figure 1.

Fig. 1.

Now remove the path from z to y in both trees. Inductively, the resulting two
trees are homeomorphic. Clearly then, adding the path from z to y in both T1 and
T2 will still yield two homeomorphic trees.

Let S4 be the set of all 4-element subsets of S that do not generate a homeomor-
phic subtree in all trees. S4 can be constructed in time O(kn5). A set S′ ⊂ S is a
cover of S4 if ∀{a, b, c, d} ∈ S4 ∃e ∈ S′ such that e ∈ {a, b, c, d}. S′ is a minimum
cover if S′ is a cover of S4 and every other cover is at least as large as S′.

Theorem 2 implies that if S′ is a minimum cover of S4 then the homeomorphic
restriction of S − S′ in all trees is an MHT.

The following algorithm is similar to the approximation algorithm for vertex
cover [8].

Approximation Algorithm
1. Sa ← ∅
2. While S4 6= ∅ do

2.1 Choose an element α ∈ S4
2.2 Sa ← Sa ∪ α
2.3 Delete from S4 all elements β such that α ∩ β 6= ∅

end Algorithm

Algorithm time O(|S4|) = O(n4). (The construction of S4 requires an additional
O(kn5) time.)

Theorem 3. The set Sa produced by the approximation algorithm is a cover of
S4 and is at most four times the size of a minimum cover of S4.

Proof. Sa is clearly a cover. Let A be the set of all elements of S4 chosen by step
2.1. For any α1, α2 ∈ A, α1 ∩α2 = ∅. Thus any cover of S4 has at least |A| elements.
Sa has 4|A| elements.

1660 AMIHOOD AMIR AND DMITRY KESELMAN

4. Maximum isomorphic agreement subtree. For simplicity’s sake, we start
by presenting an algorithm for the MIWT problem for k trees, where the edge weights
are uniformly 1. We call this the maximum isomorphic agreement subtree problem
(MIT), formally defined below. The general MIWT problem is handled in section 7.

Definition. Let T1, . . . , Tk be S-labeled trees. A maximum isomorphic agreement
subtree of T1, . . . , Tk (MIT (T1, . . . , Tk)) is a maximum set S′ ⊆ S such that ∀s, t ∈ S′
the distance between s and t is the same in all trees T1, . . . , Tk.

The following tree property, due to Smolenskii [16], establishes that the subtrees
induced by MIT (T1, . . . , Tk) in T1, . . . , Tk are indeed isomorphic.

Theorem 4. Two labeled trees are isomorphic iff the distance between any two
leaves with corresponding labels is the same in both trees.

To further elucidate our idea, let us restrict ourselves to the case of binary trees
T1, . . . , Tk. We also introduce the following notation. Assume we fix a node labeled
r as the root. Since r appears in all our trees, we may now consider T1, . . . , Tk as
directed trees rooted at r. Since all edges are now directed, there is a unique subtree
rooted at every node. Let x be a node in Ti. Denote the subtree rooted at x by Ti(x).
We denote the distance of node x from the root as a superscript, i.e., if d(x, r) = p
then we write xp.

The main idea behind our algorithm is to use a top-down approach. We will show
that the structure of our problem prevents an exponential time blow-up.

The first crucial observation we make is that there is at least one label in MIT (T1,
. . . , Tk). If we had a priori knowledge of such a label, say r, we could root all the
trees at r. This fixes the direction of the edges, so for the next levels in the recursion
there is only one possible root for every subtree.

The following lemma is also an important factor in understanding our algorithm.
Lemma 5. Let s and t be leaves of MIT (T1, . . . , Tk). Suppose there is a tree Ti

and xpi ∈ Ti such that s, t ∈ Ti(x
p
i). Then for every j = 1, . . . , k there exists a node

xpj ∈ Tj for which s, t ∈ Tj(xpj).
Proof. Consider the meeting point of the three pairwise paths of the leaves s, t,

and r. Since s, t, r are leaves of MIT (T1, . . . , Tk), then Theorem 4 says their distances
from each other are the same in all the trees T1, . . . , Tk. These distances d(s, t), d(s, r),
and d(t, r) determine that the distance from r to the meeting point is (d(r, s)+d(r, t)−
d(s, t))/2 = p in all trees.

Algorithm Outline
for r = s1 to sn do

root all trees at r.
find MIT (T1, . . . , Tk) (A recursive algorithm for rooted MIT follows).

choose the largest of all n rooted MIT ’s.
end Algorithm

Before we proceed to the algorithm for rooted MIT, we define the concept of
thread intersection. This is a key concept that appears in many of our algorithms. It
is properties of these intersections that prevent an exponential time blow-up of the
algorithms.

We first intuitively describe the concept. Suppose a set of k nodes xi ∈ Ti, i =
1, ..., k is given. Each of these nodes may have several children. A thread is a choice
of one son of each of the xi’s.

Definition. Let {x1, . . . , xk} be a fixed set of nodes where xi ∈ Ti, i = 1, . . . , k,
and let L(xi) ⊆ S be the set of labels in T (xi) (the subtree rooted at xi). Let
{xi1, . . . , xipi} be the set of children of xi.

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1661

The thread σ = 〈1, 1, 2, 1〉 for nodes x1, x2, x3, x4 defines thread intersection A ∩ C ∩ F ∩G.

The thread σ = 〈2, 2, 1, 2〉 for nodes x1, x2, x3, x4 defines thread intersection B ∩D ∩ E ∩H.

Fig. 2. Examples of threads.

A k-tuple σ〈x1,...,xk〉 = σ[1], . . . , σ[k] where σ[i] ∈ {1, . . . , pi} is called a thread for
nodes x1, . . . , xk. (In other words, a thread for a set of k nodes is a pointer from each
of the k nodes to a specific one of its children.) Wherever the set of nodes {x1, . . . , xk}
is clear from the text we will drop the index 〈x1, . . . , xk〉 and denote the thread simply
by σ. A nonempty intersection ∩ki=1L(xiσ[i]) is a thread intersection.

For an example see Figure 2.
Let A be the union of all thread intersections for a fixed set of nodes. The

following simple observation guarantees that the nonempty thread intersections form
a partition of A.

Lemma 6. Let σ1, σ2 be threads for nodes x1, . . . , xk. If σ1 6= σ2 then(
k⋂

i=1

L(xiσ1[i])

)
∩
(

k⋂
i=1

L(xiσ2[i])

)
= ∅.

Proof. If σ1 6= σ2 then there is a j such that σ1[j] 6= σ2[j].
∩ki=1L(xiσ1[i]) ⊆ L(xjσ1[j]).

∩ki=1L(xiσ2[i]) ⊆ L(xjσ2[j]).
But σ1[j] 6= σ2[j]; therefore L(xjσ1[j]) ∩ L(xjσ2[j]) = ∅, and thus(

k⋂
i=1

L(xiσ1[i])

)
∩
(

k⋂
i=1

L(xiσ2[i])

)
= ∅.

The idea behind our algorithm is the straightforward one. Assume we are guaran-
teed that node r is in a MIT. We now root all the trees at r. Theorem 4 and Lemma
5 now assure us that if other nodes appear in the MIT then the child xi of r in each
tree Ti, i = 1, . . . , k, has to be in the MIT also.

Thus a naive way of constructing the MIT is by considering all possible combina-
tions of children of the xi‘s, i = 1, . . . , k. In particular, if all the trees are binary trees,
assume the children of xi are xi1 and xi2. For each thread σ of the nodes x1, . . . , xk
recursively find an MIT T1 of ∩ki=1L(xiσ[i]) and an MIT T2 of ∩ki=1L(xiσ[i]). Construct
a tree whose root is r, its child is x1 and make the roots of T1 and T2 the children
of x1 . Each such tree is an isomorphic agreement subtree. The largest of them is a
maximal isomorphic agreement subtree.

The naive algorithm described above has exponential running time since there
are 2k combinations to check at each level of the recursion. The algorithm below is

1662 AMIHOOD AMIR AND DMITRY KESELMAN

essentially the same as the naive algorithm but avoids the need to check an expo-
nential number of thread combinations by exploiting the fact that the threads form
a partition; hence there are only very few nonempty thread intersections. We check
only the nonempty ones.

Recursive Algorithm for Finding Rooted MIT of Binary Trees

1. prune all trees to include only the labels that are equidistant to r in all trees.
The trees are now of the following form: Tree Ti has root r. r has one child x1

i .
x1
i has two children x2

i1 and x2
i2. The rest of the tree is rooted at x2

i1 and x2
i2.

We would like to have recursion and choose a maximal isomorphic agreement
subtrees of all combinations of children. However, there are 2k combinations,
which we cannot afford. The partition property of thread intersections means
there are at most n− 1 nonempty candidate intersections.

2. construct the i disjoint thread intersections {S1, . . . , Si} of S−{r} (i ≤ n− 1).
Details of the construction appear in the implementation of step 2 below.
Let the thread intersections be of sizes n1, . . . , ni, respectively. (

∑i
j=1 nj ≤

n − 1.) Let Tjl be the minimal subtree of Tj rooted at xj and containing
exactly the leaves in Tj ∩ Sl. In the next level of the recursion, xj has only
the single child appearing in the chosen thread. The role of r will be played
by xj . We continue using only the nonroot leaves of the tree as our counting
basis, with the root never contributing.
construct i tuples 〈T11, . . . , Tk1〉, . . . , 〈T1i, . . . , Tki〉.
recursively find the MIT of each of the i tuples.

3. The MIT will be composed of putting together the MITs of different thread
intersections. Since our trees are binary trees, a choice of thread σ forces at
most one possibility for its counterpart, the thread σ̄ such that σ̄[i] = 3−σ[i].
Note that σ̄ may be empty either because of an empty intersection or even
because some xi has only a single child.
Let MIT (σ) = MIT (T1t, T2t, . . . , Tkt) where St = ∩kl=1L(xlσ[l]).
Pair all threads into {〈σ1, σ̄1〉, . . . , 〈σi′ , σ̄i′〉} where each pair has at least one
thread with a nonempty intersection. It is clear that i′ ≤ i. (Recall that i is
the number of nonempty disjoint thread intersections found in step 2.)
Each MIT (σ) is a binary tree whose root has a single child. Let MIT (〈σ, σ̄〉)
be the tree resulting from merging the roots of MIT (σ) and MIT (σ̄) into a
single node that has two children. This node is the single child of r.
chooseMIT (T1, . . . , Tk) as the largest of {MIT (〈σ1, σ̄1〉), . . . ,MIT (〈σi′ , σ̄i′〉)}.

end Algorithm

Correctness. The algorithm’s main action takes place in step 2. The fact that
the MIT is an isomorphic subtree of all trees means that each of x1

1, x
1
2, . . . , x

1
k is the

child of r in the MIT restricted to T1, . . . , Tk, respectively. The MIT is then the best
combination of children of the xi’s. The partition property of the thread intersections
limits the number of recursive cases that need to be considered to i < n rather than
2k since all other thread intersections are necessarily empty.

Step 3 is correct because in a binary tree every choice of right or left forces a
single remaining option.

Implementation of step 2. Our goal is to decide in polynomial time which of
the 2k possible threads gives a nonempty thread intersection. When constructing a
thread, at each of the k trees we make one choice. Either we choose a 1 (if xi1 is in
the thread) or a 2 (xi2 in the thread). Constructing all these choices is equivalent
to a breadth-first-search of the complete depth-k binary tree where each node has a

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1663

left son labeled 1 and a right son labeled 2. Visiting child e, e ∈ {1, 2} at level d
means adding xde to the thread. We will in fact be intersecting with L(xde). We are
guaranteed that the nonempty sets are disjoint at every node at every fixed level. We
do not continue the search at any branch where the empty set is reached. The sum of
all elements in the sets for each level is at most n−1, thus the total time to construct
step 2 is O(kn).

Algorithm time. The time for computing the MIT of k rooted trees is given by
the following recurrence:

f(1) = 1,

f(n) = f(n1) + f(n2) + · · ·+ f(ni) + kn, where
∑i

l=1 nl = n.

The closed form is f(n) = O(kn2).

Total algorithm time. Since the rooted MIT algorithm has to be run n times, the
total time is O(kn3).

It is easy to see that the above algorithm will also work for trees where T1 has
degree bounded by d > 2. The only use we made of the fact that the trees are
binary was in step 3. In the binary tree case, choosing a σ fixes σ for purposes
of recursively constructing an MIT. Now, however, we need to make sure that we
pick the maximum of the choice of all nonconflicting threads, where a thread σ1

conflicts with a thread σ2 of the same nodes if ∃i such that σ1[i] = σ2[i]. Obviously,
two conflicting threads cannot be joined together in the same agreement subtree.
There are going to be

(
n

d−1

)
possibilities. The nonconflicting threads may be put

together in a brute-force fashion. Each of the
(

n
d−1

)
possibilities requires O(kd) time

for verification of nonconflict (since there are at most d− 1 threads in a combination,
and each thread is of length k). Thus all nonconflicting threads can be generated in
time O(k(d − 1)nd−1/(d − 1)!) = O(knd−1). We now choose the best MIT over all
nonconflicting thread combinations.

The recurrence is now

f(1) = 1,

f(n) = f(n1) + f(n2) + · · ·+ f(ni) + knd−1, where
∑i

l=1 nl = n.

Thus the total algorithm time for degree bounded by d trees is O(knd+1). It should
be noted that the algorithm does not require all trees to have bounded degree. It will
work even for the case where only one tree has bounded degree d. However, if all trees
have degree bounded by d, then each set of d − 2 threads forces a unique (d − 1)th
thread (as in the binary tree case above) and the total algorithm time is then O(knd).

5. Maximum homeomorphic agreement subtree. We now consider the task
of finding an MHT subtree of k trees, where the degree of at least one of the trees is
bounded.

We follow the same ideas as before. We basically use a naive brute-force algorithm
that normally produces an exponential time solution. However, we will define special
sets of labels—maximal decomposable sets—and show that considering these sets alone
is sufficient for finding an MHT. Since there is only a polynomial number of such sets,
our algorithm’s time is therefore polynomial.

Before presenting the algorithm, we need some more definitions and observations.

Notation. Let A ⊆ S. We denote the tree MHT (H(T1, A), . . . , H(Tk, A)) by
MHT (A). To avoid unnecessary notation, we will also use the notation MHT (A) to
denote the set of labels of MHT (A).

Definition. A set A ⊆ S is decomposable if there exist x1 ∈ T1, . . . , xk ∈
Tk such that each xi, i = 1, . . . , k, has at least p children which can be labeled

1664 AMIHOOD AMIR AND DMITRY KESELMAN

{a, e, d} is a maximal decomposable set that decomposes to {a, e} ∪ {d}.
The roots of the decomposition are x1, x2, x3.

Fig. 3. Example of a decomposable set.

xi1, . . . , xip, p ≥ 2, and such that A = A1 ∪ · · · ∪ Ap, where Aj are mutually dis-
joint nonempty sets and Aj ⊆ L(xij), j = 1, . . . , p; i = 1, . . . , k. We say that A
decomposes to A1 ∪ · · · ∪Ap, and that x1, . . . , xk are the roots of the decomposition.

In other words, there is a node in each one of the trees, where the label set is split
among p children in the same fashion. See Figure 3.

Note that the number of decomposable sets may still be exponential. Consider as
an example two identical complete binary trees. Every label subset with more than
two leaves is a decomposable set. We would like to limit the number of label sets that
need to be considered.

Definition. Let A be a decomposable set which decomposes to A1 ∪ · · · ∪Ap. A
is a maximal decomposable set if there does not exist a decomposable set B such that
A is a proper subset of B and such that B decomposes to B1 ∪ · · · ∪Bq, q ≥ p where
every Ai, i = 1, . . . , p, is a subset of a distinct Bj.

An alternate way of viewing maximal decomposable sets is by considering the
roots of the decomposition. A set of nodes x1 ∈ T1, . . . , xk ∈ Tk defines a set of
maximal decomposable sets. Each of these maximal decomposable sets is defined by
a maximum p (p ≥ 2) and an ordered list of p children of each xi, which we will
label xi1, . . . , xip (although note that the order of these nodes is not necessarily their
left-to-right order in the trees). If ∩ki=1L(xij) 6= ∅, j = 1, . . . , p, then ∪pj=1∩ki=1L(xij)
is a maximal decomposable set.

The maximality, then, is the fact that this set is the largest decomposable set
defined by the given set of nodes. This limitation reduces the number of sets from
exponential to polynomial, as can be seen from the following theorem.

Theorem 7. Let T1, . . . , Tk be a set of trees where T1 has degree bounded by d.
Assume the trees are rooted at a common label r. Then there are O(nd−1) maximal
decomposable sets.

Proof. We know that T1 is a degree d tree, so in our case, no set can decompose
to more than d − 1 subsets. Observe that if A decomposes to A1 ∪ · · · ∪ Ad−1, then
for every (d − 1)-tuple 〈a1, a2, . . . , ad−1〉, where ai ∈ Ai, i = 1, . . . , d − 1, the lowest
common ancestor of the d − 1 elements in each of the k tree is the node defined as
the root of the decomposition in that tree. If, however, we are considering a maxi-
mal decomposable set, then each such tuple uniquely defines the set. The reason is

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1665

that the LCA of the tuple finds the root of the decomposition, and the maximum
subset in each of the d− 1 children that appears in all k trees is the maximal decom-
position.

The following observation guarantees the polynomial time of our algorithm.

Observation 8. If A ⊆ S is a maximal decomposable set decomposable to A =
A1∪···∪Ap, then MHT (A) = MHT (A1)∪···∪MHT (Ap). If A is not decomposable,
then MHT (A) = max{MHT (B)|B ⊆ A and B is maximal decomposable}.

Proof. Let A be maximal decomposable, and let H be the homeomorphic restric-
tion of Ti to A ∪ {r}. The root of H is r. Each xi, the root of the decomposition in
Ti, is the restriction of the only child of r in H. It is clear that the only chance of
getting a nonempty MHT is by matching equal subsets to each other. The maximum
number we can get is by matching all equal subsets to each other.

If A is not maximal decomposable then for each i, i = 1, . . . , k, let xi be the node
in Ti that is the restriction of r’s child in the MHT. Because x1, . . . , xk appear in
the MHT then they are either leaves or each has children xi1, . . . , xip, p > 1, where
L(xij) ∩ L(xlj) 6= ∅. Thus if B is the maximal decomposable set of A for nodes
x1, . . . , xk, then MHT (A) = MHT (B) and B ⊆ A.

The above observation means that it is sufficient to compute the MHT of maximal
decomposable sets.

We now present an algorithm for finding the MHT of a set of trees where tree
T1 (which we may assume has the smallest degree) has degree bounded by d. As in
the previous sections we present the part that assumes root r. The general algorithm
chooses as the MHT the largest tree produced by each of the rooted cases.

For simplicity of the presentation, we will separate the algorithm into two parts.
One part that constructs all maximal decomposable subsets of S −{r}, and a second
part that constructs the MHT of all maximal decomposable subsets.

Algorithm for Constructing all Maximal Decomposable Subsets (de-
gree bounded by d tree)

For each (d− 1)-tuple 〈a1, . . . , ad−1〉 of elements from S − {r} do:
1. For every tree Ti, i = 1, . . . , k find if there is xi ∈ Ti that has d − 1 distinct

children xi1, . . . , xi(d−1) where aj ∈ L(xij), i = 1, . . . , d− 1.
2. If such an xi is found for every Ti, i = 1, . . . , k then construct the maximal sets

A1, . . . , Ad−1 such that aj ∈ Aj ⊆ L(xij), i = 1, . . . , k; j = 1, . . . , d− 1.
Take A = A1 ∪ · · · ∪Ad−1 as a maximal decomposable set.

end
end Algorithm

Time. The algorithm loops nd−1 times. It takes time O(kn) to find the xi’s (step
1) and to construct the Ai’s (step 2). The total time is O(knd).

Correctness. We have correctness by Theorem 7.

We are now ready to present the algorithm for finding the MHT of k trees one of
which has degree bounded by d.

Algorithm for Rooted MHT (degree bounded by d tree)

1. Construct all nd−1 maximal decomposable sets.
2. Order the maximal decomposable sets by the subset relation.
3. The base subsets (those that have no maximal decomposable subsets) are sets

A = A1 ∪ · · · ∪Ad−1 where each of the Ai’s, i = 1, . . . , d− 1, is a singleton set
{ai}. MHT (A) is A.
For subsequent maximal decomposable subsets, construct the MHT by the rela-
tion MHT (A) = MHT (A1)∪MHT (A2)∪· · ·∪MHT (Ad−1). For any maximal

1666 AMIHOOD AMIR AND DMITRY KESELMAN

decomposable Ai, we have already computed the MHT. If any of the Ai is not
maximal, its MHT is that of its largest maximal decomposable subset.
MHT (S) is MHT (A), where A is the largest maximal decomposable subset of
S.

end Algorithm
Time. Step 1 was already seen to take time O(nd). For steps 2 and 3, there

are O(nd−1) maximal decomposable sets. Comparing every two sets takes time O(n).
A straightforward implementation of steps 2 and 3 is by a pairwise comparison of
all maximal decomposable sets. This can be done in time O(n2d−1). The total
algorithm time for rooted trees is then O(knd + n2d−1). For unrooted trees the time
is O(knd+1 + n2d).

Correctness. The correctness is clear by Observation 8.

6. Maximum weighted agreement subtree (MWT). An MHT of a set of
trees produces a tree whose shape is common to all trees. However, this does not
take into account the conjectured time each evolutionary split took. Our final goal
is a tree where the distances between nodes are conjectured, i.e., given as a range of
numbers. However, we start with the case where the distances between nodes in each
of the evolutionary trees are given exactly. This case is a special case of the maximum
interval subtree discussed in the next section. However, we treat it separately for two
reasons: 1) it introduces some concepts that are used later in the interval case 2) it
has a faster algorithm than the general case.

Definition. Let T1, . . . , Tk be S-labeled trees with integer weights on the edges.
A maximum weighted agreement subtree of T1, . . . , Tk (MWT (T1, . . . , Tk)) is a max-
imum set S′ ⊆ S such that ∀s, t ∈ S′ the distance between s and t (the sum of the
weights on the edges of the path between them) is the same in all trees T1, . . . , Tk. We
will also refer to the problem of finding a maximum weighted agreement subtree as the
MWT problem.

This is a generalization of the MIT problem (there every edge had weight 1).
However, we cannot immediately reduce the MWT problem to the MIT problem by
replacing every weight-i edge by i weight-1 edges, since then the problem size may
grow exponentially.

Let T1 and T2 be two S-labeled trees with integer weights on the edges. T1 and
T2 are w-isomorphic if the distance between every two labeled edges is the same in
both trees.

Theorem 9. Two labeled trees with no 2-vertices (vertices of degree 2) are w-
isomorphic iff they are isomorphic as leaf-labeled trees and corresponding edges have
the same weight.

Proof. For rational weights, this is an immediate corollary of Theorem 4.
Theorem 9 asserts that in different trees of the given set, subtrees corresponding

to the MWT may differ only in edges incident to 2-vertices. In addition, the sum
of the weights of a maximal chain of 2-vertices (whose end points are not 2-vertices)
must be the same for all corresponding pairs of non-2-vertices in all the trees.

For the sake of exposition we again assume that all our trees are binary trees. The
algorithm outline is generally unchanged from the MIT case. The only exceptions are
the following necessary changes.

• As in the MIT case, the recursion always treats rooted trees where the root
has a single child x and that child has two children x1 and x2. Unlike the
MIT case, our root is always taken to be r and the weight of the edge from r
to x is the sum of the weights from r to x in the original tree.

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1667

• If the children of r in all the trees have the same distance to r the case is
handled exactly like the MIT algorithm.
• If there are at least two children of r with different distances to r, let i be the

tree with the smallest distance d(xi, r). Because of Theorem 9, it is impossible
for xi to be in an MWT as a 3-vertex. Therefore, we split the tree Ti(xi) into
two trees Ti(xi1) and Ti(xi2), where xi1 and xi2 are xi’s children. We now
have two MWT problems of smaller size.

Termination. The algorithm terminates since a tree split always reduces the size
of the remaining trees. Since there are kn nodes initially, and every split reduces the
size of the trees by at least one node, there can be no more than kn splits.

Time. The time complexity of the algorithm does not change. Although we may
split the problem several times during the course of the algorithm, the sizes of the
problems are reduced with each split. Because of convexity of the time function, the
complexity is worst when there is no split. This is exactly the MIT case.

Total algorithm time. O(kn3).
Total algorithm time for degree bounded by d trees. O(nd + kn3).

7. Maximum interval agreement subtree. An MHT of k trees provides, in
a sense, the greatest number of leaves whose underlying tree structure has a similar
shape. An MWT provides a maximum set of leaves where the exact distances between
them are preserved. The big problem is that the exact distances are not usually
known. We would like a metric that gives us the advantage of both structure and
“approximate” distance. We approximate the distance between two nodes by a pair
of numbers [a, b], where a ≤ b. This pair represents the interval between a and b
and its meaning is that the distance between the edge’s head and tail is within that
interval. We are interested in the largest set of leaves that has an underlying tree
with edge weights in the intersection of all appropriate intervals. Formally we have
the following definition.

Definition. Let T1, . . . , Tk be S-labeled trees. Assume that every edge is labeled
by a pair of numbers [a, b], where a ≤ b. We call such trees S-labeled interval la-
beled trees. An instantiation T ′ of an S-labeled interval labeled tree T is an S-labeled
weighted tree (as defined in section 6) where all nodes and edges of T ′ are equal to
the nodes and edges of T and where every edge of T ′ is labeled by a number in the
interval label of that edge in T .

A maximum interval agreement subtree of T1, . . . , Tk (MIWT (T1, . . . , Tk)) is a
maximum set S′ ⊆ S such that MIWT (T1, . . . , Tk) is MWT (T ′

1, . . . , T
′
k), where T ′

i is
an instantiation of Ti for i = 1, . . . , k. We refer to the problem of finding a maximum
interval agreement subtree as the MIWT problem.

Note that all previous agreement metrics are special cases of MIWT. In MIT, we
assume all intervals are [1, 1]. In MWT, any edge weight a is interval [a, a]. In MHT,
we assume all intervals are [1, n− 1]. We presented the case separately for historical
and methodological reasons.

The key observation for the MIWT problem is that Theorem 9 guarantees that a
MIWT of k trees is also a homeomorphic agreement subtree of those trees (because
it is an MWT of some instantiation of them). Once this observation is made the
following algorithm follows naturally. Before presenting the algorithm, we need one
more definition.

Definition. The distance interval between node x and y in an interval labeled
tree is the interval [z, w] where z is the sum of the smaller elements of each of the
pairs on the path from x to y, and w is the sum of the larger elements.

1668 AMIHOOD AMIR AND DMITRY KESELMAN

Algorithm for MIWT

We modify the MHT algorithm to return MIWT. The only necessary modification
is the following:

1. For each homeomorphic agreement subtree T ′ handled by the algorithm do
(a) for each tree Ti, i = 1, . . . , k do

for every path in Ti corresponding to an edge in T ′ compute the distance
interval of that path

(b) { Every edge in T ′ now has k distance intervals associated with it. }
for every edge in T ′ where the k distance intervals have a nonempty inter-
section, discard the edge and the entire subtree rooted to its head

end Algorithm.

Theorem 10. The above algorithm computes a MIWT of k trees in time O(knd+1+
n2d), where there is at least one tree of degree bounded by d.

Proof. Correctness follows immediately from the observation that every MIWT
is also a homeomorphic agreement subtree.

We need to prove the time bounds. The added modification can be implemented
in time O(kn) and needs to be added for every maximal decomposable set. Since
there are O(nd) such sets, the asymptotic time complexity of the algorithm does not
change, and is O(knd+1 + n2d).

8. Future work. Although theNP-completeness proof of the unbounded degree
case prepares us for having the degree d as an exponent in our time complexity, it
would be nice to reduce the time for finding the MWT to O(cdp(n, k)), where p is a
polynomial, rather than O(nd).

We presented here an approximation for the problem of finding the complement of
the MHT. In [13] it was proven that the MHT problem for three trees with unbounded
degree cannot be approximated within ratio nε for any constant ε ≤ 1.

For the case of bounded degree trees, the time was improved by [5].

From a graph theoretic aspect, it would be interesting to find a maximum agree-
ment subtree in the sense of maximizing the number of edges, while using true con-
traction. The number is no less than n because every tree can be contracted to a star.
However, again in [13] it was shown that this prolem is NP-hard even for two trees.

An ambitious problem is to define “tree closeness” metrics and efficiently find the
closest tree to a set of trees keeping all the leaves.

Acknowledgments. We wish to thank Mike Steel for his great help in refining
this paper, Bob Robinson for kindly sending us reference material on the subject, and
two anonymous referees who were very fast and insightful.

REFERENCES

[1] A. Amir and D. Keselman, Maximum agreement subtree in a set of evolutionary trees - Met-
rics and efficient algorithms, in Proc. 35th IEEE Symposium on Foundations of Computer
Science, Santa Fe, NM, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 758–
769.

[2] H. J. Bandelt and A. Dress, Reconstructing the shape of a tree from observed dissimilarity
data, Adv. Appl. Math, 7 (1986), pp. 309–343.

[3] W. H. E. Day, Optimal algorithms for comparing trees with labeled leaves, J. Classification, 2
(1985), pp. 7–28.

[4] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, in Proc. 25th Annual ACM Symposium on the Theory of Computing, San Diego,
CA, ACM, New York, 1993, pp. 137–145.

MAXIMUM AGREEMENT IN EVOLUTIONARY TREES 1669

[5] M. Farach, T. M. Przytycka, and M. Thorup, On the agreement of many trees, in Proc.
3rd European Symposium on Algorithms, Corfo, Greece, 1995, pp. 381–393.

[6] M. Farach and M. Thorup, Fast comparison of evolutionary trees, in Proc. 5th ACM-SIAM
Symposium on Discrete Algorithms, Arlington, VA, SIAM, Philadelphia, 1994, pp. 481–
488.

[7] C. R. Finden and A. D. Gordon, Obtaining common pruned trees, J. Classification, 2 (1985),
pp. 255–276.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.

[9] W. Goddard, E. Kubicka, G. Kubicki, and F. R. McMorris, Agreement subtrees, metric
and consensus for labeled binary trees, DIMACS Workshop on Partitioning Data Sets,
Rutgers University, New Brunswick, NJ, 1993.

[10] A. D. Gordon, A measure of the agreement between rankings, Biometrika, 66 (1979), pp. 7–15.
[11] A. D. Gordon, On the assessment and comparison of classifications, in Analyse de Données

et Informatique, R. Tomassone, ed., INRIA, 1980, pp. 149–160.
[12] J. A. Hartigan, Clustering algorithms, John Wiley, New York, 1975.
[13] J. Hein, T. Jiang, L. Wang, and K. Zhang, On the Complexity of Comparing Evolutionary

Trees, in Proc. 6th Symposium on Combinational Pattern Matching, Helsinki, Finland,
1995, pp. 177–190.

[14] E. Kubicka, G. Kubicki, and F. R. McMorris, An algorithm to find agreement subtrees, J.
Classification, 1992.

[15] D. A. Neumann, Faithful consensus methods for n-trees, Bull. Math. Biol., 63 (1983), pp. 271–
287.

[16] E. A. Smolenskii, Jurnal Vicisl. Mat. i Matem. Fiz, 2 (1962), pp. 371–372.
[17] M. Steel and T. Warnow, Kaikoura tree theorems: Computing the maximum agreement

subtree, Inform. Proc. Lett., 48 (1993), pp. 77–82.
[18] M. A. Steel and D. Penny, Distributions of tree comparison metrics - Some new results,

Syst. Biol., 42 (1993), pp. 126–141.

THE UNION OF CONVEX POLYHEDRA
IN THREE DIMENSIONS∗

BORIS ARONOV† , MICHA SHARIR‡ , AND BOAZ TAGANSKY§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1670–1688, December 1997 006

Abstract. We show that the number of vertices, edges, and faces of the union of k convex
polyhedra in 3-space, having a total of n faces, is O(k3 + kn log k). This bound is almost tight in
the worst case, as there exist collections of polyhedra with Ω(k3 + knα(k)) union complexity. We
also describe a rather simple randomized incremental algorithm for computing the boundary of the
union in O(k3 + kn log k logn) expected time.

Key words. combinatorial geometry, computational geometry, combinatorial complexity, con-
vex polyhedra, geometric algorithms, randomized algorithms

AMS subject classifications. 52B10, 52B55, 65Y25, 68Q25, 68U05

PII. S0097539793250755

1. Combinatorial bounds. Let P = {P1, . . . , Pk} be a family of k convex poly-

hedra in 3-space, let ni be the number of faces of Pi, and let n =
∑k

i=1 ni. Put
U =

⋃P. By the combinatorial complexity of a polyhedral set we mean the total
number of its vertices, edges, and faces. Our main result is the following.

Theorem 1.1. The combinatorial complexity of the union U is O(k3 +kn log k).
This bound is almost tight in the worst case, since there are examples where the
complexity of such a union is Ω(k3 + knα(k)).

1.1. Background. This result extends the known sharp bound of Θ(k2+nα(k))
on the complexity of the union of k convex polygons in the plane with a total of n
edges [7]. It is interesting to note that in both cases the bounds depend only linearly
on n.

Our result has several applications, mentioned below, to robot motion planning
and to problems in geometric optimization. It is a natural special case of the problem
of analyzing the complexity of the union of geometric objects, which is formulated
for arrangements of more general curves and surfaces in two and three dimensions,
respectively. This problem has received considerable attention recently and has been
studied mostly in the plane. Several special cases have been identified where sharp
complexity bounds can be established, such as the cases of “pseudodisks” [27] or of
“fat” triangles [28]. In three dimensions, however, very few sharp bounds for the
complexity of the union of objects are known. One such bound is for the union of n

∗ Received by the editors June 23, 1993; accepted for publication (in revised form) November
27, 1995. A preliminary version of this paper appeared in the Proceedings of the 34th Annual
IEEE Symposium on Foundations of Computer Science, (FOCS), IEEE Computer Society Press,
Los Alamitos, CA, 1993, pp. 518–527.

http://www.siam.org/journals/sicomp/26-6/25075.html
† Department of Computer and Information Science, Polytechnic University, Brooklyn, NY 11201

(aronov@ziggy.poly.edu). This author was supported by National Science Foundation grant CCR-
92-11541.

‡ School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel (sharir@
math.tau.ac.il) and Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012. This author was supported by National Science Foundation grant CCR-91-22103 and
by grants from the U.S.–Israeli Binational Science Foundation, the German Israeli Foundation for
Scientific Research and Development, and the Fund for Basic Research administered by the Israeli
Academy of Sciences.

§ School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.

1670

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1671

balls, where a Θ(n2) worst-case bound is easy to establish. Another recent bound is
for the union of n axis-parallel cubes in any dimension d ≥ 2. The worst-case bound
is Θ(ndd/2e), and it improves to Θ(nbd/2c) when the cubes have all the same size [11].

The union of geometric objects (or, rather, its complement) is among several
important substructures in the arrangement of the objects, such as their lower (or
upper) envelope, a single cell of the complement (a “hole” in the union), a subset of
cells in the complement, and the collection of all nonconvex or otherwise “interesting”
cells of the complement. Considerable progress has recently been made in the analysis
of these substructures; see [5, 7, 22, 21, 23, 24, 33, 36].

We also obtain an efficient randomized incremental algorithm for computing the
union of k convex polyhedra with a total of n faces, whose expected running time is
O(k3 + kn log k logn), and is thus close to optimal in the worst case. Our algorithm
computes the portion of the boundary of the union contained in each of the faces
of the polyhedra, using a separate randomized incremental procedure for each face.
The algorithm and its analysis are adapted from previously known techniques ([13,
16, 20, 30] and others), but it introduces a significant observation, namely that, even
without a global randomized insertion mechanism (which is not applicable in our case),
sharp expected complexity bounds can still be obtained. This may be of independent
interest and may have further applications for efficient construction of other three-
(or higher-)dimensional structures. Another complication arises since the objects that
we add incrementally do not necessarily have constant complexity, so handling them
requires a more complex version of the algorithm and of its analysis.

1.2. Analysis. We first simplify the analysis by assuming that the given poly-
hedra are in general position, meaning that no point is common to the boundaries
of any four distinct polyhedra, no vertex of one polyhedron lies on the boundary of
another, no two edges of distinct polyhedra meet, and no edge of a polyhedron meets
the polygonal curve of intersection of the surfaces of any two other polyhedra. We
claim that this assumption involves no loss of generality. Indeed, Lemmas 1.2 and 1.3
below, which are easily seen to hold also when the given polyhedra are not in gen-
eral position, imply that it suffices to prove the asserted bound for the number of
vertices of the union that are formed as the intersection of faces of three (or more)
distinct polyhedra. However, it can be easily verified that, if we perturb the vertices
of the given polyhedra by sufficiently small displacements, so as to move them into
general position, the number of such union vertices does not decrease. Moreover, if
the perturbation is sufficiently small, the number of edges and faces of the union also
cannot decrease. We can then charge each edge or face of the union to an incident
vertex in the perturbed collection and argue that no such vertex is charged more than
a constant number of times. These considerations imply that it suffices to establish
the bound of Theorem 1.1 for the number of vertices of the union of collections P in
general position.

We begin with a derivation of a few simple auxiliary results.

Lemma 1.2. The sum of the numbers of vertices, edges, and faces of the pairwise
intersections Pi ∩ Pj, over all 1 ≤ i < j ≤ k, is O(kn).

Proof. Pi ∩ Pj is a convex polyhedron bounded by at most ni + nj faces, and
thus has O(ni + nj) vertices and edges. Summing this bound over all (i, j) with
1 ≤ i < j ≤ k, we obtain O(kn).

Define the arrangement A(P) of the collection P as the decomposition of space
into vertices, edges, faces, and three-dimensional cells induced by the faces of the
polyhedra of P; for more details on arrangements, see [4, 17, 34].

1672 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

Lemma 1.3. The number of vertices of A(P), other than those formed as the
intersection of faces of three or more distinct polyhedra, is O(kn).

Proof. Each such vertex is either a vertex of a polygon in P, or a vertex of Pi∩Pj ,
for some i 6= j. The claim now follows from Lemma 1.2.

Lemma 1.4 (Aronov, Bern, and Eppstein [1]). The overall complexity of A(P) is
O(k2n), which is tight in the worst case.

Proof. Each vertex of A(P) not counted in Lemma 1.3 is the intersection of
an edge of some intersection Pi ∩ Pj with a face of another polyhedron P`. Since
Lemma 1.2 implies that the total number of such edges is O(kn), and each of them
crosses the surface of another polyhedron at most twice, the upper bound follows. For
an easy lower bound construction, see [1].

Proof of Theorem 1.1. We prove the theorem by induction on k. For k ≤ 3 the
claim follows trivially from Lemma 1.4. Recall that A(P) is the arrangement in R

3

of the collection of the n facets of the polyhedra in P. An m-face f ∈ A(P), for
m = 0, 1, 2, is a level-z face if exactly z polyhedra in P contain f in their interior.
Thus the faces of the union are precisely the level-0 faces.

A vertex v ∈ A(P) is said to be an outer vertex if it is incident to an edge of a
polyhedron in P. Otherwise v is called an inner vertex. By Lemma 1.3 the number
of outer vertices is O(kn). Thus our main goal is to bound the number of level-0
inner vertices. Denote by Cz(P) the number of level-z inner vertices of A(P), and
by Cz(k, n) the maximum of Cz(P) over all sets P of k convex polyhedra in general
position, with a total of n facets.

The triple (f, e, e′) is said to be a special triple if f is a level-1 2-face of A(P), e
and e′ are edges of f that are level-0 edges of A(P), and we can trace the boundary
of f from e to e′ without passing through any other level-0 edge. (Note that e and e′

must both lie on the boundary of the unique polyhedron containing f in its interior
and thus on the outer boundary component of f .) In this notation, the order of e
and e′ is immaterial, and we identify (f, e, e′) with (f, e′, e). Lemma 1.5 below, a
main technical step of the proof, shows that the number of such special triples is
O(k3 + kn log k). We also define a special triangle to be any level-1 triangular face of
A(P), with one level-0 edge and two level-1 edges.

Let v0 be a level-0 inner vertex. Then v0 is the intersection of three facets
F1, F2, F3 of three respective distinct polyhedra P1, P2, P3. The vertex v0 is inci-
dent to three level-0, six level-1, and three level-2 2-faces of A(P). Let f be one of the
incident level-1 faces, say the one contained in F1 ∩ P3 and lying outside P2. There
are two edges of f incident to v0: a level-0 edge e0 within F1 ∩ F3 \ P2, and a level-1
edge e1 within F1∩F2∩P3 (see Figure 1). Let e0, v0, e1, v1, e2, v2, e3 denote the edges
and vertices of the (outer) boundary of f in the order of their appearance along the
boundary, starting from e0 (see Figure 1). Note that we may have e3 = e0.

We now introduce a charging scheme, in which v0 can be charged to a “nearby”
vertex or other feature of the arrangement A(P). One of the following five cases must
arise:

(i) v1 is an outer vertex of A(P). In this case we charge one unit to v1.
(ii) v1 is a level-0 inner vertex, and thus (f, e0, e2) is a special triple. We charge

one unit to (f, e0, e2).
(iii) v1 is a level-1 inner vertex, and v2 is not a level-0 inner vertex. We charge

1/3 of a unit to v1.
(iv) v1 is a level-1 inner vertex, v2 is a level-0 inner vertex, and e0 6= e3. We

charge one unit to the special triple (f, e0, e3).

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1673

F1

P3

e1

f

v0

e3

e2
P4

v1

P2

e0

v2

Fig. 1. The level-1 face f used for the charging scheme; here case (iv) is illustrated.

e

e′′

g

e′

g′′

g′

v0

Fig. 2. Many special triangles incident to v0.

(v) v1 is a level-1 inner vertex, v2 is a level-0 inner vertex, and e0 = e3. We
charge 1/6 of a unit to the vertex v1 and 1/6 of a unit to the special triangle 4e0e1e2.

If we repeat the above procedure for each of the six level-1 2-faces incident to v0, the
vertex v0 will receive at least 2 units of charge, at least 1/3 for each 2-face. Moreover,
we claim that v0 can be incident to at most four special triangles (as in case (v)): Note
that v0 is incident to three level-0 edges e, e′, e′′, and to three level-1 edges g, g′, g′′,
and each special triangle incident to v0 is incident to one of these level-0 edges and
to one of these level-1 edges. So suppose to the contrary that v0 is incident to five
or more special triangles. It follows that there are three consecutive special triangles
incident to v0, i.e., up to symmetric configurations, one special triangle is incident
to e and g, one is incident to g and e′, one is incident to e′ and g′, and e and g′

must be collinear; see Figure 2. By definition, the other endpoints of e and g must
lie in some original polyhedron facet F4 not incident to v0. Similarly, because of the
general position assumption, the other endpoints of g and e′ must both lie in F4, and
the same holds for the other endpoint of g′. This, however, is impossible, since the
line segment e ∪ g′ has both endpoints on F4 and contains v0 which is not on F4.
Hence, v0 can be incident to at most four special triangles.

It follows that v0 will receive at least 2− 4× 1/6 = 4/3 units of charge even if we
do not charge the special triangles.

We repeat the charging scheme for all the level-0 inner vertices of A(P). Each
outer vertex w that is charged in this scheme (in type (i) cases) has exactly two
incident edges which lie in the intersection of two polyhedra facets. Then w may be

1674 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

charged up to four times: it can be charged along those two intersection edges, at
most twice along each edge, from the two incident level-1 faces, for the total of at
most 4 units. Each special triple (f, e, e′) may be charged up to four times, once for
each vertex of e and e′, for the total amount of at most 4 units of charge. Each level-1
inner vertex v is incident to three level-1 2-faces. Within each face it is charged at
most 1/3 of a unit (either in just one charging of type (iii) or in at most two chargings
of type (v)). Thus the total charge to v is at most 1 unit. To summarize, in the
overall charging scheme, every level-0 inner vertex receives at least 4/3 units, every
level-1 inner vertex pays at most 1 unit, and every outer vertex or special triple pays
at most 4 units. This yields:

4

3
C0(P) ≤ C1(P) +O(kn) +O(k3 + kn log k) = C1(P) +O(k3 + kn log k) .(1)

Let R ⊂ P be a random sample of k − 1 polyhedra (that is, R is obtained by
deleting at random one polyhedron from P). Arguing as in several recent related
works [11, 14, 36], we have

k − 3 + 4/3

k
C0(P) ≤ k − 3

k
C0(P) +

1

k
C1(P) +

1

k
O(k3 + kn log k)

= E(C0(R)) +O(k2 + n log k) ,(2)

where E denotes expectation with respect to the random sample R. Here we have
used (1) and the fact that a level-0 inner vertex of A(P) remains a level-0 inner vertex
of A(R) with probability k−3

k (this happens if and only if none of the three incident
polyhedra is deleted), a level-1 inner vertex of A(P) turns into a level-0 inner vertex of
A(R) with probability 1/k (this happens if and only if the deleted polyhedron is the
unique one containing the vertex), and no other vertex of A(P) can become a level-0
inner vertex in A(R). Using the induction hypothesis C0(k, n) ≤ ck3 + ckn log k, for
some absolute constant c, we obtain

E(C0(R)) ≤ 1

k

∑
j

C0(k − 1, n− nj) ≤ c(k − 1)3 +
c(k − 1)2

k
n log(k − 1) .

Thus (2) becomes

k − 5/3

k
C0(P) ≤ c(k − 1)3 +

c(k − 1)2

k
n log(k − 1) + b(k2 + n log k) ,

for an appropriate constant b. It is now easy to show that

c(k − 1)3 + bk2 ≤ k − 5/3

k
· ck3 ,

and that

c(k − 1)2

k
n log(k − 1) + bn log k ≤ k − 5/3

k
· cnk log k ,

provided c is chosen sufficiently large. Indeed, the first inequality is trivial to enforce.
The second one is implied by the inequality

c

(
k − 2 +

1

k

)
+ b ≤ c

(
k − 5

3

)
,

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1675

(b)(a)

Fig. 3. Lower bound construction.

which is also trivial to enforce for k > 3. This completes the induction step and thus
establishes the asserted upper bound.

As to the lower bound, Ω(k3) is achieved by a gridlike arrangement of almost
flat polyhedra (cf. Figure 3(a)). To obtain the second term, take a collection of k/2
convex polygons in the xy-plane, with a total of n−ck/2−k edges, for an appropriate
constant c, such that the complexity of their union is Ω(nα(k)). Such a construction is
described in [7]. Turn each planar polygon in this construction into a vertical prism,
and cut the resulting collection of prisms by k/2 parallel horizontal flat polyhedra
with c faces each. The union of the resulting collection of k convex polyhedra with
a total of n faces has complexity Ω(knα(k)). General position, if desired, can be
achieved by a small perturbation of the planes containing the faces of the polyhedra,
without reducing the complexity of the union. Figure 3(b) illustrates a simpler Ω(kn)
construction with a single prism. Combining the two constructions, we obtain a lower
bound of Ω(k3 + knα(k)), as claimed.

To finish the proof, next we show the following.

Lemma 1.5. The number of special triples in an arrangement A(P) of k polyhedra
with a total of n faces is O(k3 + kn log k).

Proof. Let f be a level-1 face of the arrangement A(P). Let ef denote the
number of edges of f that lie at level 0. (Note that all these edges must lie on the
outer component of ∂f .) Clearly, the number of (unordered) special triples of the
form (f, e′, e′′) is exactly ef . However, to facilitate our inductive proof, we assign
weight w(f) = max {4ef − 6, 0} to f and proceed to estimate a new quantity, namely∑

f w(f), where the sum is taken over all level-1 faces f of A(P). (The reason
for replacing ef by w(f) is, essentially, “induction loading,” i.e., strengthening the
statement in order to strengthen the induction hypothesis, thereby making the proof
simpler.) We denote the maximum value of this quantity, over all collections P of k
polyhedra in general position, with a total of n faces, by C(1)(k, n).

Before proceeding to bound C(1), we observe that it is an upper bound on the
number of special triples (f, e, e′). Indeed, we need only consider level-1 faces f that
have at least two level-0 edges on their boundary. For such faces f , we have ef ≥ 2,
and w(f) = 4ef − 6 ≥ ef , so indeed

∑
w(f), with the sum taken over all level-1 faces

f , bounds the number of special triples in A(P).

1676 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

We now estimate C(1)(k, n) by employing a slightly different induction scheme,
as used in [2, 3, 5, 19]. That is, we remove a polyhedron Pi, add it back, and estimate
the increase in the sum

∑
f w(f), over all level-1 faces f of A(P), which neither lie

on the boundary of Pi nor are contained in its interior. The argument is repeated for
all Pi ∈ P and the resulting bounds on the increase in

∑
f w(f) are added, to obtain

a recurrence for C(1). We note that if f ′ is such a face in the full arrangement A(P),
then, when Pi is removed, f ′ may expand, possibly merging with other faces, to form
a bigger face f , which is a level-1 face in the reduced arrangement Ai = A(P \ {Pi}).

Thus let f be such a face in Ai. We assume that f is contained in a face Fj of
some polyhedron Pj and in the interior of only one other polyhedron P`, where Pj and
P` are distinct from Pi, and consider what may happen to f when Pi is reinserted.
The portion f \ Pi of f remains at the first level of the full arrangement, whereas
f ∩ Pi lies at the second level and so should be ignored. f \ Pi may be disconnected
and consist of several subfaces f1, . . . , fu. We are interested only in situations where∑u

q=1 w(fq) > w(f), for only then does our count go up. Recall that ef counts the
number of level-0 edges of f , i.e., of edges of f on ∂P`, rather than all edges of f ; in
particular, we can assume that ef ≥ 1, for otherwise neither f nor f \ Pi contribute
anything to C(1).

Clearly, the cases where Pi contains f in its interior or avoids it altogether are
uninteresting. If Pi avoids the outer boundary of f , there is no increase in weight
(since all ef level-0 edges of f lie on that boundary). Thus, from this point on, we
assume that ∂Pi does meet the outer boundary of f .

We disregard subfaces fq for which w(fq) = 0; we are thus interested only in
situations where ∑

w(fq)>0

(4efq − 6) > 4ef − 6 .(3)

Each of the at most ef level-0 edges of f may be split by Pi into at most two subedges
that may contribute to the left-hand side of (3), which is thus at most 4ef +4e∗−6u∗,
where e∗ is the number of level-0 edges that have been split, with both subedges
appearing in positive-weight subfaces, and where u∗ denotes the number of subfaces
with positive weight. Thus the increase that f contributes to the overall sum of
weights is at most (4ef + 4e∗ − 6u∗)− (4ef − 6) = 4e∗ − 6u∗ + 6 (it can be smaller if
ef = 1 or if some of the ef level-0 edges of f appear only in 0-weight subfaces). Let s
be one of the e∗ split edges, and let s1 and s2 be the two subedges into which s is split.
If s1 and s2 lie in the same subface fq of f , then the portion of ∂fq between s1 and
s2 must either contain a concave vertex of fq that is also a vertex of Fj ∩ Pi or meet
one of the islands (i.e., interior components of the boundary) of f that have become
connected to the outer boundary by Pi (cf. the proofs of the Consistency Lemma and
the Combination Lemma of [18], and Figure 4). In the former case we charge the
splitting to any such concave (i.e., outer) vertex, and in the latter case we charge the
splitting to such an island. It is easily seen that any such vertex or island is charged
at most once, over all choices of Pi. Notice that the number of these islands, over all
choices of a level-1 face f ⊂ Fj and of Pi, for a fixed face Fj , is k, as it is at most
the number of intersections P` ∩ Fj , for 1 ≤ ` ≤ k. Hence the total number of such
charges is O(kn). Similarly, by Lemma 1.3, the total number of concave vertices is
also O(kn). Thus the overall number of such edge splittings is O(kn). Note that if
an edge splitting of this kind occurs, then only one level-0 edge of ∂f is split by Pi,
there is only one subface fq with positive weight, and the weight increase is at most

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1677

Pi Pi

fq

s2

ss

fq

s1 s2s1

Fig. 4. Two cases where the subedges of a split edge occur on the boundary of the same
subface fq.

as

at

Pi

Fj ∩ P`

Fig. 5. Analysis of edges split into different subfaces.

4 (this follows from the convexity of Pi, Fj , and P`; see also Figure 4), so the total
increase in all the faces in which splittings of this type occur, over all Pi, is O(kn).

It therefore remains to consider the case where s1 and s2 lie in different subfaces
of f , both having positive weight. Orient s so that f lies on its left, and suppose that
s1 precedes s2 along s in this direction. Let as be the endpoint of s2 closest to s1.
Label as by the subface of f incident to as and to s2. If we trace the outer boundary
of f in this direction, we obtain a cyclic sequence of points as; their labels form a
corresponding cyclic sequence of positive-weight subfaces of f .

We claim that no subface can appear twice in this sequence. Indeed, consider
as, at ∈ ∂f . By construction, as, at ∈ Pi, so the segment asat lies in Pi and thus
avoids the relative interior of any subface of f . On the other hand, as and at lie on
the boundary of the convex polygon Fj ∩P` that contains f and thus also contains its
subfaces. As asat cuts this polygon in two and the subfaces of f incident to as and
at lie locally on different sides of this segment, they must indeed be distinct subfaces.
(Note that for both as and at the boundary of the incident subface lies locally in
counterclockwise direction from the point along ∂f and thus along ∂(Fj ∩ P`); see
Figure 5.) This proves our claim.

Therefore the number e∗ of level-0 edges s of f which are split into two subedges
that end up in different positive-weight subfaces of f is at most u∗, the number of
such subfaces.

To summarize, the increase that f contributes to our count (ignoring the increase
caused by edges split into two subedges of the same subface) is at most 4u∗−6u∗+6 =

1678 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

Pi

PiPi

Pi s

t

s

s

t

f1

f2f1

f2f1 f2

t

s

f1 f2

t

Fig. 6. Possible configurations of the last kind of splitting. Only the top-left configuration
cannot be charged to an outer vertex or to an island.

6−2u∗. This is an increase only if e∗ = u∗ ≤ 2; in fact, only the case u∗ = 2 is relevant,
because the preceding arguments give alternative ways of charging for the splittings
when u∗ = 1 (i.e., when there is only one subface with positive weight), and an increase
can then occur only when e∗ = u∗. Thus, reflecting over the preceding discussion,
we conclude that it only remains to consider the case when e∗ = u∗ = 2, i.e., where
there are two split edges s, t, and where each of the two subfaces in question, f1, f2,
is bordered by a portion of s and by a portion of t. See Figure 6 for an illustration.
Moreover, we can assume that the portions of f ∩ ∂Pi which appear along ∂f1 and
along ∂f2 between s and t do not contain any vertex of Fj ∩Pi, and that they do not
meet any island of f , because in such cases there are alternative ways of charging for
the splitting, similar to those given above. By the same reasoning, we may assume
that the shaded quadrilateral confined between s, t, f1, and f2, as shown in the
bottom-right portion of Figure 6, does not fully contain an island of f , either.

In conclusion, we still need to account for the situations depicted in the top-left
portion of Figure 6. That is, we want to count the number of special quadrilaterals,
that are defined as follows. First, for any 1 ≤ i ≤ k, put Ui =

⋃
j 6=i Pj . Similarly, for

any 1 ≤ i < j ≤ k, let Ui,j =
⋃

`6=i,j P`.

Definition 1. A quadrilateral Q is special if there exist distinct indices i, j, ` ∈
{1, . . . , k} (note that the indices are permuted here, with respect to their usage in the
above analysis) such that

1. Q ⊂ ∂P`,
2. Int(Q) ⊂ Int(Pi ∩ Pj),
3. the vertices a, b, c, d of Q are vertices of ∂U ,
4. Q ⊂ ∂Ui,j,
5. ab, cd ⊂ ∂Pi ∩ ∂Uj, and
6. bc, ad ⊂ ∂Pj ∩ ∂Ui.

Figure 7 depicts the situation schematically.

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1679

Pi

Pj

a

d

b

c

Q

P`

Fig. 7. A special quadrilateral.

If we denote the maximum number of such special quadrilaterals, over all col-
lections P of k convex polyhedra with a total of n faces, by C(2)(k, n), apply the
above analysis to each Pi in turn, and sum up the resulting inequalities, we obtain
the recurrence

(k − 2)C(1)(k, n) =
k∑

i=1

C(1)(k − 1, n− ni) +O(kn+ C(2)(k, n)) ,(4)

where the factor k− 2 appears because, for each level-1 face f , w(f) is counted every
time a polyhedron P ∈ P is removed and reinserted, except when P is the polyhedron
containing f on its boundary or the only polyhedron containing f in its interior.

Lemma 1.6 below provides an O(k3+kn) bound on C(2)(k, n). Hence, (4) becomes

(k − 2)C(1)(k, n) ≤
k∑

i=1

C(1)(k − 1, n− ni) + a(k3 + kn) ,

for an appropriate constant a. We claim that the solution of this recurrence is
C(1)(k, n) ≤ Ak3 + Bkn ln k, where A and B are constants, which we proceed to
prove by induction on k. Lemma 1.4 implies that C(1)(k, n) = O(k2n), as is eas-
ily checked, so choosing B sufficiently large will clearly make our solution valid for
k ≤ 10, say. For k > 10, the induction hypothesis implies that

(k − 2)C(1)(k, n) ≤
k∑

i=1

(A(k − 1)3 +B(k − 1)(n− ni) ln(k − 1)) + a(k3 + kn)

≤ Ak(k − 1)3 + ak3 +B(k − 1)2n ln(k − 1) + akn .

Hence it suffices to choose A and B so that

Ak(k − 1)3 + ak3 ≤ A(k − 2)k3

and

B(k − 1)2n ln(k − 1) + akn ≤ B(k − 2)kn ln k

for k > 10. The first inequality is equivalent to ak2 ≤ A(k2− 3k+ 1), which will hold
if we choose, say, A > 2a. The second inequality is equivalent to

B

(
1− 1

k

)2

ln(k − 1) +
a

k
< B

(
1− 2

k

)
ln k ,

1680 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

or to

B ln(k − 1)

k2
+
a

k
< B

(
1− 2

k

)
ln

k

k − 1
.

Since ln k
k−1 > 1

k for k > 1, this inequality is implied by

B ln(k − 1)

k2
+
a

k
<

B

k

(
1− 2

k

)

or by

B

(
1− 2 + ln(k − 1)

k

)
> a ,

which holds for k > 10 if we choose B > 2a. This completes the proof of our assertion
that C(1)(k, n) < Ak3 +Bkn ln k, for appropriate constants A and B.

It remains to establish the promised upper bound on C(2)(k, n), which is the
subject of the following lemma.

Lemma 1.6. The number of special quadrilaterals is O(k3 + kn).
Proof. Consider a special quadrilateral Q. Let i = i(Q), j = j(Q), ` = `(Q) be

as in Definition 1. We restrict our attention to special quadrilaterals associated with
a particular choice of Pi and Pj , without fixing P`. Let U ′ be the set obtained by
forming the union of K = Pi ∩ Pj with Ui,j . In other words, we remove these two
polyhedra from U and replace them by their intersection. Notice that ∂Q ⊂ ∂U ′ and
in fact ∂Q = Q ∩ ∂U ′.

A special quadrilateral Q is trivial if its boundary is contractible to a point in the
closure of ∂K \Ui,j . Such a contraction defines a “cap” (a topological disk) contained
in ∂K and necessarily containing a vertex of K, to which we charge Q. It is easily
checked that the caps corresponding to different trivial quadrilaterals form distinct
connected components of ∂K \ Ui,j . From Lemma 1.2 we deduce that the number of
the corresponding charges, over all choices of i, j, and `, is only O(kn).

We will count the number of those homotopy classes of closed curves in the closure
of ∂K \ Ui,j that contain boundaries of nontrivial quadrilaterals. (See, e.g., [35] for
basic material concerning homotopy and related concepts.) By counting classes rather
than quadrilaterals we err by a factor of at most 2, because a component of ∂K \Ui,j ,
two of whose boundary curves can be continuously transformed into each other with-
out leaving the component, has only two boundary components (since a topological
disk with two or more holes has no homotopy-equivalent boundary components).

To carry out the proof, we need a slightly more general formulation of the problem,
as follows. Consider a collection B = {B1, . . . , Bp} of p convex polyhedra and a
collection K = {K1, . . . ,Kq} of q pairwise-disjoint convex polyhedra. Assume further
that no B-polyhedron meets more than one of the K-polyhedra. Let K =

⋃K and
B =

⋃B. Two closed curves in the closure C = C(K,B) of ∂K \ B are equivalent
(relative to (B,K)) if they are homotopy-equivalent in C. (Here we assume that the
components of ∂K \ B are sufficiently separated so that a component of the closure
is equal to the closure of a component. It is easily checked that in our case this
condition holds originally, and that it is maintained inductively.) A closed curve is
trivial (relative to (B,K)) if it is contractible in C to a point, i.e., equivalent to the
trivial curve in C. A quadrilateral Q is nontrivial if ∂Q is a boundary component
of C, ∂Q is not trivial, and Q is contained in the boundary of a B-polyhedron and

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1681

avoids the interiors of all B-polyhedra. Notice that this definition of nontriviality is
a generalization of the one given above, with B = P \ {Pi, Pj} and K = {Pi ∩ Pj}.
Consider the intersection graph G = G(B,K) of the polyhedra in B ∪ K, namely,
the graph whose vertices are the given polyhedra and whose arcs connect pairs of
polyhedra with nonempty intersection. Let δ = δG be the vertex degree function
in G. Let δ̄(P) = max{δ(P) − 1, 0}. We will prove that the number of homotopy
classes of closed paths in C containing the boundary of a nontrivial quadrilateral is at
most 2ν, where ν = ν(B,K) =

∑q
t=1 δ̄(Kt). Notice that this claim implies the lemma,

because one has, for the original choice of B and K, ν(B,K) ≤ δ(Pi∩Pj) ≤ |B| = k−2.
The argument is repeated for all 1 ≤ i < j ≤ k to yield an O(k3) bound on the number
of nontrivial quadrilaterals.

We proceed by induction on the number of such homotopy classes. The base
case, when no nontrivial quadrilaterals exist, is easy, as ν ≥ 0 by definition. We
now proceed with the general induction step. Let Q be a nontrivial quadrilateral.
Without loss of generality, assume that Q ⊂ ∂B1 ∩ K1. Cut K1 along Q into two
convex portions, and shrink the portion (call it K ′

1), that lies in the half-space H
bounded by the plane spanned by Q and not containing B1, slightly away from Q.
Extend the other portion (call it K ′′

1) slightly towards K ′
1, so that it “pops up” above

∂B1 but still avoids K ′
1 and meets only the polyhedra it met before the displacement.

See Figure 8 for an illustration. Let K′ = K \ {K1} ∪ {K ′
1,K

′′
1 } and K ′ =

⋃K′. We
have constructed a new instance of the problem, namely (B,K′). We note that no
polyhedron of B can intersect both portions of K1 without meeting Q (or, rather, a
slight displacement of Q away from B1), and no polyhedron of B meets the displaced
Q, by assumption. This implies that no B-polyhedron intersects more than one K′-
polyhedron, so the new problem satisfies the same assumptions as the old one. We
claim that the new problem is “smaller”: By definition of a nontrivial quadrilateral,
∂Q cannot be homotopically shrunk to a point in C. On the other hand, Q is clearly
trivial in (B,K′). Moreover, a nontrivial quadrilateral Q′ not equivalent to Q in (B,K)
remains nontrivial in (B,K′)—this can be easily deduced by examining the shape of
the components of ∂K \ B and of ∂K ′ \ B containing ∂Q′. However, it is possible
for two distinct homotopy classes containing nontrivial quadrilaterals with respect
to (B,K) to merge in (B,K′). This can happen if the connected component E of
C containing Q was topologically equivalent to a disk with two holes, whose three
boundary components (one of which is Q) are all nontrivial quadrilaterals; after the
splitting at Q, E is transformed into two components, E′ and E′′. E′′ is equivalent to
a disk (in fact, ∂E′′ = ∂Q) and thus does not give rise to a nontrivial quadrilateral,
while E′ is equivalent to a disk with a single hole and its two bounding quadrilaterals
now become homotopic to each other, thus merging two previously distinct classes.
This is the only possible merging of homotopy classes, as is easily checked; see Figure 9
for an illustration. Hence the number of classes containing nontrivial quadrilaterals
increases by either one or two when we pass from (B,K′) back to (B,K).

On the other hand, since Q is nontrivial with respect to (B,K), ∂Q cannot be
shrunk in C by moving along ∂K1 into the half-space H defined above. Thus K ′

1 must
meet at least one B-polyhedron. Clearly, K ′′

1 meets B1 itself. Hence, the degrees of
K ′

1 and of K ′′
1 in G′ = G(B,K′) are both positive. Thus

δ̄G′(K ′
1) + δ̄G′(K ′′

1) = δG′(K ′
1)− 1 + δG′(K ′′

1)− 1 = δG(K1)− 2 = δ̄G(K1)− 1.

We have used the fact that δG′(K ′
1) + δG′(K ′′

1) = δG(K1), which follows by observing
that the polyhedra of B that intersect K1 are exactly those that intersect either K ′

1

1682 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

K′
1K′

1

K′
1

K′′
1

K′′
1

K′′
1

K1

H

(a)

H

(b)

H

(c)

H

(d)

Q

Q

Q

Q

Fig. 8. Cutting K1 at a special quadrilateral Q, and the subsequent changes in the homotopy
structure. In (a), Q is trivial, so no cut needs to be made. In (b), both Q and the quadrilateral
“opposite” to Q become trivial after the cut. In (c), Q becomes trivial, and the homotopy classes of
the two adjacent quadrilaterals merge after the cut (this case is also illustrated in Figure 9). In (d),
Q becomes trivial, and no merges of the homotopy classes of the adjacent quadrilaterals occur.

or K ′′
1 , and that no polyhedron of B can intersect both these portions, as argued

above. Therefore, ν(B,K) = ν(B,K′) + 1, and the increase in 2ν bounds the increase
in the number of homotopy classes containing nontrivial quadrilaterals, leading to the
desired inequality. This completes the proof of the claim and of the lemma.

Remarks. (1) The bound given by the last lemma is tight in the worst case. A
family P of polyhedra with Ω(k3) special quadrilaterals is given by the gridlike con-

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1683

α2

α1

γ

E′′

E′Q

H

Fig. 9. A situation where the number of classes decreases by 2 as we change (B,K) to (B,K′):
The class γ containing ∂Q becomes trivial and classes α1 and α2 merge after K1 is cut into
K′

1 and K′′
1 .

struction in Figure 3(a). A family with Ω(kn) special quadrilaterals can be obtained
as follows: First consider a set consisting of the following three polyhedra. Take P1 to
be any convex polyhedron with n faces. Draw an “X” on each face of P1 (i.e., a pair of
crossing segments) and then lift them slightly away from P1. Pick one segment out of
each pair and form their convex hull; this is polyhedron P2. The third polyhedron P3

is the convex hull of the remaining segments. It is easily checked that there is one spe-
cial quadrilateral associated with each “X,” so that this family of three polyhedra with
Θ(n) faces has n special quadrilaterals. Now we repeat the construction but start with
a polyhedron P with Θ(n/k) faces, draw a sufficiently small k/2×k/2 grid in each face
away from the edges of P , lift it outward, and form k new polyhedra by taking convex
hulls of collections of segments, one from each grid, thereby exhausting all segments
and placing each segment in just one collection. It is easily checked that on each face
of P we obtain k2/4 special quadrilaterals, for a total of Ω(n/k) × k2/4 = Ω(nk).
The family consists of k + 1 polyhedra with Θ(n/k) + k×Θ(n/k) = Θ(n) faces. The
claimed lower bound is attained by combining the two constructions.

(2) It is interesting to note that Lemma 1.6 is the only “source” of the term
O(k3) in the bound for the complexity of the union. See section 3 which mentions an
improved bound for an important special case.

We next describe an easy corollary of our main result. Let P be a collection of k
convex polyhedra in general position with a total of n faces. A simple application of
the probabilistic technique of [15, 32] yields the following.

Theorem 1.7. For any 1 ≤ λ ≤ k − 2, the total number of level-j vertices of
A(P), for all j < λ, is O(k3 + λkn log(k/λ)).

Proof. Let R be a random sample of r = bk/λc polyhedra of P. The anal-
ysis of [15, 32] implies that the number of inner vertices of A(P) at level < λ is
O(λ3E[C0(R)]), where C0(R) is, as above, the number of inner vertices of the union
of the polyhedra of R, and where E denotes expectation with respect to the choice
of R. By Theorem 1.1, C0(R) = O(r3 + rnR log r), where nR is the total number of
faces of the polyhedra in R. It thus follows that E[C0(R)] = O(r3 + r log r · E[nR]).
Now E[nR] = O(n/λ), as any of the n faces of the polyhedra of P has probability
r/k ≤ 1/λ to appear as a face of a polyhedron of R. Hence, the number of vertices

1684 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

of the above kind that lie at level < λ is

O
(
λ3r3 + λ3r log r · n

λ

)
= O

(
k3 + λkn log

k

λ

)
.

Adding to this estimate the O(kn) bound given in Lemma 1.3 for the number of outer
vertices, the theorem follows.

Remark. When λ = k − 2, all the vertices of A(P) are counted in the preceding
theorem, and the above bound becomes O(k2n), in agreement with Lemma 1.4.

A number of applications of the last result are described in [1]. It is applied there
to a geometric pattern matching problem, seeking to determine the rigid translation
of one set of points relative to another, which optimizes a certain distance function
between the two sets. The paper also describes how the above bound can be used
to bound the number of combinatorially distinct Euclidean minimum spanning trees
that can be obtained by adding an extra point to a given point set.

2. Efficient construction of the union. We next describe an efficient ran-
domized algorithm for constructing the union U of a collection P of polyhedra as
above. The main idea of the algorithm is quite simple. In principle, we want to insert
the given polyhedra one by one in random order and to maintain the union of the
polyhedra that have been inserted so far. However, we actually apply the following
somewhat modified strategy. First, we compute all pairwise intersections Pi ∩ Pj , for
1 ≤ i < j ≤ k, by repeated applications of the linear-time algorithm of Chazelle [12]
for intersecting two convex polyhedra in 3-space. (A slower algorithm, such as that
described in [29, 31], would also suffice for our purposes.) By Lemma 1.3, this takes
O(kn) time, and yields, for each face F of any polyhedron Pi, the collection QF of
the convex polygons Qj = F ∩ Pj , for j 6= i. Clearly, the set UF = F \ ⋃j 6=iQj is
the portion of F that appears on ∂U , so our goal is to compute the sets UF , over
all faces F . Reconstructing the boundary of U from this information is relatively
straightforward, by gluing the portions UF to each other in an appropriate manner.

Let F be a fixed face of some Pi ∈ P. We choose a random order of the polyhedra
in P \ {Pi} and insert the polygons Qj , one by one, in the corresponding order,
maintaining the complement of their union as we go. For this, we use the same
technique as in [13, 16, 20, 30], which maintains a vertical decomposition of the
complement into trapezoids and a “history dag” of all trapezoids that were ever
created by the algorithm. Whenever a new polygon Qj is inserted, we search through
the dag for trapezoids intersected by ∂Qj and then update the complement of the
union by refining the trapezoidal decomposition to reflect the presence of Qj and
by discarding those trapezoids that end up inside Qj . We refer the reader to the
papers cited above for more details. We apply this procedure to every face F of each
polyhedron of P, and, as already mentioned, the union of the resulting regions UF

yields the boundary of the desired union U .
The cost of the algorithm is proportional to the number of trapezoids that are cre-

ated during the execution of the algorithm, plus the initial cost of O(kn) of computing
all the collections QF , plus the cost of tracing polygons through the history dag. This
is more complicated than the standard technique because the number of children of a
trapezoid in the dag need not be constant: when a trapezoid τ is “killed” by adding a
polygon Qj , it may be split into many overlapping trapezoids that become its children
in the dag. However, when this happens, all but O(1) of these subtrapezoids have
a vertex of Qj as one of their vertices. By Lemma 1.3, the total number of these
vertices is only O(kn). Using standard arguments, one can show that the expected

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1685

overall number of trapezoids τ that are ever created by the algorithm and contain such
a vertex in their interior is O(kn log k). This allows us to trace the vertices of the in-
serted polygons Qj , using a simple binary search mechanism, at a total expected cost
of O(kn log k logn). With this information available, if the polygon Qj being inserted
intersects an inner trapezoid τ of the dag, it is not difficult to find all the children of τ
that it crosses in time proportional to their number. Hence the overall expected cost
of tracing polygons through the dag is O(kn log k logn) plus the sum of the weights
of the trapezoids. Here the weight of a trapezoid τ ⊆ F is the number of polygons
Qj ∈ QF that intersect the relative interior of τ ; each of them either fully contains τ ,
or is fully contained in τ , or its boundary crosses τ . A “canonical” trapezoid τ ⊆ F
is one that occurs in the trapezoidal decomposition of the complement (within F) of
the union of some subset of QF . Such a trapezoid is defined by between one and five
polyhedra—Pi plus the at most four polyhedra that define its sides and corners in F .
The following argument applies only to canonical trapezoids defined by exactly five
polyhedra. It has to be repeated, with straightforward modifications, for trapezoids
defined by one, two, three, or four polyhedra. Adapting the approach of the papers
cited above, and using the Clarkson–Shor analysis technique [15], one easily shows
the following.

Claim 1. The probability that a canonical trapezoid τ ⊆ F with weight w is
created during the incremental construction is 1/

(
w+4

4

)
.

Proof. When the algorithm processes F , the four other polyhedra defining τ have
to be inserted before any of the w polyhedra intersecting Int(τ) are inserted.

Claim 2. The overall number Tw of canonical trapezoids with weight less than w,
over all faces F of the given polyhedra, is O(w2k3 + w3kn log k

w).
Proof. We use the Clarkson–Shor analysis technique [15]. Since a canonical

trapezoid τ is defined by five polyhedra (one of which contains the face F in which
τ lies, and the other four define the four sides of τ , as in the papers cited above), it
follows that Tw = O(w5E[T1(dk/we)]), where E[T1(dk/we)] is the expected number
of 0-weight trapezoids that arise for a random sample R of dk/we polyhedra from P.
Clearly, each such trapezoid lies on the boundary of the union

⋃R, and the expected
number of such trapezoids is proportional to the expected complexity of

⋃R, namely
to O((k/w)3 + (k/w) · (n/w) log(k/w)) (see the proof of Theorem 1.7). The claim is
now immediate.

The expected running time of the algorithm, over all faces F , is thus

O

(
kn+

k−5∑
w=0

(w + 1)tw(
w+4

4

)
)

,

where tw is the total number of trapezoids whose weight is exactly w. Since tw =
Tw+1 − Tw (with T0 = 0), we can rewrite the above sum as

k−5∑
w=0

Tw+1 − Tw
(w + 4)(w + 3)(w + 2)

=

k−5∑
w=1

Tw

[
1

(w + 3)(w + 2)(w + 1)
− 1

(w + 4)(w + 3)(w + 2)

]

+
Tk−4

(k − 1)(k − 2)(k − 3)

1686 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

= O

(
kn+

k−5∑
w=1

w2k3 + w3kn log k
w

(w + 4)(w + 3)(w + 2)(w + 1)

)

= O

(
kn+

k−5∑
w=1

k3

w2
+

k−5∑
w=1

kn

w
log

k

w

)

= O(k3 + kn log2 k) .

Hence we have the following.
Theorem 2.1. The union of a collection of k convex polyhedra in 3-space with a

total of n faces can be computed in randomized expected time O(k3 + kn log k logn).
Remark. It is worth noting that the algorithm fixes one polyhedron Pi (the one

containing the face F), inserts the other polyhedra in random order, and repeats this
over all Pi’s. Thus the algorithm does not apply a single global insertion order, but
this does not affect adversely its analysis.

The following theorem can be proved by an essentially identical argument.
Theorem 2.2. Consider a collection P of k 3-polyhedra with a total of n facets

with the property that the union of any subset of k′ polyhedra with a total of n′ facets
has complexity O(k′n′ log k′). Then the union of the whole collection can be computed
in randomized expected time O(kn log k logn).

3. A motion planning application. A major application where the union of
a collection of convex polyhedra in 3-space needs to be computed is that of planning
translational motion for a convex polyhedron B in a polyhedral environment. Assume
that B has p faces and that the obstacles (the complement of free space) can be
represented as k convex polyhedra with pairwise-disjoint interiors, having a total of q
faces. For each obstacle polyhedron Ai, for i = 1, . . . , k, we form the Minkowski sum
Pi = Ai ⊕ (−B), and the union U of the k resulting convex polyhedra Pi represents
the portion of the configuration space of B where it collides with some obstacle; the
complement of U is the free configuration space of B, which is what we want to
compute. See [4, 5] for more details.

If Ai has qi faces, then Pi has O(pqi) faces, so the total number of faces of the

Pi’s is O(pq), where q =
∑k

i=1 qi. Hence Theorem 1.1 implies that the combinatorial
complexity of the free configuration space of B is O(k3 + kpq log k). However, in this
special case, Lemma 1.6 can be strengthened, using a different topological analysis,
to show that there are only O(kn) special quadrilaterals, which in turn implies that
the complexity of the free configuration space is only O(kpq log k). This is proved
in a companion paper [8]. Hence, by Theorem 2.2, this space can be constructed in
O(kpq log k log (pq)) randomized expected time.

4. Conclusion. In this paper we have obtained almost tight bounds on the max-
imum complexity of the union of k convex polyhedra with a total of n faces in three
dimensions, presented an efficient randomized algorithm for computing the boundary
of the union, and mentioned several applications of these results.

The paper raises several open problems. First, we would like to tighten the small
remaining gap between the upper and lower bounds for the complexity of the union.
We suspect that the logarithmic factor appearing in the upper bound is just an artifact
of our proof technique, and conjecture that the lower bound is tight.

Another open problem is to obtain sharp bounds for the complexity of a single
component of the complement of the union of k convex polyhedra with a total of n

THE UNION OF CONVEX POLYHEDRA IN THREE DIMENSIONS 1687

faces. The result of [5] implies that this complexity is O(n2 logn), but we conjecture
that the bound is close to O(kn). The lower bound construction in the proof of
Theorem 1.1 implies that the complexity of such a component can be Ω(nkα(k)) in
the worst case.

It would also be interesting to extend our bounds to higher dimensions. Here
is an easy lower bound construction, for any fixed dimension d > 2. Let d be even.
Consider a planar collection of k/(d/2) polygons with a total of n/(d/2) edges, so
that their union has Ω(k2 + nα(k)) vertices on its boundary [7]. Consider a family of
d/2 mutually orthogonal 2-flats in d-space. Place one copy of this configuration into
each 2-flat and extend each polygon P into a prism in the remaining d−2 coordinates
(namely, this prism is the Cartesian product of P and the (d− 2)-space orthogonal to
the 2-flat containing P). It is easily verified that the number of vertices of the union
of the resulting k prisms, having a total of n facets, is at least (Ω(k2 + nα(k)))d/2 =
Ω(kd + nd/2αd/2(k)). The construction for odd d > 3 is similar, with one of the two-
dimensional constructions replaced by the three-dimensional lower bound construction
described in section 1, for a total union complexity of Ω(kd+knbd/2cαbd/2c(k)). Notice
that both bounds are tight at the extremes of the range of k, i.e., when k = Θ(1) or
k = Θ(n).

Concerning an upper bound, under the assumptions of general position there is an
easy argument (see Katona [25] and Kovalev [26] for a more general statement) that
shows that the complement of the union of k convex polyhedra in d-space has at most
O(kd) connected components. An upper bound of O(nd) on the total complexity,
where n is the total number of polyhedra facets, is immediate by considering the
arrangement induced by the hyperplanes spanned by the polyhedra facets, but this is
likely to be a gross overestimate of the true complexity. Indeed, it is pointed out in [1]
that the total complexity of the arrangement induced by the facets is Θ(kdd/2enbd/2c)
in the worst case. How close these bounds are to the true worst-case complexity of
the union is not known. Is the preceding lower bound tight or close to being tight?

There are also several algorithmic open problems. One is to obtain an efficient
deterministic algorithm for constructing the union. Another one is to obtain an
efficient technique for point location in the complement of the union of k polyhedra
in 3-space with a total of n faces.

REFERENCES

[1] B. Aronov, M. Bern, and E. Eppstein, Arrangements of polytopes with applications,
manuscript, 1993.

[2] B. Aronov, J. Matoušek, and M. Sharir, On the sum of squares of cell complexities in
hyperplane arrangements, J. Combin. Theory Ser. A, 65 (1994), pp. 311–321.

[3] B. Aronov, M. Pellegrini, and M. Sharir, On the zone of a surface in a hyperplane
arrangement, Discrete Comput. Geom., 9 (1993), pp. 177–188.

[4] B. Aronov and M. Sharir, Triangles in space, or building (and analyzing) castles in the
air, Combinatorica, 10 (1990), pp. 137–173.

[5] B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom., 12 (1994),
pp. 119–150.

[6] B. Aronov and M. Sharir, The union of convex polyhedra in three dimensions, Proc. 34th
Annual IEEE Sympos. Found. Comput. Sci., IEEE Computer Society Press, Los Alami-
tos, CA, 1993, pp. 518–527.

[7] B. Aronov and M. Sharir, The common exterior of convex polygons in the plane, Comput.
Geom. Theory Appl., 8 (1997), pp. 139–149.

[8] B. Aronov and M. Sharir, On translational motion planning in three dimensions, SIAM J.
Comput., 26 (1997), pp. 1785–1803.

1688 BORIS ARONOV, MICHA SHARIR, AND BOAZ TAGANSKY

[9] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec, Applications
of random sampling to on-line algorithms in computational geometry, Discrete Comput.
Geom., 8 (1992), pp. 51–71.

[10] J.-D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper envelope
of triangles and surface patches in R3, Comput. Geom. Theory Appl., to appear; J.
Algorithms, to appear.

[11] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in higher
dimensions under certain polyhedral convex distance functions, in Proc. 11th ACM Symp.
on Comput. Geom., ACM, New York, 1995, pp. 79–88.

[12] B. Chazelle, An optimal algorithm for intersecting three-dimensional convex polyhedra,
SIAM J. Comput., 21 (1992), pp. 671–696.

[13] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink, Computing a
face in an arrangement of line segments, SIAM J. Comput., 22 (1993), pp. 1286–1302.

[14] L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl, Voronoi diagrams of lines
in three dimensions under a polyhedral convex distance function, in Proc. 6th ACM-SIAM
Symp. on Discrete Algorithms, SIAM, Philadelphia, 1995, pp. 197–204.

[15] K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,
Discrete Comput. Geom., 4 (1989), pp. 387–421.

[16] M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental con-
struction, Discrete Comput. Geom., 14 (1995), pp. 261–286.

[17] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg,
1987.

[18] H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity and construction of many
faces in arrangements of lines and of segments, Discrete Comput. Geom., 5 (1990),
pp. 161–196.

[19] H. Edelsbrunner, R. Seidel, and M. Sharir, On the zone theorem in hyperplane arrange-
ments, SIAM J. Comput., 22 (1993), pp. 418–429.

[20] L. Guibas, D. Knuth, and M. Sharir, Randomized incremental construction of Voronoi
and Delaunay diagrams, Algorithmica, 7 (1992), pp. 381–413.

[21] D. Halperin and M. Sharir, A near-quadratic algorithm for planning the motion of a
polygon in a polygonal environment, Discrete Comput. Geom., 16 (1996), pp. 121–134.

[22] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions with
applications to visibility in terrains, Discrete Comput. Geom., 12 (1994), pp. 313–326.

[23] D. Halperin and M. Sharir, Arrangements and their applications in robotics: Recent de-
velopments, in The Algorithmic Foundations of Robotics, K. Goldberg, D. Halperin, J.C.
Latombe, and R. Wilson, eds., A.K. Peters, Boston, MA, 1995, pp. 495–511.

[24] D. Halperin and M. Sharir, Almost tight upper bounds for the single cell and zone problems
in three dimensions, Discrete Comput. Geom., 14 (1995), pp. 385–410.

[25] G. O. Katona, On a problem of L. Fejes Tóth, Stud. Sci. Math. Hung., 12 (1977), pp. 77–80.
[26] M. D. Kovalev, Svoisto vypuklykh mnozhestv i ego prilozhenie, Mat. Zametki, 44 (1988),

pp. 89–99.
[27] K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and collision-

free translational motion amidst polygonal obstacles, Discrete Comput. Geom., 1 (1986),
pp. 59–71.

[28] J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine
linearly many holes, SIAM J. Comput., 23 (1994), pp. 154–169.

[29] K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Com-
putational Geometry, Springer-Verlag, Heidelberg, 1984.

[30] N. Miller and M. Sharir, Efficient randomized algorithms for constructing the union of fat
triangles and of pseudo-disks, manuscript, 1991.

[31] F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[32] M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom., 6
(1991), pp. 593–613.

[33] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete
Comput. Geom., 12 (1994), pp. 327–345.

[34] M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, Cambridge, New York, Melbourne, 1995.

[35] E.H. Spanier, Algebraic Topology, Springer-Verlag, New York, Heidelberg, Berlin, 1966.
[36] B. Tagansky, A new technique for analyzing substructures in arrangements, Discrete Com-

put. Geom., 16 (1996), pp. 455–479.

STAR UNFOLDING OF A POLYTOPE WITH APPLICATIONS∗

PANKAJ K. AGARWAL† , BORIS ARONOV‡ , JOSEPH O’ROURKE§ , AND

CATHERINE A. SCHEVON¶

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1689–1713, December 1997 007

Abstract. We introduce the notion of a star unfolding of the surface P of a three-dimensional
convex polytope with n vertices, and use it to solve several problems related to shortest paths on P.

The first algorithm computes the edge sequences traversed by shortest paths on P in time
O(n6β(n) logn), where β(n) is an extremely slowly growing function. A much simpler O(n6) time
algorithm that finds a small superset of all such edge sequences is also sketched.

The second algorithm is an O(n8 logn) time procedure for computing the geodesic diameter of
P: the maximum possible separation of two points on P with the distance measured along P.

Finally, we describe an algorithm that preprocesses P into a data structure that can efficiently
answer the queries of the following form: “Given two points, what is the length of the shortest
path connecting them?” Given a parameter 1 ≤ m ≤ n2, it can preprocess P in time O(n6m1+δ),
for any δ > 0, into a data structure of size O(n6m1+δ), so that a query can be answered in time
O((

√
n/m1/4) logn). If one query point always lies on an edge of P, the algorithm can be improved

to use O(n5m1+δ) preprocessing time and storage and guarantee O((n/m)1/3 logn) query time for
any choice of m between 1 and n.

Key words. convex polytopes, geodesics, shortest paths, star unfolding

AMS subject classifications. 52B10, 52B55, 68Q25, 68U05

PII. S0097539793253371

1. Introduction. The widely studied problem of computing shortest paths in
Euclidean space amidst polyhedral obstacles arises in planning optimal collision-free
paths for a given robot. In two dimensions, the problem has been thoroughly explored
and a number of efficient algorithms have been developed; see, e.g., [SS86, Wel85,
Mit93, HS93]. However, the problem becomes significantly harder in three dimen-
sions. Canny and Reif [CR87] have shown it to be NP-hard, and the fastest available
algorithm runs in singly exponential time [RS89, Sha87]. This has motivated re-
searchers to develop efficient approximation algorithms [Pap85, Cla87, CSY94, HS95]
and to study interesting special cases [MMP87, Sha87]. One of the most widely
studied special cases is computing shortest paths on the surface of a convex poly-
tope [SS86, MMP87, Mou90]; this problem was originally formulated by H. Dudeney
in 1903; see [Gar61, p. 36]. Sharir and Schorr presented an O(n3 logn) algorithm

∗ Received by the editors August 6, 1993; accepted for publication (in revised form) November
27, 1995. A preliminary version of this paper appeared in Proceedings of the 2nd Scandinavian
Workshop on Algorithm Theory, Lecture Notes in Comput. Sci. 447, Springer-Verlag, Berlin, 1990,
pp. 251–263 [AAOS90]. Part of the work was carried out while the first two authors were at the
Courant Institute of Math. Sci., New York University, and later at DIMACS, an NSF Science and
Technology Center, and while the fourth author was at the Dept. of Computer Science, Johns
Hopkins University, Baltimore, MD.

http://www.siam.org/journals/sicomp/26-6/25337.html
† Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

(pankaj@euclid.cs.duke.edu). The work of this author was supported by NSF grants CCR-91-06514
and STC88-09648.

‡ Department of Computer Science, Polytechnic University, Brooklyn, NY 11201 (aronov@
ziggy.poly.edu). The work of this author was partially supported by an AT&T Bell Laboratories
Ph.D. Scholarship and by NSF grants CCR-92-11541 and STC88-09648.

§ Department of Computer Science, Smith College, Northampton, MA 01063 (orourke@
cs.smith.edu). The work of this author was supported by NSF grants CCR-91-22169 and CCR-
88-2194.

¶ AT&T Bell Laboratories, P. O. Box 636, Murray Hill, NJ 07974 (schevon@mail.med.upenn.edu).

1689

1690 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

for this problem; this algorithm was subsequently improved by Mitchell, Mount, and
Papadimitriou [MMP87] to O(n2 logn) and then by Chen and Han to O(n2) [CH90].

In this paper we consider three problems involving shortest paths on the surface P
of a convex polytope in R

3. A shortest path on P is uniquely identified by its endpoints
and by the sequence of edges it encounters. Sharir [Sha87] proved that no more than
O(n7) distinct sequences of edges are actually traversed by the shortest paths on P.
This bound was subsequently improved to Θ(n4) [Mou85, SO88]. Sharir also gave
an O(n8 logn) time algorithm to compute an O(n7) size superset of shortest-path
edge sequences. However, computing the exact set of shortest-path edge sequences
seems to be very difficult. Schevon and O’Rourke [SO89] presented an algorithm
that computes the exact set of all shortest-path edge sequences and also identifies, in
logarithmic time, the edge sequences traversed by all shortest paths connecting a given
pair of query points lying on edges of P. The sequences can be explicitly generated,
if necessary, in time proportional to their length. Their algorithm, however, requires
O(n9 logn) time and O(n8) space.1

In this paper we propose two edge-sequence algorithms. The first is a simple O(n6)
algorithm to compute a superset of shortest-path edge sequences, thus improving the
result of [Sha87]; it is described in section 5. The second computes the exact set
of shortest-path edge sequences in O(n6β(n) logn) time, where β(·) is an extremely
slowly growing function. This second algorithm significantly improves the previously
mentioned O(n9 logn) algorithm. The computation of the collection of all shortest-
path edge sequences on a polytope is an intermediate step of several algorithms [Sha87,
OS89] and is of interest in its own right.

The second problem studied in this paper is that of computing the geodesic diam-
eter of P, i.e., the maximum distance along P between any two points on P. O’Rourke
and Schevon [OS89] gave an O(n14 logn) time procedure for determining the geodesic
diameter of P. In [AAOS90], we presented a simpler and faster algorithm whose
running time is O(n10). Here we improve this to O(n8 logn).

The third problem involves answering queries of the following form: “Given
x, y ∈ P, determine the distance between x and y along P.” Given a parameter
1 ≤ m ≤ n2, we present a method for preprocessing P, in O(n6m1+δ) time, into a
data structure of size O(n6m1+δ) for any δ > 0, so that a query can be answered in
time O((

√
n/m1/4) logn). If x is known to lie on an edge of the polytope, the pre-

processing and storage requirements are reduced to O(n5m1+δ) and the query time
becomes O((n/m)1/3 logn) for 1 ≤ m ≤ n. Constants of proportionality in the above
bounds depend on the choice of δ.

Our algorithms are based on a common geometric concept, the star unfolding.
Let x ∈ P be a point such that the shortest path from x to every vertex of P is
unique. Intuitively, the star unfolding of P with respect to this point is obtained
by removing these n shortest paths from P and embedding the remaining surface
isometrically in the plane. Remarkably, the star unfolding is isometric to a simple
planar polygon and the structure of shortest paths emanating from x on P corresponds
to a certain Voronoi diagram in the plane [AO92]. Together with relative stability of
the combinatorial structure of the unfolding as x moves within a small neighborhood
on P, these properties facilitate the construction of efficient algorithms for the above

1 A preliminary version of this algorithm [SO88] erroneously claimed a time complexity of
O(n72α(n) logn); this claim was corrected in [SO89]. Hwang, Chang, and Tu [HCT89] suggested
a more efficient procedure for solving the same problem, but the key claim (their second Lemma 6)
has yet to be convincingly established [Sch89, Chapter 5].

STAR UNFOLDING OF A POLYTOPE 1691

three problems. Although all of the algorithms have high polynomial time complexity
as a function of n, they are not so inefficient in relation to the worst-case number of
edge sequences, Θ(n4).

Chen and Han [CH90] independently discovered the star unfolding and used it
for computing the shortest-path information from a single fixed point on the surface
of a polytope. The nonoverlap of the unfolding [AO92], however, was not known at
the time of their work.

This paper is organized as follows. In section 2, we formalize our terminology and
list some basic properties of shortest paths. Section 3 defines the star unfolding and
establishes some of its properties. Section 4 sketches an efficient algorithm to compute
a superset of all possible shortest-path edge sequences, and in section 5 we present an
algorithm for computing the exact set of these sequences; both algorithms are based
on the star unfolding. In section 6 we again use the notion of star unfolding to obtain
a faster algorithm for determining the geodesic diameter of a convex polytope. Section
7 deals with shortest-path queries. Section 8 contains some concluding remarks and
open problems.

2. Geometric preliminaries. We begin by reviewing the geometry of shortest
paths on convex polytopes.

Let P be the surface of a polytope with n vertices. We refer to vertices of P as
corners; the unqualified terms face and edge are reserved for faces and edges of P. We
assume that P is triangulated. This does not change the number of faces and edges
of P by more than a multiplicative constant but does simplify the description of our
algorithms.

2.1. Geodesics and shortest paths. A path π on P that cannot be shortened
by a local change at any point in its relative interior is referred to as a geodesic.
Equivalently, a geodesic on the surface of a convex polytope is either a subsegment
of an edge, or a path that (1) does not pass through corners, though it may possibly
terminate at them, (2) is straight near any point in the interior of a face, and (3) is
transverse to every edge it meets in such a fashion that it would appear straight if one
were to “unfold” the two faces incident on this edge until they lie in a common plane;
see, for example, Sharir and Schorr [SS86]. The behavior of a geodesic is thus fully
determined by its starting point and initial direction. In the following discussion we
disregard the geodesics lying completely within a single edge of P. Given the sequence
of edges a geodesic crosses and its starting and ending points, the geodesic itself can
be obtained by laying out, in order, the faces that it visits in the plane so that adjacent
faces share an edge and lie on opposite sides of it, and then by connecting the (images
of) the two endpoints with a straight-line segment. In particular, the sequence of
traversed edges together with the endpoints completely determine the geodesic.

Trivially, every shortest path along P is a geodesic and no shortest path meets a
face or an edge more than once. We call the length of a shortest path between two
points p, q ∈ P the geodesic distance between p and q, and we denote it by d(p, q).
The following additional properties of shortest paths are crucial for our analysis.

Lemma 2.1 (see Sharir and Schorr [SS86]). Let π1 and π2 be distinct shortest
paths emanating from x. Let y ∈ π1 ∩ π2 be a point distinct from x. Then either one
of the paths is a subpath of the other, or neither π1 nor π2 can be extended past y
while remaining a shortest path.

Corollary 2.2. Two shortest paths cross at most once.
Lemma 2.3. If π1, π2 are two distinct shortest paths connecting x, y ∈ P, each of

the two connected components of P \ (π1 ∪ π2) contains a corner.

1692 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

Proof. First, Lemma 2.1 implies that removal of π1 ∪ π2 splits P into exactly two
components. If one of the two components of P \ (π1 ∪ π2) contained no corners, π1

and π2 would have to traverse the same sequence of edges and faces. However, there
exists at most one geodesic connecting a given pair of points and traversing a given
sequence of edges and faces.

2.2. Edge sequences and sequence trees. A shortest-path edge sequence is
the sequence of edges intersected by some shortest path π connecting two points on
P, in the order met by π. Such a sequence is maximal if it cannot be extended in
either direction while remaining a shortest-path edge sequence; it is half-maximal if
no extension is possible at one of the two ends. It has been shown by Schevon and
O’Rourke [SO88] that the maximum total number of half-maximal sequences is Θ(n3).

Observe that every shortest-path edge sequence σ is a prefix of some half-maximal
sequence, namely, the one obtained by extending σ maximally at one end. Thus an
exhaustive list of O(n3) half-maximal sequences contains, in a sense, all the shortest-
path edge-sequence information of P. More formally, given an arbitrary collection of
edge sequences emanating from a fixed edge e, let the sequence tree Σ of this set be
the tree with all distinct nonempty prefixes of the given sequences as nodes, with the
trivial sequence consisting solely of e as the root, and such that σ is an ancestor of σ′

in the tree if and only if σ is a prefix of σ′ [HCT89]. The Θ(n3) bound on the number
of half-maximal sequences implies that the collection of O(n) sequence trees obtained
by considering all shortest-path edge sequences from each edge of P has, in turn, a
total of Θ(n3) leaves and Θ(n4) nodes in the worst case.

2.3. Ridge trees and the source unfolding. The shortest paths emanating
from a fixed source x ∈ P cover the surface of P in a way that can be naturally
represented by “unfolding” the paths to a planar layout with respect to x. This
unfolding, the “source unfolding,” has been studied since the turn of the century. We
will define it precisely in a moment. A second way to organize the paths in the plane
is the “star unfolding,” to be defined in section 3. This is not quite as natural and is
of more recent lineage. Our algorithms will be built around the star unfolding, but
some of the arguments do refer to the source unfolding as well.

Given two points x, y on P, y ∈ P is a ridge point with respect to x if there is
more than one shortest path between x and y. Ridge points with respect to x form
a ridge tree Tx embedded on P,2 whose leaves are corners of P, and whose internal
vertices have degree at least three and correspond to points of P with three or more
distinct shortest paths to x. In a degenerate situation where x lies on the ridge tree
for some corner p, then p will not be a leaf of Tx, but rather will become a degree-2
vertex in Tx; so in general not all corners will appear as leaves of Tx. We define a
ridge as a maximal subset of Tx consisting of points with exactly two distinct shortest
paths to x and containing no corners of P. These are the “edges” of Tx. Ridges are
open geodesics [SS86]; a stronger characterization of ridges is given in Lemma 2.4.
Fig. 1 shows two views of a ridge tree on a pyramid.

We will refer to a point y ∈ P as a generic point if it is not a ridge point with
respect to any corner of P. The maximal connected portion of a face (resp., an edge)
of P consisting entirely of generic points will be called a ridge-free region (resp., an
edgelet); see Fig. 2.

If we cut P along the ridge tree Tx and isometrically embed the resulting set in

2 For smooth surfaces (Riemannian manifolds), the ridge tree is known as the “cut locus” [Kob67].

STAR UNFOLDING OF A POLYTOPE 1693

A

B

CD

E

x

p1

p3

p2
p4

p5

A

B
C

D

E
p1

p3

p2

p4

p5

(a) (b)

Fig. 1. Pyramid, front (a) and side (b) views. Shortest paths to five vertices from source x are
shown solid ; the ridge tree is dashed. Coordinates of vertices are (±1,±1, 0) for p1, p2, p4, p5, and
p3 = (0, 0, 4); x = (0, 3/4, 1). The ridges incident to p2 and p4 lie nearly on the edge p2p4.

x

p1

p3

p2
p4

p5

Fig. 2. Ridge-free regions for Fig. 1. Tp1 ∪ · · · ∪Tp5 are shown dashed (e.g., Tp3 is the “X” on
the bottom face). The ridge-free region containing x is shaded darker.

R
2, we obtain the source unfolding of [OS89].3 In the source unfolding, the ridges

lie on the boundary of the unfolding, while x lies at its “center,” which results in
a star-shaped polygon [SS86]; see Fig. 3. Let a peel be the closure of a connected
component of the set obtained by removing from P both the ridge tree Tx and the
shortest paths from x to all corners. A peel is isometric to a convex polygon [SS86].
Each peel’s boundary consists of x, the shortest paths to two “consecutive” corners
of P, p and p′, and the unique path in Tx connecting p to p′. A peel can be thought
of as the collection of all the shortest paths emanating from x between xp and xp′.
(The peel between xp1 and xp5 is shaded in Fig. 3.)

3 The same object is called U(P) in [SS86], “planar layout” in [Mou85], and “outward layout”
in [CH90]. For Riemannian manifolds, it is the “exponential map” [Kob67].

1694 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

x

A BD

C

E

C

p1

p3

p2 p4

p5
EE

C

Fig. 3. Source unfolding for the example in Fig. 1. Shortest paths to vertices are solid, polytope
edges are dashed, and ridges are dotted. One peel is shaded.

We need to strengthen the characterization of ridges from geodesics to shortest
paths, in order to exploit Corollary 2.2. This characterization seems to be new.

Lemma 2.4. Every ridge of the ridge tree Tx, for any point x ∈ P, is a shortest
path.

Proof. An edge π of the ridge tree is an (open) geodesic consisting of points
that have two different shortest paths to x [SS86]. Suppose π is not a shortest path.
Then, since it is composed of segments, it contains shortest paths, and in particular,
a shortest path π′ delimited by two points a, b ∈ π such that there is another shortest
path π′′ connecting them. Refer to Fig. 4. By Lemma 2.1, π′ ∩ π′′ = {a, b}. Let α1

and α2 be the two shortest paths from x to a, and let β1 and β2 be the two shortest
paths from x to b. Notice that, by Lemma 2.1, π′, α1, α2, β1, β2 do not meet except
at the endpoints. In particular, we can relabel these paths so that α2 and β2 lie in
the same connected component of P − (α1∪β1∪π′). There are two cases to consider.

Case 1. x 6∈ π′′. Thus, by Lemma 2.1, π′′ does not meet α1 or α2 except at a.
Similarly, π′′ does not meet β1 or β2 except at b. Thus, without loss of generality, we
can assume that π′′ lies in the portion ∆ of P bounded by π′, α1, and β1, and not
containing α2 or β2. Since α1, β1 are shortest paths from x to a and b, respectively,
their relative interiors do not intersect Tx. Moreover, π′ does not contain a vertex
of Tx, so ∆ does not contain any corner of P, as each corner is a vertex of Tx. On
the other hand, paths π′, π′′ ⊂ ∆ are distinct shortest paths connecting a to b, so
by Lemma 2.3 each of the two connected components of P \ (π′ ∪ π′′) has to contain
a corner of P. However, one of these components is entirely contained in ∆—a
contradiction.

Case 2. x ∈ π′′. As π′′ and α1 can be viewed as emanating from a and having
x in common, and π′′ extends past x, Lemma 2.1 implies that α1 is a prefix of π′′.
Similarly, α2 is a prefix of π′′, contradicting distinctness of α1 and α2.

Remark. Case 2 in the above proof is vacuous if x is a corner, which is the case
in our applications of this lemma.

As defined, Tx is a tree with n vertices of degree less than 3 and thus has Θ(n)
vertices and edges. However, the worst-case combinatorial size of Tx jumps from Θ(n)

STAR UNFOLDING OF A POLYTOPE 1695

•x

b

π′

π′′

∆

β1

β2

α1
α2

π

a

Fig. 4. Illustration of the proof of Lemma 2.4. Here x is the source, and π a geodesic ridge,
with π′ ⊆ π a shortest path. The region ∆ cannot contain any vertices of P.

to Θ(n2) if one takes into account the fact that a ridge is a shortest path comprised
of as many as Θ(n) line segments on P in the worst case—and it is possible to exhibit
a ridge tree for which the number of ridge-edge incidences is indeed Ω(n2) [Mou85].
For simplicity we assume that ridges intersect each edge of P transversely.

3. Star unfolding. In this section we introduce the notion of the star unfolding
of P and describe its geometric and combinatorial properties. Working independently,
both Chen and Han [CH90, CH91] and Rasch [Ras90] have used the same notion, and
in fact the idea can be found in Aleksandrov’s work [Ale58, p. 226], [AZ67, p. 171].

3.1. Geometry of the star unfolding. Let x ∈ P be a generic point so that
there is a unique shortest path connecting x to each corner of P. These paths are
called cuts and are comprised of cut points (see Fig. 1). If P is cut open along
these cuts the result is a two-dimensional complex that we call the star unfolding Sx.
If isometrically embedded in the plane, the star unfolding corresponds to a simple
polygon. That the star unfolding can be embedded in the plane without overlap is by
no means a straightforward claim; it was first established in [AO92] as the following
lemma.

Lemma 3.1 (see Aronov and O’Rourke [AO92]). If viewed as a metric space with
the natural definition of interior metric, Sx is isometric to a simple polygon in the
plane (with the internal geodesic metric).

The polygonal boundary ∂Sx consists entirely of edges originating from cuts. The
vertices of Sx derive from the corners of P and from the source x. An example is
shown in Fig. 5. More complex examples will be shown in Fig. 7.

The cuts partition the faces of P into subfaces, which map to what we call the
plates of Sx. Since we assume the faces of P to be triangles, each plate is a compact
convex polygon with at most six edges; see Fig. 6(b). We consider these plates to be
the faces of the two-dimensional complex Sx. We assume that the complex carries
with it labeling information consistent with P.

1696 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

x5

x1

x2

x3x4

A

B C

D

E

p1

p3

p2p4

p5

B C

AA

Fig. 5. Construction of the star unfolding corresponding to Fig. 1. Sx is shaded. The superim-
posed dashed edges show the “natural” unfolding obtained by cutting along the four edges incident
to p3. The A, B, C, D, and E labels indicate portions of Sx derived from those faces.

x5

x1

x2

x3x4

p1

p3

p2p4

p5x5

x1

x2

x3x4

p1

p3

p2p4

p5x5

x1

x2

x3x4

p1

p3

p2p4

p5

(a) (c)(b)

Fig. 6. (a) Ridge tree, (b) plates, and (c) pasting tree corresponding to Fig. 5.

Somewhat abusing the notation, we will freely switch between viewing Sx as
a complex and as a simple polygon embedded in the plane. In particular, a path
π ⊂ Sx will be referred to as a segment if it corresponds to a straight-line segment
in this embedding. Note that every segment in Sx is a shortest path in the intrinsic
metric of the complex, but not every shortest path in Sx is a segment, as some shortest
paths in Sx might bend at corners.

STAR UNFOLDING OF A POLYTOPE 1697

For p ∈ P, let U(p) be the set of points in Sx to which p maps; U is the “unfolding”
map (with respect to x). U(p) is a single point whenever p is not a cut point. A non-
corner point y ∈ P distinct from x and lying on a cut has exactly two unfolded images
in Sx. The corners of P map to single points. X = U(x) = {x1, . . . , xn} is a set of n
distinct points in Sx. If |U(p)| = 1, then, with a slight abuse of notation, we use U(p)
to denote the unique image of p as well. We can extend the definition of the map U
to sets in a natural way by putting U(Q) =

⋃
q∈Q U(q). In particular, we have the

following lemma.

Lemma 3.2 (see Sharir and Schorr [SS86]). For a point y ∈ P, any shortest
path π from x to y maps to a segment π∗ ⊂ Sx connecting an element of U(y) to an
element of U(x).

There is also a view of Sx that relates it to the source unfolding: the star unfolding
is just an “inside-out” version of the source unfolding, in the following sense. The
star unfolding can be obtained by stitching peels together along ridges; see Fig. 6(a).
The source unfolding is obtained by gluing them along the cuts; compare this with
Fig. 3. (A “peel” was defined in section 2.3 as a subset of P, but by slightly abusing
the terminology we also use this term to refer to the corresponding set of points in
the source or star unfolding.)

We next define the pasting tree Πx as the graph whose nodes are the plates of Sx,
with two nodes connected by an arc if the corresponding plates share an edge in Sx;
see Fig. 6(c). For a generic point x, Πx is a tree with O(n2) nodes, as it is the dual of
a convex partition of a simple polygon without Steiner points. (If x were a ridge point
of some corner, Sx would not be connected and Πx would be a forest.) Πx has only n
leaves corresponding to the triangular plates incident to the n images of x in Sx. By
Lemma 3.2, any shortest path from x to y ∈ P corresponds to a simple path in Πx,
originating at one of the leaves. Thus, the O(n3) edge sequences corresponding to the
simple paths that originate from leaves of Πx include all shortest-path edge sequences
emanating from x. In fact, there are O(n2) maximal edge sequences in this set, one
for each pair of leaves. This relation between Πx and the shortest-path sequences is
crucial in our sequence algorithms described in sections 4 and 5.

In the following sections we will need the concept of the “kernel” of a star un-
folding. Number the corners p1, . . . , pn in the order in which cuts emanate from
x. Number the n source images (elements of X = U(x)) so that ∂Sx is the cycle
x1p1x2 . . . pnx1 comprised of 2n segments (see Fig. 5). The kernel is a subset of Sx;
here it is more convenient to view Sx as a simple polygon. Consider the polygonal cy-
cle p1p2 . . . pnp1. We claim that it is the boundary of a simple polygon fully contained
in Sx. Indeed, each line segment pipi+1

4 is fully contained in the peel sandwiched be-
tween xi+1pi and xi+1pi+1. Thus, the line segments pipi+1 are segments in Sx, in the
sense defined above, and indeed form a simple cycle. The simple n-gon bounded by
this cycle is referred to as the kernel Kx of the star unfolding Sx. An equivalent way
of defining Kx is by removing from Sx all triangles 4pi−1xipi for i = 1, . . . , n. As
with Sx, we will alternate between viewing Kx as a complex and as a simple polygon
in the plane. Fig. 7 illustrates the star unfolding and its kernel for several randomly
generated polytopes.5 Note that neither set is necessarily star-shaped.

The main property of the kernel that we will later need is described in the following
lemma.

4 Here and thereafter pn+1 = p1, p0 = pn, xn+1 = x1, x0 = xn.
5 The unfoldings were produced with code written by Julie DiBiase and Stacia Wyman of Smith

College.

1698 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

Fig. 7. Four star unfoldings: n = 13, 13, 36, 42 vertices, left to right, top to bottom. The
kernel is shaded darker in each figure.

Lemma 3.3. The image of the ridge tree is completely contained within the kernel,
which is itself a subset of the star unfolding: U(Tx) ⊂ Kx ⊂ Sx.

Proof. Since Kx can be defined by subtraction from Sx, Kx ⊂ Sx is immediate.
The ridge tree Tx can be thought of as the union of the peel boundaries that do not
come from cuts. As peels are convex, these boundaries remained when we removed
triangles 4pi−1xipi from Sx to form Kx.

Aronov and O’Rourke [AO92] proved the following theorem.

Theorem 3.4. U(Tx) is exactly the restriction of the planar Voronoi diagram of
the set X = U(x) of source images to within Kx or, equivalently, to within Sx.

3.2. Structure of the star unfolding. We now describe the combinatorial
structure of Sx. A vertex of Sx is an image of x, of a corner of P, or of an intersection
of an edge of P with a cut. An edge of Sx is a maximal portion of an image of a cut
or an edge of P delimited by vertices of Sx. It is easy to see that Sx consists of Θ(n2)
plates in the worst case, even though its boundary is formed by only 2n segments, i.e.,

STAR UNFOLDING OF A POLYTOPE 1699

the images of the cuts. We define the combinatorial structure of Sx as the 1-skeleton
of Sx, i.e., the graph whose nodes and arcs are the vertices and edges of Sx, labeled
in correspondence with the labels of Sx, which are in turn derived from labels on P.
The combinatorial structure of a star unfolding has the following crucial property.

Lemma 3.5. Let x and y be two noncorner points lying in the same ridge-free
region or on the same edgelet. Then Sx and Sy have the same combinatorial struc-
ture.

Proof. Let f be the face containing the segment xy in its interior. The case when
xy is part of an edge is similar.

As the shortest paths from any point z ∈ xy to the corners are pairwise disjoint
except at z (cf. Lemma 2.1) and z is confined to f , the combinatorial structure of Sz
is uniquely determined by

(1) the circular order of the cuts around z, and
(2) the sequence of edges and faces of P met by each of the cuts.

We will show that (1) and (2) are invariants of Sz as long as z ∈ xy does not cross a
ridge or an edge of P. First, the set of points of f , for which some shortest path to a
fixed corner p traverses a fixed edge sequence, is convex—it is simply the intersection
of f with the appropriate peel with respect to p—implying invariance of (2).

Now suppose the circular order of the cuts around z is not the same for all
z ∈ xy. The initial portions of the cuts, as they emanate from any z, cannot coincide,
as distinct cuts are disjoint except at z. Hence there can be a change in this circular
order only if one of the vectors pointing along the initial portion of the cuts changes
discontinuously at some intermediate point z′ ∈ xy. However, this can happen only
if z′ is a ridge point with respect to a corner, and is therefore a contradiction.

This lemma holds under more general conditions. Namely, instead of requiring
that xy be free of ridge points, it is sufficient to assume that the number of distinct
shortest paths connecting z to any corner does not change as z varies along xy (this
number is larger than 1 if xy is a portion of a ridge).

Lemma 3.6. Under the assumptions of Lemma 3.5, Kx is isometric to Ky; i.e.,
they are congruent simple polygons.

Proof. Kx is determined by the order of corners on ∂Kx = p1p2, . . . , pnp1 and,
for each i, by the choice of the shortest path pipi+1, if there are two or more such
paths. The ordering is fixed once combinatorial structure of Sx is determined. The
choice of the shortest path connecting pi to pi+1 is determined by the constraint that
4pi−1xipi is free of corners.

Let R be a ridge-free region. By the above lemma, Sx can be embedded in the
plane in such a way that the images of the corners of P are fixed for all x ∈ R, while
the images of x in Sx move as x varies in R ⊆ P. This guarantees that Ky = Kx for
all x, y ∈ R. This is illustrated in Fig. 8. In what follows, we will assume such an
embedding of Sx and use KR to denote Kx for all points x ∈ R. Similarly, define Kε

for an edgelet ε.

3.3. The number of different unfoldings. For the algorithms described in
this paper, it will be important to bound the number of different possible combina-
torial structures of star unfoldings, as we vary the position of source point x, and
to compute these unfoldings efficiently (more precisely, compute their combinatorial
structure plus some metric description, parameterized by the exact position of the
source), as the source moves on the surface of the polytope. Two variants of this
problem will be needed. In the first, we assume that the source is placed on an edge
of P, and in the second the source is placed anywhere on P. In view of Lemma 3.5,

1700 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

x5

x1

x2

x3
x4

p1

p3

p2p4

p5

y3y4

y5
y1

y2

Fig. 8. The star unfolding when the source x moves to y inside a ridge-free region. The
unfolding Sx (Fig. 5) is shown lightly shaded ; Sy is shown dotted. Their common kernel Kx = Ky

is the central dark region.

it suffices to bound the number of edgelets and ridge-free regions, respectively.

Lemma 3.7. In the worst case, there are Θ(n3) edgelets and they can be computed
in O(n3 logn) time.

Proof. Each edge can meet a ridge of the ridge tree of a corner at most once,
since ridges are shortest paths (recall that we assume that no ridge overlaps an edge—
removal of this assumption does not invalidate our argument but only adds a number
of technical complications). This gives an upper bound of n × O(n) × O(n) on the
number of edge-ridge intersections and therefore on the number of edgelets. An ex-
ample of a convex polytope with Ω(n3) edgelets is relatively easy to construct by
modifying the lower bound construction of Mount [Mou90].

To compute the edgelets, we construct ridge trees from every corner in n×O(n2)
time by n applications of the algorithm of Chen and Han [CH90]. The edgelets are
now computed by sorting the intersections with ridges along each edge.

Lemma 3.8. In the worst case, there are Θ(n4) ridge-free regions on P. They
can be computed in Θ(n4) time.

Proof. The overlay of n ridge trees, one from each corner of P, produces a
subdivision of P in which every region is bounded by at least three edges (cf. Fig. 2).
Thus, by Euler’s formula, the number of regions in this subdivision is proportional to
the number of its vertices, which we proceed to estimate.

By Lemma 2.4 ridges are shortest paths and therefore two of them intersect in
at most two points (cf. Corollary 2.2) or overlap. In the latter case no new vertex of
the subdivision is created, so we restrict our attention to the former. In particular,
as there are n×O(n) = O(n2) ridges, the total number of their intersection points is
O(n4). Refining this partition further by adding the edges of P does not affect the
asymptotic complexity of the partition, as ridges intersect edges in a total of O(n3)
points (cf. Lemma 3.3). This establishes the upper bound.

It is easily checked that there are Ω(n4) ridge-free regions in Mount’s example of
a polytope with Ω(n4) shortest-path edge sequences [Mou90]. Hence there are Θ(n4)

STAR UNFOLDING OF A POLYTOPE 1701

ridge-free regions on P in the worst case.
The ridge-free regions can be computed by calculating the ridge tree for every

corner and overlaying the trees in each face of P. The first step takes O(n3) time,
while the second step can be accomplished in time O((r + n3) logn) = O(n4 logn),
where r is the number of ridge-free regions in P, using the line-sweep algorithm of
Bentley and Ottmann [BO79]. If computing the ridge-free regions is a bottleneck,
the last step can be improved to O(n4) by using a significantly more complicated
algorithm of Chazelle and Edelsbrunner [CE92]. (See also [CS89, Ba95].)

3.4. Encoding ridge trees. In section 3.1, we proved that the combinatorial
structure of Sx is the same for all points x in a ridge-free region. As x moves in a
ridge-free region, the ridge tree Tx changes continuously (in the Hausdorff metric) as
a subset of P. In this subsection, we prove an upper bound on the number of different
combinatorial structures of Tx as the source point x varies over a ridge-free region or
an edgelet. In fact, we are interested not so much in counting the number of distinct
ridge trees as we are in representing all possible ridge trees compactly to, for example,
extract all vertices that ever occur in the ridge trees. Apart from being interesting in
their own right, these results are needed in the algorithms described in sections 5–7.

Let R be a ridge-free region, and let x be a point in R. By Theorem 3.4, Tx
is the Voronoi diagram Vx of the set X = U(x) of images of x clipped to lie within
KR. Since ridge vertices do not lie on ∂Sx, all changes in Tx, as x varies in R, can
be attributed to changes in Vx. Thus it suffices to distinguish distinct combinatorial
structures of Voronoi diagrams Vx, x ∈ R. Here, by “combinatorial complexity” we
mean an enumeration of vertices, edges, and regions of the Voronoi diagram, together
with incidence relations between them.

Let X = U(x) = {x1, . . . xn}. For each xi = (xi1, xi2), let

fi(y) = d(xi, y) =
√

(xi1 − y1)2 + (xi2 − y2)2 ,

where (y1, y2) are the coordinates of a generic point y in the plane. Let

f(y) = min
1≤i≤n

fi(y)

be the lower envelope of the fi’s. Then Vx is the same as (the 1-skeleton of) the
orthogonal projection of the graph of f(y) onto the y1y2-plane, labeled with the
name(s) of the function(s) attaining the minimum at each point.

We introduce an orthogonal coordinate system in R and let x have coordinates
(s, t) in this system. Then positions of xi are linear functions of s, t of the form

(
xi1
xi2

)
=

(
ai
bi

)
+

(
cos θi sin θi
− sin θi cos θi

)(s
t

)
,(1)

where (ai, bi) are coordinates of xi when x is at the origin of the (s, t) coordinate
system in R, and θi defines the orientation of the ith image of R in the plane.

We now regard f and fi’s as 4-variate functions of s, t, y1, y2, and denote by
MR the (labeled) projection of the graph of f onto the (s, t, y1, y2)-plane. All possible
combinatorial structures of Vx, as x varies over the entire plane, are obviously encoded
in MR, as the diagram for x = (α, β) is simply the (1-skeleton) of the cross section of
MR by the 2-flat s = α, t = β. Let

gi(s, t, y1, y2) = (fi(y1, y2))
2 − (s2 + t2 + y2

1 + y2
2) .(2)

1702 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

Using (1) we obtain

gi(s, t, y1, y2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t+ C

(5)
i sy1 + C

(6)
i sy2

+C
(7)
i ty1 + C

(8)
i ty2,(3)

where, for each i, the Ci’s are constants that depend solely on ai, bi, and θi.
Let g(s, t, y1, y2) denote the lower envelope of the gi’s. Since g(s, t, y1, y2) =
(f(s, t, y1, y2))

2 − (s2 + t2 + y2
1 + y2

2), the projection of the graph of g is the same as
MR. Let

v1 = sy1, v2 = sy2, v3 = ty1, v4 = ty2(4)

and set

ḡi(s, t, y1, y2, v1, v2, v3, v4) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t

+C
(5)
i v1 + C

(6)
i v2 + C

(7)
i v3 + C

(8)
i v4.(5)

Then every face of the graph of g is the intersection of the lower envelope of ḡi’s with
the surface defined by equation (4). Since each ḡi is an 8-variate linear function, by
the upper bound theorem for convex polyhedra, the graph of their lower envelope
has O(n4) faces of all dimensions (and in fact can be triangulated by using O(n4)
simplices). Hence the number of faces in MR is also O(n4). Using the algorithm of
Brönnimann, Chazelle, and Matoušek [BCM94], all the faces of this lower envelope,
and thus all the edges and vertices of MR, can be computed in O(n4) time. (Using
the triangulation mentioned above, one could compute a representation of all faces
of MR at the same time by intersecting each simplex of the triangulation with the
surface (4). Our algorithms will need only the edges and vertices of MR, however.)
Putting everything together, we conclude with the following lemma.

Lemma 3.9. All the ridge trees for source points lying in a ridge-free region R can
be encoded in a single lower envelope MR whose combinatorial complexity is O(n4).
Moreover, the edges and vertices of MR can be computed in time O(n4).

Remark. The only reason for assuming in the above analysis that x stays away
from the boundary of R was to ensure that the vertices of the Voronoi diagram avoid
the boundary of KR. However, it is easy to verify that when x is allowed to vary over
the closure of R, Voronoi vertices never cross the boundary of KR but may touch it
in limiting configurations. Thus the same analysis applies in that case as well.

If the source point moves along an edgelet ε rather than in a ridge-free region, we
can obtain a bound on the number of different combinatorial structures of ridge trees
by setting t = 0 in (1). Proceeding in the same way as above, each gi now becomes

gi(s, y1, y2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(5)
i sy1 + C

(6)
i sy2 .

Again, we define g as the lower envelope of gi’s, and the subdivision Mε as the labeled
projection of the graph of the lower envelope g. Let v1 = sy1, v2 = sy2, and set

ḡi(s, y1, y2, v1, v2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(5)
i v1 + C

(6)
i v2 .(6)

Since ḡi is now a 5-variate linear function, by the upper bound theorem, the number
of faces in Mε is O(n3). A similar bound was proved earlier in [GMR91]. Since the
lower envelope of ḡi’s can be computed in O(n3) time [BCM94], the vertices and edges
of Mε can also be computed in time O(n3). Hence we obtain the following.

STAR UNFOLDING OF A POLYTOPE 1703

Lemma 3.10. All the ridge trees that occur as the source point moves on an
edgelet ε can be represented as an envelope Mε of n trivariate functions; its complexity
is O(n3), and its edges and vertices can be computed in O(n3) time.

Remark. Only a portion of MR (resp., Mε) is relevant to our analysis of ridge
trees. Recall that it encodes the diagrams Vx for all x. However, we are interested
only in x ∈ R (resp., x ∈ ε) and not all of Vx but just the portion contained in KR

(resp., Kε). Hence only those points (s, t, y1, y2) ∈ MR (resp., (s, y1, y2) ∈ Mε) are
relevant for which (s, t) ∈ R (resp., s ∈ ε) and (y1, y2) ∈ KR (resp., (y1, y2) ∈ Kε).
When we make use of the information stored in MR and Mε at a later point in the
computation, we will have to “filter out” irrelevant features. This issue is addressed
later in section 5.

4. Edge sequences superset. In this section we describe an O(n6) algorithm
for constructing a superset of the shortest-path edge sequences, which is both more
efficient and conceptually simpler than previously suggested procedures, and which
produces a smaller set of sequences.

Observe that all shortest-path edge sequences are realized by pairs of points lying
on edges of P—any other shortest path can be contracted without affecting its edge
sequence so that its endpoints lie on edges of P. Let x be a generic point lying on an
edgelet ε. As mentioned in section 3.1, the pasting tree Πx contains all shortest-path
edge sequences that emanate from x. Moreover, by Lemma 3.5 Πx is independent of
choice of x in ε; therefore we will use Πε to denote Πx for any point x ∈ ε. The set
of O(n3) pasting trees {Πε | ε is an edgelet}, each of size O(n2), contains an implicit
representation of a set of O(n6) sequences (O(n5) of which are maximal in this set),
which includes all shortest-path edge sequences that emanate from generic points.

Algorithm 1. Sequence trees.

for each edge e of P do
Σe = ∅.
for each edgelet endpoint v ∈ e do

Compute shortest-path edge sequences Σv emanating from v.
Σe = Σe ∪ Σv.

for each edgelet ε ⊂ e do
Compute Πε.
for each maximal sequence σ ∈ Πε do

Σe = Σe ∪ {σ}.
Te = the trivial sequence tree consisting of just e.
for each sequence σ ∈ Σe do

Traverse σ, augmenting Te.
Stop if σ visits the same edge twice.

Te is the sequence tree containing shortest-path edge sequences
emanating from e.

Hence we can compute a superset of shortest path edge sequences in three steps:
First, partition the points on the edges of P into O(n3) edgelets in time O(n3) as
described in Lemma 3.7. Second, compute shortest-path edge sequences from the
endpoints of each edgelet, using Chen and Han’s shortest-path algorithm. Next,
compute the star unfolding from a point in each edgelet, again using the shortest-

1704 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

path algorithm. The total time spent in the last two steps is O(n5). Finally, this
representation of edge sequences is transformed into O(n) sequence trees, one for
each edge (cf. section 2.2); see Algorithm 1 for pseudocode. For each pasting tree Πε,
we separately traverse Πε from each of its leaves, so we spend O(n3) time per pasting
tree. Hence the total time spent is O(n6). We thus obtain Theorem 4.1.

Theorem 4.1. Given a convex polytope in R
3 with n vertices, one can construct,

in time O(n6), O(n) sequence trees that store a set of O(n6) edge sequences, which
include all shortest-path edge sequences of P.

Remarks. (i) Note that our algorithm uses nothing more complex than the algo-
rithm of Chen and Han for computing shortest paths from a fixed point, plus some
sorting and tree traversals. It achieves an improvement over previous algorithms
mainly by reorganizing the computation around the star unfolding.

(ii) The sequence-tree representation for just the shortest-path edge sequences
is smaller by a factor of n2 than our estimate on the size of the set produced by
Algorithm 1 (cf., section 2.2), but computing it efficiently seems difficult. In addition,
it is not clear how far the actual output of our algorithm is from the set of all shortest-
path edge sequences. We have a sketch of a construction for a class of polytopes that
force our algorithm to produce Ω(n5) non–shortest-path edge sequences.

5. Exact set of shortest-path edge sequences. In this section, we present
an O(n3β(n) logn) algorithm for computing the exact set of maximal shortest-path
edge sequences emanating from an edgelet. Here β(·) is an extremely slowly growing
function asymptotically smaller than log∗ n. Running this algorithm for all edgelets
of P, the exact set of maximal shortest-path edge sequences can be computed in time
O(n6β(n) logn), which is a significant improvement over Schevon and O’Rourke’s
O(n9 logn) algorithm [SO89].

Let ε be an edgelet. For the purposes of this section we consider Sx embedded in
the plane so that Kx = Kε does not move as x varies along ε. So on the one hand, Kε

is a fixed simple n-gon in the plane and on the other hand it is a complex constructed
of O(n2) convex pieces of faces of P. By analogy with Sx, we call these pieces plates
of Kε. A plate of Kε is fully contained in a plate of Sx for any x ∈ ε. This latter
plate may change its shape as x moves in ε but always corresponds to the same node
of the pasting tree Πx = Πε. Moreover, there is at most one plate of Kx in a plate
of Sx, as a plate of Kx is obtained from a convex set (a plate of Sx) contained in a
simple polygon (Sx) by cutting off n triangles (4xipi−1pi, for i = 1, . . . , n), each by
a chord (pi−1pi).

We are interested in computing the set Σε of those shortest-path edge sequences
(corresponding to paths emanating from points on ε) which are maximal over all points
in ε. In other words, given a sequence σ ∈ Σε, there is a point x ∈ ε and a shortest
path starting from x that traverses σ, and there is no point on ε from which there is
a shortest path that traverses an edge sequence that is an extension of σ. Recall that
each sequence in Σε corresponds to a path in the pasting tree Πε, originating from
one of its leaves. Each leaf of Πε corresponds to a triangular plate incident to one of
the n images of x. Let Σε,i ⊆ Σε denote the set of edge sequences that originate from
the ith leaf of Πε. If a sequence σ ∈ Σε,i is realized by a shortest path π emanating
from x ∈ ε, then π leaves x between xpi−1 and xpi, and it corresponds to a segment
in Sx emanating from xi, the ith image of x. The area swept by all of these segments
(for a fixed x) is exactly the ith peel Px,i. Px,i consists of the triangle 4xipi−1pi and

the “remainder” P̂x,i, which is the portion of the ith peel that lies in Kx = Kε. If we
concentrate on maximal shortest paths contained in Px,i, it is sufficient to consider

STAR UNFOLDING OF A POLYTOPE 1705

those paths that end in P̂x,i, as any path that ends in 4xipi−1pi can be extended to

a point in P̂x,i while remaining a shortest path. Put Ci =
⋃

x∈ε P̂x,i; see Fig. 9a.

pi-1pi

xi

ε

Ci

χi

(a) (b)

Γi

pi-1pi

z

z'

ξ

η

K1
θ

Fig. 9. (a) Ci is the union of the peel remainders P̂x,i. Γi comprise the arcs traced by the
ridge vertices (shown dark). (b) γi is the θ-monotone upper envelope (solid) of Γi with respect to
pi; several key radial lines from pi are shown (dashed). γi is a superset of the “outer” envelope χi
(dark); here the arc η ∈ γi \ χi. A covering triangle 4zpi−1pi whose apex z covers z′ ∈ (∪Γi) ∩ ξ
is shown (solid).

Lemma 5.1. Let p, p′ ∈ Ci be two points lying in the same plate of Kε. Suppose
p ∈ P̂x,i and p′ ∈ P̂x′,i for some x, x′ ∈ ε. Then the edge sequences corresponding to
the segments xip and x′ip

′ are the same. The edge sequences are different if p, p′ ∈ Ci

are contained in different plates of Kε.

Proof. Let v be the node of Πε corresponding to the plate of Kε that contains p
and p′. Since there is a unique path from the ith leaf to v in Πε, the lemma follows.
Different plates of Kε, as observed above, correspond to different nodes of Πε, and
thus to different sequences of edges, essentially by definition of Πε.

By the above lemma, each point of Ci determines a unique shortest-path edge
sequence of Σε,i, and all points of Ci lying in the same plate of Kε determine the
same shortest-path edge sequence of Σε,i. We mark a node of Πε if the corresponding
plate of Kε intersects Ci. Let Πε,i be the minimal subtree of Πε rooted at the ith leaf
and containing all marked nodes. Then there is a one-to-one correspondence between
the sequences of Σε,i and the paths in Πε,i from its root to its leaves.

Lemma 5.2. Let σ be an edge sequence in Σε,i realized by a shortest path orig-

inating from point x ∈ ε. Then there is vertex p of P̂x,i such that the segment xip
realizes the sequence σ.

Proof. By Lemma 5.1, σ is realized by all points in the intersection of a unique
plate ξ of Kε with Ci. Choose a point p ∈ P̂x,i ∩ ξ such that |xip| is maximum among
all such points, where | . . . | denotes the Euclidean length of a segment. (Notice that
the maximum must be achieved, for otherwise there is a shortest path from xi whose
sequence extends that of σ.) If p is not a vertex of P̂x,i, then we can choose a point

1706 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

p′ ∈ P̂x,i ∩ ξ in a sufficiently small neighborhood of p such that |xip′| > |xip|, which

is a contradiction. Hence we can assume that p is a vertex of P̂x,i, as desired.

In view of this lemma, we can restrict our attention to the points of Ci that
correspond to the vertices of P̂x,i, for any x ∈ ε. Recall that each vertex of P̂x,i is
the image of a ridge vertex. A typical ridge vertex v is incident to three open peels
cj , ck, c`; if v has degree more than three and exists at more than just a discrete set
of positions of x ∈ ε, replace the triple of incident peels with a larger tuple in the
following discussion. As x moves along ε, the vertex traces an algebraic curve v = v(x)
in Kε. Let a lifetime of a ridge vertex v be a maximal connected interval ε′ ⊆ ε for
which x ∈ ε′ implies that v is a vertex of Tx. Let Γi be the set of arcs traced out
by ridge vertices that appear on the boundary of P̂x,i during their lifetimes (Fig. 9a);
set ni = |Γi|. It can be verified that the arcs in Γi corresponding to a ridge vertex,
defined by the triple cj , ck, c`, are the projections onto the xy-plane of those edges
of the subdivision Mε, defined in section 3.4, along which gj , gk, g` simultaneously
appear on the lower envelope g. (As we mentioned in section 3.4, Mε may contain
“irrelevant” features. In particular, we must first truncate each aforementioned arc
so that it corresponds to positions of the source on ε. Second, we must verify that
the Voronoi diagram vertex corresponding to the arc indeed yields a ridge vertex. It
is sufficient to check, for a single point of the curve traced out by the vertex as x
ranges over ε, that it lies inside Kε, as a ridge vertex cannot leave Kε. This is easily
accomplished by one point-location query per arc.)

We have previously observed that the maximal sequences of Πε,i are necessarily
realized by points on ∂Ci \ pi−1pi. In particular, points that lie in the interior of
Ci can be safely disregarded. We will now apply a similar procedure to points of
∪Γi. If we introduce polar coordinates with pi as the origin, each arc ηj ∈ Γi can be
regarded as a univariate (partial) function r = ηj(θ) (split ηj into a constant number
of θ-monotone arcs if it is not θ-monotone; this is possible since ηi is a portion of
an algebraic curve of small degree). Consider the graph of the upper envelope γi of
the functions ηj(θ) (Fig. 9b). Since each arc in Γi is algebraic of constant degree,
the upper envelope γi has O(niβ(ni)) breakpoints [ASS89]; here β(k) = 2α

s(k), s is
a constant depending on the maximum degree of arcs in Γi, and α(·) is the inverse
Ackermann function. Using a divide-and-conquer approach, the upper envelope can
be computed in time O(niβ(ni) logni); see [SA95].

We will now show that tracing γi through Kε is sufficient for computing Πε,i—
there is no need to examine the entire ∪Γi.

Lemma 5.3. Each sequence in Σε,i is determined by a point on γi.

Proof. We will show in fact that points on a subset χi of γi suffice to determine
all sequences. Say a point z “covers” a point z′ 6= z if the triangle 4zpi−1pi contains
z′. Call the set of points of ∪Γi not covered by any point of ∪Γi its outer envelope
χi. It is evident that χi ⊆ γi; see Fig. 9b.

Suppose there is a sequence σ ∈ Σε,i not realized by any point on χi. Let ξ be
the plate of Kε corresponding to σ. Thus some arc of Γi meets ξ, but χi does not.
Hence every point of (∪Γi) ∩ ξ is covered by a point of χi. Pick a point z ∈ χi that
covers some point z′ ∈ (∪Γi) ∩ ξ; see Fig. 9b. By the choice of z′, there is an x ∈ ε
such that the segment xz′ corresponds to a shortest path on P. Consider Kε \ ξ. It
consists of two or three simple polygons, one of which, say K1, is incident to pi−1pi
(the case when ξ touches pi−1pi is slightly different and can be handled by an easier
argument). We claim that z does not lie in K1. Indeed, 4z′pi−1pi is such that both
pi−1z

′ and piz
′ enter ξ and remain there. As 4zpi−1pi contains 4z′pi−1pi, removal

STAR UNFOLDING OF A POLYTOPE 1707

of ξ separates Kε, and z 6∈ ξ and both pi−1z and piz must cross ξ and exit it. As
z ∈ χi, there is an x′ ∈ ε so that the segment x′z is (the image of) a shortest path.
However, since z 6∈ K1, this path crosses ξ, so the edge sequence it traverses is an
extension of σ, contradicting maximality of σ.

We have shown that each sequence is realized by a point of χi and, therefore, of
γi.

If a plate of Kε is intersected by an edge of γi, we call the corresponding node of
Πε visited by γi. The above lemma implies that the minimal subtree containing the
node corresponding to xi and all nodes visited by γi is the same as Πε,i. It is thus
sufficient to determine the nodes of Πε visited by γi.

Algorithm 2. Exact edge sequences.

Form edgelets.
for each edgelet ε do

Compute Mε.
Γ := Set of projections of edges in Mε.
Eliminate irrelevant features from Γ.
for each image xi do

Γi := Arcs of Γ at which gi appears on the lower envelope.
Compute upper envelope γi of Γi.
Compute and triangulate Kε[pi].
Compute the connected arcs ξ1, . . . , ξu.
for each 4 in the triangulation do

Compute Π4 := Πε ∩4.
Compute Π1

4,Π
2
4.

for each arc ξj ⊂ 4 do
Find nodes of Π1

4,Π
2
4 visited by ξj .

Note that γi is θ-monotone with respect to pi, and therefore γi lies in the portion
Kε[pi] of Kε visible from pi. Compute Kε[pi], in linear time [EA81], and triangulate
Kε[pi] into a linear number of triangles all incident to pi. Now partition γi into
connected portions ξ1, . . . , ξu, each fully contained in one of these triangles. This can
be done in time proportional to the number of breakpoints in γi and the number of
triangles involved and produces at most O(n) extra arcs, as γi is θ-monotone (with
respect to pi) and thus crosses each segment separating consecutive triangles in at
most one point. Since each triangle 4 is fully contained in Kε and thus encloses no
images of a vertex of P, the set of plates of Πε met by 4 corresponds to a subtree
Π4 of Πε of linear size, with at most one vertex of degree 3 and all remaining vertices
of degree at most 2. Hence Π4 can be covered by two simple paths Π1

4,Π
2
4 ⊆ Π4,

and they can be computed in linear time. For each ξj ⊂ 4, we determine the furthest
node that ξj reaches in Π1

4,Π
2
4 by binary search. Recall that ξj consists of a number

of algebraic arcs of constant degree. An intersection between ξj and a plate of Kε

can be detected in O(1) time per such arc, so the binary search requires only O(logn)
time per arc. The total time spent is thus O(niβ(n) logn + n2) over all triangles
of Kε[pi]. Repeating this procedure over all n leaves of Πε, the total time spent
in computing Σε is O(n3β(n) logn), as

∑
i ni = O(n3) by Lemma 3.10. The above

processing is repeated for each of the O(n3) edgelets ε. This completes the description
of the algorithm. It is summarized in Algorithm 2.

Theorem 5.4. The exact set of all shortest-path edge sequences on the surface

1708 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

of a 3-polytope on n vertices can be computed in O(n6β(n) logn) time, where β(n) =
o(log∗ n) is an extremely slowly growing function.

6. Geodesic diameter. In this section we present an O(n8 logn) time algorithm
for computing the geodesic diameter of P. As mentioned in the introduction, this
question was first investigated by O’Rourke and Schevon [OS89] who presented an
O(n14 logn) time algorithm for computing it. Their algorithm relies on the following
proposition.

Lemma 6.1 (see O’Rourke and Schevon [OS89]). If a pair of points x, y ∈ P
realizes the diameter of P, then either x or y is a corner of P, or there are at least
five distinct shortest paths between x and y.

Lemma 6.1 suggests the following strategy for locating all diametral pairs. We first
dispose of the possibility that either x or y is a corner in n×O(n2) = O(n3) time just
as in [OS89]. Next, we fix a ridge-free region R and let MR be the subdivision defined
in section 3.4. We need to compute all pairs of points x ∈ cl (R) and y∗ ∈ Kx such
that there are at least five distinct shortest paths between x and y, with U(y) = y∗.
By a result of Schevon [Sch89], such a pair x, y can be a diametral pair only if it is the
only pair, in a sufficiently small neighborhood of x and y, with at least five distinct
shortest paths between them. Such a pair of points corresponds to a vertex of MR.
Hence we use the following approach.

We first compute, in O(n4) time, all ridge-free regions of P (cf. Lemma 3.8).
Next, for each ridge-free region R, we compute KR, vertices of MR, and f(v) for all
vertices of MR (recall that f(v) is the shortest distance from v to any source image; cf.
section 3.3). Next, for each vertex v = (s, t, y1, y2) of MR, we determine whether (s, t)
lies in the closure of R and (y1, y2) ∈ KR. If the answer to both of these questions is
“yes,” we add v to the list of candidates for diametral pairs. (This step is exactly the
elimination of “irrelevant features” mentioned at the end of section 3.4. Once the two
conditions are verified, we know that (s, t) and (y1, y2) correspond to actual points
x, y on P and f(v) is exactly d(x, y).)

Finally, among all diametral candidate pairs, we choose a pair that has the largest
geodesic distance. See Algorithm 3 for the pseudocode.

For each ridge-free region R, KR can be computed in time O(n2) and preprocessed
for planar point location in additional O(n logn) time using the algorithm of Sarnak
and Tarjan [ST86]. (Once again, recall that we treat KR as a simple polygon and
use (y1, y2)-coordinate system there.) By Lemma 3.9, vertices of MR and f(v), for all
vertices of MR, can be computed in time O(n4). We spend O(logn) time for point
location at each vertex of MR, so the total time spent is O(n8 logn).

Theorem 6.2. The geodesic diameter of a convex polytope in R
3 with n vertices

can be computed in time O(n8 logn).

7. Shortest-path queries. In this section we discuss the preprocessing needed
to support queries of the following form: “Given x, y ∈ P, determine d(x, y).” We
assume that each face φ of P has its own coordinate system (e.g., a vertex of φ
is regarded as the origin and the two edges of φ incident to it are regarded as the
two axes), and that a point p ∈ P is specified by the face φ containing p and by
the φ-coordinates of p. Two variants of the query problem are considered: (1) no
assumption is made about x and y, and (2) x is assumed to lie on an edge of P.

Our data structure is based on the following observations. Let x, y ∈ P be two
query points. Suppose x = (s, t) is a generic point lying in a ridge-free region R and

STAR UNFOLDING OF A POLYTOPE 1709

Algorithm 3. Geodesic diameter.

for each corner c of P do
Construct the ridge tree Tc with respect to c.
for each vertex v of Tc do

Add d(c, v) to the list of diameter candidates.

Compute the ridge-free regions.

for each ridge-free region R do
Compute MR and f(v) for all vertices v ∈MR.
Compute Sx for some x ∈ R.
Construct KR = Kx.
Preprocess KR for point location queries.
Preprocess cl (R) for point location queries.
for each vertex v = (s, t, y1, y2) of MR do

if (s, t) ∈ cl (R) and (y1, y2) ∈ Kx then
Add f(v) = d((s, t), (y1, y2)) to the list of diameter candidates.

Find a diametral candidate pair with the maximum geodesic distance.

y∗ = (y1, y2) is an image of y in Sx. If y∗ lies in the kernel KR, then

d(x, y) = f(s, t, y1, y2) = (g(s, t, y1, y2) + (s2 + t2 + y2
1 + y2

2))1/2 ,

where

g(s, t, y1, y2) = min
1≤i≤n

ḡi(s, t, y1, y2, v1, v2, v3, v4) ,

as defined in equations (2), (4), and (5). Let HR be the set of hyperplanes in R
9

corresponding to the graphs of ḡi’s (cf. equation (5))

(7)

hi : v5 = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t+ C

(5)
i v1 + C

(6)
i v2 + C

(7)
i v3 + C

(8)
i v4.

Then, computing the value of g(s, t, y1, y2) is the same as determining the first hyper-
plane of HR intersected by the vertical ray emanating from the point

(s, t, y1, y2, sy1, sy2, ty1, ty2,−∞)

in the positive v5-direction. The desired value is (v5 + s2 + t2 + y2
1 + y2

2)1/2, where v5

is the v5-coordinate of the intersection point.
On the other hand, if y∗ 6∈ Kx, then it lies in one of the triangles 4pi−1xipi and

d(x, y) = |xiy∗|. For a ridge-free region R, let κR denote the preimage of ∂KR on
P, i.e., U(κR) = ∂KR. The following lemma is crucial in answering queries when
y 6∈ U−1(KR).

Lemma 7.1. Let R be a ridge-free region or an edgelet, let φ be a face of P,
and let ∆ be a connected component of φ \ κR whose image is not contained in KR.
Then the sequence of edges traversed by the shortest-path π(x, y) is independent of the
choice of x ∈ R and y ∈ ∆.

Proof. For the sake of contradiction, suppose there are two points y, y′ ∈ ∆ such
that the sequences of edges traversed by π(x, y′) and π(x, y′′) are distinct. Then there

1710 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

must exist a point y ∈ y′y′′ with two shortest paths to x—to obtain such a point,
move y from one end of y′y′′ to the other and observe that the shortest path from x
to y changes continuously and maintains the set of edges of P that it meets, except at
points y with more than one shortest path to x. Thus y ∈ Tx, so U(y) ⊂ U(Tx) ⊂ KR.
However, the segment y′y′′ ⊂ ∆ as ∆ is convex, implying U(y) ⊂ U(∆) ⊂ Sx \KR,
which is a contradiction.

Similarly, if x′, x′′ ∈ R are such that the paths connecting these two points to
y ∈ ∆ traverse different edge sequences, there must exist x ∈ x′x′′, which is connected
to y by two shortest paths, again forcing y onto Tx and yielding a contradiction. The
lemma follows easily.

Data structure Based on the above observations, we can preprocess P as follows.
We partition every face φ of P into ridge-free regions in time O(n4) (see Lemma 3.8),
and preprocess the resulting subdivision of φ for planar point-location queries using
any standard algorithm [ST86]. The queries would use φ-coordinates. The total time
spent in this step is O(n4 logn).

Let R be a fixed ridge-free region. We construct the following data structures for
R. Choose an arbitrary point x ∈ R. Compute Kx = KR and the connected compo-
nents of φ\κR for each face φ of P. Again, we preprocess the resulting subdivision of
each face for planar point-location queries in φ-coordinates. We label each component
∆ of φ \ κR as to whether it lies in U−1(KR). If it does not, we choose a point y ∈ ∆
and compute the edge sequence σ for the shortest path from x to y. By Lemma 7.1,
σ is the same for all pairs x ∈ R and y ∈ ∆. We also compute the transformation,
corresponding to the edge sequence σ, which maps the φ-based coordinates of points
in ∆ to φ′-coordinates of the face of P containing R. This corresponds to laying
out in the plane the faces prescribed by σ from φ′ to φ so that d(x, y) becomes the
length of the straight-line segment connecting x and y. All transformations for re-
gions ∆ 6⊂ U−1(KR) can be computed in O(n2) time by a single depth-first traversal
of the shortest-path sequence tree from x, computed by the algorithm of Chen and
Han. If, on the other hand, ∆ lies in U−1(KR), the exact sequence of edges traversed
by a shortest path from x ∈ R to y ∈ ∆ depends on the choice of x and y; the
structure for determining it is described below. (Note that such sets ∆ correspond
exactly to “plates of KR” as in section 5.) However, in this case any y ∈ U−1(KR)
has a unique image y∗ ∈ KR, so for each ∆ ⊂ U−1(KR) we compute the coordinate
transformation U from the φ-coordinates, where φ is the face of P containing ∆, to
the coordinates in the planar embedding of KR (they were referred to as (y1, y2)-
coordinates in section 3.4). The sequences σ and the coordinate transformations U ,
for all ∆ ⊂ U−1(KR), can be computed in O(n2) time, by performing a depth-first
search on Πx (each node of Πx corresponds to a connected component ∆).

Next, let HR be the set of hyperplanes defined in (7). We preprocess HR into
a data structure, so that the first hyperplane of H intersected by a vertical ray em-
anating from a point with v5 = −∞ can be computed efficiently. Matoušek and
Schwarzkopf [MS93] (also see [AM92]) have proposed such a data structure, which,
given a parameter n ≤ u ≤ n4, can preprocess HR, in time O(u1+δ), into a data
structure of size O(u1+δ), so that a ray-shooting query can be answered in time
O(n

u1/4 logn). This completes the description of the data structures for R. We con-
struct these data structures for each ridge-free region R.

Since there are O(n4) ridge-free regions, the total time spent in constructing the
data structures is O(n4(n2 + u1+δ)).

STAR UNFOLDING OF A POLYTOPE 1711

Answering a query. Let x, y ∈ P be a query pair. Let φx, φy be the faces
of P containing x and y, respectively. Assume first that x is a generic point. By
locating x in the point location data structure for φx, we identify in O(logn) time the
ridge-free region R that contains x. Next, we determine the connected component ∆
of φy \ κR that contains y by point location in φy. If ∆ ∩ U−1(KR) = ∅, we can use
the transformation stored at ∆ to compute d(x, y) in O(1) time. If ∆ ⊂ U−1(KR),
using the second data structure we compute the first hyperplane h of H hit by the ray
emanating from (ax, bx, ay, by, axay, axby, bxay, bxby,−∞) in the +v5-direction, where
(ax, bx) and (ay, by) are the coordinates of x and y, respectively. The coordinates
of x are in the φx-coordinate system and the coordinates of y are in the coordinates
system associated with the unfolding ofKR—the coordinate transformation from φy to
(y1, y2) is stored at ∆. Once we know h, d(x, y) = (g(ax, bx, ay, by)+a2

x+a2
y+b2x+b2y)

2

can be computed in O(1) time. The total time required is O((n/u1/4) logn).

Finally, if x is not a generic point then, as mentioned in the remark following
Lemma 3.9, we can use the data structures of any of the ridge-free regions whose
boundaries contain x. It is easy to see by a continuity argument that all shortest
paths from such a point are encoded equally well in the data structures of all of the
ridge-tree regions touching x.

Hence setting u = n2m, we can conclude with the following theorem.

Theorem 7.2. Given a polytope P in R
3 with n vertices and a parameter 1 ≤

m ≤ n2, one can construct, in time O(n6m1+δ) for any δ > 0, a data structure of
size O(n6m1+δ), so that d(x, y) for any two points x, y ∈ P can be computed in time
O((

√
n/m1/4) logn). Constants of proportionality depend on δ.

If x always lies on an edge, then H is a set of hyperplanes in R
6, so the query

time of the analogous vertical ray-shooting data structure in six dimensions is
O(n/u1/3 logn) for n ≤ u ≤ n2. Moreover, we have to construct only O(n3) dif-
ferent data structures, one for each edgelet, so we can conclude with the following
theorem.

Theorem 7.3. Given a polytope P in R
3 with n vertices and a parameter 1 ≤

m ≤ n, one can construct, in time O(n5m1+δ) for any δ > 0, a data structure of size
O(n5m1+δ), so that for any two points x, y ∈ P such that x lies on an edge of P one
can compute d(x, y) in time O((n/m)1/3 log2 n).

8. Discussion and open problems. We have shown that use of the star un-
folding of a polytope leads to substantial improvements in the time complexity of
three problems related to shortest paths on the surface of a convex polytope: find-
ing edge sequences, computing the geodesic diameter, and distance queries. Moreover,
the algorithms are not only theoretical improvements, but also, we believe, conceptual
simplifications. This demonstrates the utility of the star unfolding.

We conclude by mentioning some open problems:

1. Can one obtain an upper bound on the number of different combinatorial
structures of ridge trees better than O(n4)? Such an improvement would
yield a similar improvement in the time complexities of diameter and exact
shortest-path edge sequences algorithms.

2. Can one answer a shortest-path query faster if both x and y lie on some
edge of P? This special case is important for planning paths among convex
polyhedra (see Sharir [Sha87]).

Acknowledgment. We thank the referees for comments that led to significant
improvements in the presentation of this paper.

1712 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

REFERENCES

[AAOS90] P. K. Agarwal, B. Aronov, J. O’Rourke, and C. Schevon, Star unfolding of a
polytope with applications, in Proc. of 2nd Annual Scandinavian Workshop on Al-
gorithm Theory, Lecture Notes in Comput. Sci. 447, Springer-Verlag, Berlin, 1990,
pp. 251–263.

[Ale58] A. D. Aleksandrov, Konvexe Polyeder, Math. Lehrbucher und Monographien,
Akademie-Verlag, Berlin, 1958.

[AM92] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J.
Comput., 22 (1993), pp. 794–806.

[AO92] B. Aronov and J. O’Rourke, Nonoverlap of the star unfolding, Discrete Comput.
Geom., 8 (1992), pp. 219–250.

[ASS89] P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds on the
length of general Davenport-Schinzel sequences, J. Comb. Theory Ser. A, 52 (1989),
pp. 228–274.

[AZ67] A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, Ameri-
can Mathematical Society, Providence, RI, 1967. (Translation of the 1962 Russian
original.)

[Ba95] I. Balaban, An optimal algorithm for finding segments intersections, in Proc. 11th
Annual ACM Sympos. Comput. Geom., ACM, New York, 1995, pp. 211–219.

[BO79] J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric
intersections, IEEE Trans. Comput., C-28 (1979), pp. 643–647.

[BCM94] H. Brönnimann, B. Chazelle, and J. Matoušek, Product range spaces, sensitive
sampling, and derandomization, in Proc. 34th Annual IEEE Sympos. Found. Com-
put. Sci., IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 400–409.

[CR87] J. Canny and J. Reif, New lower bound techniques for robot motion planning problems,
in Proc. 28th IEEE Symp. Found. Comput. Sci., IEEE Computer Society Press,
Los Alamitos, CA, 1987, pp. 49–60.

[CE92] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line seg-
ments in the plane, J. Assoc. Comput. Mach., 39 (1992), pp. 1–54.

[CH90] J. Chen and Y. Han, Shortest paths on a polyhedron, in Proc. 6th Annual ACM
Sympos. Comput. Geom., ACM, New York, 1990, pp. 360–369.

[CH91] J. Chen and Y. Han, Storing shortest paths for a polyhedron, in Advances in Com-
puting and Information—ICCI ’91 Internat. Conf. Proc., Springer-Verlag, Berlin,
1991, pp. 169–80.

[CSY94] J. Choi, J. Sellen, and C.-K. Yap, Approximate Euclidean shortest path in 3-space, in
Proc. 10th Annual ACM Sympos. Comput. Geom., ACM, New York, 1994, pp. 41–
48.

[Cla87] K. Clarkson, Approximation algorithms for shortest path motion planning, in Proc.
19th Annual ACM Sympos. Theory Comput., ACM, New York, 1987, pp. 56–65.

[CS89] K. Clarkson and P. Shor, Applications of random sampling in computational geom-
etry, II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[EA81] H. El Gindy and D. Avis, A linear algorithm for computing the visibility polygon from
a point, J. Algorithms, 2 (1981), pp. 186–197.

[Gar61] M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles and Diver-
sions, Simon and Schuster, New York, 1961.

[GMR91] L. Guibas, J. S. B. Mitchell, and T. Roos, Voronoi diagrams of moving points in the
plane, in Proc. 17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci.,
Lecture Notes in Comput. Sci. 570, Springer-Verlag, Berlin, 1991, pp. 113–125.

[HS93] J. Hershberger and S. Suri, Efficient computation of Euclidean shortest paths in the
plane, in Proc. 34th Annual IEEE Sympos. Found. Comput. Sci., IEEE Computer
Society Press, Los Alamitos, CA, 1993, pp. 508–517.

[HS95] J. Hershberger and S. Suri, Practical methods for approximating shortest paths on
a convex polytope in R3, in Proc. 6th Annual ACM–SIAM Sympos. Discrete Algo-
rithms, SIAM, Philadelphia, 1995, pp. 447–456.

[HCT89] Y.-H. Hwang, R.-C. Chang, and H.-Y. Tu, Finding all shortest path edge sequences
on a convex polyhedron, in Proc. 1st Workshop Algorithms Data Struct., Lecture
Notes in Comput. Sci 382, Springer-Verlag, Berlin, 1989, pp. 251–266.

[Kob67] S. Kobayashi, On conjugate and cut loci, in Studies in Global Geometry and Analy-
sis, S. S. Chern, ed., Mathematical Association of America, Providence, RI, 1967,
pp. 96–122.

[Mou85] D. Mount, On Finding Shortest Paths on Convex Polyhedra, Technical Report 1495,

STAR UNFOLDING OF A POLYTOPE 1713

Dept. of Comput. Sci., Univ. of Maryland, 1985.
[Mit93] J. S. B. Mitchell, Shortest paths among obstacles in the plane, in Proc. 9th Annual

ACM Sympos. Comput. Geom., ACM, New York, 1993, pp. 308–317.
[MMP87] J. Mitchell, D. Mount, and C. Papadimitriou, The discrete geodesic problem, SIAM

J. Comput., 16 (1987), pp. 647–668.
[Mou90] D. M. Mount, The number of shortest paths on the surface of a polyhedron, SIAM J.

Comput., 19 (1990), pp. 593–611.
[MS93] J. Matoušek and O. Schwarzkopf, Ray shooting in convex polytopes, Discrete Com-

put. Geom., 10 (1993), pp. 215–232.
[OS89] J. O’Rourke and C. Schevon, Computing the geodesic diameter of a 3-polytope, in

Proc. 5th Annual ACM Sympos. Comput. Geom., ACM, New York, 1989, pp. 370–
379.

[Pap85] C. Papadimitriou, An algorithm for shortest paths motion in three dimensions, Inform.
Process. Lett., 20 (1985), pp. 259–263.

[Ras90] R. Rasch, Shortest Paths Along a Convex Polyhedron, Diploma thesis, Univ. of Saar-
land, Saarbrücken, Germany, 1990.

[RS89] J. Reif and J. Storer, Shortest paths in Euclidean space with polyhedral obstacles, J.
Assoc. Comput. Mach., 41 (1994), pp. 1013–1019.

[Sch89] C. Schevon, Algorithms for Geodesics on Polytopes, Ph.D. thesis, Johns Hopkins Univ.,
Baltimore, MD, 1989.

[Sei81] R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions,
Technical Report 81/14, Dept. Comput. Sci., Univ. of British Columbia, Vancouver,
1981.

[Sha87] M. Sharir, On shortest paths amidst convex polyhedra, SIAM J. Comput., 16 (1987),
pp. 561–572.

[SO88] C. Schevon and J. O’Rourke, The number of maximal edge sequences on a convex
polytope, in Proc. 26th Allerton Conf. Commun. Control Comput., Univ. Illinois at
Urbana-Champaign, IL, 1988, pp. 49–57.

[SO89] C. Schevon and J. O’Rourke, An Algorithm for Finding Edge Sequences on a Poly-
tope, Technical Report JHU-89/03, Dept. Comput. Sci., Johns Hopkins Univ., Bal-
timore, MD, 1989.

[SS86] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput.,
15 (1986), pp. 193–215.

[ST86] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees,
Commun. Assoc. Comput. Mach., 29 (1986), pp. 609-679.

[SA95] M. Sharir and P. K. Agarwal, Davenport–Schinzel Sequences and Their Geometric
Applications, Cambridge University Press, New York, 1995.

[Wel85] E. Welzl, Constructing the visibility graph for n line segments in O(n2) time, Inform.
Process. Lett., 20 (1985), pp. 167–171.

COMPUTING ENVELOPES IN FOUR DIMENSIONS WITH
APPLICATIONS∗

PANKAJ K. AGARWAL† , BORIS ARONOV‡ , AND MICHA SHARIR§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1714–1732, December 1997 008

Abstract. Let F be a collection of n d-variate, possibly partially defined, functions, all algebraic
of some constant maximum degree. We present a randomized algorithm that computes the vertices,
edges, and 2-faces of the lower envelope (i.e., pointwise minimum) of F in expected time O(nd+ε) for
any ε > 0. For d = 3, by combining this algorithm with the point-location technique of Preparata and
Tamassia, we can compute, in randomized expected time O(n3+ε), for any ε > 0, a data structure
of size O(n3+ε) that, for any query point q, can determine in O(log2 n) time the function(s) of F
that attain the lower envelope at q. As a consequence, we obtain improved algorithmic solutions
to several problems in computational geometry, including (a) computing the width of a point set
in 3-space, (b) computing the “biggest stick” in a simple polygon in the plane, and (c) computing
the smallest-width annulus covering a planar point set. The solutions to these problems run in
randomized expected time O(n17/11+ε), for any ε > 0, improving previous solutions that run in
time O(n8/5+ε). We also present data structures for (i) performing nearest-neighbor and related
queries for fairly general collections of objects in 3-space and for collections of moving objects in the
plane and (ii) performing ray-shooting and related queries among n spheres or more general objects
in 3-space. Both of these data structures require O(n3+ε) storage and preprocessing time, for any
ε > 0, and support polylogarithmic-time queries. These structures improve previous solutions to
these problems.

Key words. lower envelopes, point location, ray shooting, closest pair

AMS subject classifications. 68Q20, 68Q25, 68R05, 68U05

PII. S0097539794265724

1. Introduction. Let F = {f1, . . . , fn} be a collection of n d-variate, possibly
partially defined, functions, all algebraic of some constant maximum degree b (and
if they are partially defined, their domains of definition are also described each by
a constant number of polynomial equalities and inequalities of maximum degree b).
Abusing the notation slightly, we will not distinguish between a function and its graph.
The lower envelope EF of F is defined as

EF (x) = min
i
fi(x) ,

where the minimum is taken over all functions of F that are defined at x. The
minimization diagram MF of F is the decomposition of R

d into maximal connected
regions (of any dimension), called cells (or faces), so that within each cell the same
subset of functions appears on the envelope EF . There is a natural subdivision of

∗ Received by the editors April 6, 1994; accepted for publication (in revised form) November
27, 1995. Work on this paper by the first author was supported by NSF grant CCR-93–01259
and by an NYI award. Work on this paper by the second author was supported by NSF grant
CCR-92-11541. Work by the third author was supported by NSF grant CCR-91-22103, by a Max
Planck Research Award, and by grants from the U.S.–Israeli Binational Science Foundation, the
German–Israeli Foundation for Scientific Research and Development, and the Fund for Basic Research
administered by the Israeli Academy of Sciences.

http://www.siam.org/journals/sicomp/26-6/26572.html
† Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

(pankaj@euclid.cs.duke.edu).
‡ Department of Computer and Information Science, Polytechnic University, Brooklyn, NY 11201-

3840 (aronov@ziggy.poly.edu).
§ School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (sharir@

math.tau.ac.il) and Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012.

1714

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1715

EF into cells, as well, where a cell of the lower envelope is defined as the portion
EF that projects onto cell of MF . As the correspondence is 1-1, we will abuse the
terminology and not make a distinction between the two kinds of cells. (A more
detailed definition, treating also the case of partially defined functions, is given in
[Sha].) The combinatorial complexity of MF and of EF is the number of faces of all
dimensions in MF and EF .

Recently, there has been a significant progress in the analysis of the combinatorial
complexity of lower envelopes of multivariate functions [HS, Sha]. In particular, it was
shown in [Sha] that the maximum complexity of MF is O(nd+ε), for any ε > 0, where
the constant of proportionality depends on ε, d, and b. This result almost settles
a major open problem and has already led to many applications [ASa, HS, Sha].
However, less progress has been made on the corresponding algorithmic problem,
which calls for the efficient construction of the lower envelope of such a collection F ,
in time O(nd+ε), for any ε > 0. The ideal output of an algorithm that computes
the envelope is a data structure of size O(nd+ε), which can return, for a given point
x ∈ R

d, the identity of the function(s) attaining the envelope at x in logarithmic (or
polylogarithmic) time. Weaker solutions might provide just an enumeration of the
cells of MF and adjacency structure representing all pairs of cells that touch each
other.

Sharir [Sha] presented an algorithm for computing the lower envelope of bivariate
functions having the properties listed above, which runs in time O(n2+ε), for any
ε > 0. Other algorithms with a similar performance are given in [BD, dBDS]. The
simplest solution to this problem, involving a deterministic divide-and-conquer algo-
rithm, was recently presented in [ASS]. All these algorithms facilitate point-location
queries of the sort described above. Unfortunately, these methods fail in higher di-
mensions. For example, the technique of [Sha] relies on the existence of a vertical
decomposition of the minimization diagram MR of a sample R of r functions of F ,
into a small number (that is, O(rd+ε)) of cells of constant description complexity.
Such decompositions exist (and are easy to compute) for d = 2, but their existence in
higher dimensions is still an open problem.

In this paper we present a randomized algorithm with O(nd+ε) expected time,
for any ε > 0, for computing the vertices, edges, and 2-dimensional faces of the lower
envelope of n d-variate functions having the properties assumed above. We can use
this algorithm to compute the entire lower envelope of a collection F of n trivariate
functions, which has all the desired characteristics; in particular, it preprocesses F ,
in expected time O(n3+ε), into a data structure of size O(n3+ε) that, for a query
point q, can compute EF (q), and also the function(s) attaining the envelope at q, in
O(log2 n) time. The algorithm bypasses the problem of having to construct small-size
vertical decomposition by applying the technique of Preparata and Tamassia [PT] for
point location in certain types of 3-dimensional subdivisions. This allows us to use a
coarser decomposition of the minimization diagram, whose size is close to cubic.

Several recent papers [AST, CEGSb, MS] have studied a variety of geometric
problems whose solution calls for the construction of, and searching in, lower or upper
envelopes in 4-space. These applications fall into two main categories: preprocess-for-
queries problems, which call for the construction of such an envelope, to be queried
repeatedly later; and batched problems, where all the queries are known in advance
and the goal is to produce the answers to all of them efficiently. We will present some
of these applications, as listed in the abstract, where our new algorithm for computing
lower envelopes in four dimensions leads to improved solutions.

1716 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

The paper is organized as follows. In section 2 we present a general efficient
randomized technique, which we believe to be of independent interest, for computing
all the 0, 1, and 2-dimensional features of lower envelopes in any dimension. Then, in
section 3, we apply this algorithm to the case of trivariate functions. This gives us an
initial representation of the lower envelope of such a collection, which we then augment
by additional features, resulting in a representation suitable for the application of the
Preparata–Tamassia technique. In sections 4 and 5 we present applications of our
result to a variety of problems in computational geometry, as listed in the abstract.

After the original submission of this paper, Agarwal and Sharir [ASb] observed
that, for some of the problems that are solved here, the size of the vertical decompo-
sition of the relevant minimization diagrams is small. This leads to slightly improved
solutions to these problems. See also the remark at the end of section 5.1.

2. Lower envelopes in arbitrary dimension. In this section, we present a
randomized technique for computing a partial description of lower envelopes of d-
variate functions, for d ≥ 2, whose expected running time is O(nd+ε), for any ε > 0.
This technique only computes the vertices, edges, and 2-faces of the envelope, which
is sufficient for the full construction of envelopes in 4-space, as will be explained in
section 3.

Let F = {f1, . . . , fn} be a collection of (partial) d-variate functions in R
d+1,

satisfying the conditions described in the introduction. We assume that the functions
of F are in general position; see [Sha] for more details and for a discussion of this
assumption. To compute the lower envelope EF of F , in the above partial sense, we
proceed as follows. Let Σ be the family of all (d − 1)-subsets of F . We fix a subset
σ = {f1, . . . , fd−1} ∈ Σ, and let

Πσ = {x ∈ R
d | f1(x) = · · · = fd−1(x)} .

Since the fi’s are assumed to be in general position, Πσ is a 2-dimensional surface
(or a surface patch). For the sake of simplicity, we assume that Πσ is connected and
x1x2-monotone (i.e., any (d − 2)-flat orthogonal to the x1x2-plane meets Πσ in at
most one point); otherwise, we decompose it into a constant number of connected
portions so that each portion is an x1x2-monotone surface patch, and work with each
patch separately. For each i ≥ d, let

γi = {x ∈ Πσ | fi(x) = f1(x) = · · · = fd−1(x)} ;

γi is a 1-dimensional curve, which partitions Πσ into two (not necessarily connected)
regions, K+

i and K−
i , where

K+
i = {x ∈ Πσ | fi(x) > f1(x) = · · · = fd−1(x)} ,

K−
i = {x ∈ Πσ | fi(x) < f1(x) = · · · = fd−1(x)} .

Then the intersection Qσ =
⋂

i≥dK
+
i is the portion of Πσ over which the envelope EF

is attained by the functions of σ. The algorithm will compute the regions Qσ, over all
choices of (d−1)-tuples σ of functions, thereby yielding the vertices, edges, and 2-faces
of MF (because of the general position assumption, any such feature must show up
as a feature of at least one of the regions Qσ). The algorithm actually computes the
vertices, edges, and 2-faces of a refinement of MF , but the faces of MF of dimension
at most 2 can be retrieved from them in a straightforward manner. We omit the easy
details.

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1717

We compute Qσ using a randomized incremental approach, similar to the ones
described in [CEGSS, dBDS, Mua, Mub, SA]. Since the basic idea is by now fairly
standard, we give only a brief overview of the algorithm and refer the reader to
[CEGSS, SA] for details. We first compute the set Γσ = {γi | d ≤ i ≤ n}.1 Next, we
add the curves γi one by one in a random order and maintain the intersection of the
regions K+

i for the curves added so far. Let (γd, γd+1, . . . , γn) be the (random) inser-
tion sequence, and let Qσ

i denote the intersection of K+
d , . . . ,K

+
i . We construct and

maintain the “vertical decomposition” Q̃σ
i of Qσ

i . This is defined as the partitioning of
each 2-face φ of Qσ

i into “pseudotrapezoids,” obtained by drawing, from each vertex
of φ and from each locally x1-extreme point on ∂φ, a curve within φ obtained by
intersecting φ with the hyperplane x1 = const, and by extending it (in both directions
if necessary) until it meets ∂φ again. Each pseudotrapezoid is defined by at most four
curves of Γσ; conversely, any four or fewer curves of Γσ define a constant number of
pseudotrapezoidal cells, namely, those formed along Πσ when only these curves are
inserted. (Note that this construction is well defined since Πσ is an x1x2-monotone
surface.) In the (i + 1)st step we add K+

i+1 and compute Q̃σ
i+1 from Q̃σ

i , using the
technique described in [CEGSS].

The analysis of the expected running time of the algorithm proceeds along the
same lines as described in [CEGSS, SA]. We define the weight , w(τ), of a pseudotrape-
zoid τ , defined by the arcs of Γσ, to be the number of functions fi, for i = d, d+1, . . . , n,
excluding the up to four functions whose intersections with Πσ define τ , such that
fi(x) < f1(x) = · · · = fd−1(x) for some point x ∈ τ .

As shown in [CEGSS], the cost of the above procedure is proportional to the
number of pseudotrapezoids that are created during the execution of the algorithm,
plus the sum of their weights, plus an overhead term of O(nd) needed to prepare the
collections of curves γi over all 2-dimensional intersection manifolds Πσ. The analysis
given below deals only with pseudotrapezoids that are defined by exactly four such
functions (plus the d− 1 functions defining Πσ), and easy and obvious modifications
are necessary to handle all other pseudotrapezoids.

Let T σ denote the set of pseudotrapezoids (or “cells” for brevity) defined by four
arcs of Γσ, and let T =

⋃
σ∈Σ T

σ. Each cell in T is defined by d − 1 + 4 = d + 3
functions of F . In what follows we implicitly assume that the specification of a cell
τ ∈ T includes the d+3 functions defining τ , where there is a clear distinction between
the first d− 1 functions (constituting the set σ) and the last four functions (defining
the four curves that generate τ along Πσ). For an integer k ≥ 0 and a subset R ⊆ F ,
let Tk(R) ⊆ T (resp., T≤k(R) ⊆ T) denote the set of cells, defined by d+ 3 functions
of R, as above, with weight k (resp., at most k). Let Nk(R) = |Tk(R)| and

Nk(r) = max
R

Nk(R) ,

where the maximum is taken over all subsets R of F of size r. Similarly, we define
N≤k(R) and N≤k(r). Since each cell of T0(R) lies on the lower envelope of R, it
follows that N0(r) = O(rd+ε). Adapting the analysis technique of Clarkson and Shor
[ClS], we have the following lemma.

1 We need to assume an appropriate model of computation, in which any of the various primitive
operations required by the algorithm can be performed in constant time. For example, we can assume
the model used in real computational algebraic geometry [HRR], where each algebraic operation
involving a constant number of polynomials of constant maximum degree can be performed exactly,
using rational arithmetic in constant time.

1718 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

Lemma 2.1. The probability that a pseudotrapezoidal cell τ ∈ Tk(F) is created
during the incremental construction of Qσ, where σ ∈ Σ is the tuple for which Πσ

contains τ , is 1/
(
k+4
4

)
.

Proof. For τ to be created, it is necessary and sufficient that the four curves of Γσ

defining τ appear in the random insertion order before any of the curves corresponding
to the k functions that contribute to the weight of τ , and this probability is easily
seen to be 1/

(
k+4
4

)
.

Lemma 2.2. For any 0 ≤ k ≤ n− d− 3 and for any ε > 0,

N≤k(n) = O((k + 1)3−εnd+ε) .

Proof. We use a variant of the probabilistic analysis technique of Clarkson and
Shor [ClS]. If we choose a random sample R ⊆ Γ of r = bn/(k + 1)c functions of F ,
then a cell τ ∈ Tk(Γ) is in T0(R) if all d + 3 functions, f1, . . . , fd+3, defining τ are
chosen in R, and none of the remaining k functions fi, such that fi(x) ≤ f1(x) for
some x ∈ τ , are chosen in R. The Clarkson–Shor technique implies that

N≤k(n) = O((k + 1)d+3N0(bn/(k + 1)c))
= O((k + 1)d+3(n/(k + 1))d+ε)

= O((k + 1)3−εnd+ε) ,

for any ε > 0.
For a cell τ ∈ T , let Aτ be the event that τ ∈ Q̃σ

i , for the tuple σ ∈ Σ for which
T σ contains τ , and for some d ≤ i ≤ n. The expected running time of the algorithm,
over all choices of (d− 1)-tuples of functions, is thus proportional to

∑
τ∈T

[
(w(τ) + 1) · Pr[Aτ]

]
+O(nd) =

∑
k≥0

∑
τ∈Tk(F)

[
(k + 1) · Pr[Aτ]

]
+O(nd)

=

n−d−3∑
k=0

(k + 1)Nk(F)(
k+4
4

) +O(nd) ,

where the last inequality follows from Lemma 2.1. Since

Nk(F) = N≤k(F)−N≤(k−1)(F) ,

we obtain, using Lemma 2.2,

n−d−3∑
k=0

(k + 1)Nk(F)(
k+4
4

)

= N0(F) + 24
n−d−3∑
k=1

N≤k(F)−N≤(k−1)(F)

(k + 4)(k + 3)(k + 2)

= O(nd+ε) + 24
n−d−4∑
k=1

N≤k(n)

[
1

(k + 4)(k + 3)(k + 2)
− 1

(k + 5)(k + 4)(k + 3)

]

+
24N≤n−d−3(n)

(n− d+ 1)(n− d)(n− d− 1)

= O

(
nd+ε +

n−d−4∑
k=1

k3−εnd+ε

(k + 5)(k + 4)(k + 3)(k + 2)

)
(using Lemma 2.2)

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1719

= O

(
nd+ε ·

n−d−4∑
k=1

1

k1+ε

)
= O(nd+ε) .

We thus obtain the following result.
Theorem 2.3. The vertices, edges, and 2-faces of the lower envelope of n (par-

tial) d-variate functions, satisfying the conditions stated in the introduction, can be
computed in randomized expected time O(nd+ε), for any ε > 0.

Remark. The preceding analysis shows that, for d ≥ 2, the expected running
time of our algorithm is in fact O(nd +

∑n
k=1 k

d−1ϕ(bn/kc)), where ϕ(r) is an upper
bound on the complexity of the lower envelope of any subset of S of size at most r.
For example, the vertices, edges, and 2-faces of the lower envelope of n simplices in
R
d+1 can be computed in O(ndα(n) logn) expected time, because the complexity of

the lower envelope of n d-simplices is O(ndα(n)) [PS].

3. Envelopes in four dimensions. We next apply the results of the preced-
ing section to obtain an efficient algorithm for constructing the lower envelope of a
collection F of n trivariate functions, satisfying the assumptions made above in the
following strong sense: One can preprocess F in randomized expected time O(n3+ε),
for any ε > 0, into a data structure of size O(n3+ε) that supports queries of the form:
given a point w ∈ R

3, compute the function(s) attaining EF at w; each query can be
answered in O(log2 n) time.

To achieve this we first apply the algorithm summarized in Theorem 2.3 to com-
pute the vertices, edges, and 2-faces of the minimization diagram MF of F . We next
partition each cell of MF into “monotone” subcells, in the sense of Lemma 3.1, to
obtain a refinement M ′

F of MF . This refinement satisfies the requirements of the
point-location method due to Preparata and Tamassia [PT], which we use to produce
the data structure representing the lower envelope in the above manner.

We define and construct M ′
F as follows. We mark, along each 2-face F of MF ,

the locus γF of all points of F which are either singular or have a vertical tangency
(in the z-direction). The arcs γF , for all 2-faces F , lie along O(n2) curves in R

3, each
being the xyz-projection of (i) the locus of all singular points or points with z-vertical
tangency along some 2-manifold fi = fj , for a pair of indices i 6= j, or (ii) of points
along the boundary of some fi. We consider below only the former case; the latter
case can be handled in almost the same (and, actually, simpler) manner. Let δ be
one of these curves. We consider the 2-dimensional surface Vδ, within the xyz-space,
obtained as the union of all lines passing through points of δ and parallel to the z-axis;
let V +

δ , V −δ denote the portions of Vδ that lie, respectively, above and below δ. (Since
δ is not necessarily an xy-monotone arc, Vδ may have self-intersections along some
vertical lines, along which V +

δ and V −δ are not well defined; we omit here details of
the (rather easy) handling of such cases.)

Let δ0 be the portion of δ over which the functions fi and fj attain the envelope
EF . Clearly, δ0 is the union of all arcs γF that are contained in δ, and the number of
connected components in δ0, summed over all intersection curves δ, is O(n3+ε). Let w
be a point in δ0. Then the cell c of MF lying immediately above w in the z-direction
is such that within c the envelope EF is attained by either fi or fj . Thus the upward-
directed z-vertical ray emanating from w leaves c (if at all) at a point above w that lies
on the xyz-projection of a 2-manifold of the form fi = fk or fj = fk. (In addition, it is
also possible that the ray will encounter a point on the projection of the boundary of
the domain of fi or fj—this can be handled by similar, but easier, means.) For fixed
i and j, there are only O(n) possible 2-manifolds of this kind (i.e., xyz-projections

1720 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

of surfaces of the form fi = fk or fj = fk). We compute the lower envelope E(δ)

of these O(n) 2-manifolds, restricted to V +
δ . It is easily seen that the complexity of

E(δ) is O(λq(n)), for some constant q depending on the maximum degree of these
2-manifolds; λq(n) is the maximum length of Davenport–Schinzel sequences of order
q that are composed of n symbols and is close to linear in n for any fixed q [ASS, SA].
We next take the portions of the graph of E(δ) that lie over δ0 and “etch” them along
the corresponding 2-faces of MF . We apply a fully symmetric procedure within V −δ
and repeat these steps for all curves δ. The overall combinatorial complexity of all
the added curves is thus O(n2λq(n) + n3+ε) = O(n3+ε), for any ε > 0, and they can
be computed in O(n3+ε) time, as is easily verified.

Let M ′
F denote the refined cell decomposition of R

3, obtained by adding to MF ,
for each of the curves δ, the arcs γF , the etched arcs of the upper and lower envelopes
in the vertical manifolds Vδ, and the z-vertical walls (i.e., union of all z-vertical
segments) contained in Vδ and connecting the arcs γF to the etched arcs. If an edge
of M ′

F is not monotone in the y-direction, we split it into O(1) edges by adding a
vertex at every local y-extremal point on this edge. As just argued, the combinatorial
complexity of M ′

F is still O(n3+ε), and M ′
F has the following crucial property.

Lemma 3.1. For each 3-cell c of M ′
F , every connected component of a cross

section of c by a plane parallel to the xz-plane is x-monotone.

Proof. Suppose the contrary, and let π be a plane parallel to the xz-plane, for
which there exists a connected component c′ of c ∩ π that is not x-monotone. Then
there is a point w ∈ ∂c′ so that the z-vertical line passing through w meets c′ both
slightly above and slightly below w. But then w is either a singular point or a point
with z-vertical tangency lying on one of the curves γF . By construction, M ′

F must
contain the vertical segment passing through w and contained in c, as part of some
vertical wall, a contradiction. This completes the proof of the lemma.

Let M ′
F (y0) denote the cross section of M ′

F by the plane y = y0. Lemma 3.1
implies that M ′

F (y0) is an x-monotone planar subdivision, for each y0. Hence, if we
orient the edges of M ′

F in the positive x-direction, add a pair of nominal points s, t at
x = −∞ and x = +∞, respectively, and connect them to the appropriate unbounded
edges of M ′

F (y0), this map becomes a planar st-graph, in the notation of Preparata
and Tamassia [PT]. (Note that the vertical decomposition that generates M ′

F from
MF may create z-vertical edges; if these edges are oriented consistently, say in the
upward z-direction, then M ′

F remains an st-graph.) We denote this st-graph also by
M ′
F (y0).

Lemma 3.2. Let I be an open interval of the y-axis that does not contain the
y-coordinate of any vertex of M ′

F . Then, for each y1, y2 ∈ I, M ′
F (y1), M

′
F (y2) are

isomorphic, as labeled embedded planar st-graphs.

Proof. We call a y-coordinate critical if it is the y-coordinate of a vertex of M ′
F .

Since each vertex of M ′
F (·) is an intersection of the sweep plane with an edge of M ′

F
and since each edge of M ′

F is y-monotone, the set of vertices of M ′
F (y) can change

only at critical values of y. In other words, the set of vertices of the cross section
M ′
F (·) does not change combinatorially between any two consecutive critical values.

Let (u1, v1) be a nonvertical directed edge of M ′
F (y1), and let u2, v2 be the vertices of

M ′
F (y2) corresponding, respectively, to u1 and v1 (i.e., the intersections of the sweep

plane with the same edges of M ′
F). Suppose to the contrary that (u2, v2) is not an

edge of M ′
F (y2). There are several ways in which the edge (u1, v1) can disappear

during the sweep:

(i) it might cease to be x-monotone (with a vertical inflection point, or another

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1721

singular point, appearing in its middle),
(ii) some vertical edge might appear and split it in two,
(iii) its two vertices might approach each other and merge into a common vertex,

or
(iv) either of the vertices might split into two vertices.

However, as is easily verified, the y-coordinate of any of these events must be one of
the critical values of y, contrary to assumption that the interval I does not contain
the y-coordinate of any vertex of M ′

F . A similar argument handles the case where
(u1, v1) is a vertical edge of M ′

F (y1): such an edge is erected if one of these vertices,
say u1, has a z-vertical tangency, or is otherwise singular along one of the surfaces
of MF . As we sweep from y1 to y2, this vertical edge might disappear if any of the
following events occurs:

(i) the point corresponding to u1 changes its singular status (for simplicity of
exposition, the term “singular” refers here both to singular points and to
points with z-vertical tangency);

(ii) the point corresponding to u1 splits into two vertices or merges with another
vertex of the cross section;

(iii) the point corresponding to v1 splits into two vertices or merges with another
vertex;

(iv) the point corresponding to v1 becomes singular on its surface; or
(v) another singular point appears on the vertical segment u1v1.

Again, for any of these events, its y-coordinate must be critical, contrary to assump-
tion. This completes the proof of the lemma.

We are now in a position to apply the point-location technique of Preparata
and Tamassia [PT]. They show that a 3-dimensional subdivision of combinatorial
complexity N can be preprocessed in time O(N log2N) into a data structure of size
O(N log2N), which supports O(log2N)-time point-location queries in the given sub-
division. However, for this to hold, the subdivision must have the following two
properties:

(a) the 1-skeleton of each cross section of the subdivision by a plane parallel to
the xz-plane is a planar st-graph, whose faces are all monotone in the x-
direction and whose edges are all oriented in the positive x-direction (or, for
vertical edges, in the positive z-direction).

(b) At each point where the cross section, as an st-graph, changes, the graph can
be updated by a constant number of operations from the following collection:

(b.1) insertion of a vertex in the middle of an edge, or the complementary
operation of deleting a vertex of in-degree and out-degree 1 and replacing
the two incident edges by one, while maintaining x-monotonicity of the
incident faces;

(b.2) insertion of an edge partitioning an x-monotone face into two x-monotone
subfaces, or, conversely, deletion of an edge and merging its two adjacent
faces, provided their union is x-monotone;

(b.3) merging two adjacent vertices into one vertex (collapsing the edge con-
necting them) or splitting a vertex into two vertices (forming a new edge
between these vertices), again maintaining x-monotonicity.

It is easily verified that, indeed, each change occurring in the structure of the cross
section M ′

F (·), at any of the critical y values in Lemma 3.2, can be expressed as a
constant number of operations of the types mentioned above. In summary, we thus
obtain the following main result of the paper.

1722 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

Theorem 3.3. Let F be a given collection of n trivariate, possibly partially
defined, functions, all algebraic of constant maximum degree, and whose domains
of definition (if they are partially defined) are each defined by a constant number of
algebraic equalities and inequalities of constant maximum degree. Then, for any ε > 0,
the lower envelope EF of F can be computed in randomized expected time O(n3+ε),
and stored in a data structure of size O(n3+ε), so that, given any query point w ∈ R

3,
we can compute EF (w), as well as the function(s) attaining EF at w, in O(log2 n)
time.

4. Applications: Query problems. In this section we apply Theorem 3.3 to
two problems involving preprocessing and querying certain collections of objects in
3-space.

4.1. Ray shooting amidst spheres. Given a collection S of n spheres in 3-
space, we wish to preprocess S into a data structure that supports ray-shooting queries,
each seeking the first sphere, if any, met by a query ray. This problem has recently
been studied in [AMb, AGPS, MS]. The first two papers present a data structure that
requires O(n4+ε) storage and preprocessing, for any ε > 0, and answers a query in
time O(log2 n). The third paper [MS] gives a rather elaborate and improved solution
that requires O(n3+ε) preprocessing and storage, for any ε > 0, and answers a query
in O(nε) time.

These algorithms use the technique described in [AMa] and reduce the problem to
that of determining whether a query segment e intersects any sphere of S. Then, using
a multilevel data structure, they reduce the problem to that of detecting whether the
line λ containing the segment e intersects any sphere of S. As observed in [AGPS, MS],
this problem can be further reduced to point location in the upper envelope of a set
of certain trivariate functions, as follows. Let π be the plane passing through λ and
orthogonal to the vertical plane V passing through λ. Let π+ (resp., π−) be the
half-space lying above (resp., below) π. Let S be a sphere whose center lies in π+ and
that intersects V in a disc D. Then the center of D lies above λ, so either λ intersects
S or passes below S, in the sense that λ and S are disjoint and there is a point on λ
that lies vertically below a point in S (see Figure 1). A similar property holds if S
intersects V and its center lies in π−. We preprocess the centers of spheres of S into
a half-space range-searching data structure of size O(n3+ε). Then, for a query λ, we
can decompose S into O(1) canonical subsets, so that, within each subset, either the
centers of all spheres lie in π+ or they all lie in π−. Let us consider the case when the
centers of all spheres lie in π+.

Hence, we need to solve the following subproblem: Given a set S of n spheres
in 3-space, and given a query line λ with the property that for each sphere S ∈ S,
either λ intersects S or there is no point of S lying vertically below λ, determine
whether λ intersects any sphere of S. We reduce this problem to point location in
the lower envelope of certain trivariate functions as follows. We can parametrize a
line λ in 3-space by four parameters (ξ1, ξ2, ξ3, ξ4), so that the equations defining λ
are y = xξ1 + ξ2, z = xξ3 + ξ4. (We assume here that λ is not parallel to the yz-
plane; such lines can be handled in a different, and much simpler manner.) For each
sphere S ∈ S, define a function ξ4 = FS(ξ1, ξ2, ξ3), so that the line λ(ξ1, ξ2, ξ3, ξ4) is
tangent to S from below (FS is only partially defined, and we put FS = +∞ when
it is undefined; it is easily checked that FS is algebraic of bounded degree and that
its boundary is also algebraic of bounded degree). Let Φ be the lower envelope of the
functions FS , for S ∈ S. Then a query line λ(ξ1, ξ2, ξ3, ξ4) having the above properties
misses all spheres of S if and only if ξ4 < Φ(ξ1, ξ2, ξ3). Thus, by Theorem 3.3,

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1723

x
y

z
V

π

S

λ

x
y

z
V

π

S

λ

Fig. 1. In the reduced subproblem, λ either intersects S or passes below it.

one can answer such queries in time O(log2 n), using O(n3+ε) preprocessing time
and storage, for any ε > 0. Plugging the half-space range-searching data structure
and the point-location data structure into the multilevel data structure described in
[AGPS, MS], we obtain a data structure for the segment-emptiness problem. A closer
analysis of this data structure shows that the preprocessing time and storage of the
overall data structure is still O(n3+ε), for any ε > 0, and that the query time is
O(log2 n). Finally, plugging this data structure for segment-emptiness queries into
the general ray-shooting technique of Agarwal and Matoušek [AMa], we obtain a
final data structure, still requiring near-cubic storage and preprocessing, using which
one can answer a ray-shooting query in time O(log4 n). That is, we have shown the
following.

Theorem 4.1. A set S of n spheres in R
3 can be preprocessed in randomized

expected time O(n3+ε) into a data structure of size O(n3+ε), for any ε > 0, so that a
ray-shooting query can be answered in time O(log4 n).

4.2. Nearest-neighbor queries. Let S = {s1, . . . , sn} be a collection of n ob-
jects (“sites”) in 3-space, each having constant description complexity, namely, each
defined by a constant number of algebraic equalities and inequalities of constant max-

1724 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

imum degree. We wish to compute the Voronoi diagram Vor(S) of S and preprocess
it for efficient point-location queries. That is, each query specifies a point w in 3-space
and seeks the site of S nearest to w (say, under the Euclidean distance). This is a
generalization to 3-space of the classical post-office problem.

As observed in [ES], the problem is equivalent to the computation of the following
lower envelope in 4-space. For each s ∈ S, define Fs(x, y, z) to be the Euclidean
distance from (x, y, z) to s, and let Φ be the lower envelope of these functions. Then,
given a query point (x, y, z), the site(s) s ∈ S nearest to w are those for which Fs
attains Φ at (x, y, z). Thus, by Theorem 3.3, S can be preprocessed in O(n3+ε)
time, for any ε > 0, into a data structure of size O(n3+ε), so that each query can
be answered in O(log2 n) time. (Note that Theorem 3.3 is indeed applicable here,
because the functions Fs are all (piecewise) algebraic of constant maximum degree,
as is easy to verify from the conditions assumed above.) Hence, we can conclude the
following.

Theorem 4.2. A set S of n objects in R
3, as described above, can be preprocessed

in randomized expected time O(n3+ε) into a data structure of size O(n3+ε), for any
ε > 0, so that a nearest-neighbor query can be answered in time O(log2 n).

This is a fairly general framework and admits numerous generalizations, e.g., we
may replace the Euclidean distance by other distances, perform queries with objects
other than points (as long as the location of a query object can be specified by only
three real parameters; this is the case, e.g., if the query objects are translates of some
rigid convex object), etc. Of course, any such generalization requires that the metric
or the query objects also have constant description complexity, in the above sense. An
interesting generalization is to dynamic nearest-neighbor queries in the plane, where
each object of S moves along some given trajectory and each query (x, y, t) asks for
the object of S nearest to the point (x, y) at time t. Using the same approach as
above, this can be done, under appropriate assumptions on the shape and motion of
the objects of S, with O(n3+ε) preprocessing time and storage, for any ε > 0 and
O(log2 n) query time.

Remarks. (i) In Theorem 4.2 we do not assume that the objects are pairwise
disjoint. In this case one cannot hope to do much better, because the complexity of
the Voronoi diagram of a set of intersecting objects in R

3 is easily seen to be cubic in
the worst case. For example, consider the Voronoi diagram of a set of planes in R

3.

(ii) There is a prevailing conjecture that the complexity of generalized Voronoi
diagrams of a set of pairwise disjoint convex objects in R

3, and of dynamic Voronoi
diagrams in the plane, is only near-quadratic, under reasonable assumptions concern-
ing the distance function and the shape of the sites (and of their motions in the
dynamic sense). This was indeed proved recently in [CKSW] for the case where the
sites are lines in R

3 and the distance function is induced by a convex polyhedron, and
in [BSTY] for point sets under the L1 or L∞ metric. If this conjecture is established,
then the above algorithm, of near-cubic cost, is far from being optimal for pairwise
disjoint objects and will need to be improved considerably.

5. Applications: Batched problems. We next consider batched applications.
These applications solve a variety of rather unrelated problems, but they all involve
an almost identical subproblem, in which lower (or upper) envelopes in 4-space play
a role. To avoid repetition, we describe in detail only one application and then state
the improved bounds for the other applications without proof, referring the reader to
the relevant literature.

The following applications are based on the parametric-search technique of Megiddo

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1725

[Me], which, in our case, requires a parallel algorithm for computing the lower envelope
of a set of surfaces. However, the algorithm presented above is highly unparalleliz-
able, because it uses an incremental insertion procedure of regions into 2-dimensional
arrangements and later uses a plane-sweep in 3-space. To finesse this difficulty, we
apply the parametric-search technique with an additional twist that avoids the need
for a parallel algorithm.

5.1. Width in 3-space. Let S be a set of n points in 3-space. The width of
S is the smallest distance between a pair of parallel planes so that the closed slab
between the planes contains S. In two dimensions, the problem can be easily solved
in O(n logn) time. An O(n2)-time algorithm for three dimensions was presented in
[HT]. Recently, Chazelle et al. [CEGSb] presented an O(n8/5+ε)-time algorithm for
any ε > 0. In this subsection, we present an improved randomized algorithm, whose
expected running time is O(n17/11+ε) = O(n1.546).

Clearly, it suffices to compute the width of the convex hull of S, so assume that
the points of S are in convex position and that the convex hull P of S is given. It is
known that any two planes defining the width of S are such that either one touches
a face of P and one touches a vertex of P, or each of them touches an edge of P;
see [CEGSb, HT]. The first case can be handled in O(n logn) time [CEGSb, HT].
The difficult case is to compute the smallest distance between a pair of parallel planes
supporting P at two “antipodal” edges because, in the worst case, there can be Θ(n2)
such pairs of edges. Chazelle et al. [CEGSb] presented an O(n8/5+ε)-time algorithm
to find the smallest distance, using the parametric-search technique. We will present
a randomized algorithm, whose expected running time is O(n17/11+ε), for any ε > 0,
using a somewhat different approach.

Let M denote the Gaussian diagram (or normal diagram) of P. M is a spherical
map on the unit sphere S

2 ⊂ R
3. The vertices of M are points on S

2, each being the
outward normal of a face of P, the edges of M are great circular arcs, each being the
locus of the outward normal directions of all planes supporting P at some fixed edge,
and the faces of M are regions, each being the locus of the outward normal directions
of all planes supporting P at a vertex. M can be computed in linear time from P.
Let M′ denote the spherical map M reflected through the origin, and consider the
superposition of M and M′. It suffices to consider the top parts of M and M′, i.e.,
their portions within the hemisphere z ≥ 0. Each intersection point between an edge
of M and an edge of M′ gives us a direction u for which there exist two parallel
planes orthogonal to u and supporting P at two so-called “antipodal” edges. Thus
the problem reduces to that of finding an intersection point for which the distance
between the corresponding parallel supporting planes is minimized.

We centrally project the edges of (the top portions of) M and M′ onto the plane
z = 1. Each edge projects to a line segment or a ray. Let E and E ′ be the resulting
sets of segments and rays in the plane. Using the algorithm described in [CEGSa],
we can decompose E × E ′, in time O(n log2 n), into a family of “canonical subsets”

F = {(E1, E ′1), (E2, E ′2), . . . , (Et, E ′t)} ,(1)

such that
(i) Ei ⊆ E and E ′i ⊆ E ′;
(ii)

∑t
i=1(|Ei|+ |E ′i |) = O(n log2 n);

(iii) each segment in Ei intersects every segment of E ′i ; and
(iv) for every pair (e, e′) of intersecting segments in E ×E ′, there is an i such that

e ∈ Ei and e′ ∈ E ′i .

1726 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

By property (iv), it suffices to consider each pair (Ei, E ′i) separately. Let Li (resp.,
L′i) denote the set of lines containing the edges of P corresponding to the edges of
Ei (resp., E ′i). By construction, all lines of Li lie above all lines of L′i. Property (iii)
implies that every pair of parallel planes π, π′, where π contains a line λ of Li and
π′ contains a line λ′ of L′i, are supporting planes of P. Hence, we want to compute
the smallest distance between two such planes. Since the distance between π and π′,
as above, is equal to the distance between λ and λ′, it follows that this problem is
equivalent to that of computing the closest pair of lines in Li×L′i. Hence, we need to
solve the following problem: Given a set L of m “red” lines and another set L′ of n
“blue” lines in R

3, such that all red lines lie above all blue lines, compute the closest
pair of lines in L × L′. For any pair of lines `, `′ ∈ R

3, let d(`, `′) be the Euclidean
distance between them, and let

d(L,L′) = min
`∈L, `′∈L′

d(`, `′) .

We first describe a simple randomized divide-and-conquer algorithm for comput-
ing δ∗ = d(L,L′), whose expected running time is O(n3+ε +m log2 n). If m = O(1),
we compute d(`, `′) for all pairs ` ∈ L, `′ ∈ L′ and choose the minimum distance.
Otherwise, the algorithm performs the following steps:

(i) Choose a random subset R1 ⊆ L of m/2 red lines; each subset of size m/2 is
chosen with equal probability.

(ii) Solve the problem recursively for (R1,L′). Let δ1 = d(R1,L′).
(iii) Compute the set R2 = {` ∈ L \R1 | d(`,L′) < δ1}.
(iv) Compute d(`, `′) for all pairs ` ∈ R2, `

′ ∈ L′, and output the minimum
distance (or output δ1 if R2 is empty).

For a line `′ ∈ L′, let R(`′) = {` ∈ L | d(`, `′) < δ1}, so that R2 =
⋃

`′∈L′ R(`′).

Using a standard probabilistic argument, we can show that the expected size of R(`′)

is O(1), for each `′ ∈ L′. Therefore the expected size of R2 is O(n). Consequently,
the expected running time of step (iv) is O(n2). The only nontrivial step in the above
algorithm is step (iii). We compute R2 as follows. We map each line ` ∈ L to a
point ψ(`) = (a1, a2, a3, a4) in R

4, where y = a1x + a2 is the equation of the xy-
projection of `, and z = a3u+a4 is the equation of ` in the vertical plane y = a1x+a2

(here u denotes the axis orthogonal to the z-axis). We can also map a line `′ to a
surface γ = γ(`′) in this parameter space, which is the locus of all points ψ(`) such
that d(`, `′) = δ1 and ` lies above `′. Our choice of parameters ensures that γ(`′) is
x1x2x3-monotone; i.e., any line parallel to the x4-axis intersects γ(`′) in at most one
point. For any point lying below γ(`′) the corresponding line ` either lies below `′ or
lies above `′ and d(`, `′) < δ1. For a point lying above γ(`′), the corresponding line `
lies above `′ and d(`, `′) > δ1. In view of the above discussion, γ(`′) is the graph of
a partial function x4 = f`′(x1, x2, x3). (The function f`′ is undefined only at points
(x1, x2, x3) that represent lines whose xy-projection is parallel to that of `′; the locus
of these points is a plane.) Let

F (x1, x2, x3) = max
`′∈L′

f`′(x1, x2, x3)

be the upper envelope of the set {f`′ | `′ ∈ L′}. For a line ` ∈ L with ψ(`) =
(a1, a2, a3, a4), we have a4 ≥ F (a1, a2, a3) if and only if d({`},L′) ≥ δ1. The problem
of computingR2 thus reduces to that of computing the set of points ψ(`), for ` ∈ L\R1,
that lie below the upper envelope F . By Theorem 3.3, this can be accomplished in

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1727

time O(n3+ε + m log2 n), for any ε > 0. The total time spent in steps (iii) and (iv)
is thus O(n3+ε +m log2 n). Let T (m,n) denote the maximum expected running time
of the algorithm. Then

T (m,n) =

O(n) ifm ≤ m0 ,

T
(m

2
, n
)

+O(n3+ε +m log2 n) ifm > m0 ,

where m0 is a constant. The solution to this recurrence is easily seen to be

T (m,n) = O(n3+ε logm+m log2 n).

Hence, we can conclude the following.
Lemma 5.1. Given a set L of m lines and another set L′ of n lines in R

3, such
that all lines in L lie above all lines of L′, the closest pair of lines in L × L′ can be
computed in time O(n3+ε logm+m log2 n) for any ε > 0.

Next, we describe another algorithm for computing δ∗ = d(L,L′), which uses the
above procedure as a subroutine. We first describe an algorithm for the “fixed-size”
problem that, given a parameter δ, determines whether δ∗ < δ, δ∗ = δ, or δ∗ > δ.
Next, we apply the parametric-search technique to this algorithm, with an additional
twist, to compute d(L,L′).

Consider the fixed-size problem. If m > n3+ε, the problem can be solved in
O(m log2 n) time by computing δ∗ using Lemma 5.1 and then comparing δ∗ with δ.
So assume that m ≤ n3+ε.

We now map each line `′ ∈ L′ to the point ψ(`′), as defined above, and each line
` ∈ L to a surface φ(`), which is the locus of all points ψ(`′) such that d(`, `′) = δ
and `′ lies below `. (This is a dual representation of the problem, where the roles
of L and of L′ are interchanged.) The open region φ− lying below φ(`) consists
of points corresponding to lines `′ that lie below ` and satisfy d(`, `′) > δ. Again,
each surface φ(`) is x1x2x3-monotone; i.e., φ(`) is the graph of a partial function
x4 = g`(x1, x2, x3). Let

G(x1, x2, x3) = min
`∈L

g`(x1, x2, x3)

be the lower envelope of these functions. By the same argument as above, d(L,L′) < δ
if and only if there is a point ψ(`′), for some `′ ∈ L′, that lies above the lower envelope
G, and d(L,L′) = δ if and only if no point corresponding to the lines of L′ lies above
G and at least one such point lies on G. To detect these two conditions, we proceed
as follows.

(i) Fix a sufficiently large constant r. Choose a random subset R ⊂ L of size
t = cr log r, where c is some appropriate constant independent of r.

(ii) Let ΓR = {g` | ` ∈ R} be the set of t trivariate functions correspond-
ing to the lines of R, and let GR be the lower envelope of ΓR. Decom-
pose the region of R

4 lying below GR into a collection Ξ = {τ1, . . . , τk} of
k = O(t4β(t)) = O(r4β(r) log4 r) semialgebraic cells of constant description
complexity each; here β(r) is a slowly growing function whose exact form is
determined by the algebraic degree of the surfaces in Γ. Such a decompo-
sition can be obtained using the algorithms described in [AST, CEGSb]. It
is based on a decomposition of R

3 into a family Ξ′ of O(r4β(r) log4 r) cells
of constant description complexity, so that, within each cell, the same set of

1728 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

function graphs appear on the lower envelope GR. The decomposition Ξ is
then defined as the following collection of semiunbounded “prisms”:

Ξ =
{
{(x, z) | x ∈ ∆, z ≤ GR(x)} | ∆ ∈ Ξ′

}
.

(iii) For each prism τ ∈ Ξ, let Lτ = {` ∈ L | φ(`) ∩ τ 6= ∅} and L′τ = {`′ ∈ L′ |
ψ(`′) ∈ τ}.

(iv) If
⋃

τ∈Ξ L′τ 6= L′ (i.e., there is a line `′ ∈ L′ such that the point ψ(`′) lies
above GR), then return δ > δ∗. If there is a τ ∈ Ξ such that |Lτ | > m/r+ 1,
then go back to Step (i).

(v) For each prism τ ∈ Ξ, if both Lτ ,L′τ are nonempty, then solve the problem
recursively for Lτ and L′τ . If there is a subproblem for which δ > d(Lτ ,L′τ),
then return δ > δ∗. If there is no such subproblem, but there is one subprob-
lem for which δ = δ∗, then return δ = δ∗. Finally, if none of these two cases
occur, then return δ < δ∗.

The correctness of the algorithm follows from the above observations. As for the
running time, the well-known results on random sampling [ClS, HW] imply that if c is
chosen sufficiently large then, with high probability, |Lτ | ≤ m/r + 1 for every τ ∈ Ξ.
Hence, the expected number of times we have to go back to step (i) from step (iv)
is only a constant. Let T (m,n) denote the expected running time of the algorithm.
Then

T (m,n) =

O(m log2 n) if m ≥ n3+ε,

k∑
i=1

T
(m
r

+ 1, ni

)
+O(m+ n) if m < n3+ε,

where
∑

i ni = n and k = O(r4β(r) log4 r). The solution of the above recurrence is
easily seen to be

T (m,n) = O(m8/11+ε′
n9/11+ε′

+m1+ε′ + n1+ε′)

for any ε′ > ε.
Next, we describe how to apply the parametric-search technique to this algorithm.

As mentioned earlier, we cannot use this algorithm directly in the parametric-search
paradigm, because we do not know how to parallelize the first algorithm. We therefore
simulate the above sequential algorithm at δ = δ∗ with the additional twist that,
instead of just simulating the solution of the fixed-size problem at δ∗, the algorithm
will attempt to compute δ∗ explicitly. Since r is chosen to be constant, the set Ξ can be
computed by making only rO(1) implicit “sign tests” involving δ∗, thus only a constant
number, rO(1), of solutions of the fixed-size problem are needed; see [AST, CEGSb]
for details. It can be checked that the problem of determining whether a surface φ(`)
intersects a prism τ ∈ Ξ or whether a point ψ(`′) lies in τ can be reduced to computing
the signs of a constant number of univariate polynomials, each of constant degree, at δ∗

(this follows since τ has constant description complexity). Let Π = {p1(δ), . . . , ps(δ)},
where s = O(m+ n), be the set of these polynomials, over all lines of L,L′ and over
all prisms of Ξ. Let δ1 < · · · < δu be the real roots of these polynomials, where u
is also O(m + n). By a binary search over these roots we compute the largest root
δα such that δα ≤ d(L,L′). Each step of the binary search involves comparing δ∗

with some δi, which in turn involves solving an instance of the fixed-size problem for
some δi. If δα = δ∗, we have found the value of δ∗ so we stop right away. Thus,

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1729

assume that δα < δ∗. We can now easily resolve the signs of all polynomials of Π by
evaluating them at (δα + δα+1)/2. Once we have computed Lτ ,L′τ for all τ ∈ Ξ, we
compute d(Lτ ,L′τ) recursively and return minτ∈Ξ d(Lτ ,L′τ) as d(L,L′). (Note that⋃

τ∈Ξ L′τ = L′, since we are simulating the algorithm at δ∗.) The correctness of the
algorithm is established by the following lemma.

Lemma 5.2. If none of the calls to the fixed-size problem in steps (i)–(iv) returns
the value of d(L,L′), then d(L,L′) = minτ∈Ξ d(Lτ ,L′τ).

Proof. Let δ∗ = d(L,L′), and let ` ∈ L, `′ ∈ L′ be a pair of lines such that
d(`, `′) = δ∗. Since we are simulating the fixed-size problem at δ = δ∗, no point
corresponding to the lines of L′ lies above the lower envelope of the surfaces defined
by L (for δ = δ∗), that is, there exists a prism τ ∈ Ξ such that `′ ∈ L′τ (i.e., ψ(`′)
lies in τ). If ` does not belong to Lτ , then ψ(`′) lies below φ(`), which implies
that d(`, `′) > δ∗, a contradiction. Hence the pair (`, `′) appears in the subproblem
involving Lτ and L′τ .

Let T ′(m,n) denote the maximum expected running time of the algorithm. Then
we obtain the following recurrence

T ′(m,n) =

O(m log2 n) if m ≥ n3+ε,

O(r4β(r) log4 r)∑
i=1

T ′
(m
r

+ 1, ni

)
+ rO(1)O(m8/11+εn9/11+ε +m1+ε + n1+ε)

if m < n3+ε.

The solution of the above recurrence is also

T ′(m,n) = O(m8/11+ε′
n9/11+ε′

+m1+ε′ + n1+ε′)

for a different but still arbitrarily small constant ε′ > ε.
Hence, we obtain the following result.
Lemma 5.3. Given a set L of m lines and another set L′ of n lines such that all

lines in L lie above all lines of L′, the closest pair of lines in L×L′ can be computed
in randomized expected time O(m8/11+εn9/11+ε +m1+ε + n1+ε) for any ε > 0.

Finally, we apply Lemma 5.3 to all subsets (Ei, E ′i) of F (see (1)) and output
the minimum of the distances obtained for each subproblem. This is equal to the
minimum distance between any pair of parallel planes, each supporting an edge of P.
The total expected running time is

t∑
i=1

O
(
|Ei|8/11+ε|E ′i |9/11+ε + |Ei|1+ε + |E ′i |1+ε

)
= O(n17/11+ε′

) ,

where ε′ is yet another but still arbitrarily small positive constant.
Putting everything together, we can conclude the following.
Theorem 5.4. The width of a set of n points in R

3 can be computed in random-
ized expected time O(n17/11+ε), for any ε > 0.

Remark. Informally speaking, the “ugly” exponent 17/11 is the result of an
interaction between the exponent 3, appearing in the bound of Theorem 3.3, and
the exponent 4, appearing in the bound for the size of the vertical decomposition Ξ
used above. After the original submission of this paper, Agarwal and Sharir [ASb]
observed that, for the width problem and for the two problems studied below, one can
show that the size of this vertical decomposition is only near cubic in the number of

1730 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

surfaces. This in turn leads to an improved analysis of the above algorithm and implies
that its running time is only O(n3/2+ε) for any ε > 0 (and a similar improvement
applies to the two subsequent algorithms given below). Agarwal and Sharir [ASb]
gave a different randomized algorithm for these problems, without using parametric
searching.

5.2. Biggest stick in a simple polygon. Let P be a simple polygon in the
plane having n edges. We wish to find the longest line segment e that is contained in
(the closed set) P . Chazelle and Sharir presented in [CS] an O(n1.99)-time algorithm
for this problem, which was later improved by Agarwal, Sharir, and Toledo [AST]
to O(n8/5+ε) for any ε > 0. The latter paper reduces this problem, just as in the
computation of the width of a point set in 3-space, to that of finding the extreme
value of a certain function of two parameters, optimized over all intersection points
between the edges of two straight-edge planar maps. This problem, in turn, can be
reduced to the problem of optimizing the function over all intersection points of pairs
of lines in L1 × L2, where L1,L2 are two appropriate families of lines in the plane.
By regarding the lines of L1 as data points, and each line of L2 as inducing a certain
function over the lines of L1, and by using an appropriate parametrization of these
points and functions, the problem can be reduced to that of testing whether any point
in a certain set of points in 4-space lies above the lower envelope of a certain collection
of trivariate functions. Combining the approach of [AST] with the one described in
the previous subsection, we can compute the longest segment e in expected time
O(n17/11+ε) for any ε > 0. Omitting all the details, which can be found in [AST], we
conclude the following.

Theorem 5.5. One can compute the biggest stick that fits inside a simple polygon
with n edges, in randomized expected time O(n17/11+ε), for any ε > 0.

5.3. Minimum-width annulus. Let S be a set of n points in the plane. We
wish to find the (closed) annulus of smallest width that contains S, i.e., we want to
compute two concentric disks D1 and D2 of radii r1 and r2, such that all points of S
lie in the closure of D2 \D1 and r2− r1 is minimized. This problem has been studied
in [AST]. It is known [AST, EFNN] that the center of such an annulus is a vertex
of the closest-point Voronoi diagram, Vorc(S), of S, a vertex of the farthest-point
Voronoi diagram, Vorf (S), of S, or the intersection point of an edge of Vorc(S) and
an edge of Vorf (S). The difficult part is testing the intersection points of edges of the
two diagrams, because there can be Θ(n2) such points in the worst case. Following
the same idea as in [AST], which reduces the problem to that of batched searching of
points relative to an envelope of functions in four dimensions, but using the technique
described above for computing the width in 3-space, we obtain the following result
(see [AST] for details).

Theorem 5.6. The smallest-width annulus containing a set of n points in the
plane can be computed in randomized expected time O(n17/11+ε), for any ε > 0.

REFERENCES

[AMa] P. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput.,
22 (1993), pp. 794–806.

[AMb] P. Agarwal and J. Matoušek, Range searching with semialgebraic sets, Discrete Com-
put. Geom., 11 (1994), pp. 393–418.

[ASS] P. Agarwal, O. Schwarzkopf, and M. Sharir, The overlay of lower envelopes and its
applications, Discrete Comput. Geom., 15 (1996), pp. 1–13.

COMPUTING ENVELOPES IN FOUR DIMENSIONS 1731

[ASa] P. Agarwal and M. Sharir, On the number of views of polyhedral terrains, Discrete
Comput. Geom., 12 (1994), pp. 177–182.

[ASb] P. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric opti-
mization problems, Discrete Comput. Geom., 16 (1996), pp. 317–337.

[AST] P. Agarwal, M. Sharir, and S. Toledo, New applications of parametric searching in
computational geometry, J. Algorithms, 17 (1994), pp. 292–318.

[AGPS] P. Agarwal, L. Guibas, M. Pellegrini, and M. Sharir, Ray Shooting among Spheres,
manuscript, 1992.

[ArS] B. Aronov and M. Sharir, Triangles in space, or: Building (and analyzing) castles in
the air, Combinatorica, 10 (1990), pp. 137–173.

[BDS+] J. D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec, Applica-
tions of random sampling to on-line algorithms in computational geometry, Discrete
Comput. Geom., 8 (1992), pp. 51–71.

[BD] J. D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper
envelope of triangles and surface patches in R3, Comput. Geom. Theory Appl., 5
(1996), pp. 303–320.

[BSTY] J. D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in
higher dimensions under certain polyhedral convex distance functions, in Proc. 11th
ACM Symp. Comput. Geom., Vancouver, 1995, ACM, New York, pp. 79–88.

[CEGSa] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Algorithms for bichro-
matic line segment problems and polyhedral terrains, Algorithmica, 11 (1994),
pp. 116–132.

[CEGSb] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest
line pair, and parametric searching, Discrete Comput. Geom., 10 (1993), pp. 183–
196.

[CEGSS] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink, Computing
a single face in an arrangement of line segments and related problems, SIAM J.
Computing, 22 (1993), pp. 1286–1302.

[CS] B. Chazelle and M. Sharir, An algorithm for generalized point location and its appli-
cations, J. Symbolic Comput., 10 (1990), pp. 281–309.

[CKSW] L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl, Voronoi diagrams of
lines in three dimensions under a polyhedral convex distance function, in Proc. 6th
ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 1995, SIAM, Philadel-
phia, pp. 197–204.

[ClS] K. Clarkson and P. Shor, Applications of random sampling in computational geometry
II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[dBDS] M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental
construction, Discrete Comput. Geom., 14 (1995), pp. 261–286.

[EFNN] H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi, Roundness algorithms using
the Voronoi diagrams, in First Canadian Conf. Comput. Geom., abstract, 1989.

[ES] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Com-
put. Geom., 1 (1986), pp. 25–44.

[HS] D. Halperin and M. Sharir, New bounds for lower envelopes in 3 dimensions, with
applications to visibility in terrains, Discrete Comput. Geom., 12 (1994), pp. 313–
326.

[HW] D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom.,
2 (1987), pp. 127–151.

[HRR] J. Heintz, T. Recio, and M.-F. Roy, Algorithms in real algebraic geometry and applica-
tions to computational geometry, in Discrete and Computational Geometry: Papers
from the DIMACS Special Year, J.E. Goodman, R. Pollack, and W. Steiger, eds.,
AMS Press, Providence, RI, 1991, pp. 137–163.

[HT] M. Houle and G. Toussaint, Computing the width of a set, IEEE Trans. Pattern
Matching and Machine Intelligence, 5 (1988), pp. 761–765.

[Me] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,
J. Assoc. Comput. Mach., 30 (1983), pp. 852–865.

[MS] S. Mohaban and M. Sharir, Ray shooting amidst spheres in three dimensions, SIAM
J. Comput., 26 (1997), pp. 654–674.

[Mua] K. Mulmuley, A fast planar partition algorithm, I, J. Symbolic Comput., 10 (1990),
pp. 253–280.

[Mub] K. Mulmuley, A fast planar partition algorithm, II, J. Assoc. Comput. Mach., 38
(1991), pp. 74–103.

[PS] J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the bound-

1732 PANKAJ K. AGARWAL, BORIS ARONOV, AND MICHA SHARIR

ary of a region enclosed by convex plates: Combinatorial analysis, Discrete Comput.
Geom., 4 (1989), pp. 291–309.

[PT] F. P. Preparata and R. Tamassia, Efficient point location in a convex spatial cell-
complex, SIAM J. Comput., 21 (1992), pp. 267–280.

[Sha] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete
Comput. Geom., 12 (1994), pp. 327–345.

[SA] M. Sharir and P. Agarwal, Davenport-Schinzel Sequences and Their Geometric Ap-
plications, Cambridge University Press, New York, 1995.

A SPECTRAL TECHNIQUE FOR COLORING RANDOM
3-COLORABLE GRAPHS∗

NOGA ALON† AND NABIL KAHALE‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1733–1748, December 1997 009

Abstract. Let G3n,p,3 be a random 3-colorable graph on a set of 3n vertices generated as
follows. First, split the vertices arbitrarily into three equal color classes, and then choose every
pair of vertices of distinct color classes, randomly and independently, to be edges with probability
p. We describe a polynomial-time algorithm that finds a proper 3-coloring of G3n,p,3 with high
probability, whenever p ≥ c/n, where c is a sufficiently large absolute constant. This settles a
problem of Blum and Spencer, who asked if an algorithm can be designed that works almost surely
for p ≥ polylog(n)/n [J. Algorithms, 19 (1995), pp. 204–234]. The algorithm can be extended to
produce optimal k-colorings of random k-colorable graphs in a similar model as well as in various
related models. Implementation results show that the algorithm performs very well in practice even
for moderate values of c.

Key words. graph eigenvalues, graph coloring, algorithms, random graphs

AMS subject classifications. 05C15, 05C80, 05C85, 68R10

PII. S0097539794270248

1. Introduction. A vertex coloring of a graph G is proper if no adjacent vertices
receive the same color. The chromatic number χ(G) of G is the minimum number of
colors in a proper vertex coloring of G. The problem of determining or estimating this
parameter has received a considerable amount of attention in combinatorics and in
theoretical computer science, as several scheduling problems are naturally formulated
as graph coloring problems. It is well known (see [13, 12]) that the problem of properly
coloring a graph of chromatic number k with k colors is NP-hard, even for any fixed
k ≥ 3, and it is therefore unlikely that there are efficient algorithms for optimally
coloring an arbitrary 3-chromatic input graph.

On the other hand, various researchers noticed that random k-colorable graphs
are usually easy to color optimally. Polynomial-time algorithms that optimally color
random k-colorable graphs, for every fixed k with high probability, have been devel-
oped by Kucera [15], Turner [18], and Dyer and Frieze [8]; the latter paper provides
an algorithm whose average running time over all k-colorable graphs on n vertices is
polynomial. Note, however, that most k-colorable graphs are quite dense and, hence,
easy to color. In fact, in a typical k-colorable graph, the number of common neighbors
of any pair of vertices with the same color exceeds considerably that of any pair of
vertices of distinct colors, and hence a simple coloring algorithm based on this fact
already works with high probability. It is more difficult to color sparser random k-
colorable graphs. A precise model for generating sparse random k-colorable graphs
is described in the next subsection, where the sparsity is governed by a parameter p
that specifies the edge probability. Petford and Welsh [16] suggested a randomized

∗Received by the editors June 24, 1994; accepted for publication (in revised form) December 6,
1995. A preliminary version of this paper appeared in the Proceedings of the 26th ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1994, pp. 346–355.

http://www.siam.org/journals/sicomp/26-6/27024.html
†Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics, Tel-Aviv

University, Tel Aviv, Israel (noga@math.tau.ac.il). This research was supported in part by Sloan
Foundation grant 93-6-6 and by a USA–Israel BSF grant.

‡AT&T Bell Laboratories, Murray Hill, NJ 07974 (kahale@research.att.com). This work was done
while the author was at DIMACS.

1733

1734 NOGA ALON AND NABIL KAHALE

heuristic for 3-coloring random 3-colorable graphs and supplied experimental evidence
that it works for most edge probabilities. Blum and Spencer [6] (also see [3] for some
related results) designed a polynomial algorithm and proved that it optimally colors,
with high probability, random 3-colorable graphs on n vertices with edge probability
p provided p ≥ nε/n for some arbitrarily small but fixed ε > 0. Their algorithm is
based on a path-counting technique and can be viewed as a natural generalization
of the simple algorithm based on counting common neighbors (that counts paths of
length 2) mentioned above.

Our main result here is a polynomial-time algorithm that works for sparser ran-
dom 3-colorable graphs. If the edge probability p satisfies p ≥ c/n, where c is a
sufficiently large absolute constant, the algorithm optimally colors the corresponding
random 3-colorable graph with high probability. This settles a problem of Blum and
Spencer [6] who asked if an algorithm can be designed that works almost surely for
p ≥ polylog(n)/n. (Here and in what follows, almost surely always means “with prob-
ability that approaches 1 as n tends to infinity.”) The algorithm uses the spectral
properties of the graph and is based on the fact that, almost surely, a rather accurate
approximation of the color classes can be read from the eigenvectors corresponding
to the smallest two eigenvalues of the adjacency matrix of a large subgraph. This
approximation can then be improved to yield a proper coloring.

The algorithm can be easily extended to the case of k-colorable graphs, for any
fixed k, and to various models of random regular 3-colorable graphs.

We implemented our algorithm and tested it for hundreds of graphs drawn at ran-
dom from the distribution of G3n,p,3. Experiments show that our algorithm performs
very well in practice. The running time is a few minutes on graphs with up to 100,000
nodes, and the range of edge probabilities on which the algorithm is successful is in
fact even larger than what our analysis predicts.

1.1. The model. There are several possible models for random k-colorable
graphs. See [8] for some of these models and for the relation between them. Our
results hold for most of these models, but it is convenient to focus on one, which
will simplify the presentation. Let V be a fixed set of kn labeled vertices. For a
real p = p(n), let Gkn,p,k be the random graph on the set of vertices V obtained as
follows: first, split the vertices of V arbitrarily into k color classes W1, . . . ,Wk, each
of cardinality n. Next, for each u and v that lie in distinct color classes, choose uv
to be an edge, randomly and independently, with probability p. The input to our
algorithm is a graph Gkn,p,k obtained as above, and the algorithm succeeds to color
it if it finds a proper k coloring. Here we are interested in fixed k ≥ 3 and large
n. We say that an algorithm colors Gkn,p,k almost surely if the probability that a
randomly chosen graph, as above, is properly colored by the algorithm tends to one
as n tends to infinity. Note that we consider here deterministic algorithms, and the
above statement means that the algorithm succeeds in coloring almost all random
graphs generated.

A closely related model to the one given above is the model in which we do not
insist that the color classes have equal sizes. In this model one first splits the set of
vertices into k disjoint color classes by letting each vertex choose its color randomly,
independently, and uniformly, among the k possibilities. Next, one chooses every pair
of vertices of distinct color classes to be edges with probability p. All of our results
hold for both models, and we focus on the first one as it is more convenient. To
simplify the presentation, we restrict our attention to the case k = 3 of 3-colorable
graphs, since the results for this case easily extend to every fixed k. In addition, we

COLORING RANDOM 3-COLORABLE GRAPHS 1735

make no attempt to optimize the constants and assume, whenever this is needed, that
c is a sufficiently large constant, and the number of vertices 3n is sufficiently large.

1.2. The algorithm. Here is a description of the algorithm, which consists of
three phases. Given a graph G = G3n,p,3 = (V,E), define d = pn. Let G′ = (V,E′) be
the graph obtained from G by deleting all edges incident to a vertex of degree greater
than 5d. Denote by A the adjacency matrix of G′, i.e., the 3n by 3n matrix (auv)u,v∈V
defined by auv = 1 if uv ∈ E′ and auv = 0 otherwise. It is well known that, since A
is symmetric, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ3n and an orthonormal basis
of eigenvectors e1, e2, . . . , e3n, where Aei = λiei. The crucial point is that, almost
surely, one can deduce a good approximation of the coloring of G from e3n−1 and e3n.
Note that there are several efficient algorithms to compute the eigenvalues and the
eigenvectors of symmetric matrices (cf. [17]) and hence e3n−1 and e3n can certainly
be calculated in polynomial time. For the remainder of the algorithm, we will deal
with G rather than G′.

Let t be a nonzero linear combination of e3n−1 and e3n whose median is zero;
that is, the number of positive components of t as well as the number of its negative
components are both at most 3n/2. (It is easy to see that such a combination always
exists and can be found efficiently.) Suppose also that t is normalized so that its
l2-norm is

√
2n. Define V 0

1 = {u ∈ V : tu > 1/2}, V 0
1 = {u ∈ V : tu < −1/2}, and

V 0
3 = {u ∈ V : |tu| ≤ 1/2}. This is an approximation for the coloring, which will be

improved in the second phase by iterations, and then in the third phase to obtain a
proper 3-coloring.

In iteration i of the second phase, 0 < i ≤ q = dlogne, construct the color classes
V i

1 , V i
2 , and V i

3 as follows. For every vertex v of G, let N(v) denote the set of all its
neighbors in G. In the ith iteration, color v by the least popular color of its neighbors
in the previous iteration. That is, put v in V i

j if |N(v)∩V i−1
j | is the minimum among

the three quantities |N(v) ∩ V i−1
l |, l = 1, 2, 3, where equalities are broken arbitrarily.

We will show that the three sets V q
i correctly color all but n2−Ω(d) vertices.

The third phase consists of two stages. First, repeatedly uncolor every vertex
colored j that has less than d/2 neighbors (in G) colored l for some l ∈ {1, 2, 3}−{j}.
Then, if the graph induced on the set of uncolored vertices has a connected component
of size larger than log3 n, the algorithm fails. Otherwise, find a coloring of every
component consistent with the rest of the graph using brute-force exhaustive search.
If the algorithm cannot find such a coloring, it fails.

Our main result is the following.
Theorem 1.1. If p > c/n, where c is a sufficiently large constant, the algorithm

produces a proper 3-coloring of G with probability 1− o(1).
The intuition behind the algorithm is as follows. Suppose that every vertex in G

had exactly d neighbors in every color class other than its own. Then G′ = G. Let F
be the two-dimensional subspace of all vectors x = (xv : v ∈ V) which are constant on
every color class, and whose sum is 0. A simple calculation (as observed in [1]) shows
that any nonzero element of F is an eigenvector of A with eigenvalue −d. Moreover,
if E is the union of random matchings, one can show that −d is almost surely the
smallest eigenvalue of A and that F is precisely the eigenspace corresponding to −d.
Thus, any linear combination t of e3n−1 and e3n is constant on every color class. If the
median of t is 0 and its l2-norm is

√
2n, then t takes the values 0, 1, or −1 depending

on the color class, and the coloring obtained after phase 1 of the algorithm is a proper
coloring. In the model specified in subsection 1.1 these regularity assumptions do not
hold, but every vertex has the same expected number of neighbors in every color class

1736 NOGA ALON AND NABIL KAHALE

other than its own. This is why phase 1 gives only an approximation of the coloring
and phases 2 and 3 are needed to obtain a proper coloring.

We prove Theorem 1.1 in the next two sections. We use the fact that, almost
surely, the largest eigenvalue of G′ is at least (1−2−Ω(d))2d, and that its two smallest
eigenvalues are at most −(1− 2−Ω(d))d and all other eigenvalues are in absolute value
O(
√
d). The proof of this result is based on a proper modification of techniques

developed by Friedman, Kahn, and Szemerédi in [11] and is deferred to section 3.
We show in section 2 that our modification implies that each of the two eigenvectors
corresponding to the two smallest eigenvalues is close to a vector, which is a constant
on every color class, where the sum of these three constants is zero. This suffices to
show that the sets V 0

j form a reasonably good approximation to the coloring of G
with high probability.

Theorem 1.1 can then be proved by applying the expansion properties of the graph
G (that hold almost surely) to show that the iteration process above converges quickly
to a proper coloring of a predefined large subgraph H of G. The uncoloring procedure
will uncolor all vertices which are wrongly colored, but will not affect the subgraph H.
We then conclude by showing that the largest connected component of the induced
subgraph of G on V −H is of logarithmic size almost surely, thereby showing that the
brute-force search on the set of uncolored vertices terminates in polynomial time. We
present our implementation results in section 4. Section 5 contains some concluding
remarks together with possible extensions and results for related models of random
graphs.

2. The proof of the main result. Let G = G3n,p,3 = (V,E) be a random
3-colorable graph generated according to the model described above. Denote by W1,
W2, and W3 the three color classes of vertices of G. Let G′ be the graph obtained
from G by deleting all edges adjacent to vertices of degree greater than 5d, and let
A be the adjacency matrix of G′. Denote by λ1 ≥ λ2 ≥ · · · ≥ λ3n the eigenvalues of
A and by e1, e2, . . . , e3n the corresponding eigenvectors, chosen so that they form an
orthonormal basis of R3n.

In this section we first show that the approximate coloring produced by the al-
gorithm using the eigenvectors e3n−1 and e3n is rather accurate almost surely. Then
we exhibit a large subgraph H and show that, almost surely, the iterative procedure
for improving the coloring colors H correctly. We then show that the third phase
finds a proper coloring of G in polynomial time, almost surely. We use the following
statement, whose proof is relegated to section 3.

Proposition 2.1. In the above notation, almost surely,

(i) λ1 ≥ (1− 2−Ω(d))2d,

(ii) λ3n ≤ λ3n−1 ≤ −(1− 2−Ω(d))d, and

(iii) |λ1| ≤ O(
√
d) for all 2 ≤ i ≤ 3n− 2.

Remark. One can show that, when p = o(logn/n), Proposition 2.1 would not
hold if we were dealing with the spectrum of G rather than that of G′, since the graph
G is likely to contain many vertices of degree � d, and in this case the assertion of
(iii) does not hold for the eigenvalues of G.

2.1. The properties of the last two eigenvectors. In this subsection we
show that the eigenvectors e3n−1 and e3n are almost constant on every color class. For
this, we exhibit two orthogonal vectors constant on every color class which, roughly
speaking, are close to being eigenvectors corresponding to −d. Let x = (xv : v ∈ V) be
the vector defined by xv = 2 for v ∈W1, and xv = −1 otherwise. Let y = (yv : v ∈ V)

COLORING RANDOM 3-COLORABLE GRAPHS 1737

be the vector defined by yv = 0 if v ∈ W1, yv = 1 if v ∈ W2, and yv = −1 if v ∈ W3.
We denote by ‖f‖ the l2-norm of a vector f .

Lemma 2.2. Almost surely there are two vectors ε = (εv : v ∈ V) and δ =
(δv : v ∈ V), satisfying ‖ε‖2 = O(n/d) and ‖δ‖2 = O(n/d) so that x− ε and y− δ are
both linear combinations of e3n−1 and e3n.

Proof. We use the following lemma, whose proof is given below.
Lemma 2.3. Almost surely, ‖(A+ dI)y‖2 = O(nd) and ‖(A+ dI)x‖2 = O(nd).
We prove the existence of δ as above. The proof of the existence of ε is analogous.

Let y =
∑3n

i=1 ciei. We show that the coefficients c1, c2, . . . , c3n−2 are small compared

to ‖y‖. Indeed, (A+ dI)y =
∑3n

i=1 ci(λi + d)ei, and so

‖(A+ dI)y‖2 =

3n∑
i=1

c2i (λi + d)2(2.1)

≥ Ω(d2)
3n−2∑
i=1

c2i ,

where the last inequality follows from parts (i) and (iii) of Proposition 2.1. Define

δ =
∑3n−2

i=1 ciei. By equation (1) and Lemma 2.3, it follows that ‖δ‖2 =
∑3n−2

i=1 c2i =
O(n/d). On the other hand, y − δ is a linear combination of e3n−1 and e3n.

Note that it was crucial to the proof of Lemma 2.2 that, almost surely, ‖(A+dI)y‖2

is O(nd) rather than Ω(nd)2 as is the case for some vectors in {−1, 0, 1}3n.
Proof of Lemma 2.3. To prove the first bound, observe that it suffices to show that

the sum of squares of the coordinates of (A+dI)y on W1 is O(nd) almost surely, as the
sums on W2 and W3 can be bounded similarly. The expectation of the vector (A+dI)y
is the null vector, and the expectation of the square of each coordinate of (A + dI)y
is O(d) by a standard calculation. This is because each coordinate of (A+dI)y is the
sum of n independent random variables, each with mean 0 and variance O(d/n). This
implies that the expected value of the sum of squares of the coordinates of (A+ dI)y
on W1 is O(nd). Similarly, the expectation of the fourth power of each coordinate
of (A + dI)y is O(d2). Hence the variance of the square of each coordinate is O(d2).
However, the coordinates of (A+ dI)y on W1 are independent random variables, and
hence the variance of the sum of the squares of the W1 coordinates is equal to the
sum of the variances, which is O(nd2). The first bound can now be deduced from
Chebyshev’s inequality. The second bound can be shown in a similar manner. We
omit the details.

The vectors x − ε and y − δ are independent since they are nearly orthogonal.
Indeed, if α(x − ε) + β(y − δ) = 0, then αx + βy = αε + βδ, and so 6nα2 + 2nβ2 =
‖αε+ βδ‖2. However,

‖αε+ βδ‖ ≤ |α| ‖ε‖+ |β| ‖δ‖
= O

(
(|α|+ |β|)√n/d

)
.

Thus, 6α2 + 2β2 = O((α2 + β2)/d) and hence α = β = 0.
Therefore, by the above lemma the two vectors

√
3ne3n−1 and

√
3ne3n can be

written as linear combinations of x − ε and y − δ. Moreover, the coefficients in
these linear combinations are all O(1) in absolute value. That is because x − ε and
y − δ are nearly orthogonal, and the l2-norm of each of the four vectors x− ε, y − δ,√

3ne3n−1, and
√

3ne3n is Θ(
√
n). More precisely, if one of the vectors

√
3ne3n−1,

1738 NOGA ALON AND NABIL KAHALE

√
3ne3n is written as α(x− ε)+β(y− δ), then by the triangle inequality, ‖αx+βy‖ ≤

Θ(
√
n) + |α| ‖ε‖ + |β| ‖δ‖, which, by a calculation similar to the one above, implies

that 6α2 + 2β2 ≤ O(1) + O((α2 + β2)/d), and thus α and β are O(1). On the other
hand, the coefficients of the vector t defined in subsection 1.2 along the vectors e3n−1

and e3n are at most ‖t‖ =
√

2n. It follows that the vector t defined in the algorithm is
also a linear combination of the vectors x−ε and y−δ with coefficients whose absolute
values are both O(1). Since both x and y belong to the vector space F defined in the
proof of Proposition 2.1, this implies that t = f +η, where f ∈ F and ‖η‖2 = O(n/d).
Let αi be the value of f on Wi for 1 ≤ i ≤ 3. Assume without loss of generality that
α1 ≥ α2 ≥ α3. Since ‖η‖2 = O(n/d), at most O(n/d) of the coordinates of η are
greater than 0.01 in absolute value. This implies that |α2| ≤ 1/4, because otherwise
at least 2n−O(n/d) coordinates of t would have the same sign, contradicting the fact
that 0 is a median of t. As α1 +α2 +α3 = 0 and α2

1 +α2
2 +a2

3 = ‖f‖2/n = 2+O(d−1),
this implies that α1 > 3/4 and α3 < −3/4. Therefore, the coloring defined by the
sets V 0

j agrees with the original coloring of G on all but at most O(n/d) < 0.001n
coordinates.

2.2. The iterative procedure. Denote by H the subset of V obtained as fol-
lows. First, set H to be the set of vertices having at most 1.01d neighbors in G in each
color class. Then, repeatedly delete any vertex in H having less than 0.99d neighbors
in H in some color class (other than its own). Thus, each vertex in H has roughly d
neighbors in H in each color class other than its own.

Proposition 2.4. Almost surely, by the end of the second phase of the algorithm,
all vertices in H are properly colored.

To prove Proposition 2.4, we need the following lemma.

Lemma 2.5. Almost surely, there are no two subsets of vertices U and W of
V such that |U | ≤ 0.001n, |W | = |U |/2, and every vertex v of W has at least d/4
neighbors in U .

Proof. Note that if there are two such (not necessarily disjoint) subsets U and W ,
then the number of edges joining vertices of U and W is at least d|W |/8. Therefore,
by a standard calculation the probability that there exist two such subsets is at most

0.0005n∑
i=1

(
3n

i

)(
3n

2i

)(
2i2

di/8

)(
d

n

)di/8
≤

0.0005n∑
i=1

(
3en

i

)3i(
16ei

n

)di/8

≤
0.0005n∑
i=1

(
3en

i

)di/40(
16ei

n

)di/8

=
0.0005n∑
i=1

(48e2)di/40
(

16ei

n

)di/10

≤
0.0005n∑
i=1

(48e2(16e/2000)2)di/40
(

16ei

n

)di/20

≤
0.0005n∑
i=1

(
16ei

n

)di/20

= O(1/nΩ(d)).

COLORING RANDOM 3-COLORABLE GRAPHS 1739

If a vertex in H is colored incorrectly at the end of iteration i of the algorithm
in phase 2 (i.e., if it is colored j and does not belong to Wj), it must have more
than d/4 neighbors in H colored incorrectly at the end of iteration i− 1. To see this,
observe that any vertex of H has at most 2(1.01d− 0.99d) = 0.04d neighbors outside
H, and hence if it has at most d/4 wrongly colored neighbors in H, it must have at
least 0.99d − d/4 > d/2 neighbors of each color other than its correct color and at
most d/4 + 0.04d neighbors of its correct color. By repeatedly applying the property
asserted by the above lemma, with U being the set of vertices of H whose colors in
the end of the iteration i− 1 are incorrect, we deduce that the number of incorrectly
colored vertices decreases by a factor of at least two in each iteration, implying that
all vertices of H will be correctly colored after dlog2 ne iterations. This completes
the proof of Proposition 2.4. We note that by being more careful one can show that
O(logd n) iterations suffice here, but since this only slightly decreases the running
time, we do not prove the stronger statement here.

A standard probabilistic argument based on the Chernoff bound (see, for example
[2, Appendix A]) shows that H = V almost surely if p ≥ β logn/n, where β is a
suitably large constant. Thus, it follows from Proposition 2.4 that the algorithm
almost surely properly colors the graph by the end of phase 2 if p ≥ β logn/n.

For two sets of vertices X and Z, let e(X,Z) denote the number of edges (u, v) ∈
E, with u ∈ X and v ∈ Z.

Lemma 2.6. There exists a constant γ > 0 such that almost surely the following
hold.

(i) For any two distinct color classes V1 and V2, and any subset X of V1 and any
subset Y of V2, if |X| = 2−γdn and |Y | ≤ 3|X|, then |e(X,V2−Y)−d|X‖ ≤ 0.001d|X|.

(ii) If J is the set of vertices having more than 1.01d neighbors in G in some
color class, then |J | ≤ 2−γdn.

Proof. For any subset X of V1, e(X,V2 − Y) is the sum of independent Bernoulli
variables. By standard Chernoff bounds, the probability that there exist two color
classes V1 and V2, a subset X of V1, and a subset Y of V2 such that |X| = εn and
|Y | ≤ 3|X| and |e(X,V2 − Y)− d|X‖ > 0.001d|X| is at most

6

(
n

εn

) 3εn∑
i=0

(
n

i

)
2−Ω(εnd) = 2O(H(ε))n2−Ω(εnd).

Therefore, (i) holds almost surely if γ is a sufficiently small constant. A similar
reasoning applies to (ii). Therefore, both (i) and (ii) hold if γ is a sufficiently small
constant.

Lemma 2.7. Almost surely, H has at least (1 − 2−Ω(d))n vertices in every color
class.

Proof. It suffices to show that there are at most 7 · 2−γdn vertices outside H.
Assume for contradiction that this is not true. Recall that H is obtained first by
deleting all the vertices in J and then by a deletion process in which vertices with
less than 0.99d neighbors in the other color classes of H are deleted repeatedly. By
Lemma 2.6 |J | ≤ 2−γdn almost surely, and so at least 6 · 2−γdn vertices have been
deleted because they had less than 0.99d neighbors in H in some color class (other
than their own). Consider the first time during the deletion process where there
exists a subset X of a color class Vi of cardinality 2−γdn, and a j ∈ {1, 2, 3} − {i}
such that every vertex of X has been deleted because it had less than 0.99d neighbors
in the remaining subset of Vj . Let Y be the set of vertices of Vj deleted so far. Then

1740 NOGA ALON AND NABIL KAHALE

|Y | ≤ |J | + 2|X| ≤ 3|X|. Note that every vertex in X has less than 0.99d neighbors
in Vj − Y . We therefore obtain a contradiction by applying Lemma 2.6 to (X,Y).

2.3. The third phase. We need the following lemma, which is an immediate
consequence of Lemma 2.5.

Lemma 2.8. Almost surely, there exists no subset U of V of size at most 0.001n
such that the graph induced on U has minimum degree at least d/2.

Lemma 2.9. Almost surely, by the end of the uncoloring procedure in phase 3 of
the algorithm, all vertices of H remain colored, and all colored vertices are properly
colored; i.e., any vertex colored i belongs to Wi. (We assume, of course, that the
numbering of the colors is chosen appropriately.)

Proof. By Proposition 2.4, almost surely all vertices of H are properly colored by
the end of phase 2. Since every vertex of H has at least 0.99d neighbors (in H) in
each color class other than its own, all vertices of H remain colored. Moreover, if a
vertex is wrongly colored at the end of the uncoloring procedure, then it has at least
d/2 wrongly colored neighbors. Assume for contradiction that there exists a wrongly
colored vertex at the end of the uncoloring procedure. Then the subgraph induced
on the set of wrongly colored vertices has minimum degree at least d/2, and hence it
must have at least 0.001n vertices by Lemma 2.8. However, since it does not intersect
H, it has at most 2−Ω(d)n vertices by Lemma 2.7, leading to a contradiction.

In order to complete the proof of correctness of the algorithm, it remains to show
that almost surely every connected component of the graph induced on the set of
uncolored vertices is of size at most log3 n. We prove this fact in the remainder of this

section. We note that it is easy to replace the term log3 n by O(log3 n
d), but for our

purposes the above estimate suffices. Also note that if p = o(logn/n) some of these
components are actually components of the original graph G, as for such value of p
the graph G is almost surely disconnected (and has many isolated vertices).

Lemma 2.10. Let K be a graph, (V1, V2, V3) a partition of the vertices of K into
three disjoint subsets, i an integer, and L the set of vertices of K that remain after
repeatedly deleting the vertices having less than i neighbors in V1, V2, or V3. Then
the set L does not depend on the order in which vertices are deleted.

Proof. Let L be the set of vertices that remain after a deletion process according
to a given order. Consider a deletion process according to a different order. Since
every vertex in L has at least i neighbors in L∩V1, L∩V2, and L∩V3, no vertex in L
will be deleted in the second deletion process (otherwise, we obtain a contradiction by
considering the first vertex in L deleted). Therefore, the set of vertices that remain
after the second deletion process contains L and thus equals L by symmetry.

Lemma 2.10 implies that H does not depend on the order in which vertices are
deleted.

Proposition 2.11. Almost surely the largest connected component of the graph
induced on V −H has at most log3 n vertices.

Proof. Let T be a fixed tree on log3 n vertices of V all of whose edges have their
two endpoints in distinct color classes Wi, Wj , 1 ≤ i < j ≤ 3. Our objectives are to
estimate the probability that G contains T as a subgraph that does not intersect H
and to show that this probability is sufficiently small to ensure that, almost surely,
the above will not occur for any T . This property would certainly hold if V − H
were a random subset of V of cardinality 2−Ω(d)n. Indeed, if this were the case, the
probability that G contains T as a subgraph that does not intersect H would be upper
bounded by the probability 2−Ω(d|T |) that T is a subset of V −H times the probability
(d/n)|T |−1 that T is a subgraph of G. This bound is sufficiently small for our needs.

COLORING RANDOM 3-COLORABLE GRAPHS 1741

Although V −H is not a random subset of V , we will be able to show a similar bound
on the probability that G contains T as a subgraph that does not intersect H. To
simplify the notation, we let T denote the set of edges of the tree. Let V (T) be the
set of vertices of T , and let I be the subset of all vertices v ∈ V (T) whose degree in T
is at most 4. Since T contains |V (T)| − 1 edges, |I| ≥ |V (T)|/2. Let H ′ be the subset
of V obtained by the following procedure, which resembles that of producing H (but
depends on V (T)− I). First, set H ′ to be the set of vertices having at most 1.01d− 4
neighbors in G in each color class Vi. Then delete from H ′ all vertices of V (T) − I.
Then, repeatedly delete any vertex in H ′ having less than 0.99d neighbors in H ′ in
some color class (other than its own).

Lemma 2.12. Let F be a set of edges, each having endpoints in distinct color
classes Wi, Wj. Let H(F ∪ T) be the set obtained by replacing E by F ∪ T in our
definition of H, and H ′(F) be the set obtained by replacing E by F in our definition
of H ′. Then H ′(F) ⊆ H(F ∪ T).

Proof. First, we show that the initial value of H ′(F), i.e., the value obtained after
deleting the vertices with more than 1.01d − 4 neighbors in a color class of G and
after deleting the vertices in V (T) − I, is a subset of the initial value of H(F ∪ T).
Indeed, let v be any vertex that does not belong to the initial value of H(F ∪T), i.e.,
v has more than 1.01d neighbors in some color class of (V, F ∪T). We distinguish two
cases:

1. v ∈ V (T)− I. In this case, v does not belong to the initial value of H ′(F).
2. v 6∈ V (T) − I. Then v is incident with at most 4 edges of T , and so it has

more than 1.01d− 4 neighbors in some color class in (V, F).
In both cases, v does not belong to the initial value of H ′(F). This implies the
assertion of the lemma, since the initial value of H ′(F) is a subgraph of the initial
value of H(F ∪ T) and hence, by Lemma 2.10, any vertex which will be deleted in
the deletion process for constructing H will be deleted in the corresponding deletion
process for producing H ′ as well.

Lemma 2.13.

Pr[T is a subgraph of G and V (T) ∩H = ∅]
≤ Pr[T is a subgraph of G] Pr[I ∩H ′ = ∅].

Proof. It suffices to show that

Pr[I ∩H = ∅|T is a subgraph of G] ≤ Pr [I ∩H ′ = ∅].
However, by Lemma 2.12

Pr[I ∩H ′ = ∅] =
∑

F :I∩H′(F)=∅
Pr[E(G) = F]

≥
∑

F :I∩H(F∪T)=∅
Pr[E(G) = F]

=
∑

F ′:F ′∩T=∅,I∩H(F ′∪T)=∅
Pr[E(G)− T = F ′]

=
∑

F ′:F ′∩T=∅,I∩H(F ′∪T)=∅
Pr[E(G)− T = F ′ | T is a subgraph of G]

= Pr[I ∩H = ∅|T is a subgraph of G],

1742 NOGA ALON AND NABIL KAHALE

where F ranges over the sets of edges with endpoints in different color classes, and
F ′ ranges over those sets that do not intersect T . The third equation follows by
regrouping the edge-sets F according to F ′ = F − T and noting (the obvious fact)
that, for a given set F ′ that does not intersect T , the probability that E(G) = F for
some F such that F − T = F ′ is equal to Pr[E(G) − T = F ′]. The fourth equation
follows from the independence of the events E(G) − T = F ′ and T is a subgraph
of G.

Returning to the proof of Proposition 2.11, we first note that we can assume,
without loss of generality, that d ≤ β logn, for some constant β > 0 (otherwise
H = V). If this inequality holds then, by modifying the arguments in the proof of
Lemma 2.7, one can show that each of the graphs H ′ (corresponding to the various
choices of V (T)−I) misses at most 2−Ω(d)n vertices in each color class, with probability

at least 1−2−n
Θ(1)

. Since the distribution of H ′ depends only on V (T)− I (assuming
the Wi’s are fixed), it is not difficult to show that this implies that Pr[I ∩H ′ = ∅] is
at most 2−Ω(d|I|). Since |I| ≥ |V (T)|/2 and since the probability that T is a subgraph
of G is precisely (d/n)|V (T)|−1 we conclude, by Lemma 2.13, that the probability of
there existing some T of size log3 n which is a connected component of the induced
subgraph of G on V −H is at most 2−Ω(d log3 n)(d/n)log3 n−1 multiplied by the number
of possible trees of this size, which is(

3n

log3 n

)
(log3 n)log3 n−2.

Therefore, the required probability is bounded by(
3n

log3 n

)
(log3 n)log3 n−22−Ω(d log3 n)

(
d

n

)log3 n−1

= O(1/nΩ(d)),

completing the proof.

3. Bounding the eigenvalues. In this section, we prove Proposition 2.1. Let
G = (V,E), A, p, d, λi, ei,W1,W2,W3 be as in section 2. We begin with the following
lemma.

Lemma 3.1. There exists a constant β > 0 such that, almost surely, for any
subset X of 2−βdn vertices, e(X,V) ≤ 5d|X|.

Proof. As in the proof of Lemma 2.6, the probability that there exists a subset
X of cardinality εn such that e(X,V) > 5d|X| is at most(

3n

εn

)
2−Ω(dεn) ≤ 23H(ε/3)n2−Ω(dεn) = 2−Ω(dεn)

if log(1/ε) < d/b, where b is a sufficiently large constant. Therefore, if β is a sufficiently
small constant, this probability goes to 0 as n goes to infinity.

Proof of Proposition 2.1. Parts (i) and (ii) are simple. By the variational definition
of eigenvalues (see [19, p. 99]), λ1 is simply the maximum of xtAx/(xtx) where the
maximum is taken over all nonzero vectors x. Therefore, by taking x to be the all-1
vector we obtain the well-known result that λ1 is at least the average degree of G′. By
the known estimates for binomial distributions, the average degree of G is (1+o(1))2d.
On the other hand, Lemma 3.1 can be used to show that |E − E′| ≤ 2−Ω(d)n, as it
easily implies that the number of vertices of degree greater than 5d in each color class
of G is almost surely less than 2−βdn. Hence the average degree of G′ is at least
(1− 2−Ω(d))2d. This proves (i).

COLORING RANDOM 3-COLORABLE GRAPHS 1743

The proof of (ii) is similar. It is known [19, p. 101] that

λ3n−1 = min
F

max
x∈F,x6=0

xtAx

xtx
,

where the minimum is taken over all two-dimensional subspaces F of R3n. Let F
denote the two-dimensional subspace of all vectors x = (xv : v ∈ V) satisfying xv = αi
for all v ∈Wi, where α1 + α2 + α3 = 0. For x as above,

xtAx = 2α1α2e
′(W1,W2) + 2α2α3e

′(W2,W3) + 2α1α3e
′(W1,W3),

where e′(Wi,Wj) denotes the number of edges of G′ between Wi and Wj . Almost
surely e′(Wi,Wj) ≥ (1 − 2−Ω(d))nd for all 1 ≤ i < j ≤ 3, and since xtx =
n(α2

1 + α2
2 + α2

3) = −2n(α1α2 + α2α3 + α1α3) it follows that xtAx/(xtx) ≤
−(1 − 2−Ω(d))d almost surely for all x ∈ F , implying that λ3n ≤ λ3n−1 ≤
−(1− 2−Ω(d))d and establishing (ii).

The proof of (iii) is more complicated. Its assertion for somewhat bigger p (for
example, for p ≥ log6 n/n) can be deduced from the arguments of [10]. To prove it
for the graph G′ and p ≥ c/n we use the basic approach of Friedman, Kahn, and
Szemerédi in [11], where they show that the second largest eigenvalue in absolute
value of a random d-regular graph is almost surely O(

√
d). (Also see [9] for a different

proof.) Since in our case the graph is not regular, a few modifications are needed.
Our starting point is again the variational definition of the eigenvalues, from which
we will deduce that it suffices to show that, almost surely, the following holds.

Lemma 3.2. Let S be the set of all unit vectors x = (xv : v ∈ V) for which∑
v∈Wj

xv = 0 for j = 1, 2, 3, then |xtAx| ≤ O(
√
d) for all x ∈ S.

The matrix A consists of nine blocks arising from the partition of its rows and
columns according to the classes Wj . It is clearly sufficient to show that the contri-

bution of each block to the sum xtAx is bounded, in absolute value, by O(
√
d). This,

together with a simple argument based on ε-nets (see [11, Proposition 2.1]) can be
used to show that Lemma 3.2 follows from the following statement.

Fix ε > 0, say ε = 1/2, and let T denote the set of all vectors x of length n, every
coordinate of which is an integral multiple of ε/

√
n, where the sum of coordinates is

zero and the l2-norm is at most 1. Let B be a random n by n matrix with 0, 1 entries,
where each entry of B, randomly and independently, is 1 with probability d/n.

Lemma 3.3. If d exceeds a sufficiently large absolute constant, then almost surely,
|xtBy| ≤ O(

√
d) for every x, y ∈ T for which xu = 0 if the corresponding row of B

has more than 5d nonzero entries and for which yv = 0 if the corresponding column
of B has more than 5d nonzero entries.

The last lemma is proved, as in [11], by separately bounding the contribution
of terms xuyv with small absolute values and the contribution of similar terms with
large absolute values. Here is a description of the details that differ from those that
appear in [11]. Let C denote the set of all pairs (u, v) with |xuyv| ≤

√
d/n and let

X =
∑

(u,v)∈C xuB(u, v)yv. As in [11], one can show that the absolute value of the

expectation of X is at most
√
d. Next, one has to show that with high probability

X does not deviate from its expectation by more than c
√
d. This is different from

(and in fact, somewhat easier than) the corresponding result in [11], since here we
are dealing with independent random choices. It is convenient to use the following
variant of the Chernoff bound.

Lemma 3.4. Let a1, . . . , am be (not necessarily positive) reals, and let Z be the
random variable Z =

∑m
i=1 εiai, where each εi is chosen, randomly and independently,

1744 NOGA ALON AND NABIL KAHALE

to be 1 with probability p and 0 with probability 1 − p. Suppose
∑m

i=1 a
2
i ≤ D and

suppose |Sai| ≤ cecpD for some positive constants c, S. Then Pr[|Z − E(Z)| > S] ≤
2e−S

2/(2pecD).
For the proof, one first proves the following.
Lemma 3.5. Let c be a positive real. Then, for every x ≤ c,

ex ≤ 1 + x+
ec

2
x2.

Proof. Define f(x) = 1 + x + ec

2 x
2 − ex. Then f(0) = 0, f ′(x) = 1 + ecx − ex,

and f ′′(x) = ec − ex. Therefore, f ′′(x) ≥ 0 for all x ≤ c, and as f ′(0) = 0, this
shows that f ′(x) ≤ 0 for x < 0 and f ′(x) ≥ 0 for c ≥ x > 0, implying that f(x) is
nonincreasing for x ≤ 0 and nondecreasing for c ≥ x ≥ 0. Thus f(x) ≥ 0 for all x ≤ c,
as needed.

Proof of Lemma 3.4. Define λ = S
ecpD ; then, by assumption, λai ≤ c for all i.

Therefore, by the above lemma,

E(eλZ) =
m∏
i=1

[peλai + (1− p)]

=
m∏
i=1

[1 + p(eλai − 1)]

≤
m∏
i=1

[
1 + p

(
λai +

ec

2
λ2a2

i

)]

≤ exp

(
pλ

m∑
i=1

ai + p
ec

2
λ2

m∑
i=1

a2
i

)

≤ eλE(Z)+ pec

2 λ2D.

Therefore,

Pr[(Z − E(Z)) > S] = Pr[eλ(Z−E(Z)) > eλS]

≤ e−λSE(eλ(Z−E(Z)))

≤ e−λS+ pec

2 λ2D

= e−
S2

2pecD .

Applying the same argument to the random variable defined with respect to the reals
−ai, the assertion of the lemma follows.

Using Lemma 3.4, it is not difficult to deduce that almost surely the contribution
of the pairs in C to |xtBy| is O(

√
d). This is because we can simply apply the lemma

with m = |C|, with the ai’s being all the terms xuyv where (u, v) ∈ C, with p = d/n,
D = 1, and S = cec

√
d for some c > 0. Since here |Sai| ≤ cec

√
d
√
d/n = cecpD,

we conclude that for all fixed vectors x and y in T , the probability that X deviates
from its expectation (which is O(

√
d)) by more than cec

√
d is smaller than 2e−c

2ecn/2,
and since the cardinality of T is only bn for some absolute constant b = b(ε), one can

COLORING RANDOM 3-COLORABLE GRAPHS 1745

choose c so that X would almost surely not deviate from its expectation by more than
cec

√
d.
The contribution of the terms xuyv, whose absolute values exceed

√
d/n, can be

bounded by following the arguments of [11] with a minor modification arising from
the fact that the maximum number of ones in a row (or column) of B can exceed d
(but can never exceed 5d in a row or a column in which the corresponding coordinates
xu or yv are nonzero). We sketch the argument below, beginning with the following
lemma.

Lemma 3.6. There exists a constant C such that, with high probability, for any
distinct color classes V1, V2, and any subset U of V1 and any subset W of V2 such
that |U | ≤ |W |, at least one of the following two conditions holds:

1. e′(U,W) ≤ 10µ(U,W),
2. e′(U,W) log(e′(U,W)/µ(U,W)) ≤ C|W | log(n/|W |),

where e′(U,W) is the number of edges in G′ between U and W , and µ(U,W) =
|U | |W |d/n is the expected number of edges in G between U and W .

Proof. Condition 1 is clearly satisfied if |W | ≥ n/2, since the maximum degree
in G′ is at most 5d. So we can assume without loss of generality that 0 < |W | ≤
n/2. Given two subsets U and W satisfying the requirements of the lemma, define
β = β(|U |, |W |) to be the unique positive real number such that βµ(U,W) log β =
C|W | log(n/|W |) (the constant C will be determined later). Condition 2 is equivalent
to e′(U,W) ≤ βµ(U,W). Thus U,W violate condition 1 as well as condition 2 only if
e′(U,W) > β′µ(U,W), where β′ = max(10, β). Hence, by standard Chernoff bounds,
the probability of this event is at most e−γβ

′µ(U,W) log β′ ≤ (|W |/n)γC|W | for some
absolute constant γ > 0. Denoting |W |/n by b, the probability that there exist two
subsets U and W that do not satisfy either condition is at most

6
∑

b: bn integer ≤n/2

(
n

bn

)2

bγCbn = 6
∑

b: bn integer ≤n/2
2O(b log(1/b)n)bγCbn

= n−Ω(1)

if C is a sufficiently large constant.
Friedman, Kahn, and Szemerédi [11] show that for any d-regular graph satisfy-

ing the conditions of Lemma 3.6 (without restriction on the ranges of U and W),
the contribution of the terms xuyv whose absolute values exceed

√
d/n is O(

√
d).

Up to replacing some occurrences of d by 5d, the same proof shows that, for any
3-colorable graph of maximum degree 5d satisfying the conditions of Lemma 3.6, the
contribution of the terms xuyv whose absolute values exceed

√
d/n is O(

√
d). This

implies the assertion of Lemma 3.3, which implies Lemma 3.2.
To deduce part (iii) of Proposition 2.1, we need the following lemma.
Lemma 3.7. Let F denote, as before, the two-dimensional subspace of all vectors

x = (xv : v ∈ V) satisfying xv = αi for all v ∈ Wi, where α1 + α2 + α3 = 0. Then,
almost surely, for all f ∈ F we have ‖(A+ dI)f‖2 = O(d‖f‖2).

Proof. Let x, y be as in the proof of Lemma 2.3. Note that xty = 0 and that both
‖x‖2 and ‖y‖2 are Θ(n). Thus, every vector f ∈ F can be expressed as the sum of two
orthogonal vectors x′ and y′ proportional to x and y, respectively. Lemma 2.3 shows
that ‖(A+ dI)y′‖2 = O(d‖y′‖2), which implies that ‖(A+ dI)y′‖2 = O(d‖f‖2), since
‖f‖2 = ‖x′‖2 + ‖y′‖2. Similarly, it can be shown that ‖(A + dI)x′‖2 = O(d‖f‖2).
We conclude the proof of the lemma using the triangle inequality ‖(A + dI)f‖ ≤
‖(A+ dI)x′‖+ ‖(A+ dI)y′‖.

1746 NOGA ALON AND NABIL KAHALE

Table 1
Implementation results.

Number of vertices d

1000 12

10000 10

100000 8

We now show that λ2 ≤ O(
√
d) by using the formula λ2 = minH maxx∈H,x6=0

xtAx/(xtx), where H ranges over the linear subspaces of R3n of codimension 1. In-
deed, let H be the set of vectors whose sum of coordinates is 0. Any x ∈ H is of the
form f + s, where f ∈ F and s is a multiple of a vector in S, and so

xtAx = f tAf + 2stAf + stAs

= f tAf + 2st(A+ dI)f + stAs

≤ −(1− 2−Ω(d))d‖f‖2 + 2‖s‖ ‖(A+ dI)f‖+O(
√
d)‖s‖2

≤ O(
√
d‖s‖ ‖f‖) +O(

√
d)‖s‖2

≤ O(
√
d(‖s‖2 + ‖f‖2))

= O(
√
d‖x‖2).

This implies the desired upper bound on λ2.
The bound |λ3n−2| ≤ O(

√
d) can be deduced from similar arguments, namely by

showing that xtAx/(xtx) ≥ −Θ(
√
d) for any x ∈ F⊥. This completes the proof of

Proposition 2.1.

4. Implementation and experimental results. We have implemented the
following tuned version of our algorithm. The first two phases are as described in
section 1. In the third phase, we find the minimum i such that, after repeatedly
uncoloring every vertex colored j that has less than i neighbors colored l, for some
l ∈ {1, 2, 3}−{j}, the algorithm can find a proper coloring using brute-force exhaustive
search on every component of uncolored vertices. If the brute-force search takes
more steps than the first phase (up to a multiplicative constant), the algorithm fails.
Otherwise, it outputs a legal coloring. The eigenvectors e3n and e3n−1 are calculated
approximately using an iterative procedure. The coordinates of the initial vectors are
independent random variables uniformly chosen in [0, 1].

The range of values of p where the algorithm succeeded was in fact considerably
larger than what our analysis predicts. Table 1 shows some values of the parameters
for which we tested our algorithm. For each of these parameters, the algorithm was
run on more than one hundred graphs drawn from the corresponding distribution and
successfully found a proper coloring for all these tests. The running time was less
than six minutes on a Sun SPARCstation 2 for the largest graphs. The algorithm
failed for some graphs drawn from distributions with smaller integral values of d than
the ones in the corresponding row. Note that the number of vertices is not a multiple
of 3; the size of one color class exceeds the others by 1.

5. Concluding remarks.
1. There are many heuristic graph algorithms based on spectral techniques but

very few rigorous proofs of correctness for any of those in a reasonable model of ran-
dom graphs. Our main result here provides such an example. Another example is

COLORING RANDOM 3-COLORABLE GRAPHS 1747

the algorithm of Boppana [7], who designed an algorithm for graph bisection based
on eigenvalues, and showed that it finds the best bisection almost surely in an ap-
propriately defined model of random graphs with a relatively small bisection width.
Aspvall and Gilbert [1] gave a heuristic for graph coloring based on eigenvectors of the
adjacency matrix, and showed that their heuristic optimally colors complete 3-partite
graphs as well as certain other classes of graphs with regular structure.

2. By modifying some of the arguments of section 2, we can show that if p is
somewhat bigger (p ≥ log3 n/n suffices) then almost surely the initial coloring V 0

i that
is computed from the eigenvectors e3n−1 and e3n in the first phase of our algorithm is
completely correct. In this case the last two phases of the algorithm are not needed.
By refining the argument in subsection 2.2, it can also be shown that if p > 10 logn/n,
the third phase of the algorithm is not needed, and the coloring obtained by the end
of the second phase will almost surely be correct.

3. We can show that a variant of our algorithm finds, almost surely, a proper
coloring in the model of random regular 3-colorable graphs in which one randomly
chooses d perfect matchings between each pair of distinct color classes, when d is a
sufficiently large absolute constant. Here, in fact, the proof is simpler, as the smallest
two eigenvalues (and their corresponding eigenspaces) are known precisely, as noted
in subsection 1.2.

4. The results easily extend to the model in which each vertex first picks a
color randomly, independently, and uniformly from among the three possibilities
and, next, every pair of vertices of distinct colors becomes an edge with probability
p(> c/n).

5. If G = G3n,p,3 and p ≤ c/n for some small positive constant c, it is not
difficult to show that almost surely G does not have any subgraph with minimum
degree at least 3, and hence it is easy to 3-color it by a greedy-type (linear-time)
algorithm. For values of p that are bigger than this c/n but satisfy p = o(logn/n),
the graph G is almost surely disconnected, and has a unique component of Ω(n)
vertices, which is called the giant component in the study of random graphs (see, e.g.,
[2], [4]). All other components are almost surely sparse, i.e., they contain no subgraph
with minimum degree at least 3 and can thus be easily colored in total linear time.
Our approach here suffices to find, almost surely, a proper 3-coloring of the giant
component (and hence of the whole graph) for all p ≥ c/n, where c is a sufficiently
large absolute constant, and there are possible modifications of it that may even work
for all values of p. At the moment, however, we are unable to obtain an algorithm
that provably works for all values of p almost surely. Note that, for any constant c,
if p < c/n then the greedy algorithm will almost surely color G3n,p,3 with a constant
number of colors. Thus, our result implies that G3n,p,3 can be almost surely colored
in polynomial time with a constant number of colors for all values of p.

6. Our basic approach easily extends to k-colorable graphs, for every fixed k,
as follows. Phases 2 and 3 of the algorithm are essentially the same as in the case
k = 3. Phase 1 needs to be modified to extract an approximation of the coloring.
Let ei, i ≥ 1, be an eigenvector of G′ corresponding to its ith largest eigenvalue
(replace 5d by 5kd in the definition of G′). Find vectors x1, x2, . . . , xk+1 of norm√
kn in Span(e1, en, en−1, . . . , en−k+2) such that xi =

√
knei and (xi, xj) = −n for

1 ≤ i < j ≤ k + 1. For 2 ≤ i ≤ n, and any z, let Wε be the set of vertices whose
coordinates in xi are in (z − ε, z + ε). If, for some i and z, both |Wεk | and |Wεk/2|
deviate from n by at most βkn/d, where εk and βk are constants depending on k, color
the elements in Wεk with a new color and delete them from the graph. Repeat this

1748 NOGA ALON AND NABIL KAHALE

process until the number of vertices left is O(n/d), and color the remaining vertices
arbitrarily.

7. The existence of an approximation algorithm based on the spectral method for
coloring arbitrary graphs is a question that deserves further investigation (and which
we do not address here). Recently, improved approximation algorithms for graph
coloring have been obtained using semidefinite programming [14], [5].

Acknowledgment. We thank two anonymous referees for several suggestions
which improved the presentation of the paper.

REFERENCES

[1] B. Aspvall and J. R. Gilbert, Graph coloring using eigenvalue decomposition, SIAM J. Alg.
Discrete Meth., 5 (1984), pp. 526–538.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley, New York, 1991.
[3] A. Blum, Some tools for approximate 3-coloring, in Proc. 31st IEEE Symposium on the Foun-

dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990,
pp. 554–562.

[4] B. Bollobás, Random Graphs, Academic Press, New York, 1985.
[5] A. Blum and D. Karger, An Õ(n3/14)-coloring algorithm for 3-colorable graphs, Inform.

Process. Lett., 61 (1997), pp. 49–53.
[6] A. Blum and J. H. Spencer, Coloring random and semi-random k-colorable graphs, J. Algo-

rithms, 19 (1995), pp. 204–234.
[7] R. Boppana, Eigenvalues and graph bisection: An average case analysis, in Proc. 28th IEEE

Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1987, pp. 280–285.

[8] M. E. Dyer and A. M. Frieze, The solution of some random NP-hard problems in polynomial
expected time, J. Algorithms, 10 (1989), pp. 451–489.

[9] J. Friedman, On the second eigenvalue and random walks in random d-regular graphs, Com-
binatorica, 11 (1991), pp. 331–362.

[10] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica, 1
(1981), pp. 233–241.

[11] J. Friedman, J. Kahn, and E. Szemerédi, On the second eigenvalue in random regular graphs,
in Proc. 21st ACM Symposium on Theory of Computing, Association for Computing Ma-
chinery, New York, 1989, pp. 587–598.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, San Francisco, 1979.

[13] R. Karp, Reducibility Among Combinatorial Problems, R. E. Miller and J. W. Thatcher, eds.,
Plenum Press, New York, 1972.

[14] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite pro-
gramming, in Proc. 35th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1994, pp. 2–13.

[15] L. Kucera, Expected behavior of graph colouring algorithms, in Lecture Notes Comput. Sci.
56, Springer-Verlag, New York, 1977, pp. 447–451.

[16] A. D. Petford and D. J. A. Welsh, A randomised 3-colouring algorithm, Discrete Math., 74
(1989), pp. 253–261.

[17] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, New York, 1985, Section
10.4.

[18] J. S. Turner, Almost all k-colorable graphs are easy to color, J. Algorithms, 9 (1988), pp. 63–
82.

[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

A FAST ALGORITHM FOR THE COMPUTATION AND
ENUMERATION OF PERFECT PHYLOGENIES∗

SAMPATH KANNAN† AND TANDY WARNOW†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1749–1763, December 1997 010

Abstract. The perfect phylogeny problem is a classical problem in computational evolutionary
biology, in which a set of species/taxa is described by a set of qualitative characters. In recent
years, the problem has been shown to be NP-complete in general, while the different fixed parameter
versions can each be solved in polynomial time. In particular, Agarwala and Fernández-Baca have
developed an O(23r(nk3 + k4)) algorithm for the perfect phylogeny problem for n species defined by
k r-state characters [SIAM J. Comput., 23 (1994), pp. 1216–1224]. Since, commonly, the character
data are drawn from alignments of molecular sequences, k is the length of the sequences and can thus
be very large (in the hundreds or thousands). Thus, it is imperative to develop algorithms which run
efficiently for large values of k. In this paper we make additional observations about the structure
of the problem and produce an algorithm for the problem that runs in time O(22rk2n). We also
show how it is possible to efficiently build a structure that implicitly represents the set of all perfect
phylogenies and to randomly sample from that set.

Key words. evolutionary trees, perfect phylogeny, combinatorial enumeration, dynamic pro-
gramming, polynomial delay algorithms

AMS subject classifications. 05C05, 05C30, 05C85, 68Q20

PII. S0097539794279067

1. Introduction. A fundamental problem in biology is that of inferring the evo-
lutionary history of a set S of species, each of which is specified by the set of traits
or characters that it exhibits. Information about evolutionary history can be conve-
niently represented by an evolutionary or phylogenetic tree, often referred to simply
as a phylogeny. In one of the standard models, the problem can be expressed math-
ematically as follows. Let C denote the characters defining the species set S, and Ac

the set of states of character c. Let |C| = k and maxc|Ac| = r. For ease of discussion
we will assume that Ac ∈ {1, 2, . . . , r}, so that each species is identified with a vector
in Zk (where Z denotes the integers) and c(s) is referred to as the state of character
c for s or the state of s on character c.

The input to the perfect phylogeny problem is therefore an n × k matrix M ,
where Mi,j is the state of the ith species on the jth character. The perfect phylogeny
problem is to determine whether a given set of n distinct species S has a tree T with
the following properties:

(C1) S ⊆ V (T) ⊆ Zk;
(C2) every leaf in T is in S; and
(C3) for every c ∈ C and every j ∈ Ac, the set of all u ∈ V (T) such

that c(u) = j induces a subtree of T .
The tree T , if it exists, is called a perfect phylogeny for S, and the set of characters
C is said to be compatible. In the biology literature, the perfect phylogeny problem is
more commonly known as the character compatibility problem [8, 9, 14, 15], where it
was introduced in the 1950s.

∗ Received by the editors December 27, 1994; accepted for publication (in revised form) December
6, 1995.

http://www.siam.org/journals/sicomp/26-6/27906.html
† Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA

19104 (kannan@central.cis.upenn.edu, tandy@central.cis.upenn.edu). The first author was supported
in part by NSF grant CCR-9108969. The second author was supported in part by ARO grant
DAAL03-89-0031PRI.

1749

1750 SAMPATH KANNAN AND TANDY WARNOW

The perfect phylogeny problem was shown to be NP-complete by Bodlaender,
Fellows, and Warnow [3] and, independently, by Steel [18]. This fact suggests at least
two lines of attack: one is to restrict k, the number of characters; the other is to
restrict r.

The perfect phylogeny problem was shown to reduce to a graph-theoretic problem
in [5] called the triangulating colored graphs problem. The number of characters in an
instance I equals the number of colors in the corresponding graph GI . Algorithms
for the perfect phylogeny problem based upon the graph-theoretic formulation were
given in [4, 12, 16]. These algorithms are thus useful when the number of characters
in the input can be bounded.

In this paper, we pursue the second approach, in which the number of states is
bounded (as is the case for molecular data). Gusfield [11] gave an O(nk) algorithm
for r = 2, the binary character case. Dress and Steel [7] devised an O(nk2) algorithm
for r ≤ 3. Kannan and Warnow [13] gave an O(n2k) algorithm for r ≤ 4 (quaternary
characters). Agarwala and Fernández-Baca [1] give an O(23r(nk3 +k4)) algorithm for
the perfect phylogeny problem when the characters are restricted to having at most
r states.

We present an O(22rnk2) time algorithm for this problem. The algorithm we
present uses some of the same structure as that of [1] but uses additional lemmas
about the problem structure and different data structures to achieve the faster running
time.

Biomolecular data (such as DNA, RNA, or amino-acid sequences) define charac-
ters for which the maximum number of states is bounded by a small constant (r = 4
for DNA or RNA, and r = 20 for amino-acid sequences). As a consequence, effi-
cient algorithms for the perfect phylogeny problem for fixed numbers of states are of
particular importance in molecular phylogenies.

In most applications of computation in biology, it is not sufficient to know a single
optimal solution. Instead it is important to know the entire space of optimal solutions
(such information could be used, for example, to settle the African Eve hypothesis).
In the second half of this paper, we present algorithms that allow us to construct a
representation of this space. This representation can be used to count the number of
optimal solutions, enumerate all minimal optimal solutions, generate random optimal
solutions, and gather aggregate statistics about the set of optimal solutions.

2. Preliminaries. We state some definitions and briefly summarize the algo-
rithm of Agarwala and Fernández-Baca since our algorithm is a modification of theirs.
Several of these definitions appear in [1], and equivalent definitions to some of these
definitions can also be found in [13].

In the remainder of this section, we will let α denote an arbitrary character in C,
and we will refer to the states of α by α-states. We will use ∗ to denote a dummy
state for a character.

Definition 2.1. Suppose T is a perfect phylogeny and let p be some vertex in T .
We shall say that the α-state of p is forced if p lies on the path between leaves u and
v of T with α(u) = α(v).

Definition 2.2. A subset S′ ⊂ S is called a cluster if for every character α,
if ∃{x, y} ⊆ S′, {x′, y′} ⊆ S − S′ such that α(x) = α(x′) and α(y) = α(y′), then
α(x) = α(x′) (i.e., at most one α-state is “shared” by S′ and S − S′).

Definition 2.3. A cluster S′ is called a proper cluster if there is some character
α for which S′ does not share any α-state with S − S′.

In the subsequent definitions, we will be interested in defining the character states

PERFECT PHYLOGENY 1751

of internal nodes according to a canonical labeling; for this purpose, we will use ∗ to
indicate the dummy state of a character.

Definition 2.4. Let G be a cluster. We will denote by Sv(G) the unique vector
v ∈ (Z∪{∗})k such that ∀α ∈ C, if ∃a ∈ G, b ∈ S−G,α(a) = α(b), then α(v) = α(a),
and otherwise α(v) = ∗. Sv(G) is called the splitting vector of G.

Definition 2.5. If G1 ⊂ G and both G and G1 are clusters, then G1 is said
to be compatible with G if for all characters for which both Sv(G) and Sv(G1) are
set to nondummy states, they are set to the same state. We will also say that G1 is
compatible with the vector Sv(G) in this case.

The definitions of splitting vectors and compatibility can be extended as follows.

Definition 2.6. If G,G1 are proper clusters and G1 ⊂ G is compatible with G,
then the splitting vector Sv(G,G1) is defined as follows: for any character α having
a shared state i between G and S −G or between G1 and S −G1, α(Sv(G,G1)) = i.

Since G1 is compatible with G, there will be no conflict in setting the states of
Sv(G,G1).

Sv(G,G1) is obtained very simply from Sv(G) and Sv(G1). For any character
on which either of the latter two vectors has a nondummy state, Sv(G,G1) is also set
to that state. Otherwise Sv(G,G1) has the dummy state. We denote this by saying
that Sv(G,G1) = Sv(G)⊕ Sv(G1).

This extension is motivated by the following scenario. If v is an internal node of
degree at least three in a perfect phylogeny T , then the removal of v splits T into three
or more components. The definition of Sv(G,G1) gives a labeling for a node v in a
perfect phylogeny (if such a node exists) whose removal will split T into components,
some of which union to G1 and others of which union to G − G1. Note that, in
fact, in an actual partition into components some of the dummy states of v might be
forced. To see this, consider the case where G−G1 partitions into G11, G12, . . . , G1t,
where G1i and G1j share an α-state i although no α-state is shared between any two of
S−G,G−G1, and G1; in this situation, the α-state for the splitting vector Sv(G,G1)
is the dummy state, but the actual setting for the node v rooting the subtree defined
by G is i for this particular partition.

Definition 2.7. A perfect phylogeny P for S is minimal if for all edges e ∈ E(P),
the topology which results by contracting the edge e in P cannot be vertex-labeled to
make a perfect phylogeny.

Clearly, a set S has a perfect phylogeny if and only if it has a minimal perfect
phylogeny.

The relevance of proper clusters to the perfect phylogeny problem and to the
algorithm of [1] is shown in the following lemma.

Lemma 2.8 (see [1, Lemma 1]). Let T be a minimal perfect phylogeny for S and
let T ′ be an arbitrary subtree of T obtained as a component by the removal of an edge
e = (u, v) of T . Let S′ be the subset of species from S labeling nodes of T ′. Then S′

is a proper cluster.

Proof. S′ must be a cluster, since at most one state of each character can be
shared across the edge e. Furthermore, if S′ is not a proper cluster, then both u and
v must be identically labeled (since on each character their state is forced to be the
shared state between S′ and S−S′). Thus an equivalent “reduced” perfect phylogeny
could be obtained by collapsing edge e and identifying nodes u and v. Since T is
presumed to be a minimal perfect phylogeny, it follows that for any subtree T ′ as
above, the subset S′ of S labeling internal nodes of T ′ forms a proper cluster.

We need one more definition.

1752 SAMPATH KANNAN AND TANDY WARNOW

Definition 2.9. A proper cluster G is good if the set G∪{Sv(G)} has a perfect
phylogeny. A pair of proper clusters (G,G1) for which G1 ⊂ G and G1 is compatible
with G is good if there exists a perfect phylogeny for G with an internal node v labeled
by Sv(G,G1) such that the removal of v partitions G into subsets (defined by the
species from S labeling nodes of each component tree) some of which union to G1.

Using this idea, the algorithm of [1] works, in a bottom-up dynamic programming
fashion, to determine which proper clusters are good.

In [1] it is shown that if G1 is a good proper cluster and G is another proper
cluster containing G1 and compatible with G1, then we can determine (in polynomial
time) if (G,G1) is good.

3. The algorithm of Agarwala and Fernández-Baca. Before applying any
of the dynamic programming techniques they develop, Agarwala and Fernández-Baca
first determine if any of the species in S can occupy an internal node in the perfect
phylogeny they construct. This can be determined in polynomial time (in fact, in
O(nk) time, as we will show later). If any node can be an internal node, they reduce
to subproblems. The more difficult case is where no species in S can be an internal
node in any perfect phylogeny for S.

The algorithm in [1] determines, for all proper clusters G′ of smaller cardinality
than G, whether G′ is good. Now, in considering the pair of proper clusters (G,G1),
there are two cases. If G2 = G −G1 is also a proper cluster, then (G,G1) is good if
and only if G2 is also good, and this can be determined by a simple table look-up.
If on the other hand, G2 is not a proper cluster, then Sv(G,G1) is forced for all
characters. The algorithm then loops over all possible good proper clusters G′ ⊂ G2

that are compatible with Sv(G,G1). Then (G,G1) is good if and only if G2 is the
disjoint union of a set of good proper clusters G′ ⊆ G2.

The determination of whether a proper cluster G is good requires finding a proper
cluster G1 which is contained in and compatible with G, such that (G,G1) is good. In
[1], this determination is accomplished by checking all potential proper clusters G1.
For each pair of proper clusters (G,G1), the algorithm may spend 2rk time going over
all possible proper clusters G2 and for each of these clusters spends O(n + k) time
determining whether G2 is compatible with Sv(G,G1). Thus the overall running time
of the algorithm in [1] is O(23rk3(k + n)).

4. Our improvements to the algorithm. While most of the innovation in our
algorithm occurs by exploiting structural properties of the solution so as to reduce the
number of loops as well as to speed up the inner loop, in order to achieve an overall
cost of O(22rnk2) time, we will also do some preprocessing of the data.

4.1. Preprocessing. Given a vector s ∈ A1×· · ·×Am, we can define an equiva-
lence relation Es on S as the transitive closure of the following relation R: for a, b ∈ S,
(a, b) ∈ R if ∃c ∈ C s.t. c(a) = c(b) 6= c(s) 6= ∗. It is clear from this definition that two
species in S which are in the same equivalence class must be in the same component of
T −{s} for any perfect phylogeny on S ∪ {s}. We denote the operation of computing
the equivalence classes by S/s.

We assume that the species are given in some fixed order s1, s2, . . . , sn. As in the
Agarwala and Fernández-Baca algorithm, we first determine whether any s ∈ S can
be internal nodes, and if so reduce to subproblems. The additional preprocessing of
the data we perform involves the following steps:

1. Compute all proper clusters.
2. Sort the proper clusters lexicographically and store them in a table.

PERFECT PHYLOGENY 1753

3. Viewing each proper cluster as a lexicographically ordered sequence of species,
build a trie for the proper clusters which is pruned so that each internal node
has at least one proper cluster that lies below it. Also, any node of the trie
that represents a proper cluster will have a pointer to that proper cluster in
the table.

4. For every proper cluster G compute Sv(G).
5. For each vector Sv(G) compute S/Sv(G).

Running time.
Step 1. Each proper cluster partitions the species set S by partitioning the states

of some character. Let L be the number of proper clusters. There are O(2r) proper
clusters for each character, and hence only O(2rk) proper clusters in all; thus L is
O(2rk). Generating the set of clusters involves generating all possible subsets of
character states and determining which ones are clusters. Generating the subsets
takes O(n) time per subset. To check whether a subset A is a cluster we list each
state of each character which appears in A. This takes O(nk) time. We then compare
the list for A and S −A to check that for each character, at most one state is shared
between A and S−A. This takes O(kr) time, which is O(nk) since r ≤ n. Hence the
total cost for generating all the clusters is O(nk) per cluster, and so this step uses
O(2rk2n) time.

Step 2. Sorting the proper clusters lexicographically (using radix sort) costs
O(2rkn).

Step 3. Note that since each leaf of the trie is a proper cluster and since the depth
of the trie is at most n, there are at most O(2rkn) nodes in the trie. Also, a simple
traversal of the sorted list of proper clusters builds the trie in O(2rkn) steps.

Step 4. The computation of Sv(G) can be done in O(nk) steps. To do this, for
each character α build a table of size r, and go through the species in S noting (in
the table) which α-states are present in species in G and which α-states are present
in the species in S −G. (For instance, table entries could be initialized to 0, set to 1
if a species in G has the corresponding state, set to 2 if a species in S − G has that
state, and set to 3 if there are species in both sets having that state.) Now, we simply
check if there is any table entry which is a “3” and simply set Sv(G) to that state.
Otherwise Sv(G) is set to “∗.” Since we do O(nk) work per proper cluster, this costs
us O(2rnk2) time for Step 4.

Step 5. We need to compute S/Sv(G) in this step. We will show that for any
vector x we can compute S/x in O(nk) time.

Lemma 4.1. For any vector x, S/x can be computed in O(nk) time.
Proof. A straightforward implementation using UNION-FIND appears to take

O(nkα(nk, n)) time. We give a constructive proof of the O(nk) bound. For each
character, α such that α(x) is not the dummy state, we maintain information about
the equivalence class to which each state of α other than α(x) “belongs.” (A state of
α belongs to a class if there is some species in that class having the specified α-state.)
Note that, since two species which share an α-state other than α(x) must be in the
same equivalence class, this is well defined.

Now we process each species in turn taking O(k) time per species. When we look
at species s, for each character α we look to see if α(s) belongs to some equivalence
class. If so, we include s in that class and, for every character β on which β(x) is not
the dummy state, if β(s) 6= β(x), we include β(s) as a β-state of that class. If none
of the states of s belong to existing classes, we create a new class with s as the only
species in that class and we initialize the states of this class appropriately. Also, if
s belongs to more than one class, we union these classes and associate with the new

1754 SAMPATH KANNAN AND TANDY WARNOW

class the union of the set of states associated with each of the old classes. Since there
can be at most n unions and each union takes only O(k) time, the total cost for all
unions is at most O(nk). The other costs are at most O(k) per species and these also
result in a total cost of O(nk).

The computation of Step 5 costs us a total of O(2rnk2). We will represent the
equivalence classes of S/Sv(G) by a spanning forest TSv(G) on S, so that the compo-
nents of TSv(G) are the distinct equivalence classes of S/Sv(G).

Overall cost. Thus the total cost of the preprocessing is O(2rnk2).

4.2. Reducing to two nested loops. The algorithm of [1] has three nested
loops, each of which steps through all possible proper clusters in the worst case. Thus
the number of executions of the innermost loop becomes O(23rk3). The three loops
arise because for all possible proper clusters G, and for all possible proper clusters
G1 that are subsets of G, and for all possible proper clusters which are subsets of
G2 = G−G1 we execute the innermost loop. Since the cost of the innermost loop is
bounded byO(n+k), the overall cost of the [1] algorithm is therefore O(23r(nk3+k4)).

In this section we will show that we can reduce to only two nested loops, and
bring the cost of the innermost loop to O(n) through extensive preprocessing, thus
bringing the entire cost of the algorithm to O(22rnk2).

We begin with some lemmas.
Lemma 4.2. Let s be a vector such that none of its states are equal to the dummy

state. If s occurs as the label of an internal node in a minimal perfect phylogeny for
S and Q is an equivalence class of S/s, then Q is a proper cluster.

Proof. Let T be a minimal perfect phylogeny for S where s occurs as the label of
an internal node v. By a result in [2], Q is entirely contained in one of the subtrees of
T −{v}. Let TQ be this subtree. Without loss of generality, we may assume that the
leaf-set of TQ is exactly Q since if TQ contains leaves outside Q, these leaves can be
moved to a different component of T − {v}. Now, v is adjacent to a single node y in
TQ. Since T is minimal, we cannot contract the edge (v, y), so that for some character
α, α(v) and α(y) are both forced and different. However, then Q is a proper cluster,
since no state of α crosses the boundary of Q.

Theorem 4.3. Suppose G is a proper cluster, G1 ⊂ G a good proper cluster, and
G − G1 = G2 not a proper cluster. Let x = Sv(G,G1). Then (G,G1) is good if and
only if each Q ∈ G2/x is a good proper cluster.

Proof. Note that for each Q ∈ G2/x, the splitting vector, Sv(Q) is compatible
with x. Thus if each Q ∈ G2/x is good, then the perfect phylogenies for each of these
components, as well as the perfect phylogeny for G1, may be made to hang off the
node labeled x.

Conversely, suppose that (G,G1) is good, and let T be a minimal perfect phy-
logeny for S in which the species in G define an edge-removal-induced subtree TG and
G1 is the union of the leaves in a collection of subtrees off the root of TG (such a tree
exists by the fact that (G,G1) is good). The canonical labeling for the root of TG is
x. Since G−G1 is not a proper cluster, x is fully defined (by a lemma proved in [1])
i.e., none of its states are dummy states. By Lemma 4.2, each equivalence class Q of
S/x is a proper cluster. It is easy to verify that each Q ∈ S/x is also good and that
G2/x ⊂ S/x.

As a consequence of these lemmas, we can reduce the number of loops from three
to two.

Reducing the number of loops: Suppose G is a proper cluster, G1 ⊂ G is a
good proper cluster, and G2 = G−G1 is not a proper cluster.

PERFECT PHYLOGENY 1755

Let x = Sv(G,G1), and compute the equivalence classes Q of G2/x.

Report YES for G,G1 if and only if each of these equivalence classes is a good
proper cluster.

Else return NO.

4.3. Speeding up the inner loop. In the process of going from three nested
loops to two, we have increased the time of execution of the inner loop from O(n+ k)
in the algorithm of [1] to O(nk). We can avoid this blow-up using the information
computed during preprocessing. In fact, we will reduce the time for the inner loop
to O(n). Since k can be O(nr−1), this is significant. To see this, let T be a tree
with n leaves and 2n − 3 edges; each choice of r − 1 edges separates the tree into r
components, and thus defines a unique r-state character. Thus, we can define Ω(nr−1)
distinct characters that are consistent with a perfect phylogeny. Furthermore, most
data sets these days use characters derived from biomolecular sequences in which the
number of characters equals the length of the sequences in a multiple alignment, and
this number can be quite large (and significantly larger than the number of species).
Reducing the dependence on k here is important.

Consider how we execute the inner loop. We are given a pair of proper clusters
G,G1, and G1 ⊂ G. We need to see if (G,G1) is good (that is, if G has a perfect
phylogeny rooted at Sv(G,G1) in which G1 is the union of some of the subtrees).

Condition 1. A necessary condition for (G,G1) to be good is that Sv(G1) and
Sv(G) are compatible. If that condition holds, we then compute G2 = G−G1. Note
that this ensures that G2 is a cluster.

Condition 2. If G2 is a proper cluster, then (G,G1) is good if and only if G2 is
good.

Condition 3. If G2 is not a proper cluster, then (G,G1) is good if and only if we
can write G2 as a union of proper clusters G11, G12, . . . , G1q, such that for each G1i,
Sv(G1i) is compatible with Sv(G) and G1i is good.

Lemma 4.4. Let G and G1 ⊂ G be clusters. Let x1 = Sv(G1) and x = Sv(G).
Then x1 and x are compatible iff there is no edge in Tx between a node in G1 and a
node not in G1.

Proof. Suppose that x and x1 are compatible but that in Tx there is an edge
from vertex u ∈ G1 to vertex v 6∈ G1. Then there exist u′ ∈ G1 and v′ 6∈ G1 and a
character c such that c(u′) = c(v′) 6= c(x). Since x1 is defined as the splitting vector
of G1 it follows that c(x1) = c(u′) 6= c(x), contradicting the assumption that x1 and
x are compatible.

Conversely, suppose that x and x1 are not compatible. Then there is a character
c for which c(x) and c(x1) are set to different states. Since c(x1) is set, there must be
a u ∈ G1 and a v 6∈ G1 such that c(u) = c(x1) = c(v). Since c(x) 6= c(x1), u and v
must be in the same component of Tx.

Thus the check of Condition 1 takes O(n) time. If Condition 1 holds, we can
determine in O(n) time whether G2 is a proper cluster. If so, we perform a table
look-up to see if G2 is good. Thus, Condition 2 takes only O(n) time to check.
Condition 3, surprisingly, also takes only O(n) time (instead of the O(2rk(n + k))
time used in [1]).

Lemma 4.5. We can determine whether Condition 3 holds in O(n) time.

Proof. If G − G1 = G2 is not a proper cluster, then by Theorem 4.3, (G,G1) is
good if and only if each of the equivalence classes of G2/y is a good proper cluster,
where y = Sv(G,G1).

1756 SAMPATH KANNAN AND TANDY WARNOW

Let Sv(G) = x and Sv(G1) = x1. Recall that y = x⊕ x1. Since G2/x and G2/x1

are already known, G2/y can be computed as follows.
We start with the graphs Tx and Tx1 , and we add an edge between each pair of

corresponding vertices. We then need to compute the connected components. This
takes O(n) time, since the number of edges in each graph is linear. These connected
components are the equivalence classes of S/y. Each component is a proper cluster
by Lemma 4.2.

To see if each of the components is a good proper cluster, all we need to do is a
set of table look-ups. However, there is a subtle point here. We have only O(n) time
to perform perhaps as many as O(n) look-ups. To accomplish this we will exploit the
fact that there is a trie representing the proper clusters.

When we determine the partition of G2 into equivalence classes, we will number
these classes and determine for each s ∈ G2 the number of the class to which it
belongs.

After this, we go through the species contained in G2 in lexicographic order. If
species s is contained in a class l, we can use this information to narrow down the
range of possible indices at which class l may occur in the table of all proper clusters.
Thus, only a constant amount of work is performed per species in G2. At the end it
is determined whether each of the classes is a proper cluster, in which case an index
is found in the table to each of these proper clusters. It is then easy to perform
table look-up to determine which of these proper clusters are good. We can therefore
determine whether G has a phylogeny with a subtree T1 for G1 hanging off the root
x of G. Clearly all of this is accomplished in O(n) time.

4.4. Analysis of running time. The preprocessing takes O(2rnk2). Then we
process each proper cluster in turn. For each of the possible pairs (G,G1) of proper
clusters where G1 ⊂ G and G1 is good, we use only O(n) time, for a total cost of
O(22rnk2) time. The algorithm therefore runs in O(22rnk2).

5. Enumerating all minimal perfect phylogenies. In this section we con-
sider the problem of enumerating all minimal perfect phylogenies. We are interested
only in minimal perfect phylogenies for two reasons. The first rather banal reason is
that there can be many more perfect phylogenies than minimal ones (each minimal
perfect phylogeny which has nodes of degree greater than three can yield many differ-
ent perfect phylogenies by refinement) and since enumeration is costly, it’s better if
we can just enumerate the minimal ones. The second reason is more significant. Since
we wish to determine the evolutionary relationships that are supported by the data,
it is in fact the minimal trees which are significant. Since evolutionary hypotheses are
usually expressed by saying that speciation events occurred in a specific order, if we
resolve a node of degree greater than three, we are (falsely) indicating support for a
hypothesis that the minimal tree does not provide. Thus, it behooves us to consider
only the minimal perfect phylogenies.

The key issues for efficient enumeration are to avoid following “dead ends” in the
dynamic programming algorithm, to ensure that we never enumerate anything twice
and that the enumeration is exhaustive.

To simplify our presentation, we will describe only the enumeration of minimal
perfect phylogenies where all the species in S are forced to occur as leaves. Slight
modifications of the method allow it to be extended to enumerating other minimal
perfect phylogenies as well.

We will say that a proper cluster H has a subphylogeny if there is a perfect
phylogeny P for S with an edge e such that the removal of e partitions the leaves of

PERFECT PHYLOGENY 1757

P into H and S − H. The root of the subphylogeny for H is that endpoint of e on
whose side the leaf set is H. Note that H being good does not ensure that H has
a subphylogeny because there is also a constraint on S − H. We will call a proper
cluster H very good if it has a subphylogeny. This definition easily extends to pairs.
A pair of proper clusters (H,G) is very good if and only if (H,G) is good and H has
a subphylogeny. It is clear that, after running the algorithm described in the previous
section, one more pass through the data structures built up by the algorithm suffices
to determine all very good pairs.

Throughout this section let H,G, and G1 be proper clusters with G1 ⊂ G ⊂ H
and such that (H,G) and (G,G1) are each very good pairs.

Since a subphylogeny is, in particular, a perfect phylogeny for a subset of S, we
can talk about minimal subphylogenies. We are interested in identifying very good
pairs (H,G) such that H has a minimal subphylogeny P rooted at rH and one of the
children of rH is in turn the root, rG, of a (minimal) subphylogeny for G. We will
refer to such minimal subphylogenies by Min(H,G), while the set of subphylogenies
(i.e., not necessarily minimal) of H with this form is indicated by Sub(H,G).

We now introduce two definitions which are minor variants of previously defined
terms. Given a topology T for a perfect phylogeny, we define a canonical labeling of
the internal nodes as follows.

Definition 5.1. Let v be an internal node. Without loss of generality, the
degree of v is greater than or equal to 3. Let T1(v), T2(v), . . . , Tk(v) be the subtrees of
T obtained by the removal of v. For any character α we define α(v) to be the unique
α-state shared by two or more of these subtrees, if such a state exists. Otherwise
α(v) is set to equal a dummy state “ ∗ .” The vector so defined is called the canonical
labeling of v, and we denote this by cl(v).

We also need to define the notion of compatibility in more general terms.

Definition 5.2. Two vectors x and y in Zk are compatible if for every character
α, if α(x) and α(y) are both fixed to nondummy states, then α(x) = α(y).

With the above definitions, a minimal topology can be thought of as follows.

A topology T (which is perfect) is minimal if the canonical labeling of T does not
produce two adjacent nodes whose labels are compatible.

We make the following additional definitions.

Definition 5.3. The set Ext(H,G) consists of all vectors x such that

• ∃P ∈ Sub(H,G) such that x = cl(rH);
• the leaf set of each subtree of the root rH is a proper cluster.

Note that the vector x must have the same state as Sv(H,G) on all characters
on which Sv(H,G) has a nondummy state (i.e., x is an extension of Sv(H,G)).

Lemma 5.4. For H and G as defined, |Ext(H,G)| ≤ 2r
2

kr.

Proof. If the root of H has r or more children and each of these children roots
a subtree whose leaf set is a proper cluster, then for every character α, a state of α
must be shared either between two children of the root or between H and S − H.
In either case the α-state of the root would be determined. Thus, any vector in the
extension must arise from the choice of a set of no more than r − 1 proper clusters,
and the bound follows.

Definition 5.5. Let H be a proper cluster. The set Conn(H) consists of those
vectors x such that

• ∃G such that (H,G) is very good, and
• ∃P ∈ Min(H,G) such that x = cl(rH).

Note that Conn(H) ⊆ ∪G:(H,G)verygoodExt(H,G). The reason that Conn(H)

1758 SAMPATH KANNAN AND TANDY WARNOW

may not be identically equal to this union is that Conn(H) consists of canonical
labelings of roots in minimal perfect phylogenies for H, while ∪GExt(H,G) is the
set of canonical labelings for roots of perfect phylogenies which may or may not be
minimal.

Since we are concerned with enumerating minimal phylogenies we want to avoid
listing phylogenies containing edges whose endpoints are labeled compatibly. Conse-
quently, given a very good pair (H,G), we need to ensure that the edge e = (rH , rG)
cannot be contracted. This will be true if cl(rH) and cl(rG) are incompatible.

Definition 5.6. V p(G) consists of those vectors x such that
• ∃H(H,G) is a very good pair,
• ∃P ∈ Min(H,G), x = cl(rH),
• cl(rH) and cl(rG) are incompatible.

The set V p(G) is called the set of valid parents of G.

5.1. Algorithms for counting, enumerating, and sampling. The algo-
rithm has three phases. In the first phase, we compute the sets Ext(H,G), Conn(G),
and V p(G) using dynamic programming. In the second phase, a directed acyclic
graph (DAG) T is constructed. This DAG is a compact representation of the set of
minimal perfect phylogenies and can be used to enumerate, count, or obtain statistical
information about the set of minimal perfect phylogenies. The third phase, therefore,
can be used for any of these purposes.

5.1.1. Phase I. Computing the sets of vectors. Computing Ext(H,G).
Given a very good pair (H,G), we consider all partitions of H − G into at most
r − 1 proper clusters G1, G2, . . . , Gt and consider the (possible) perfect phylogeny
for H which has root x with subtrees perfect phylogenies for G,G1, G2, . . . , Gt. The
canonical labeling for x is then an element of Ext(H,G).

Computing Conn(H). Recall that Conn(H) is the set of all canonical labelings
of the roots of minimal perfect subphylogenies for H.

The candidates for membership in Conn(H) are the elements of Ext(H,G) where
(H,G) is a very good pair. Thus we have only a “small” number of x’s to run through.
To determine whether a particular x is in Conn(H) we will need the following two
lemmas.

Lemma 5.7. Suppose x is a vector without dummy states. Then x ∈ Conn(H) if
and only if x ∈ V p(G) for every G ∈ H/x.

Proof. Suppose x ∈ Conn(H). There is a minimal perfect phylogeny P for H in
which the canonical labeling for the root is x. P is also a perfect subphylogeny on Gi

for each Gi ∈ H/x and thus induces a minimal subphylogeny for Gi. In the minimal
induced subphylogeny, if the root of Gi has a canonical labeling which is compatible
with x, it can be identified with x. This is a contradiction to the definition of H/x.
Therefore x ∈ V p(Gi) for all Gi ∈ H/x. In fact, this shows that any perfect phylogeny
for Gi must have a root labeling that is incompatible with x.

Conversely, if x ∈ V p(G) for all G ∈ H/x, then we can define a perfect sub-
phylogeny for H by making x the parent of the roots of the perfect phylogenies
for each PG, where PG is a minimal perfect subphylogeny for G. Thus, x ∈
Conn(H).

Lemma 5.8. Suppose x is a vector with at least one dummy state. Then x ∈
Conn(H) if and only if there exists a G such that

• (H,G) is very good,
• x ∈ V p(G), and
• either x ∈ V p(H −G) or x = Sv(H,G)⊕ y for some y ∈ Conn(H −G).

PERFECT PHYLOGENY 1759

Proof. Suppose x ∈ Conn(H). Then there is a minimal perfect subphylogeny for
H for which x is the canonical labeling of the root rH . If rH has two children, then H
is formed by taking a minimal perfect phylogeny for two proper clusters G and H−G,
and x ∈ V p(G) ∩ V p(H − G). If rH has more than two children, then first of all, x
is an extension of Sv(H,G). In addition, since x is part of a canonical labeling, the
reason that any dummy state in Sv(H,G) is set to a nondummy state in x is because
the vector y ∈ Conn(H −G) forces this change. Thus x = Sv(H,G)⊕ y.

Conversely, if x ∈ V p(G) ∩ V p(H − G) for some very good (H,G), then we can
get a minimal perfect phylogeny for H by combining the minimal perfect phyloge-
nies for G and H − G whose roots are incompatible with x. Similarly, if x ∈ V p(G)
and x = Sv(H,G) ⊕ y for some y ∈ Conn(H − G), then let T be the minimal per-
fect subphylogeny for H − G whose root has a canonical labeling y, and let T ′ be
the minimal perfect subphylogeny for G whose canonical labeling is Sv(H,G). Then
the combination of these two subphylogenies is a subphylogeny for H which is min-
imal, since the edges from its root (given this canonical labeling x) cannot be con-
tracted.

Computing V p(G). To compute V p(G), we simply look at each very good
pair (H,G), examine each x ∈ Ext(H,G), and include those x such that for some
y ∈ Conn(G), x and y are incompatible.

Analysis of Phase I. To compute these sets, we first compute all very good pairs
(H,G). We then compute Ext(H,G) for each such very good pair. Afterwards, we
order the proper clusters G which are members of very good pairs, by cardinality, and
start with the smallest.

For each such proper cluster G, we compute Conn(G) and V p(G) by the above
method. The most expensive operation is computing Ext(H,G) for all very good

pairs (H,G). For O(22rk2) pairs (H,G) we need to look at O(2r
2

kr) possible vectors,

each of which takes O(k) to examine. Thus the total time is O(22r+r2kr+3).

5.1.2. Phase II. Constructing the DAG. At this stage, for every proper
cluster H that occurs as the set of leaves of a subtree of a minimal phylogeny induced
by the removal of an edge, we have determined the sets Conn(H) and V p(H). We
now proceed as follows.

Let H be a proper cluster and let y be a vector in V p(H). The subroutine we
describe determines what minimal perfect phylogenies of H are possible that have y
as the parent of the root of H.

Let x ∈ Conn(H) such that x is not compatible with y. There are two cases.
Suppose x is fully set. We create a graph Γ(H,x) in which the nodes are the proper
clusters G such that (H,G) is very good and x ∈ V p(G). There is an edge between
two nodes G and G′ if they represent two clusters having a nonempty intersection.
Then a consequence of Lemma 5.7 is that every maximal independent set in this graph
represents a partition of H into proper clusters which must be realized in some perfect
phylogeny.

Now suppose that x is not fully set. For each G such that (H,G) is very good and
x ∈ V p(G), we check to see if x ∈ V p(H−G) or if there is a vector z ∈ Conn(H−G)
such that x = z⊕Sv(H,G). Each of these possibilities gives rise to possible structural
decompositions of the perfect phylogeny for H, and we recurse on components.

This phase of the algorithm produces the following output.
It produces a DAG where there are two kinds of nodes—sum nodes and product

nodes. A sum node is labeled by a pair (H, y), where H is a proper cluster and
y ∈ V p(H). The children of this sum node are product nodes. Each product node

1760 SAMPATH KANNAN AND TANDY WARNOW

represents a partition of H into proper clusters G1, G2, . . . , Gl and a choice of a
root label x from Conn(H) such that x is not compatible with y and x ∈ V p(Gi)
for i = 1, . . . , l. These product node children of (H, y) are obtained in the manner
described in the above paragraph, i.e., by considering all vectors x ∈ Conn(H) which
are incompatible with y. If x is fully set, the product nodes are obtained from the
enumeration of the maximal independent sets of Γ(H,x). If x is not fully set, then
a product node, (G,H − G;x), is created for each pair G,H − G such that x ∈
V p(G)∪V p(H−G). Also, for each z ∈ Conn(H−G) such that x = Sv(H,G)⊕z, we
enumerate all maximal independent sets in Γ(H−G, z) and create a product node for
each such set, where the product node contains the proper clusters in the independent
set as well as G and is also labeled by the vector x. Note that the enumeration of
maximal independent sets in graphs of the form Γ(H,x) may be repeated many times
in the above algorithm. We could modify the algorithm to enumerate these sets
exactly once for each such Γ(H,x) and then memorize the result. While this may
improve the practical performance, it does not change the asymptotic complexity
since each re-enumeration of these sets produces new minimal perfect phylogenies.

The product node (G1, G2, . . . , Gl;x) in turn points to l different sum nodes which
are labeled by pairs (Gi, x) for i = 1, . . . , l. Note that the DAG has at most one sum
node for each possible label pair.

To finish the description of the DAG we need to describe its “boundaries.” First
of all, note that if all species in S are distinct and a perfect phylogeny exists for
S, then there must be some state of some character which is present in exactly one
species, say x. (If not, look at any perfect phylogeny P for S and note that it contains
a pair of sibling leaves a, b. Since both a and b share states with other species on all
characters, a and b are forced to be identical.) Thus the top of the DAG will be a
sum node labeled (S − x, x). (Note that S − x is a proper cluster.) The bottom of
the DAG consists of pairs (G, y) where G is a proper cluster with cardinality 1. Note
also that the assumption that all species in S are forced to be leaves guarantees that
each singleton subset of S is a proper cluster. (To remove this assumption, we would
have to modify the algorithm as follows. When considering proper cluster H and a
particular vector x ∈ Conn(H) if x is compatible with a species s ∈ H, we also allow
the possibility that rH is labeled with s, thus making s an internal node.)

Starting from the top sum node, if we always follow one of the children from each
sum node and all of the children from each product node, we will have implicitly
defined a minimal perfect phylogeny. (The topology of this perfect phylogeny can
be obtained from the above traversal by homeomorphically eliminating the product
nodes.)

The following lemma proves some properties of this DAG representation.
Lemma 5.9.
1. Every node in the DAG is useful in the implicit representation of some min-

imal perfect phylogeny.
2. Every minimal perfect phylogeny is implicitly represented by the DAG (in the

above sense) exactly once.
Proof. By construction, for any sum node labeled (H,x) there is a minimal per-

fect phylogeny for S which contains a subphylogeny for H whose root rH is labeled
incompatibly with x. If (G1, . . . , Gl; y) is a product node child of H, then y is incom-
patible with x and can be used to label rH without destroying minimality. Also, since
y is in V p(Gi) for all i, there are minimal subphylogenies for the Gi’s whose roots can
be labeled incompatibly with y. Thus, all sum nodes and product nodes are useful in
some minimal perfect phylogeny.

PERFECT PHYLOGENY 1761

Since each sum node has a distinct label, each minimal perfect phylogeny is
represented at most once in the DAG. Lemmas 5.7 and 5.8 exhaustively enumerate
all possibilities for the top-level decomposition of a subphylogeny for a very good
proper cluster H with a valid parent y. Since the DAG contains all these possibilities,
it implicitly represents all minimal perfect phylogenies.

5.1.3. Phase III. Enumerating, counting, or sampling. Once this DAG
is generated, we can count the number of minimal perfect phylogenies by working
bottom-up. If the number at all descendants of a node has been determined, the
number at the node can be determined by an addition if it is a sum node or by a
multiplication if it is a product node. Once such a count can be made it is a very
simple matter to use these counts to introduce an implicit numbering of the minimal
perfect phylogenies and to enumerate or generate the ith minimal perfect phylogeny
given the ordering. Clearly, it is also possible to obtain other statistics efficiently from
this structure. The technique used to enumerate is also as easy as the counting.

5.2. Analysis. In section 5.1.1 we showed that phase I requires O(22r+r2kr+3)
time. Phases II and III have running times that depend on the number of nodes
and edges in the DAG. The generation of sum nodes can be easily accomplished
once their parent product nodes have been found. Thus the complexity of phase II is
essentially the complexity of finding all product nodes. The critical step in this process
is the enumeration of maximal independent sets in graphs of the form Γ(H,x). In
general, for a graph G containing v nodes and e edges, the enumeration of all maximal
independent sets can be done by a simple backtracking algorithm that takes O(v+ e)
time to produce the next maximal independent set at each point. Such an algorithm
is a polynomial delay algorithm [10] since it takes only polynomial time to produce
the next member of the list being enumerated. In our case, v is at most 2rk and hence
e is at most 22rk2. Noting that the number of product nodes in the DAG is at most
n times the number of minimal perfect phylogenies L, we get a bound on the running
time of phase II to be O(22rk2Ln).

All of the computations of phase III involve simple traversals of the DAG con-
structed in phase II. The work done at each product node is upper bounded by the
number of its children and the work done at each sum node is upper bounded by the
number of top-level decompositions of the subphylogeny for the proper cluster repre-
sented at that node. By charging this work to individual minimal perfect phylogenies
in a natural manner, it can be seen that no minimal perfect phylogeny is charged
more than O(n) cost, and hence phase III can be performed in O(Ln) time.

5.3. Polynomial delay. In this section we show that the above approach can
be modified to design an algorithm with polynomial delay for the enumeration of all
minimal perfect phylogenies. Note that the algorithm, as described above, constructs
the DAG in a breadth-first fashion and hence is not polynomial delay. We simply
modify the algorithm to work in a depth-first fashion, fully exploring one child of a
sum node before constructing others by simple backtracking. Since each product node
can be constructed from its parent sum node with O(22rk2) delay, and since there are
O(n) product nodes in any minimal perfect phylogeny, this depth-first search version
of the algorithm is an O(22rk2n)-delay algorithm for enumerating minimal perfect
phylogenies.

6. Comments. The algorithm we have presented here is a significant theoretical
improvement on the algorithm of Agarwala and Fernández-Baca [1]. The running
time of this algorithm (O(f(r)nk2)) is close to the running time of the algorithms

1762 SAMPATH KANNAN AND TANDY WARNOW

for r = 3, 4, for which O(n2k) algorithms were found [13], and matches the O(nk2)
running time of the algorithm for r = 3 given by Dress and Steel [7]. Although the
enumeration algorithms have bad worst-case running times, the actual running time
when the number of minimal perfect phylogenies is small is likely to be much more
reasonable.

Although perfect phylogenies rarely arise in molecular phylogenies, the recent
application of perfect phylogeny to the reconstruction of evolutionary trees for fam-
ilies of natural languages has shown, surprisingly, that properly encoded linguistic
information does yield data sets with perfect phylogenies (or in which very few char-
acters must be removed in order to obtain perfect phylogenies [17]). Furthermore,
even though perfect phylogenies are rare in molecular phylogenies, biologists still seek
maximal sets of compatible characters. The problem of finding a maximum cardi-
nality compatible subset of characters is, unfortunately, NP-hard, even for the case
of binary characters [6]. Finding maximal sets, on the other hand, can be done in a
greedy fashion, given an algorithm to determine compatibility of characters.

Since, until recently, the only algorithms for perfect phylogeny were for binary
characters and two characters at a time, biologists have instead looked for maximal
sets of pairwise compatible characters. This practice (of seeking sets of characters
which are pairwise compatible) does not ensure set-wise compatibility. The algorithm
that we have presented provides a tool which could be used by biologists to efficiently
construct maximal subsets of compatible characters in a greedy manner. This greedy
heuristic has already been shown to produce extremely reasonable phylogenetic trees
[19] for biological data and for trees on natural languages [17]. The greedy heuristic for
constructing maximal subsets of compatible characters is thus useful for any domain
where it is possible to construct perfect phylogenies using almost all of the characters
in the data set (i.e., using k−O(1) characters). Perhaps we will find such data in the
biological arena as well.

REFERENCES

[1] R. Agarwala and D. Fernández-Baca, A polynomial-time algorithm for the perfect phylogeny
problem when the number of character states is fixed, SIAM J. Comput., 23 (1994), pp.
1216–1224.

[2] R. Agarwala and D. Fernández-Baca, Fast and Simple Algorithms for Perfect Phylogeny
and Triangulating Colored Graphs, DIMACS Tech. Report 94-51, Rutgers University, New
Brunswick, NJ, 1994.

[3] H. Bodlaender, M. Fellows, and T. Warnow, Two strikes against perfect phylogeny, in
Proceedings of the 19th International Colloquium on Automata, Languages, and Program-
ming, Lecture Notes in Computer Science, Springer-Verlag, New York, 1992, pp. 273–283.

[4] H. Bodlaender and T. Kloks, A simple linear time algorithm for triangulating three-colored
graphs, J. Algorithms, 15 (1993), pp. 160–172.

[5] P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
[6] W. H. E. Day and D. Sankoff, Computational complexity of inferring phylogenies by com-

patibility, Syst. Zool., 35 (1986), pp. 224–229.
[7] A. Dress and M. Steel, Convex tree realizations of partitions, Appl. Math. Lett., 5 (1992),

pp. 3–6.
[8] G. F. Estabrook, Cladistic methodology: a discussion of the theoretical basis for the induction

of evolutionary history, Ann. Rev. Ecol. Syst., 3 (1972), pp. 427–456.
[9] G. F. Estabrook, C. S. Johnson Jr., and F. R. McMorris, An idealized concept of the true

cladistic character, Math. Biosciences, 23 (1975), pp. 263–272.
[10] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures, Distinguished

Dissertation Series, Cambridge University Press, Cambridge, 1993.
[11] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991), pp. 19–

28.

PERFECT PHYLOGENY 1763

[12] S. Kannan and T. Warnow, Triangulating three-colored graphs, SIAM J. Discrete Math., 5
(1992), pp. 249–258.

[13] S. Kannan and T. Warnow, Inferring evolutionary history from DNA sequences, SIAM J.
Comput., 23 (1994), pp. 713–737.

[14] W. J. Le Quesne, A method of selection of characters in numerical taxonomy, Syst. Zool., 18
(1969), pp. 201–205.

[15] W. J. Le Quesne, Further studies based on the uniquely derived character concept, Syst. Zool.,
21 (1972), pp. 281–288.

[16] F. R. McMorris, T. Warnow, and T. Wimer, Triangulating vertex colored graphs, SIAM J.
Discrete Math., 7 (1994), pp. 296–306.

[17] D. Ringe, T. Warnow, and A. Taylor, Character-Based Construction of Evolutionary Trees
for Natural Languages, IRCS Tech. Report, University of Pennsylvania, Philadelphia, PA,
1995.

[18] M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,
J. Classification, 9 (1992), pp. 91–116.

[19] T. Warnow, Constructing phylogenetic trees efficiently using compatibility criteria, New
Zealand J. Botany, 31 (1993), pp. 239–248.

FAULT-TOLERANT MESHES WITH SMALL DEGREE∗

JEHOSHUA BRUCK† , ROBERT CYPHER‡ , AND CHING-TIEN HO§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1764–1784, December 1997 011

Abstract. This paper presents constructions for fault-tolerant, two-dimensional mesh architec-
tures. The constructions are designed to tolerate k faults while maintaining a healthy n by n mesh
as a subgraph. They utilize several novel techniques for obtaining trade-offs between the number of
spare nodes and the degree of the fault-tolerant network.

We consider both worst-case and random fault distributions. In terms of worst-case faults, we
give a construction that has constant degree and O(k3) spare nodes. This is the first construction
known in which the degree is constant and the number of spare nodes is independent of n. In
terms of random faults, we present several new degree-6 and degree-8 constructions and show (both
analytically and through simulations) that these constructions can tolerate large numbers of randomly
placed faults.

Key words. fault-tolerance, mesh, array, interconnection networks, parallel computing, graph
theory

AMS subject classifications. 68M10, 68M15, 68R10

PII. S0097539794274994

1. Introduction. As the number of processors in parallel machines increases,
physical limitations and cost considerations will tend to favor interconnection net-
works with constant degree and short wires, such as mesh networks [6]. In fact, the
two-dimensional mesh is already one of the most important interconnection networks
for parallel computers. Examples of existing two-dimensional mesh computers in-
clude the MPP (from Goodyear Aerospace), VICTOR (from IBM), and DELTA and
Paragon (from Intel).

Another significant issue in the design of massively parallel computers is fault-
tolerance. In order to create parallel computers that have very large numbers of
complex processors, it will become necessary to utilize these machines even when
several components have failed. In particular, the ability to tolerate even a small
number of faults may allow a machine to continue operation between the occurrence
of the first fault and the repair of the faults.

A large amount of research has been devoted to creating fault-tolerant parallel
architectures. The techniques used in this research can be divided into two main
classes. The first class consists of techniques which do not add redundancy to the
desired architecture. Instead, these techniques attempt to mask the effects of faults
by using the healthy part of the architecture to simulate the entire machine [2, 11, 17,
19, 23]. These techniques do not pay any costs for adding fault-tolerance, but they
can experience a significant degradation in performance. The second class consists of

∗ Received by the editors September 30, 1994; accepted for publication (in revised form) December
8, 1995. A preliminary version of this paper appeared in Proceedings of the Fifth Annual ACM
Symposium on Parallel Algorithms and Architectures, Velen, Germany, ACM, New York, 1993,
pp. 1–10.

http://www.siam.org/journals/sicomp/26-6/27499.html
† California Institute of Technology, Mail Code 116-81, Pasadena, CA 91125 (bruck@

systems.caltech.edu). This research was performed while the author was at the IBM Almaden Re-
search Center, San Jose, CA.

‡ Sun Microsystems Computer Company, 2550 Garcia Avenue, MSUMPK12-302, Mountain View,
CA, 94043-1100 (cypher@eng.sun.com). This research was performed while the author was at the
IBM Almaden Research Center, San Jose, CA.

§ IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (ho@almaden.ibm.com).

1764

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1765

techniques which do add redundancy to the desired architecture. These techniques
attempt to isolate the faults, usually by disabling certain links or disallowing certain
switch settings, while maintaining the complete desired architecture [1, 3, 4, 7, 8,
9, 10, 13, 14, 15, 18, 20, 22, 24, 25, 26, 27, 29]. The goal of these techniques is to
maintain the full performance of the desired architecture while minimizing the cost
of the redundant components.

One of the most powerful techniques for adding redundancy is based on a graph-
theoretic model of fault-tolerance [18]. In this model, the desired architecture is
viewed as a graph (called the target graph), and a fault-tolerant graph is created
such that after the removal of k faulty nodes, the target graph is still present as a
subgraph. This technique yields fault-tolerant networks that can tolerate both node
faults and edge faults (by viewing a node incident with the faulty edge as being
faulty) and can implement algorithms designed for the target network without any
slowdown (due to the simulation of multiple nodes by a single node or the routing
of messages through switches or intermediate nodes). Unfortunately, the degree of
the fault-tolerant network created with this model can be prohibitively large. In
particular, all previously published techniques for creating fault-tolerant meshes with
exactly k spares have a degree that is linear in the number of faults being tolerated.

In this paper, we create fault-tolerant n by n meshes with small degree by trading-
off the number of spare nodes with the degree of the fault-tolerant network. We
consider both worst-case and random fault distributions. In terms of worst-case faults,
we give a construction that tolerates k faults and has constant degree and O(k3)
spares. This is the first construction known in which the degree is constant and
the number of spares is independent of n. The only other known constant degree
construction for this problem requires Θ(n2) spares [27]. In terms of random faults, we
present several new degree-6 and degree-8 constructions and show (both analytically
and through simulations) that they can tolerate large numbers of randomly placed
faults. Our constructions require at most O(n) spares and appear to be of practical
interest. The only other known construction that is proven to tolerate large numbers
of random faults was created by Tamaki [27]. That construction can tolerate nodes
and edges which fail with constant probability, but requires Θ(n2) spares and has
degree O(log logn).

In addition, our construction for worst-case faults is shown to require only wires
of length O(k3) in Thompson’s VLSI model [28], while our constructions for random
faults are shown to require only constant-length wires. Thus our fault-tolerant con-
structions maintain much of the scalability of the mesh network. We remark that we
use Thompson’s VLSI model only because it provides a well-established means for
quantifying the locality of an interconnection network; the use of this model does not
imply that the constructions presented here are designed for the wafer-scale imple-
mentation of a parallel machine. In fact, most existing parallel machines have one,
or at most a few, processors per chip. This fact motivates our concern about the
degree of the fault-tolerant network (because of the limited number of pins available
to connect one chip to another [12]).

The remainder of this paper is organized as follows. Definitions and several previ-
ously known results are given in section 2. The results for worst-case fault distributions
and random fault distributions are presented in sections 3 and 4, respectively.

2. Preliminaries. definitions. Let k be a nonnegative integer and let T =
(V,E) be a graph. The graph F = (V ′, E′) is a k-fault-tolerant graph with respect
to T , denoted a k-FT T , if the subgraph of F induced by any set of |V ′| − k nodes

1766 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

contains T as a subgraph. The graph T will be called the target graph. The graph F
will be said to contain |V ′| − |V | spare nodes (or spares).

Definition. The cycle with n nodes will be denoted Cn.
Definition. The two-dimensional mesh with r ≥ 2 rows and c ≥ 2 columns will

be denoted Mr,c. Each node in Mr,c has a unique label of the form (i, j) where 0 ≤ ir
and 0 ≤ j < c. Each node (i, j) is connected to all nodes of the form (i ± 1, j) and
(i, j ± 1), provided they exist. The node (i, j) will be said to be in row i and column
j.

Definitions. Let n be a positive integer and let S be a set of integers in the
range 1 through n − 1. The graph C(n, S), called the n-node circulant graph with
connection set S [16, 14, 10], consists of n nodes numbered 0, 1, . . . , n − 1. Each
node i is connected to all nodes of the form (i ± s) mod n, where s ∈ S. The graph
D(n, S), called the n-node diagonal graph with connection set S [10], consists of n
nodes numbered 0, 1, . . . , n−1. Each node i is connected to all nodes of the form i± s
where s ∈ S, provided they exist. (The terms “circulant” and “diagonal” refer to the
structure of the adjacency matrix.) The values in a connection set S will be referred
to as “jumps” or “offsets” and an edge defined through an offset s will be referred to
as an s-offset edge.

Definition. Let S be a set of integers and let k be a nonnegative integer. The
expansion of S by k, denoted expand(S, k), is the set T where

T =
⋃

s∈S
{s, s+ 1, . . . , s+ k}.

The following theorems give constructions for creating fault-tolerant circulant and
diagonal graphs. The basic idea is to add offsets so that faulty nodes can be “jumped
over.” The construction for diagonal target graphs has lower degree because a cluster
of faults can be avoided by placing the cluster in the position where the missing
wraparound edges would jump over them.

Theorem 2.1 (see [14]). Let n be a positive integer, let S be a set of integers in
the range 1 through n − 1, let k be a nonnegative integer, and let T = expand(S, k).
The circulant graph C(n+ k, T) is a k-FT C(n, S).

Theorem 2.2 (see [10]). Let n be a positive integer, let y = dn/3e, let S be
a set of integers in the range 1 through y, let k be a positive integer, and let T =
expand(S, bk/2c). The circulant graph C(n+ k, T) is a k-FT D(n, S).

The following theorems relate meshes, circulant graphs, and diagonal graphs.
Combining these theorems with the two previous theorems yields constructions for
fault-tolerant meshes. The first theorem follows immediately from the row-major
labeling of the nodes in a mesh. The second theorem follows from a diagonal-major
order of the nodes in a mesh; see Figure 1 for an example.

Theorem 2.3. The mesh Mr,c is a subgraph of C(rc, {1, c}) and of D(rc, {1, c}).
Theorem 2.4. The mesh Mr,c is a subgraph of C(rc, {c− 1, c}).
Proof. Let φ(i, j) = ((i − j) mod r)c + j. It is straightforward to verify that φ

defines an embedding of Mr,c into C(rc, {c− 1, c}).
3. Worst-case faults. In this section we present a graph M̃ that is a k-FT Mn,n

and has constant degree and O(k3) spares. Our construction is hierarchical. We first
construct a graph M ′ that is a k-FT Mr,c (for some suitably chosen parameters
r and c) and has degree which is dependent on k. We then replace each node in
M ′ with a supernode (a graph with certain properties) to obtain a graph M̃ with
constant degree.

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1767

0 33 26 19 12 5 38 31

8 1 34 27 20 13 6 39

16 9 2 35 28 21 14 7

24 17 10 3 36 29 22 15

32 25 18 11 4 37 30 23

Fig. 1. An example of a diagonal-major ordering of a mesh.

3.1. The basic construction. We first present a construction for a k-FT cycle
with degree 4 and k2 spare nodes. We will then use this construction to create the
graph M ′ which is a k-FT Mr,c.

Theorem 3.1. Let k and N be positive integers where N ≥ k2 + k + 1, and let
the graph C ′ = C(N + k2, {1, k + 1}). The graph C ′ is a k-FT CN .

Proof. First consider the case where (N + k2) mod (k + 1) = 0. For each i,
0 ≤ i ≤ k, let Xi be the set consisting of all nodes {j|j mod (k + 1) = i}. Because
there are only k faults and there are k+1 disjoint sets Xi, at least one of them must be
fault-free. Let X be such a fault-free Xi. Note that the nodes in X form a fault-free
cycle C ′′ of length (N + k2)/(k+ 1) using the (k+ 1)-offset edges. Next, we augment
C ′′ to obtain a healthy cycle of length at least N . For any two adjacent nodes a and
b in C ′′, if all k of the nodes in C ′ between a and b are healthy, we traverse all k of
these nodes by using the 1-offset edges. On the other hand, if there is a fault between
a and b, we skip over all k of the nodes between them by traversing the (k+ 1)-offset
edge connecting a and b. It is clear that we will traverse (k + 1)-offset edges at most
k times, so the resulting augmented cycle will have at least N nodes. If it has more
than N nodes, we can choose to traverse additional (k + 1)-offset edges, rather than
1-offset edges, until the cycle has length exactly N . An example of a 2-FT cycle is
shown in Figure 2.

Now consider the case where (N + k2) mod (k+ 1) = x 6= 0. Let R be a region of
k+1+x consecutive healthy nodes in C ′. Note that such a region must exist because
N +k2 ≥ 2k2 +k+1, so there must be a region of 2k+1 or more consecutive healthy
nodes between two faults. Without loss of generality, we will assume that R consists
of the k + 1 + x highest numbered nodes in C′. For each i, 0 ≤ i ≤ k, create the
cycle C ′′i as follows. First, start at node i and traverse the (k + 1)-offset edges until
a node in R is reached. Then, traverse the 1-offset edges x times. Finally, traverse
one additional (k + 1)-offset edge to return to i. Note that these k + 1 cycles share
only nodes within R. Because all of the nodes in R are healthy, there must exist an
i such that C′′i is healthy. We can augment C ′′i as before to obtain a cycle of length
N .

Theorem 3.2. Let k, r, and c be positive integers where r, c ≥ 2 and rc ≥
k2 + k + 1, let N = rc, and let M ′ = C(N + k2, {1, k + 1} ∪ {c+ ik|0 ≤ i ≤ k}). The
graph M ′ is a k-FT Mr,c.

Proof. Let T = C(N, {1, c}). We will prove that M ′ is a k-FT T . Applying
Theorem 2.3 will complete the proof. First, it follows from Theorem 3.1 that in the
presence of k faults, M ′ contains a cycle of N healthy nodes. Let C ′′ denote a cycle
of healthy nodes constructed according to the proof of Theorem 3.1, and number the

1768 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

11109 543210

0 01 12 23 4 5 6 7 8 99 1010 1111

(a)

(b)

(c)

0 01 12 23 4 5 6 7 8 99 1010 1111

0 1 26 7 8 9 10 11

Fig. 2. A degree-4, 2-fault-tolerant cycle with 4 spare nodes.

nodes in C ′′ from 0 through N − 1. We will now prove that any two nodes numbered
a and b in C ′′, where (a + c) mod N = b, are connected in M ′. Let a′ and b′ be the
labels of a and b in M ′, and assume without loss of generality that a′ < b′. We know
that it is possible to traverse the cycle C ′′ from a to b by traversing 1-offset edges and
at most k (k + 1)-offset edges. Therefore, b′ − a′ = c + jk for some integer j where
0 ≤ j ≤ k, which implies that a and b are connected in M ′.

3.2. Hierarchical constructions. In the previous subsection we described a
construction of a k-FT cycle with k2 spare nodes and degree 4 and a construction of a
k-FT two-dimensional mesh with k2 spare nodes and degree 2k+6. In this subsection
we will present techniques for reducing the degree of these FT graphs. The general
idea is to replace each node in the original FT graph by a small graph (which we call
a supernode). Then, for each edge (a, b) in the original graph, one or more nodes in
the supernode corresponding to a is connected to one or more nodes in the supernode
corresponding to b. This approach results in a FT graph with lower degree than the
original graph, although it does increase the number of spare nodes that are required.

3.2.1. Hierarchical fault-tolerant cycles. We illustrate the concept of a su-
pernode by creating a hierarchical FT cycle.

Theorem 3.3. Let k and N be positive integers, where N ≥ k2 +k+1, and let Ĉ
be the graph with 2N + 2k2 nodes, numbered 0 through 2N + 2k2 − 1, and with edges
specified as follows: Each odd numbered node i is connected to nodes (i+ 1), (i− 1),
and i+ 2k + 1, and each even numbered node i is connected to nodes (i+ 1), (i− 1),
and i− 2k − 1, where all of the arithmetic is performed modulo (2N + 2k2). Then Ĉ
is a k-FT C2N .

Proof. The graph Ĉ can be obtained from the graph C ′ of Theorem 3.1 by
replacing each node with a supernode consisting of a pair of nodes connected to one
another. The edges that correspond to the positive direction connections in C ′ are
connected to odd nodes in Ĉ while the edges that correspond to negative direction

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1769

connections in C ′ are connected to even nodes in Ĉ. Consider the graph C ′ in which
a node a is faulty iff at least one of the nodes in the supernode corresponding to a in
Ĉ is faulty. It follows from Theorem 3.1 that C ′ contains a cycle of N healthy nodes.
Therefore, Ĉ must contain a cycle of 2N healthy nodes corresponding to the cycle of
N healthy nodes in C ′.

Figure 3 shows an example of a 2-FT cycle of degree 3 with 2k2 = 8 spares.

(b)

(a)

18

19

20

21 23 23

22 22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

55

44

33

22 0

11

0

18

19

20

21 23 23

22 22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

55

44

33

22 0

11

0

Fig. 3. A degree-3, 2-fault-tolerant cycle with 8 spare nodes.

3.2.2. Hierarchical fault-tolerant meshes. We will now show how hierarchi-
cal constructions can be used to reduce the degree of the graph M ′ of Theorem 3.2.
We will begin with an approach that reduces the degree to Θ(

√
k). We will then

consider a more powerful technique that reduces the degree to a constant. The first
approach uses the following graph as a supernode.

Definition. Let Hn be a graph with n nodes and degree 3 (if n is even) or degree
4 (if n is odd) such that for every pair of distinct nodes in Hn, there is a Hamiltonian
path that has those nodes as endpoints. Hn graphs have been created for all n ≥ 2 [5].
See Figure 4 for an example.

Fig. 4. Examples of Hamiltonian graphs by Moon [5] with minimal degree. The number of
nodes is even in (a) and is odd in (b).

1770 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

Construction 3.1. Let k, r, c, n, and s be positive integers where r, c, s ≥ 2,
rc ≥ k2 + k + 1, and 2rs = c = n, let V = {c + ik|0 ≤ i ≤ k}, and let the graph
M ′ = C(rc+k2, {1, k+1}∪V). Let M̂ be the hierarchical graph obtained from M ′ by
replacing each node in M ′ by a supernode H2s. Divide the nodes in each supernode
arbitrarily into two halves of s nodes each. Add connections between supernodes as
follows:

1. Connect each node in each supernode i to every node in supernodes i−1, i+1,
i− k − 1, and i + k + 1 (all modulo rc + k2). These edges, called horizontal
edges, contribute 8s to the degree of each node.

2. For each offset v ∈ V and for every supernode i, connect one of the nodes in
the second half of supernode i to one of the nodes in the first half of supernode
(i + v) mod (rc + k2). These edges, called vertical edges, should be evenly
distributed among the nodes in each half of each supernode so they contribute
at most d(k + 1)/se to the degree of each node.

Note that the degree of M̂ is at most 8s+ d(k + 1)/se+ 3. Choosing s = Θ(
√
k)

yields a graph M̂ with degree O(
√
k) and with O(k5/2) spare nodes.

Theorem 3.4. The graph M̂ defined in Construction 3.1 is a k-FT Mn,n.

Proof. Consider the graph M ′ of Theorem 3.2 in which a node a′ is faulty iff at
least one of the nodes in the supernode corresponding to a′ in M̂ is faulty. It follows
from Theorem 3.2 that M ′ contains a healthy Mr,c subgraph. We will show that this

implies that M̂ contains a healthy Mn,n subgraph.

Let a′ be any node in the healthy Mr,c subgraph of M ′, and let â be the supernode

in M̂ corresponding to a′. We will view â as a column of 2s nodes in Mn,n. Note
that a′ has vertical neighbors a′ − v1 mod (rc+ k2) and a′ + v2 mod (rc+ k2), where
v1 and v2 are in V . Let t be the node in the first half of â that is connected to a
node in supernode â − v1 mod (rc + k2), and let b be the node in the second half
of â that is connected to a node in supernode â + v2 mod (rc + k2). We will view
t as being the top node and b as being the bottom node in the column of 2s nodes
formed by â. Recall that for every pair of nodes in H2s, there is a Hamiltonian path
that has those nodes as endpoints. Therefore, we can use the Hamiltonian path with
endpoints t and b as the vertical connections within â. Furthermore, the connections
between the node b in one supernode and the node t in the next supernode provide
the vertical connections between supernodes. Finally, note that a′ has horizontal
neighbors a′ − x1 mod (rc + k2) and a′ + x2 mod (rc + k2) where x1 and x2 are
in {1, k + 1}. Because each node in â is connected to every node in supernodes
â − x1 mod (rc + k2) and â + x2 mod (rc + k2), the horizontal connections between
supernodes are also present.

We will now show how the use of a different supernode graph can yield a k-FT
mesh with O(k3) spare nodes and constant degree. The following graph will be used
as the supernode graph.

Definition. The graph Pk consists of 2k + 4 nodes. This graph consists of two
parts, denoted S1 and S2, each of which is the graph C(k + 2, {1, 2}), plus an edge
connecting node k + 1 in S1 with node k + 1 in S2. See Figure 5 for an example of
P6.

Now we describe the construction of a k-FT mesh based on the graph Pk as a
supernode.

Construction 3.2. Let k, r, c, and n be positive integers where r, c ≥ 2,
rc ≥ k2 + k + 1, and (2k + 4)r = c = n, let V = {c + ik|0 ≤ i ≤ k}, and let
M ′ = C(rc+ k2, {1, k + 1} ∪ V).

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1771

S2

S1

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

Fig. 5. An example of the graph P6.

Let M̃ be the hierarchical graph obtained from M ′ by replacing each node in M ′

by the supernode Pk. Add connections between supernodes as follows:

1. Connect each node j ∈ S1 of supernode i to nodes {j − 2, j − 1, j, j + 1, j +
2} mod (k+2) in S1 of supernodes {i−1, i+1, i−k−1, i+k+1} mod (rc+k2).
These edges, called horizontal edges, contribute 20 to the degree of each node
in S1.

2. Connect each node j ∈ S2 of supernode i to nodes {j − 2, j − 1, j, j + 1, j +
2} mod (k+2) in S2 of supernodes {i−1, i+1, i−k−1, i+k+1} mod (rc+k2).
These edges, also called horizontal edges, contribute 20 to the degree of each
node in S2.

3. Connect each node j ∈ S2 of supernode i, where 0 ≤ j ≤ k, to node j ∈ S1

of supernode (i + c + jk) mod (rc + k2). These edges, called vertical edges,
correspond to the k + 1 offsets in V and contribute 1 to the degree of each
node numbered less than k + 1 in each half of each supernode.

Note that the degree of M̃ is 25. The fact that M̃ is a k-FT mesh relies on the
following lemmas.

Lemma 3.5. Consider the subgraph S = S1 (or equivalently, S = S2) of Pk.
There exists a set of paths {Q0, Q1, . . . , Qk} such that for each i, 0 ≤ i ≤ k, Qi is a
Hamiltonian path through S with endpoints i and k + 1, and for each i, 0 ≤ i < k,
and for each j, 0 ≤ j ≤ k+1, if a is the jth node in Qi and b is the jth node in Qi+1,
then (a− b) ≡ x (mod k + 2) where x ∈ {−2,−1, 0, 1, 2}.

Proof. For each i, 0 ≤ i ≤ k, define Qi as follows. Start at i and traverse the
1-offset edges in the positive direction until node k is reached. Then traverse the
2-offset edges in the positive direction until either node i− 1 or node i− 2 is reached.
If node i− 1 is reached, traverse the 1-offset edge to node i− 2 and then traverse the
2-offset edges in the negative direction until node k+1 is reached. On the other hand,

1772 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

if node i− 2 is reached before node i− 1, traverse the 1-offset edge to node i− 1 and
then traverse the 2-offset edges in the negative direction until node k + 1 is reached.
See Figure 6 for an example of the paths Q4 and Q5 in S1 of P6.

If i ≤ a ≤ k − 1, then b = a + 1. If a = k, then b = 0. If a = k + 1, then b = a.
If 0 ≤ a ≤ i− 1, we have the following cases: (i) if a is even and 0 ≤ a ≤ i− 2, then
b = a + 2, (ii) if a is even and a = i − 1, then b = a + 1, and (iii) if a is odd and
1 ≤ a ≤ i − 1, then b = a. Therefore, in every case (a − b) ≡ x (mod k + 2) where
x ∈ {−2,−1, 0, 1, 2}.

(b) Path starts from node 5(a) Path starts from node 4

7 in S2

0

1

2
3

4

5

6
7

S1

7 in S2

0

1

2
3

4

5

6
7

S1

Fig. 6. An example of two paths in S1 of P6 starting from nodes 4 and 5, respectively.

Lemma 3.6. Let k, r, c, n, V , and M ′ be as defined in Construction 3.2. Consider
any set of k faulty nodes in M ′ and let M be the healthy mesh Mr,c in M ′ that is
obtained by applying Theorem 3.2. Let a, b, a′, and b′ be any nodes in M ′ such that
a and b are horizontal neighbors in M , a′ and b′ are horizontal neighbors in M , a
and a′ are vertical neighbors in M , and b and b′ are vertical neighbors in M . If
a′ = (a+ c+ ik) mod (rc+ k2) and b′ = (b+ c+ jk) mod (rc+ k2) where 0 ≤ i, j ≤ k,
then |i− j| ≤ 1.

Proof. Assume without loss of generality that a is to the left of b in M and a′

is to the left of b′ in M . Note that (b − a) ≡ x (mod rc + k2) where x ∈ {1, k + 1}
and (b′ − a′) ≡ x′ (mod rc + k2) where x′ ∈ {1, k + 1}. Therefore, (i − j)k ≡
(c + ik) − (c + jk) ≡ (a′ − a) − (b′ − b) ≡ x − x′ (mod rc + k2), which implies that
|i− j| ≤ 1.

Theorem 3.7. The graph M̃ defined in Construction 3.2 is a k-FT Mn,n and
has constant degree and 2k3 + 4k2 spare nodes.

Proof. The proof is analogous to that of Theorem 3.4. In particular, as in the
proof of Theorem 3.4, we project the faults in M̃ onto M ′ and use Theorem 3.2 to
find a healthy Mr,c subgraph of M ′.

Let a′ be any node in the healthy Mr,c subgraph of M ′ and let ã be the corre-

sponding supernode in M̃ . We view ã as a column of 2k + 4 nodes in Mn,n. We
find top and bottom nodes t and b in ã as in the proof of Theorem 3.4, and we use
Lemma 3.5 (twice) to create a Hamiltonian path through ã with endpoints t and b.
Then, let b′ be a node that is horizontally adjacent to a′ in the healthy Mr,c subgraph

of M ′, and let b̃ be the corresponding supernode in M̃ . It follows from Lemma 3.6

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1773

that the top nodes in ã and b̃ have positions within their supernodes that differ by at
most one. A similar argument applies to the bottom nodes in ã and b̃. Therefore, it
follows from Lemma 3.5 that for each i, 0 ≤ i < 2k + 4, the ith node in the Hamilto-
nian path in ã has a horizontal connection to the ith node in the Hamiltonian path
in b̃, which completes the proof.

Hence, we have obtained a construction of a k-FT two-dimensional mesh with
constant degree and O(k3) spare nodes. Although the construction given above is for
a k-FT Mn,n where n is a multiple of 2k + 4, it is straightforward to generalize the
construction to arbitrary values of n as follows.

Construction 3.3. Let k, r, c, and n be positive integers where r, c ≥ 2,
rc ≥ k2 + k + 1, r = bn/(2k + 4)c, and c = n, let V = {c + ik|0 ≤ i ≤ k}, and let
M ′ = C(rc+ k2, {1, k + 1} ∪ V).

Let n mod (2k + 4) = α. If α = 0, let M̂ be the graph M̃ defined in Construc-
tion 3.2. If α 6= 0, first define the graph P ′k from Pk as follows. Add a node, denoted
by x, to Pk, connect node x to node k + 1 of S1 in Pk, and connect node x to node
k + 1 of S2 in Pk. Let M̂ be the graph obtained by replacing each of the first αn+ k2

nodes in M ′ by the supernode P ′k and replacing each of the remaining nodes in M ′ by
the supernode Pk. Add connections between supernodes as follows:

1. Ignore the x nodes in the P ′k supernodes and add connections between super-
nodes as required by Construction 3.2.

2. For each supernode i, where 0 ≤ i < αn + k2, connect node x in supernode
i to node x in supernode j, where j ∈ {i − 1, i + 1, i − k − 1, i + k + 1} and
0 ≤ j < αn+ k2.

The following theorem is immediate from the preceding construction.

Theorem 3.8. Let k and n be positive integers, let r = bn/(2k + 4)c, and let
c = n. If r, c ≥ 2 and rc ≥ k2 + k + 1, then there exists a k-FT Mn,n with constant
degree and 2k3 + 5k2 spare nodes.

Although the degree of M̂ is increased to 26 (as both node k+1 of S1 and node k+1
of S2 have an edge to node x in the same supernode), one can easily reduce the number
of horizontal edges of node k + 1 to 4 (as opposed to 20 in the current definition) so
that the degree of M̂ remains 25. In fact, we remark that it is possible to reduce the
degree still further by using a different graph for each supernode. Specifically, if each
supernode is defined to be the product graph of Pk and a 4-node linear array, and if
each supernode plays the role of a (2k + 4) by 4 submesh, it is possible to obtain a
k-FT mesh with degree 12 and 8k3 + 16k2 spare nodes. The details are omitted.

Finally, we will consider laying out the fault-tolerant graph M̂ using Thompson’s
VLSI model [28]. One of the greatest advantages of two-dimensional mesh networks
is that they can be laid out using only short (constant length) wires. The following
theorem shows that the fault-tolerant graph M̂ may require somewhat longer wires,
but the wire lengths are still independent of n.

Theorem 3.9. It is possible to lay out the graph M̂ defined in Construction 3.3
using only wires with length O(k3).

Proof. We begin by presenting a mapping from the nodes in M ′ to the nodes in
a torus network which maintains locality. We will then use standard techniques for
laying out torus networks to obtain the final layout of M̂ . First, consider the case
where k2 is a multiple of c. In this case, lay out the nodes in M ′ in row-major order on
an (rc+k2)/c by c torus. It is straightforward to verify that any pair of nodes that are
connected in M ′ map to nodes that are in columns of the torus that differ by at most
O(k2) and in rows of the torus that differ by at most O(1). This torus can then be

1774 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

mapped to an (rc+k2)/c by c grid by using the standard technique of placing the first
half of the torus columns (rows) in increasing order in the even numbered columns
(rows) of the grid and the remaining torus columns (rows) in decreasing order in the
odd numbered columns (rows) of the grid (see, for example, [21, p. 246]). Finally,
each node in M ′ can be laid out using an O(k) by O(k) square. The vertical tracks
between grid columns are O(k) wide and the horizontal tracks between grid rows are
O(k3) wide (to accommodate wires that traverse O(k2) nodes, each of which is O(k)
wide). Thus each wire is of length O(k3).

Now consider the case where c does not evenly divide k2. In this case, let α =
k2 mod c and use a (rc+k2)/c by c+1 torus. The nodes of M ′ are placed in the torus
in row-major order, with the first α rows receiving c+1 nodes and all remaining rows
receiving only c nodes. Again, it is straightforward to verify that any pair of nodes
that are connected in M ′ map to nodes that are in columns of the torus that differ
by at most O(k2) and in rows of the torus that differ by at most O(1). This torus
can then be laid out as described in the case where k2 is a multiple of c.

4. Random faults. In this section we consider random fault distributions. More
specifically, we will assume that the fault-tolerant graph contains k faults, and that
every configuration of k faulty nodes is equally likely. We will focus on the problem
of creating fault-tolerant graphs for the mesh Mn,n. We will present six constructions
for fault-tolerant meshes, analyze their asymptotic fault-tolerance, and study their
fault-tolerance for realistic values of n.

The first three constructions are simple generalizations of previously known con-
structions [10] designed to tolerate worst-case fault distributions, while the remaining
three constructions are new. In particular, the fourth construction introduces the con-
cept of adding “dummy faults” in order to provide a fairly regular fault pattern. The
fifth construction introduces the use of 2 by 2 “submeshes,” and the sixth construction
combines the use of dummy faults with the use of submeshes.

Definition. The graph T1(n) = C(n2, {n− 1, n}). Recall from Theorem 2.4 that
T1(n) contains Mn,n as a subgraph.

Definition. The graph T2(n) = D(n2, {1, n}). Recall from Theorem 2.3 that
T2(n) contains Mn,n as a subgraph.

Definition. A graph tolerates Θ(f(n)) random faults iff o(f(n)) random faults
can be tolerated with a probability that is 1 − o(1) and ω(f(n)) random faults can be
tolerated with a probability that is o(1).

Definition. Given a circulant graph with x nodes, and given integers y and z
where 0 ≤ y, z < x, the y-node window starting at z, denoted W (y, z), consists of the
y nodes in the graph numbered z, z + 1 mod x, . . . , z + y − 1 mod x.

Definition. Given a circulant graph with x nodes, and given integers y and z
where 0 ≤ y, z < x, the distance between y and z, denoted dist(y, z), is the minimum
of z− y mod x and y− z mod x, and nodes x and y are consecutive iff dist(y, z) = 1.

Definition. Given a circulant graph with x nodes, and given integers y and
z where 1 ≤ y < x and 0 ≤ z < x, the yth healthy node following (respectively,
preceding) z is the healthy node a such that there are exactly y healthy nodes in the
set {z+1 mod x, z+2 mod x, . . . , a} (respectively, {z−1 mod x, z−2 mod x, . . . , a}).

It will be assumed throughout that k ≤ n/2 and k = o(n). For constructions 1
through 4, we will consider only embeddings of the target graph in which node 0 of
the target graph maps to some healthy node h in the fault-tolerant graph, and for
each i, node i in the target graph maps to the ith healthy node following node h. For
constructions 5 and 6, we will consider only embeddings obtained by viewing 2 by

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1775

2 “submeshes” that contain faults as representing faulty nodes in the corresponding
fault-tolerant graph.

4.1. Construction 1. The first construction is based on the target graph T1(n).

Definition. The graph M1(n, k) = C(n2 + k, {n− 1, n, n+ 1}).
Note that M1(n, k) has degree 6. The idea behind this construction is that it can

tolerate faults by using the (n+ 1)-offset edges to jump over the faults.

Lemma 4.1. Assume that M1(n, k) contains k faulty nodes. M1(n, k) tolerates
the faults iff for each i, 0 ≤ i < n2 + k, W (n+ 1, i) contains at most one fault.

Proof. First, assume that for each i, 0 ≤ i < n2 + k, W (n+ 1, i) contains at most
one fault. In this case, given any healthy node i, W (n + 2, i) contains at most one
fault. Therefore, there is an edge between each healthy node and both the (n− 1)st
healthy node following it and the nth healthy node following it. As a result, M1(n, k)
contains a healthy copy of T1(n).

Next, assume that there exists an i, 0 ≤ i < n2 +k, such that W (n+1, i) contains
two or more faults. Let a be the first healthy node preceding i. Let a′ be the node
in T1(n) that maps to a, let b′ be node a′ + n mod n2 in T1(n), and let b be the node
to which b′ maps. Note that b is the nth healthy node following a, so b 6∈W (n+ 1, i)
and a and b are not connected to one another.

Lemma 4.2. Let M ′ be a circulant graph with Θ(n2) nodes and let y = Θ(n). As-
sume that M ′ contains k randomly located faulty nodes. If k is o(n1/2), the probability
that there exists a node i such that W (y, i) contains two or more faults is o(1).

Proof. Given any two faults a and b, the probability that there exists a node i
such that both a and b lie in W (y, i) is Θ(n−1). There are o(n) distinct pairs of faults,
so the probability that there exists a node i such that W (y, i) contains two or more
faults is o(n−1n) = o(1).

Lemma 4.3. Let M ′ be a circulant graph with Θ(n2) nodes and let W = W (y, z1),
W (y, z2), . . . ,W (y, zq) be a collection of q mutually disjoint y-node windows in M ′,
where y = Θ(n) and q = Θ(n). Assume that M ′ contains k randomly located faulty
nodes. If k is ω(n1/2), the probability that there exists a window in W that contains
two or more faults is 1− o(1).

Proof. Divide the faults into halves. After the first half of the faults have been
placed, if no window in W contains two or more faults then there must be ω(n3/2)
healthy locations, each of which lies within a window in W that contains a fault.
Therefore, the probability that any given fault in the second half will lie in a window
in W that contains another fault is ω(n−1/2). As a result, the probability that no
window in W contains two or more faults after all of the faults have been placed is at

most (1− n−1/2)ω(n1/2) = (1− n−1/2)n
1/2ω(1) = (1/e)ω(1) = o(1).

Theorem 4.4. The graph M1(n, k) tolerates Θ(n1/2) random faults.

Proof. The proof is immediate from Lemmas 4.2, 4.3, and 4.1.

4.2. Construction 2. The second construction is also based on the target graph
T1(n).

Definition. The graph M2(n, k) = C(n2 + k, {n− 1, n, n+ 1, n+ 2}).
Note that M2(n, k) has degree 8. It is similar to M1(n, k), except the (n + 2)-

offset edges allows it to jump over more faults. The proof of the following lemma is
analogous to that of Lemma 4.1 and is omitted.

Lemma 4.5. Assume that M2(n, k) contains k faulty nodes. M2(n, k) tolerates
the faults iff for each i, 0 ≤ i < n2 + k, W (n+ 2, i) contains at most two faults.

1776 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

Lemma 4.6. Let M ′ be a circulant graph with Θ(n2) nodes and let y = Θ(n). As-
sume that M ′ contains k randomly located faulty nodes. If k is o(n2/3), the probability
that there exists a node i such that W (y, i) contains three or more faults is o(1).

Proof. Given any three faults, the probability that there exists a node i such that
all three faults lie in W (y, i) is Θ(n−2). There are o(n2) distinct sets of three faults,
so the probability that there exists a node i such that W (y, i) contains three or more
faults is o(n−2n2) = o(1).

Lemma 4.7. Let f(n) be any function such that 1 ≤ f(n) ≤ n. Given ω(n)
independent Bernoulli trials, each of which has a probability of success of at least
1/f(n), the probability of at least n/f(n) successes is 1− o(1).

Proof. Divide the trials into ω(n/f(n)) groups, each of which contains at least
df(n)e trials. Given any one group of trials, the probability of at least one success in
that group is at least 1/2. Therefore, given any 2 dn/f(n)e groups, the probability of
at least n/f(n) successes is at least 1/2. This implies that the probability that the
entire set of ω(n) trials contains at least n/f(n) successes is at least 1−(1/2)ω(1) = 1−
o(1).

Lemma 4.8. Let M ′ be a circulant graph with Θ(n2) nodes and let W = W (y, z1),
W (y, z2), . . . ,W (y, zq) be a collection of q mutually disjoint y-node windows in M ′,
where y = Θ(n) and q = Θ(n). Assume that M ′ contains k randomly located faulty
nodes. If k is ω(n2/3), the probability that there exists a window in W that contains
three or more faults is 1− o(1).

Proof. Divide the faults into three groups, each of which contains ω(n2/3) faults.
Consider the three following statements:

Statement 1. At least n2/3 windows in W contain at least one fault each.
Statement 2. At least n1/3 windows in W contain at least two faults each.
Statement 3. There exists a window in W that contains three or more faults.

For all sufficiently large n, after the first group of faults has been placed, at least one
of the three statements above must be true.

First, consider the situation in which Statement 1 is true after the first group
of faults has been placed. For each fault in the second group, consider that fault to
be a success iff it lies in a window in W that contains a fault from the first group.
Given any fault in the second group, the probability that it is a success is Ω(n−1/3).
It follows from Lemma 4.7 that, with probability 1− o(1), at least n1/3 faults in the
second group are successes.

Therefore, regardless of which statement is true after the first group of faults is
placed, there is a probability of at least 1− o(1) that, after the second group of faults
is placed, either Statement 2 or Statement 3 (or both) is true. Now consider the
situation in which, after the second group of faults is placed, Statement 2 is true and
Statement 3 is false. For each fault in the third group, consider that fault to be a
success iff it lies in a window in W that contains at least two faults from the union of
the first and second groups. Given any fault in the third group, the probability that
it is a success is Ω(n−2/3). It follows from Lemma 4.7 that with probability 1− o(1)
at least one fault in the third group is a success.

As a result, in any case there is a probability of at least 1− o(1) that, after all of
the faults have been placed, Statement 3 holds.

Theorem 4.9. The graph M2(n, k) tolerates Θ(n2/3) random faults.
Proof. The proof is immediate from Lemmas 4.6, 4.8, and 4.5.

4.3. Construction 3. All of the remaining constructions are based on the target
graph T2(n).

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1777

Definition. The graph M3(n, k) = C(n2 + k, {1, 2, n, n+ 1}).
Note that M3(n, k) has degree 8. The 1-offset and 2-offset edges of the fault-

tolerant graph implement the 1-offset edges of the target graph, and the n-offset and
(n + 1)-offset edges of the fault-tolerant graph implement the n-offset edges of the
target graph.

Lemma 4.10. Assume that M3(n, k) contains k faulty nodes. M3(n, k) tolerates
the faults if for each i, 0 ≤ i < n2 + k, W (n+ 1, i) contains at most one fault.

Proof. Given any healthy node i, W (n+2, i) contains at most one fault. Therefore,
there is an edge between each healthy node and both the first healthy node following
it and the nth healthy node following it. As a result, M3(n, k) contains a healthy
copy of T2(n).

Lemma 4.11. Assume that M3(n, k) contains k faulty nodes. M3(n, k) does not
tolerate the faults if there exist x and y, where 0 ≤ x, y < n2 + k, dist(x, y) ≥ 2n,
W (n+ 1, x) contains at least two faults, and W (n+ 1, y) contains at least two faults.

Proof. Assume for the sake of contradiction that the faults can be tolerated. Let
a be the first healthy node preceding x and let a′ be the node in T2(n) that maps to
a. If there exists a node b′ in T2(n) where b′ = a′ + n, let b be the node to which b′

maps. Note that b is the nth healthy node following a, so b 6∈W (n+ 1, x) and a and
b are not connected to one another. Therefore, no such node b exists, which implies
that a′ ≥ n2 − n.

Let c be the first healthy node preceding y and let c′ be the node in T2(n) that
maps to c. A similar argument shows that c′ ≥ n2 − n. As a result, |a′ − c′|
≤ n − 1, so dist(a, c) ≤ n − 1 + k and dist(x, y) ≤ n − 1 + 2k < 2n, which is a
contradiction.

Theorem 4.12. The graph M3(n, k) tolerates Θ(n1/2) random faults.

Proof. If the number of faults is o(n1/2), it follows from Lemmas 4.2 and 4.10 that
the probability of tolerating the faults is 1− o(1). If the number of faults is ω(n1/2),
divide the faults into halves. Let W1 = W (y, 0),W (y, y),W (y, 2y), . . . ,W (y, qy) and
let W2 = W (y, (q+2)y),W (y, (q+3)y),W (y, (q+4)y) . . . ,W (y, 2qy), where y = n+1
and q = bn/4c. Apply Lemma 4.3 to the first half of the faults with W = W1, apply
Lemma 4.3 to the second half of the faults with W = W2, and apply Lemma 4.11 to
complete the proof.

4.4. Construction 4.

Definition. The graph M4(n, k) = C(n2 + n+ k, {1, 2, n+ 1, n+ 2}).
Note that M4(n, k) has degree 8. The 1-offset and 2-offset edges of the fault-

tolerant graph implement the 1-offset edges of the target graph, and the (n+1)-offset
and (n+2)-offset edges of the fault-tolerant graph implement the n-offset edges of the
target graph. In particular, the (n+1)-offset and (n+2)-offset edges of M4(n, k) can
implement the n-offset edges of the target graph provided that each window of n+ 1
consecutive nodes contains at least one fault and each window of n + 2 consecutive
nodes contains at most two faults. Although it is very unlikely (or impossible) that
each window of n+1 consecutive nodes contains at least one fault, we can view up to
n healthy nodes as being “dummy faults” (because there are n + k spares) in order
to satisfy this requirement.

Definition. Given a circulant graph with x nodes, a block of healthy nodes is
a window W (y, i), where 1 ≤ y < x and 0 ≤ i < x, consisting solely of healthy nodes
such that both node i− 1 mod x and node i+ y mod x are faulty.

Consider the following algorithm for adding dummy faults to M4(n, k).

1778 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

Algorithm A. Consider separately each block of healthy nodes. Assume a block
consists of y healthy nodes. There are three cases based on the value of y.

Case 1. y ≤ n. In this case, do not add any dummy faults to the block.
Case 2. n+ 1 ≤ y ≤ 2n. In this case, add one dummy fault to the block. Place

the dummy fault in the middle of the block so that it divides the block into
two subblocks of healthy nodes, the first of which has d(y − 1)/2e nodes and
the second of which has b(y − 1)/2c nodes.

Case 3. 2n+ 1 ≤ y. In this case, add two dummy faults that divide the block
into three subblocks of healthy nodes, the first of which has n− 1 nodes, the
second of which has z = y − 2n nodes, and the third of which has n − 1
nodes. Let a and b denote these two dummy nodes. Then add an additional
x = bz/(n+ 1)c dummy faults between a and b. This leaves w = z−x healthy
nodes in the block, which are divided into x + 1 subblocks of healthy nodes
by the x dummy faults. Distribute the dummy faults so that each subblock
has length bw/(x+ 1)c or dw/(x+ 1)e.

The following lemmas establish properties of Algorithm A.

Lemma 4.13. Given w, x, and z in Case 3 above, xn ≤ w ≤ (x+ 1)n.

Proof. Because x = bz/(n+ 1)c, z ≥ x(n + 1), and w = z − x ≥ xn. Because
x = bz/(n+ 1)c, z ≤ xn+ n+ x and w = z − x ≤ xn+ n = (x+ 1)n.

Lemma 4.14. After applying Algorithm A, no block of n + 1 or more healthy
nodes exists.

Proof. If there is a block of n + 1 ≤ y ≤ 2n healthy nodes prior to applying
Algorithm A, the algorithm adds a dummy node that divides the block into subblocks
of at most d(y − 1)/2e ≤ n healthy nodes each. If there is a block of 2n+1 ≤ y healthy
nodes prior to applying Algorithm A, the algorithm adds dummy nodes a and b that
divide the block into subblocks of n − 1, z = y − 2n, and n − 1 healthy nodes each.
Then x = bz/(n+ 1)c dummy faults are added to the subblock of z healthy nodes,
leaving w = z−x healthy nodes. These w healthy nodes occur in subblocks of length
at most dw/(x+ 1)e ≤ d(x+ 1)n/(x+ 1)e ≤ n.

Lemma 4.15. After applying Algorithm A, no dummy fault is consecutive with
another (actual or dummy) fault, provided that n ≥ 2.

Proof. If there is a block of n + 1 ≤ y ≤ 2n healthy nodes prior to applying
Algorithm A, the algorithm adds a dummy node that divides the block into subblocks
of at least b(y − 1)/2c ≥ bn/2c ≥ 1 healthy nodes each. If there is a block of 2n+1 ≤ y
healthy nodes prior to applying Algorithm A, the algorithm adds dummy nodes a and
b that divide the block into subblocks of n− 1, z = y − 2n, and n− 1 healthy nodes
each. Then x = bz/(n+ 1)c dummy faults are added to the subblock of z healthy
nodes, leaving w = z − x healthy nodes. If x = 0, there are w = z − 0 = y − 2n ≥ 1
healthy nodes between dummy faults a and b. If x ≥ 1, the w healthy nodes occur in
subblocks of at least bw/(x+ 1)c ≥ bxn/(x+ 1)c ≥ bn/2c ≥ 1 nodes each.

Lemma 4.16. Consider any configuration of actual faults such that no two faults
are consecutive and there does not exist a node i such that W (2n+3, i) contains three
or more faults, where n ≥ 2. After applying Algorithm A to this configuration of
faults, no two (actual or dummy) faults will be consecutive and there will not exist a
node j such that W (n+ 2, j) contains three or more (actual or dummy) faults.

Proof. The fact that no two faults will be consecutive follows immediately from
the preceding lemma. Now assume for the sake of contradiction that after applying
Algorithm A, there exists a node j such that W (n+2, j) contains three or more faults.
Clearly, W (n+ 2, j) must contain at least one dummy fault. Select one such dummy

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1779

fault and denote it as d, and let C denote the block of y originally healthy nodes
containing d. Clearly, y ≥ n+ 1.

If n + 1 ≤ y ≤ 2n, then d is the only dummy fault in C, so either W (n + 2, j)
contains two actual faults or W (n+2, j) contains some other dummy fault located in
some other block of originally healthy nodes. First, consider the case where W (n+2, j)
contains two actual faults. Let e and f denote these actual faults. Either y lies between
e and f or it does not. If y lies between e and f , W (n + 2, j) must contain at least
y + 2 ≥ n + 3 nodes, which is a contradiction. Thus y does not lie between e and
f . Now let y′ denote the number of nodes between e and f . Because W (n + 2, j)
contains only n + 2 nodes and because there are at least b(y − 1)/2c ≥ y/2 − 1
nodes between d and every actual fault, it follows that y′ + y/2 + 2 ≤ n + 2, which
implies that y′ ≤ n− y/2 and that there were three actual faults within a window of
y + y′ + 3 ≤ n+ y/2 + 3 ≤ 2n+ 3 nodes, which is a contradiction.

Now, consider the case where W (n + 2, j) contains a dummy fault located in
another block of originally healthy nodes. Let d′ denote such a dummy fault and let C ′

denote the block of y′ originally healthy nodes containing d′. Clearly, y′ ≤ 2n, because
otherwise there would be at least n−1 healthy nodes between d′ and the nearest actual
fault. However, note that if C ′ follows C, then there are at least b(y − 1)/2c ≥ bn/2c
consecutive healthy nodes following d and at least d(y′ − 1)/2e ≥ dn/2e consecutive
healthy nodes preceding d′, which implies that W (n + 2, j) contains at least n + 3
nodes, which is a contradiction. The case in which C ′ precedes C is analogous.

If 2n+1 ≤ y, then either W (n+2, j) contains at least one actual fault and at least
one dummy fault or W (n+ 2, j) contains three dummy faults and no actual faults. If
W (n + 2, j) contains at least one actual fault and at least one dummy fault, then it
must contain the n−1 healthy nodes which separate the dummy faults in C from the
actual faults. Furthermore, because no two (actual or dummy) faults are consecutive,
W (n+ 2, j) must contain at least n+ 3 nodes, which is a contradiction. On the other
hand, ifW (n+2, j) contains three dummy faults and no actual faults, let a, b, w, x, and
z be as defined in Case 3 of Algorithm A. It follows that x ≥ 1 and that W (n+ 2, j)
contains at least two blocks of bw/(x+ 1)c or more healthy nodes in addition to
the three dummy faults. However, the fact that x ≥ 1 implies that z ≥ n + 1.
Therefore, the dummy faults designated a and b cannot both be in W (n+ 2, j), so it
follows that x ≥ 2. Therefore, bw/(x+ 1)c ≥ bxn/(x+ 1)c ≥ b2n/3c ≥ n/2, so
W (n + 2, j) contains at least n healthy nodes and three dummy faults, which is a
contradiction.

Lemma 4.17. After applying Algorithm A, at least n2 healthy nodes remain.

Proof. First, we will show that Algorithm A adds at most one dummy fault per
n + 1/3 originally healthy nodes. In Case 2 of Algorithm A, one dummy fault is
added to a block of at least n + 1 originally healthy nodes. In Case 3 of Algorithm
A, if two dummy faults are added, there are at least 2n + 1 originally healthy nodes
in the block, so at most one dummy fault is added per n + 1/2 originally healthy
nodes. In Case 3 of Algorithm A, if i ≥ 3 dummy faults are added, there are at least
in+ i− 2 originally healthy nodes in the block, so at most one dummy fault is added
per n+ (i− 2)/i originally healthy nodes. This quantity is minimized when i = 3, at
which point one dummy fault is added per n+ 1/3 originally healthy nodes.

Now consider the case in which exactly k actual faults exist. In this case there
must be n2 +n originally healthy nodes, so at most

⌊
(n2 + n)/(n+ 1/3)

⌋ ≤ n dummy
faults are added, and at least n2 healthy nodes remain. Now consider the case in
which k − x actual faults exist, where x ≥ 1. At most

⌊
(n2 + n+ x)/(n+ 1/3)

⌋ ≤

1780 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

⌊
(n2 + n)/(n+ 1/3)

⌋
+ dx/(n+ 1/3)e ≤ n+ x dummy faults are added, and at least

n2 healthy nodes remain.

The proofs of the following two lemmas are analogous to those of Lemmas 4.10
and 4.11, and are omitted.

Lemma 4.18. Assume that M4(n, k) contains f ≤ n + k (actual or dummy)
faults. M4(n, k) tolerates the faults if no two faults are consecutive and for each i,
0 ≤ i < n2 + n + k, W (n + 1, i) contains at least one fault and W (n + 2, i) contains
at most two faults.

Lemma 4.19. Assume that M4(n, k) contains f faulty nodes. M4(n, k) does not
tolerate the faults if there exist x and y, where 0 ≤ x, y < n2 +n+ k, dist(x, y) ≥ 4n,
W (n+2, x) contains at least three faults, and W (n+2, y) contains at least three faults.

Theorem 4.20. The graph M4(n, k) tolerates Θ(n2/3) random faults.

Proof. First, consider the case where the number of faults is o(n2/3). It follows
from Lemma 4.6 that with probability 1−o(1) there does not exist a node i such that
W (2n+3, i) contains three or more faults. Also, given any two faults, the probability
that they are consecutive is Θ(n−2). There are o(n2) distinct pairs of faults, so the
probability that there exists a pair of faults that are consecutive is o(n−2n2) = o(1).
Therefore, it follows from Lemmas 4.17, 4.16, and 4.18 that after applying Algorithm
A, the faults can be tolerated with probability 1− o(1).

Next, consider the case where the number of faults is ω(n2/3). In this case, divide
the faults into halves. Let W1 = W (y, 0),W (y, y),W (y, 2y), . . . ,W (y, qy) and let
W2 = W (y, (q + 4)y),W (y, (q + 5)y),W (y, (q + 6)y), . . . ,W (y, 2qy), where y = n+ 2
and q = bn/4c. Apply Lemma 4.8 to the first half of the faults with W = W1, apply
Lemma 4.8 to the second half of the faults with W = W2, and apply Lemma 4.19 to
complete the proof.

4.5. Construction 5. ConstructionM5(n, k) is a hierarchical construction based
on M3(n/2, k). It is defined only for even values of n.

Definition. The graph M5(n, k) is created from M3(n/2, k) as follows:

1. Create n′ = (n/2)(n/2) + k = n2/4 + k squares (that is, cycles of length 4)
numbered 0 through n′ − 1.

2. For each square i, connect the upper right corner of i to the upper left corners
of (i+ 1) mod n′ and (i+ 2) mod n′, and connect the lower right corner of i
to the lower left corners of (i+ 1) mod n′ and (i+ 2) mod n′.

3. For each square i, connect the lower left corner of i to the upper left corners
of (i+ n) mod n′ and (i+ n+ 1) mod n′, and connect the lower right corner
of i to the upper right corners of (i+ n) mod n′ and (i+ n+ 1) mod n′.

Note that M5(n, k) has degree 6. The idea behind this construction is that the
squares act as 2 by 2 submeshes and the graph can be reconfigured if the corresponding
fault-tolerant graph (namely M3(n/2, k)) can tolerate faults located in the positions
corresponding to the faulty squares (see the proof of Theorem 3.4 for a description of
hierarchical fault-tolerant graphs). The following theorem follows immediately from
Theorem 4.12.

Theorem 4.21. The graph M5(n, k) tolerates Θ(n1/2) random faults.

4.6. Construction 6. ConstructionM6(n, k) is a hierarchical construction based
on M4(n/2, k). It is defined only for even values of n.

Definition. The graph M6(n, k) is created from M4(n/2, k) as follows:

1. Create n′ = (n/2)(n/2) + (n/2) + k = n2/4 + n/2 + k squares (that is, cycles
of length 4) numbered 0 through n′ − 1.

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1781

2. For each square i, connect the upper right corner of i to the upper left corners
of (i+ 1) mod n′ and (i+ 2) mod n′, and connect the lower right corner of i
to the lower left corners of (i+ 1) mod n′ and (i+ 2) mod n′.

3. For each square i, connect the lower left corner of i to the upper left corners
of (i+n+1) mod n′ and (i+n+2) mod n′, and connect the lower right corner
of i to the upper right corners of (i+ n+ 1) mod n′ and (i+ n+ 2) mod n′.

Note that M6(n, k) has degree 6. The following theorem follows immediately from
Theorem 4.20.

Theorem 4.22. The graph M6(n, k) tolerates Θ(n2/3) random faults.

4.7. Summary. Table 1 summarizes various characteristics, including the asymp-
totic fault-tolerance, of the six fault-tolerant constructions.

Table 1
Comparison of characteristics of the 6 FT meshes.

Construction Symbol Deg. No. spares Offsets Asymp. FT

M1 circ6 6 k {n− 1, n, n+ 1} Θ(n1/2)

M2 circ8 8 k {n− 1, n, n+ 1, n+ 2} Θ(n2/3)

M3 diag8 8 k {1, 2, n, n+ 1} Θ(n1/2)

M4 diag8r 8 k + n {1, 2, n+ 1, n+ 2} Θ(n2/3)

M5 diag6 6 4k M3 + submesh Θ(n1/2)

M6 diag6r 6 4k + 2n M4 + submesh Θ(n2/3)

Notice that both M2(n, k) and M4(n, k) have degree 8 and tolerate Θ(n2/3) faults,
but M4(n, k) requires more spares than does M2(n, k). Thus, the technique of adding
dummy faults does not in itself provide a more practical fault-tolerant network. Sim-
ilarly, notice that both M1(n, k) and M5(n, k) have degree 6 and tolerate Θ(n1/2)
faults, but M5(n, k) requires more spares than does M1(n, k). Thus, the technique
of using 2 by 2 submeshes does not in itself provide a more practical fault-tolerant
network. However, by combining these two techniques, M6(n, k) is the only degree 6
network that is capable of tolerating Θ(n2/3) faults.

Finally, we will consider laying out the fault-tolerant graphs presented in this
section using Thompson’s VLSI model [28]. The following theorem shows that, just
like the mesh itself, all of the fault-tolerant constructions can be laid out with constant
length wires.

Theorem 4.23. It is possible to lay out each of the graphs Mi(n, k) where 1 ≤
i ≤ 6 using only wires with length O(1).

Proof. The layouts for graphs M1(n, k), M2(n, k), M3(n, k), and M4(n, k) follow
immediately from the techniques presented in the proof of Theorem 3.9. The lay-
outs for graphs M5(n, k) and M6(n, k) follow from the layouts for M3(n/2, k) and
M4(n/2, k), respectively, by replacing each node by a square of four nodes.

4.8. Simulation results. Figures 7 to 9 show the simulation results for the
fault tolerance of an n × n target mesh for n = 16, 64, and 256, respectively. The
probability given for each construction and each value of k is the result of 10,000
simulation trials.

For each figure, the probability of reconfiguration for each construction of the FT
meshes, Mi(n, k) where 1 ≤ i ≤ 6, is plotted as a functions of k. Each curve has a
name of the form “xyz,” where “x” is either “circ” for circulant graph or “diag” for
diagonal graph (as the basic target graph), “y” denotes the degree (6 or 8), and “z”
is either “r” (designating an extra row of spare nodes or supernodes) or an empty

1782 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22

pr
ob

ab
ili

ty
 o

f r
ec

on
fig

ur
at

io
n

k = number of faults

Fault tolerance for a 16 by 16 target mesh

M1 circ6
M5 diag6
M3 diag8
M2 circ8

M6 diag6r
M4 diag8r

Fig. 7. Simulation results of fault tolerance for a 16 by 16 target mesh.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

pr
ob

ab
ili

ty
 o

f r
ec

on
fig

ur
at

io
n

k = number of faults

Fault tolerance for a 64 by 64 target mesh

M1 circ6
M5 diag6
M3 diag8
M2 circ8

M6 diag6r
M4 diag8r

Fig. 8. Simulation results of fault tolerance for a 64 by 64 target mesh.

FAULT-TOLERANT MESHES WITH SMALL DEGREE 1783

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100 110

pr
ob

ab
ili

ty
 o

f r
ec

on
fig

ur
at

io
n

k = number of faults

Fault tolerance for a 256 by 256 target mesh

M1 circ6
M5 diag6
M3 diag8
M2 circ8

M6 diag6r
M4 diag8r

Fig. 9. Simulation results of fault tolerance for a 256 by 256 target mesh.

string. The solid lines denote the degree-6 FT meshes while the dotted lines denote
the degree-8 FT meshes.

Note that the FT meshes for the three curves from the left tolerate Θ(n1/2)
random faults, while the remaining three curves on the right can tolerate Θ(n2/3)
random faults. Thus the asymptotic bounds proven above do appear to describe the
behavior of these networks for realistic values of n. Also, note that the graph M6(n, k)
(designated “diag6r” in the figures) performs the best out of the degree-6 networks
studied, and that it has over a 90% chance of tolerating 12 faults when n = 64.

REFERENCES

[1] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C-T. Ho, M. Noar, and E. Szemerédi, Fault
tolerant graphs, perfect hash functions and disjoint paths, in Proc. of 33rd Annual IEEE
Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 693–702.

[2] F. Annexstein, Fault tolerance in hypercube-derivative networks, in Proc. of 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, Sante Fe, NM, 1989, ACM, New
York, pp. 179–188.

[3] V. Balasubramanian and P. Banerjee, A fault tolerant massively parallel processing archi-
tecture, J. Parallel Distrib. Comput., 4 (1987), pp. 363–383.

[4] K. E. Batcher, Design of a massively parallel processor, IEEE Trans. Comput., C-29 (1980),
pp. 836–840.

[5] C. Berge, Graphs, North–Holland, Amsterdam, 1985, p. 218, a theorem attributed to Moon.
[6] G. Bilardi and F. P. Preparata, Horizons of Parallel Computing, Future Tendencies in

Computer Science and Applied Mathematics, A. Bensoussan and J.P. Verjus, eds., Lecture
Notes in Comput. Sci. 653, Springer-Verlag, Berlin, 1992, pp. 155–174.

[7] J. Bruck, R. Cypher, and C-T. Ho, Fault-tolerant de Bruijn and shuffle-exchange networks,
IEEE Trans. Parallel Distrib. Systems, 5 (1994), pp. 548–553.

1784 JEHOSHUA BRUCK, ROBERT CYPHER, AND CHING-TIEN HO

[8] J. Bruck, R. Cypher, and C-T. Ho, Tolerating faults in a mesh with a row of spare nodes,
Theoret. Comput. Sci., 128 (1994), pp. 241–252.

[9] J. Bruck, R. Cypher, and C-T. Ho, Wildcard dimensions, coding theory and fault-tolerant
meshes and hypercubes, IEEE Trans. Comput., to appear. Also appeared in Proc. 23rd
International Symposium on Fault-Tolerant Computing, IEEE Computer Society Press,
Los Alamitos, CA, 1993, pp. 260–267.

[10] J. Bruck, R. Cypher, and C.-T. Ho, Fault-tolerant meshes and hypercubes with minimal
numbers of spares, IEEE Trans. Comput., 42 (1993), pp. 1089–1104.

[11] J. Bruck, R. Cypher, and D. Soroker, Tolerating faults in hypercubes using subcube parti-
tioning, IEEE Trans. Comput., 41 (1992), pp. 599–605.

[12] R. Cypher, Theoretical aspects of VLSI pin limitations, SIAM J. Comput., 22 (1993), pp.
356–378.

[13] S. Dutt and J. P. Hayes, On designing and reconfiguring k-fault-tolerant tree architectures,
IEEE Trans. Comput., C-39 (1990), pp. 490–503.

[14] S. Dutt and J. P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel
Distrib. Comput., 12 (1991), pp. 249–268.

[15] S. Dutt and J. P. Hayes, Some practical issues in the design of fault-tolerant multiprocessors,
in Proc. 21st International Symposium on Fault-Tolerant Computing, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pp. 292–299.

[16] B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combin. Theory, 9
(1970), pp. 297–307.

[17] J. Håstad, F. T. Leighton, and M. Newman, Fast computations using faulty hypercubes, in
Proc. 21st Annual ACM Symposium on Theory of Computing, ACM, New York, 1989, pp.
251–284.

[18] J. P. Hayes, A graph model for fault-tolerant computing systems, IEEE Trans. Comput., C-25
(1976), pp. 875–884.

[19] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao, C.
Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proc. 31st Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 285–296.

[20] S.-Y. Kuo and W. K. Fuchs, Efficient spare allocation for reconfigurable arrays, IEEE Design
and Test, 4 (1987), pp. 24–31.

[21] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA, 1992.

[22] F. T. Leighton and C. E. Leiserson, Wafer scale integration of systolic arrays, IEEE Trans.
Comput., C-34 (1985), pp. 448–461.

[23] T. Leighton, B. Maggs, and R. Sitaraman, On the fault tolerance of some popular bounded-
degree networks, in Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 542–552.

[24] M. Paoli, W. W. Wong, and C. K. Wong, Minimum k-Hamiltonian graphs, II, J. Graph
Theory, 10 (1986), pp. 79–95.

[25] A. L. Rosenberg, The diogenes approach to testable fault-tolerant VLSI processor arrays,
IEEE Trans. Comput., C-32 (1983), pp. 902–910.

[26] V. P. Roychowdhury, J. Bruck, and T. Kailath, Efficient algorithms for reconfiguration
in VLSI/WSI arrays, IEEE Trans. Comput., C-39 (1990), pp. 480–489.

[27] H. Tamaki, Construction of the mesh and the torus tolerating a large number of faults, in
Proc. 6th Annual ACM Symposium on Parallel Algorithms and Architectures, Cape May,
NJ, 1994, ACM, New York, pp. 268–277.

[28] C. Thompson, A Complexity Theory for VLSI, Ph.D. thesis, Dept. of Computer Science,
Carnegie–Mellon University, Pittsburgh, PA, 1980.

[29] W. W. Wong and C. K. Wong, Minimum k-Hamiltonian graphs, J. Graph Theory, 8 (1984),
pp. 155–165.

ON TRANSLATIONAL MOTION PLANNING OF A CONVEX
POLYHEDRON IN 3-SPACE∗

BORIS ARONOV† AND MICHA SHARIR‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1785–1803, December 1997 012

Abstract. Let B be a convex polyhedron translating in 3-space amidst k convex polyhedral
obstacles A1, . . . , Ak with pairwise disjoint interiors. The free configuration space (space of all
collision-free placements) of B can be represented as the complement of the union of the Minkowski
sums Pi = Ai ⊕ (−B), for i = 1, . . . , k. We show that the combinatorial complexity of the free
configuration space of B is O(nk log k), and that it can be Ω(nkα(k)) in the worst case, where n
is the total complexity of the individual Minkowski sums P1, . . . , Pk. We also derive an efficient
randomized algorithm that constructs this configuration space in expected time O(nk log k logn).

Key words. combinatorial geometry, computational geometry, combinatorial complexity, con-
vex polyhedra, geometric algorithms, randomized algorithms, algorithmic motion planning

AMS subject classifications. 52B10, 52B55, 65Y25, 68Q25, 68U05

PII. S0097539794266602

1. Introduction. Let A1, . . . , Ak be k closed convex polyhedra in three dimen-
sions with pairwise disjoint interiors, and let B be another closed convex polyhedron
which, without loss of generality, is assumed to contain the origin o. In the context
of motion planning, B is a “robot” that can only translate in 3-space, and the Ai’s
are obstacles which B must avoid. Suppose Ai has qi faces and B has p faces, and
put q =

∑k
i=1 qi. Let

Pi = Ai ⊕ (−B) = {a− b | a ∈ Ai, b ∈ B}
be the Minkowski sum of Ai and −B, for i = 1, . . . , k. Let P = {Pi}ki=1 be the

resulting collection of these so-called expanded obstacles and let U =
⋃k
i=1 Pi be their

union. As is well known, the complement C of U (also called the common exterior of
P) represents the free configuration space FP of B, in the sense that, for each point
z ∈ C, the placement of B, for which the reference point O lies at z, does not intersect
any of the obstacles Ai, and all such free placements are represented in this manner.

As is well known, the combinatorial complexity (i.e., the number of vertices,
edges, and faces on the boundary) of each Pi is at most Θ(pqi), so the sum n of the
complexities of the expanded obstacles is O(pq). In typical situations, n is usually
much smaller than pq. The bounds derived in this paper depend only on n and k and
not on p and q.

Our main result is that the combinatorial complexity of the union U , and thus
also of FP , is O(nk log k) and Ω(nkα(k)) in the worst case. This should be compared

∗ Received by the editors April 27, 1994; accepted for publication (in revised form) December 19,
1995. A preliminary version of this paper appeared as On translational motion planning in 3-space,
in the Proceedings of the 10th ACM Symposium on Computational Geometry, Stony Brook, NY,
1994, ACM, New York, pp. 21–30.

http://www.siam.org/journals/sicomp/26-6/26660.html
† Department of Computer and Information Science, Polytechnic University, Brooklyn, NY 11201

(aronov@ziggy.poly.edu). The research of this author was supported by NSF grant CCR-92-11541.
‡ School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (sharir@

math.tau.ac.il) and Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012. The research of this author was supported by NSF grant CCR-91-22103, by a Max Planck
Research Award, by grants from the U.S.–Israeli Binational Science Foundation, the German–Israeli
Foundation for Scientific Research and Development, and the Fund for Basic Research administered
by the Israeli Academy of Sciences.

1785

1786 BORIS ARONOV AND MICHA SHARIR

to the recent bound obtained by the authors [4, 5] on the combinatorial complexity of
the union of any k convex polyhedra in 3-space with a total of n faces; it is shown [5]
that the maximum complexity of such a union is O(k3 +nk log k) and Ω(k3 +nkα(k)).
Thus, the convex polyhedra Pi arising in the context of translational motion planning
have special properties that yield the above improved bound, without the cubic term
of the general bound.

The problem of obtaining sharp bounds for the combinatorial complexity of the
union of Minkowski sums, as above, has been open for the past eight years, and has
been studied in several papers during this period. It was raised by Kedem et al. [22]
(see also [27]), where the two-dimensional version of the problem was successfully
tackled. Related work on the three-dimensional case is described in [2, 3, 4, 5, 15,
20, 26]. Except for [4, 5, 20] (and parts of [2]), these papers studied different (though
related) problems involving the complexity of the lower envelope or of a single cell
in an arrangement of triangles in 3-space. A recent paper of Halperin and Yap [20]
analyzes the complexity of the union of Minkowski expansions, as above, for the case
where B is a box, and obtains a bound of O(n2α(n)). Our result is general, and
thus almost settles this open problem, except for the sublogarithmic gap between our
upper and lower bounds; we conjecture that the correct bound is Θ(nkα(k)).

We also consider the algorithmic problem of efficient construction of FP . We
obtain an efficient and rather simple randomized algorithm that computes FP in
expected time O(nk log k logn). The algorithm and its analysis are adapted from a
very similar algorithm given in [4, 5] for constructing the union of arbitrary convex
polyhedra in 3-space.

The paper is organized as follows. In section 2 we bound the number of com-
ponents and local minima of C. The analysis of the topology of U , and of several
related structures constructed from a family of convex polyhedra, continues in sec-
tion 3. Section 4 establishes the main result of the paper, namely, the bounds on the
combinatorial complexity of the union of the polyhedra, as stated above. Section 5
describes the randomized algorithm for computing the boundary of the union, and its
application in the context of translational motion planning, and section 6 concludes
with some remarks and open problems.

2. The number of holes of U and local extrema of C. We first simplify
the analysis by assuming that the given polyhedra Ai and B are in general position,
meaning that the coordinates of the vertices of theAi’s and ofB are all transcendentals
that are algebraically independent over the rationals. In particular, this implies that
(a) no point is common to the boundaries of any four distinct expanded polyhedra Pi;
(b) no vertex of one expanded polyhedron lies on the boundary of another expanded
polyhedron; (c) no two edges of distinct expanded polyhedra meet; and (d) no edge
of an expanded polyhedron meets the polygonal curve of intersection of two other
expanded polyhedra. Several other implications of the general position assumption
will be needed to simplify the proof of Theorem 2.4. As argued in [4, 5], the general
position assumption involves no real loss of generality. This is because one can always
slightly perturb the given polyhedra, putting them in general position such that the
number of vertices of the union that are incident to three distinct polyhedra does
not decrease. The number of all other vertices of the union is only O(nk), as follows
from Proposition 2.1 below (which also holds when the polyhedra are not in general
position). Also see a remark following Theorem 4.2 that discusses this issue.

To simplify some of the subsequent arguments, we modify the family P so as
to make U bounded. To be more precise, we assume that B is bounded, which will

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1787

clearly be the case in our motion planning application. (If B is unbounded, then the
resulting set P of unbounded expanded obstacles has the property that the boundary
of its union can be regarded as the upper envelope of k concave polyhedral surfaces
with a total of n faces. This problem is much simpler and has already been addressed
by Huttenlocher, Kedem, and Sharir [21], where a tight Θ(nkα(k)) bound is obtained.)
We then truncate all the unbounded obstacles Ai, by intersecting all obstacles with a
sufficiently large tetrahedron, and by slightly perturbing the resulting intersections,
so as not to violate the general position assumptions. The tetrahedron is chosen
sufficiently large so that the union U of the resulting expanded obstacles Pi does not
lose any of the bounded boundary features (vertices, edges, and faces) that it had
before the truncation. Thus, the process does not reduce the complexity of the union
U . In what follows we will therefore assume that U is bounded, so that C has a single
unbounded component.

To establish our upper bound on the complexity of the union U , it clearly suffices
to bound the number of vertices of U . Moreover, it suffices to bound the number
of vertices of U that are formed by the intersection of the relative interiors of three
faces of three distinct polyhedra Pi, because the number of all other vertices, namely,
vertices of the original Pi’s and intersections of edges of the original Pi’s with faces of
other expanded obstacles, is only O(nk). This is a consequence of the following easy
proposition (see [4, 5]).

Proposition 2.1. The number of vertices of Pi∩Pj, summed over all Pi, Pj ∈ P,
is O(nk).

We first bound the number of connected components of the complement C of U
(the common exterior of P). Under the assumptions made above, C has a unique
unbounded component, so it suffices to estimate the number of bounded components
of C, which correspond to “holes” in U .

Let an intersection edge be an edge of the intersection of the boundaries of two
distinct expanded obstacles. Each such edge e meets the boundary of the union U in
at most k − 1 intervals, as it intersects each of the remaining k − 2 polyhedra in at
most one interval, and the complement (within e) of the union of these k−2 intervals
consists of at most k − 1 intervals.

We introduce a real parameter t ∈ [0, 1] (we refer to it as “time”), define Pi(t) =

Ai ⊕ (−tB), for i = 1, . . . , k, and U(t) =
⋃k
i=1 Pi(t), and let C(t) denote the com-

plement of U(t). Note that the general position assumption does not imply that
conditions (a)–(d) hold for {Pi(t)} for all values of t. It does imply, however, that, at
any given t, we can have at most one degenerate contact between the Pi(t)’s. Such a
contact can be expressed as a polynomial equality in t and in the coordinates of the
vertices of the Ai’s and of B. Moreover, there is only a finite number of values of t
at which such a degeneracy can occur. For example, if t0 > 0 is the first instant of
time at which Pi(t) and Pj(t) meet, then Pi(t) ∩ Pj(t) must consist of a single point,
for otherwise we would have at least two algebraically independent polynomial equal-
ities holding simultaneously, which is forbidden by the general position assumptions.
Moreover, such an initial single-point contact of Pi(t) and Pj(t) must occur either
between a vertex of one of these polyhedra and a face of the other, or between two
edges, one from each polyhedron. Similarly, it is easy to verify that the first contact
between three growing obstacles must occur at a single point.

Before continuing, we recall a well-known fact. Let P and Q be two convex
polyhedra. Denote by NP the normal diagram (also known as the Gaussian diagram)
of P . This is the decomposition of the Gaussian sphere S2 of orientations into regions,

1788 BORIS ARONOV AND MICHA SHARIR

each consisting of the outward normals of all planes supporting P at some vertex. Each
edge of NP is an arc of a great circle consisting of the outward normals of all planes
supporting P at some edge. Each vertex of NP is the outward normal of some face
of P . The normal diagram NQ of Q is analogously defined. Then the overlay of NP

and NQ is the normal diagram of the Minkowski sum P ⊕ Q. This implies that the
combinatorial structure (i.e., the number of, and incidence relations between, faces of
all dimensions) of P ⊕Q is completely determined by the orientations of the faces of
P and Q and by their incidence structures. In particular, the combinatorial structure
of Pi(t) = Ai ⊕ (−tB) is the same for all t > 0. This implies the following property.
For t ∈ [0, 1], let s(t) denote the Minkowski sum of either a fixed edge of Ai and (−t)
times a fixed vertex of B, or of a fixed vertex of Ai and (−t) times a fixed edge of B.
If s(t0) is an edge of Pi(t0), for some t0 ∈ (0, 1], then s(t) is an edge of Pi(t) for all
t ∈ (0, 1].

We want to keep track of the number of holes of U(t) as t increases from 0 to 1.
At t = 0, the number of holes of U(t) is 0. As t increases, C(t) shrinks, so the number
of holes can increase only when a component of C(t) is split into two components.

Lemma 2.2. A component of C(t) can split into two components only at times t
when an edge s(t) of some P`(t) meets an intersection edge e(t) of two other polyhedra,
Pi(t), Pj(t), at some point v, so that the intersection of C(t) with a small neighborhood
of v is disconnected.

Proof. We use the observation of de Berg, Matoušek, and Schwarzkopf [6], which
states that the number of connected components of C(t) can increase only at times
t, at which the elements of some new triple growing polyhedra intersect for the first
time. As noted above, the general position assumptions guarantee that such a triple,
Pi(t), Pj(t), P`(t), intersects in a single point. Moreover, the intersection must occur
on the boundary of C(t) and cause a local disconnection of C(t), or else no change in
the topological structure of C(t) would take place. (Note that the above conditions are
only necessary, but not sufficient, for the number of components of C(t) to increase.)
The intersection in question cannot occur at a point in the relative interior of three
faces, one on each of these three polyhedra, for then Pi(t

′)∩Pj(t′)∩P`(t′) would also
be nonempty for t′ slightly smaller than t. This and the general position assumption
are easily seen to imply the lemma.

Suppose that such a configuration does indeed arise at some time t, and suppose
that e(t) is formed by the intersection of a face of Pi(t) and a face of Pj(t). The
edge s(t) intersects both Pi(t) and Pj(t) at two respective intervals s(t) ∩ Pi(t) and
s(t) ∩ Pj(t), which have a common endpoint and which, by Lemma 2.2, have disjoint
relative interiors.

Lemma 2.3. If at time t the intervals s(t)∩Pi(t) and s(t)∩Pj(t) intersect, then
s(t′) ∩ Pi(t′) and s(t′) ∩ Pj(t′) intersect for all t′ > t.

Proof. Let v(t) denote some common point of the intervals s(t)∩Pi(t), s(t)∩Pj(t).
Recall that s(t) is an edge of A` ⊕ (−tB). Assume first that s(t) is the Minkowski
sum of a vertex a of A` and (−t) times an edge of B, whose endpoints are b, b′. Since
v(t) ∈ s(t), there exists λ ∈ [0, 1] such that v(t) = a− t(λb+ (1− λ)b′). We are given
that v(t) ∈ Pi(t), which means that v(t) = c− tb′′, for some c ∈ Ai and b′′ ∈ B. We
claim that the point v(t′) = a − t′(λb + (1 − λ)b′), with the same λ as above, lies
in Pi(t

′), for all t′ > t (and, by definition, v(t′) ∈ s(t′); see the discussion preceding
Lemma 2.2). Indeed, if we put bλ = λb+ (1− λ)b′, then

v(t′) = a− tbλ − (t′ − t)bλ = c− tb′′ − (t′ − t)bλ = c− t′
[
t

t′
b′′ +

t′ − t

t′
bλ

]
,

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1789

which clearly belongs to Ai⊕ (−t′B), whenever t′ ≥ t. An analogous argument shows
that v(t′) ∈ Aj ⊕ (−t′B), whenever t′ ≥ t. This implies the asserted claim. The case
where s(t) is the Minkowski sum of an edge of A` and (−t) times a vertex of B is
handled in a similar manner, as the reader can easily verify. This completes the proof
of the lemma.

Lemmas 2.2 and 2.3 imply that, for each t at which a connected component of C
is split into two components, there exist two polyhedra, Pi(t), Pj(t), and an edge s(t)
of another polyhedron P`(t), such that the two intervals s(t) ∩ Pi(t) and s(t) ∩ Pj(t)
meet at a common endpoint that lies on ∂C(t) and continue to overlap for all t′ > t.
Thus, the number of such “hole-splitting” events, involving the same edge s(t) of any
of the expanded polyhedra, is at most k − 2, so the total number of holes that the
union can have is at most O(nk). That is, we have shown the following theorem.

Theorem 2.4. The number of connected components of the common exterior C
of Minkowski sums of k polyhedra, as above, is O(nk).

Remark. We do not know if this bound is tight, as the best lower bound we
can construct is Ω(k2). Assume for simplicity that k > 2 is even. A configuration
yielding such a bound consists of k/2 − 1 line obstacles of the form z = 0, x = i,
for i = 1, . . . , k/2 − 1, of k/2 − 1 line obstacles of the form z = 0.1, y = i, for
i = 1, . . . , k/2− 1, and of two plane obstacles z = ±1/2. The robot is an axis-parallel
cube with side length 2/3.

Let S be any closed polyhedral set in 3-space in general position. (In this paper
we consider only polyhedral sets bounded by a finite number of edges, vertices, and
faces.) For a point p, let a neighborhood of p in S be the intersection of S with a
ball centered at p, whose radius is smaller than the distance from p to any edge,
face, or vertex of S not incident to p. A point p of S is a local minimum if it is a
point of smallest z-coordinate in some neighborhood of p in S. (Under the general
position assumptions, no face or edge can be parallel to the xy-plane, so p will be the
only point in its neighborhood with this z-coordinate.) A local maximum is similarly
defined. The following theorem is a consequence of Theorem 2.4.

Theorem 2.5. The number of local maxima and minima of the closure C̄ of C is
O(nk).

Proof. We prove the claim only for the number of local minima of C̄, since the
treatment of local maxima is fully symmetric. Any bounded convex component K of
C̄ has exactly one local minimum (which is also the global minimum of K), because K
does not have a lowest horizontal edge, as implied by our general position assumption.
Hence, the number of such minima is O(nk) by Theorem 2.4. This also applies to
components of C̄, all of whose horizontal cross sections are connected, because such a
component has at most one local (and global) minimum as well. So we will proceed
to bound the number of local minima of those components that have at least one
disconnected horizontal cross section; we refer to these components as interesting
components. We will in fact prove that the number of such minima is only O(k2).

Let C∗ denote the union of all interesting components of C̄. Sweep C∗ with a plane
π which is parallel to the xy-plane, move upwards, i.e., in the positive z-direction,
and keep track of the number I of connected components of C∗ ∩ π. This number is
initially 1 (when π is below all vertices of C∗). (Actually, it is possible for the outer
component to be uninteresting, in which case the number starts off at 0.) I increases
by 1 when π sweeps through a local minimum of C∗ or when a connected component of
C∗∩π splits into two subcomponents; I decreases by 1 when π sweeps through a local
maximum of C∗ or when two components of C∗ ∩ π merge into a single component.

1790 BORIS ARONOV AND MICHA SHARIR

(The general position assumption implies that, at any given z, only two components
can merge into a component of C∗ ∩ π, and similarly a component cannot split into
more than two subcomponents.) The events at which components may merge or split
occur only when π sweeps, repsectively, through the topmost or bottommost vertex of
the intersection of some pair Pi, Pj of expanded obstacles, for some i 6= j. Indeed, it is
easily checked that, under the assumption of general position, splitting always occurs
when a vertex of some polygon π∩Pi meets an edge of another polygon π∩Pj in such
a way that the two polygons are disjoint before the event and meet in a small triangle
after the event. Thus Pi and Pj are disjoint immediately below the critical value
of z and meet immediately afterwards, implying our claim that the critical position
of π passes through the lowest point of Pi ∩ Pj . Merges are analyzed in an entirely
symmetric fashion. To summarize, the number of splits and merges of cross-sectional
components is bounded by 2

(
k
2

)
= O(k2). It remains to prove that this implies that

the number of local minima is also O(k2).
Consider the following dynamic scheme for assigning weights to each component

of C∗ ∩ π. When π sweeps through a local minimum point of C∗, a new component of
C∗ ∩ π is created and is assigned weight −1. When two components of C∗ ∩ π merge,
the weight assigned to the new component is 2 plus the sum of the weights of the
merged components. When a component shrinks and disappears, its final weight is
added to a global count. When a component is split into two subcomponents, each
of them is assigned weight 1 + w

2 , where w is the weight of the split component.
We claim that, at any given time during the sweep, the weight of any component

of C∗ ∩ π is always at least −1, and the weight of a component that was formed by
a splitting or merging operation is nonnegative. Both claims are easy to prove by
induction on the sweep events. Now suppose that, at some point during the sweep,
there are s local minima of C∗ below π, and that the number of component splittings
and mergings below π is N (which is at most O(k2)). Then the total weight of
the components of C∗ ∩ π, plus the value of the current global count (i.e., the sum
of the final weights of all cross sections of interesting components of C∗ that have
terminated below π), is easily seen, by induction on the sweep events, to be 2N − s.
As argued above, the value of the global count is always nonnegative. When the
sweep plane passes the topmost vertex of C∗, the cross section C∗ ∩ π has just one
component, necessarily of nonnegative weight, which thus implies that, at this final
stage, s ≤ 2N = O(k2). It follows that the number of local minima of C∗ contained
in interesting components is O(k2). Adding the number of local minima in non-
interesting components of C̄, we obtain the bound asserted in the theorem.

3. On the structure of levels in A(P). Define the arrangement A(P) of the
collection P of the expanded obstacles to be the decomposition of space into vertices,
edges, faces, and three-dimensional cells, induced by the faces of the polyhedra of P;
for more details on arrangements, see [2, 14, 29]. For each s = 1, . . . , k, let

U (s) =
⋃
{Pj1 ∩ · · · ∩ Pjs | 1 ≤ j1 < j2 < · · · < js ≤ k}.

Furthermore, put C(s) = R
3 \ U (s). We refer to ∂C(s+1) = ∂U (s+1) as the sth level of

the arrangement A(P). We also denote by C̄(s) the closure of C(s). Note that U (1) = U
is just the union of the polyhedra of P and that C(1) = C is their common exterior.
These definitions are illustrated in the planar case in Figure 1.

In this section we prove some geometric and topological properties of U (2) and
U (3) that will be used in the proof of our main theorem (Theorem 4.2 in section 4).

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1791

Fig. 1. A family of convex polygons; U(1) \U(2), U(2) \U(3), and U(3) are shaded successively
darker.

Lemma 3.1. The number of local minima and the number of connected com-
ponents of U (3), for any collection of k polyhedra with a total of n faces in general
position in 3-space, are bounded by the number of local maxima of C̄(1) plus O(k2).

Proof. U (3) is the union of triple intersections of polyhedra in P. Thus a local
minimum of U (3) is necessarily a local minimum of one of these triple intersections.
(This immediately bounds the number of local minima by

(
k
3

)
.) Since the number

of all pairwise intersections of polyhedra in P is only
(
k
2

)
, it suffices to consider only

those minima that are formed as intersections of three distinct polyhedron bound-
aries. By the general position assumption, such an intersection must be the unique
common point v of the relative interiors of three faces of three distinct polyhedra
in P. Thus, if v is a local minimum in U (3) of this kind, then U (3) near v has the
form of an octant O, formed by the three planes containing the faces incident to v,
with v at its minimum. Thus, near v, C̄(1) coincides with the octant opposite to O,
which has v as a local maximum. Hence, any local minimum of U (3) that is formed as
the triple intersection of three distinct polyhedron boundaries corresponds to a local
maximum of C̄(1). Since any bounded connected component of U (3) has a local mini-
mum, and since we have assumed U and thus also U (s), for any s, to be bounded, it
follows that the number of components of U (3) also satisfies the bound asserted in the
lemma.

Applying Theorem 2.5, we obtain the following corollary.

Corollary 3.2. If P is a collection of polyhedra with a total of n faces, which
arise as Minkowski expansions of a collection of k convex polyhedra with pairwise-
disjoint interiors by another convex polyhedron, then the number of local minima and
the number of connected components of U (3) is O(nk).

Proof. Lemma 3.1 is applicable here even though the expanded polyhedra are not
in fully general position. Nevertheless, if we assume that the original Ai’s and B are
in general position, then the assumptions made in the proof of Lemma 3.1 do hold,
as is easily checked, and the corollary thus follows.

Next we study the topological structure of U (2). We begin by deriving a topo-
logical property of general polyhedral sets. Let S be a closed polyhedral set in R

3

1792 BORIS ARONOV AND MICHA SHARIR

in general position; in particular, no two vertices of S have the same z-coordinate.
Note that a neighborhood of a point p in S, as defined in the previous section, is
star-shaped with respect to p, so its intersection with a horizontal plane through p is
also star-shaped and thus connected.

A merge point of S is a point p ∈ S such that, for any neighborhood of p, any
horizontal plane lying below p and sufficiently close to it intersects the neighborhood
in a disconnected set. (It is easily checked that p must be a vertex of S.) The number
of components of such an intersection approaches some limit as the horizontal plane
approaches p. We define the merge number m(p) of p to be the limit number of
connected components in this intersection, less 1. Since every neighborhood of p is a
scaled copy of any other neighborhood of p, m(p) is independent of the choice of the
neighborhood. We can naturally extend this definition to any nonmerge point p′ by
putting m(p′) = 0. We will apply our analysis to S = U (2), so in this case m(p) ≤ 2
for any point in the set, as is easily implied by the general position assumption on P.

The first Betti number of S, denoted β1(S), is the rank of the first singular
homology group of S [17]. Informally, it is the number of “linearly independent”
homotopy classes of closed cycles in S, where each class consists of all cycles homotopic
within S to some given cycle and not contractible to a single point within S.

Proposition 3.3. The first Betti number β1(S) of any compact polyhedral set S
in R

3 in general position does not exceed the sum of the merge numbers of its vertices.
The proof of this proposition is somewhat technical, and we give it in the ap-

pendix.
Lemma 3.4. For a collection of k arbitrary convex polyhedra in R

3 in general
position, with a total of n faces, β1(U

(2)) is at most proportional to k2 plus the number
of local minima of U (3). Hence, for collections of Minkowski expansions, as above,
this number is O(nk).1

Proof. Applying Proposition 3.3 to S = U (2), we conclude that it suffices to
bound the number of merge points of U (2). This is because the merge number of any
point of U (2) is at most 2, as follows from the general position assumption (and as
already noted above). Let v ∈ ∂U (2) be a merge point; then v must be a vertex of
A(P). We may assume that v is a vertex formed by the transversal intersection of
some three faces Fi, Fj , F` belonging to three respective distinct polyhedra Pi, Pj ,
P`. Indeed, any other vertex is either a vertex of some Pi or of some Pi ∩ Pj , for
i, j = 1, . . . , k. No vertex of the former type can be a merge point of any U (s), as
is easily seen. A vertex of the latter type, on the other hand, can be a merge point
only if it is the bottommost point of Pi ∩ Pj , as is readily verified using the general

position assumption. Thus, the number of these merge points is at most
(
k
2

)
; in fact,

the total number of merge points of this form, over all sets U (s), is at most
(
k
2

)
.

The planes πi, πj , π`, containing, respectively, the faces Fi, Fj , F`, partition 3-
space into eight octants; in a neighborhood of v, exactly one of these octants, O+, is
contained in all three polyhedra Pi, Pj , P`, three octants are contained in exactly two
of these polyhedra, three other octants are contained in exactly one of these polyhedra,
and one octant, O−, is disjoint from all three polyhedra; the octants O+ and O− lie
opposite each other. Note that v is not contained in the interior of any polyhedron
of P, for otherwise U (2), in a neighborhood of v, contains all octants around v except
possibly for O−, in which case v cannot be a merge point of U (2). We conclude that,
near v, U (2) consists of O+ and of its three adjacent octants.

1 Again, in the case of Minkowski expansions, the polyhedra are not in fully general position, but
they satisfy the assumptions made in the relevant proofs, so the corollary does apply.

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1793

We claim that v is the bottommost point of O+. Indeed, otherwise, by the general
position assumption, a horizontal plane π passing just below v would meet O+. Let
O′, O′′, O′′′ be the octants adjacent to O+, each covered, locally near v, by two of the
polyhedra Pi, Pj , P`. Then, near v the cross section U (2) ∩ π coincides with

((O+ ∪O′) ∩ π) ∪ ((O+ ∪O′′) ∩ π) ∪ ((O+ ∪O′′′) ∩ π).

Each of O+ ∪ O′, O+ ∪ O′′, O+ ∪ O′′′ is a convex set, namely, a dihedral wedge.
In particular, U (2) ∩ π near v is the union of three convex sets, all containing the
non-empty set O+ ∩ π, and thus is connected, contradicting the assumption that v is
a merge point, and thus establishing the claim. In other words, we have shown that
if v is a merge point of U (2) then π must avoid O+, i.e., O+ must lie fully above the
horizontal plane passing through v, or, equivalently, v must be a local minimum of
U (3). This completes the proof of the lemma.

4. The complexity of the union. Having all this machinery available, we now
turn to the analysis of the complexity of U . We apply the analysis technique of [5]
(an earlier and somewhat weaker version of that analysis is given in [4]). Here we go
quickly through its main steps; we refer the reader to [5] for full details. Let C(k, n)
denote the total number of vertices of U incident to three distinct polyhedra of P,
maximized over all collections P of k Minkowski sums, as above, with a total of n
faces, in general position. As argued in [4, 5], this number is equal to the total number
of vertices, edges, and faces, up to a constant multiplicative factor and an additive
term of O(kn). The analysis scheme of [5] yields the following recurrence for C(k, n):

(k − 5/3)C(k, n) ≤
k∑

i=1

C(k − 1, n− ni) +O(D(k, n)) ,(1)

where ni is the number of faces of Pi, for i = 1, . . . , k, and where D(k, n) is the
maximum, taken over all collections P as above, of the quantity

∑
f w(f), with the

sum ranging over all faces f of ∂U (2); here w(f) = max (2ef − 3, 0) and ef is the
number of edges on ∂f that lie on the boundary of the only polyhedron containing f
in its interior.

We next estimate D(k, n) exactly as in [4, 5]. The inductive analysis technique
used in these papers leads to the recurrence

(k − 2)D(k, n) =

k∑
i=1

D(k − 1, n− ni) +O(nk +Q(k, n)) ,(2)

where Q(k, n) is the number of “special quadrilaterals” of the following form, max-
imized over all collections P as above. Such a quadrilateral Q is schematically de-
picted in Figure 2; it is defined by a triple (F (Q), P ′(Q), P ′′(Q)), where P ′ = P ′(Q),
P ′′ = P ′′(Q) are distinct polyhedra of P, and F = F (Q) is a face of another polyhe-
dron, P (Q), of P; the intersection P ′∩P ′′∩F is the quadrilateral Q, which is assumed
to be disjoint from all other polyhedra; the four vertices of Q are vertices of the union
U , two opposite edges of Q are contained in ∂P ′ ∩ F and in the interior of only P ′′,
and the other two edges of Q are contained in ∂P ′′ ∩F and in the interior of only P ′.
In other words, if we remove P ′ and P ′′ from P and replace them by P ′ ∩ P ′′, then
∂Q appears on the boundary of the union of the modified collection, and the union of
all polyhedra in P, except for P ′ and P ′′, contains Q on its boundary. In the notation

1794 BORIS ARONOV AND MICHA SHARIR

P ′′

P ′

F

d

Q

a

c

b

P

Fig. 2. A special quadrilateral Q.

P ′′ ∩ P

P ′ ∩ P ′′

P ′ ∩ P

∂Q

Fig. 3. U(2) near a special quadrilateral Q.

of section 3, Q is a special type of face of ∂U (3). The structure of U (2) locally near Q
is schematically depicted in Figure 3.

In the case of general convex polyhedra, the authors give in [4, 5] a bound of
O(k3 + nk) for Q(k, n) and show that it is tight in the worst case. However, we show
here that the special properties of A(P) in the case of Minkowski sums, as established
in section 3, lead to an improved bound of only O(nk). Plugging this bound into the
recurrences (1) and (2), we obtain, following the analysis of [5], D(k, n) = O(nk log k)
and C(k, n) = O(nk log k), which thus completes the proof of the upper bound of our
main result.

We actually prove the following stronger result.

Lemma 4.1. For collections P of arbitrary convex polyhedra in general position,
the number of special quadrilaterals is at most proportional to nk plus the number of
local minima of U (3). Hence, for Minkowski expansions this number is O(nk).

Proof. Let Q be a special quadrilateral defined by (F (Q), P ′(Q), P ′′(Q)), as above.
The boundary ∂Q of Q is necessarily a bounding cycle of a connected component of
Σ(Q) ≡ ∂(P ′(Q) ∩ P ′′(Q)) ∩ ∂U (2). Following an argument similar to that of [4, 5],
we observe that the overall number of special quadrilaterals Q whose boundaries are
contractible to a point in the corresponding sets Σ(Q) is just O(nk), since in the
process of contracting ∂Q one has to encounter a vertex of P ′(Q) ∩ P ′′(Q), and it is
easily checked that no vertex of this form is charged by more than one contractible
quadrilateral for fixed P ′ and P ′′. The claim now follows from Proposition 2.1. We

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1795

thus need to consider only nontrivial quadrilaterals, namely, those whose boundaries
are not contractible in the above fashion.

Let Q be such a nontrivial special quadrilateral. By definition, Q does not meet
the interior of U (3) but is fully contained in U (2). Moreover, ∂Q ⊂ ∂U (2) (see Fig-
ure 3). “Cut” U (2) along Q (or, rather, shift Q slightly away from P (Q) and then cut
U (2) along the shifted quadrilateral). We apply this cutting procedure to every non-
trivial special quadrilateral, in some arbitrary order. Since, by definition, the relative
interiors of any pair of distinct special quadrilaterals are disjoint, it follows that the
cuts do not interfere with each other.

Each cut of U (2), performed along some nontrivial special quadrilateral Q, has
one of two possible effects: either the first Betti number of U (2) decreases by 1, or the
number of connected components of U (2) increases by 1, according to, respectively,
whether points of U (2) lying on the two sides of Q sufficiently near Q can or cannot be
connected by a path that avoids Q in the current version of U (2). The number of cuts
is thus proportional to the increase in the number of connected components of U (2)

plus the decrease in the first Betti number of U (2), as effected by the cuts. Since none
of the cuts can increase the first Betti number of U (2), it follows by Lemma 3.4 that
the latter quantity (the decrease in β1(U

(2))) is bounded by O(k2) plus the number
of local minima of U (3).

To estimate the former quantity, consider a cut performed along a special quadri-
lateral Q, defined by the triple (F (Q), P ′(Q), P ′′(Q)), which increases the number of
components of the current version of U (2). Since Q is nontrivial, “dragging” Q along
∂(P ′(Q) ∩ P ′′(Q)) in either direction encounters a third polyhedron, and thus also a

distinct component of U (3). To be more precise, let U
(2)
1 and U

(2)
2 be the components

obtained by cutting the current version of U (2) along Q. One of the new components

of U (2), say U
(2)
1 , contains, near Q, points belonging to P (Q) ∩ P ′(Q) ∩ P ′′(Q), so

U
(2)
1 contains a component of U (3). The other component of U (2), U

(2)
2 , is bounded

near Q by the connected portion K of Σ(Q) incident to Q. It is clear that K must
also have been incident (before any cuts were made) to some third polyhedron, for
otherwise K would have been homeomorphic to a disk whose boundary corresponds
to ∂Q, and Q would then have been a trivial quadrilateral, contractible to a point in
K ⊂ Σ(Q). There are now two subcases to consider.

(i) The component U
(2)
2 also contains a component of U (3). (Note that no

component of U (3) is ever split by the cuts, because all special quadrilaterals are
disjoint from the interior of U (3), so the cuts, performed along slightly shifted copies
of the quadrilaterals, are thus disjoint from U (3).) The total increase in the number
of components of U (2) formed by cuts of this kind cannot exceed the number of
components of U (3). This is because each such cut disconnects in U (2) two components
of U (3) that were connected in U (2) before the cut was made. Hence the number of
these cuts is bounded by the number of local minima of U (3).

(ii) The component U
(2)
2 does not contain a component of U (3). The corre-

sponding boundary K, as defined above, was incident, before any cuts were made,
to another component of U (3). It follows that this subcase occurs because previous
cuts, along other special quadrilaterals incident to K, have separated K from all other
adjacent components of U (3). In this case, we charge the current cut to one of these
preceding cuts. It is easily checked that no cut is charged in this manner more than
once. This implies that the number of special quadrilaterals in this subcase is at most
equal to the number of nontrivial special quadrilaterals of the preceding types (those
decreasing β1(U

(2)) and those appearing in case (i) above).

1796 BORIS ARONOV AND MICHA SHARIR

This completes the proof for collections of general convex polyhedra. In the case
of Minkowski expansions, as above, Corollary 3.2 implies that the number of special
quadrilaterals is O(nk).

We have thus shown that, in the case of Minkowski expansions, Q(k, n) = O(nk),
which in turn completes the analysis of C(k, n) and yields the upper bound in the
following main result of the paper.

Theorem 4.2. Let A1, . . . , Ak be k convex polyhedra in 3-space with pairwise dis-
joint interiors, and let B be another convex polyhedron. The combinatorial complexity
of the union of the Minkowski sums Ai⊕ (−B), for i = 1, . . . , k, is O(nk log k), where
n is the overall complexity of the individual Minkowski sums. In the worst case, this
complexity can be Ω(nkα(k)).

Remark. The preceding argument assumes general position of the polyhedra Ai

and B. Nevertheless, the theorem also holds for collections of polyhedra not in general
position, as can be argued using a perturbation scheme [4, 5]. The only delicate part
of this reasoning is in the handling of pairs of obstacles whose boundaries overlap.
This is done as follows. Shrink each Ai homothetically by a sufficiently small amount.
This may cause some features of the union U to disappear. However, each vertex of
U that is formed by the transversal intersection of three faces of three distinct Pi’s
appears as a (slightly perturbed) vertex of the new union. Since the number of all
other vertices of U is only O(nk) (see the paragraph preceding Proposition 2.1), it
follows that the upper bound of Theorem 4.2 also applies in degenerate configurations
of this form.

Proof of the lower bound. We make use of a planar construction, given in [1],
of k convex polygons with a total of n edges, such that their union has Ω(nα(k))
edges and vertices. Additionally, the polygons can be arranged so that their union
is star-shaped, say with respect to the origin, and at least some fixed fraction of its
vertices are visible from the point (0,+∞), in the strong sense that there exists some
fixed angle β > 0 (independent of k and n), so that, for any such visible vertex v,
the wedge whose apex is v, whose bisecting ray is parallel to the positive y-axis, and
whose angle is β, does not meet any of the polygon interiors.

Without loss of generality, assume that k is even and n ≥ 4.5k. We start our
three-dimensional construction with a set of k/2 convex polygons in xy-plane with
n − 3k edges altogether, so that their union U ′ has Ω(nα(k)) vertices visible from
(0,+∞, 0) in the above strong sense. By scaling, we may assume that the entire
construction is contained in the unit disk about the origin in the xy-plane. Now
slightly shift and expand the polygons in the z-direction, each by a different amount,
to produce pairwise-disjoint flat and thin convex prisms, all contained in, say, the
slab |z| ≤ 0.1; see Figure 4. The second set of k/2 polyhedra consists of points
(0,M, i), for i = 1, . . . , k/2 (or, rather, tiny tetrahedra centered around these points),
where M � k is an appropriate parameter. This gives us a collection {Ai}ki=1 of
k pairwise-disjoint convex polyhedra with a total of n faces. The polyhedron B is
a tetrahedron with vertices (0, 0,±M ′) and (±M ′,M, 0), where k � M ′ < M/4
is another parameter, chosen so that the dihedral angles of B at its horizontal and
vertical edges are both equal to some β′ < β; note that, by the choice of M ′, we have

tan β′

2 < 1/4, an inequality that will be needed below. See Figure 4 for an illustration.
Let v be a vertex of U ′ visible from (0,+∞, 0) in the above sense. By construction,

we can place B so that its vertical edge ev touches the two prisms corresponding to
the two polygons whose boundaries intersect at v; moreover, we can slide B vertically
upwards and downwards, by a total distance of close to 2M ′, so that ev maintains

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1797

1

M ′

< 1/2

M

1

(a) (b)

β′

1

β′

z

B yy

x

B

Fig. 4. The lower bound construction, not to scale: (a) a view from above; (b) a side view.

these two contacts, while the interior of B remains disjoint from any of the shifted
prisms. It is easily seen that, for an appropriate choice of M , independently of the
choice of v, the boundary of B will meet each of the tiny tetrahedra Ai around the
points (0,M, i) during the vertical motion. Moreover, our choice of parameters also
implies that the intersection of B with the vertical line x = 0, y = M has length less
than 2 tan β

2 < 1/2, so when B touches one of these Ai’s, its interior remains disjoint
from all the other polyhedra Ai; see Figure 4(b) for an illustration. In other words,
each of the Ω(nα(k)) vertices of U ′ that is visible from (0,+∞, 0) gives rise to Ω(k)
placements of B where it makes three contacts with the Ai’s, while its interior remains
disjoint from all these polyhedra. Since each of the resulting Ω(nkα(k)) placements

of B corresponds to a vertex of the union of the expanded polyhedra
⋃k
i=1 Ai⊕ (−B),

the lower bound of the theorem follows.

Corollary 4.3. The combinatorial complexity of the free configuration space of
a convex polyhedron B, translating in 3-space amidst a collection of k convex obstacles
A1, . . . , Ak having pairwise disjoint interiors, is O(nk log k) and can be Ω(nkα(k)) in
the worst case, where n is the overall complexity of the Minkowski sums Ai ⊕ (−B)
for i = 1, . . . , k.

Remarks. (1) Returning to the parameters p and q that count, respectively, the
number of faces of B and of all the Ai’s together, we can state the upper bound of
Theorem 4.2 and Corollary 4.3 as O(pqk log k) and the lower bound as Ω(qkα(k)).
Another trivial lower bound is Ω(pq). It remains an open problem to obtain a sharper
calibration of the lower bound in terms of the parameters p, q, and k.

(2) Our proof of Theorem 4.2 makes use of the fact that the Pi’s are Minkowski
sums only in the proof of Theorem 2.4. Hence, our analysis also applies to any
collection of k general convex polyhedra with a total of n faces, with the property that,
for any subset of r of these polyhedra, the number of components of the complement
of their union is O(rm), where m is the total number of faces of those r polyhedra.
We pose the open problem of finding other natural examples of collections of convex
polyhedra with this property.

5. Efficient construction of the union and its motion planning applica-
tion. Next we derive an efficient randomized algorithm for constructing the union U
of a collection P of expanded polyhedra, as above. The input to the algorithm con-
sists of the original polyhedra Ai and B, so we first compute the individual Minkowski

1798 BORIS ARONOV AND MICHA SHARIR

sums Pi = Ai⊕ (−B) for i = 1, . . . , k. This computation can be done in several ways,
the most efficient of which is by using the technique of Guibas and Seidel [19]. Each
Pi can be constructed in time O(p+ qi + ni), where ni is the complexity of Pi. Thus
the cost of this stage is O(pk + q + n).

The main algorithm is essentially identical to the one given in [4, 5] for the case
of general polyhedra; for the sake of completeness, here is a very brief review of the
algorithm.

We first compute all the pairwise intersections Pi ∩Pj , for 1 ≤ i < j ≤ k, in time
O(nk) [9]. In additional O(nk) time, we also extract, for each face F of a polyhedron
Pi ∈ P, the collection QF of the convex polygons Qj = F ∩ Pj , for j 6= i. The
set UF = F \ ⋃j 6=iQj is the portion of F that appears on ∂U , so the algorithm
computes the sets UF , over all faces F , and then glues the sets UF to each other in
an appropriate manner. To construct UF , for a face F of some Pi ∈ P, we choose a
random order of the polyhedra in P \ {Pi} and insert the polygons Qj ∈ QF , one by
one, in the corresponding order, maintaining the complement of their union (within
the plane containing F) as we go. For this we use the same technique as in [10, 18, 24],
which maintains a vertical decomposition (relative to some direction within F) of the
complement into trapezoids. When the incremental procedure ends, we truncate the
resulting complement to within F . See [4, 5] for more details.

The analysis of the expected running time of the algorithm is essentially identical
to that given in [4, 5]. One only has to plug the improved bound O(nk log k) on the
complexity of the union into the appropriate expressions given in [4, 5]. Omitting
these routine calculations, we obtain the following theorem.

Theorem 5.1. The union of a collection of k expanded convex polyhedra in 3-
space, as above, with a total of n faces, can be computed in randomized expected time
O(nk log k logn). (In terms of the original parameters p and q, the expected running
time is O(pqk log k log (pq)).)

Next we apply Theorem 5.1 to the problem of planning a purely translational
collision-free motion of the “robot” B amidst the obstacles A1, . . . , Ak. As observed
previously, the complement C of the union of the expanded obstacles is an adequate
representation of the free configuration space of B. However, the representation of
C, as computed by the preceding algorithm, needs a few enhancements to facilitate
processing of motion planning queries. Here we describe one such method, but al-
ternative (and, hopefully, more efficient and/or simpler) techniques should also be
explored.

The first step is to link together all the connected components of the boundary of
each connected component of C. This can be done in several ways. For example, we
can take the highest point w on each (bounded) boundary component σ and consider
the upward-directed ray ρw emanating from w. If ρw leaves C near w, then σ is the
outer boundary of this component of C, and nothing needs to be done. Otherwise,
trace ρw and find the first polyhedron Pi (if any) met by that ray. The hitting point
w′ necessarily lies on ∂C (but not on σ), and the connections between w and w′,
over all inner boundary components σ, yield the desired links, as is easily verified.
(The case when ρw meets no polyhedron, which can happen when σ is an unbounded
boundary component, requires different, though equally simple, treatment.) To find
the point w′, we simply find the intersections (if any) of ρw with each of the Pi’s, by
explicit enumeration of all the n faces of the Pi’s, and choose the point nearest to w.
If w′ is found to lie in a face F of some Pi, we use the point location structure for
UF , which is obtained as a byproduct of the incremental construction of the vertical

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1799

decomposition of UF (see [4, 5]), to determine which face of F ∩∂U contains w′. Since
the highest point w on an inner component σ of ∂C must be the top vertex of one of
the Pi’s, the whole step takes time O(nk).

We next scan all the faces of ∂C and assign to each of them the connected com-
ponent of C that it bounds. This is easily done by a depth-first search through the
adjacency graph of the trapezoids forming ∂C, augmented by the additional adjacen-
cies induced by the new vertical links computed above. This can be done in time
linear in the size of ∂C, that is, in time O(nk log k).

Now, suppose we are given two placements ζ1, ζ2 of B and wish to determine
whether B can be moved from ζ1 to ζ2 without colliding with any Ai. To this end,
let ρ1, ρ2 be the upward-directed rays emanating from ζ1, ζ2, respectively. Apply the
procedure described above to these rays, and let ξ1, ξ2 be the first points where the
respective rays ρ1, ρ2 meet ∂C. We then simply check whether the trapezoids on the
faces of ∂C containing ξ1, ξ2 bound the same component of C, using the information
computed in the preliminary stage. If this is the case, then collision-free translational
motion of B from ζ1 to ζ2 is possible; otherwise no such motion is possible. This
“decision procedure” takes time O(n), if we test explicitly all n faces of the Pi’s, as
above; this can be improved toO(k logn) time by preprocessing each polyhedron Pi for
efficient line-intersection queries (as in [13]) and then by computing the intersection
points of the rays ρ1, ρ2 with each polyhedron separately, in logarithmic time per
polyhedron. Computing the trapezoids of ∂C containing ξ1 and ξ2, respectively, can be
done by point-location queries for ξ1 and ξ2 in the respective point-location structures
of UF1

and UF2
, computed by the preceding algorithm, where Fi is the face containing

ξi, for i = 1, 2.

It is also rather straightforward to produce a “semifree” motion of B (i.e., a
motion during which B does not penetrate, but may touch the obstacles) from ζ1 to
ζ2, when one exists, as the concatenation of the segments ζ1ξ1 and ζ2ξ2 with a path
that proceeds along the boundary of C, and, if necessary, also along vertical links
produced in the preliminary stage. We omit here the rather easy details.

Corollary 5.2. Given a convex polyhedron B, free to translate among k convex
polyhedral obstacles with pairwise-disjoint interiors, the entire free configuration space
of B can be computed and preprocessed in randomized expected time O(nk log k logn),
where n is the total number of faces of the Minkowski sums of the obstacles and −B.
Then, given two placements, ζ1, ζ2, of B, we can decide, in O(k logn) time, whether
B can translate in a collision-free manner from ζ1 to ζ2.

Remark. An interesting challenge is to revise the algorithm so that the above
reachability queries can be performed in time faster than O(k logn), perhaps at only
polylogarithmic cost.

6. Conclusions. In this paper we have shown that the combinatorial complexity
of the union of the Minkowski sums of k convex polyhedra in three dimensions, hav-
ing pairwise-disjoint interiors, with another convex polyhedron, is O(nk log k) (and
Ω(nkα(k)) in the worst case), where n is the overall complexity of the individual
Minkowski sums. We have also presented an efficient and rather simple randomized
algorithm for computing the union in expected time O(nk log k logn). Both the com-
binatorial bound and the algorithm have applications to translational motion planning
of a convex polyhedral object in a three-dimensional environment amidst polyhedral
obstacles, and we have also discussed these applications.

These results almost settle a long-standing open problem but raise a whole collec-
tion of new open problems; some of these problems have already been mentioned in

1800 BORIS ARONOV AND MICHA SHARIR

earlier sections. One open problem is to tighten the remaining gap between the lower
and upper bounds on the complexity of the union. We conjecture that the correct
worst-case bound is Θ(nkα(k)). There are also the problems of designing an efficient
deterministic algorithm for computing the union and of improving the performance
of the motion planning algorithm described above.

The more challenging and interesting open problems, however, involve generaliza-
tions and extensions of our results and techniques. First, what is the combinatorial
complexity of the union of Minkowski sums Ai⊕B, where the Ai’s are k convex poly-
hedra with pairwise disjoint interiors, and B is a ball? Even the special case where
the Ai’s are lines seems to be open; in this case we want to bound the combinatorial
complexity of the union of k congruent infinite cylinders, where the conjecture is that
this complexity is near-quadratic in k. This problem arises in motion planning, when
applying a standard heuristic of enclosing the moving (rigid) object by a ball, and
planning the motion of the enclosing ball.

Another open problem involves generalized Voronoi diagrams in 3-space. Given
A1, . . . , Ak and B as above, the B-Voronoi diagram of the Ai’s is the partition of
3-space into cells, V (A1), . . . , V (Ak), where

V (Ai) = {ξ | dB(ξ, Ai) ≤ dB(ξ, Aj) for all j 6= i},
where dB is the convex distance function induced byB, namely, dB(x, y) is the smallest
positive λ such that y ∈ {x} ⊕ λB, and dB(x,A) = min {dB(x, y) | y ∈ A}. (Here,
for the function dB to be well defined, B must contain the origin in its interior. Also
note that if B is a ball, this is the standard Euclidean Voronoi diagram of the “sites”
Ai.) See [23] for a study of planar B-Voronoi diagrams. The problem is to bound
the combinatorial complexity of the B-Voronoi diagram of the Ai’s. If we view the
diagram as the lower envelope of graphs of an appropriate collection of trivariate
distance functions w = dB((x, y, z), Ai) in four dimensions, following the standard
observation of [16], the results of this paper can be interpreted, as is easily verified, as
bounding the complexity of any “horizontal” cross section w = const of the envelope.
The results of [28] imply that the complexity of the B-Voronoi diagram is O(n3+ε),
for any ε > 0, where n is the overall complexity of the corresponding Minkowski
sums. Considerable progress was made very recently in [11]; it is shown there that
the complexity of the Voronoi diagram of n lines in 3-space, under a polyhedral
convex distance function, where the underlying polyhedron B has a constant number
of edges, is O(n2α(n) logn). However, it is still an open problem to extend this result
and obtain near-quadratic bounds for the general case where the Ai’s and B are
arbitrary polyhedra, as above (see [8] for some recent progress on this problem). The
main challenge lying ahead is to obtain near-quadratic bounds for the complexity of
Euclidean Voronoi diagrams for a set of polyhedral objects. No subcubic bounds are
known as yet for this problem, except for the special case where the sites are points
(and then the bound is actually quadratic).

Appendix. Proof of Proposition 3.3. In this appendix we give the proof of
Proposition 3.3. Recall that this proposition asserts that the first Betti number β1(S)
of any compact polyhedral set S in R

3 in general position does not exceed the sum of
the merge numbers of its vertices.

Let z : S → R be the z-coordinate function. For a, b ∈ R, let S[a] = z−1({a}),
S[a, b] = z−1([a, b]), and Sa = z−1((−∞, a]).

We begin the proof by stating and sketching a proof of a polyhedral analogue of
a basic fact of Morse theory (cf. [25, Theorem 3.1]).

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1801

Fact 6.1. Let S ⊆ R
3 be a triangulated polyhedral set in general position. If

S[a, b] contains either no vertex of S, or exactly one vertex v and the z-coordinate of
v is a, then S[a] is a strong deformation retract2 of S[a, b].

Sketch of proof. The proof is an easy and standard exercise in topology, but we
include a brief sketch of it here for the sake of completeness. We consider only the
case in which there exists a vertex v ∈ S[a, b] with z(v) = a. For each c ∈ (a, b], the
intersection of the triangulation of S with the plane z = c is a convex subdivision
of S[c] into triangles and quadrilaterals. It is easy to construct a triangulation, Tc,
of this subdivision, in such a way that the combinatorial structure of Tc, for each
c ∈ (a, b], is the same. More formally, if we label each vertex of Tc with the edge of
the triangulation of S on which it lies, Tc and Tc′ are isomorphic labeled planar maps,
for any two values c, c′ ∈ (a, b].

For any c ∈ (a, b] and any p ∈ S[c], there is a triangle 4(p) of Tc containing p,
so we can write p = α1u1 + α2u2 + α3u3, where u1, u2, u3 are the vertices of 4(p),
and α1, α2, α3 ≥ 0,

∑
i αi = 1. For each ξ ∈ (a, b], define p(ξ) = α1u1(ξ) + α2u2(ξ) +

α3u3(ξ), where, for i = 1, 2, 3, ui(ξ) is the vertex of Tξ corresponding to ui (i.e., they
both lie on the same edge of the triangulation of S). We have p(c) = p, and p(ξ) is
a linear function of ξ over (a, b] (for any fixed p), so it is continuous and converges
to a limit p(a) as ξ → a. Now define the map ρ : S[a, b] × [0, 1] → S[a, b], so that,
for p ∈ S[a, b] and t ∈ [0, 1], we have ρ(p, t) = p

(
z(p)(1 − t) + at

)
if z(p) > a, and

ρ(p, t) = p if z(p) = a. It is easy to verify that ρ is continuous and satisfies ρ(p, 0) = p,
ρ(p, 1) ∈ S[a], for all p ∈ S[a, b], and ρ(p, t) = p for all p ∈ S[a], t ∈ [0, 1]. Hence, by
definition, S[a] is a strong deformation retract of S[a, b].

We now return to the proof of Proposition 3.3. We first triangulate S. This
may add new vertices to S, but their presence does not affect the statement of the
proposition, since they all have merge number 0. Let z = c be a plane below all the
vertices of S. Since S is assumed to be bounded, we have Sc = ∅, so β1(S

c) = 0. It
suffices to prove that, as t increases from c to +∞, the Betti number β1(S

t) increases
at (the z-coordinate of) each vertex of S by at most the merge number of the vertex,
and never changes otherwise.

Fact 6.1 implies that β1(S
t) changes only when the plane z = t sweeps through

a vertex of S. Indeed, if t′ > t is such that no vertex of S has z coordinate in (t, t′],
then S[t] is a strong deformation retract of S[t, t′]. However, St

′
is the union of St

and S[t, t′], attached along S[t], so St is a strong deformation retract of St
′
(extending

the map provided in Fact 6.1 by the identity map over St). Thus St and St
′
have the

same homologies [30, Corollary 1.12], which implies that β1(S
t′) = β1(S

t).

Let v be a vertex of S. We want to bound the difference β1(S
t)−β1(S

t′), where t =
z(v) and t′ < t is appropriately close to t. One can easily verify that the transformation
from St

′
to St is equivalent, topologically, to gluing a ball D centered at v to St

′
,

choosing the size of D to be such that it intersects all triangles of Tt′ with at least
one vertex approaching v as t′ → t, and no other triangles. An easy topological

2 For a topological space X, a subspace Y ⊆ X is called a strong deformation retract of X if
there exists a continuous map ρ : X × [0, 1] → X such that ρ(x, 0) = x for all x ∈ X, ρ(X, 1) = Y ,
and ρ(y, t) = y for all y ∈ Y, t ∈ [0, 1]; see, for example, [30, p. 56]. Intuitively, it means that X can
be deformed into its subspace Y in a continuous fashion while staying in X and not moving a single
point of Y .

1802 BORIS ARONOV AND MICHA SHARIR

calculation3 yields

β1(S
t) = β1(S

t′ ∪D) ≤ β1(S
t′) + β1(D) + β0(S

t′ ∩D)− 1.

Here β0(X), the 0th Betti number of a topological space X, is the number of connected
components of X. Now β1(D) = 0 and β0(S

t′ ∩ D) is exactly equal to the number
of components of the intersection of a neighborhood of v in S with the plane z = t′,
lying just below v, namely, it is equal to m(v) + 1. Hence β1(S

t) − β1(S
t′) ≤ m(v),

as claimed. This concludes the proof of Proposition 3.3.

Acknowledgments. We wish to thank Dan Halperin for useful discussions on
the problem, and Jǐŕı Matoušek and Igor Rivin for helpful suggestions on matters of
topology.

REFERENCES

[1] B. Aronov and M. Sharir, The common exterior of convex polygons in the plane, Comput.
Geom., 8 (1997), pp. 139–149.

[2] B. Aronov and M. Sharir, Triangles in space, or building (and analyzing) castles in the air,
Combinatorica, 10 (1990), pp. 137–173.

[3] B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom., 12 (1994),
pp. 119–150.

[4] B. Aronov and M. Sharir, The union of convex polyhedra in three dimensions, in Proc. 34th
IEEE Symp. on Foundation of Computer Science, Palo Alto, CA, 1993, pp. 518–529.

[5] B. Aronov, M. Sharir, and B. Tagansky, The union of convex polyhedra in three dimensions,
SIAM J. Comput., 26 (1997), pp. 1670–1688.

[6] M. de Berg, J. Matoušek, and O. Schwarzkopf, Piecewise linear paths among convex
obstacles, Discrete Comput. Geom., 14 (1995), pp. 9–29.

[7] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec, Applications
of random sampling to on-line algorithms in computational geometry, Discrete Comput.
Geom., 8 (1992), pp. 51–71.

[8] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in higher di-
mensions under certain polyhedral convex distance functions, in Proc. 11th ACM Symp. on
Computational Geometry, Vancouver, British Columbia, 1995, pp. 79–88; Discrete Com-
put. Geom., to appear.

[9] B. Chazelle, An optimal algorithm for intersecting three-dimensional convex polyhedra, SIAM
J. Comput., 21 (1992), pp. 671–696.

[10] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink, Computing a
single face in an arrangement of line segments and related problems, SIAM J. Comput.,
22 (1993), pp. 1286–1302.

[11] L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl, Voronoi diagrams of lines
in three dimensions under a polyhedral convex distance function, in Proc. 6th ACM-SIAM
Symp. on Discrete Algorithms, San Francisco, CA, 1995, pp. 197–204; J. Algorithms, to
appear.

[12] K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,
Discrete Comput. Geom., 4 (1989), pp. 387–421.

[13] D. P. Dobkin and D. G. Kirkpatrick, Fast detection of polyhedral intersection, Theoret.
Comput. Sci., 27 (1983), pp. 241–253.

[14] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[15] H. Edelsbrunner, L. Guibas, and M. Sharir, The upper envelope of piecewise linear func-

tions: Algorithms and applications, Discrete Comput. Geom., 4 (1989), pp. 311–336.
[16] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput.

Geom., 1 (1986), pp. 25–44.

3 It is easy to show that, for two intersecting path-connected topological spaces X and Y , β1(X ∪
Y) ≤ β1(X)+β1(Y)+β0(X ∩Y)−1. If X is not path-connected, but Y is, the statement follows by
repeated applications of the path-connected version. Note that in our case D is path-connected but

St′ need not be. The statement easily follows from arguments based on the Mayer-Vietoris sequence;
see, for example, Vick [30, p. 22].

ON TRANSLATIONAL MOTION PLANNING OF A POLYHEDRON 1803

[17] M. Greenberg and J. Harper, Algebraic Topology: A First Course, Benjamin-Cummings
Pub. Co., Reading, MA, 1981.

[18] L. Guibas, D. Knuth, and M. Sharir, Randomized incremental construction of Voronoi and
Delaunay diagrams, Algorithmica, 7 (1992), pp. 381–413.

[19] L. Guibas and R. Seidel, Computing convolutions by reciprocal search, Discrete Comput.
Geom., 2 (1987), pp. 175–193.

[20] D. Halperin and C. K. Yap, Combinatorial complexity of translating a box in polyhedral
3-space, in Proc. 9th ACM Symp. on Computational Geometry, San Diego, CA, 1993,
pp. 29–37; Comput. Geom. Theory Appl., to appear.

[21] D. Huttenlocher, K. Kedem, and M. Sharir, The upper envelope of Voronoi surfaces and
its applications, Discrete Comput. Geom., 9 (1993), pp. 267–291.

[22] K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles, Discrete Comput. Geom., 1 (1986),
pp. 59–71.

[23] D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-
dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom., 2 (1987),
pp. 9–31.

[24] N. Miller and M. Sharir, Efficient randomized algorithms for constructing the union of fat
triangles and of pseudo-disks, manuscript, 1991.

[25] J. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.
[26] J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the boundary

of a region enclosed by convex plates: Combinatorial analysis, Discrete Comput. Geom.,
4 (1989), pp. 291–309.

[27] M. Sharir, Efficient algorithms for planning purely translational collision-free motion in two
and three dimensions, in Proc. IEEE Symp. on Robotics and Automation, IEEE Computer
Society Press, Los Alamitos, CA, 1987, pp. 1326–1331.

[28] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete
Comput. Geom., 12 (1994), pp. 327–345.

[29] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, Cambridge, New York, Melbourne, 1995.

[30] J. W. Vick, Homology Theory: An Introduction to Algebraic Topology, Academic Press, New
York, 1973.

	SMJCAT_V26_i1_p0001
	SMJCAT_V26_i1_p0015
	SMJCAT_V26_i1_p0039
	SMJCAT_V26_i1_p0059
	SMJCAT_V26_i1_p0079
	SMJCAT_V26_i1_p0093
	SMJCAT_V26_i1_p0110
	SMJCAT_V26_i1_p0138
	SMJCAT_V26_i1_p0153
	SMJCAT_V26_i1_p0173
	SMJCAT_V26_i1_p0188
	SMJCAT_V26_i1_p0210
	SMJCAT_V26_i1_p0231
	SMJCAT_V26_i1_p0243
	SMJCAT_V26_i1_p0255
	SMJCAT_V26_i1_p0273
	SMJCAT_V26_i2_p0291
	SMJCAT_V26_i2_p0331
	SMJCAT_V26_i2_p0350
	SMJCAT_V26_i2_p0369
	SMJCAT_V26_i2_p0401
	SMJCAT_V26_i2_p0410
	SMJCAT_V26_i2_p0418
	SMJCAT_V26_i2_p0456
	SMJCAT_V26_i2_p0484
	SMJCAT_V26_i2_p0539
	SMJCAT_V26_i2_p0557
	SMJCAT_V26_i2_p0568
	SMJCAT_V26_i2_p0582
	SMJCAT_V26_i3_p0605
	SMJCAT_V26_i3_p0634
	SMJCAT_V26_i3_p0654
	SMJCAT_V26_i3_p0675
	SMJCAT_V26_i3_p0678
	SMJCAT_V26_i3_p0693
	SMJCAT_V26_i3_p0708
	SMJCAT_V26_i3_p0733
	SMJCAT_V26_i3_p0751
	SMJCAT_V26_i3_p0764
	SMJCAT_V26_i3_p0772
	SMJCAT_V26_i3_p0786
	SMJCAT_V26_i3_p0803
	SMJCAT_V26_i3_p0857
	SMJCAT_V26_i3_p0870
	SMJCAT_V26_i4_p0873
	SMJCAT_V26_i4_p0934
	SMJCAT_V26_i4_p0950
	SMJCAT_V26_i4_p0961
	SMJCAT_V26_i4_p0991
	SMJCAT_V26_i4_p1006
	SMJCAT_V26_i4_p1043
	SMJCAT_V26_i4_p1066
	SMJCAT_V26_i4_p1100
	SMJCAT_V26_i4_p1120
	SMJCAT_V26_i4_p1139
	SMJCAT_V26_i4_p1166
	SMJCAT_V26_i4_p1188
	SMJCAT_V26_i4_p1208
	SMJCAT_V26_i4_p1245
	SMJCAT_V26_i5_p1277
	SMJCAT_V26_i5_p1284
	SMJCAT_V26_i5_p1310
	SMJCAT_V26_i5_p1343
	SMJCAT_V26_i5_p1363
	SMJCAT_V26_i5_p1384
	SMJCAT_V26_i5_p1409
	SMJCAT_V26_i5_p1411
	SMJCAT_V26_i5_p1474
	SMJCAT_V26_i5_p1484
	SMJCAT_V26_i5_p1510
	SMJCAT_V26_i5_p1524
	SMJCAT_V26_i5_p1541
	SMJCAT_V26_i6_p1559
	SMJCAT_V26_i6_p1581
	SMJCAT_V26_i6_p1612
	SMJCAT_V26_i6_p1635
	SMJCAT_V26_i6_p1656
	SMJCAT_V26_i6_p1670
	SMJCAT_V26_i6_p1689
	SMJCAT_V26_i6_p1714
	SMJCAT_V26_i6_p1733
	SMJCAT_V26_i6_p1749
	SMJCAT_V26_i6_p1764
	SMJCAT_V26_i6_p1785

